WO2023286588A1 - 発電プラント用のアンモニア供給ユニット、発電プラント用のアンモニア気化処理方法、及び発電プラント - Google Patents

発電プラント用のアンモニア供給ユニット、発電プラント用のアンモニア気化処理方法、及び発電プラント Download PDF

Info

Publication number
WO2023286588A1
WO2023286588A1 PCT/JP2022/025665 JP2022025665W WO2023286588A1 WO 2023286588 A1 WO2023286588 A1 WO 2023286588A1 JP 2022025665 W JP2022025665 W JP 2022025665W WO 2023286588 A1 WO2023286588 A1 WO 2023286588A1
Authority
WO
WIPO (PCT)
Prior art keywords
ammonia
vaporizer
power plant
supply unit
condenser
Prior art date
Application number
PCT/JP2022/025665
Other languages
English (en)
French (fr)
Inventor
康裕 竹井
雅彦 外野
忠 住田
康弘 山内
Original Assignee
三菱重工業株式会社
三菱パワー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社, 三菱パワー株式会社 filed Critical 三菱重工業株式会社
Priority to KR1020247000398A priority Critical patent/KR20240017924A/ko
Publication of WO2023286588A1 publication Critical patent/WO2023286588A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K17/00Using steam or condensate extracted or exhausted from steam engine plant
    • F01K17/06Returning energy of steam, in exchanged form, to process, e.g. use of exhaust steam for drying solid fuel or plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K5/00Feeding or distributing other fuel to combustion apparatus
    • F23K5/02Liquid fuel
    • F23K5/14Details thereof
    • F23K5/22Vaporising devices

