WO2023286639A1 - 工作機械システム - Google Patents

工作機械システム Download PDF

Info

Publication number
WO2023286639A1
WO2023286639A1 PCT/JP2022/026450 JP2022026450W WO2023286639A1 WO 2023286639 A1 WO2023286639 A1 WO 2023286639A1 JP 2022026450 W JP2022026450 W JP 2022026450W WO 2023286639 A1 WO2023286639 A1 WO 2023286639A1
Authority
WO
WIPO (PCT)
Prior art keywords
tool
information
shape
headstock
scanner
Prior art date
Application number
PCT/JP2022/026450
Other languages
English (en)
French (fr)
Inventor
則夫 賀来
Original Assignee
スター精密株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スター精密株式会社 filed Critical スター精密株式会社
Priority to KR1020247000252A priority Critical patent/KR20240016430A/ko
Priority to CN202280048899.7A priority patent/CN117642251A/zh
Publication of WO2023286639A1 publication Critical patent/WO2023286639A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B25/00Accessories or auxiliary equipment for turning-machines
    • B23B25/06Measuring, gauging, or adjusting equipment on turning-machines for setting-on, feeding, controlling, or monitoring the cutting tools or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/10Arrangements for cooling or lubricating tools or work
    • B23Q11/1076Arrangements for cooling or lubricating tools or work with a cutting liquid nozzle specially adaptable to different kinds of machining operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/22Arrangements for observing, indicating or measuring on machine tools for indicating or measuring existing or desired position of tool or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/24Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
    • G05B19/4069Simulating machining process on screen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present invention relates to a machine tool system equipped with a measuring device.
  • machine tools are provided with a control device that controls the movement of moving bodies such as tool rests and the rotation of spindles and rotary tools based on NC programs.
  • An NC program is created by a machine tool operator or CAM (Computer Aided Manufacturing).
  • a control device controls the movement of a moving body according to an NC program to machine a workpiece into a desired shape.
  • setup work When changing the workpiece or changing the machining shape, so-called setup work is performed.
  • the operator of the machine tool or the CAM creates an NC program, replaces the attached tool, and changes the chuck that holds the work.
  • the operator inputs information on the type of the replaced tool, the projection length of the tool, and information on the direction of rotation in the case of a rotary tool, to the control device.
  • the machine tool is operated at a low speed without a workpiece attached, and it is checked whether the moving body interferes with the inner wall of the machining chamber (cutting chamber) of the machine tool or the structures inside the machining chamber.
  • the present invention has been made in view of the above problems, and aims to provide a highly convenient machine tool system.
  • a machine tool system for solving the above object includes a tool rest on which a tool for machining a workpiece is attached; a numerical control unit that controls movement of the tool post based on an NC program; and a measuring device for measuring the position and shape of the tool attached to the tool post.
  • the position information and the shape information of the tool actually attached to the tool post can be obtained.
  • the position and shape of the tool used for the interference check can be used.
  • the position and shape of the tool used for the interference check can be obtained.
  • the position of the tool actually attached can be obtained.
  • the shape of the tool There is no difference in shape. Therefore, after the interference check, there is no need to reconfirm with the actual device, which enhances convenience.
  • information on the cutting edge position of the tool can also be obtained, so that it is possible to generate correction value information on the cutting edge position.
  • the machine tool system in the present invention is a concept that includes both a machine tool alone and a machine tool and a computer connected to the machine tool.
  • the measuring device also measures the shape of a tool holder for attaching the tool to the tool rest, a tool holder information storage unit that associates and stores shape information of the tool holder and characteristic information of the tool holder for each of the plurality of tool holders that can be attached to the tool post; Among the plurality of tool holder shape information stored in the tool holder information storage unit, the shape information corresponding to the shape of the tool holder measured by the measuring device is specified, and the tool holder associated with the specified tool holder is specified. and a tool holder information acquisition unit that acquires the characteristic information.
  • an installed tool information storage unit for storing installed tool information based on the position of the tool and the shape of the tool measured by the measuring device;
  • the installed tool information stored in the installed tool information storage unit is compared with the installed tool information based on the position and shape of the tool newly measured by the measuring device, and the desired tool is the cutting tool.
  • a mounting tool check section for checking whether the base is mounted may be provided.
  • the measuring device also measures the position and shape of a coolant nozzle whose position and coolant discharge angle are adjustable, A virtual three-dimensional model is generated using the position and shape of the coolant nozzle and the position and shape of the tool measured by the measuring device, and the virtual three-dimensional model is based on the NC program.
  • An interference check section may be provided for moving the tool post to check for interference between the tool and the coolant nozzle.
  • the interference check unit By performing an interference check between the coolant nozzle and the tool by the interference check unit, it is possible to check whether or not the discharge angle and position of the coolant nozzle will change due to interference.
  • a first spindle that holds the workpiece and rotates around a spindle center line
  • a second headstock having a second spindle facing the first spindle and movable in an orthogonal direction orthogonal to the spindle centerline
  • the measuring device may be mounted on the second headstock and measure the distance to the object to be measured while moving in the orthogonal direction together with the second headstock.
  • the measuring device By mounting the measuring device on the second headstock, it is possible to measure the position and shape of major structures such as the tools attached to the tool post.
  • the movement of the second headstock in the orthogonal direction also causes the measuring device to move in the orthogonal direction, so that a wide range can be measured by the measuring device.
  • the measuring device is detachably mounted on the second headstock, and is mounted on the second headstock when mounted on the second headstock. It may be one that sends out a signal that indicates.
  • the measuring device is mounted on the second headstock.
  • the measuring device may be detachably mounted on the turret, and when mounted on the turret, it sends out a signal indicating that it is mounted on the turret. There may be.
  • a highly convenient machine tool system can be provided.
  • FIG. 2 is a perspective view showing the internal configuration of the NC lathe shown in FIG. 1; 3 is a schematic cross-sectional view for explaining a connecting portion between the scanner and the second headstock shown in FIG. 2;
  • FIG. 2 is a block diagram showing the hardware configuration of the NC lathe shown in FIG. 1;
  • FIG. 2 is a functional block diagram showing the functional configuration of the NC device shown in FIG. 1;
  • FIG. 2 is a flow chart showing a measurement operation for measuring a structure in the cutting chamber of the NC lathe shown in FIG. 1;
  • FIG. 7 is a flowchart showing the operation of the setup check process shown in FIG. 6;
  • FIG. 7 is a flowchart showing the operation of correction input processing shown in FIG. 6;
  • FIG. 7 is a flow chart showing the operation of the interference check process shown in FIG. 6;
  • FIG. 4 is a perspective view showing a virtual three-dimensional model generated in virtual space by interference check processing; It is a perspective view similar to FIG. 2 which shows the internal structure of the NC lathe of a modification.
  • FIG. 1 is a plan view simply showing the internal configuration of the NC lathe according to this embodiment.
  • This FIG. 1 also shows a control device 2 provided in the NC lathe 1 .
  • the range of the cutting chamber 11 is indicated by a thin double-dashed line rectangle.
  • the NC lathe 1 internally includes a first headstock 3, a guide bush 4, a first tool post 5, a second headstock 6, and a second tool post 7. .
  • This NC lathe 1 corresponds to an example of a machine tool and an example of a machine tool system.
  • the first headstock 3, the guide bushing 4, the first turret 5, the second headstock 6 and the second turret 7 are arranged on a leg 10 (see FIG. 2) which is a base.
  • the operations of the first headstock 3 , the first tool post 5 , the second headstock 6 and the second tool post 7 are controlled by the control device 2 .
  • the control device 2 is a computer that numerically controls the first headstock 3, the first tool post 5, the second headstock 6, and the second tool post 7 mainly according to the NC program.
  • the control device 2 also controls the rotation of the first main shaft 31 and the second main shaft 61 .
  • the control device 2 also controls the rotation of the rotary tool.
  • the first headstock 3 has a first spindle 31 .
  • the first headstock 3 is movable in the Z1-axis direction.
  • the Z1-axis direction is the horizontal direction, which is the left-right direction in FIG.
  • the Z1 axis direction corresponds to the axial direction of the first main shaft 31 .
  • the first main shaft 31 grips the elongated bar-shaped work W inserted therein so that the grip can be released.
  • the first spindle 31 can grip the workpiece W and rotate about the first spindle center line CL1.
  • the direction of the first spindle centerline CL1 coincides with the Z1-axis direction.
  • the guide bush 4 is fixed to the leg 10 (see FIG. 2) of the NC lathe 1 by a guide bush support base 41. An end face of the guide bush 4 opposite to the side where the first main shaft 31 is arranged is exposed inside the cutting chamber 11 .
  • the guide bush 4 supports the tip side portion of the work W penetrating through the inside of the first main shaft 31 so as to be slidable in the Z1-axis direction.
  • a portion of the guide bush 4 that supports the workpiece W is rotatable around the first main shaft center line CL1 in synchronism with the first main shaft 31. As shown in FIG. That is, the first spindle center line CL1 is also the rotation center line of the portion of the work W supported by the guide bush 4 . Since the guide bush 4 suppresses the deflection of the work W during machining, it is possible to machine a particularly elongated work W with high accuracy.
  • the first tool post 5 is movable in the X1-axis direction perpendicular to the Z1-axis direction and in the horizontal direction, and in the Y1-axis direction in the vertical direction.
  • This first tool post 5 corresponds to an example of a tool post.
  • the vertical direction is the X1-axis direction
  • the direction orthogonal to the paper surface is the Y1-axis direction.
  • a first tool holder TH1 is attached to the first tool rest 5, and a first tool T1 for machining a workpiece W is attached to the first tool holder TH1. That is, the first tool T1 is attached to the first tool post 5 via the first tool holder TH1.
  • the first tool T1 and the first tool holder TH1 are collectively referred to as a front tool unit.
  • the front tool unit is a throwaway tool
  • the tip forming the cutting edge corresponds to the first tool T1
  • the shank to which the tip is attached corresponds to the first tool holder TH1.
  • the front tool unit may be a front tool unit such as a brazing tool or a solid tool in which the first tool T1 and the first tool holder TH1 are substantially integrated.
  • the front tool unit is arranged in the cutting chamber 11 .
  • a plurality of types of front tool units including an outer diameter machining front tool unit and a cut-off front tool unit, are arranged in the Y1-axis direction and attached to the first tool post 5 in a comb shape.
  • an arbitrary front tool unit is selected from these plural types of front tool units.
  • the first tool T1 of the selected front tool unit cuts into the work W gripped by the first main spindle 31 to machine the tip portion of the work W.
  • the first tool rest 5 also includes rotating tools such as end mills and drills projecting in the X1-axis direction and rotating tools such as end mills and drills projecting in the Z1-axis direction. It is attached as T1.
  • the second headstock 6 is arranged inside the cutting chamber 11 .
  • the second headstock 6 has a second spindle 61 .
  • the second headstock 6 is movable in the X2-axis direction and the Z2-axis direction.
  • the X2-axis direction is the same direction as the X1-axis direction described above
  • the Z2-axis direction is the same direction as the Z1-axis direction described above.
  • This X2-axis direction corresponds to an example of an orthogonal direction.
  • the Z2 axis direction corresponds to the axial direction of the second main shaft 61 .
  • the second headstock 6 may be movable in the Y2-axis direction, which is orthogonal to the X2-axis direction and also orthogonal to the Z2-axis direction.
  • the second main shaft 61 faces the first main shaft 31 with the guide bush 4 interposed therebetween.
  • the second main shaft center line CL2 which is the center of rotation of the second main shaft, is arranged on the same line as the first main shaft center line CL1.
  • the direction of the second spindle centerline CL2 coincides with the Z2-axis direction.
  • the second spindle 61 receives the tip portion of the workpiece W that has been cut by the first tool T1 for parting off after the machining using the first spindle 31 is completed.
  • the tip portion of the work W transferred to the second main shaft 61 after being cut will be referred to as a cut work.
  • the second main shaft 61 grips the cut workpiece transferred from the first main shaft 31 so that the grip can be released.
  • the second tool post 7 is arranged inside the cutting chamber 11 .
  • the second tool post 7 is movable in the Y2-axis direction.
  • the Y2-axis direction is the same direction as the Y1-axis direction described above.
  • This second tool post 7 also corresponds to an example of the tool post.
  • a plurality of second tool holders TH2 are attached to the second tool post 7, and a second tool T2 such as a drill or an end mill for processing the cut work is attached to each of the second tool holders TH2. That is, the second tool T2 is attached to the second tool post 7 via the second tool holder TH2.
  • the second tool T2 and the second tool holder TH2 are collectively referred to as a rear tool unit.
  • first tool T1 and the second tool T2 are simply referred to as tools when not distinguished, and the first tool holder TH1 and the second tool holder TH2 are simply referred to as tool holders when not distinguished.
  • the back tool units are attached to the second tool post 7 side by side not only in the X2-axis direction but also in the Y2-axis direction.
  • an arbitrary back tool unit is selected from the plurality of back tool units.
  • the cut end side portion of the cut workpiece gripped by the second main spindle 61 is machined.
  • FIG. 2 is a perspective view showing the internal configuration of the NC lathe shown in FIG.
  • the coolant discharge unit 8 that discharges coolant mainly toward the machining site is arranged.
  • the coolant discharge unit 8 has a coolant nozzle 81 and a coolant hose 82 .
  • the coolant nozzle 81 is attached to the tip of the coolant hose 82 so that the angle can be adjusted, and discharges the coolant liquid from the tip.
  • the coolant hose 82 forms a path for sending the coolant liquid to the coolant nozzle 81, bends freely, and maintains the bent shape. Since the coolant nozzle 81 is attached to the tip of the coolant hose 82 which bends freely and maintains its bent shape so that the angle can be adjusted, the arrangement position and the coolant discharge angle can be freely adjusted. .
  • a scanner 9 for measuring the position and shape of the structure in the cutting chamber 11 is detachably mounted on the second headstock 6 .
  • This scanner 9 corresponds to an example of a measuring device.
  • the scanner 9 of this embodiment is a two-dimensional scanner having an infrared laser generator and a polygon mirror rotated by a motor.
  • the scanner 9 uses a polygon mirror to scan an infrared laser emitted from an infrared laser generator so as to expand in the Y1-axis direction, thereby linearly irradiating an object to be measured on the side of the first spindle 31 with the infrared laser.
  • the distance to the target is measured by the degree of laser reflection.
  • the operations of the infrared laser generator and the motor for rotating the polygon mirror are controlled by a controller 2 to which a scanner 9 is connected.
  • the irradiation range of the infrared laser to be irradiated is shown as a small white fan shape, but the actual irradiation range is wider in the vertical direction than the range shown in FIG. 2, and the irradiation distance is also longer. .
  • Positional information and shape information of the measurement target can be obtained.
  • FIG. 3 is a schematic cross-sectional view for explaining the connecting portion between the scanner and the second headstock shown in FIG.
  • the mounting portion of the second headstock 6 for the scanner 9 is formed with three cylindrical short pins 6a with a short protruding length and one long pin 6b with a long protruding length. ing.
  • the short pin 6a and the long pin 6b are cylindrical with the same diameter.
  • the scanner 9 is formed with four holes 9a at positions corresponding to these short pins 6a and long pins 6b. Although the gap between the short pin 6a and long pin 6b and hole 9a is exaggerated in FIG. 3, one of the combinations of short pin 6a and long pin 6b and hole 9a has almost no gap.
  • One of the holes 9a has an elongated hole shape with its longitudinal direction extending in the left-right direction in FIG.
  • the mounting position of the scanner 9 is determined by mounting the scanner 9 on the second headstock 6 so that the short pins 6a and the long pins 6b are inserted into these holes 9a.
  • a slider 91 and a spring 93 are arranged in each hole 9a.
  • the slider 91 is normally held at a predetermined position by a spring 93 .
  • a push pin 92 projecting upward is fixed to the upper surface of the slider 91 .
  • a switch 94 is arranged above each push pin 92 .
  • the first tool rest 5 is also formed with pins similar to the short pins 6a and long pins 6b and screw holes for fixing the scanner 9. Accordingly, the scanner 9 can also be mounted on the first tool post 5 . Further, similar pins and fixing screw holes may be formed on the second tool post 7 so that the scanner 9 can be mounted on the second tool post 7 . Further, a robot arm may be arranged in the cutting chamber 11, pins similar to the short pins 6a and long pins 6b, and fixing screw holes may be formed in the robot arm to mount the scanner 9 on the robot arm.
