WO2024001081A1 - 金属沾污收集系统和金属沾污收集方法 - Google Patents

金属沾污收集系统和金属沾污收集方法 Download PDF

Info

Publication number
WO2024001081A1
WO2024001081A1 PCT/CN2022/139929 CN2022139929W WO2024001081A1 WO 2024001081 A1 WO2024001081 A1 WO 2024001081A1 CN 2022139929 W CN2022139929 W CN 2022139929W WO 2024001081 A1 WO2024001081 A1 WO 2024001081A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
metal contamination
channel
collection system
phase corrosion
Prior art date
Application number
PCT/CN2022/139929
Other languages
English (en)
French (fr)
Inventor
邹志文
张俊浩
衡科技
程实然
孟庆国
崔虎山
许开东
Original Assignee
江苏鲁汶仪器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏鲁汶仪器股份有限公司 filed Critical 江苏鲁汶仪器股份有限公司
Publication of WO2024001081A1 publication Critical patent/WO2024001081A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/32Polishing; Etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere

Definitions

  • the present application relates to the field of semiconductor technology, particularly a metal contamination collection system and a metal contamination collection method.
  • collection systems generally use nozzles based on nitrogen walls to control liquid beads to collect metal contamination.
  • Such collection systems often experience problems such as collection failure or the collection rate is less than 50%, resulting in the inability to conduct further metal contamination analysis.
  • the collection system includes a gas phase corrosion chamber, a first channel, a second channel, a third channel and a fourth channel connected with the gas phase corrosion cavity.
  • the first channel, the second channel, the third channel and the fourth channel are independent of each other and are respectively used to introduce strong acidic gas, oxidizing gas, inert gas and hydrophilic crystal surface into the gas phase corrosion chamber. chemical surface modification gas.
  • the collection system further includes an air extraction device, and the air extraction device is connected to the gas phase corrosion chamber.
  • An embodiment of the metal contamination collection system further includes an exhaust gas collection device, and the exhaust gas collection device is connected with the exhaust device.
  • the exhaust gas collection device is equipped with an alkaline absorption liquid inside.
  • the exhaust gas collection device is provided with a pH value indicator.
  • the collection system further includes a cooling device.
  • the chamber wall of the gas phase corrosion chamber is provided with a cooling channel, and the cooling channel is connected to the cooling device.
  • cooling liquid is stored in the cooling device, and the temperature of the cooling liquid is between 5°C and 100°C.
  • a special gas leakage sensor is provided near the gas phase corrosion chamber.
  • this application also provides a metal contamination collection method.
  • a surface modification gas is introduced into the interior of the gas phase corrosion chamber to hydrophobicize the surface of the crystalline crystal; then an inert gas is introduced into the interior of the gas phase corrosion chamber to make the gas phase corrosion chamber The remaining surface modification gas is discharged; then a scanning fluid is sprayed onto the crystalline surface to collect metal contamination, and the scanning fluid is selected according to the monitored elements.
  • the following operations are performed before introducing the surface modification gas into the gas phase corrosion chamber: first, introduce strong gas into the gas phase corrosion chamber. Acidic gases and oxidizing gases corrode metallic precious metal elements into ionized states, and then inert gases are introduced into the gas phase corrosion chamber to discharge the strong acidic gases and oxidizing gases remaining in the gas phase corrosion chamber.
  • the surface modification gas is: n-octadecyltrichlorosilane, hexamethyldisilane, 1H, 1H, 2H, 2H-perfluorooctyltrichlorosilane One or a mixture of several.
  • the strong acid gas is one or a mixture of HCl, HNO 3 , HBr, HI, and HClO 3 .
  • the oxidizing gas is one or more mixtures of O 3 , H 2 O 2 , and HClO 4 .
  • an alkaline solution is added to the scanning liquid containing precious metal elements.
