WO2024001016A1 - 一种晶圆表面贵金属元素的富集方法及分析方法 - Google Patents

一种晶圆表面贵金属元素的富集方法及分析方法 Download PDF

Info

Publication number
WO2024001016A1
WO2024001016A1 PCT/CN2022/134762 CN2022134762W WO2024001016A1 WO 2024001016 A1 WO2024001016 A1 WO 2024001016A1 CN 2022134762 W CN2022134762 W CN 2022134762W WO 2024001016 A1 WO2024001016 A1 WO 2024001016A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
acid solution
liquid
wafer
sccm
Prior art date
Application number
PCT/CN2022/134762
Other languages
English (en)
French (fr)
Inventor
邹志文
张俊浩
衡科技
程实然
孟庆国
崔虎山
许开东
Original Assignee
江苏鲁汶仪器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏鲁汶仪器有限公司 filed Critical 江苏鲁汶仪器有限公司
Publication of WO2024001016A1 publication Critical patent/WO2024001016A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4022Concentrating samples by thermal techniques; Phase changes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/32Polishing; Etching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/38Diluting, dispersing or mixing samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to the field of detection and analysis, and in particular to a method for enriching precious metal elements on a wafer surface and an analysis method.
  • silicon wafers wafers
  • various metal impurities will be contaminated, which will lead to the failure of subsequent devices.
  • light metals Na, Mg, Al, K, Ca, etc.
  • heavy metals Cr, Mn, Fe, Ni, Cu, Zn, etc.
  • silicon wafers are used as raw materials for devices, and their surface metal content will directly affect the device's qualification rate. Therefore, it is crucial to conduct metal element analysis on the wafer surface.
  • VPD Vapor Phase decomposition
  • TXRF uses X-rays as the excitation source of fluorescence, it cannot detect ultra-trace ions of some light metal elements such as Na, Mg, Al, etc., and is generally suitable for heavy metals.
  • TOF-SIMS can detect all elements, but the calibration and quantification in the test are too complicated.
  • ICP-MS can analyze almost all elements on the earth (Li-U).
  • This technology is a new analytical testing technology developed in the 1980s. It combines the high-temperature (8000K) ionization characteristics of ICP with the advantages of sensitive and fast scanning of a quadrupole mass spectrometer to form a new and powerful elemental analysis, isotope analysis and morphological analysis technology.
  • This technology provides analytical features such as extremely low detection limits, extremely wide dynamic linear range, simple spectral lines, less interference, high analytical precision, fast analysis speed, and the ability to provide isotope information.
  • ICP-MS becomes the best choice among the above three methods.
  • the testing process of metal elements on the surface of silicon wafers (wafers) (which can be fully automated) mainly includes the following four steps:
  • VPD Vapor Phase Decomposition Metal Contamination Collection System
  • ICP-MS Inductively Coupled Plasma Mass Spectrometer
  • VPD vapor phase decomposition metal collection system
  • the difficulty of collecting metallic precious metals may be related to their chemical inertness.
  • the industry has introduced scanning liquids based on aqua regia, to achieve >80% collection rate of metallic elements, the scanning time needs to be increased to about an hour.
  • the collection efficiency of ⁇ 1 hour/piece cannot meet the production capacity requirements of the microelectronics field;
  • aqua regia is a highly corrosive and volatile mixture of concentrated nitric acid and concentrated hydrochloric acid, so the requirements for collection equipment are extremely high. .
  • the industry currently has no VPD equipment and methods that can quickly collect precious metal contamination.
  • the object of the present invention is to provide a method for enriching precious metal elements on the surface of a wafer and an analysis method.
  • the method provided by the invention can effectively enrich the precious metal elements on the wafer surface, improve the yield efficiency of the precious metal elements, and reduce equipment corrosion.
  • the invention provides a method for enriching precious metal elements on the surface of a wafer, which includes the following steps:
  • step d) Transfer the wafer obtained in step d) to the scanning cavity of the VPD equipment, apply scanning liquid to the hydrophobic interface layer of the wafer to collect metal contamination, and obtain a collection liquid;
  • the strongly acidic steam is selected from at least one of HCl steam, HNO steam, HBr steam, HI steam and HClO steam;
  • the oxidizing steam is selected from at least one of O 3 steam, H 2 O 2 steam, and HClO 4 steam;
  • the oxidizing steam is selected from at least one of O 3 steam, H 2 O 2 steam, and HClO 4 steam.
  • the flow rate of the HF steam is 100-2000 sccm, and the injection time is 1-3 minutes.
  • the flow rate of the strongly acidic steam is 30 to 5000 sccm, and the injection time is 2 to 30 minutes.
  • the flow rate of the oxidizing steam is 30 to 5000 sccm, and the introduction time is 2 to 30 minutes.
  • the flow rate of the HF steam is 100 to 2000 sccm, and the introduction time is 1 to 5 minutes.
  • the flow rate of the oxidizing steam is 100 to 1000 sccm, and the introduction time is 1 to 5 minutes.
  • the flow rate of the HF steam is 500-2000 sccm, and the introduction time is 15-300 s.
  • the alkaline solution is at least one of ammonia water, tetramethylammonium hydroxide solution and corline solution.
  • the amount of the alkaline solution is: to make the pH reach 2-3.
  • the scanning liquid includes: a mixed acid liquid of HF acid liquid and other acid liquids;
  • the other acid liquid is at least one of HNO 3 acid liquid, HCl acid liquid and H 2 O 2 acid liquid.
  • the scanning solution used is: a mixed acid solution of HF acid solution, HNO 3 acid solution and water;
  • the mass percentage concentration of the HF acid solution is 35% to 49%;
  • the mass percentage concentration of the HNO 3 acid solution is 50% to 69%
  • the volume ratio of the HF acid solution: HNO 3 acid solution: water is 1: (1-20): (1-100);
  • the scanning fluid used is: a mixed acid solution of HF acid solution, HCl acid solution and HNO 3 acid solution;
  • the mass percentage concentration of the HF acid solution is 35% to 49%;
  • the mass percentage concentration of the HCl acid solution is 20% to 30%;
  • the mass percentage concentration of the HNO 3 acid solution is 50% to 69%
  • the volume ratio of the HF acid solution: HCl acid solution: HNO 3 acid solution is 1: (1-15): (1-5);
  • the scanning fluid used is: a mixed acid solution of HF acid solution and H 2 O 2 acid solution;
  • the mass percentage concentration of the HF acid solution is 35% to 49%;
  • the mass percentage concentration of the H 2 O 2 acid solution is 28% to 35%
  • the volume ratio of the HF acid solution: H 2 O 2 acid solution is 1: (1-50).
  • the flow rate of the inert gas is 1,000 to 20,000 sccm, and the purge time is 2 to 10 minutes.
  • the flow rate of the inert gas is 1,000 to 20,000 sccm, and the purge time is 1 to 5 minutes.
  • the flow rate of the inert gas is 1,000 to 20,000 sccm, and the purge time is 1 to 5 minutes.
  • the temperature of the etching treatment is 10 to 25°C.
  • the temperature of the corrosion treatment is 10-25°C.
  • the temperature of the etching treatment is 10 to 25°C.
  • the temperature condition under which the scanning liquid acts on the wafer surface is 10°C to 25°C.
  • step d) the scanning liquid acts on the wafer surface for ⁇ 15 minutes.
  • the invention also provides a method for analyzing precious metal elements on the wafer surface, which includes:
  • the liquid to be analyzed is obtained by the enrichment method described in the above technical solution.
  • the method for enriching precious metal elements on the wafer surface provided by the present invention first performs different treatments according to steps a), b), c), and d) to effectively convert the precious metal elements in the metallic state into the ionic state, and convert the wafer into the wafer surface.
  • the hydrophilic surface becomes a hydrogen-passivated hydrophobic interface; then, a certain scanning fluid is used to collect metal contamination from the hydrophobic interface layer, and then an alkaline solution is added to dilute and control the pH value.
  • the above-mentioned enrichment method of the present invention can significantly shorten the scanning time and improve the yield efficiency of precious metal elements.
  • the reaction time between aqua regia and precious metal elements needs to be more than 15 minutes to ensure a recovery rate of more than 90%.
  • the scanning time is generally more than 30 minutes.
  • the above-mentioned enrichment method of the present invention can be completed within 15 minutes of scanning time, realizing rapid collection of precious metal contamination; in addition, direct scanning with aqua regia will cause strong oxidation and strong corrosive gas volatilization, which will have a great corrosive effect on equipment, and the present invention
  • the enrichment method can effectively reduce equipment corrosion.
  • FIG. 1 is a schematic structural diagram of the VPD equipment used in the present invention.
  • the invention provides a method for enriching precious metal elements on the surface of a wafer, which includes the following steps:
  • step d) Transfer the wafer obtained in step d) to the scanning cavity of the VPD equipment, apply scanning liquid to the hydrophobic interface layer of the wafer to collect metal contamination, and obtain a collection liquid;
  • the type of the wafer is not particularly limited, and it can be a conventional silicon wafer in this field.
  • the structure of the VPD equipment (i.e., the gas phase decomposition metal collection system) is basically the same as that of the conventional VPD equipment.
  • the present invention is slightly improved by increasing the number of nozzles so that different gases can be introduced at the same time.
  • Its structure is as shown in Figure 1.
  • Figure 1 is a schematic structural diagram of the VPD equipment used in the present invention, in which 1 is a nozzle, 2 is an air outlet, 3 is Chiller water and interface, and 4 is an ejection pin lifting mechanism.
  • VPD equipment generally includes two chambers: vHF chamber (ie, gas phase corrosion chamber) and scanning chamber.
  • the material of the vHF chamber is preferably corrosion-resistant PVDF (polyvinylidene fluoride) and a corrosion-resistant sealing ring.
  • the exhaust system is connected to the tail gas collection barrel to collect acid gas, and the excess acid gas in the vHF chamber is drained and collected.
  • the tail gas collection barrel contains NaOH solution, and its cooling device absorbs the acidic waste gas.
  • the tail gas collection barrel is equipped with a pH display meter. When the pH value reaches 4 to 5, it reminds you to replace the NaOH solution.
  • the coolant temperature can be 5 to 100°C.
  • a special gas leak sensor is installed near the vHF chamber, which can sense HF gas, HCL gas, O 3 gas, etc.
  • the flow rate of the HF steam is preferably 100 to 2000 sccm, specifically 100 sccm, 500 sccm, 1000 sccm, 1500 sccm, or 2000 sccm.
  • the introduction time of the HF steam is preferably 1 to 3 minutes, specifically 1 minute, 1.5 minutes, 2 minutes, 2.5 minutes, or 3 minutes.
  • the temperature condition of the above-mentioned corrosion treatment is preferably 10 to 25°C, specifically 10°C, 15°C, 15°C, 20°C, or 25°C.
  • HF steam is first introduced to corrode the wafer surface to corrode SiO 2 , SiN x or SiON and other media on the wafer surface, thereby making the hydrophilic surface of the wafer hydrophobic.
  • inert gas is introduced to purge and remove the HF vapor residue in the vHF chamber.
  • the present invention has no special limitation on the type of the inert gas. It can be a conventional inert gas in this field, such as nitrogen, helium, neon or argon, etc., and nitrogen is more preferred.
  • the flow rate of the inert gas is preferably 1,000 to 20,000 sccm, and the passing time is preferably 1 to 3 minutes.
  • the residual HF vapor in the vHF chamber is discharged by purging with inert gas.
  • step a strong acidic steam and oxidizing steam are respectively introduced into the vHF chamber for corrosion treatment.
  • the above two steams can be introduced simultaneously into the vHF chamber through two nozzles in two ways.
  • the strongly acidic steam is selected from at least one of HCl steam, HNO 3 steam, HBr steam, HI steam and HClO 3 steam.
  • the flow rate of the strongly acidic steam is preferably 30 to 5000 sccm, specifically 30 sccm, 50 sccm, 100 sccm, 500 sccm, 1000 sccm, 1500 sccm, 2000 sccm, 2500 sccm, 3000 sccm, 3500 sccm, 4000 sccm, 4500 sccm, 5000 sccm .
  • the duration of the introduction of the strong acidic steam is preferably 2 to 30 minutes, specifically 2 minutes, 5 minutes, 10 minutes, 15 minutes, 20 minutes, 25 minutes, or 30 minutes.
  • the oxidizing steam is selected from at least one of O 3 steam, H 2 O 2 steam, and HClO 4 steam.
