WO2024000748A1 - 一种轻质模块化无人机通用收藏平台 - Google Patents
一种轻质模块化无人机通用收藏平台 Download PDFInfo
- Publication number
- WO2024000748A1 WO2024000748A1 PCT/CN2022/112122 CN2022112122W WO2024000748A1 WO 2024000748 A1 WO2024000748 A1 WO 2024000748A1 CN 2022112122 W CN2022112122 W CN 2022112122W WO 2024000748 A1 WO2024000748 A1 WO 2024000748A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- platform
- motor
- landing
- locking
- rotating
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 claims abstract description 38
- 230000000712 assembly Effects 0.000 claims abstract description 3
- 238000000429 assembly Methods 0.000 claims abstract description 3
- 238000009434 installation Methods 0.000 claims description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 14
- 239000003638 chemical reducing agent Substances 0.000 claims description 13
- 239000006260 foam Substances 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 9
- 238000001514 detection method Methods 0.000 claims description 7
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 5
- 239000004917 carbon fiber Substances 0.000 claims description 5
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 5
- 239000000853 adhesive Substances 0.000 claims description 4
- 230000001070 adhesive effect Effects 0.000 claims description 4
- 239000002131 composite material Substances 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 14
- 230000007246 mechanism Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 235000006506 Brasenia schreberi Nutrition 0.000 description 1
- 244000267222 Brasenia schreberi Species 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64F—GROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
- B64F1/00—Ground or aircraft-carrier-deck installations
- B64F1/007—Helicopter portable landing pads
Definitions
- the invention belongs to the technical field of unmanned aerial vehicle systems, and in particular relates to a lightweight modular universal storage platform for unmanned aerial vehicles.
- the homing mechanism In the existing drone collection platform, the homing mechanism is placed outside the platform, which takes up a lot of space. The homing mechanism is above the platform, which greatly reduces the landing area of the drone.
- the platform is mostly made of sheet metal, which is heavy and difficult to install, which increases the load of the vehicle.
- the existing drone collection platform is difficult to install and disassemble. It cannot be quickly assembled and disassembled according to functional modules.
- the homing mechanism can only be used for one type of drone landing gear and cannot flexibly and quickly replace different types of push rods. , the scope of application is small.
- the existing drone storage platform cannot flexibly adjust the angle after it is returned to the center of the platform and locked, so that the drone's blades can better adapt to the size of the cabin.
- Some homing platforms adopt the method of turning paddles to adapt to the size of the cabin, but this structure is relatively complex.
- the existing drone collection platform does not have an independent drainage structure, and most of the mechanisms are external to the platform. When used in rainy weather, the rainwater cannot be drained in time, which may cause damage to electrical components, and the environmental adaptability is weak.
- the present invention aims to propose a lightweight modular universal drone collection platform to solve the problem of heavy weight, inconvenient installation, small drone landing space, and inability to flexibly adjust the angle of the drone.
- a lightweight modular universal storage platform for UAVs including a landing platform, a rotating platform, and a servo control unit.
- the landing platform and the rotating platform are cooperatively and rotationally connected, and a rotational drive assembly is provided between the landing platform and the rotating platform.
- a drainage structure is provided around the landing platform and corresponding to the rotating platform;
- the upper side of the landing platform is provided with a return push rod device for returning the drone to the middle of the landing platform, and the rotating platform is provided with a rotation locking assembly corresponding to the landing gear of the drone;
- the rotary drive component, the return push rod device, and the rotation locking component are all electrically connected to the servo control unit.
- the rotating platform is of circular plate type, and the landing platform is provided with a circular groove corresponding to the rotating platform.
- a waterproof edge is fixed on the bottom surface of the circular groove, and the waterproof edge is cylindrical.
- the waterproof edge is the same as the circular groove.
- the drainage structure is provided with a plurality of drainage holes on the bottom of the circular groove between the waterproof edge and the side wall of the circular groove;
- the rotary drive assembly includes a fixed plate, a slewing support bearing, a motor gear, an encoder gear, a first motor, and an encoder.
- the fixed plate is coaxially provided with a waterproof edge on the inside, and the fixed plate is fixedly connected to the bottom surface of the circular groove.
- the upper side of the fixed plate is coaxially fixed to the inner ring of the slewing support bearing, the lower surface of the rotating platform is provided with an outer ring of the slewing support bearing corresponding to the inner ring of the slewing support bearing, and the outer ring of the slewing support bearing has gear teeth;
- the outer ring of the slewing support bearing is meshed with a motor gear and an encoder gear.
- a first motor is provided corresponding to the motor gear along the bottom surface of the waterproof circular groove on the inside.
- An encoder one is provided corresponding to the encoder gear. The output of the first motor The shaft extends out of the fixed plate and is coaxially connected to the motor gear, and a detection end of the encoder extends out of the fixed plate and is connected to the encoder gear;
- the fixed plate is provided with through holes corresponding to the output shaft of the first motor and the first detection end of the encoder.
- the circular groove bottom plate is provided with an installation sinking groove corresponding to the first motor and the encoder.
- the installation sinking groove is provided with a passing line near the bottom surface. hole;
- the first motor and encoder are both electrically connected to the servo control unit.
- a ring plate is fixed on the lower surface of the rotating platform.
- the ring plate is coaxially arranged with the rotating platform.
- the outer diameter of the ring plate is smaller than the inner diameter of the waterproof edge.
- the waterproof edge and the ring plate Sealed bearings are provided in conjunction with each other.
- two annular plates are fixed on the lower surface of the rotating platform.
- the two annular plates are coaxially arranged with the rotating platform.
- the inner diameter of the two annular plates is larger than the outer diameter of the waterproof edge.
- the rotational locking assembly includes hooks.
- the hooks are arranged in two rows corresponding to the landing gear on both sides of the drone.
- Each row of hooks is provided with multiple hooks, and each row of hooks is provided with a locking shaft.
- One end of the hook is fixedly connected to the locking shaft, and one end is provided with a hook portion toward the UAV landing gear.
- the locking shaft is rotationally connected to the lower surface of the rotating platform through a bearing seat.
- the rotating platform is provided corresponding to each hook.
- the curved hook portion of the hooks is held corresponding to the UAV landing gear hook to ensure that the aircraft is parked stably on the rotating platform.
- a locking motor is arranged between the two locking rotating shafts.
- the locking motor is arranged corresponding to the end of the locking rotating shaft.
- the locking motor is fixedly connected to the rotating platform through a motor support.
- the locking motor is a double-output shaft motor. , both ends of the locking motor are connected to the adjacent locking shaft through a right-angle commutator;
- a T-shaped commutator is also connected between one end of the locking motor and the adjacent right-angle commutator.
- the output end of the T-shaped commutator perpendicular to the output shaft of the locking motor is connected to the encoder two;
- a connecting shaft is provided between the other end of the locking motor and the adjacent right-angle commutator
- the locking motor and encoder are both connected to the servo control unit.
- the second encoder is connected to the lower surface of the rotating platform through an encoder support, and the rotating shafts are connected through a coupling.
- the return push rod device includes a return push rod.
- the return push rod includes two sets of transverse return push rods and two sets of longitudinal return push rods. The two sets of transverse return push rods are respectively adjacent to the transverse direction of the storage platform. Set at both ends, two sets of longitudinal return push rods are set adjacent to the two longitudinal ends of the collection platform;
- Two sets of horizontal return push rods respectively correspond to the opposite or relative movement of the two sides of the drone, and two sets of longitudinal return push rods respectively correspond to the opposite or relative movement of the longitudinal sides of the drone.
- the return push rod device also includes a return transmission assembly connected to the return push rod, a return drive assembly that drives the return transmission assembly, and the return transmission assembly is provided on all sides of the landing platform;
- the homing drive assembly is arranged on the lower surface of the landing platform.
- the homing transmission assembly on each side is provided with a homing drive assembly.
- the same end of the homing transmission assembly on the opposite sides of the landing platform is equipped with two homing push rods respectively connected to the same end.
- the adapter at the end of the homing drive assembly drives the adapters on both sides of the homing transmission assembly to move towards or relatively to each other.
- the homing drive assembly includes a reducer, a drive motor, a driver, and a motor box casing.
- the reducer, drive motor, and driver are all arranged in the motor box casing.
- the motor box casing is fixed on the landing.
- the input end of the drive motor is connected to the output end of the driver, the input end of the driver is connected to the servo control unit through an aviation plug, and the output end of the drive motor is connected to the input end of the reducer;
- the homing transmission assembly includes a U-shaped housing, a T-shaped commutator II, a ball screw screw I, a ball screw screw II, a bearing support, a slide rail, and a slide block.
- the T-shaped commutator housing II is fixed on the U-shaped housing.
- the input shaft of T-type commutator 2 is connected to the output end of the reducer, and the output shafts at both ends of T-type commutator 2 are connected to ball screw one and ball screw two respectively.
- the slide rail is fixed. Located inside the U-shaped housing, there are two slide rails respectively corresponding to the shafts at both ends of the T-shaped commutator 2.