  • the alkaline solution is one or a mixture of ammonia, tetramethylammonium hydroxide, and corrin.
  • the scanning liquid is a nitric acid solution
  • the scanning liquid is hydrochloric acid solution or nitric acid solution
  • the scanning liquid is hydrochloric acid solution
  • the metal contamination collection device provided by this application is provided with a channel for introducing surface modification gas into the gas phase corrosion chamber.
  • the surface modification gas can be introduced into the gas phase corrosion chamber to hydrophobicize the surface of the crystal-friendly crystal. In this way When collecting metal contamination, the hydrophilicity of the wafer surface will not cause the scanning fluid to disperse and adhere to the wafer surface. If the scanning fluid disperses and adheres to the wafer surface, collection failure or low collection rate will occur. Therefore, introducing surface modification gas into the gas-phase corrosion chamber makes the surface of the crystalline crystal hydrophobic, which can ensure that the collection system efficiently collects metal contamination.
  • Figure 1 is a partial structural schematic diagram of an embodiment of the collection system provided by this application.
  • this application provides a metal contamination collection system and a metal contamination collection method. Using this application, metal contamination can be collected efficiently and ensure the smooth progress of metal contamination analysis.
  • the metal contamination collection system includes a gas phase corrosion chamber 10.
  • the gas phase corrosion chamber 10 can be made of corrosion-resistant PVDF (polyvinylidene fluoride) material and sealed with a corrosion-resistant sealing ring.
  • the metal contamination collection system also has a first channel, a second channel, a third channel and a fourth channel, which are not shown in the figure.
  • the first channel, the second channel, the third channel, and the fourth channel are all connected to the gas phase corrosion chamber 10 , and the first channel, the second channel, the third channel, and the fourth channel are independent of each other and can be used for gas phase corrosion respectively.
  • Strong acidic gas, oxidizing gas, inert gas (such as nitrogen) and surface modification gas that can hydrophobize the crystal surface are introduced into the cavity 10 . Make the first channel, second channel, third channel, and fourth channel independent of each other to facilitate independent control of the four channels of gas.
  • the strongly acidic gas may be one or a mixture of HCl, HNO 3 , HBr, HI, and HClO 3 .
  • the oxidizing gas may be one or a mixture of O 3 , H 2 O 2 , and HClO 4 .
  • the surface modification gas can be one of n-octadecyltrichlorosilane (ODTS), hexamethyldisilane (HMDS), 1H, 1H, 2H, 2H-perfluorooctyltrichlorosilane (FOTS). species or a mixture of several species.
  • ODTS n-octadecyltrichlorosilane
  • HMDS hexamethyldisilane
  • 1H, 1H, 2H, 2H-perfluorooctyltrichlorosilane (FOTS) species or a mixture of several species.
  • the collection system also includes a scanning chamber 20 and a nozzle 30 for spraying scanning fluid into the scanning chamber 20 to collect metal contamination by spraying the scanning fluid.
  • the collection system can also be provided with an air extraction device interface 40 to connect the air extraction device.
  • the air extraction device is connected with the gas phase corrosion chamber 10 to assist in discharging the gas in the gas phase corrosion chamber 10 .
  • an exhaust gas collection device can also be provided.
  • the exhaust gas collection device is connected to the exhaust device, and an alkaline absorption liquid (such as NaOH solution) is installed inside the exhaust gas collection device to absorb the acid gas discharged from the gas phase corrosion chamber 10 to prevent acid Direct emission of gas is harmful to the environment.
  • the exhaust gas collection device can be set with a pH value indicator to facilitate the user to know the current pH value of the solution in the exhaust gas collection device. When the pH value is less than or equal to 5, the user is reminded to replace the solution in the exhaust gas collection device.