  • the flow of the oxidized steam is preferably 30-5000SCCM, and it can be 30SCCM, 50SCCM, 100SCCM, 500SCCM, 1000SCCM, 1500SCCM, 2000SCCM, 2500SCCM, 3500SCCM, 4000SCCM, 4500SCCM, 4500SCCM, 4500SCCM, 4500SCCM, 4500SCCM, , 5000SCCM.
  • the introduction time of the oxidizing steam is preferably 2 to 30 minutes, specifically 2 minutes, 5 minutes, 10 minutes, 15 minutes, 20 minutes, 25 minutes, or 30 minutes.
  • the temperature condition of the above-mentioned corrosion treatment is preferably 10 to 25°C, specifically 10°C, 15°C, 15°C, 20°C, or 25°C.
  • the present invention introduces the above two specific strong acidic steam and oxidizing steam to perform corrosion treatment, so that the metallic noble metal elements on the surface of the wafer are corroded into ionic states.
  • inert gas is introduced to purge and remove the residual strong acidic steam and oxidizing steam in the vHF chamber.
  • the present invention has no special limitation on the type of the inert gas. It can be a conventional inert gas in this field, such as nitrogen, helium, neon or argon, etc., and nitrogen is more preferred.
  • the flow rate of the inert gas is preferably 1,000 to 20,000 sccm, and the passing time is preferably 2 to 10 minutes.
  • HF steam and oxidizing steam are respectively introduced into the vHF chamber for corrosion treatment.
  • the above two steams can be introduced simultaneously into the vHF chamber through two nozzles in two ways.
  • the flow rate of the HF steam is preferably 100 to 2000 sccm, specifically 100 sccm, 200 sccm, 300 sccm, 400 sccm, 500 sccm, 600 sccm, 700 sccm, 800 sccm, 900 sccm, or 1000 sccm.
  • the introduction time of the HF steam is preferably 1 to 5 minutes, specifically 1 minute, 2 minutes, 3 minutes, 4 minutes, or 5 minutes.
  • the oxidizing steam is selected from at least one of O 3 steam, H 2 O 2 steam, and HClO 4 steam.
  • the flow rate of the oxidizing steam is preferably 100 to 1000 sccm, specifically 100 sccm, 150 sccm, 200 sccm, 250 sccm, 300 sccm, 350 sccm, 400 sccm, 450 sccm, 500 sccm, 550 sccm, 600 sccm, 650 sccm, 700 sccm, 750 sccm m, 800sccm, 850sccm, 900sccm, 950sccm, 1000sccm,.
  • the introduction time of the oxidizing steam is preferably 1 to 5 minutes, specifically 1 minute, 2 minutes, 3 minutes, 4 minutes, or 5 minutes.
  • the temperature condition of the above-mentioned corrosion treatment is preferably 10 to 25°C, specifically 10°C, 15°C, 15°C, 20°C, or 25°C.
  • the present invention introduces the above two specific HF steam and oxidizing steam for corrosion treatment, corrodes away the 1-50nm thick surface layer on the wafer surface, and continues to convert the metallic noble metal into an ionic state.
  • HF steam is continued to be introduced into the vHF chamber.
  • the flow rate of the HF steam is preferably 500 to 2000 sccm, specifically 500 sccm, 600 sccm, 700 sccm, 800 sccm, 900 sccm, 1000 sccm, 1100 sccm, 1200 sccm, 1300 sccm, 1400 sccm, 1500 sccm, 1600 sccm, 1700 sccm ,1800sccm,1900sccm,2000sccm .
  • the introduction time of the HF steam is preferably 15 to 300s, specifically 15s, 30s, 45s, 60s, 75s, 90s, 105s, 120s, 135s, 150s, 165s, 180s, 195s, 300s.
  • the temperature condition of the above treatment is preferably 10 to 25°C, specifically 10°C, 15°C, 15°C, 20°C, or 25°C.
  • inert gas is introduced to purge and remove the residual strong acidic steam and oxidizing steam in the vHF chamber.
  • the present invention has no special limitation on the type of the inert gas. It can be a conventional inert gas in this field, such as nitrogen, helium, neon or argon, etc., and nitrogen is more preferred.
  • the flow rate of the inert gas is preferably 1,000 to 20,000 sccm, and the passing time is preferably 1 to 5 minutes.
  • the residual HF vapor in the vHF chamber is discharged by purging with inert gas.
  • step d) Transfer the wafer obtained in step d) to the scanning cavity of the VPD equipment, apply scanning liquid to the hydrophobic interface layer of the wafer to collect metal contamination, and obtain a collection liquid.
  • the obtained wafer is transferred to the scanning chamber of the VPD equipment, and scanning liquid is applied to the hydrophobic interface layer of the wafer to collect metal contamination.
  • the method of applying the scanning fluid is not particularly limited and can be carried out in accordance with conventional operations in this field.
  • the scanning liquid preferably includes: a mixed acid liquid of HF acid liquid and other acid liquids.
  • the other acid liquid is at least one of HNO 3 acid liquid, HCl acid liquid and H 2 O 2 acid liquid.
  • the scanning fluid used is a mixed acid solution of HF acid solution, HNO 3 acid solution and water.
  • the mass percentage concentration of the HF acid liquid is preferably 35% to 49%; the mass percentage concentration of the HNO 3 acid liquid is preferably 50% to 69%; the HF acid liquid: HNO 3 acid liquid: The volume ratio of water is 1:(1 ⁇ 20):(1 ⁇ 100).
  • the scanning fluid used is a mixed acid solution of HF acid solution, HCl acid solution and HNO 3 acid solution.
  • the mass percentage concentration of the HF acid liquid is 35% to 49%; the mass percentage concentration of the HCl acid liquid is 20% - 30%; the mass percentage concentration of the HNO 3 acid liquid is 50% ⁇ 69%; the volume ratio of the HF acid solution: HCl acid solution: HNO 3 acid solution is 1: (1-15): (1-5).
  • the scanning fluid used is: a mixed acid solution of HF acid solution and H 2 O 2 acid solution.
  • the mass percentage concentration of the HF acid liquid is 35% to 49%; the mass percentage concentration of the H 2 O 2 acid liquid is 28% to 35%; the HF acid liquid: H 2 O 2 acid
  • the volume ratio of the liquid is 1: (1 ⁇ 50), specifically 1:1, 1:5, 1:10, 1:15, 1:20, 1:25, 1:30, 1:35, 1: 40, 1:45, 1:50.
  • the time for the scanning liquid to act on the wafer scanning surface is ⁇ 15 min, specifically 5 to 15 min.
  • the temperature condition under which the scanning liquid acts on the wafer surface is preferably 10 to 25°C, specifically 10°C, 15°C, 15°C, 20°C, or 25°C.
  • an alkaline solution is added to the collection liquid for dilution.
  • the alkaline solution refers to an aqueous solution of an alkaline substance, preferably ammonia water, tetramethylammonium hydroxide solution and corinine solution. at least one of them.
  • the mass concentration of the alkaline solution is preferably 10% to 25%, specifically 10%, 15%, 20%, or 25%, and more preferably 20%.
  • the addition method of the alkaline solution is preferably dropwise addition.
  • the addition amount of the alkaline solution is preferably: to make the pH value reach 2 to 3, specifically 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0. If the pH value is too low, , it will cause an acid effect on the mass spectrometer and affect the analysis results. If the pH is too high, some elements will precipitate, which will also affect the analysis structure.
  • the temperature condition of the operation of step f) is preferably 10 to 25°C, specifically 10°C, 15°C, 15°C, 20°C, or 25°C.
  • the liquid to be analyzed can be obtained for subsequent elemental analysis.
  • the present invention adds an alkaline solution to the collection liquid for dilution, which can prevent the anti-scanning liquid from corroding the Pt cone of the mass spectrometer during ICP-MS analysis and reducing its service life. Moreover, the alkaline substance causes the precious metals and ammonia to form ligands, thereby It is helpful to maintain the stability of metal ions and prevent ions from precipitation.
  • the method for enriching precious metal elements on the wafer surface provided by the present invention first performs different treatments according to steps a), b), c), and d) to effectively convert the precious metal elements in the metallic state into the ionic state, and convert the wafer into the wafer surface.
  • the hydrophilic surface becomes a hydrogen-passivated hydrophobic interface; then, a certain scanning fluid is used to collect metal contamination from the hydrophobic interface layer, and then an alkaline solution is added to dilute and control the pH value.
  • the above-mentioned enrichment method of the present invention can significantly shorten the scanning time and improve the yield efficiency of precious metal elements.
  • the reaction time between aqua regia and precious metal elements needs to be more than 15 minutes to ensure a recovery rate of more than 90%.
  • the scanning time is generally more than 30 minutes.
  • the above-mentioned enrichment method of the present invention can be completed within 15 minutes of scanning time, realizing rapid collection of precious metal contamination; in addition, direct scanning with aqua regia will cause strong oxidation and strong corrosive gas volatilization, which will have a great corrosive effect on equipment, and the present invention
  • the enrichment method can effectively reduce equipment corrosion.
  • the invention also provides a method for analyzing precious metal elements on the wafer surface, which includes:
  • step K1 is the enrichment method described above.
  • step K2 the method of passing the liquid to be analyzed into an inductively coupled plasma mass spectrometer (ICP-MS) for elemental analysis is not particularly limited and can be carried out in accordance with conventional operations in this field. Through analysis, quantitative analysis results of precious metal contamination on the wafer surface can be obtained.
  • ICP-MS inductively coupled plasma mass spectrometer
  • step d) Transfer the wafer obtained in step d) to the scanning chamber of the VPD equipment, apply scanning liquid to the hydrophobic interface layer of the wafer to collect metal contamination, and scan at 25°C for 12 minutes, then collect the scanning liquid to obtain a collection liquid ;
  • the scanning fluid used is a mixed acid solution of HF acid solution, HNO 3 acid solution and water.
  • concentration of the HF acid solution is 38%; the concentration of the HNO 3 acid solution is 55%; the volume ratio of the HF acid solution:HNO 3 acid solution:water is 1:1:1;
  • alkaline solution (ammonia water, mass concentration 20%) dropwise to the collected liquid to bring the pH value to 2 to obtain the liquid to be analyzed.
  • Sample size 12-inch wafer.
  • Test level E7 level. (i.e. E7 atoms/cm 2 )
  • the process of the spike recovery test is as follows: by manually operating the equipment, evenly drop 100 ⁇ L of quantitative standard solution (containing ruthenium, silver, hafnium, platinum) on a new 12-inch wafer, and dry it through the drying chamber. The wafer was scanned twice through the VPD following path: FOUP ⁇ aligner ⁇ vHF ⁇ aligner ⁇ scanning ⁇ test tube ⁇ ICP-MS analysis.
  • step d) Transfer the wafer obtained in step d) to the scanning chamber of the VPD equipment, apply scanning liquid to the hydrophobic interface layer of the wafer to collect metal contamination, and after scanning for 15 minutes at 25°C, collect the scanning liquid to obtain a collection liquid ;
  • the scanning fluid is: a mixed acid solution of HF acid solution, HCl acid solution and HNO 3 acid solution.
  • concentration of the HF acid solution is 49%; the concentration of the HCl acid solution is 31%; the concentration of the HNO 3 acid solution is 69%; the volume ratio of the HF acid solution: HNO 3 acid solution: water is 1:1:5;
  • Sample size 12-inch wafer.
  • Test level E7 level. (i.e. E7 atoms/cm 2 )
  • step d) Transfer the wafer obtained in step d) to the scanning chamber of the VPD equipment, apply scanning fluid to the hydrophobic interface layer of the wafer to collect metal contamination, and after scanning for 10 minutes at 25°C, collect the scanning fluid to obtain a collection fluid ;
  • the scanning fluid is: a mixed acid solution of HF acid solution and H 2 O 2 acid solution.
  • concentration of the HF acid solution is 49%; the concentration of the H 2 O 2 acid solution is 33%; the volume ratio of the HF acid solution: H 2 O 2 acid solution: water is 1:10;
  • Sample size 12-inch wafer.
  • Test level E7 level. (i.e. E7 atoms/cm 2 )
  • step d) Transfer the wafer obtained in step d) to the scanning chamber of the VPD equipment, apply scanning liquid to the hydrophobic interface layer of the wafer to collect metal contamination, and after scanning for 8 minutes at 25°C, collect the scanning liquid to obtain a collection liquid ;
  • the scanning fluid is: a mixed acid solution of HF acid solution and H 2 O 2 acid solution.
  • concentration of the HF acid solution is 35%; the concentration of the H 2 O 2 acid solution is 28%; the volume ratio of the HF acid solution: H 2 O 2 acid solution is 1:10;
  • Sample size 12-inch wafer.
  • Test level E7 level. (i.e. E7 atoms/cm 2 )
  • the precious metal element collection rate of the method of the present invention is more than 90%, and the scanning time is less than 15 minutes. While ensuring a high collection rate, the scanning time is significantly shortened and the scanning collection efficiency is improved. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