  • the scanner 9 can be mounted on each of a plurality of moving bodies such as the first tool post 5 and the second headstock 6, the scanner can be mounted by changing the positions and combinations of the short pins 6a and the long pins 6b according to the moving bodies. It is possible to automatically determine on which moving body 9 is mounted. In other words, the scanner 9 sends different mounting position signals depending on the mounted moving body corresponding to the on/off state of the four switches 94 . By receiving the mounting position signal, the later-described scanner mounting position determination unit 25 can determine the mounting position of the scanner 9 .
  • FIG. 4 is a block diagram showing the hardware configuration of the NC lathe shown in FIG. In FIG. 4, the hardware configuration of the NC lathe 1 that is less relevant to the present invention is omitted.
  • the first spindle 31 is provided with a first spindle drive motor 311 such as a built-in motor.
  • a first spindle drive motor 311 rotates in response to a command from the control device 2
  • the first spindle 31 rotates about the first spindle center line CL1 (see FIG. 1).
  • the workpiece W (see FIG. 1) gripped by the first spindle 31 rotates about the first spindle center line CL1.
  • the first headstock 3 is also provided with a Z1 linear motion mechanism driven by a Z1 axis motor 32, which is a servomotor.
  • the Z1-axis motor 32 rotates in response to a command from the control device 2 to move the first headstock 3 in the Z1-axis direction.
  • the second headstock 6 is provided with a second spindle drive motor 611 such as a built-in motor.
  • a second spindle drive motor 611 such as a built-in motor.
  • the second main shaft drive motor 611 rotates in response to a command from the control device 2, the second main shaft 61 rotates around the second main shaft center line CL2 (see FIG. 1).
  • the cut workpiece gripped by the second main shaft 61 rotates about the second main shaft center line CL2.
  • the second headstock 6 is also provided with an X2 linear motion mechanism driven by an X2-axis motor 62, which is a servomotor, and a Z2 linear motion mechanism driven by a Z2-axis motor 63, which is a servomotor. .
  • the X2-axis motor 62 rotates in response to a command from the control device 2 to move the second headstock 6 in the X2-axis direction.
  • the Z2-axis motor 63 rotates in response to a command from the control device 2 to move the second headstock 6 in the Z2-axis direction.
  • the first tool post 5 is provided with a first rotary tool motor 51 for rotating the rotary tool attached to the first tool post 5 .
  • the first rotary tool motor 51 rotates in a designated direction by receiving a command from the control device 2 .
  • the rotary tool attached to the first tool rest 5 rotates in the direction of rotation corresponding to the direction of rotation of the first rotary tool motor 51 .
  • the first tool rest 5 is provided with an X1 linear motion mechanism driven by an X1 axis motor 52, which is a servo motor, and a Y1 linear motion mechanism driven by a Y1 axis motor 53, which is a servo motor. .
  • the X1-axis motor 52 rotates in response to a command from the control device 2 to move the first tool post 5 in the X1-axis direction.
  • the Y1-axis motor 53 rotates in response to a command from the control device 2 to move the first tool post 5 in the Y1-axis direction.
  • the second tool post 7 is provided with a second rotary tool motor 71 for rotating the rotary tool attached to the second tool post 7 .
  • the second rotary tool motor 71 rotates in a designated direction by receiving a command from the control device 2 .
  • the rotary tool attached to the second tool rest 7 rotates in the direction of rotation corresponding to the direction of rotation of the second rotary tool motor 71 .
  • the second tool post 7 is provided with a Y2 direct-acting mechanism driven by a Y2-axis motor 72, which is a servomotor.
  • the Y2-axis motor 72 rotates in response to a command from the control device 2 to move the second tool post 7 in the Y2-axis direction.
  • the control device 2 has a CPU 21 , an operation section 22 , a display section 23 and a storage section 24 .
  • the scanner 9 is connected to the control device 2, and the operation of the infrared laser generator and the motor provided in the scanner 9 is controlled by the control device 2 as described above.
  • the CPU 21 executes processing and various calculations according to programs stored in the storage unit 24 .
  • the operation unit 22 includes a plurality of buttons, keys, and the like for receiving input operations by the operator of the NC lathe 1 .
  • the operation unit 22 may be a touch panel integrated with the display unit 23 .
  • An operator of the NC lathe 1 can store the NC program in the storage unit 24 using the operation unit 22 or an external computer.
  • the operator of the NC lathe 1 can modify the NC program using the operation unit 22 and store the modified NC program in the storage unit 24 .
  • the display unit 23 is a display that displays the NC program stored in the storage unit 24, various setting values of the NC lathe 1, various information about the NC lathe 1, and the like.
  • the storage unit 24 includes an NC program storage unit 241, a tool holder information storage unit 242, a tool information storage unit 243, a mounting tool information storage unit 244, a tool correction information storage unit 245, a measurement program storage unit 246, It has an interference check program storage unit 247 and a model information storage unit 248 .
  • the NC program storage unit 241 stores NC programs.
  • the tool holder information storage unit 242 stores tool holder type information and tool holder shape information for a plurality of tool holders that are assumed to be used in the NC lathe 1 and can be attached to the first tool post 5 or the second tool post 7. and characteristic information of the tool holder are stored in association with each other.
  • the characteristic information of the tool holder includes information as to whether or not the tool holder is for a rotary tool, information on the protrusion height from the end face of the tool post if the tool holder is for a rotary tool, and information that the tool holder is a rotary tool. and rotation direction information when the rotation direction is restricted.
  • the tool information storage unit 243 for a plurality of tools assumed to be used in the NC lathe 1 and attachable to the first tool post 5 or the second tool post 7, a large number of tool types and shape information are associated with each tool. remembered.
  • a plurality of pieces of mounting tool information are stored in the mounting tool information storage unit 244 .
  • the installed tool information is information about the tool as shown in A2 to A5 of FIG.
  • the installed tool information stored in the installed tool information storage unit 244 is information about the tools attached to the first tool post 5 and the second tool post 7, measured in the past setup check process.
  • the mounting tool information is stored in the mounting tool information storage unit 244 when the operator designates it in the setup check process.
  • the mounting tool information may include information directly input by the operator of the NC lathe 1 using the operation unit 22 .
  • the mounting tool information storage unit 244 may also store information related to the tool holder to which the tool is mounted in association with the tool.
  • the tool correction information storage unit 245 stores tool correction value information indicating the amount of offset from the reference position of the cutting edge for each tool attached to the first tool post 5 and the second tool post 7 .
  • the tool correction value information is used to adjust the relative position between the tool and the work W when machining the work W based on the NC program.
  • As the tool correction value information there are cases where a plurality of pieces of information are stored for each tool, divided into shape offset, wear offset, heat correction offset, etc. However, in this embodiment, one piece of tool correction value information is stored for each tool. described as being The tool correction value information is automatically stored in the tool correction information storage unit 245 by executing a correction input mode, which will be described later.
  • the measurement program storage unit 246 stores measurement operations for measuring structures in the cutting chamber 11 of the NC lathe 1 .
  • the interference check program storage unit 247 stores an interference check process (Fig. 6, step S18, FIG. 10) is stored.
  • FIG. 5 is a functional block diagram showing the functional configuration of the NC device shown in FIG. Note that FIG. 5 shows only functional configurations that are highly relevant to the present invention, and omits other functional configurations that the control device 2 has.
  • the control device 2 constitutes a scanner mounting position determination section 25, a scanner control section 26, a numerical control section 27, and a scan result utilization section .
  • These scanner mounting position determination section 25, scanner control section 26, numerical control section 27, and scan result utilization section 28 are functional configurations mainly achieved by the CPU 21 and storage section 24 shown in FIG.
  • the scanner 9 sends a mounting position signal to the scanner mounting position determining unit 25 according to the type of the moving body on which the scanner 9 is mounted.
  • the scanner mounting position determination unit 25 receives the mounting position signal to determine what the moving body to which the scanner 9 is mounted is.
  • the scanner control unit 26 controls the operation of the scanner 9. Specifically, the scanner control unit 26 controls the infrared laser irradiation operation by the infrared laser generator in the scanner 9 and the number of rotations of the polygon mirror.
  • the numerical control unit 27 controls moving bodies such as the first tool post 5, the second headstock 6 (see FIG. 1), and the second tool post 7 based on various programs such as NC programs and inputs from the operation unit 22. It controls movement and rotation of rotating bodies such as the first spindle 31 (see FIG. 1).
  • Information on the control of the scanner 9 by the scanner control unit 26 and information on the control of the X2-axis motor 62 and the Z2-axis motor 63 by the numerical control unit 27 are transmitted to the scan result utilization unit 28 .
  • the scan result utilization unit 28 can determine which position in the cutting chamber 11 is irradiated with the infrared laser emitted from the infrared laser generator, and which position in the cutting chamber 11 the scanner 9 is irradiating. can recognize if there is
  • the scan result utilization unit 28 includes a tool holder information acquisition unit 281, a tool information acquisition unit 282, a tool protrusion length calculation unit 284, an installed tool check unit 286, a tool correction value calculation unit 287, and a 3D model generation unit 288. , and an interference check unit 289 .
  • the tool holder information acquisition unit 281 compares the tool holder shape information obtained by the measurement using the scanner 9 with the tool holder shape information acquired from the tool holder information storage unit 242 (see FIG. 4). Identify the tool holder that is Then, the tool holder information acquisition section 281 acquires the type information, shape information, and characteristic information of the identified tool holder from the tool holder information storage section 242 .
  • the tool information acquisition unit 282 compares the tool shape information obtained by the measurement using the scanner 9 with the tool shape information acquired from the tool information storage unit 243 (see FIG. 4) to determine the attached tool. Identify. Then, the tool information acquisition unit 282 acquires the specified tool type information and shape information from the tool information storage unit 243 .
  • the tool protrusion length calculation unit 284 calculates the protrusion length of the cutting tool from the tool mounting end surface to the cutting edge of the first tool post 5 or the second tool post 7. do.
  • the tool protrusion length calculation unit 284 integrates information on the protrusion height of the tool holder from the tool attachment end face, information on the shape of the tool, and measurement results using the scanner 9. Calculate the protrusion length and tool diameter of the tool from the tool holder. Note that when the positions and shapes of the tool and tool holder are measured with high accuracy, the tool protrusion length calculator 284 may calculate the tool protrusion length using only the measurement results.
  • the mounting tool check unit 286 acquires mounting tool information specified from among a plurality of pieces of mounting tool information from the mounting tool information storage unit 244 (see FIG. 4). Then, the installed tool check unit 286 checks the tool type information acquired by the tool information acquisition unit 282, the tool protrusion length calculated by the tool protrusion length calculation unit 284, and the installed tool information stored in the installed tool information storage unit 244. Compare with Accordingly, the mounting tool check unit 286 checks whether the designated past mounting tool information and the currently mounted mounting tool information match.
  • the tool correction value calculation unit 287 calculates the tip position of the tool based on the tool position information and tool shape information obtained by the measurement using the scanner 9 and the tool type information specified by the tool information acquisition unit 282. . Then, the tool correction value calculation section 287 calculates a tool correction value based on the tip position, and stores it in the tool correction information storage section 245 (see FIG. 4).
  • the 3D model generation unit 288 generates a virtual three-dimensional model of the structure inside the cutting chamber 11 obtained by measurement using the scanner 9 in virtual space.
  • the interference check unit 289 operates the virtual three-dimensional model generated by the 3D model generation unit 288 according to the NC program to check whether interference occurs.
  • FIG. 6 is a flow chart showing the measurement operation for measuring a structure inside the cutting chamber of the NC lathe shown in FIG.
  • FIG. 1 In the description of this measurement operation, an example of performing measurement using the scanner 9 mounted on the second headstock 6 will be used.
  • the measurement operation is started by the operator using the operation unit 22 to specify a measurement mode, which will be described later, and performing a start operation.
  • the measurement operation is performed by the control device 2 controlling the operation of the moving body of the NC lathe 1 and the scanner, and executing processing such as calculation, mainly based on the measurement program stored in the measurement program storage unit 246. . As shown in FIG.
  • the control device 2 when the measurement operation is started, the control device 2 first sets the model name of the NC lathe 1, the information of the object to be measured as a reference, and the information of the moving body on which the scanner 9 can be mounted. Acquired from the information storage unit 248 (step S10). Next, the numerical control unit 27 moves the first headstock 3, the first tool post 5, the second headstock 6, and the second tool post 7 to predetermined positions suitable for measurement (step S11). Then, the control device 2 transmits and receives a mounting position signal from the scanner 9 to confirm that the scanner 9 is connected to the control device 2 (step S12). If the scanner 9 is not connected to the control device 2 (NO in step S12), the control device 2 waits until the scanner 9 is connected.
  • the control device 2 determines the mounting position of the scanner 9 based on the mounting position signal transmitted from the scanner 9 (step S13). In this example, it is determined that the scanner 9 is mounted on the second headstock 6 .
  • the control device 2 determines whether or not the measurement mode specified by the operator is the setup check mode (step S14). If it is the setup check mode (YES in step S14), the control device 2 executes a setup check process, which will be described later (step S15). If the measurement mode specified by the operator is not the setup check mode (NO in step S14), the controller 2 determines whether it is the correction input mode (step S16). If the mode is the correction input mode (YES in step S16), the control device 2 executes a correction input process described later (step S17). On the other hand, if it is not the correction input mode (NO in step S16), the control device 2 executes interference check processing, which will be described later (step S18).
  • control device 2 ends the measurement operation. Further, after the measurement operation is completed, the operator removes the scanner 9 from the second headstock 6 to the outside of the cutting chamber 11 before the machining of the workpiece W using the NC program is started.
  • FIG. 7 is a flow chart showing the operation of the setup check process shown in FIG.
  • FIG. 8(a) is a diagram showing installation tool information obtained by the setup check process and a screen for selecting a check target.
  • FIG. 8(a) is a diagram showing installation tool information obtained by the setup check process and a screen for selecting a check target.
  • the control device 2 displays on the display section 23 the execution dates and times of all the past setup check processes stored in the mounting tool information storage section 244 prior to the measurement operation. .
  • the operator uses the operation unit 22 to select the mounting tool information to be compared. select.
  • the operator uses the operation unit 22 to perform an operation indicating that there is no installation tool information to be selected.
  • FIG. 8A columns A2 to A5 show mounting tool information based on measurement results, and column A1 shows selection information as to whether or not to be checked in the current setup check process.
  • the tool numbers in row A2 indicate the positions of the tools attached to the first tool post 5 or the second tool post.
  • the operator uses the operation unit 22 to rewrite the contents of the A1 column, and selects a tool to be checked in the current setup check process.
  • the display unit 23 displays mounting tool information and the like for a large number of tools corresponding to the number of tool mounting portions formed on the first tool post 5 and the second tool post 7, but FIG. ) shows only a part of it for simplification.
  • the numerical controller 27 moves the second headstock 6 so that the scanner 9 is positioned in front of the reference object. Then, while moving the second headstock 6, the scanner 9 measures the position and shape of the object.
  • the control device 2 specifies a reference position from among the objects and acquires it as reference position information (step S21). Reference objects and reference positions are described in the measurement program.
  • a plurality of first tools T1 provided on the first tool post 5 are selected as objects to be checked, the first tool post 5 is set as a reference object, and the first tool post 5 is set as a reference position.
  • a specific point on the table 5 is described using an example described in the measurement program.
  • the setup check process is also executed for the second tool T2.
  • one specific point on the second tool rest 7 is used as the reference position for the measurement of the second tool T2.