  • the collection system can also be provided with a cooling device interface 50 to connect the cooling device, and a cooling channel connected to the cooling device is provided inside the chamber wall of the gas phase corrosion chamber 10 .
  • a cooling channel connected to the cooling device is provided inside the chamber wall of the gas phase corrosion chamber 10 .
  • the collection system can also be provided with a wafer lifting device 60 to facilitate the installation and removal of the wafer.
  • a special gas leakage sensor can also be installed near the gas phase corrosion chamber 10 to ensure the safe operation of the collection system.
  • the collection method is to first introduce surface modification gas into the interior of the gas phase corrosion chamber 10 to hydrophobicize the surface of the crystal-friendly crystal, and then introduce inert gas into the interior of the gas phase corrosion chamber 10 to make the gas phase corrosion chamber 10 The remaining surface modification gas is discharged, and then the scanning fluid is sprayed into the scanning chamber 20 to collect metal contamination.
  • Common metal elements include but are not limited to: lithium Li, sodium Na, magnesium Mg, aluminum Al, potassium K, calcium Ca, titanium Ti, vanadium V, chromium Cr, manganese Mn, iron Fe, cobalt Co, nickel Ni, copper Cu, Zinc Zn, molybdenum Mo, barium Ba, tungsten W, lead Pb.
  • the collection method is: first, introduce strong acidic gas and oxidizing gas into the interior of the gas phase corrosion chamber 10, so that the metallic noble metal elements are corroded into the ionic state; and then pass inert gas into the interior of the gas phase corrosion chamber 10. gas to discharge the strong acidic gas and oxidizing gas remaining in the gas-phase corrosion chamber 10, and then introduce the surface modification gas into the interior of the gas-phase corrosion chamber 10 to hydrophobicize the surface of the crystal-friendly crystal, and then introduce it into the interior of the gas-phase corrosion chamber 10 The inert gas is used to discharge the surface modification gas remaining in the gas phase etching chamber 10, and then the scanning liquid is sprayed into the scanning chamber 20 to collect metal contamination.
  • Precious metal elements include but are not limited to: ruthenium (Ru), platinum (Pt), gold (Au), silver (Ag), and hafnium (Hf).
  • the surface modification gas will be introduced into the vapor phase etching chamber 10 to hydrophobicize the surface of the crystal-friendly wafer.
  • the wafer surface will not be contaminated due to The hydrophilicity causes the scanning fluid to disperse and adhere to the wafer surface. If the scanning fluid disperses and adheres to the wafer surface, collection failure or low collection rate will occur. Therefore, introducing the surface modification gas into the interior of the gas phase etching chamber 10 makes the surface of the crystalline crystal hydrophobic, which can ensure that the collection system efficiently collects metal contamination.
  • the scanning fluid is selected based on the elements being monitored.
  • a nitric acid solution is selected as the scanning fluid.
  • the scanning solution should be hydrochloric acid solution or nitric acid solution.
  • the scanning fluid containing metal contamination can be detected and analyzed using an Inductively Coupled Plasma Mass Spectrometry (ICP-MS).
  • ICP-MS Inductively Coupled Plasma Mass Spectrometry
  • an alkaline solution can be added to the scanning fluid containing precious metal elements.
  • the alkaline solution can make the precious metals and ammonia form ligands to improve the accuracy of detection and analysis. In addition, It can also lower the pH value of the scanning fluid to about 5-8, thereby preventing the scanning fluid from corroding the detection head of the mass spectrometer and affecting the service life of the mass spectrometer.
  • the alkaline solution may be one of ammonia, tetramethylammonium hydroxide (TMAH), coline, or a mixture of several.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Weting (AREA)