一种晶圆表面贵金属元素的富集方法及分析方法。晶圆表面贵金属元素的富集方法,先依次按照步骤a)、b)、 c)、d)进行不同的处理,有效将金属态的贵金属元素转变成离子态,并将晶圆亲水表面变成氢钝化的疏水界面;然后,再利用一定的扫描液从疏水界面层上收集金属沾污,之后再添加碱性溶液进行稀释并控制pH值。能够明显缩短扫描时间、提高贵金属元素收集效率,而且,还能够有效减少设备腐蚀。

Description

一种晶圆表面贵金属元素的富集方法及分析方法
本申请要求于2022年06月29日提交中国专利局、申请号为202210750212.6、发明名称为“一种晶圆表面贵金属元素的富集方法及分析方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及检测分析领域,特别涉及一种晶圆表面贵金属元素的富集方法及分析方法。
背景技术
硅片(晶圆)加工过程中会带来各种金属杂质沾污,进而导致后道器件的失效,例如轻金属(Na、Mg、Al、K、Ca等)会导致器件击穿电压降低,重金属(Cr、Mn、Fe、Ni、Cu、Zn等)会导致器件寿命降低。因此,硅片作为器件的原材料,其表面金属含量会直接影响器件的合格率。因此,对晶圆表面做金属元素分析至关重要。
特定的污染问题可导致半导体器件不同的缺陷,通常这些金属杂质是超微量的金属离子存在。目前我们为了能测试出晶圆表面这些超微量的金属离子,当前大家使用的比较常见的技术手段一般为:VPD(Vapor Phase decomposition)化学气相分解)配合以下元素分析设备中的一种来实现:
1.TXRF(全反射X射线荧光光谱仪)
TXRF因为是X射线作为荧光的激发源,所以对于某些轻金属元素像Na、Mg、Al等超微量存在的离子无法检测出来,一般适用于重金属。
2.TOF-SIMS(时间飞行二次离子质谱)
TOF-SIMS能进行全元素检测,但是测试中标定定量太复杂。
3.ICPMS(电感耦合等离子体质谱)
ICP-MS几乎可分析几乎地球上所有元素(Li-U),该技术是80年代发展起来的新的分析测试技术。它以将ICP的高温(8000K)电离特性与四极杆质谱计的灵敏快速扫描的优点相结合而形成一种新型的强有力的元素分析、同位素分析和形态分析技术。该技术提供了极低的检出限、极宽的动态线性范围、谱线简单、 干扰少、分析精密度高、分析速度快以及可提供同位素信息等分析特性。
因此,以上3种方法中ICP-MS成为最优的选择。
硅片(晶圆)表面金属元素的测试过程(可实现全自动化)主要包括以下四个步骤:
1.将硅片置于VPD室中,并暴露于HF蒸气中以溶解自然氧化物或热氧化的SiO 2表面层;
2.将提取液滴(通常为250μL的2%HF/2%H 2O 2)置于晶圆上,然后以精心控制的方式倾斜,使得液滴在晶圆表面上“扫掠”;
3.随着提取液滴在晶圆表面上移动,它会收集溶解态SiO 2与其它污染物金属;
4.将提取液滴从晶圆表面上转移至ICP-MS或ICP-MS/MS系统中进行分析。
摩尔定律的强势推动下,以鳍式场效应晶体管(FinFET)为主的7纳米技术代高性能、低功耗芯片早已集成在当今的智能手机中,但是很少人知道要制造如此强大的芯片需要引入大量新的化学元素。每一个技术代引入不同的化学元素来满足芯片性能的提升,比如铪(Hf)元素的引入开启了高k金属栅时代。不同化学元素的引入也带来了制造芯片中的金属沾污控制难度。如前文所述,气相分解金属沾污收集系统(VPD)搭配电感耦合等离子体质谱仪(ICP-MS)是目前常见的金属沾污检测手段,其灵敏性可以把各种元素的检测灵敏度提高到E6~7原子/厘米 2
除了上述摩尔定律驱动的逻辑器件以外,在超越摩尔(more than Moore)领域为了制造先进传感器引入一些贵金属元素(Ru、Rh、Pd、Ag、Os、Ir、Pt、Au等,noble metal),如Ag(反射镜)、Au(生物芯片)、Ir/Ru(磁学传感器)、Pd(碳基器件)等。因为贵金属元素化学性质不活跃,一般很难用常规的氢氟酸、双氧水等组成的气相分解金属收集系统(VPD)的扫描液收集,所以比常规元素大大增加了金属沾污控制难度。经文献调研,相比离子态的贵金属元素,金属态的贵金属很难收集可能跟它们的化学惰性有关。虽然业界引入基于王水的扫描液体,但达到>80%的金属态元素收集率,其扫描时间需要增加到一个小时左右。首先,≥1小时/片的收集效率是不能满足微电子领域的 产能要求;其次,王水是强腐蚀性、强挥发性的浓硝酸和浓盐酸的混合液,所以对收集设备的要求极高。经调研,业界暂无满足快速收集贵金属沾污的VPD设备和方法。
发明内容
有鉴于此,本发明的目的在于提供一种晶圆表面贵金属元素的富集方法及分析方法。本发明提供的方法能够有效富集晶圆表面的贵金属元素,提高贵金属元素收率效率,而且能够减少设备腐蚀。
本发明提供了一种晶圆表面贵金属元素的富集方法,包括以下步骤:
a)将晶圆置于VPD设备的vHF腔室内,向vHF腔室内通入HF蒸汽进行腐蚀处理,然后,通入惰性气体吹扫去除vHF腔室内的HF蒸汽残留;
b)分别向vHF腔室内通入强酸性蒸汽和氧化性蒸汽进行腐蚀处理,使晶圆表面的金属态贵金属元素腐蚀成离子态,然后,通入惰性气体吹扫去除vHF腔室内的强酸性蒸汽和氧化性蒸汽;
c)分别向vHF腔室内通入HF蒸汽和氧化性蒸汽进行腐蚀处理,腐蚀掉晶圆表面1~50nm厚的表层;
d)向vHF腔室内继续通入HF蒸汽,使晶圆亲水表面疏水化而形成疏水界面层,然后,通入惰性气体吹扫去除vHF腔室内的HF蒸汽残留;
e)将步骤d)所得晶圆转移至VPD设备的扫描腔内,向晶圆的疏水界面层上施加扫描液来收集金属沾污,得到收集液;
f)利用碱性溶液对所述收集液进行稀释,得到待分析液。
优选的,步骤b)中:
所述强酸性蒸汽选自HCl蒸汽、HNO 3蒸汽、HBr蒸汽、HI蒸汽和HClO 3蒸汽中的至少一种;
所述氧化性蒸汽选自O 3蒸汽、H 2O 2蒸汽、HClO 4蒸汽中的至少一种;
步骤c)中:
所述氧化性蒸汽选自O 3蒸汽、H 2O 2蒸汽、HClO 4蒸汽中的至少一种。
优选的,所述步骤a)中,所述HF蒸汽的流量为100~2000sccm,通入时长为1~3min。
优选的,所述步骤b)中,所述强酸性蒸汽的流量为30~5000sccm,通入时长为2~30min。
优选的,所述步骤b)中,所述氧化性蒸汽的流量为30~5000sccm,通入时长为2~30min。
优选的,所述步骤c)中,所述HF蒸汽的流量为100~2000sccm,通入时间为1~5min。
优选的,所述步骤c)中,所述氧化性蒸汽的流量为100~1000sccm,通入时间为1~5min。
优选的,所述步骤d)中,所述HF蒸汽的流量为500~2000sccm,通入时间为15~300s。
优选的,所述步骤f)中,所述碱性溶液为氨水、四甲基氢氧化铵溶液和可啉溶液中的至少一种。
优选的,所述步骤f)中,所述碱性溶液的用量为:使pH达到2~3。
优选的,所述步骤e)中,所述扫描液包括:HF酸液与其它酸液的混合酸液;
所述其它酸液为HNO 3酸液、HCl酸液和H 2O 2酸液中的至少一种。
优选的,对于贵金属元素Ag,采用的扫描液为:HF酸液、HNO 3酸液和水的混合酸液;
所述HF酸液的质量百分浓度为35%~49%;
所述HNO 3酸液的质量百分浓度为50%~69%;
所述HF酸液∶HNO 3酸液∶水的体积比为1∶(1~20)∶(1~100);
对于贵金属元素Au,采用的扫描液为:HF酸液、HCl酸液和HNO 3酸液的混合酸液;
所述HF酸液的质量百分浓度为35%~49%;
所述HCl酸液的质量百分浓度为20%~30%;
所述HNO 3酸液的质量百分浓度为50%~69%;
所述HF酸液∶HCl酸液∶HNO 3酸液的体积比为1∶(1~15)∶(1~5);
对于贵金属元素Pt,采用的扫描液为:HF酸液和H 2O 2酸液的混合酸液;
所述HF酸液的质量百分浓度为35%~49%;
所述H 2O 2酸液的质量百分浓度为28%~35%;
所述HF酸液∶H 2O 2酸液的体积比为1∶(1~50)。
优选的,所述步骤b)中,所述惰性气体的流量为1000~20000sccm,吹扫时间为2~10min。
优选的,所述步骤d)中,所述惰性气体的流量为1000~20000sccm,吹扫时间为1~5min。
优选的,所述步骤d)中,所述惰性气体的流量为1000~20000sccm,吹扫时间为1~5min。
优选的,所述步骤a)中,所述腐蚀处理的温度为10~25℃。