  • the controller 2 moves the second headstock 6 at least in the X2-axis direction by means of the numerical controller 27 while operating the scanner 9 .
  • the control device 2 obtains the relative position information between all the first tools T1 selected as check targets and the reference position, the shape information of the first tools T1, and the attached state of the first tools T1.
  • Relative position information between the first tool holder TH1 and the reference position and shape information of the first tool holder TH1 are obtained (step S22).
  • the accuracy of the position information of the first tool T1 and the shape information of the first tool T1 does not need to be so high. executed.
  • step S23 the control device 2 confirms that the second headstock 6 is moving according to the measurement program, and that there is no abnormal data such as data jumps, missing data, or abnormal irregular shapes in the measurement results. Confirm (step S23). If the second headstock 6 could not move according to the measurement program or there is abnormal data (NO in step S23), a message indicating that the setup check process could not be executed normally is displayed on the display unit 23. is displayed (step S231), and the setup check process ends. If it is determined in step S23 that the second headstock 6 could not move according to the measurement program or there is abnormal data, the operations of steps S21 and S22 may be repeated.
  • the number of repetitions of the operations of steps S21 and S22 when the determination in step S23 is NO is arbitrarily set in the measurement program.
  • a message may be displayed on the display unit 23 indicating that the process could not be executed normally.
  • the tool information acquisition unit 282 specifies the type of the first tool T1 to be checked and the tool number, which is the tool mounting position information, based on the position information and shape information of the first tool T1 acquired by measurement (step S24). Then, the tool holder information acquisition section 281 acquires the type information, shape information, and characteristic information of the identified first tool T1 from the tool holder information storage section 242 . In addition, the tool information acquisition section 282 acquires the type information and shape information of the identified first tool T1 from the tool information storage section 243 .
  • the tool protrusion length calculating unit 284 calculates the protrusion of the cutting tool from the tool mounting end surface to the cutting edge of the first tool post 5 or the second tool post 7. Calculate the protrusion length, which is the length. Further, when the first tool T1 to be checked is a rotary tool, the tool protrusion length calculation unit 284 calculates the characteristic information of the first tool holder TH1 acquired by the tool holder information acquisition unit 281 and calculates the protrusion length of the first tool T1 from the first tool holder TH1 and the tool diameter of the first tool T1 by integrating the shape information of the first tool T1 acquired by and the position information and shape information acquired in step S22. (step S25).
  • the mounting tool check unit 286 compares the mounting tool information based on the past measurement results regarding the first tool T1 to be checked with the newly measured mounting tool information regarding the first tool T1 (step S26). That is, the attached tool check unit 286 checks whether the tool type information of the first tool T1 having the matching tool number, the protrusion length of the first tool T1, and the tool diameter of the first tool T1 match. If all the selected first tools T1 are checked and there is a non-matching first tool T1 (NO in step S26), a message indicating the information of the non-matching first tool T1 and the non-matching part is displayed on the display unit 23 (step S261), and the setup check process ends.
  • step S26 the control device 2 displays the display unit 23 as the setup. A message indicating that it is normal and a display for selecting whether or not to store mounting tool information based on the current measurement result are displayed (step S27).
  • step S28 the installed tool information of this time is stored in the installed tool information storage unit 244 (step S29), and the setup check process is executed. finish.
  • the setup check process is terminated without storing the installed tool information of this time.
  • FIG. 9 is a flow chart showing the operation of the correction input process shown in FIG.
  • FIG. 8(b) is a list showing an example of tool correction values obtained by the correction input process.
  • tool correction values are stored in the tool correction information storage unit for a number of tools corresponding to the number of tool mounting portions formed on the first tool post 5 and the second tool post 7, but FIG. b) simplifies and shows only a part of it.
  • the numerical controller 27 moves the second headstock 6 so that the scanner 9 is positioned in front of the reference object. Then, while moving the second headstock 6, the scanner 9 measures the position and shape of the object.
  • the control device 2 identifies a reference position from among the objects and acquires it as reference position information (step S31). Reference objects and reference positions are described in the measurement program.
  • the guide bush 4 is set as a reference object, and the intersection of the end surface of the guide bush 4 exposed to the cutting chamber 11 and the first spindle center line CL1 is set as the reference position. .
  • the reference position can be made more precise than when a moving body such as a tool rest is used as a reference.
  • the controller 2 moves the second headstock 6 at least in the X2-axis direction by means of the numerical controller 27 while operating the scanner 9 .
  • the control device 2 acquires the relative position information between all the tools and the reference position and the shape information of the tools (step S32). In this correction input process, highly accurate tool position information and tool shape information are required, so the movement of the second headstock 6 in step S32 is relatively slow and highly accurate measurement is performed.
  • step S33 the control device 2 confirms that the second headstock 6 is moving according to the measurement program, and that there is no abnormal data such as data jumps, missing data, or abnormal irregular shapes in the measurement results. Confirm (step S33). If the second headstock 6 could not move according to the measurement program or there is abnormal data (NO in step S33), a message indicating that the correction input processing could not be executed normally is displayed on the display unit 23. is displayed (step S331), and the correction input process ends. If it is determined in step S33 that the second headstock 6 could not move according to the measurement program or there is abnormal data, the operations of steps S31 and S32 may be repeated.
  • the tool information acquisition unit 282 calculates the position information and the shape information of the tool acquired by measurement.
  • the type of the attached tool and the tool number, which is information on the attachment position of the tool, are specified (step S34).
  • the tool correction value calculation unit 287 calculates the cutting edge position of the tool based on the tool position information and the tool shape information acquired by the measurement, and the tool type information specified by the tool information acquisition unit 282.
  • a tool correction value is calculated based on the position of the cutting edge (step S35).
  • the tool information storage unit 243 stores reference cutting edge position information, which is the reference position of the cutting edge, in association with tool type information.
  • the tool correction value calculator 287 calculates a tool correction value by comparing the blade edge position obtained from the reference blade edge position information with the calculated blade edge position.
  • the tool correction value calculator 287 stores the calculated tool correction value in association with the tool number in the tool correction information storage unit 245 (step S36), and displays a message indicating that the tool correction value has been stored. It is displayed on the unit 23 and the correction input process ends.
  • the correction input processing divides the tool numbers shown in the B1 column into the X, Y, and Z axial directions shown in the B2 to B4 columns for correction. Value is stored.
  • FIG. 10 is a flow chart showing the operation of the interference check process shown in FIG.
  • FIG. 11 is a perspective view showing a virtual three-dimensional model generated in the virtual space by the interference check process.
  • the numerical controller 27 moves the second headstock 6 so that the scanner 9 is positioned in front of the reference object. Then, while moving the second headstock 6, the scanner 9 measures the position and shape of the object.
  • the control device 2 specifies a reference position from among the objects and acquires it as reference position information (step S41). Reference objects and reference positions are described in the measurement program.
  • the guide bush 4 is set as a reference object, and the intersection of the end surface of the guide bush 4 exposed to the cutting chamber 11 and the first spindle center line CL1 is set as the reference position. .
  • the controller 2 moves the second headstock 6 at least in the X2-axis direction by means of the numerical controller 27 while operating the scanner 9 .
  • control device 2 acquires the relative position information of the structures such as the tools and the first tool post 5 in the cutting chamber 11 and the shape information of the structures (step S42).
  • the structure position information and structure shape information are required with a certain degree of accuracy. Faster and slightly more accurate measurements than
  • step S43 the control device 2 confirms that the second headstock 6 is moving according to the measurement program, and that there is no abnormal data such as data jumps, missing data, or abnormal irregular shapes in the measurement results. Confirm (step S43). If the second headstock 6 could not move according to the measurement program or there is abnormal data (NO in step S43), a message indicating that the interference check processing could not be executed normally is displayed on the display unit 23. is displayed (step S431), and the interference check process ends. If it is determined in step S43 that the second headstock 6 could not move according to the measurement program or there is abnormal data, the operations of steps S41 and S42 may be repeated.
  • the number of repetitions of the operations of steps S41 and S42 when it is determined as NO in step S43 is arbitrarily set, and if it is determined as NO in step S43 more than the set number of times in a row, interference check is performed.
  • a message may be displayed on the display unit 23 indicating that the process could not be executed normally. If the second headstock 6 moves according to the measurement program and if there is no abnormal data (YES in step S43), the 3D model generator 288 calculates the structure inside the cutting chamber 11 obtained in step S42. and the shape information of the structure, a virtual three-dimensional model is generated in the virtual space (step S44). As shown in FIG.
  • the generated virtual three-dimensional model targets a structure within a range that can be irradiated with an infrared laser from the scanner 9 mounted on the second headstock 6 .
  • the work W can also be generated as a virtual three-dimensional model based on the inner diameter information of the guide bush 4 .
  • a scanner 9 is mounted on a moving body other than the second headstock 6, such as the first tool post 5, and the positional information of the structure in the cutting chamber 11 and the structure information are obtained from the scanner 9 mounted on the moving body.
  • the shape information is acquired, the information obtained from the scanner 9 mounted on the second headstock 6 and the information obtained from the scanner 9 mounted on the moving body are combined to generate a virtual three-dimensional model. You may In that case, the second headstock 6 can also be generated as a virtual three-dimensional model.
  • the interference check unit 289 moves the moving body such as the first tool post 5 generated as the virtual three-dimensional model based on the NC program used during machining. Then, it is checked whether there is interference between the moving bodies, between the moving bodies and the workpiece W, between the moving bodies and the coolant discharge unit 8, and between the moving bodies and the inner wall of the cutting chamber 11 (step S45). Note that the moving body here includes tools and tool holders attached to the moving body. If the movement of the moving body in the virtual three-dimensional model according to the NC program is completed and no interference occurs (YES in step S46), a message indicating no interference is displayed on the display unit 23 (step S47). End the check process. On the other hand, if interference has occurred (NO in step S46), which part of the NC program interferes with what is displayed on the display unit 23 (step S48), and the interference check process ends.
  • the NC lathe 1 by measuring the position and shape of the tool with the scanner 9, the position information of the tool actually attached to the first tool post 5 and the second tool post 7 and the tool can be used in various processes. Since the information is used for the interference check, the position and shape of the tool used for the interference check do not differ from the position and shape of the tool actually installed. As a result, after the interference check, there is no need to reconfirm whether or not there is any interference with the tool attached to the first tool post 5 or the second tool post 7 . Further, the NC lathe 1 generates correction value information for the position of the cutting edge by measuring the position and shape of the tool. Since the correction value information is automatically stored in the tool correction information storage unit 245, the labor of the operator can be reduced and input errors in the correction value information can be prevented.
  • the shape of the tool holder is also measured using the scanner 9, and the characteristic information of the tool holder is used to calculate the protrusion length of the tool. can be calculated.
  • the tool is a rotary tool, it is possible to obtain information on the direction of rotation of the tool and check for errors in the direction of rotation specified in the NC program.
  • the mounting tool check unit 286 compares the past mounting tool information with the newly acquired mounting tool information to determine whether the desired tool is in the desired mounting state. Checking if it is installed. As a result, it is possible to easily confirm whether or not the type of tool attached and the attachment position of the tool are correct.
  • the position and shape of the coolant discharge unit 8 including the coolant nozzle 81 are also measured and generated as a virtual three-dimensional model. This makes it possible to check whether or not the moving body interferes with the coolant discharge unit 8 and changes the discharge angle and position of the coolant nozzle 81 .
  • the scanner 9 since the scanner 9 is mounted on the second headstock 6, it is possible to measure the positions and shapes of major structures such as the first and second toolposts 5 and 7 and the tools attached to them. . Further, since the scanner 9 is mounted on the second headstock 6, a wide range of measurements can be performed by moving the second headstock 6 in the X2-axis direction.
  • the controller 2 can determine which movable body the scanner 9 is mounted on. can be determined automatically.
  • NC lathe 1 Next, a modified example of the NC lathe 1 that has been explained so far will be explained.
  • components having the same names as those described so far may be given the same reference numerals as those used so far, and overlapping descriptions may be omitted.
  • FIG. 12 is a perspective view similar to FIG. 2 showing the internal configuration of the NC lathe of the modification. It should be noted that the legs 10 are omitted from FIG. 12 .
  • the NC lathe 1 of this modified example differs from the previous embodiment in the configuration of the scanner 9 .
  • the scanner 9 irradiates an infrared laser in three directions. That is, the scanner 9 of this modified example is a measuring device capable of measuring distances in each of three directions.
  • the irradiation range of the irradiated infrared laser is indicated by three white sectors.
  • the infrared laser was irradiated only in the direction from the second headstock 6 toward the first headstock 3 side.
  • the scanner 9 is replaced with another moving body such as the first tool post 5 or the second tool post 7, or a plurality of scanners 9 are used to measure the parts in different directions. It is necessary to irradiate an infrared laser. On the other hand, in this modified example, the infrared laser is emitted from the scanner 9 in three different directions. There is an effect that the measurement can be performed without replacing the scanner 9 or installing a plurality of scanners 9 .
  • the present invention is not limited to the above-described embodiments, and can be modified in various ways within the scope of the claims.
  • an example of applying the present invention to the NC lathe 1 was shown, but the present invention may be applied to other machine tools such as machining centers.
  • the entire scan result utilization unit 28 or part of the functional configuration of the scan result utilization unit 28 may be provided in a computer connected to the NC lathe 1 .
  • the NC lathe 1 and the computer may be connected wirelessly or by wire.
  • the scanner 9 may be one using a laser other than an infrared laser, a three-dimensional scanner, or an imaging device.
  • the NC lathe 1 may be provided with an information delivery unit that delivers the installed tool information obtained by the setup check process and the tool correction value information obtained by the correction input process to the CAM.
  • an information delivery unit that delivers the installed tool information obtained by the setup check process and the tool correction value information obtained by the correction input process to the CAM.
  • CAM is expressed here as including interactive programming software, automatic programming generation software, etc., as well as a software group that supports program creation.
  • the position and shape of the coolant nozzle 81 are also measured and stored in the storage unit 24 as measurement result information in step S29 in association with the mounting tool information, and the position and shape of the coolant nozzle 81 are compared in the setup check process. The result may be displayed on the display unit 23 by judging whether or not they match.
  • the threshold values for determining whether the tool type, tool protrusion length, and tool diameter match may be input from the operation unit 22 for each tool type. Further, in the setup check process, if a threshold value is used to determine whether the positions and shapes of the coolant nozzles 81 match, the threshold value may be similarly input from the operation unit 22 . Since the threshold can be input from the operation unit 22 in this way, it is possible to make a determination with an arbitrary threshold set by the operator.