Abstract

金属沾污收集系统和收集方法,该收集系统包括气相腐蚀腔(10)、与气相腐蚀腔(10)连通的第一通道、第二通道、第三通道和第四通道,第一通道、第二通道、第三通道和第四通道相互独立,分别用于向气相腐蚀腔(10)内通入强酸性气体、氧化性气体、惰性气体和能使亲水晶圆表面疏水化的表面改性气体。收集过程中,向气相腐蚀腔(10)内部通入表面改性气体使亲水晶圆表面疏水化,在收集金属沾污时,防止扫描液分散粘连在晶圆表面,保障收集系统高效收集金属沾污。

Description

金属沾污收集系统和金属沾污收集方法
本申请要求于2022年06月29日提交中国专利局、申请号为2022107502982、发明名称为“金属沾污收集系统和金属沾污收集方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及半导体技术领域,特别是一种金属沾污收集系统和金属沾污收集方法。
背景技术
摩尔定律的强势推动下,以鳍式场效应晶体管为主的7纳米技术代高性能、低功耗芯片早已集成在当今的智能手机中,制造如此强大的芯片需要引入大量新的化学元素。由于每个元素对硅基器件的影响各不相同,有些是必需的,添加以实现功能,有些则是无意中带入的,成为降低芯片性能甚至使芯片失效的污染元素,大多数污染元素是金属元素,称之为金属沾污。
为保障芯片性能,在芯片制造工序中,需要利用收集系统从p++/n++等层的亲水表面上,以及SiO 2、SiNx、SiON等亲水薄膜上,以及石英、玻璃或者碳化硅(SiC)等亲水衬底上收集金属沾污,然后搭配电感耦合等离子体质谱仪(Inductively Coupled Plasma Mass Spectrometry,ICP-MS)做金属沾污分析。
目前,收集系统普遍采用基于氮气墙的喷嘴控制液珠去收集金属沾污,这种收集系统经常出现收集失败或者收集率小于<50%导致无法做进一步的金属沾污分析等问题。
因此,如何实现金属沾污的高效收集,是本领域技术人员需要解决的技术问题。
发明内容
为解决上述技术问题,本申请提供一种金属沾污收集系统,所述收集系统包括气相腐蚀腔、与所述气相腐蚀腔连通的第一通道、第二通道、第三通道和第四通道,所述第一通道、第二通道、第三通道和第四通道相互独立,分别用于向所述气相腐蚀腔内通入强酸性气体、氧化性气体、惰性气体和能使亲水晶圆表面疏水化的表面改性气体。
金属沾污收集系统的一种实施方式,所述收集系统还包括扫描腔和用于向扫描腔内喷射扫描液的喷嘴。
金属沾污收集系统的一种实施方式,所述收集系统还包括抽气装置,所述抽气装置与所述气相腐蚀腔连通。
金属沾污收集系统的一种实施方式,还包括尾气收集装置,所述尾气收集装置与所述抽气装置连通。
金属沾污收集系统的一种实施方式,所述尾气收集装置内部装有碱性吸收液。
金属沾污收集系统的一种实施方式,所述尾气收集装置设有pH值指示器。
金属沾污收集系统的一种实施方式,所述收集系统还包括冷却装置,所述气相腐蚀腔的腔壁设有冷却通道,所述冷却通道与所述冷却装置连通。
金属沾污收集系统的一种实施方式,所述冷却装置内存储有冷却液,所述冷却液的温度在5℃-100℃之间。
金属沾污收集系统的一种实施方式,所述气相腐蚀腔附近设有特气泄漏传感器。
金属沾污收集系统的一种实施方式,所述气相腐蚀腔内部设置晶圆升降装置。
另外,本申请还提供一种金属沾污收集方法,先向气相腐蚀腔内部通入表面改性气体,使亲水晶圆表面疏水化;然后向气相腐蚀腔内部通入惰性气体,使气相腐蚀腔内残留的表面改性气体排出;然后向亲水晶圆表面喷射扫描液,以收集金属沾污,所述扫描液根据监控的元素选择。
金属沾污收集方法的一种实施方式,若监控的金属沾污元素为贵金属元素,则在向气相腐蚀腔内部通入表面改性气体之前还进行以下操作:先 向气相腐蚀腔内部通入强酸性气体和氧化性气体,使金属态的贵金属元素被腐蚀成离子态,然后向气相腐蚀腔内部通入惰性气体,使气相腐蚀腔内残留的强酸性气体和氧化性气体排出。