- the bearing supports are provided at both ends of the slide rails and connected with the U-shaped housing.
- the inner side is fixed, and one side of the slide rail is corresponding to the ball screw one.
- the first and two ends of the ball screw are respectively connected to the adjacent bearing support for rotation.
- the other side of the slide rail is corresponding to the ball screw two.
- the ball screw is The two ends are connected to adjacent bearing supports respectively, and the rotation directions of ball screw one and ball screw two are opposite;
- the ball screw is provided with a slider, and the slider is provided with a screw through hole corresponding to the ball screw.
- One end of the slider is coaxially connected to the screw nut, and the screw is fixed with a screw nut.
- the internal thread of the nut is matched with the external thread of the first ball screw;
- a slide block is also provided on the second ball screw;
- the connection and installation method of the second ball screw and the slide block is the same as that of the first ball screw and the slide block.
- the connection and installation methods are the same; the slider is connected to the adapter.
- the open end of the U-shaped shell is provided with a cover, the web of the U-shaped shell is fixedly connected to the side of the landing platform, and the slider is fixedly connected near the open end of the U-shaped shell and adjacent to the lower surface of the landing platform.
- Plate 1 the cover is provided with a long hole 1 corresponding to the moving length of the connecting plate 1
- the end of the connecting plate 1 away from the slider extends vertically toward the upper surface of the landing platform to form a connecting plate 2
- a connecting plate three is formed by extending vertically to the side away from the connecting plate, and an adapter is fixed at one end of the connecting plate three away from the connecting plate two.
- the upper and lower ends of the landing platform extend toward the outside, and the upper and lower ends of the landing platform face the near-outer side and are vertically fixed to water retaining plates.
- the water retaining plates are provided with long holes corresponding to the three moving lengths of the connecting plate;
- the upper end surface of the landing platform is provided with a long hole corresponding to the moving length of the adapter, and the lower end surface of the landing platform is provided with water holes vertically in the portion outside the water retaining plate.
- the outer surface of the landing platform is made of carbon fiber board, and the interior is filled with hard foam with adhesive.
- the hard foam is provided with a motor case housing installation slot corresponding to the motor case housing, and a servo control unit is provided with a servo motor housing installation slot corresponding to the motor housing.
- the control unit is installed in a slot, and a routing channel is provided corresponding to the connecting cable.
- Mounting slots are provided on the surrounding sides of the rigid foam body corresponding to the return transmission assembly (53), and the return transmission assembly is arranged in the installation groove.
- the lightweight modular UAV universal collection platform of the present invention has the following beneficial effects:
- a lightweight modular universal storage platform for UAVs adopts a modular design method and is designed as an independent module, including a lightweight landing platform, a rotating platform, a rotating drive assembly, and a rotating lock Components, homing push rods, homing drive components, homing transmission components, and servo control units.
- Each module can be quickly assembled and disassembled on the platform, which greatly reduces the complexity of installation and disassembly and is conducive to the rapid development of the platform. Repair and maintenance.
- Each push rod of the homing mechanism can be quickly replaced with adapters and push rods of different sizes according to the size of the drone.
- the shape of the clamping structure can be changed in the rotation locking assembly to adapt to different types of drones.
- the homing and recycling of man-machine expands the scope of application of the platform and enhances the general performance of the platform.
- a lightweight modular universal storage platform for UAVs according to the present invention.
- the rotating drive structure is arranged on the inside of the waterproof edge of the circular groove of the landing platform to drive the rotating platform to rotate.
- the rotating platform uses a first motor as a drive,
- the gear transmission drives the outer ring of the slewing support bearing to rotate, thereby driving the rotating platform to rotate, so that the locked UAV rotates together at an appropriate angle.
- the multi-turn encoder is used to measure and feedback the rotation angle.
- the rotated UAV can It adapts to the size of the cabin and does not require complex structures such as moving propellers to meet the storage requirements of the drone.
- the rotational locking component is installed as an independent module, using a locking motor as a drive, and driving through transmission components such as a right-angle commutator.
- the hook rotates to clamp the landing gear, and the absolute encoder is used as the position measurement feedback component.
- the landing gear can be quickly locked after the drone returns.
- the structure is simple, and the absolute encoder is used as the position detection feedback component. , accurate and reliable.
- the locking structure is arranged on the bottom surface of the rotating platform. When the rotating drive structure drives the rotating platform to rotate, the entire rotating locking structure can rotate together with the rotating platform to the required angle;
- a lightweight modular UAV universal storage platform according to the present invention, the rotation drive assembly, the rotation locking assembly, the return drive assembly, the return transmission assembly, and the servo control unit are all arranged inside the landing platform,
- the upper and lower surfaces of the landing platform are made of water-proof material, and a waterproof edge is provided in the circular groove, and a sealed bearing or annular plate is provided to prevent rainwater from entering the inside of the waterproof edge.
- Drainage holes are provided along the bottom of the waterproof circular groove on the outside to ensure that rainwater is drained away in time; in addition, covers and water shields are provided for the return transmission assembly to reduce rainwater from entering the return transmission assembly, and drainage holes are provided on the lower surface of the landing platform to ensure that rainwater can be eliminated in time. When it rains, rainwater enters through the water inlet hole on the lightweight landing platform and is blocked in the drainage space by the outer rainproof board.
- the overall structure ensures smooth drainage, reduces rainwater erosion and damage to parts, and extends the service life of parts.
- a lightweight modular universal storage platform for UAVs uses lightweight composite materials as the main body.
- the outer layer of the landing platform is made of carbon fiber plates and the inner layer is made of hard foam.
- installation slots and wiring channels are reserved in the inner rigid foam.
- the outer carbon fiber board is wrapped around the inner rigid foam with a strong adhesive to form an integrated lightweight
- the landing platform is used as a whole. This platform is light in weight and easy to install.
- the UAV landing surface of the platform has no other structure except the return push rod, which increases the landing area of the UAV, and the landing surface is simple and beautiful.
- Figure 1 is a schematic diagram of the overall structure of a lightweight modular UAV universal collection platform according to an embodiment of the present invention
- Figure 2 is a schematic structural diagram of the landing platform according to the embodiment of the present invention.
- Figure 3 is a schematic diagram of the sealing structure of the rotary drive assembly using sealed bearings according to the embodiment of the present invention.
- Figure 4 is a schematic diagram of the labyrinth seal structure of the rotary drive assembly according to the embodiment of the present invention.
- Figure 5 is a schematic structural diagram of the rotation locking assembly on the lower side of the rotating platform according to the embodiment of the present invention.
- Figure 6 is a schematic diagram of the cooperation structure of the return transmission assembly and the return drive assembly according to the embodiment of the present invention.
- Figure 7 is a schematic structural diagram of the return transmission assembly according to the embodiment of the present invention.
- Figure 8 is a schematic diagram of the enlarged structure of area B according to the embodiment of the present invention.
- Figure 9 is a schematic diagram of the enlarged structure of area A according to the embodiment of the present invention.
- Figure 10 is a schematic diagram of the matching structure of the slider, cover and water retaining plate according to the embodiment of the present invention.
- Figure 11 is a schematic structural diagram of the homing drive assembly according to the embodiment of the present invention.
- Figure 12 is a schematic diagram of the internal installation groove of the landing platform according to the embodiment of the present invention.
- Figure 13 is a schematic diagram of the initial landing position of the UAV according to the embodiment of the present invention.
- Figure 14 is a schematic diagram of the UAV receiving and landing platform according to the embodiment of the present invention.
- connection should be understood in a broad sense.
- connection or integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.
- a lightweight modular universal storage platform for UAVs includes a landing platform 1, a rotating platform 2, and a servo control unit 3.
- the landing platform 1 and the rotating platform 2 are cooperatively and rotationally connected, so A rotary drive assembly 4 is provided between the landing platform 1 and the rotating platform 2, and the landing platform 1 is provided with a drainage structure corresponding to the rotating platform 2;
- the upper side of the landing platform 1 is provided with a return push rod structure 5 for returning the drone to the middle of the landing platform 1, and the rotating platform 2 is provided with a rotation locking assembly 6 corresponding to the landing gear of the drone;
- the rotation drive component 4 , the return push rod structure 5 , and the rotation retraction component are all electrically connected to the servo control unit 3 .
- the rotating platform 2 is in the shape of a disc.
- the landing platform 1 is provided with a circular groove 11 corresponding to the rotating platform 2.
- a waterproof edge 12 is fixed on the bottom of the circular groove 11.
- the waterproof edge 12 is cylindrical, and is coaxially arranged with the circular groove 11.
- the drainage structure is a plurality of drainage holes 13 provided on the bottom of the circular groove 11 between the waterproof edge 12 and the side wall of the circular groove 11. ;
- the rotary drive assembly 4 includes a fixed plate 41, a slewing support bearing 42, a motor gear 43, an encoder gear 44, a first motor 45, and an encoder 46.