Abstract

利便性の高い工作機械システムを提供する。本発明の工作機械システムの一例であるNC旋盤1は、ワークWを加工するための第1工具T1が取り付けられた第1刃物台5と、第1刃物台5の移動をNCプログラムに基づいて制御する数値制御部27と、数値制御部27の制御によって所定位置に移動した第1刃物台5に取り付けられている第1工具T1の位置および第1工具T1の形状を測定するスキャナ9とを備えている。

Description

工作機械システム
 本発明は、測定装置を備えた工作機械システムに関する。
 従来、工作機械には、刃物台などの移動体の移動動作や主軸および回転工具の回転動作をNCプログラムに基づいて制御する制御装置が設けられている。NCプログラムは、工作機械のオペレータやCAM(コンピュータ支援製造)によって作成される。工作機械では、NCプログラムに従って制御装置が移動体の移動を制御することで、被加工物であるワークを所望の形状に加工している。
 ワークを変更する場合や加工形状を変更する場合、いわゆる段取り作業が行われる。段取り作業では、工作機械のオペレータやCAMによるNCプログラムの作成、取り付けられている工具の付け替えおよびワークを把持するチャックの変更などが行なわれる。また、オペレータは、付け替えた工具の種類情報や工具の突き出し長、回転工具の場合はその回転方向情報などを制御装置に入力する。そして、まずワークを取り付けないで工作機械を低速で動作させて移動体が工作機械の加工室(切削室)内壁や加工室内の構造物などと干渉しないかの確認を行う。問題なければワークの試し加工を行い、加工したワークの測定結果に基づいて工具の刃先位置の補正値を制御装置に入力する。また、移動体どうしや移動体とワークとが干渉しないかを仮想3次元モデルを用いてチェックする工作機械も存在する(例えば特許文献1参照)。この特許文献1に記載された工作機械では、移動体に測定装置を取り付け、測定装置を移動させながら測定装置からワークまでの距離を測定してワーク形状を認識する。そして、認識されたワーク形状に基づいて仮想3次元モデルを生成し、移動体とワークとが干渉しないか干渉チェックを行っている。
特許第4727689号公報
 しかしながら、特許文献1に記載された工作機械では、仮想3次元モデルを用いた干渉チェックに用いる工具の指定間違いや、干渉チェック時の工具取付位置と実際に移動体に取り付けられた工具の取付位置との間に差異が生じることがある。このため、仮想3次元モデルを用いた干渉チェックを行った後も、工作機械に工具を取り付けてNCプログラムに基づいて工作機械を低速で動作させて本当に干渉しないか再確認する必要があり、利便性が悪かった。
 本発明は上述の課題に鑑みてなされたものであり、利便性の高い工作機械システムを提供することを目的とする。
 上記目的を解決する本発明の工作機械システムは、ワークを加工するための工具が取り付けられた刃物台と、
 前記刃物台の移動をNCプログラムに基づいて制御する数値制御部と、
 前記刃物台に取り付けられている前記工具の位置および該工具の形状を測定する測定装置とを備えたことを特徴とする。
 この工作機械システムによれば、前記測定装置によって前記工具の位置および該工具の形状を測定しているので、実際に前記刃物台に取り付けられている該工具の位置情報および該工具の形状情報を利用することができる。そして、仮想3次元モデルを用いた干渉チェックにそれらの情報を利用した場合、その干渉チェックに用いられる前記工具の位置および該工具の形状と実際に取り付けられている該工具の位置および該工具の形状に差異が生じてしまうことがない。従って、その干渉チェック後に実機で再確認する必要がなくなり利便性が高まる。また、前記工具の位置および該工具の形状を測定することで、該工具の刃先位置の情報も得られるので、刃先位置の補正値情報を生成することもできる。そして、その補正値情報を工作機械で用いることで、手動で補正値情報を工作機械に記憶させる手間がなくなる上に補正値情報の入力間違いがなくなるのでこの工作機械の利便性が高まる。なお、本発明における工作機械システムとは、工作機械単独のものと、工作機械とその工作機械に接続されたコンピュータとを備えたものの両方を含む概念である。
 この工作機械システムにおいて、前記測定装置は、前記工具を前記刃物台に取り付けるための工具ホルダの形状も測定するものであり、
 前記刃物台に取り付け可能な複数の前記工具ホルダごとに該工具ホルダの形状情報と該工具ホルダの特性情報とを関連付けて記憶する工具ホルダ情報記憶部と、
 前記工具ホルダ情報記憶部に記憶された複数の前記工具ホルダの形状情報の中から前記測定装置が測定した該工具ホルダの形状に対応するものを特定し、特定した該工具ホルダに関連付けられた前記特性情報を取得する工具ホルダ情報取得部とを備えたものであってもよい。
 実際に取り付けされている前記工具ホルダの前記特性情報を用いることで、例えば前記工具の突き出し長を算出するなどの様々な処理が可能になる。
 また、この工作機械システムにおいて、前記測定装置が測定した前記工具の位置および該工具の形状に基づいた取付工具情報を記憶する取付工具情報記憶部と、
 前記取付工具情報記憶部に記憶された前記取付工具情報と前記測定装置が新たに測定した前記工具の位置および該工具の形状に基づいた取付工具情報とを比較して所望の該工具が前記刃物台に取り付けられているかチェックを行う取付工具チェック部とを備えていてもよい。
 こうすることで、以前行った加工と同一の加工をする際に、前記工具の種類や該工具の取付位置が正しいか否かを容易に確認できる。特に、熟練したオペレータが前記刃物台に前記工具を取り付けたときの該工具の位置および該工具の形状を前記取付工具情報記憶部に記憶させておけば、取り付けた該工具に間違いがないことが確認できる上に、熟練したオペレータと同じ取付作業ができたか否かが確認できて利便性が高い。
 さらに、この工作機械システムにおいて、前記測定装置は、位置及びクーラント液の吐出角度が調整可能なクーラントノズルの位置および該クーラントノズルの形状も測定するものであり、
 前記測定装置が測定した前記クーラントノズルの位置および該クーラントノズルの形状並びに前記工具の位置および該工具の形状を用いて仮想3次元モデルを生成し、前記NCプログラムに基づいて該仮想3次元モデルにおける前記刃物台を移動させて該工具と該クーラントノズルの干渉チェックを行う干渉チェック部を備えていてもよい。
 前記干渉チェック部によって、前記クーラントノズルと前記工具との干渉チェックを行うことで、干渉によって該クーラントノズルの吐出角度や位置が変化してしまうか否かをチェックできる。
 またさらに、この工作機械システムにおいて、前記ワークを把持して主軸中心線を中心として回転する第1主軸と、
 前記第1主軸に対向する第2主軸を有し前記主軸中心線と直交する直交方向に移動可能な第2主軸台とを備え、
 前記測定装置は、前記第2主軸台に搭載され、該第2主軸台とともに前記直交方向へ移動しながら被測定物までの距離を測定するものであってもよい。
 前記測定装置が前記第2主軸台に搭載されることで、前記刃物台に取り付けられている前記工具などの主要な構造物の位置や形状を測定できる。そして、前記第2主軸台の前記直交方向への移動によって前記測定装置も該直交方向へ移動するので、該測定装置によって広範囲を測定できる。
 加えて、この工作機械システムにおいて、前記測定装置は、前記第2主軸台に取り外し自在に搭載され、該第2主軸台に搭載されているときに該第2主軸台に搭載されていることを示す信号を送出するものであってもよい。
 こうすることで、加工時には前記測定装置を取り外しておくことが可能になるので、該測定装置にクーラント液や切粉などが降りかかってしまうことを防止できる。また、第2主軸台に前記測定装置が搭載されていることを判定できる。
 ここで、前記測定装置は、前記刃物台に取り外し自在に搭載可能であってもよく、該刃物台に搭載されているときに該刃物台に搭載されていることを示す信号を送出するものであってもよい。
 本発明によれば、利便性の高い工作機械システムを提供することができる。
本実施形態にかかるNC旋盤の内部構成を簡易的に示す平面図である。 図1に示したNC旋盤の内部構成を示す斜視図である。 図2に示したスキャナと第2主軸台との接続部分を説明するための概略断面図である。 図1に示したNC旋盤のハードウェア構成を示すブロック図である。 図1に示したNC装置の機能構成を示す機能ブロック図である。 図1に示したNC旋盤の切削室にある構造物を測定する測定動作を示すフローチャートである。 図6に示した段取りチェック処理の動作を示すフローチャートである。 (a)は、段取りチェック処理により得られる取付工具情報とチェック対象の選択画面を示す図であり、(b)は、補正入力処理によって得られる工具補正値の一例を示す一覧表である。 図6に示した補正入力処理の動作を示すフローチャートである。 図6に示した干渉チェック処理の動作を示すフローチャートである。 干渉チェック処理によって仮想空間に生成される仮想3次元モデルを示す斜視図である。 変形例のNC旋盤の内部構成を示す図2と同様の斜視図である。
 以下、図面を参照しながら本発明の実施形態を説明する。本実施形態では、本発明をNC(Numerical Control)旋盤に適用した例を用いて説明する。
 図1は、本実施形態にかかるNC旋盤の内部構成を簡易的に示す平面図である。この図1には、NC旋盤1に設けられた制御装置2も示されている。また、図1には、切削室11の範囲が細い二点鎖線の矩形で示されている。
 図1に示すように、NC旋盤1は、第1主軸台3と、ガイドブッシュ4と、第1刃物台5と、第2主軸台6と、第2刃物台7とを内部に備えている。このNC旋盤1は、工作機械の一例に相当するとともに工作機械システムの一例にも相当する。第1主軸台3、ガイドブッシュ4、第1刃物台5、第2主軸台6および第2刃物台7は、土台である脚10(図2参照)の上に配置されている。第1主軸台3、第1刃物台5、第2主軸台6および第2刃物台7は、制御装置2によって動作が制御される。制御装置2は、主にNCプログラムに従って、第1主軸台3、第1刃物台5、第2主軸台6および第2刃物台7を数値制御により動作させるコンピューターである。また、制御装置2は、第1主軸31と第2主軸61の回転も制御する。加えて、制御装置2は、第1刃物台5や第2刃物台7に回転工具が取り付けれた場合には、その回転工具の回転も制御する。
 第1主軸台3は、第1主軸31を有している。第1主軸台3は、Z1軸方向に移動可能である。Z1軸方向は、水平方向であり、図1においては左右方向である。このZ1軸方向は、第1主軸31の軸線方向に相当する。第1主軸31は、その内部に挿入された長尺棒状のワークWを把持解除可能に把持する。第1主軸31は、ワークWを把持して第1主軸中心線CL1を中心として回転可能である。第1主軸中心線CL1の方向はZ1軸方向と一致している。
 ガイドブッシュ4は、ガイドブッシュ支持台41によってNC旋盤1の脚10(図2参照)に固定されている。ガイドブッシュ4の、第1主軸31が配置された側とは反対側の端面は、切削室11内に露出している。ガイドブッシュ4は、第1主軸31の内部を貫通したワークWの先端側部分をZ1軸方向へ摺動自在に支持する。このガイドブッシュ4の、ワークWを支持している部分は、第1主軸31と同期して第1主軸中心線CL1を中心にして回転可能である。すなわち、第1主軸中心線CL1は、ワークWの、ガイドブッシュ4に支持された部分の回転中心線でもある。ガイドブッシュ4により、加工時のワークWの撓みが抑制されるので、特に細長いワークWを高精度に加工できる。
 第1刃物台5は、Z1軸方向と直交しかつ水平方向を向いたX1軸方向と、垂直方向を向いたY1軸方向に移動可能である。この第1刃物台5は、刃物台の一例に相当する。図1では、上下方向がX1軸方向であり、紙面に直交する方向がY1軸方向である。第1刃物台5には第1工具ホルダTH1が取り付けられ、その第1工具ホルダTH1にはワークWを加工する第1工具T1が取り付けられている。すなわち、第1工具T1は、第1工具ホルダTH1を介して第1刃物台5に取り付けられている。以下、第1工具T1と第1工具ホルダTH1を合わせて正面工具ユニットと称する。なお、正面工具ユニットがスローアウェイバイトである場合、刃先を構成するチップが第1工具T1に相当し、チップが取り付けられたシャンクが第1工具ホルダTH1に相当する。また、正面工具ユニットは、ろう付けバイトやむくバイトなど、第1工具T1と第1工具ホルダTH1とが実質的に一体化した正面工具ユニットであってもよい。正面工具ユニットは、切削室11内に配置されている。第1刃物台5には、外径加工用正面工具ユニット、突切加工用正面工具ユニットなどを含む複数種類の正面工具ユニットがY1軸方向に並んで櫛歯状に取り付けられている。第1刃物台5がY1軸方向に移動することで、これらの複数種類の正面工具ユニットから任意の正面工具ユニットが選択される。そして、第1刃物台5がX1軸方向に移動することで、選択された正面工具ユニットの第1工具T1が第1主軸31に把持されたワークWに切り込んでワークWの先端部分を加工する。また、図1には示されていないが、第1刃物台5にはX1軸方向に突出したエンドミルやドリルなどの回転工具やZ1軸方向に突出したエンドミルやドリルなどの回転工具も第1工具T1として取り付けられている。
 第2主軸台6は、切削室11内に配置されている。第2主軸台6は、第2主軸61を有している。第2主軸台6は、X2軸方向およびZ2軸方向に移動可能である。X2軸方向は上述したX1軸方向と同一の方向であり、Z2軸方向は上述したZ1軸方向と同一の方向である。このX2軸方向は直交方向の一例に相当する。また、Z2軸方向は、第2主軸61の軸線方向に相当する。なお、第2主軸台6は、X2軸方向に直交しZ2軸方向にも直交するY2軸方向に移動可能であってもよい。図1には、第2主軸61が、ガイドブッシュ4を挟んで第1主軸31に対向した位置にある様子が示されている。この位置では第2主軸の回転中心である第2主軸中心線CL2は、第1主軸中心線CL1と同一線上に配置されている。第2主軸中心線CL2の方向はZ2軸方向と一致している。第2主軸61には、第1主軸31を用いた加工が完了し、突切加工用の第1工具T1によって切断されたワークWの先端部分が受け渡される。以下、切断された後、第2主軸61に受け渡されたワークWの先端部分を切断済ワークと称する。第2主軸61は、第1主軸31から受け渡された切断済ワークを把持解除可能に把持する。