金属沾污收集方法的一种实施方式,所述表面改性气体为:正十八烷基三氯硅烷、六甲基二硅烷、1H,1H,2H,2H-全氟辛基三氯硅烷中的一种或几种混合。
金属沾污收集方法的一种实施方式,所述强酸性气体是HCl、HNO 3、HBr、HI、HClO 3中的一种或多种混合。
金属沾污收集方法的一种实施方式,所述氧化性气体是O 3、H 2O 2、HClO 4的一种或多种混合。
金属沾污收集方法的一种实施方式,对收集的金属沾污元素进行检测分析前,向含有贵金属元素的扫描液中添加碱性溶液。
金属沾污收集方法的一种实施方式,所述碱性溶液是氨水、四甲基氢氧化铵、可啉的一种或几种混合。
金属沾污收集方法的一种实施方式,若监控的贵金属元素为Ag元素,则所述扫描液选用硝酸溶液,所述硝酸溶液的配比为:HNO 3:H 2O=1:100。
金属沾污收集方法的一种实施方式,若监控的贵金属元素为Au元素,则所述扫描液选用盐酸溶液或硝酸溶液,所述盐酸溶液的配比范围为:HCl:H 2O=1:1-10:1,所述硝酸溶液的配比范围为:HCl:H 2O=1:1-10:1。
金属沾污收集方法的一种实施方式,若监控的贵金属元素为Pt元素,则所述扫描液选用盐酸溶液,所述盐酸溶液的配比范围为:HCl:H 20=1:1-1:50。
本申请提供的金属沾污收集装置设有用于向气相腐蚀腔通入表面改性气体的通道,收集过程中,可以向气相腐蚀腔内部通入表面改性气体使亲水晶圆表面疏水化,这样在收集金属沾污时,不会因为晶圆表面的亲水性导致扫描液分散粘连在晶圆表面,如果扫描液分散粘连在晶圆表面则会导致收集失败或者收集率低。因此,向气相腐蚀腔内部通入表面改性气体使亲水晶圆表面疏水化,能够保障收集系统高效收集金属沾污。
附图说明
图1是本申请提供的收集系统一种实施例的部分结构示意图。
附图标记说明如下:
10气相腐蚀腔,20扫描腔,30喷嘴,40抽气装置接口,50冷却装置接口,60晶圆升降装置。
具体实施方式
以往,收集系统普遍采用基于氮气墙的喷嘴控制液珠去收集金属沾污,这种收集系统经常出现收集失败或者收集率小于<50%导致无法做进一步的金属沾污分析等问题。
为此,本申请提供一种金属沾污收集系统和金属沾污收集方法,采用本申请,能高效收集金属沾污,保障金属沾污分析的顺利进行。
为了使本技术领域的技术人员更好地理解本申请的技术方案,下面结合附图和具体实施方式对本申请提供的金属沾污收集系统和金属沾污收集方法作进一步的详细说明。
如图1,该金属沾污收集系统包括气相腐蚀腔10,气相腐蚀腔10可以选用耐腐蚀性的PVDF(聚偏二氟乙烯)材质并用耐腐蚀密封圈密封。
该金属沾污收集系统还设有第一通道、第二通道、第三通道和第四通道,图中未展示出这些通道。第一通道、第二通道、第三通道、第四通道均与气相腐蚀腔10连通,并且,第一通道、第二通道、第三通道、第四通道相互独立,能分别用于向气相腐蚀腔10内通入强酸性气体、氧化性气体、惰性气体(例如氮气)和能使亲水晶圆表面疏水化的表面改性气体。让第一通道、第二通道、第三通道、第四通道相互独立,方便单独控制四路气体。
具体的,强酸性气体可以是HCl、HNO 3、HBr、HI、HClO 3中的一种或多种混合。
具体的,氧化性气体可以是O 3、H 2O 2、HClO 4的一种或多种混合。
具体的,表面改性气体可以是正十八烷基三氯硅烷(ODTS)、六甲基二硅烷(HMDS)、1H,1H,2H,2H-全氟辛基三氯硅烷(FOTS)中的一种或几种混合。
如图1,该收集系统还包括扫描腔20和用于向扫描腔20内喷射扫描液的喷嘴30,通过喷射扫描液收集金属沾污。
进一步的,如图1,该收集系统还可以设置抽气装置接口40,以连接抽气装置。抽气装置与气相腐蚀腔10连通,以协助气相腐蚀腔10内的气体排出。