- the fixed plate 41 is coaxially provided with a waterproof edge 12 on the inside, so The fixed plate 41 is fixedly connected to the bottom surface of the circular groove 11, the upper side of the fixed plate 41 is coaxially fixed to the slewing support bearing inner ring 421, and the lower surface of the rotating platform 2 is provided with a slewing support bearing outer ring corresponding to the slewing support bearing inner ring 421. 422.
- the outer ring 422 of the slewing support bearing has gear teeth;
- the outer ring 422 of the slewing support bearing is meshed with a motor gear 43 and an encoder gear 44.
- a first motor 45 is provided corresponding to the motor gear 43 on the bottom surface of the circular groove 11 inside the waterproof edge 12, and an encoder gear 44 is provided corresponding to the encoder gear 44. 46.
- the output shaft of the first motor 45 extends out of the fixed plate 41 and is coaxially connected to the motor gear 43, and the detection end of the encoder 46 extends out of the fixed plate 41 and is connected to the encoder gear 44;
- the fixed plate 41 is provided with through holes corresponding to the output shaft of the first motor 45 and the detection end of the encoder 46, and the bottom plate of the circular groove 11 is provided with a mounting sink 14 corresponding to the first motor 45 and the encoder 46.
- the installation A wire passage hole 141 is provided near the bottom of the sinking groove 14;
- the first motor 45 and the encoder 46 are both electrically connected to the servo control unit 3 .
- annular plate 21 is fixed on the lower surface of the rotating platform 2.
- the annular plate 21 is coaxially arranged with the rotating platform 2.
- the outer diameter of the annular plate 21 is smaller than the waterproof Along the inner diameter of 12, a sealed bearing 23 is provided between the waterproof edge 12 and the annular plate.
- annular plate 22 is fixed on the lower surface of the rotating platform 2.
- the annular plate 22 is coaxially arranged with the rotating platform 2.
- the inner diameter of the annular plate 22 is larger than the waterproof edge. 12 outer diameter.
- the rotation locking assembly 6 includes hooks 61.
- the hooks 61 are provided in two rows corresponding to the landing gear on both sides of the drone. Each row has multiple hooks 61, and each row has multiple hooks 61.
- the row of hooks 61 is correspondingly provided with a locking shaft 62.
- One end of the hook 61 is fixedly connected to the locking shaft 62, and one end is provided with a hook portion toward the UAV landing gear.
- the locking shaft 62 passes through the bearing seat and the rotating platform. 2.
- the lower surface is rotationally connected, and the rotating platform 2 is provided with a square through hole 24 corresponding to each hook 61;
- the curved hook portion of the hooks 61 is held corresponding to the UAV landing gear hook to ensure that the aircraft is parked stably on the rotating platform 2.
- a locking motor 63 is arranged between the two locking rotating shafts 62.
- the locking motor 63 is arranged corresponding to the end of the locking rotating shaft 62.
- the locking motor 63 is fixedly connected to the rotating platform 2 through a motor support.
- the motor 63 is a double-output shaft motor, and both ends of the locking motor 63 are connected to the adjacent locking shaft 62 through a right-angle commutator 64;
- a T-shaped commutator 65 is also connected between one end of the locking motor 63 and the adjacent right-angle commutator 64.
- the T-shaped commutator 65 is perpendicular to the output end of the output shaft of the locking motor 63 and the encoder 2 66. connect;
- a connecting shaft 67 is provided between the other end of the locking motor 63 and the adjacent right-angle commutator 64;
- the locking motor 63 and the second encoder 66 are both connected to the servo control unit 3 .
- the second encoder 66 is connected to the lower surface of the rotating platform 2 through an encoder support, and the rotating shafts are connected through a coupling.
- the return push rod structure 5 includes a return push rod.
- the return push rod includes two sets of transverse return push rods 51 and two sets of longitudinal return push rods 52.
- a set of transverse return push rods 51 are respectively disposed adjacent to both transverse ends of the storage platform, and two sets of longitudinal return push rods 52 are disposed adjacent to both longitudinal ends of the storage platform;
- Two sets of transverse return push rods 51 respectively correspond to mutual or relative movement of the transverse sides of the drone
- two sets of longitudinal return push rods 52 respectively correspond to mutual or relative movement of the longitudinal sides of the drone.
- the return push rod structure 5 also includes a return transmission assembly 53 connected to the return push rod, a return drive assembly 54 that drives the return transmission assembly 53, and a landing platform. 1. There are homing transmission components 53 on all four sides;
- the homing drive assembly 54 is disposed on the lower surface of the landing platform 1.
- a homing drive assembly 54 is provided correspondingly to the homing transmission assembly 53 on each side.
- the same ends of the homing transmission assemblies 53 on opposite sides of the landing platform 1 are provided with the same ends respectively connected to the same homing drive assembly 54.
- the return drive assembly 54 drives the adapters 539 on both sides of the return transmission assembly 53 to move towards or relatively to each other.
- the homing drive assembly 54 includes a reducer 541, a drive motor 542, a driver 543, and a motor box shell 544.
- the reducer 541, the drive motor 542, and the driver 543 are all It is arranged in the motor box shell 544, which is fixed on the lower surface of the landing platform 1.
- the input end of the drive motor 542 is connected to the output end of the driver 543, and the input end of the driver 543 is connected to the servo control unit 3. Connect, the output end of the drive motor 542 is connected to the input end of the reducer 541;
- the return transmission assembly 53 includes a U-shaped housing 531, a T-shaped commutator 532, a ball screw 533, a ball screw 2 534, a bearing support 535, a slide rail 536, a slider 537, and the T-shaped commutator 537.
- the shell of commutator 2 532 is fixed on the U-shaped housing 531.
- the input shaft of T-type commutator 2 532 is connected to the output end of reducer 541.
- the output shafts at both ends of T-type commutator 532 are respectively connected with the ball screws.
- the first 533 is connected to the second ball screw 534.
- the slide rails 536 are fixed on the inside of the U-shaped housing 531 and are provided with two.
- the two slide rails 536 respectively correspond to the two end shafts of the T-shaped commutator 532.
- the bearing supports 535 are arranged at both ends of the slide rail 536 and are fixedly connected to the inside of the U-shaped housing 531.
- One side of the slide rail 536 is corresponding to the ball screw 533, and the two ends of the ball screw 533 are respectively connected to
- the adjacent bearing support 535 is rotationally connected, and the slide rail 536 on the other side is provided with a second ball screw 534 correspondingly. Both ends of the second ball screw 534 are respectively connected to the adjacent bearing support 535, and the first ball screw 533 is connected to the ball screw.
- Bar 2 534 has the opposite direction of rotation;
- the ball screw one 533 is provided with a slide block 537.
- the slide block 537 is provided with a screw through hole corresponding to the ball screw screw one 533.
- One end of the slide block 537 is coaxially fixed with the screw nut through the screw through hole. 538.
- the internal thread of the screw nut 538 is matched with the external thread of the ball screw one 533;
- the second ball screw 534 is also provided with a slider 537, and the second ball screw 534 and the slider 537 are
- the connection and installation method is the same as the connection and installation method of the ball screw 533 and the slide block 537; the slide block 537 is connected to the adapter 539.
- the opening end of the U-shaped shell is provided with a cover 55, the web of the U-shaped shell is fixedly connected to the side of the landing platform 1, and the slider 537 is close to the opening of the U-shaped shell
- a connecting plate 5371 is fixed at one end and adjacent to the lower surface of the landing platform.
- the cover is provided with a long hole corresponding to the moving length of the connecting plate 5371.
- the end of the connecting plate 5371 away from the slider 537 is vertically facing the landing platform.
- One side of the upper surface extends to form a connecting plate 5372.
- the upper end of the connecting plate 5372 extends vertically toward the side away from the connecting plate 1 5371 to form a connecting plate 3 5373.
- the end of the connecting plate 3 5373 away from the connecting plate 2 5372 is fixedly fixed.
- the upper and lower ends of the landing platform 1 extend toward the outside, and the upper and lower ends of the landing platform 1 face the proximal side and are vertically fixed to the water retaining plate 56.
- the water retaining plate 56 is provided with a long hole two corresponding to the moving length of the connecting plate three;
- the upper end surface of the landing platform 1 is provided with a long hole 3 15 corresponding to the moving length of the adapter 539 , and the lower end surface of the landing platform 1 is provided with a water hole 16 vertically in a portion located outside the water retaining plate 56 .
- the outer surface of the landing platform 1 is made of carbon fiber board, and a hard foam body is filled and fixed inside with an adhesive.
- the hard foam body is provided with a motor box shell corresponding to the motor box shell 544.
- the body mounting slot 17 is provided, the servo control unit mounting slot 18 is provided corresponding to the servo control unit, and the wiring channel 19 is provided corresponding to the connecting cable.
- the communication and power supply cables on the servo control unit 3 are connected to the homing drive assembly 54 through the wiring channels 18 reserved on the rigid foam body, and are also connected to the homing drive assembly 54 through the reserved wiring channels 18 on the rigid foam body.