 第2刃物台7は、切削室11内に配置されている。第2刃物台7は、Y2軸方向へ移動可能である。Y2軸方向は上述したY1軸方向と同一の方向である。この第2刃物台7も、刃物台の一例に相当する。第2刃物台7には、複数の第2工具ホルダTH2が取り付けられ、各第2工具ホルダTH2には切断済ワークを加工するドリルやエンドミルなどの第2工具T2が取り付けられている。すなわち、第2工具T2は、第2工具ホルダTH2を介して第2刃物台7に取り付けられている。以下、第2工具T2と第2工具ホルダTH2を合わせて背面工具ユニットと称する。また、第1工具T1と第2工具T2とを区別しない場合は単に工具と称し、第1工具ホルダTH1と第2工具ホルダTH2とを区別しない場合は単に工具ホルダと称する。なお、図1には示されていないが、背面工具ユニットはX2軸方向だけでなくY2軸方向にも並んで第2刃物台7に取り付けられている。第2主軸台6のX2軸方向の移動と第2刃物台7のY2軸方向の移動によって、これらの複数の背面工具ユニットから任意の背面工具ユニットが選択される。そして、第2主軸台6がZ2軸方向に移動することで、第2主軸61に把持された切断済ワークの切断端側部分が加工される。
 図2は、図1に示したNC旋盤の内部構成を示す斜視図である。
 切削室11内には、図2に示すように、クーラント液を主に加工部位に向かって吐出するクーラント吐出ユニット8が配置されている。クーラント吐出ユニット8は、クーラントノズル81とクーラントホース82とを有している。クーラントノズル81は、クーラントホース82の先端に角度調整可能に取り付けられ、その先端からクーラント液を吐出する。クーラントホース82は、クーラントノズル81にクーラント液を送り出す経路を形成するものであり、自在に屈曲し、その屈曲した形状を維持する。クーラントノズル81は、自在に屈曲してその屈曲形状を維持するクーラントホース82の先端に角度調整可能に取り付けられているので、配置される位置とクーラント液の吐出角度を自在に調整することができる。
 第2主軸台6には、切削室11(図1参照)内にある構造物の位置や形状を測定するスキャナ9が取り外し自在に搭載されている。このスキャナ9は、測定装置の一例に相当する。本実施形態のスキャナ9は、赤外線レーザー発生装置と、モータにより回転するポリゴンミラーとを有する2次元スキャナである。スキャナ9は、赤外線レーザー発生装置から発される赤外線レーザーをポリゴンミラーによってY1軸方向に拡がるように走査することで第1主軸31側にある測定対象に線状に赤外線レーザーを照射し、その赤外線レーザーの反射の度合いで測定対象までの距離を測定する。赤外線レーザー発生装置とポリゴンミラーを回転させるモータの動作は、スキャナ9が接続された制御装置2によって制御される。図2には、照射される赤外線レーザーの照射範囲が白抜きの扇型で小さく示されているが、実際の照射範囲は図2に示した範囲よりも上下方向に広角であり照射距離も長い。このスキャナ9が搭載された第2主軸台6をX2軸方向に移動させつつスキャナ9を駆動して赤外線レーザーを測定対象に照射することで、測定対象のX方向、Y方向、Z方向それぞれの位置情報や測定対象の形状情報を得ることができる。
 図3は、図2に示したスキャナと第2主軸台との接続部分を説明するための概略断面図である。
 図3に示すように、第2主軸台6の、スキャナ9の取付部には、突出長の短い円柱状の3本の短ピン6aと、突出長が長い1本の長ピン6bが形成されている。短ピン6aと長ピン6bは、同一径の円柱状をしている。スキャナ9には、これらの短ピン6aと長ピン6bに対応する位置に4つの穴9aが形成されている。図3では、短ピン6aおよび長ピン6bと穴9aとの隙間を誇張して示しているが、短ピン6aおよび長ピン6bと穴9aの組み合わせのうち、1つはほぼ隙間がない。また、穴9aのうち1つは、図3の左右方向に長手方向を有する長孔形状をしており、長手方向の長さが短ピン6aの直径より少し長く、短手方向の長さは短ピン6aの直径とほぼ同じか短ピン6aの直径よりもほんの少しだけ長い。これらの穴9aに短ピン6aと長ピン6bがそれぞれ挿入されるようにスキャナ9を第2主軸台6へ搭載することで、スキャナ9の取付位置が定まる。
 各穴9a内には、スライダ91とバネ93とが配置されている。スライダ91には、通常時はバネ93によって所定の位置に位置している。スライダ91の上面には、上方に向かって突出した押しピン92が固定されている。押しピン92それぞれの上方には、スイッチ94が配置されている。スキャナ9が第2主軸台6に搭載された状態では、長ピン6bによってスライダ91が上方に移動し、4つのスイッチ94のうち、図3における右端の1つがオンになる。スキャナ9は、この4つのスイッチ94のオンオフ状況に応じて、スキャナ9が第2主軸台6に搭載されていることを示す取付位置信号を発信する。なお、スキャナ9は第2主軸台6に不図示のねじによって取り外し自在に固定されるが、ネジ以外の締結器具でスキャナ9を固定してもよい。
 第1刃物台5にも、短ピン6aおよび長ピン6bと同様のピン並びにスキャナ9の固定用ネジ穴を形成されている。これにより、スキャナ9は、第1刃物台5にも搭載できる。また、第2刃物台7にも同様のピンや固定用ネジ穴を形成し、スキャナ9を第2刃物台7に搭載できるようにしてもよい。さらに、切削室11内にロボットアームを配置し、そのロボットアームに短ピン6aおよび長ピン6bと同様のピン並びに固定用ネジ穴を形成してロボットアームにスキャナ9を搭載することもできる。第1刃物台5や第2主軸台6などの複数の移動体それぞれにスキャナ9が搭載可能である場合、移動体に応じて短ピン6aと長ピン6bの位置や組み合わせを変えることで、スキャナ9がどの移動体に搭載したかを自動で判別できる。すなわち、スキャナ9は、4つのスイッチ94のオンオフ状況に対応して搭載された移動体により異なる取付位置信号を送出する。その取付位置信号を受信することで、後述するスキャナ取付位置判定部25はスキャナ9の取付位置を判定できる。
 図4は、図1に示したNC旋盤のハードウェア構成を示すブロック図である。なお、この図4では、NC旋盤1のハードウェア構成のうち本発明に関連性の低い構成は図示省略している。
 図4に示すように、第1主軸31には、ビルトインモーターなどの第1主軸駆動モータ311が設けられている。第1主軸駆動モータ311が制御装置2から指令を受けて回転することで、第1主軸31は、第1主軸中心線CL1(図1参照)を中心にして回転する。これにより、第1主軸31に把持されたワークW(図1参照)は、第1主軸中心線CL1を中心にして回転する。また、第1主軸台3には、サーボモータであるZ1軸モータ32によって駆動されるZ1直動機構が設けられている。Z1軸モータ32は、制御装置2からの指令を受けて回転し、第1主軸台3をZ1軸方向に移動させる。
 第2主軸台6には、ビルトインモーターなどの第2主軸駆動モータ611が設けられている。第2主軸駆動モータ611が制御装置2から指令を受けて回転することで、第2主軸61は、第2主軸中心線CL2(図1参照)を中心として回転する。これにより、第2主軸61に把持された切断済ワークは、第2主軸中心線CL2を中心にして回転する。また、第2主軸台6には、サーボモータであるX2軸モータ62によって駆動されるX2直動機構と、サーボモータであるZ2軸モータ63によって駆動されるZ2直動機構とが設けられている。X2軸モータ62は、制御装置2からの指令を受けて回転し、第2主軸台6をX2軸方向に移動させる。同様に、Z2軸モータ63は、制御装置2からの指令を受けて回転し、第2主軸台6をZ2軸方向に移動させる。
 第1刃物台5には、第1刃物台5に取り付けられた回転工具を回転させるための第1回転工具モータ51が設けられている。第1回転工具モータ51は、制御装置2から指令を受けることで指定された方向に回転する。これにより、第1刃物台5に取り付けられた回転工具は、第1回転工具モータ51の回転方向に応じた回転方向に回転する。また、第1刃物台5には、サーボモータであるX1軸モータ52によって駆動されるX1直動機構と、サーボモータであるY1軸モータ53によって駆動されるY1直動機構とが設けられている。X1軸モータ52は、制御装置2からの指令を受けて回転し、第1刃物台5をX1軸方向に移動させる。同様に、Y1軸モータ53は、制御装置2からの指令を受けて回転し、第1刃物台5をY1軸方向に移動させる。
 第2刃物台7には、第2刃物台7に取り付けられた回転工具を回転させるための第2回転工具モータ71が設けられている。第2回転工具モータ71は、制御装置2から指令を受けることで指定された方向に回転する。これにより、第2刃物台7に取り付けられた回転工具は、第2回転工具モータ71の回転方向に応じた回転方向で回転する。また、第2刃物台7には、サーボモータであるY2軸モータ72によって駆動されるY2直動機構が設けられている。Y2軸モータ72は、制御装置2からの指令を受けて回転し、第2刃物台7をY2軸方向に移動させる。
 制御装置2は、CPU21と、操作部22と、表示部23と、記憶部24とを有している。スキャナ9は、制御装置2に接続されており、上述したように、スキャナ9に設けられた赤外線レーザー発生装置とモータの動作は制御装置2によって制御される。CPU21は、記憶部24に記憶されたプログラムに従った処理や各種演算を実行する。操作部22は、NC旋盤1のオペレータによる入力操作を受け付ける複数のボタンやキーなどからなる。なお、操作部22は、表示部23と一体化されたタッチパネルであってもよい。NC旋盤1のオペレータは、操作部22や外部コンピューターを用いてNCプログラムを記憶部24に記憶させることができる。また、NC旋盤1のオペレータは、操作部22を用いてNCプログラムの修正を行い、修正したNCプログラムを記憶部24に記憶させることもできる。表示部23は、記憶部24に記憶されたNCプログラム、NC旋盤1の各種設定値およびNC旋盤1に関する各種情報などを表示するディスプレイである。
 記憶部24は、NCプログラム記憶部241と、工具ホルダ情報記憶部242と、工具情報記憶部243と、取付工具情報記憶部244と、工具補正情報記憶部245と、測定プログラム記憶部246と、干渉チェックプログラム記憶部247と、機種情報記憶部248とを有している。NCプログラム記憶部241には、NCプログラムが記憶されている。工具ホルダ情報記憶部242には、このNC旋盤1において使用が想定され第1刃物台5または第2刃物台7に取り付け可能な複数の工具ホルダについて、工具ホルダの種類情報と工具ホルダの形状情報と工具ホルダの特性情報とが関連付けて工具ホルダごとに多数記憶されている。工具ホルダの特性情報には、工具ホルダが回転工具用であるか否かの情報と、工具ホルダが回転工具用である場合には刃物台端面からの突出高さ情報と、工具ホルダが回転工具用でかつ回転方向が規制されている場合の回転方向情報とが含まれる。工具情報記憶部243には、このNC旋盤1において使用が想定され第1刃物台5または第2刃物台7に取り付け可能な複数の工具について、工具種類と形状情報とが関連付けて工具ごとに多数記憶されている。
 取付工具情報記憶部244には、複数の取付工具情報が記憶されている。取付工具情報は、段取りチェック処理において測定した工具の位置および工具の形状に基づいて得られた、後述する図8(a)のA2~A5に示すような工具に関する情報である。取付工具情報記憶部244に記憶されている取付工具情報は、過去の段取りチェック処理において測定した、第1刃物台5および第2刃物台7に取り付けられた工具に関する情報である。本実施形態では、段取りチェック処理においてオペレータが指定したときに取付工具情報記憶部244に取付工具情報を記憶している。なお、取付工具情報には、NC旋盤1のオペレータが操作部22を用いて直接入力した情報が含まれていてもよい。また、取付工具情報記憶部244には、取付工具情報とともに、工具が取り付けられている工具ホルダに関する情報も工具に関連付けて記憶されていてもよい。
 工具補正情報記憶部245には、第1刃物台5および第2刃物台7に取り付けられた工具ごとに刃先の基準位置からのオフセット量を示す工具補正値情報が記憶されている。工具補正値情報は、NCプログラムに基づいてワークWの加工を行う際に、工具とワークWとの相対位置を調整するために用いられる。なお、工具補正値情報として、形状オフセット、摩耗オフセット、熱補正オフセットなどに分けて工具ごとに複数の情報を記憶させる場合もあるが、本実施形態では工具ごとに1つの工具補正値情報が記憶されているものとして説明する。工具補正値情報は、後述する補正入力モードが実行されることで自動で工具補正情報記憶部245に記憶される他、NC旋盤1のオペレータが操作部22を用いて入力することもできる。
 測定プログラム記憶部246には、NC旋盤1の切削室11内にある構造物を測定する測定動作が記憶されている。干渉チェックプログラム記憶部247には、NCプログラムに基づいてワークWの加工を行う際に、構造物どうしや構造物とワークWとが干渉してしまわないかを確認するための干渉チェック処理(図6のステップS18、図10)を実行するためのプログラムが記憶されている。また、機種情報記憶部248には、この制御装置2が設けられたNC旋盤1の機種に関する情報として、機種名、測定の基準となる対象物が何であるかの情報およびスキャナ9が搭載可能な移動体が何であるかの情報が記憶されている。
 図5は、図1に示したNC装置の機能構成を示す機能ブロック図である。なお、この図5では、本発明に関連性の高い機能構成のみを示し、制御装置2が有するその他の機能構成は図示省略している。
 図5に示すように、制御装置2によって、スキャナ取付位置判定部25と、スキャナ制御部26と、数値制御部27と、スキャン結果活用部28とが構成されている。これらのスキャナ取付位置判定部25、スキャナ制御部26、数値制御部27およびスキャン結果活用部28は、主に図4に示したCPU21と記憶部24によって達成される機能構成である。図3に示したような構造を用いることで、スキャナ取付位置判定部25には、スキャナ9が搭載された移動体の種類に応じた取付位置信号がスキャナ9から送信されてくる。スキャナ取付位置判定部25は、その取付位置信号を受信することで、スキャナ9が取り付けられた移動体が何であるかを判定する。