优选的,所述步骤b)中,所述腐蚀处理的温度为10~25℃。
优选的,所述步骤c)中,所述腐蚀处理的温度为10~25℃。
优选的,所述步骤d)中,所述扫描液在晶圆表面作用的温度条件为10~25℃。
优选的,所述步骤d)中,所述扫描液在晶圆表面作用的时间≤15min。
本发明还提供了一种晶圆表面贵金属元素的分析方法,包括:
g)、获取待分析液;
h)、将所述待分析液通入电感耦合等离子质谱仪中进行元素分析;
所述待分析液通过上述技术方案中所述的富集方法获得。
本发明提供的晶圆表面贵金属元素的富集方法,先依次按照步骤a)、b)、c)、d)进行不同的处理,有效将金属态的贵金属元素转变成离子态,并将晶圆亲水表面变成氢钝化的疏水界面;然后,再利用一定的扫描液从疏水界面层上收集金属沾污,之后再添加碱性溶液进行稀释并控制pH值。本发明的上述富集方法,能够明显缩短扫描时间、提高提高贵金属元素收率效率,王水与贵金属单质反应时间需在15min以上才能保证90%以上的回收率,扫描时间一般在30min以上,而本发明的上述富集方法,扫描时间在15min内即可完成,实现快速收集贵金属沾污;另外,王水直接扫描会带来强氧化和强腐蚀气体挥发,对设备腐蚀作用大,而本发明的富集方法能够有效减少设备腐蚀。
实验结果表明,本发明所提供方法使贵金属元素收集率在90%以上,扫描时间在15min以下,在保证高收集率的同时明显缩短了扫描时间,提高了扫描 收集效率。
附图说明
图1为本发明所用VPD设备的结构示意图。
具体实施方式
本发明提供了一种晶圆表面贵金属元素的富集方法,包括以下步骤:
a)将晶圆置于VPD设备的vHF腔室内,向vHF腔室内通入HF蒸汽进行腐蚀处理,然后,通入惰性气体吹扫去除vHF腔室内的HF蒸汽残留;
b)分别向vHF腔室内通入强酸性蒸汽和氧化性蒸汽进行腐蚀处理,使晶圆表面的金属态贵金属元素腐蚀成离子态,然后,通入惰性气体吹扫去除vHF腔室内的强酸性蒸汽和氧化性蒸汽;
c)分别向vHF腔室内通入HF蒸汽和氧化性蒸汽进行腐蚀处理,腐蚀掉晶圆表面1~50nm厚的表层;
d)向vHF腔室内继续通入HF蒸汽,使晶圆亲水表面疏水化而形成疏水界面层,然后,通入惰性气体吹扫去除vHF腔室内的HF蒸汽残留;
e)将步骤d)所得晶圆转移至VPD设备的扫描腔内,向晶圆的疏水界面层上施加扫描液来收集金属沾污,得到收集液;
f)利用碱性溶液对所述收集液进行稀释,得到待分析液。
[关于步骤a]:
a)将晶圆置于VPD设备的vHF腔室内,向vHF腔室内通入HF蒸汽进行腐蚀处理,然后,通入惰性气体吹扫去除vHF腔室内的HF蒸汽残留。
本发明中,所述晶圆的种类没有特殊限制,为本领域常规硅片晶圆即可。
本发明中,所述VPD设备(即气相分解金属收集系统)的结构基本与常规VPD设备相同,本发明略作改良,增加了喷嘴数量,以便同时通入不同的气体。其结构如图1所述,图1为本发明所用VPD设备的结构示意图,其中,1为喷嘴,2为排风口,3为Chiller水及接口,4为顶针升降机构。VPD设备一般包括两个腔室:vHF腔室(即气相腐蚀腔)和扫描腔。本发明中,vHF腔室的材质优选为耐腐蚀性的PVDF(聚偏二氟乙烯)以及耐腐蚀密封圈密封。抽气系统连接尾气收集桶来收集酸性气体,将vHF腔室内多余酸性气体排走并收集,尾气收 集桶内包含NaOH溶液,其冷却装置并吸收酸性废气,尾气收集桶上设置有pH显示计,当pH值达到4~5时提醒更换NaOH溶液。vHF腔室底座有水道,可以通入冷却液进行冷却,冷却液温度可为5~100℃。vHF腔室附近装有特气泄露传感器,可感应HF气体、HCL气体、O 3气体等。vHF腔室内部设置有顶针结构用于对晶圆升降。
本发明中,将晶圆置于VPD设备的vHF腔室内后,向vHF腔室内通入HF蒸汽进行腐蚀处理。本发明中,所述HF蒸汽的流量优选为100~2000sccm,具体可为100sccm、500sccm、1000sccm、1500sccm、2000sccm。所述HF蒸汽的通入时长优选为1~3min,具体可为1min、1.5min、2min、2.5min、3min。本发明中,上述腐蚀处理的温度条件为优选为10~25℃,具体可为10℃、15℃、15℃、20℃、25℃。本发明首先通入HF蒸汽对晶圆表面进行腐蚀处理,腐蚀掉晶圆表面的SiO 2、SiN x或SiON等介质,使晶圆的亲水表面疏水化。
本发明中,在上述腐蚀处理结束后,通入惰性气体吹扫去除vHF腔室内的HF蒸汽残留。本发明对所述惰性气体的种类没有特殊限制,为本领域常规惰性气体即可,如氮气、氦气、氖气或氩气等,更优选为氮气。本发明中,所述惰性气体的流量优选为1000~20000sccm,通入时长优选为1~3min。通过惰性气体的吹扫,使vHF腔室内的残留的HF蒸汽排出。
[关于步骤b]:
b)分别向vHF腔室内通入强酸性蒸汽和氧化性蒸汽进行腐蚀处理,使晶圆表面的金属态贵金属元素腐蚀成离子态,然后,通入惰性气体吹扫去除vHF腔室内的强酸性蒸汽和氧化性蒸汽。
本发明中,在步骤a)结束后,分别向vHF腔室内通入强酸性蒸汽和氧化性蒸汽进行腐蚀处理,具体可通过两个喷嘴分两路向vHF腔室内分别同时通入以上两种蒸汽。
本发明中,所述强酸性蒸汽选自HCl蒸汽、HNO 3蒸汽、HBr蒸汽、HI蒸汽和HClO 3蒸汽中的至少一种。本发明中,所述强酸性蒸汽的流量优选为30~5000sccm,具体可为30sccm、50sccm、100sccm、500sccm、1000sccm、1500sccm、2000sccm、2500sccm、3000sccm、3500sccm、4000sccm、4500sccm、5000sccm。所述强酸性蒸汽的通入时长优选为2~30min,具体可为2min、5min、 10min、15min、20min、25min、30min。
本发明中,所述氧化性蒸汽选自O 3蒸汽、H 2O 2蒸汽、HClO 4蒸汽中的至少一种。本发明中,所述氧化性蒸汽的流量优选为30~5000sccm,具体可为30sccm、50sccm、100sccm、500sccm、1000sccm、1500sccm、2000sccm、2500sccm、3000sccm、3500sccm、4000sccm、4500sccm、5000sccm。所述氧化性蒸汽的通入时长优选为2~30min,具体可为2min、5min、10min、15min、20min、25min、30min。
本发明中,上述腐蚀处理的温度条件为优选为10~25℃,具体可为10℃、15℃、15℃、20℃、25℃。本发明通入以上两种特定的强酸性蒸汽和氧化性蒸汽进行腐蚀处理,使晶圆表面的金属态贵金属元素腐蚀成离子态。
本发明中,在上述腐蚀处理结束后,通入惰性气体吹扫去除vHF腔室内的强酸性蒸汽和氧化性蒸汽残留。本发明对所述惰性气体的种类没有特殊限制,为本领域常规惰性气体即可,如氮气、氦气、氖气或氩气等,更优选为氮气。本发明中,所述惰性气体的流量优选为1000~20000sccm,通入时长优选为2~10min。通过惰性气体的吹扫,使vHF腔室内的残留的强酸性蒸汽和氧化性蒸汽排出。
[关于步骤c]:
c)分别向vHF腔室内通入HF蒸汽和氧化性蒸汽进行腐蚀处理,腐蚀掉晶圆表面1~50nm厚的表层。
本发明中,在步骤b)结束后,分别向vHF腔室内通入HF蒸汽和氧化性蒸汽进行腐蚀处理,具体可通过两个喷嘴分两路向vHF腔室内分别同时通入以上两种蒸汽。
本发明中,所述HF蒸汽的流量优选为100~2000sccm,具体可为100sccm、200sccm、300sccm、400sccm、500sccm、600sccm、700sccm、800sccm、900sccm、1000sccm。所述HF蒸汽的通入时长优选为1~5min,具体可为1min、2min、3min、4min、5min。
本发明中,所述氧化性蒸汽选自O 3蒸汽、H 2O 2蒸汽、HClO 4蒸汽中的至少一种。本发明中,所述氧化性蒸汽的流量优选为100~1000sccm,具体可为100sccm、150sccm、200sccm、250sccm、300sccm、350sccm、400sccm、450sccm、 500sccm、550sccm、600sccm、650sccm、700sccm、750sccm、800sccm、850sccm、900sccm、950sccm、1000sccm、。所述氧化性蒸汽的通入时长优选为1~5min,具体可为1min、2min、3min、4min、5min。