- the wiring channel 18 is connected to the locking motor 63, the first encoder 46, the first motor 45, and the second encoder 66 respectively. If the drone is to be stored in the vehicle, a lift can be installed in the cabin to fix the landing platform 1 It is installed at the lifting end of the elevator in the cabin. When the roof hatch is opened, the elevator pushes the landing platform 1 to rise.
- the servo control unit 3 sends a home command to the driver 543 of the home drive device.
- the driver 543 drives the driving motor 542 to rotate forward, driving the T-shaped commutator 532 in the homing transmission assembly 53 to rotate, driving the slide block 537 in the homing transmission assembly 53 on the same side to move toward each other, thereby ultimately driving the transverse homing push rod 51 , the longitudinal return push rod 52 components all move a set distance inward.
- the drive motor 542 is reversed to drive the slider 537 in the return transmission component 53 on the same side to move relative to the driver.
- the horizontal return push rod 51 and the longitudinal return push rod 52 return to their original positions;
- the servo control unit 3 sends a locking instruction to the locking motor 63 in the rotation locking assembly 6.
- the locking motor 63 drives the locking shaft 62 to rotate, and drives the hook 61 to rotate toward the UAV at a certain angle (encoding
- the output end of device 1 46 is connected to the input end of servo control unit 3 to feedback whether the rotation angle of hook 61 is in place) and lock the UAV landing gear;
- the servo control unit 3 sends an instruction to the first motor 45 to control the rotation of the rotating platform 2 to set the angle (the output end of the encoder 2 66 is connected to the input end of the servo control unit 3 and feeds back the angle of rotation of the rotating platform 2.
- the angle of rotation is Generally set to 45 degrees, that is, ensure that the drone is parked at a diagonal position on landing platform 1, and the vertical projection of the drone's wings should also fall on landing platform 1 as much as possible to prevent the drone's wings from falling when the elevator descends. Collision with the car bulkhead, as shown in Figure 13 and Figure 14), completing the rotation action;
- the elevator drives the entire platform down to the interior of the cabin, and the hatch is closed to complete the collection.
- the servo control unit used in this technical solution can be solved using existing mature technologies, such as the existing PLC controller.
- This patent application has not improved it, so it will not be described further.
- the roof hatch is opened, and the elevator raises the platform to a certain height.
- the servo control unit 3 sends an unlocking command to the locking motor 63, and the locking motor 63 flips over and drives the hook 61 to return to the rotating platform 2.
- the landing gear of the UAV is released, and the servo control unit 3 sends the rotation angle command to the first motor 45.
- the first motor 45 drives the rotating platform 2 to the initial angle of the UAV landing on the landing platform 1.
- the aircraft controller controls the drone to take off.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Aviation & Aerospace Engineering (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
- Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
Abstract
本发明提供了一种轻质模块化无人机通用收藏平台,包括降落平台、转动平台、伺服控制单元,所述降落平台与转动平台配合转动连接,降落平台与转动平台之间配合设置有旋转驱动组件,所述降落平台四周以及对应转动平台设置有排水结构;所述降落平台上侧设置用于将无人机归位到降落平台中部的归位推杆结构,所述转动平台对应无人机起落架设置有转动锁紧组件;所述旋转驱动组件、归位推杆结构、转动锁紧组件均与伺服控制单元电性连接。本发明所述的一种轻质模块化无人机通用收藏平台,采用复合材料自重轻、防水性好、传动组件置于平台内部,降落面简洁、可用面积大,通过旋转驱动组件灵活调整无人机收藏方向。
Description
本申请要求申请号:
202210752180.3,发明名称:《
一种轻质模块化无人机
通用收藏平台》作为优先权。
本发明属于无人机系统技术领域,尤其是涉及一种轻质模块化无人机通用收藏平台。
近年来,国内无人机技术发展不断成熟,行业发展迅速,无人机在军事领域和民用领域正发挥着越来越重要的作用。车载无人机作为一种科技发展的必然产物,具有越来越广泛的应用市场。车载无人机的收藏作为无人机应用的一项重要技术,得到了越来越多的关注,现有无人机收藏平台还存在下列问题:
(1)现有的无人机收藏平台,归位机构外置于平台,占用空间大,归位机构在平台上方,大大减少了无人机的可降落面积。平台多采用钣金材质,本身自重大,安装困难,加大了车辆的负重。
(2)现有的无人机收藏平台,安装拆卸困难,不能按照功能模块快速组装拆卸,归位机构只能针对一种类型的无人机起落架,不能灵活快速的更换不同形式的推杆,适用范围小。
(3)现有的无人机收藏平台,归位到平台中心锁紧以后,不能灵活调整角度,使无人机的桨叶更好的适应车舱的尺寸。有的归位平台采取拨动桨叶的方式适应车舱尺寸,但此种结构较为复杂。
(4)现有的无人机收藏平台,没有设置独立的排水结构,且机构多数外置在平台,降雨天气使用时,雨水不能及时排出,可能对电气组件产生损坏,环境适应性较弱。