另外,还可以设置尾气收集装置,尾气收集装置与抽气装置连通,且尾气收集装置内部装有碱性吸收液(例如NaOH溶液),以吸收自气相腐蚀腔10排出的酸性气体,以防酸性气体直接排放对环境不利。尾气收集装置可以设置pH值指示器,以方便用户知晓尾气收集装置内的溶液的当前pH值,当pH值小于或者等于5时,提醒用户更换尾气收集装置内的溶液。
进一步的,如图1,该收集系统还可以设置冷却装置接口50,以连接冷却装置,并在气相腐蚀腔10的腔壁内部设置与冷却装置连通的冷却通道。通过向冷却通道内部通入冷却液,来使气相腐蚀腔10内部保持合适的温度,这样利于提升金属沾污的收集率。收集不同的金属沾污元素时,对气相腐蚀腔10内部的温度要求不同,因此可以根据具体的工艺要求选择冷却液的温度,通常冷却液温度的范围在5℃-100℃之间。
进一步的,如图1,该收集系统还可以设置晶圆升降装置60,以方便晶圆的安装和取下。另外,还可以在气相腐蚀腔10附近设置特气泄漏传感器,以保障收集系统的安全运行。
收集过程中,根据监控的元素的不同,采用的收集方法略有不同。
具体的,对于普通金属元素,收集方法是先向气相腐蚀腔10内部通入表面改性气体,使亲水晶圆表面疏水化,然后向气相腐蚀腔10内部通入惰性气体,使气相腐蚀腔10内残留的表面改性气体排出,然后向扫描腔20内喷射扫描液进行金属沾污收集。
普通金属元素包括但不限于:锂Li、钠Na、镁Mg、铝Al、钾K、钙Ca、钛Ti、钒V、铬Cr、锰Mn、铁Fe、钴Co、镍Ni、铜Cu、锌 Zn、钼Mo、钡Ba、钨W、铅Pb。
具体的,对于贵金属元素,收集方法是:先向气相腐蚀腔10内部通入强酸性气体和氧化性气体,使金属态的贵金属元素被腐蚀成离子态;然后向气相腐蚀腔10内部通入惰性气体,使气相腐蚀腔10内残留的强酸性气体和氧化性气体排出,然后向气相腐蚀腔10内部通入表面改性气体,使亲水晶圆表面疏水化,然后向气相腐蚀腔10内部通入惰性气体,使气相腐蚀腔10内残留的表面改性气体排出,然后向扫描腔20内喷射扫描液进行金属沾污收集。
贵金属元素包括但不限于:钌Ru,铂Pt,金Au,银Ag,铪Hf。
无论是普通金属元素还是贵金属元素,收集过程中,均会向气相腐蚀腔10内部通入表面改性气体使亲水晶圆表面疏水化,这样在收集金属沾污时,不会因为晶圆表面的亲水性导致扫描液分散粘连在晶圆表面,如果扫描液分散粘连在晶圆表面则会导致收集失败或者收集率低。因此,向气相腐蚀腔10内部通入表面改性气体使亲水晶圆表面疏水化,能够保障收集系统高效收集金属沾污。
具体的,扫描液根据监控的元素选择。
若监控的元素为Ag元素,则扫描液选用硝酸溶液,优选的,硝酸溶液的配比为:HNO 3:H 2O=1:100。
若监控的元素为Au元素,则扫描液选用盐酸溶液或硝酸溶液,优选的,盐酸溶液的配比范围为:HCl:H 2O=1:1-10:1,硝酸溶液的配比范围为:HCl:H 2O=1:1-10:1。
若监控的元素为Pt元素,则扫描液选用盐酸溶液,盐酸溶液的配比范围为:HCl:H 2O=1:1-1:50。
针对Ag元素、Au元素和Pt元素选择上述配比的扫描液,能达到较高的收集率。
收集完成后,可以用电感耦合等离子体质谱仪(Inductively Coupled Plasma Mass Spectrometry,ICP-MS)对含有金属沾污的扫描液进行检测分析。
对于含有贵金属元素的扫描液,在对其进行检测分析前,可以在含有贵金属元素的扫描液中加入碱性溶液,碱性溶液能使贵金属与氨形成配位 体,以提升检测分析精度,另外还能降低扫描液的pH值到5-8左右,从而能防止扫描液腐蚀质谱仪的检测头,影响质谱仪的使用寿命。具体的,碱性溶液可以是氨水、四甲基氢氧化铵(TMAH)、可啉(coline)中的一种或者几种混合。
以上应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以对本申请进行若干改进和修饰,这些改进和修饰也落入本申请权利要求的保护范围内。