 スキャナ制御部26は、スキャナ9の動作を制御する。具体的には、スキャナ制御部26は、スキャナ9内の赤外線レーザー発生装置による赤外線レーザーの照射動作と、ポリゴンミラーの回転数を制御する。数値制御部27は、NCプログラムなどの各種プログラムや操作部22からの入力に基づいて、第1刃物台5、第2主軸台6(図1参照)および第2刃物台7などの移動体の移動や、第1主軸31(図1参照)などの回転体の回転を制御する。スキャナ制御部26によるスキャナ9の制御に関する情報と数値制御部27によるX2軸モータ62およびZ2軸モータ63の制御に関する情報は、スキャン結果活用部28に伝達される。スキャン結果活用部28は、それらの情報を得ることで、赤外線レーザー発生装置から発した赤外線レーザーが切削室11内のどの位置に照射されているのかと、スキャナ9が切削室11内のどの位置にあるかを認識できる。
 スキャン結果活用部28は、工具ホルダ情報取得部281と、工具情報取得部282と、工具突き出し長算出部284と、取付工具チェック部286と、工具補正値算出部287と、3Dモデル生成部288と、干渉チェック部289とを有している。工具ホルダ情報取得部281は、スキャナ9を用いた測定によって得られた工具ホルダの形状情報と工具ホルダ情報記憶部242(図4参照)から取得した工具ホルダの形状情報とを比較して取り付けられている工具ホルダを特定する。そして、工具ホルダ情報取得部281は、特定した工具ホルダの種類情報、形状情報および特性情報を工具ホルダ情報記憶部242から取得する。工具情報取得部282は、スキャナ9を用いた測定によって得られた工具の形状情報と工具情報記憶部243(図4参照)から取得した工具の形状情報とを比較して取り付けられている工具を特定する。そして、工具情報取得部282は、特定した工具の種類情報および形状情報を工具情報記憶部243から取得する。工具突き出し長算出部284は、特定した工具がバイトである場合には、第1刃物台5または第2刃物台7の、工具取付端面からの刃先までのバイトの突出長である突き出し長を算出する。また、工具突き出し長算出部284は、工具が回転工具用である場合、工具取付端面からの工具ホルダの突出高さ情報と、工具の形状情報と、スキャナ9を用いた測定結果を総合して工具ホルダからの工具の突き出し長と工具径を算出する。なお、工具と工具ホルダの位置と形状を高精度に測定した場合、工具突き出し長算出部284は、測定結果のみを用いて工具の突き出し長を算出してもよい。
 取付工具チェック部286は、複数の取付工具情報の中から指定された取付工具情報を取付工具情報記憶部244(図4参照)から取得する。そして、取付工具チェック部286は、工具情報取得部282が取得した工具種類情報や工具突き出し長算出部284が算出した工具の突き出し長と、取付工具情報記憶部244に記憶されている取付工具情報とを比較する。これにより、取付工具チェック部286は、指定されている過去の取付工具情報と、現在取り付けられている取付工具情報とが一致するかをチェックする。
 工具補正値算出部287は、スキャナ9を用いた測定によって得られた工具の位置情報および工具の形状情報ならびに工具情報取得部282が特定した工具の種類情報に基づいて工具の先端位置を算出する。そして、工具補正値算出部287は、その先端位置に基づいて工具補正値を算出し、工具補正情報記憶部245(図4参照)に記憶する。
 3Dモデル生成部288は、スキャナ9を用いた測定によって得られた切削室11内にある構造物を仮想3次元モデルとして仮想空間に生成する。干渉チェック部289は、NCプログラムに沿って、3Dモデル生成部288が生成した仮想3次元モデルを動作させて干渉が発生しないかチェックする。
 図6は、図1に示したNC旋盤の切削室内にある構造物を測定する測定動作を示すフローチャートである。
 以下、図1~図5を参照しつつ図6~図11を順次用いて測定動作について説明する。この測定動作の説明では、第2主軸台6に搭載されたスキャナ9を用いて測定を行う例を用いる。測定動作は、オペレータが操作部22を使用して後述する測定モードを指定し、開始操作を行うことによって開始される。測定動作は、主に測定プログラム記憶部246に記憶された測定プログラムに基づいて、制御装置2がNC旋盤1の移動体やスキャナの動作を制御しつつ演算などの処理を実行することで行われる。図6に示すように、測定動作が開始されると、制御装置2は、まずNC旋盤1の機種名、測定の基準となる対象物の情報およびスキャナ9が搭載可能な移動体の情報を機種情報記憶部248から取得する(ステップS10)。次に、数値制御部27が、第1主軸台3、第1刃物台5、第2主軸台6および第2刃物台7それぞれを測定に適した所定位置に移動させる(ステップS11)。そして、制御装置2は、スキャナ9から取付位置信号を送受信してスキャナ9が制御装置2に接続されていることを確認する(ステップS12)。スキャナ9が制御装置2に接続されていない場合(ステップS12でNO)、制御装置2は、スキャナ9が接続されるまで待機する。スキャナ9が制御装置2に接続されたら(ステップS12でYES)、制御装置2は、スキャナ9から送信されてくる取付位置信号によってスキャナ9の取付位置を判定する(ステップS13)。この例では、スキャナ9が第2主軸台6に搭載されていると判定される。
 その後、制御装置2は、オペレータが指定した測定モードが段取りチェックモードか否かを判定する(ステップS14)。段取りチェックモードである場合(ステップS14でYES)、制御装置2は、後述する段取りチェック処理を実行する(ステップS15)。オペレータが指定した測定モードが段取りチェックモードでない場合(ステップS14でNO)、制御装置2は、補正入力モードか否かを判定する(ステップS16)。補正入力モードである場合(ステップS16でYES)、制御装置2は、後述する補正入力処理を実行する(ステップS17)。一方、補正入力モードでない場合(ステップS16でNO)、制御装置2は、後述する干渉チェック処理を実行する(ステップS18)。そして、各処理が完了したら、制御装置2は、測定動作を終了する。また、測定動作が終了した後、NCプログラムを用いたワークWの加工が開始される前に、オペレータによってスキャナ9は第2主軸台6から切削室11の外部に取り外される。
 図7は、図6に示した段取りチェック処理の動作を示すフローチャートである。また、図8(a)は、段取りチェック処理により得られる取付工具情報とチェック対象の選択画面を示す図である。ここでは第1刃物台5に取り付けられている第1工具T1のみが測定対象になっている例を用いて説明するが、第2工具T2のみ又は第1工具と第2工具の両方を測定対象とすることもできる。
 測定モードとして段取りチェックモードが選択された場合、測定動作に先立って制御装置2は、取付工具情報記憶部244に記憶されている過去の全ての段取りチェック処理の実行日時を表示部23に表示する。なお、過去の段取りチェック処理に関連付けて整理番号やタイトルやコメントなどが取付工具情報記憶部244に記憶されていればそれらも併せて表示部23に表示することが好ましい。それらの過去の測定によって得られた取付工具情報のなかに今回の段取りチェック処理において比較対象にしたい取付工具情報がある場合、オペレータは、操作部22を使用して比較対象にしたい取付工具情報を選択する。一方、比較対象にしたい取付工具情報がない場合、オペレータは、操作部22を使用して選択する取付工具情報がないことを示す操作を行う。オペレータが取付工具情報の1つを選択した場合、図8(a)示すように、選択された取付工具情報などが表示部23に表示される。図8(a)において、A2~A5列は、測定結果に基づいた取付工具情報を示しており、A1列は今回の段取りチェック処理においてチェック対象とするか否かの選択情報を示している。なお、A2列の工具番号は、第1刃物台5または第2刃物台のどの位置に取り付けられた工具であるかを示している。オペレータは、操作部22を使用してA1列の内容を書き換えて、今回の段取りチェック処理においてチェック対象とする工具を選択する。なお、実際には第1刃物台5と第2刃物台7に形成された工具取付部の数に応じた多数の工具について取付工具情報などが表示部23に表示されるが、図8(a)では簡略化してその一部のみを示している。
 図7に示すように、段取りチェック処理では、数値制御部27は、基準となる対象物の前にスキャナ9が位置するように第2主軸台6を移動させる。そして、第2主軸台6を移動させつつ、スキャナ9がその対象物の位置と形状を測定する。制御装置2は、その対象物の中から基準位置を特定して基準位置情報として取得する(ステップS21)。基準となる対象物と基準位置は、測定プログラムに記載されている。本実施形態では、第1刃物台5に設けられた複数の第1工具T1がチェック対象として選択されており、基準となる対象物として第1刃物台5が設定され、基準位置として第1刃物台5の特定の一点が測定プログラムに記載されている例を用いて説明する。なお、第2刃物台7に設けられた第2工具T2がチェック対象として選択されている場合には、その第2工具T2に対しても段取りチェック処理を実行する。その場合、第2工具T2の測定における基準位置は、第2刃物台7の特定の一点が用いられる。基準位置情報を取得したら、制御装置2は、スキャナ9を動作させながら数値制御部27によって第2主軸台6を少なくともX2軸方向に移動させる。これにより、制御装置2は、チェック対象として選択されている全ての第1工具T1と基準位置との相対位置情報と、その第1工具T1の形状情報と、その第1工具T1が取り付けられている第1工具ホルダTH1と基準位置との相対位置情報と、その第1工具ホルダTH1の形状情報とを取得する(ステップS22)。この段取りチェック処理では、第1工具T1の位置情報や第1工具T1の形状情報などの精度をそれほど高精度にする必要はないので、ステップS22における第2主軸台6の移動は比較的高速で実行される。
 次に、制御装置2は、第2主軸台6が測定プログラム通りに移動していること、および測定結果にデータ飛びやデータの欠落または異常な凹凸形状などの異常データが存在していないことを確認する(ステップS23)。第2主軸台6が測定プログラム通りに移動できなかった場合または異常データが存在している場合(ステップS23でNO)、段取りチェック処理が正常に実行できなかったことを示すメッセージを表示部23に表示し(ステップS231)、段取りチェック処理を終了する。なお、ステップS23にて、第2主軸台6が測定プログラム通りに移動できなかった、または異常データが存在していると判定された場合、再度ステップS21とステップS22の動作を繰り返してもよい。この場合、測定プログラムにはステップS23でNOと判断されたときのステップS21とステップS22の動作の繰り返し回数を任意で設定し、設定した回数以上連続でステップS23でNOと判定されたら、段取りチェック処理が正常に実行できなかったことを示すメッセージを表示部23に表示してもよい。第2主軸台6が測定プログラム通りに移動し、かつ異常データが存在していない場合(ステップS23でYES)、工具ホルダ情報取得部281は、測定によって取得した第1工具ホルダTH1の位置情報や形状情報に基づいてチェック対象の第1工具T1が取り付けられている第1工具ホルダTH1の種類を特定する。また、工具情報取得部282は、測定によって取得した第1工具T1の位置情報や形状情報に基づいてチェック対象の第1工具T1の種類と工具の取付位置情報である工具番号を特定する(ステップS24)。そして、工具ホルダ情報取得部281は、特定した第1工具T1の種類情報、形状情報および特性情報を工具ホルダ情報記憶部242から取得する。また、工具情報取得部282は、特定した第1工具T1の種類情報および形状情報を工具情報記憶部243から取得する。続いて、工具突き出し長算出部284は、チェック対象の第1工具T1がバイトである場合には、第1刃物台5または第2刃物台7の、工具取付端面からの刃先までのバイトの突出長である突き出し長を算出する。また、工具突き出し長算出部284は、チェック対象の第1工具T1が回転工具である場合には、工具ホルダ情報取得部281が取得した第1工具ホルダTH1の特性情報と、工具情報取得部282が取得した第1工具T1の形状情報と、ステップS22において取得した位置情報と形状情報を総合して第1工具ホルダTH1からの第1工具T1の突き出し長と第1工具T1の工具径を算出する(ステップS25)。
 その後、取付工具チェック部286は、チェック対象の第1工具T1に関する過去の測定結果に基づいた取付工具情報と、新たに測定した第1工具T1に関する取付工具情報とを比較する(ステップS26)。すなわち、取付工具チェック部286は、工具番号が一致する第1工具T1の工具種類情報、その第1工具T1の突き出し長およびその第1工具T1の工具径が一致しているかチェックする。選択されている全ての第1工具T1についてチェックを実行し、一致していない第1工具T1がある場合(ステップS26でNO)、一致していない第1工具T1の情報と不一致部分を示すメッセージを表示部23に表示し(ステップS261)、段取りチェック処理を終了する。選択されている全ての第1工具T1が過去の取付工具情報と一致しているか、選択されている取付工具情報がない場合(ステップS26でYES)、制御装置2は、表示部23に段取りが正常であることを示すメッセージと、今回の測定結果に基づいた取付工具情報を記憶するか選択する表示を行う(ステップS27)。そして、オペレータが操作部22を用いて取付工具情報の記憶を選択した場合(ステップS28でYES)、今回の取付工具情報を取付工具情報記憶部244に記憶させ(ステップS29)、段取りチェック処理を終了する。一方、取付工具情報の記憶を選択しなかった場合(ステップS28でNO)、今回の取付工具情報を記憶させないで段取りチェック処理を終了する。
 図9は、図6に示した補正入力処理の動作を示すフローチャートである。また、図8(b)は、補正入力処理によって得られる工具補正値の一例を示す一覧表である。なお、実際には第1刃物台5と第2刃物台7に形成された工具取付部の数に応じた多数の工具について工具補正値が工具補正情報記憶部に記憶されるが、図8(b)では簡略化してその一部のみを示している。