发明内容
有鉴于此,本发明旨在提出一种轻质模块化无人机通用收藏平台,以解决无人机收藏平台自重大、安装不便、无人机降落空间小,无人机无法灵活调节角度、防水性差的问题。
为达到上述目的,本发明的技术方案是这样实现的:
一种轻质模块化无人机通用收藏平台,包括降落平台、转动平台、伺服控制单元,所述降落平台与转动平台配合转动连接,所述降落平台与转动平台之间配 合设置有旋转驱动组件,所述降落平台四周以及对应转动平台设置有排水结构;
所述降落平台上侧设置用于将无人机归位到降落平台中部的归位推杆装置,所述转动平台对应无人机起落架设置有转动锁紧组件;
所述旋转驱动组件、归位推杆装置、转动锁紧组件均与伺服控制单元电性连接。
进一步的,所述转动平台为圆板型,所述降落平台对应转动平台设置圆槽,所述圆槽底面固设防水沿,所述防水沿为圆筒型,所述防水沿与圆槽同轴设置,所述排水结构为防水沿与圆槽侧壁之间的圆槽底面上设置的多个排水孔;
所述旋转驱动组件包括固定盘、回转支撑轴承、电机齿轮、编码器一齿轮、第一电机、编码器一,所述固定盘同轴设置防水沿内侧,所述固定盘与圆槽底面固接,所述固定盘上侧同轴固接回转支撑轴承内圈,所述转动平台下表面对应回转支撑轴承内圈设置回转支撑轴承外圈,所述回转支撑轴承外圈带有轮齿;
所述回转支撑轴承外圈啮合连接有电机齿轮和编码器一齿轮,防水沿内侧的圆槽底面对应电机齿轮设置第一电机,对应编码器一齿轮设置编码器一,所述第一电机的输出轴伸出固定盘与电机齿轮同轴连接,所述编码器一检测端伸出固定盘与编码器一齿轮连接;
所述固定盘对应第一电机的输出轴及编码器一检测端均设置过孔,所述圆槽底板对应第一电机及编码器一设置安装沉槽,所述安装沉槽临近底面设置过线孔;
所述第一电机、编码器一均与伺服控制单元电性连接。
进一步的,所述转动平台下表面固设圆环板一,所述圆环板一与转动平台同轴设置,所述圆环板一外径小于防水沿内径,所述防水沿与圆环板之间配合设置密封轴承。
进一步的,所述转动平台下表面固设圆环板二,所述圆环板二与转动平台同轴设置,所述圆环板二内径大于防水沿外径,转动平台与圆槽配合安装时,防水沿与转动平台之间的距离小于圆环板二的高度。
进一步的,所述转动锁紧组件包括勾爪,所述勾爪对应无人机两侧起落架设置有两列,每列勾爪设置有多个,每列勾爪对应设置一个锁紧转轴,所述勾爪一端与锁紧转轴固接,一端朝向无人机起落架设置弯钩部,所述锁紧转轴通过轴承座与转动平台下表面转动连接,所述转动平台对应每个勾爪设置一个方型过孔;
两列勾爪转动出方孔后,勾爪弯钩部对应无人机起落架钩持住,保证飞机稳定停放在转动平台上。
两个锁紧转轴之间设置锁紧电机,所述锁紧电机对应锁紧转轴端部设置,所 述锁紧电机通过电机支座与转动平台固定连接,所述锁紧电机为双出轴电机,所述锁紧电机两端均通过直角换向器与临近的锁紧转轴连接;
锁紧电机一端与临近的直角换向器之间还连接设置有T型换向器一,T型换向器一垂直于锁紧电机输出轴的输出端与编码器二连接;
锁紧电机另一端与邻近的直角换向器之间设置有连接轴;
所述锁紧电机、编码器二均与伺服控制单元连接。
所述编码器二通过编码器支座与转动平台的下表面连接,所述转轴之间通过连轴器连接。
进一步的,所述归位推杆装置包括归位推杆,归位推杆包括两组横向归位推杆、两组纵向归位推杆,两组横向归位推杆分别临近于收藏平台横向两端设置,两组纵向归位推杆分别临近于收藏平台纵向两端设置;
两组横向归位推杆分别对应无人机横向两侧相向或相对移动,两组纵向归位推杆分别对应无人机纵向两侧相向或相对移动。
进一步的,所述归位推杆装置还包括与归位推杆连接的归位传动组件、驱动归位传动组件的归位驱动组件,降落平台四周侧面均设置有归位传动组件;
归位驱动组件设置于降落平台下表面,每侧归位传动组件对应设置一个归位驱动组件,降落平台相对两侧的归位传动组件的同一端配合设置有分别连接同一根归位推杆两端的转接件,归位驱动组件驱动归位传动组件两侧的转接件相向或相对移动。
进一步的,所述归位驱动组件包括减速机、驱动电机、驱动器、电机箱壳体,所述减速机、驱动电机、驱动器均设置于电机箱壳体内,所述电机箱壳体固设于降落平台下表面,所述驱动电机输入端与驱动器输出端连接,所述驱动器输入端通过航空插头与伺服控制单元连接,所述驱动电机输出端与减速机输入端连接;
所述归位传动组件包括U型壳体,T型换向器二、滚珠丝杠一、滚珠丝杠二、轴承支座、滑轨、滑块,T型换向器二外壳固定在U型壳体上,T型换向器二的输入轴与减速机的输出端连接,T型换向器二的两端输出轴分别与滚珠丝杠一和滚珠丝杠二连接,所述滑轨固设于U型壳体内侧,并设置有两个,两个滑轨分别对应T型换向器二的两端出轴设置,所述轴承支座设置于滑轨两端并与U型壳体内侧固接,一侧滑轨对应置滚珠丝杠一,所述滚珠丝杠一两端分别与临近的轴承支座转动连接,另一侧滑轨对应设置滚珠丝杠二,所述滚珠丝杠二两端分别与临近的轴承支座连接,滚珠丝杠一与滚珠丝杠二旋向相反;
所述滚珠丝杠一上设置有滑块,所述滑块对应滚珠丝杠一设置丝杠过孔,所述滑块的一端与丝杠过孔同轴固接丝杠螺母,所述丝杠螺母的内螺纹与滚珠丝杠 一的外螺纹配合设置;所述滚珠丝杠二上也设置有滑块,所述滚珠丝杠二与滑块的连接安装方式与滚珠丝杠一与滑块的连接安装方式相同;所述滑块与转接件连接。
进一步的,所述U型外壳开口端设置有封盖,所述U型外壳腹板与降落平台侧面固接,所述滑块靠近U型外壳开口端且临近降落平台下表面一侧固设连接板一,所述封盖对应连接板一移动长度设置长条孔一,所述连接板一远离滑块的一端竖直向降落平台上表面一侧延伸形成连接板二,所述连接板二上端垂直向远离连接板一一侧延伸形成连接板三,所述连接板三远离连接板二的一端固设转接件,
所述降落平台上下两端面向外侧延伸,所述降落平台上下两端面临近外侧面垂直固接挡水板,所述挡水板对应连接板三移动长度设置长条孔;
所述降落平台的上端面对应转接件的移动长度设置长条孔,所述降落平台下端面位于挡水板外侧的部分竖向设置流水孔。
进一步的,所述降落平台外表面材质为碳纤板,内部通过粘结剂填充硬质泡沫体,所述硬质泡沫体对应电机箱壳体设置电机箱壳体安装槽,对应伺服控制单元设置伺服控制单元安装槽,并对应连接线缆设置走线通道。所述硬质泡沫体四周侧面,对应归位传动组件(53)设置安装槽,所述归位传动组件设置于安装槽内。
相对于现有技术,本发明所述的一种轻质模块化无人机通用收藏平台具有以下有益效果:
(1)本发明所述的一种轻质模块化无人机通用收藏平台,采用模块化的设计方式,设计成独立模块,包含的轻质降落平台、转动平台、旋转驱动组件、转动锁紧组件、归位推杆、归位驱动组件、归位传动组件、伺服控制单元,每个模块都可在平台上快速的组装和拆卸,大大降低了安装和拆卸的复杂程度,有利于平台的快速维修养护。其中归位机构的每根推杆都可以根据无人机的尺寸和大小,快速更换不同尺寸的转接件和推杆,旋转锁紧组件中可以更换卡紧结构的形状,以适应不同类型无人机的归位回收,拓展平台的适用范围,增强了平台的通用性能。
(2)本发明所述的一种轻质模块化无人机通用收藏平台,旋转驱动结构设置于降落平台圆槽的防水沿内侧,驱动转动平台转动,转动平台利用一个第一电机作为驱动,通过齿轮传动带动回转支撑轴承外圈转动,从而带动转动平台转动,使锁紧后的无人机一起转动适当的角度,通过多圈编码器来测量和反馈旋转角度,旋转后的无人机可以适应车舱尺寸,不需要拨动桨叶等复杂的结构,即可满足无人机的收藏要求。
(3)本发明所述的一种轻质模块化无人机通用收藏平台,转动锁紧组件作 为一个独立的模块安装,采用一个锁紧电机作为驱动,通过直角换向器等传动组件,带动勾爪转动卡紧起落架,通过绝对式编码器二来作为位置测量反馈组件,可以在无人机归位后对起落架进行快速锁紧,结构简单,利用绝对值编码器作为位置检测反馈元件,精准可靠。锁紧结构设置于转动平台底面,在旋转驱动结构驱动转动平台转动时,整个转动锁紧结构可以同转动平台一起旋转所需的角度;
(4)本发明所述的一种轻质模块化无人机通用收藏平台,旋转驱动组件、转动锁紧组件、归位驱动组件、归位传动组件、伺服控制单元均设置于降落平台内侧,减少碰撞造成对零部件造成的损伤,且降落平台上表面与下表面均为隔水材质,且圆槽内设置防水沿,并配合设置密封轴承或圆环板二,防止雨水进入防水沿内侧,防水沿外侧的圆槽底部设置排水孔,保证雨水及时排除;此外对于归位传动组件,设置封盖及挡水板,减少雨水进入归位传动组件,且降落平台下表面设置流水孔,保证雨水能够及时排除。当降雨时,雨水从轻质降落平台上的进水孔进入,被外层隔雨板阻挡在排水空间中,整体结构保证排水顺畅,减少雨水对零部件的侵蚀损伤,延长零部件使用寿命。
(5)本发明所述的一种轻质模块化无人机通用收藏平台,采用轻质复合材质作为主体,降落平台外层采用碳纤板和内层采用硬质泡沫体,在轻质降落平台制作时,内层硬质泡沫体中预留安装槽和走线通道,在加工生产时,外层碳纤板利用牢固粘结剂包裹在内层硬质泡沫体的外部,构成一体式的轻质降落平台,作为整体使用,本平台自重轻,安装便捷,平台的无人机降落面除归位推杆外无其余结构,增加了无人机的降落面积,且降落面简洁美观。
构成本发明的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明实施例所述的一种轻质模块化无人机通用收藏平台整体结构示意图;
图2为本发明实施例所述的降落平台结构示意图;
图3为本发明实施例所述的旋转驱动组件采用密封轴承密封结构示意图;
图4为本发明实施例所述的旋转驱动组件采用迷宫密封结构示意图;
图5为本发明实施例所述的旋转平台下侧的转动锁紧组件结构示意图;
图6为本发明实施例所述的归位传动组件与归位驱动组件配合结构示意图;
图7为本发明实施例所述的归位传动组件结构示意图;
图8为本发明实施例所述的B区放大结构示意图;
图9为本发明实施例所述的A区放大结构示意图;
图10为本发明实施例所述的滑块与封盖、挡水板配合结构示意图;
图11为本发明实施例所述的归位驱动组件结构示意图;
图12为本发明实施例所述的降落平台内部安装槽示意图;