本发明中,上述腐蚀处理的温度条件为优选为10~25℃,具体可为10℃、15℃、15℃、20℃、25℃。本发明通入以上两种特定的HF蒸汽和氧化性蒸汽进行腐蚀处理,腐蚀掉晶圆表面1~50nm厚的表层,继续将金属态贵金属转化为离子态。
[关于步骤d]:
d)向vHF腔室内继续通入HF蒸汽,使晶圆亲水表面疏水化而形成疏水界面层,然后,通入惰性气体吹扫去除vHF腔室内的HF蒸汽残留。
本发明中,在步骤c)结束后,向vHF腔室内继续通入HF蒸汽。本发明中,所述HF蒸汽的流量优选为500~2000sccm,具体可为500sccm、600sccm、700sccm、800sccm、900sccm、1000sccm、1100sccm、1200sccm、1300sccm、1400sccm、1500sccm、1600sccm、1700sccm、1800sccm、1900sccm、2000sccm。所述HF蒸汽的通入时长优选为15~300s,具体可为15s、30s、45s、60s、75s、90s、105s、120s、135s、150s、165s、180s、195s、300s。本发明中,上述处理的温度条件优选为10~25℃,具体可为10℃、15℃、15℃、20℃、25℃。本发明通过继续进行HF蒸汽处理,腐蚀掉晶圆上的自然氧化层,使其亲水表面变成氢钝化的疏水界面。
本发明中,在上述腐蚀处理结束后,通入惰性气体吹扫去除vHF腔室内的强酸性蒸汽和氧化性蒸汽残留。本发明对所述惰性气体的种类没有特殊限制,为本领域常规惰性气体即可,如氮气、氦气、氖气或氩气等,更优选为氮气。本发明中,所述惰性气体的流量优选为1000~20000sccm,通入时长优选为1~5min。通过惰性气体的吹扫,使vHF腔室内的残留的HF蒸汽排出。
[关于步骤e]:
e)将步骤d)所得晶圆转移至VPD设备的扫描腔内,向晶圆的疏水界面层上施加扫描液来收集金属沾污,得到收集液。
本发明依次按照步骤a)~d)腐蚀处理结束后,将所得晶圆转移至VPD设备的扫描腔内,向晶圆的疏水界面层上施加扫描液来收集金属沾污。本发明中, 所述施加扫描液的方式没有特殊限制,按照本领域常规操作进行即可。
本发明中,所述扫描液优选包括:HF酸液与其它酸液的混合酸液。其中,所述其它酸液为HNO 3酸液、HCl酸液和H 2O 2酸液中的至少一种。
本发明中,对于不同的金属元素,采用不同的扫描液,具体如下:
对于贵金属元素Ag,采用的扫描液为:HF酸液、HNO 3酸液和水的混合酸液。其中,所述HF酸液的质量百分浓度优选为35%~49%;所述HNO 3酸液的质量百分浓度优选为50%~69%;所述HF酸液∶HNO 3酸液∶水的体积比为1∶(1~20)∶(1~100)。
对于贵金属元素Au,采用的扫描液为:HF酸液、HCl酸液和HNO 3酸液的混合酸液。其中,所述HF酸液的质量百分浓度为35%~49%;所述HCl酸液的质量百分浓度为20%~30%;所述HNO 3酸液的质量百分浓度为50%~69%;所述HF酸液∶HCl酸液∶HNO 3酸液的体积比为1∶(1~15)∶(1~5)。
对于贵金属元素Pt,采用的扫描液为:HF酸液和H 2O 2酸液的混合酸液。其中,所述HF酸液的质量百分浓度为35%~49%;所述H 2O 2酸液的质量百分浓度为28%~35%;所述HF酸液∶H 2O 2酸液的体积比为1∶(1~50),具体可为1∶1、1∶5、1∶10、1∶15、1∶20、1∶25、1∶30、1∶35、1∶40、1∶45、1∶50。
本发明中,所述扫描液在晶圆扫描表面作用的时间≤15min,具体可为5~15min。本发明中,所述扫描液在晶圆表面作用的温度条件优选为10~25℃,具体可为10℃、15℃、15℃、20℃、25℃。经扫描液的处理,将晶圆表面的金属沾污收集,得到含金属沾污的收集液。
[关于步骤f]:
f)利用碱性溶液对所述收集液进行稀释,得到待分析液。
本发明中,待步骤e)结束后,向收集液中添加碱性溶液进行稀释,所述碱性溶液是指碱性物质的水溶液,优选为氨水、四甲基氢氧化铵溶液和可啉溶液中的至少一种。本发明中,所述碱性溶液的质量百分浓度优选为10%~25%,具体可为10%、15%、20%、25%,更优选为20%。
本发明中,碱性溶液的添加方式优选为滴加。
本发明中,碱性溶液的添加量优选为:使pH值达到2~3,具体可为2.0、2.1、 2.2、2.3、2.4、2.5、2.6、2.7、2.8、2.9、3.0,若pH过低,则会对质谱仪造成酸效应,影响分析结果,若pH过高在,则一些元素会产生沉淀,也影响分析结构。
本发明中,步骤f)的操作的温度条件优选为10~25℃,具体可为10℃、15℃、15℃、20℃、25℃。经步骤f)的操作,可获得待分析液,用于后续的元素分析。
本发明向收集液中添加碱性溶液进行稀释,能够防止防扫描液在ICP-MS分析中腐蚀质谱仪的Pt锥降低其使用寿命,而且,碱性物质使贵金属与氨形成配位体,从而有利于保持金属离子的稳定性,防止离子析出。
本发明提供的晶圆表面贵金属元素的富集方法,先依次按照步骤a)、b)、c)、d)进行不同的处理,有效将金属态的贵金属元素转变成离子态,并将晶圆亲水表面变成氢钝化的疏水界面;然后,再利用一定的扫描液从疏水界面层上收集金属沾污,之后再添加碱性溶液进行稀释并控制pH值。本发明的上述富集方法,能够明显缩短扫描时间、提高提高贵金属元素收率效率,王水与贵金属单质反应时间需在15min以上才能保证90%以上的回收率,扫描时间一般在30min以上,而本发明的上述富集方法,扫描时间在15min内即可完成,实现快速收集贵金属沾污;另外,王水直接扫描会带来强氧化和强腐蚀气体挥发,对设备腐蚀作用大,而本发明的富集方法能够有效减少设备腐蚀。
本发明还提供了一种晶圆表面贵金属元素的分析方法,包括:
g)、获取待分析液;
h)、将所述待分析液通入电感耦合等离子质谱仪中进行元素分析;
其中,所述待分析液通过前文所述的富集方法获得,即步骤K1为前文所述富集方法。所述步骤K2中,将待分析液通入电感耦合等离子质谱仪(ICP-MS)中进行元素分析的方式没有特殊限制,按照本领域常规操作进行即可。通过分析,可获得晶圆表面贵金属沾污的定量分析结果。
实验结果表明,本发明所提供方法使贵金属元素收集率在90%以上,扫描时间在15min以下,在保证高收集率的同时明显缩短了扫描时间,提高了扫描收集效率。
为了进一步理解本发明,下面结合实施例对本发明优选实施方案进行描 述,但是应当理解,这些描述只是为进一步说明本发明的特征和优点,而不是对本发明权利要求的限制。
实施例1
a)将晶圆置于VPD设备的vHF腔室内,向vHF腔室内通入HF蒸汽(流量为1500sccm、时长为2min)于20℃进行腐蚀处理;然后,通入N 2(流量为5000sccm、时长为3min)吹扫去除vHF腔室内的HF蒸汽残留;
b)分别向vHF腔室内通入强酸性蒸汽(HCl蒸汽)和氧化性蒸汽(O 3蒸汽)于15℃进行腐蚀处理,其中,两种蒸汽的流量均为1000sccm,通入时长均为10min,经腐蚀处理,使晶圆表面的金属态贵金属元素腐蚀成离子态;然后,通入N 2(流量为10000sccm、时长为5min)吹扫去除vHF腔室内的强酸性蒸汽和氧化性蒸汽残留;
c)分别向vHF腔室内通入HF蒸汽和氧化性蒸汽(O 3蒸汽)于15℃进行腐蚀处理,其中,两种蒸汽的流量均为700sccm,通入时长均为5min,经腐蚀处理,腐蚀掉晶圆表面30nm厚的表层;
d)向vHF腔室内继续通入HF蒸汽(流量为500sccm、时长为300s)于20℃进行表面处理,使晶圆亲水表面疏水化而形成疏水界面层;然后,通入N 2(流量为3000sccm、时长为3min)吹扫去除vHF腔室内的HF蒸汽残留;
e)将步骤d)所得晶圆转移至VPD设备的扫描腔内,向晶圆的疏水界面层上施加扫描液来收集金属沾污,于25℃下扫描12min后,收集扫描液,得到收集液;
其中,所用扫描液为:HF酸液、HNO 3酸液和水的混合酸液。所述HF酸液的浓度为38%;所述HNO 3酸液的浓度为55%;所述HF酸液∶HNO 3酸液∶水的体积比为1∶1∶1;
f)向收集液中滴加碱性溶液(氨水,质量百分浓度20%),使pH值达到2,得到待分析液。
h)将所得待分析液通入电感耦合等离子质谱仪中进行元素分析。
测试结果展示如下:
样品大小:12寸晶圆。
测试级别:E7级别。(即E7原子/cm 2)
效果数据参见表1:
表1中,加标回收扫描回收液体积定容为1mL;加标回收数值单位为ppt,计算公式为(1-m 2/m 1)×100;其中,m 1=C 1×V 1,m 2=C 2×V 2;C 1是指第一次回收浓度ppt,V 1是指第一次加标回收回收液体积mL,C 2是指第二次回收浓度ppt,V 2是指第二次加标回收回收液体积mL。加标回收试验的过程如下:通过手动操作设备,在一片新的12英寸晶圆上均匀的滴入100μL定量标准溶液(含钌银铪铂金),并通过干燥腔干燥。该晶圆通过VPD以下路径扫描2次:FOUP→aligner→vHF→aligner→scanning→试管→ICP-MS分析。
表1:实施例1的元素分析结果
元素 第一次加标回收扫描,ppt 第二次加标回收扫描,ppt 回收率,%
848.7 34.8 95.9
869.9 43.2 95.0
895.2 43.0 95.2
878.8 39.0 95.5
792.0 40.6 94.8
实施例2
a)将晶圆置于VPD设备的vHF腔室内,向vHF腔室内通入HF蒸汽(流量为1800sccm、时长为3min)于20℃进行腐蚀处理;然后,通入N 2(流量为3000sccm、时长为2min)吹扫去除vHF腔室内的HF蒸汽残留;
b)分别向vHF腔室内通入强酸性蒸汽(HNO 3蒸汽)和氧化性蒸汽(H 2O 2蒸汽)于15℃进行腐蚀处理,其中,两种蒸汽的流量均为1000sccm,通入时长均为20min,经腐蚀处理,使晶圆表面的金属态贵金属元素腐蚀成离子态;然后,通入N 2(流量为10000sccm、时长为4min)吹扫去除vHF腔室内的强酸性蒸汽和氧化性蒸汽残留;
c)分别向vHF腔室内通入HF蒸汽和氧化性蒸汽(H 2O 2蒸汽)于10℃进行腐蚀处理,其中,两种蒸汽的流量均为500sccm,通入时长均为3min,经腐蚀处理,腐蚀掉晶圆表面20nm厚的表层;
d)向vHF腔室内继续通入HF蒸汽(流量为1000sccm、时长为200s)于 20℃进行表面处理,使晶圆亲水表面疏水化而形成疏水界面层;然后,通入N 2(流量为5000sccm、时长为2min)吹扫去除vHF腔室内的HF蒸汽残留;
e)将步骤d)所得晶圆转移至VPD设备的扫描腔内,向晶圆的疏水界面层上施加扫描液来收集金属沾污,于25℃下扫描15min后,收集扫描液,得到收集液;
其中,扫描液为:HF酸液、HCl酸液和HNO 3酸液的混合酸液。所述HF酸液的浓度为49%;所述HCl酸液的浓度为31%;所述HNO 3酸液的浓度为69%;所述HF酸液∶HNO 3酸液∶水的体积比为1∶1∶5;
f)向收集液中滴加碱性溶液(四甲基氢氧化铵水溶液,质量百分浓度20%),使pH值达到2.5,得到待分析液。
h)将所得待分析液通入电感耦合等离子质谱仪中进行元素分析。
测试结果展示如下:
样品大小:12寸晶圆。
测试级别:E7级别。(即E7原子/cm 2)
效果数据参见表2:
表2:实施例2的元素分析结果
元素 第一次加标回收扫描,ppt 第二次加标回收扫描,ppt 回收率,%
967.1 65.9 93.2
998.8 46.7 95.3
1028.1 45.7 95.5
1023.4 44.4 95.6
891.3 38.7 95.6
实施例3
a)将晶圆置于VPD设备的vHF腔室内,向vHF腔室内通入HF蒸汽(流量为1000sccm、时长为3min)于25℃进行腐蚀处理;然后,通入N 2(流量为3000sccm、时长为1.5min)吹扫去除vHF腔室内的HF蒸汽残留;
b)分别向vHF腔室内通入强酸性蒸汽(HBr蒸汽)和氧化性蒸汽(HClO 4蒸汽)于10℃进行腐蚀处理,其中,两种蒸汽的流量均为3000sccm,通入时 长均为10min,经腐蚀处理,使晶圆表面的金属态贵金属元素腐蚀成离子态;然后,通入N 2(流量为5000sccm、时长为4min)吹扫去除vHF腔室内的强酸性蒸汽和氧化性蒸汽残留;
c)分别向vHF腔室内通入HF蒸汽和氧化性蒸汽(HClO 4蒸汽)于15℃进行腐蚀处理,其中,两种蒸汽的流量均为1000sccm,通入时长均为2min,经腐蚀处理,腐蚀掉晶圆表面25nm厚的表层;
d)向vHF腔室内继续通入HF蒸汽(流量为1500sccm、时长为100s)于25℃进行表面处理,使晶圆亲水表面疏水化而形成疏水界面层;然后,通入N 2(流量为10000sccm、时长为1.5min)吹扫去除vHF腔室内的HF蒸汽残留;
e)将步骤d)所得晶圆转移至VPD设备的扫描腔内,向晶圆的疏水界面层上施加扫描液来收集金属沾污,于25℃下扫描10min后,收集扫描液,得到收集液;
其中,扫描液为:HF酸液和H 2O 2酸液的混合酸液。所述HF酸液的浓度为49%;所述H 2O 2酸液的浓度为33%;所述HF酸液∶H 2O 2酸液∶水的体积比为1∶10;
f)向收集液中滴加碱性溶液(可啉水溶液,质量百分浓度20%),使pH值达到3,得到待分析液。
h)将所得待分析液通入电感耦合等离子质谱仪中进行元素分析。
测试结果展示如下:
样品大小:12寸晶圆。
测试级别:E7级别。(即E7原子/cm 2)
效果数据参见表3:
表3:实施例3的元素分析结果
元素 第一次加标回收扫描,ppt 第二次加标回收扫描,ppt 回收率,%
847.1 36.4 95.7
898.1 45.0 94.9
935.4 47.3 94.9
925.9 47.6 94.8
805.4 43.0 94.6
实施例4
a)将晶圆置于VPD设备的vHF腔室内,向vHF腔室内通入HF蒸汽(流量为800sccm、时长为3min)于25℃进行腐蚀处理;然后,通入N 2(流量为4000sccm、时长为4min)吹扫去除vHF腔室内的HF蒸汽残留;
b)分别向vHF腔室内通入强酸性蒸汽(HClO 3蒸汽)和氧化性蒸汽(O 3蒸汽)于15℃进行腐蚀处理,其中,两种蒸汽的流量均为5000sccm,通入时长均为5min,经腐蚀处理,使晶圆表面的金属态贵金属元素腐蚀成离子态;然后,通入N 2(流量为10000sccm、时长为3min)吹扫去除vHF腔室内的强酸性蒸汽和氧化性蒸汽残留;
c)分别向vHF腔室内通入HF蒸汽和氧化性蒸汽(O 3蒸汽)于15℃进行腐蚀处理,其中,两种蒸汽的流量均为1000sccm,通入时长均为2min,经腐蚀处理,腐蚀掉晶圆表面25nm厚的表层;
d)向vHF腔室内继续通入HF蒸汽(流量为2000sccm、时长为50s)于25℃进行表面处理,使晶圆亲水表面疏水化而形成疏水界面层;然后,通入N 2(流量为5000sccm、时长为3min)吹扫去除vHF腔室内的HF蒸汽残留;
e)将步骤d)所得晶圆转移至VPD设备的扫描腔内,向晶圆的疏水界面层上施加扫描液来收集金属沾污,于25℃下扫描8min后,收集扫描液,得到收集液;
其中,扫描液为:HF酸液和H 2O 2酸液的混合酸液。所述HF酸液的浓度为35%;所述H 2O 2酸液的浓度为28%;所述HF酸液∶H 2O 2酸液的体积比为1∶10;
f)向收集液中滴加碱性溶液(可啉水溶液,质量百分浓度20%),使pH值达到3,得到待分析液。
h)将所得待分析液通入电感耦合等离子质谱仪中进行元素分析。
测试结果展示如下:
样品大小:12寸晶圆。
测试级别:E7级别。(即E7原子/cm 2)
效果数据参见表4:
表4:实施例4的元素分析结果
元素 第一次加标回收扫描,ppt 第二次加标回收扫描,ppt 回收率,%
868.7 44.8 94.84
879.9 33.2 96.23
885.2 39.0 95.59
858.8 49.0 94.29
832.0 41.6 95.00
由实施例1~4的测试结果可以看出,本发明方法的贵金属元素收集率在90%以上,扫描时间在15min以下,在保证高收集率的同时明显缩短了扫描时间,提高了扫描收集效率。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想,包括最佳方式,并且也使得本领域的任何技术人员都能够实践本发明,包括制造和使用任何装置或系统,和实施任何结合的方法。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。本发明专利保护的范围通过权利要求来限定,并可包括本领域技术人员能够想到的其他实施例。如果这些其他实施例具有近似于权利要求文字表述的结构要素,或者如果它们包括与权利要求的文字表述无实质差异的等同结构要素,那么这些其他实施例也应包含在权利要求的范围内。