 図9に示すように、補正入力処理では、数値制御部27は、基準となる対象物の前にスキャナ9が位置するように第2主軸台6を移動させる。そして、第2主軸台6を移動させつつ、スキャナ9がその対象物の位置と形状を測定する。制御装置2は、その対象物の中から基準位置を特定して基準位置情報として取得する(ステップS31)。基準となる対象物と基準位置は、測定プログラムに記載されている。本実施形態では、基準となる対象物としてガイドブッシュ4が設定され、基準位置としてガイドブッシュ4の、切削室11に露出している端面と第1主軸中心線CL1との交点が設定されている。ガイドブッシュはX軸方向、Y軸方向およびZ軸方向に移動しないため、刃物台などの移動体を基準とする時と比較して、基準位置の高精度化を図ることができる。基準位置情報を取得したら、制御装置2は、スキャナ9を動作させながら数値制御部27によって第2主軸台6を少なくともX2軸方向に移動させる。これにより、制御装置2は、全ての工具と基準位置との相対位置情報と、工具の形状情報を取得する(ステップS32)。この補正入力処理では、工具の位置情報と工具の形状情報は高い精度で必要になるので、ステップS32における第2主軸台6の移動は比較的低速で、高精度な測定が実行される。
 次に、制御装置2は、第2主軸台6が測定プログラム通りに移動していること、および測定結果にデータ飛びやデータの欠落または異常な凹凸形状などの異常データが存在していないことを確認する(ステップS33)。第2主軸台6が測定プログラム通りに移動できなかった場合または異常データが存在している場合(ステップS33でNO)、補正入力処理が正常に実行できなかったことを示すメッセージを表示部23に表示し(ステップS331)、補正入力処理を終了する。なお、ステップS33にて、第2主軸台6が測定プログラム通りに移動できなかった、または異常データが存在していると判定された場合、再度ステップS31とステップS32の動作を繰り返してもよい。この場合、測定プログラムにはステップS33でNOと判断されたときのステップS31とステップS32の動作の繰り返し回数を任意で設定し、設定した回数以上連続でステップS33でNOと判定されたら、補正入力処理が正常に実行できなかったことを示すメッセージを表示部23に表示してもよい。第2主軸台6が測定プログラム通りに移動し、かつ異常データが存在していない場合(ステップS33でYES)、工具情報取得部282は、測定によって取得した工具の位置情報や形状情報に基づいて取り付けられている工具の種類と工具の取付位置情報である工具番号を特定する(ステップS34)。その後、工具補正値算出部287は、測定によって取得した工具の位置情報および工具の形状情報、ならびに工具情報取得部282が特定した工具の種類情報に基づいて工具の刃先位置を算出し、さらにその刃先位置に基づいて工具補正値を算出する(ステップS35)。なお、工具情報記憶部243には、刃先の基準位置である基準刃先位置情報が工具の種類情報に関連付けて記憶されている。工具補正値算出部287は、その基準刃先位置情報から得られる刃先位置と算出した刃先位置とを比較することで工具補正値の算出を行う。また最後に、工具補正値算出部287は、算出した工具補正値を工具番号と関連付けて工具補正情報記憶部245に記憶し(ステップS36)、工具補正値が記憶されたことを示すメッセージを表示部23に表示して補正入力処理を終了する。図8(b)に示すように、工具補正情報記憶部245には、補正入力処理によってB1列に示す工具番号ごとにB2~B4列に示すX、Y、Zの各軸方向に分けて補正値が記憶される。
 図10は、図6に示した干渉チェック処理の動作を示すフローチャートである。また、図11は、干渉チェック処理によって仮想空間に生成される仮想3次元モデルを示す斜視図である。
 図10に示すように、干渉チェック処理では、数値制御部27は、基準となる対象物の前にスキャナ9が位置するように第2主軸台6を移動させる。そして、第2主軸台6を移動させつつ、スキャナ9がその対象物の位置と形状を測定する。制御装置2は、その対象物の中から基準位置を特定して基準位置情報として取得する(ステップS41)。基準となる対象物と基準位置は、測定プログラムに記載されている。本実施形態では、基準となる対象物としてガイドブッシュ4が設定され、基準位置としてガイドブッシュ4の、切削室11に露出している端面と第1主軸中心線CL1との交点が設定されている。基準位置情報を取得したら、制御装置2は、スキャナ9を動作させながら数値制御部27によって第2主軸台6を少なくともX2軸方向に移動させる。これにより、制御装置2は、切削室11内の工具や第1刃物台5などの構造物の相対位置情報と、構造物の形状情報を取得する(ステップS42)。この干渉チェック処理では、構造物の位置情報と構造物の形状情報はある程度の精度で必要になるので、ステップS42における第2主軸台6の移動は補正入力処理時よりも低速で段取りチェック処理時よりも高速で、やや高精度な測定が実行される。
 次に、制御装置2は、第2主軸台6が測定プログラム通りに移動していること、および測定結果にデータ飛びやデータの欠落または異常な凹凸形状などの異常データが存在していないことを確認する(ステップS43)。第2主軸台6が測定プログラム通りに移動できなかった場合または異常データが存在している場合(ステップS43でNO)、干渉チェック処理が正常に実行できなかったことを示すメッセージを表示部23に表示し(ステップS431)、干渉チェック処理を終了する。なお、ステップS43にて、第2主軸台6が測定プログラム通りに移動できなかった、または異常データが存在していると判定された場合、再度ステップS41とステップS42の動作を繰り返してもよい。この場合、測定プログラムにはステップS43でNOと判断されたときのステップS41とステップS42の動作の繰り返し回数を任意で設定し、設定した回数以上連続でステップS43でNOと判定されたら、干渉チェック処理が正常に実行できなかったことを示すメッセージを表示部23に表示してもよい。第2主軸台6が測定プログラム通りに移動し、かつ異常データが存在していない場合(ステップS43でYES)、3Dモデル生成部288は、ステップS42で得られた切削室11内にある構造物の位置情報と、構造物の形状情報に基づいて仮想空間に仮想3次元モデルを生成する(ステップS44)。図11に示すように、生成される仮想3次元モデルは、第2主軸台6に搭載されたスキャナ9から赤外線レーザーが照射可能な範囲の構造物を対象にしている。ここでは主に、ガイドブッシュ4、第1刃物台5および正面工具ユニット、第2刃物台7および背面工具ユニット、クーラント吐出ユニット8並びに切削室11(図1参照)の内壁の一部の位置および形状を測定し、それらを仮想3次元モデルとして生成している。また、ガイドブッシュ4の内径情報に基づいてワークWも仮想3次元モデルとして生成することができる。なお、第1刃物台5などの第2主軸台6以外の移動体にスキャナ9を搭載し、その移動体に搭載されたスキャナ9からも切削室11内の構造物の位置情報と構造物の形状情報を取得した場合には、第2主軸台6に搭載されたスキャナ9から得られた情報とその移動体に搭載されたスキャナ9から得られた情報とを組み合わせて仮想3次元モデルを生成してもよい。その場合には、第2主軸台6も仮想3次元モデルとして生成できる。
 仮想3次元モデルの生成が完了したら、干渉チェック部289は、仮想3次元モデルとして生成された第1刃物台5などの移動体を、加工時に用いるNCプログラムに基づいて移動させる。そして、移動体どうし、移動体とワークWおよび移動体とクーラント吐出ユニット8、移動体と切削室11の内壁との干渉がないかチェックする(ステップS45)。なお、ここでいう移動体には、移動体に取り付けられた工具や工具ホルダを含む。仮想3次元モデルにおける移動体の、NCプログラムに沿った移動が全て完了し、干渉の発生がなければ(ステップS46でYES)、干渉なしのメッセージを表示部23に表示し(ステップS47)、干渉チェック処理を終了する。一方、干渉が発生していたら(ステップS46でNO)、NCプログラムのどの部分で何が干渉するのかを表示部23に表示し(ステップS48)、干渉チェック処理を終了する。
 以上説明したNC旋盤1によれば、スキャナ9によって工具の位置および工具の形状を測定することで、実際に第1刃物台5や第2刃物台7に取り付けられている工具の位置情報および工具の形状情報を様々な処理で利用することができる。そして、それらの情報を干渉チェックに利用しているので、干渉チェックに用いられる工具の位置および工具の形状と実際に取り付けられている工具の位置および工具の形状とが異なってしまうことがなくなる。これにより、干渉チェックの後、工具を第1刃物台5や第2刃物台7に取り付けた状態で干渉しないか再確認する必要がなくなる。また、このNC旋盤1では、工具の位置および工具の形状を測定することで、刃先位置の補正値情報を生成している。そして、その補正値情報を工具補正情報記憶部245に自動で記憶させているので、オペレータの手間が減らせる上に補正値情報の入力間違いを防止できる。
 さらに、本実施形態のNC旋盤1では、スキャナ9を用いて、工具ホルダの形状も測定し、その工具ホルダの特性情報を用いて、工具の突き出し長を算出しているので正確な突き出し長を算出できる。また、工具が回転工具である場合には、その回転方向情報を取得してNCプログラムにおいて指定されている回転方向の間違いをチェックすることもできる。また、段取りチェック処理(ステップS14、図7)において、取付工具チェック部286が、過去の取付工具情報と、新たに取得した取付工具情報とを比較して、所望の工具が所望の取付状態で取り付けられているかをチェックしている。これにより、取り付けられている工具の種類や工具の取付位置が正しいか否かを容易に確認できる。またさらに、干渉チェック処理(ステップS17、図10)において、クーラントノズル81を含むクーラント吐出ユニット8の位置と形状も測定して仮想3次元モデルとして生成している。これにより、移動体がクーラント吐出ユニット8に干渉してクーラントノズル81の吐出角度や位置が変化してしまうか否かをチェックできる。加えて、スキャナ9を第2主軸台6に搭載しているので、第1刃物台5や第2刃物台7とそれらに取り付けられている工具などの主要な構造物の位置や形状を測定できる。また、スキャナ9を第2主軸台6に搭載しているので、第2主軸台6のX2軸方向への移動によって広範囲の測定ができる。そして、加工時にスキャナ9を第2主軸台6から取り外しておくことで、スキャナ9にクーラント液や切粉などが降りかかってスキャナ9が故障してしまうことを抑制できる。また、スキャナ9は、スイッチ94の動作に応じて、取り付けられている移動体の情報を示す取付位置信号を発信しているので、制御装置2は、スキャナ9がどの移動体に搭載されているかを自動で判定できる。
 続いて、これまで説明してきたNC旋盤1の変形例について説明する。以下の説明では、これまで説明した構成要素の名称と同じ構成要素には、これまで用いた符号と同じ符号を付して重複する説明は省略することがある。
 図12は、変形例のNC旋盤の内部構成を示す図2と同様の斜視図である。なお、この図12では、脚10は図示省略している。
 図12に示すように、この変形例のNC旋盤1は、スキャナ9の構成が先の実施形態と異なる。スキャナ9は、赤外線レーザーを3方向に照射している。すなわち、この変形例のスキャナ9は、3方向それぞれの距離が測定可能な測定装置である。図12には、照射される赤外線レーザーの照射範囲が3つの白抜きの扇型で示されている。先の実施形態では、第2主軸台6から第1主軸台3側に向かう方向のみ赤外線レーザーを照射していた。このため、その方向において影になる部分の測定を行うには第1刃物台5や第2刃物台7などの別の移動体にスキャナ9を付け替えるか複数のスキャナ9を用いてそれぞれ異なる方向に赤外線レーザーを照射する必要がある。これに対し、この変形例では、スキャナ9から異なる3方向に赤外線レーザーが照射されるので、先の実施形態の効果に加えて、一方向から照射して場合に影となってしまう部分を、スキャナ9を付け替えたりスキャナ9を複数搭載することなく測定することができるといった効果を奏する。
 本発明は上述の実施形態に限られることなく特許請求の範囲に記載した範囲で種々の変形を行うことが出来る。たとえば、本実施形態の説明では、NC旋盤1に本発明を適用する例を示したが、マシニングセンタなどの他の工作機械に本発明を適用してもよい。また、スキャン結果活用部28全部またはスキャン結果活用部28にある機能構成の一部を、NC旋盤1に接続されたコンピュータに設けてもよい。その場合、NC旋盤1とコンピュータは無線で接続してもよく有線で接続してもよい。さらに、スキャナ9は、赤外線レーザー以外を用いたものであってもよく、3次元スキャナであってもよく、撮像装置であってもよい。加えて、段取りチェック処理によって得られた取付工具情報や補正入力処理によって得られた工具補正値の情報をCAMに受け渡す情報受渡部をNC旋盤1に設けてもよい。こうすることで、CAMを活用する場合に、オペレータの入力間違いを防止することができる。CAMとはここでは対話式プログラミングソフトや自動プログラミング生成ソフトなども含み、かつプログラム作成を支援するソフト群も含むものとして表現している。またさらに、クーラントノズル81の位置および形状も測定してステップS29において測定結果情報として取付工具情報に関連付けて記憶部24に記憶させておき、段取りチェック処理においてクーラントノズル81の位置および形状も比較して一致しているか否かを判定して結果を表示部23に表示してもよい。段取りチェック処理の判定に用いられる、工具種類、工具突き出し長および工具径の一致を判定するための閾値は、工具種類ごとに操作部22から入力可能に構成してもよい。また、段取りチェック処理においてクーラントノズル81の位置および形状の一致を閾値を用いて判定する場合には、同様に、その閾値を操作部22から入力可能に構成してもよい。このように操作部22から閾値を入力可能に構成することでオペレータが設定した任意の閾値で判定する事が出来る。
 なお、以上説明した各変形例の記載それぞれにのみ含まれている構成要件であっても、その構成要件を、他の変形例に適用してもよい。
 1  NC旋盤(工作機械システム)
 9  スキャナ(測定装置)
 5  第1刃物台(刃物台)
 27  数値制御部
 T1  第1工具(工具)
 W  ワーク