图13为本发明实施例所述的无人机降落初始位置示意图;
图14为本发明实施例所述的无人机收入降落平台示意图。
附图标记说明:
1-降落平台;11-圆槽;12-防水沿;13-排水孔;14-安装沉槽;141-过线孔;15-长条孔三;16-流水孔;17-电机箱壳体安装槽;18-伺服控制单元安装槽;19-走线通道;2-转动平台;21-圆环板一;22-圆环板二;23-密封轴承;24-方型过孔;3-伺服控制单元;4-旋转驱动组件;41-固定盘;42-回转支撑轴承;421-回转支撑轴承内圈;422-回转支撑轴承外圈;43-电机齿轮;44-编码器一齿轮;45-第一电机;46-编码器一;5-归位推杆结构;51-横向归位推杆;52-纵向归位推杆;53-归位传动组件;531-U型壳体;532-T型换向器二;533-滚珠丝杠一;534-滚珠丝杠二;535-轴承支座;536-滑轨;537-滑块;5371-连接板一;5372-连接板二;5373-连接板三;538-丝杠螺母;539-转接件;54-归位驱动组件;541-减速机;542-驱动电机;543-驱动器;544-电机箱壳体;55-封盖;56-挡水板;6-转动锁紧组件;61-勾爪;62-锁紧转轴;63-锁紧电机;64-直角换向器;65-T型换向器一;66-编码器二;67-连接轴。
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可 拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以通过具体情况理解上述术语在本发明中的具体含义。
下面将参考附图并结合实施例来详细说明本发明。
如图1至图7所示,一种轻质模块化无人机通用收藏平台,包括降落平台1、转动平台2、伺服控制单元3,所述降落平台1与转动平台2配合转动连接,所述降落平台1与转动平台2之间配合设置有旋转驱动组件4,所述降落平台1对应转动平台2设置有排水结构;
所述降落平台1上侧设置用于将无人机归位到降落平台1中部的的归位推杆结构5,所述转动平台2对应无人机起落架设置有转动锁紧组件6;
所述旋转驱动组件4、归位推杆结构5、转动缩进组件均与伺服控制单元3电性连接。
如图1、图2、图3所示,所述转动平台2为圆板型,所述降落平台1对应转动平台2设置圆槽11,所述圆槽11底面固设防水沿12,所述防水沿12为圆筒型,所述防水沿12与圆槽11同轴设置,所述排水结构为防水沿12与圆槽11侧壁之间的圆槽11底面上设置的多个排水孔13;
所述旋转驱动组件4包括固定盘41、回转支撑轴承42、电机齿轮43、编码器一齿轮44、第一电机45、编码器一46,所述固定盘41同轴设置防水沿12内侧,所述固定盘41与圆槽11底面固接,所述固定盘41上侧同轴固接回转支撑轴承内圈421,所述转动平台2下表面对应回转支撑轴承内圈421设置回转支撑轴承外圈422,所述回转支撑轴承外圈422带有轮齿;
所述回转支撑轴承外圈422啮合连接有电机齿轮43和编码器一齿轮44,防水沿12内侧的圆槽11底面对应电机齿轮43设置第一电机45,对应编码器一齿轮44设置编码器一46,所述第一电机45的输出轴伸出固定盘41与电机齿轮43同轴连接,所述编码器一46检测端伸出固定盘41与编码器一齿轮44连接;
所述固定盘41对应第一电机45的输出轴及编码器一46检测端均设置过孔,所述圆槽11底板对应第一电机45及编码器一46设置安装沉槽14,所述安装沉槽14临近底面设置过线孔141;
所述第一电机45、编码器一46均与伺服控制单元3电性连接。
如图2、图3所示,所述转动平台2下表面固设圆环板一21,所述圆环板一21与转动平台2同轴设置,所述圆环板一21外径小于防水沿12内径,所述防水沿12与圆环板之间配合设置密封轴承23。
如图2、图4所示,所述转动平台2下表面固设圆环板二22,所述圆环板二 22与转动平台2同轴设置,所述圆环板二22内径大于防水沿12外径,转动平台2与圆槽11配合安装时,防水沿12与转动平台2之间的距离小于圆环板二22的高度,圆环板二22与防水沿12配合形成迷宫密封结构,减少水进入圆槽内。
如图2至图5所示,所述转动锁紧组件6包括勾爪61,所述勾爪61对应无人机两侧起落架设置有两列,每列勾爪61设置有多个,每列勾爪61对应设置一个锁紧转轴62,所述勾爪61一端与锁紧转轴62固接,一端朝向无人机起落架设置弯钩部,所述锁紧转轴62通过轴承座与转动平台2下表面转动连接,所述转动平台2对应每个勾爪61设置一个方型过孔24;
两列勾爪61转动出方孔后,勾爪61弯钩部对应无人机起落架钩持住,保证飞机稳定停放在转动平台2上。
两个锁紧转轴62之间设置锁紧电机63,所述锁紧电机63对应锁紧转轴62端部设置,所述锁紧电机63通过电机支座与转动平台2固定连接,所述锁紧电机63为双出轴电机,所述锁紧电机63两端均通过直角换向器64与临近的锁紧转轴62连接;
锁紧电机63一端与临近的直角换向器64之间还连接设置有T型换向器一65,T型换向器一65垂直于锁紧电机63输出轴的输出端与编码器二66连接;
锁紧电机63另一端与邻近的直角换向器64之间设置有连接轴67;
所述锁紧电机63、编码器二66均与伺服控制单元3连接。
所述编码器二66通过编码器支座与转动平台2的下表面连接,所述转轴之间通过连轴器连接。
如图1、图6至图9所示,所述归位推杆结构5包括归位推杆,归位推杆包括两组横向归位推杆51、两组纵向归位推杆52,两组横向归位推杆51分别临近于收藏平台横向两端设置,两组纵向归位推杆52分别临近于收藏平台纵向两端设置;
两组横向归位推杆51分别对应无人机横向两侧相向或相对移动,两组纵向归位推杆52分别对应无人机纵向两侧相向或相对移动。
如图1、图6至图11所示,所述归位推杆结构5还包括与归位推杆连接的归位传动组件53、驱动归位传动组件53的归位驱动组件54,降落平台1四周侧面均设置有归位传动组件53;
归位驱动组件54设置于降落平台1下表面,每侧归位传动组件53对应设置一个归位驱动组件54,降落平台1相对两侧的归位传动组件53的同一端配合设置有分别连接同一根归位推杆两端的转接件539,归位驱动组件54驱动归位传 动组件53两侧的转接件539相向或相对移动。
如图1、图6至图11所示,所述归位驱动组件54包括减速机541、驱动电机542、驱动器543、电机箱壳体544,所述减速机541、驱动电机542、驱动器543均设置于电机箱壳体544内,所述电机箱壳体544固设于降落平台1下表面,所述驱动电机542输入端与驱动器543输出端连接,所述驱动器543输入端与伺服控制单元3连接,所述驱动电机542输出端与减速机541输入端连接;
所述归位传动组件53包括U型壳体531、T型换向器二532、滚珠丝杠一533、滚珠丝杠二534、轴承支座535、滑轨536、滑块537,T型换向器二532外壳固定在U型壳体531上,T型换向器二532的输入轴与减速机541的输出端连接,T型换向器二532的两端输出轴分别与滚珠丝杠一533和滚珠丝杠二534连接,所述滑轨536固设于U型壳体531内侧,并设置有两个,两个滑轨536分别对应T型换向器二532的两端出轴设置,所述轴承支座535设置于滑轨536两端并与U型壳体531内侧固接,一侧滑轨536对应置滚珠丝杠一533,所述滚珠丝杠一533两端分别与临近的轴承支座535转动连接,另一侧滑轨536对应设置滚珠丝杠二534,所述滚珠丝杠二534两端分别与临近的轴承支座535连接,滚珠丝杠一533与滚珠丝杠二534旋向相反;
所述滚珠丝杠一533上设置有滑块537,所述滑块537对应滚珠丝杠一533设置丝杠过孔,所述滑块537的一端与丝杠过孔同轴固接丝杠螺母538,所述丝杠螺母538的内螺纹与滚珠丝杠一533的外螺纹配合设置;所述滚珠丝杠二534上也设置有滑块537,所述滚珠丝杠二534与滑块537的连接安装方式与滚珠丝杠一533与滑块537的连接安装方式相同;所述滑块537与转接件539连接。
如图1、图6至图11所示,所述U型外壳开口端设置有封盖55,所述U型外壳腹板与降落平台1侧面固接,所述滑块537靠近U型外壳开口端且临近降落平台下表面一侧固设连接板一5371,所述封盖对应连接板一5371移动长度设置长条孔一,所述连接板一5371远离滑块537的一端竖直向降落平台上表面一侧延伸形成连接板二5372,所述连接板二5372上端垂直向远离连接板一5371一侧延伸形成连接板三5373,所述连接板三5373远离连接板二5372的一端固设转接件539,
所述降落平台1上下两端面向外侧延伸,所述降落平台1上下两端面临近外侧面垂直固接挡水板56,所述挡水板56对应连接板三5373移动长度设置长条孔二;
所述降落平台1的上端面对应转接件539的移动长度设置长条孔三15,所述降落平台1下端面位于于挡水板56外侧的部分竖向设置流水孔16。
如图6、图12所示,所述降落平台1外表面材质为碳纤板,内部通过粘结剂填充固设硬质泡沫体,所述硬质泡沫体对应电机箱壳体544设置电机箱壳体安 装槽17,对应伺服控制单元设置伺服控制单元安装槽18,并对应连接线缆设置走线通道19。
如图1至图12所示,伺服控制单元3上的通信和供电线缆通过硬质泡沫体上预留的走线通道18与归位驱动组件54相连,同样通过硬质泡沫体上预留的走线通道18分别与锁紧电机63、编码器一46、第一电机45、编码器二66相连,若无人机要收藏于车辆内,车舱内可设置升降机,将降落平台1固定设置于车舱内升降机升降端,车顶舱门打开,升降机推动降落平台1升起,当无人机降落在平台上,伺服控制单元3向归位驱动装置的驱动器543发送归位指令,驱动器543驱动驱动电机542正转,带动归位传动组件53中的T型换向器二532转动,驱动同侧归位传动组件53中的滑块537相向移动,从而最终带动横向归位推杆51、纵向归位推杆52组件均向内侧移动设定距离,将无人机归位到平台中心后,驱动电机542反转,驱动同侧归位传动组件53中的滑块537相对移动,驱动横向归位推杆51及纵向归位推杆52回到原位;