Claims (20)

  1. 一种晶圆表面贵金属元素的富集方法,其特征在于,包括以下步骤:
    a)将晶圆置于VPD设备的vHF腔室内,向vHF腔室内通入HF蒸汽进行腐蚀处理,然后,通入惰性气体吹扫去除vHF腔室内的HF蒸汽残留;
    b)分别向vHF腔室内通入强酸性蒸汽和氧化性蒸汽进行腐蚀处理,使晶圆表面的金属态贵金属元素腐蚀成离子态,然后,通入惰性气体吹扫去除vHF腔室内的强酸性蒸汽和氧化性蒸汽;
    c)分别向vHF腔室内通入HF蒸汽和氧化性蒸汽进行腐蚀处理,腐蚀掉晶圆表面1~50nm厚的表层;
    d)向vHF腔室内继续通入HF蒸汽,使晶圆亲水表面疏水化而形成疏水界面层,然后,通入惰性气体吹扫去除vHF腔室内的HF蒸汽残留;
    e)将步骤d)所得晶圆转移至VPD设备的扫描腔内,向晶圆的疏水界面层上施加扫描液来收集金属沾污,得到收集液;
    f)利用碱性溶液对所述收集液进行稀释,得到待分析液。
  2. 根据权利要求1所述的富集方法,其特征在于,
    步骤b)中:
    所述强酸性蒸汽选自HCl蒸汽、HNO 3蒸汽、HBr蒸汽、HI蒸汽和HClO 3蒸汽中的至少一种;
    所述氧化性蒸汽选自O 3蒸汽、H 2O 2蒸汽、HClO 4蒸汽中的至少一种;
    步骤c)中:
    所述氧化性蒸汽选自O 3蒸汽、H 2O 2蒸汽、HClO 4蒸汽中的至少一种。
  3. 根据权利要求1或2所述的富集方法,其特征在于,所述步骤a)中,所述HF蒸汽的流量为100~2000sccm,通入时长为1~3min。
  4. 根据权利要求1或2所述的富集方法,其特征在于,所述步骤b)中,所述强酸性蒸汽的流量为30~5000sccm,通入时长为2~30min。
  5. 根据权利要求1或2所述的富集方法,其特征在于,所述步骤b)中,所述氧化性蒸汽的流量为30~5000sccm,通入时长为2~30min。
  6. 根据权利要求1或2所述的富集方法,其特征在于,所述步骤c)中, 所述HF蒸汽的流量为100~2000sccm,通入时间为1~5min。
  7. 根据权利要求1或2所述的富集方法,其特征在于,所述步骤c)中,所述氧化性蒸汽的流量为100~1000sccm,通入时间为1~5min。
  8. 根据权利要求1或2所述的富集方法,其特征在于,所述步骤d)中,所述HF蒸汽的流量为500~2000sccm,通入时间为15~300s。
  9. 根据权利要求1或2所述的富集方法,其特征在于,所述步骤f)中,所述碱性溶液为氨水、四甲基氢氧化铵溶液和可啉溶液中的至少一种。
  10. 根据权利要求1或2所述的富集方法,其特征在于,所述步骤f)中,所述碱性溶液的用量为:使pH达到2~3。
  11. 根据权利要求1或2所述的富集方法,其特征在于,所述步骤e)中,所述扫描液包括:HF酸液与其它酸液的混合酸液;
    所述其它酸液为HNO 3酸液、HCl酸液和H 2O 2酸液中的至少一种。
  12. 根据权利要求11所述的富集方法,其特征在于,对于贵金属元素Ag,采用的扫描液为:HF酸液、HNO 3酸液和水的混合酸液;
    所述HF酸液的质量百分浓度为35%~49%;
    所述HNO 3酸液的质量百分浓度为50%~69%;
    所述HF酸液∶HNO 3酸液∶水的体积比为1∶(1~20)∶(1~100);
    对于贵金属元素Au,采用的扫描液为:HF酸液、HCl酸液和HNO 3酸液的混合酸液;
    所述HF酸液的质量百分浓度为35%~49%;
    所述HCl酸液的质量百分浓度为20%~30%;
    所述HNO 3酸液的质量百分浓度为50%~69%;
    所述HF酸液∶HCl酸液∶HNO 3酸液的体积比为1∶(1~15)∶(1~5);
    对于贵金属元素Pt,采用的扫描液为:HF酸液和H 2O 2酸液的混合酸液;
    所述HF酸液的质量百分浓度为35%~49%;
    所述H 2O 2酸液的质量百分浓度为28%~35%;
    所述HF酸液∶H 2O 2酸液的体积比为1∶(1~50)。
  13. 根据权利要求1或2所述的富集方法,其特征在于,所述步骤b)中,所述惰性气体的流量为1000~20000sccm,吹扫时间为2~10min。
  14. 根据权利要求1或2所述的富集方法,其特征在于,所述步骤d)中,所述惰性气体的流量为1000~20000sccm,吹扫时间为1~5min。
  15. 根据权利要求1或2所述的富集方法,其特征在于,所述步骤a)中,所述腐蚀处理的温度为10~25℃。
  16. 根据权利要求1或2所述的富集方法,其特征在于,所述步骤b)中,所述腐蚀处理的温度为10~25℃。
  17. 根据权利要求1或2所述的富集方法,其特征在于,所述步骤c)中,所述腐蚀处理的温度为10~25℃。
  18. 根据权利要求1或2所述的富集方法,其特征在于,所述步骤d)中,所述扫描液在晶圆表面作用的温度条件为10~25℃。
  19. 根据权利要求1或2所述的富集方法,其特征在于,所述步骤d)中,所述扫描液在晶圆表面作用的时间≤15min。
  20. 一种晶圆表面贵金属元素的分析方法,其特征在于,包括:
    g)、获取待分析液;
    h)、将所述待分析液通入电感耦合等离子质谱仪中进行元素分析;
    所述待分析液通过权利要求1~19中任一项所述的富集方法获得。
PCT/CN2022/134762 2022-06-29 2022-11-28 一种晶圆表面贵金属元素的富集方法及分析方法 WO2024001016A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210750212.6 2022-06-29
CN202210750212.6A CN117347148A (zh) 2022-06-29 2022-06-29 一种晶圆表面贵金属元素的富集方法及分析方法