Claims (20)

  1. 金属沾污收集系统,其特征在于,所述收集系统包括气相腐蚀腔(10)、与所述气相腐蚀腔(10)连通的第一通道、第二通道、第三通道和第四通道,所述第一通道、第二通道、第三通道和第四通道相互独立,分别用于向所述气相腐蚀腔(10)内通入强酸性气体、氧化性气体、惰性气体和能使亲水晶圆表面疏水化的表面改性气体。
  2. 根据权利要求1所述的金属沾污收集系统,其特征在于,所述收集系统还包括扫描腔(20)和用于向扫描腔(20)内喷射扫描液的喷嘴(30)。
  3. 根据权利要求1所述的金属沾污收集系统,其特征在于,所述收集系统还包括抽气装置,所述抽气装置与所述气相腐蚀腔(10)连通。
  4. 根据权利要求3所述的金属沾污收集系统,其特征在于,还包括尾气收集装置,所述尾气收集装置与所述抽气装置连通。
  5. 根据权利要求4所述的金属沾污收集系统,其特征在于,所述尾气收集装置内部装有碱性吸收液。
  6. 根据权利要求4所述的金属沾污收集系统,其特征在于,所述尾气收集装置设有pH值指示器。
  7. 根据权利要求1所述的金属沾污收集系统,其特征在于,所述收集系统还包括冷却装置,所述气相腐蚀腔(10)的腔壁设有冷却通道,所述冷却通道与所述冷却装置连通。
  8. 根据权利要求7所述的金属沾污收集系统,其特征在于,所述冷却装置内存储有冷却液,所述冷却液的温度在5℃-100℃之间。
  9. 根据权利要求1-8任一项所述的金属沾污收集系统,其特征在于,所述气相腐蚀腔(10)附近设有特气泄漏传感器。
  10. 根据权利要求1-8任一项所述的金属沾污收集系统,其特征在于,所述气相腐蚀腔(10)内部设置晶圆升降装置(60)。
  11. 金属沾污收集方法,其特征在于,先向气相腐蚀腔(10)内部通入表面改性气体,使亲水晶圆表面疏水化;然后向气相腐蚀腔(10)内部通入惰性气体,使气相腐蚀腔(10)内残留的表面改性气体排出;然后向 亲水晶圆表面喷射扫描液,以收集金属沾污,所述扫描液根据监控的元素选择。
  12. 根据权利要求11所述的金属沾污收集方法,其特征在于,若监控的金属沾污元素为贵金属元素,则在向气相腐蚀腔(10)内部通入表面改性气体之前还进行以下操作:先向气相腐蚀腔(10)内部通入强酸性气体和氧化性气体,使金属态的贵金属元素被腐蚀成离子态,然后向气相腐蚀腔(10)内部通入惰性气体,使气相腐蚀腔(10)内残留的强酸性气体和氧化性气体排出。
  13. 根据权利要求12所述的金属沾污收集方法,其特征在于,所述表面改性气体为:正十八烷基三氯硅烷、六甲基二硅烷、1H,1H,2H,2H-全氟辛基三氯硅烷中的一种或几种混合。
  14. 根据权利要求12所述的金属沾污收集方法,其特征在于,所述强酸性气体是HCl、HNO 3、HBr、HI、HClO 3中的一种或多种混合。
  15. 根据权利要求12所述的金属沾污收集方法,其特征在于,所述氧化性气体是O 3、H 2O 2、HClO 4的一种或多种混合。
  16. 根据权利要求12所述的金属沾污收集方法,其特征在于,对收集的金属沾污元素进行检测分析前,向含有贵金属元素的扫描液中添加碱性溶液。
  17. 根据权利要求16所述的金属沾污收集方法,其特征在于,所述碱性溶液是氨水、四甲基氢氧化铵、可啉的一种或几种混合。
  18. 根据权利要求12所述的金属沾污收集方法,其特征在于,若监控的贵金属元素为Ag元素,则所述扫描液选用硝酸溶液,所述硝酸溶液的配比为:HNO 3:H 2O=1:100。
  19. 根据权利要求12所述的金属沾污收集方法,其特征在于,若监控的贵金属元素为Au元素,则所述扫描液选用盐酸溶液或硝酸溶液,所述盐酸溶液的配比范围为:HCl:H 2O=1:1-10:1,所述硝酸溶液的配比范围为:HCl:H 2O=1:1-10:1。
  20. 根据权利要求12所述的金属沾污收集方法,其特征在于,若监控的贵金属元素为Pt元素,则所述扫描液选用盐酸溶液,所述盐酸溶液的配比范围为:HCl:H 2O=1:1-1:50。
PCT/CN2022/139929 2022-06-29 2022-12-19 金属沾污收集系统和金属沾污收集方法 WO2024001081A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210750298.2 2022-06-29
CN202210750298.2A CN117367924A (zh) 2022-06-29 2022-06-29 金属沾污收集系统和金属沾污收集方法

Publications (1)

Publication Number Publication Date
WO2024001081A1 true WO2024001081A1 (zh) 2024-01-04

Family

ID=89383928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/139929 WO2024001081A1 (zh) 2022-06-29 2022-12-19 金属沾污收集系统和金属沾污收集方法