进一步的,伺服控制单元3向转动锁紧组件6中的锁紧电机63发送锁紧指令,锁紧电机63驱动锁紧转轴62转动,驱动勾爪61转动朝向无人机转动一定的角度(编码器一46输出端与伺服控制单元3输入端连接,反馈勾爪61转动的角度是否到位),锁紧无人机起落架;
进一步的,伺服控制单元3向第一电机45发送控制转动平台2旋转设定角度的指令(编码器二66输出端与伺服控制单元3输入端连接,反馈转动平台2转动的角度,转动的角度一般设置为45度,即保证无人机停放在降落平台1对角位置,尽量是无人机的机翼垂直投影也尽量落在降落平台1上,防止升降机下降时,无人机的机翼碰撞到车舱壁,如图13、图14所示),完成旋转动作;
升降机带动整个平台下降至车舱内部,舱门关闭,完成收藏。
本技术方案中采用的伺服控制单元能够利用现有的成熟技术解决,例如现有的PLC控制器,本专利申请并未对其进行改进,因此,不再作进一步赘述。
当无人机需要作业时,车顶舱门开启,升降机将平台升高至一定高度,伺服控制单元3发送的解锁指令给锁紧电机63,锁紧电机63翻转驱动勾爪61返回转动平台2下侧,释放无人机起落架,伺服控制单元3发送的回转角度指令给第一电机45,第一电机45驱动转动平台2至无人机降落至降落平台1的初始角度后,通过无人机控制器控制无人机起飞。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (10)
- 一种轻质模块化无人机通用收藏平台,其特征在于:包括降落平台(1)、转动平台(2)、伺服控制单元(3),所述降落平台(1)与转动平台(2)配合转动连接,所述降落平台(1)与转动平台(2)之间配合设置有旋转驱动组件(4),所述降落平台(1)四周以及对应转动平台(2)设置有排水结构;所述降落平台(1)上侧设置用于将无人机归位到降落平台(1)中部的的归位推杆结构(5),所述转动平台(2)对应无人机起落架设置有转动锁紧组件(6);所述旋转驱动组件(4)、归位推杆结构(5)、转动锁紧组件(6)均与伺服控制单元(3)电性连接。
- 根据权利要求1所述的一种轻质模块化无人机通用收藏平台,其特征在于:所述转动平台(2)为圆板型,所述降落平台(1)对应转动平台(2)设置圆槽(11),所述圆槽(11)底面固设防水沿(12),所述防水沿(12)为圆筒型,所述防水沿(12)与圆槽(11)同轴设置,所述排水结构为防水沿(12)与圆槽(11)侧壁之间的圆槽(11)底面上设置的多个排水孔(13);所述旋转驱动组件(4)包括固定盘(41)、回转支撑轴承(42)、电机齿轮(43)、编码器一齿轮(44)、第一电机(45)、编码器一(46),所述固定盘(41)同轴设置防水沿(12)内侧,所述固定盘(41)与圆槽(11)底面固接,所述固定盘(41)上侧同轴固接回转支撑轴承内圈(421),所述转动平台(2)下表面对应回转支撑轴承内圈(421)设置回转支撑轴承外圈(422),所述回转支撑轴承外圈(422)带有轮齿;所述回转支撑轴承外圈(422)啮合连接有电机齿轮(43)和编码器一齿轮(44),防水沿(12)内侧的圆槽(11)底面对应电机齿轮(43)设置第一电机(45),对应编码器一齿轮(44)设置编码器一(46),所述第一电机(45)的输出轴伸出固定盘(41)与电机齿轮(43)同轴连接,所述编码器一(46)检测端伸出固定盘(41)与编码器一齿轮(44)连接;所述固定盘(41)对应第一电机(45)的输出轴及编码器一(46)检测端均设置过孔,所述圆槽(11)底板对应第一电机(45)及编码器一(46)设置安装沉槽(14),所述安装沉槽(14)临近底面设置过线孔(141);所述第一电机(45)、编码器一(46)均与伺服控制单元(3)电性连接。
- 根据权利要求2所述的一种轻质模块化无人机通用收藏平台,其特征在于:所述转动平台(2)下表面固设圆环板一(21),所述圆环板一(21)与转动平台(2)同轴设置,所述圆环板一(21)外径小于防水沿(12)内径,所述防水沿(12)与圆环板之间配合设置密封轴承(23)。
- 根据权利要求2所述的一种轻质模块化无人机通用收藏平台,其特征在于: 所述转动平台(2)下表面固设圆环板二(22),所述圆环板二(22)与转动平台(2)同轴设置,所述圆环板二(22)内径大于防水沿(12)外径,转动平台(2)与圆槽(11)配合安装时,防水沿(12)与转动平台(2)之间的距离小于圆环板二(22)的高度。
- 根据权利要求1所述的一种轻质模块化无人机通用收藏平台,其特征在于:所述转动锁紧组件(6)包括勾爪(61),所述勾爪(61)对应无人机两侧起落架设置有两列,每列勾爪(61)设置有多个,每列勾爪(61)对应设置一个锁紧转轴(62),所述勾爪(61)一端与锁紧转轴(62)固接,一端朝向无人机起落架设置弯钩部,所述锁紧转轴(62)通过轴承座与转动平台(2)下表面转动连接,所述转动平台(2)对应每个勾爪(61)设置一个方型过孔(24);两个锁紧转轴(62)之间设置锁紧电机(63),所述锁紧电机(63)对应锁紧转轴(62)端部设置,所述锁紧电机(63)通过电机支座与转动平台(2)固定连接,所述锁紧电机(63)为双出轴电机,所述锁紧电机(63)两端均通过直角换向器(64)与临近的锁紧转轴(62)连接;锁紧电机(63)一端与临近的直角换向器(64)之间还连接设置有T型换向器一(65),T型换向器一(65)垂直于锁紧电机(63)输出轴的输出端与编码器二(66)连接;锁紧电机(63)另一端与邻近的直角换向器(64)之间设置有连接轴(67);所述锁紧电机(63)、编码器二(66)均与伺服控制单元(3)连接。
- 根据权利要求1所述的一种轻质模块化无人机通用收藏平台,其特征在于:所述归位推杆结构(5)包括归位推杆,归位推杆包括两组横向归位推杆(51)、两组纵向归位推杆(52),两组横向归位推杆(51)分别临近于收藏平台横向两端设置,两组纵向归位推杆(52)分别临近于收藏平台纵向两端设置;两组横向归位推杆(51)分别对应无人机横向两侧相向或相对移动,两组纵向归位推杆(52)分别对应无人机纵向两侧相向或相对移动。
- 根据权利要求6所述的一种轻质模块化无人机通用收藏平台,其特征在于:所述归位推杆结构(5)还包括与归位推杆连接的归位传动组件(53)、驱动归位传动组件(53)的归位驱动组件(54),降落平台(1)四周侧面均设置有归位传动组件(53);归位驱动组件(54)设置于降落平台(1)下表面,每侧归位传动组件(53)对应设置一个归位驱动组件(54),降落平台(1)相对两侧的归位传动组件(53)的同一端配合设置有分别连接同一根归位推杆两端的转接件(539),归位驱动组件(54)驱动归位传动组件(53)两侧的转接件(539)相向或相对移动。
- 根据权利要求7所述的一种轻质模块化无人机通用收藏平台,其特征在于:所述归位驱动组件(54)包括减速机(541)、驱动电机(542)、驱动器(543)、电机箱壳体(544),所述减速机(541)、驱动电机(542)、驱动器(543)均设置于电机箱壳体(544)内,所述电机箱壳体(544)固设于降落平台(1)下表面,所述驱动电机(542)输入端与驱动器(543)输出端连接,所述驱动器(543)输入端通过航空插头与伺服控制单元(3)连接,所述驱动电机(542)输出端与减速机(541)输入端连接;所述归位传动组件(53)包括U型壳体(531)、T型换向器二(532)、滚珠丝杠一(533)、滚珠丝杠二(534)、轴承支座(535)、滑轨(536)、滑块(537),T型换向器二(532)外壳固定在U型壳体(531)上,T型换向器二(532)的输入轴与减速机(541)的输出端连接,T型换向器二(532)的两端输出轴分别与滚珠丝杠一(533)和滚珠丝杠二(534)连接,所述滑轨(536)固设于U型壳体(531)内侧,并设置有两个,两个滑轨(536)分别对应T型换向器二(532)的两端出轴设置,所述轴承支座(535)设置于滑轨(536)两端并与U型壳体(531)内侧固接,一侧滑轨(536)对应设置滚珠丝杠一(533),所述滚珠丝杠一(533)两端分别与临近的轴承支座(535)转动连接,另一侧滑轨(536)对应设置滚珠丝杠二(534),所述滚珠丝杠二(534)两端分别与临近的轴承支座(535)连接,滚珠丝杠一(533)与滚珠丝杠二(534)旋向相反;所述滚珠丝杠一(533)上设置有滑块(537),所述滑块(537)对应滚珠丝杠一(533)设置丝杠过孔,所述滑块(537)的一端与丝杠过孔同轴固接丝杠螺母(538),所述丝杠螺母(538)的内螺纹与滚珠丝杠一(533)的外螺纹配合设置;所述滚珠丝杠二(534)上也设置有滑块(537),所述滚珠丝杠二(534)与滑块(537)的连接安装方式与滚珠丝杠一(533)与滑块(537)的连接安装方式相同;所述滑块(537)与转接件(539)连接。
- 根据权利要求8所述的一种轻质模块化无人机通用收藏平台,其特征在于:所述U型外壳开口端设置有封盖(55),所述U型外壳腹板与降落平台(1)侧面固接,所述滑块(537)靠近U型外壳开口端且临近降落平台下表面一侧固设连接板一(5371),所述封盖对应连接板一(5371)移动长度设置长条孔一,所述连接板一(5371)远离滑块(537)的一端竖直向降落平台上表面一侧延伸形成连接板二(5372),所述连接板二(5372)上端垂直向远离连接板一(5371)一侧延伸形成连接板三(5373),所述连接板三(5373)远离连接板二(5372)的一端固设转接件(539),所述降落平台(1)上下两端面向外侧延伸,所述降落平台(1)上下两端面临近外侧面垂直固接挡水板(56),所述挡水板(56)对应连接板三(5373)移动长度设置长条孔二;所述降落平台(1)的上端面对应转接件(539)的移动长度设置长条孔三(15), 所述降落平台(1)下端面位于挡水板(56)外侧的部分竖向设置流水孔(16)。