Claims (6)

  1.  ワークを加工するための工具が取り付けられた刃物台と、
     前記刃物台の移動をNCプログラムに基づいて制御する数値制御部と、
     前記刃物台に取り付けられている前記工具の位置および該工具の形状を測定する測定装置とを備えたことを特徴とする工作機械システム。
  2.  前記測定装置は、前記工具を前記刃物台に取り付けるための工具ホルダの形状も測定するものであり、
     前記刃物台に取り付け可能な複数の前記工具ホルダごとに該工具ホルダの形状情報と該工具ホルダの特性情報とを関連付けて記憶する工具ホルダ情報記憶部と、
     前記工具ホルダ情報記憶部に記憶された複数の前記工具ホルダの形状情報の中から前記測定装置が測定した該工具ホルダの形状に対応するものを特定し、特定した該工具ホルダに関連付けられた前記特性情報を取得する工具ホルダ情報取得部とを備えたものであることを特徴とする請求項1記載の工作機械システム。
  3.  前記測定装置が測定した前記工具の位置および該工具の形状に基づいた取付工具情報を記憶する取付工具情報記憶部と、
     前記取付工具情報記憶部に記憶された前記取付工具情報と前記測定装置が新たに測定した前記工具の位置および該工具の形状に基づいた取付工具情報とを比較して所望の該工具が前記刃物台に取り付けられているかチェックを行う取付工具チェック部とを備えたことを特徴とする請求項1または2記載の工作機械システム。
  4.  前記測定装置は、位置及びクーラント液の吐出角度が調整可能なクーラントノズルの位置および該クーラントノズルの形状も測定するものであり、
     前記測定装置が測定した前記クーラントノズルの位置および該クーラントノズルの形状並びに前記工具の位置および該工具の形状を用いて仮想3次元モデルを生成し、前記NCプログラムに基づいて該仮想3次元モデルにおける前記刃物台を移動させて該工具と該クーラントノズルの干渉チェックを行う干渉チェック部を備えていることを特徴とする請求項1から3のうちいずれか1項記載の工作機械システム。
  5.  前記ワークを把持して主軸中心線を中心として回転する第1主軸と、
     前記第1主軸に対向する第2主軸を有し前記主軸中心線と直交する直交方向に移動可能な第2主軸台とを備え、
     前記測定装置は、前記第2主軸台に搭載され、該第2主軸台とともに前記直交方向へ移動しながら被測定物までの距離を測定するものであることを特徴とする請求項1から4のうちいずれか1項記載の工作機械システム。
  6.  前記測定装置は、前記第2主軸台に取り外し自在に搭載され、該第2主軸台に搭載されているときに該第2主軸台に搭載されていることを示す信号を送出するものであることを特徴とする請求項5記載の工作機械システム。
PCT/JP2022/026450 2021-07-14 2022-07-01 工作機械システム WO2023286639A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020247000252A KR20240016430A (ko) 2021-07-14 2022-07-01 공작 기계 시스템
CN202280048899.7A CN117642251A (zh) 2021-07-14 2022-07-01 工具机系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021116566A JP2023012847A (ja) 2021-07-14 2021-07-14 工作機械システム
JP2021-116566 2021-07-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/408,192 Continuation US20240139898A1 (en) 2021-07-14 2024-01-09 Machine tool system

Publications (1)

Publication Number Publication Date
WO2023286639A1 true WO2023286639A1 (ja) 2023-01-19

Family

ID=84920068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026450 WO2023286639A1 (ja) 2021-07-14 2022-07-01 工作機械システム

Country Status (5)

Country Link
JP (1) JP2023012847A (ja)
KR (1) KR20240016430A (ja)
CN (1) CN117642251A (ja)
TW (1) TW202303094A (ja)
WO (1) WO2023286639A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0241856A (ja) * 1988-07-28 1990-02-13 Toyoda Mach Works Ltd 刃具形状測定機能を備えた工作機械
JPH04256550A (ja) * 1991-02-08 1992-09-11 Seibu Electric & Mach Co Ltd 切削工具刃先検出装置
JPH10286746A (ja) * 1997-04-11 1998-10-27 Mori Seiki Co Ltd Nc工作機械における工具刃先測定装置
JP2004009293A (ja) * 2003-08-11 2004-01-15 Toshiba Mach Co Ltd 工作機械の加工適否チェック方法
JP2008305237A (ja) * 2007-06-08 2008-12-18 Jtekt Corp 加工装置
JP4727689B2 (ja) 2008-04-28 2011-07-20 三菱重工業株式会社 ワーク計測装置、衝突防止装置および工作機械
JP2012168186A (ja) * 2012-04-04 2012-09-06 Mitsubishi Heavy Ind Ltd 工具形状測定装置、及び工具形状測定方法
JP2015052872A (ja) * 2013-09-06 2015-03-19 中村留精密工業株式会社 工作機械の工具オフセット値の自動設定装置及び自動設定方法
JP2016132039A (ja) * 2015-01-15 2016-07-25 中村留精密工業株式会社 工具刃先の検出方法及び装置並びに工具補正値の設定装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5023508Y2 (ja) 1971-04-20 1975-07-15

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0241856A (ja) * 1988-07-28 1990-02-13 Toyoda Mach Works Ltd 刃具形状測定機能を備えた工作機械
JPH04256550A (ja) * 1991-02-08 1992-09-11 Seibu Electric & Mach Co Ltd 切削工具刃先検出装置
JPH10286746A (ja) * 1997-04-11 1998-10-27 Mori Seiki Co Ltd Nc工作機械における工具刃先測定装置
JP2004009293A (ja) * 2003-08-11 2004-01-15 Toshiba Mach Co Ltd 工作機械の加工適否チェック方法
JP2008305237A (ja) * 2007-06-08 2008-12-18 Jtekt Corp 加工装置
JP4727689B2 (ja) 2008-04-28 2011-07-20 三菱重工業株式会社 ワーク計測装置、衝突防止装置および工作機械
JP2012168186A (ja) * 2012-04-04 2012-09-06 Mitsubishi Heavy Ind Ltd 工具形状測定装置、及び工具形状測定方法
JP2015052872A (ja) * 2013-09-06 2015-03-19 中村留精密工業株式会社 工作機械の工具オフセット値の自動設定装置及び自動設定方法
JP2016132039A (ja) * 2015-01-15 2016-07-25 中村留精密工業株式会社 工具刃先の検出方法及び装置並びに工具補正値の設定装置

Also Published As

Publication number Publication date
JP2023012847A (ja) 2023-01-26
KR20240016430A (ko) 2024-02-06
CN117642251A (zh) 2024-03-01
TW202303094A (zh) 2023-01-16

Similar Documents

Publication Publication Date Title
US7089836B2 (en) Hale-machining method and apparatus
JP5911565B2 (ja) 工作機械の干渉判定方法および干渉判定装置
US6597142B2 (en) Apparatus and method for setting control parameters of machining apparatus
JPH06210475A (ja) レーザロボットのハイトセンサ装置
JPH11320145A (ja) 3次元レーザ加工機及び3次元レーザ加工機における加工プログラムの作成制御方法
US4648025A (en) Interactive numerical controller for a machine tool
JP3186213B2 (ja) 工具折損検出方法
JPWO2002025388A1 (ja) 数値制御旋盤及びその制御方法
JP5023919B2 (ja) 工作機械
US20210331261A1 (en) Gear machining apparatus
WO2023286639A1 (ja) 工作機械システム
CN109562499B (zh) 选择装置、选择方法及程序
JPH11138392A (ja) 工具寸法測定機能を備えたnc工作機械
US20240139898A1 (en) Machine tool system
JPH09155693A (ja) ターニングセンタのy軸方向刃先計測装置
JP2002001568A (ja) Nc制御3次元レーザ加工機におけるレーザ加工ヘッドのパラメータ設定方法およびnc制御3次元レーザ加工機
JP2002304203A (ja) Nc工作機械および加工方法
JP3459847B2 (ja) ツールプリセッタによる工具補正量再設定方法およびその装置
JP5167767B2 (ja) 工作機械の干渉検出装置
JP3283278B2 (ja) 自動旋盤
JP4509348B2 (ja) 数値制御旋盤における工具位置補正方法及び制御装置
JP7475533B1 (ja) 情報処理装置、ncプログラムの生成方法および制御プログラム
JPH0760505A (ja) バイトのセット方法
JP6456205B2 (ja) 測定対象物の断面形状測定方法
JP7286860B1 (ja) 加工プログラムの補正方法および情報処理プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22841983

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247000252

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247000252

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2022841983

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022841983

Country of ref document: EP

Effective date: 20240214