Country Status (3)

Country Link
CN (1) CN117367924A (zh)
TW (1) TW202400980A (zh)
WO (1) WO2024001081A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103165407A (zh) * 2011-12-14 2013-06-19 有研半导体材料股份有限公司 一种用于硅片表面制样的表面处理及腐蚀的工艺和装置
WO2016039032A1 (ja) * 2014-09-11 2016-03-17 株式会社 イアス シリコン基板の分析方法
CN105742306A (zh) * 2016-04-07 2016-07-06 中国科学院微电子研究所 一种高光谱图像传感器的单片集成方法
CN107393848A (zh) * 2017-07-12 2017-11-24 江苏鲁汶仪器有限公司 一种高密封度的气相腐蚀腔体
CN109075056A (zh) * 2016-04-05 2018-12-21 硅电子股份公司 用于痕量金属分析的半导体晶片的气相腐蚀方法
CN113567534A (zh) * 2021-09-24 2021-10-29 西安奕斯伟硅片技术有限公司 一种晶圆表面金属离子采集装置及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103165407A (zh) * 2011-12-14 2013-06-19 有研半导体材料股份有限公司 一种用于硅片表面制样的表面处理及腐蚀的工艺和装置
WO2016039032A1 (ja) * 2014-09-11 2016-03-17 株式会社 イアス シリコン基板の分析方法
CN109075056A (zh) * 2016-04-05 2018-12-21 硅电子股份公司 用于痕量金属分析的半导体晶片的气相腐蚀方法
CN105742306A (zh) * 2016-04-07 2016-07-06 中国科学院微电子研究所 一种高光谱图像传感器的单片集成方法
CN107393848A (zh) * 2017-07-12 2017-11-24 江苏鲁汶仪器有限公司 一种高密封度的气相腐蚀腔体
CN113567534A (zh) * 2021-09-24 2021-10-29 西安奕斯伟硅片技术有限公司 一种晶圆表面金属离子采集装置及方法

Also Published As

Publication number Publication date
CN117367924A (zh) 2024-01-09
TW202400980A (zh) 2024-01-01

Similar Documents

Publication Publication Date Title
CN101214485B (zh) 一种多晶硅刻蚀腔室中阳极氧化零件表面的清洗方法
CN101194046B (zh) 用于等离子体处理腔的元件的石英表面的湿清洁方法
KR101868775B1 (ko) 실리콘 기판용 분석장치
CN100571900C (zh) 一种阳极氧化零件表面的清洗方法
CN101152652B (zh) 一种阳极氧化零件表面的清洗方法
JP2008130696A (ja) シリコンウェーハ表面の珪素脱離方法、シリコンウェーハ表層下領域の液体サンプル採取方法及びその金属不純物分析方法
TW201350820A (zh) 基板分析用噴嘴
WO2024001081A1 (zh) 金属沾污收集系统和金属沾污收集方法
KR20190087965A (ko) 기판 분석용 노즐 및 기판 분석방법
CN203991539U (zh) 消除毛细管堵塞的装置
CN108172499A (zh) 一种超级背封品再腐蚀的工艺方法
CN104568535A (zh) Vpd样品收集方法
CN104319237B (zh) 通过自对准工艺制备石墨烯顶栅场效应晶体管器件的方法
WO2024001016A1 (zh) 一种晶圆表面贵金属元素的富集方法及分析方法
CN103117215B (zh) 金属栅电极层的形成方法
CN109580320A (zh) 电子级正硅酸乙酯中痕量杂质分析的前处理方法及装置
JP2008153365A (ja) 半導体装置の製造方法
CN106024586A (zh) 一种碳化硅表面清洁方法
JP2950310B2 (ja) 半導体基板表面及び基板中の金属不純物分析方法
WO2024051072A1 (zh) 半导体处理装置及方法
TWI847455B (zh) 一種晶圓表面貴金屬元素的富集方法及分析方法
JP2000097822A (ja) 評価方法及び評価装置
CN113588876B (zh) 一种提高二氧化氮半导体传感器选择性的方法
CN101308764A (zh) 消除蚀刻工序残留聚合物的方法
CN105826184B (zh) 去除图案晶圆上的氮化硅层的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22949157

Country of ref document: EP

Kind code of ref document: A1