Publications (1)

Publication Number Publication Date
WO2024001016A1 true WO2024001016A1 (zh) 2024-01-04

Family

ID=89354471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/134762 WO2024001016A1 (zh) 2022-06-29 2022-11-28 一种晶圆表面贵金属元素的富集方法及分析方法

Country Status (2)

Country Link
CN (1) CN117347148A (zh)
WO (1) WO2024001016A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11190730A (ja) * 1997-12-26 1999-07-13 Nec Corp 半導体基板表面及び基板中の金属不純物分析方法
JP2008130696A (ja) * 2006-11-17 2008-06-05 Shin Etsu Handotai Co Ltd シリコンウェーハ表面の珪素脱離方法、シリコンウェーハ表層下領域の液体サンプル採取方法及びその金属不純物分析方法
JP2009021507A (ja) * 2007-07-13 2009-01-29 Covalent Materials Corp 半導体ウェーハ表面不純物の回収方法
CN102565182A (zh) * 2011-12-16 2012-07-11 天津中环领先材料技术有限公司 一种igbt用8英寸硅抛光片表面金属离子含量的测试方法
CN110186994A (zh) * 2019-06-03 2019-08-30 西安奕斯伟硅片技术有限公司 一种硅片中重金属的处理分析方法及处理装置
CN110223927A (zh) * 2018-03-01 2019-09-10 胜高股份有限公司 硅晶片的金属污染分析方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11190730A (ja) * 1997-12-26 1999-07-13 Nec Corp 半導体基板表面及び基板中の金属不純物分析方法
JP2008130696A (ja) * 2006-11-17 2008-06-05 Shin Etsu Handotai Co Ltd シリコンウェーハ表面の珪素脱離方法、シリコンウェーハ表層下領域の液体サンプル採取方法及びその金属不純物分析方法
JP2009021507A (ja) * 2007-07-13 2009-01-29 Covalent Materials Corp 半導体ウェーハ表面不純物の回収方法
CN102565182A (zh) * 2011-12-16 2012-07-11 天津中环领先材料技术有限公司 一种igbt用8英寸硅抛光片表面金属离子含量的测试方法
CN110223927A (zh) * 2018-03-01 2019-09-10 胜高股份有限公司 硅晶片的金属污染分析方法
CN110186994A (zh) * 2019-06-03 2019-08-30 西安奕斯伟硅片技术有限公司 一种硅片中重金属的处理分析方法及处理装置

Also Published As

Publication number Publication date
TW202400291A (zh) 2024-01-01
CN117347148A (zh) 2024-01-05

Similar Documents

Publication Publication Date Title
JP6929570B2 (ja) 小型放電光イオン化検出器
KR100749144B1 (ko) 실리콘 웨이퍼중의 금속불순물 농도 평가방법
US6174740B1 (en) Method for analyzing impurities within silicon wafer
WO2024001016A1 (zh) 一种晶圆表面贵金属元素的富集方法及分析方法
CN102007578B (zh) 半导体装置的制造方法及半导体基板的清洗方法
TWI847455B (zh) 一種晶圓表面貴金屬元素的富集方法及分析方法
CN113533489A (zh) 一种半导体设备零部件通孔内微污染的测试方法
WO2006082717A1 (ja) 薄膜形成装置
TW414990B (en) Method to detect metal impurities in the semiconductor process gases
Yeh et al. The removal of airborne molecular contamination in cleanroom using PTFE and chemical filters
CN104568535A (zh) Vpd样品收集方法
JP2973638B2 (ja) 不純物の分析方法
JP2001242052A (ja) 半導体基板又は薬品の不純物分析方法
Hub et al. Application of ETV-ICPMS in semiconductor process control
JP2007214504A (ja) 予備排気室、試料処理装置、試料分析装置、試料処理方法および試料分析方法
JP3641592B2 (ja) 大気の清浄度評価用捕集剤
JP2001257197A (ja) 半導体デバイスの製造方法および製造装置
JP2950310B2 (ja) 半導体基板表面及び基板中の金属不純物分析方法
WO2024001081A1 (zh) 金属沾污收集系统和金属沾污收集方法
US6146909A (en) Detecting trace levels of copper
JP2004109072A (ja) 液中の金属不純物分析方法
Sato et al. Adsorption model of organic molecules on the surface of thermally oxidized silicon
JP2019169515A (ja) ボロンドープp型シリコンウェーハのエッチング方法、金属汚染評価方法および製造方法
JP2005172512A (ja) 不純物分析方法、不純物分析ガス採取装置、不純物ガス分析装置及び半導体装置の製造方法
CN110646539B (zh) 一种电子级正硅酸乙酯中氯离子的检测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22949096

Country of ref document: EP

Kind code of ref document: A1