- 根据权利要求8所述的一种轻质模块化无人机通用收藏平台,其特征在于:所述降落平台(1)外表面材质为碳纤板,内部通过粘结剂填充固设硬质泡沫体,所述硬质泡沫体对应电机箱壳体(544)设置电机箱壳体安装槽(17),对应伺服控制单元设置伺服控制单元安装槽(18),并对应连接线缆设置走线通道(19),所述硬质泡沫体四周侧面,对应归位传动组件(53)设置安装槽,归位传动组件设置于安装槽内。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210752180.3 | 2022-06-29 | ||
CN202210752180.3A CN115042986B (zh) | 2022-06-29 | 2022-06-29 | 一种轻质模块化无人机通用收藏平台 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024000748A1 true WO2024000748A1 (zh) | 2024-01-04 |
Family
ID=83165374
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/112122 WO2024000748A1 (zh) | 2022-06-29 | 2022-08-12 | 一种轻质模块化无人机通用收藏平台 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115042986B (zh) |
WO (1) | WO2024000748A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118004475A (zh) * | 2024-04-08 | 2024-05-10 | 国网山东省电力公司泰安供电公司 | 一种用于检测电力故障的巡检无人机平台 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106904288A (zh) * | 2017-03-09 | 2017-06-30 | 北京理工大学 | 一种旋翼式无人机的车载起降固定平台 |
WO2018219226A1 (zh) * | 2017-05-27 | 2018-12-06 | 星逻智能科技(苏州)有限公司 | 无人机停机库 |
CN209905086U (zh) * | 2019-01-09 | 2020-01-07 | 上海复亚智能科技有限公司 | 一种无人机机场升降装置 |
CN212738489U (zh) * | 2020-07-29 | 2021-03-19 | 成都震风航空技术有限公司 | 一种无人机起落架锁紧机构及无人机存储单元 |
CN213384016U (zh) * | 2020-10-27 | 2021-06-08 | 三生万物(北京)人工智能技术有限公司 | 一种无人机起落架通用快速锁紧装置 |
CN112937896A (zh) * | 2021-01-29 | 2021-06-11 | 天津航天中为数据系统科技有限公司 | 一种垂起固定翼无人值守风向自适应辅助降落系统及方法 |
CN113291484A (zh) * | 2021-07-07 | 2021-08-24 | 西安羚控电子科技有限公司 | 一种基于机巢的无人机起飞降落方法 |
CN114572413A (zh) * | 2022-03-28 | 2022-06-03 | 山东智航智能装备有限公司 | 一种基于旋转夹持的复合翼无人机自动机场 |
CN216734816U (zh) * | 2022-03-14 | 2022-06-14 | 普宙科技(深圳)有限公司 | 一种无人机机巢 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102189039B1 (ko) * | 2020-01-28 | 2020-12-10 | 주식회사 숨비 | 개폐기능이 구비된 픽업트럭용 드론격납고 및 이를 포함하는 드론운용 시스템 |
CN114030632B (zh) * | 2021-12-25 | 2022-06-17 | 蜂巢航宇科技(北京)有限公司 | 一种垂起无人机机库系统 |
-
2022
- 2022-06-29 CN CN202210752180.3A patent/CN115042986B/zh active Active
- 2022-08-12 WO PCT/CN2022/112122 patent/WO2024000748A1/zh unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106904288A (zh) * | 2017-03-09 | 2017-06-30 | 北京理工大学 | 一种旋翼式无人机的车载起降固定平台 |
WO2018219226A1 (zh) * | 2017-05-27 | 2018-12-06 | 星逻智能科技(苏州)有限公司 | 无人机停机库 |
CN209905086U (zh) * | 2019-01-09 | 2020-01-07 | 上海复亚智能科技有限公司 | 一种无人机机场升降装置 |
CN212738489U (zh) * | 2020-07-29 | 2021-03-19 | 成都震风航空技术有限公司 | 一种无人机起落架锁紧机构及无人机存储单元 |
CN213384016U (zh) * | 2020-10-27 | 2021-06-08 | 三生万物(北京)人工智能技术有限公司 | 一种无人机起落架通用快速锁紧装置 |
CN112937896A (zh) * | 2021-01-29 | 2021-06-11 | 天津航天中为数据系统科技有限公司 | 一种垂起固定翼无人值守风向自适应辅助降落系统及方法 |
CN113291484A (zh) * | 2021-07-07 | 2021-08-24 | 西安羚控电子科技有限公司 | 一种基于机巢的无人机起飞降落方法 |
CN216734816U (zh) * | 2022-03-14 | 2022-06-14 | 普宙科技(深圳)有限公司 | 一种无人机机巢 |
CN114572413A (zh) * | 2022-03-28 | 2022-06-03 | 山东智航智能装备有限公司 | 一种基于旋转夹持的复合翼无人机自动机场 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118004475A (zh) * | 2024-04-08 | 2024-05-10 | 国网山东省电力公司泰安供电公司 | 一种用于检测电力故障的巡检无人机平台 |
Also Published As
Publication number | Publication date |
---|---|
CN115042986A (zh) | 2022-09-13 |
CN115042986B (zh) | 2023-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12084211B2 (en) | Automatic recycling and charging nest for vertical take-off and landing unmanned aerial vehicle | |
CN106347586B (zh) | 一体化全方位全天候海天监控系统 | |
US9376187B2 (en) | Power module for use in marine vessel, and wind-propelled vessel provided with said power module | |
WO2024000748A1 (zh) | 一种轻质模块化无人机通用收藏平台 | |
US7387276B1 (en) | Aerial sensor pod deployment system | |
CN106060451A (zh) | 海域无人机监视监测移动平台 | |
CN105775133A (zh) | 一种防水无人机 | |
CN217754141U (zh) | 一种收放无人机并适用于户外环境的固定式智能航空站 | |
CN114408215B (zh) | 一种适用于快速机动超稳成像的卫星构型 | |
CN205812219U (zh) | 海域无人机监视监测移动平台 | |
CN112918696A (zh) | 一种可拆分的固定翼无人机停机舱 | |
CN110884613B (zh) | 一种水下机器人的舱门系统 | |
CN115801105B (zh) | 一种一车一站式高集成机动测控站 | |
CN219918930U (zh) | 一种一车一站式高集成机动测控站 | |
CN108016607B (zh) | 无人机起降装置 | |
CN110566025B (zh) | 一种无人机停机库 | |
CN114425983A (zh) | 一种火箭遥测控制车 | |
CN218662419U (zh) | 一种氢燃料电池动力的一体化无人机机身 | |
CN219447248U (zh) | 海上平台设备舱 | |
CN216805252U (zh) | 空天地一体化ai无人机指挥车 | |
CN220616212U (zh) | 一种无人机用吊舱 | |
CN113895621B (zh) | 一种具有挂载喊话器的无人机 | |
CN221727876U (zh) | 一种防水壁盒 | |
CN218972447U (zh) | 模块化航标灯 | |
CN216035188U (zh) | 一种可拆分的固定翼无人机停机舱 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22948840 Country of ref document: EP Kind code of ref document: A1 |