Definitions

  • the present disclosure relates to an ammonia supply unit for a power plant, an ammonia vaporization method for a power plant, and a power plant.
  • This application claims priority based on Japanese Patent Application No. 2021-114843 filed with the Japan Patent Office on July 12, 2021, the contents of which are incorporated herein.
  • Patent Document 1 discloses a power plant in which liquefied natural gas (hereinafter referred to as LNG) is used as fuel, and a condenser is connected to an LNG vaporizer via refrigerant piping.
  • LNG liquefied natural gas
  • the steam that has flowed into the condenser from the turbine has its heat recovered by the cooling water that flows through the refrigerant piping, and the cooling water that has recovered the heat flows into the LNG vaporizer and is used for LNG vaporization.
  • the above patent document does not disclose a configuration for vaporizing liquid ammonia, nor does it disclose a configuration for securing the amount of heat for vaporizing liquid ammonia.
  • heat exchange is only performed between the steam that has passed through the turbine and the cooling water that flows through the refrigerant pipe, so the condensate treatment in the condenser is insufficient. There is a possibility that it will be. In this case, the pressure inside the condenser may not be lowered sufficiently, and the power generation efficiency may be lowered.
  • An object of the present disclosure is to provide an ammonia supply unit for a power plant, an ammonia vaporization method for a power plant, and a power plant that can secure a heat quantity for vaporizing liquid ammonia and improve the thermal efficiency of the heat cycle. That is.
  • An ammonia supply unit for a power plant comprises: At least one ammonia vaporizer is provided inside a condenser for condensing steam discharged from the turbine and for vaporizing liquid ammonia.
  • An ammonia vaporization method for a power plant includes: A vaporization process is provided in which liquid ammonia is vaporized by at least one ammonia vaporizer provided inside a condenser for condensing steam from the turbine.
  • a power plant comprises: a boiler; a turbine for rotating with steam from the boiler as a power source; a generator for generating electricity by rotating the turbine; a condenser for condensing the steam discharged from the turbine; at least one ammonia vaporizer provided inside the condenser for vaporizing liquid ammonia; Prepare.
  • an ammonia supply unit for a power plant an ammonia vaporization method for a power plant, and a power plant that can secure the amount of heat for vaporizing liquid ammonia and improve the thermal efficiency of the heat cycle.
  • FIG. 1 is a schematic representation of a boiler according to an embodiment of the present disclosure
  • FIG. 1 is a schematic diagram of a power plant according to an embodiment of the present disclosure
  • FIG. 1 is a schematic diagram showing an ammonia supply unit according to a first embodiment of the present disclosure
  • FIG. 4 is a graph conceptually illustrating operating periods of two vaporizers in accordance with an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram showing an ammonia supply unit according to a second embodiment of the present disclosure
  • 4 is a schematic diagram showing an ammonia supply unit according to a third embodiment of the present disclosure
  • 4 is a flow chart illustrating an ammonia vaporization method for a power plant according to an embodiment of the present disclosure
  • 4 is a flow chart showing a vaporization process according to an embodiment of the present disclosure
  • expressions denoting relative or absolute arrangements such as “in a direction”, “along a direction”, “parallel”, “perpendicular”, “center”, “concentric” or “coaxial” are strictly not only represents such an arrangement, but also represents a state of relative displacement with a tolerance or an angle or distance to the extent that the same function can be obtained.
  • expressions such as “identical”, “equal”, and “homogeneous”, which express that things are in the same state not only express the state of being strictly equal, but also have tolerances or differences to the extent that the same function can be obtained. It shall also represent the existing state.
  • expressions that express shapes such as squares and cylinders do not only represent shapes such as squares and cylinders in a geometrically strict sense, but also include irregularities and chamfers to the extent that the same effect can be obtained.
  • the shape including the part etc. shall also be represented.
  • the expressions "comprising”, “including”, or “having” one component are not exclusive expressions excluding the presence of other components.
  • symbol may be attached
  • FIG. 1 ⁇ Overview of Boiler 10 and Power Plant 1> 1 is a schematic representation of a boiler according to one embodiment of the present disclosure
  • the boiler 10 uses pulverized coal (carbon-containing solid fuel) pulverized as pulverized fuel, burns the pulverized fuel with a burner, and uses the heat generated by this combustion as water supply and steam. It is a coal-fired (pulverized coal-fired) boiler capable of exchanging heat to generate superheated steam.
  • the boiler 10 of the present embodiment uses a burner to burn ammonia gas generated by vaporizing liquid ammonia in addition to pulverized fuel. Therefore, in the boiler 10 of the present embodiment, co-firing of pulverized coal and ammonia gas is performed.
  • the boiler 10 has a furnace 11, a combustion device 12, and a combustion gas passage 13, as shown in FIG.
  • the furnace 11 has a hollow rectangular shape and is installed along the vertical direction.
  • the furnace wall 101 that constitutes the furnace 11 is composed of a plurality of heat transfer tubes and fins that connect them. and suppresses the temperature rise of the furnace wall 101 .
  • the combustion device 12 is provided on the lower side of the furnace wall 101 that constitutes the furnace 11 .
  • the combustion device 12 has a plurality of burners (eg 21, 22, 23, 24, 25) mounted on the furnace wall 101.
  • FIG. For example, the burners 21, 22, 23, 24, and 25 are arranged at equal intervals along the circumferential direction of the furnace 11 as one set, and a plurality of stages (for example, five stages in FIG. 1) are arranged along the vertical direction. are placed.
  • the shape of the furnace, the number of burners in one stage, the number of stages, the arrangement, etc. are not limited to this embodiment.
  • the burners 21, 22, 23 are connected to an ammonia gas supply pipe 69.
  • the ammonia gas supply pipe 69 is a component of an ammonia supply unit 60 for a power plant (hereinafter sometimes simply referred to as the ammonia supply unit 60) for vaporizing liquid ammonia to generate ammonia gas. Details of the ammonia supply unit 60 will be described later.
  • the burners 24, 25 are connected to a plurality of pulverizers (mills) 34, 35 via pulverized coal supply pipes 29, 33 (the pulverizers 34, 35 are hereinafter collectively referred to as the pulverizer 3 in some cases).
  • the pulverizers 34, 35 are hereinafter collectively referred to as the pulverizer 3 in some cases).
  • this crusher 3 for example, a crushing table (not shown) is rotatably supported in a housing, and a plurality of crushing rollers (not shown) are supported above the crushing table so as to be rotatable in conjunction with the rotation of the crushing table. configured.
  • a carrier gas primary air, oxidizing gas
  • the pulverized fuel classified within a predetermined particle size range can be supplied to the burners 24 and 25 from the pulverized coal supply pipes 29 and 33 .
  • the carrier gas also plays a role of drying the finely divided fuel.
  • the carrier gas described above is sent to the pulverizer 3 through an air pipe 30 from a primary air fan (PAF) 31 that takes in outside air.
  • the air pipe 30 consists of a hot air guide pipe 30A through which hot air out of the air sent from the primary air fan 31 and heated by the air heater 42 flows, and an air heater 42 out of the air sent out from the primary air fan 31.
  • a cold air guiding pipe 30B through which cold air at room temperature flows without passing through the air, and a carrier gas channel 30C through which the hot air and the cold air flow together.
  • a hot air damper 30D and a cold air damper 30E are provided in the hot air guide tube 30A and the cold air guide tube 30B, respectively.
  • the flow rate and temperature of the carrier gas flowing through the carrier gas flow path 30C are adjusted.
  • the carrier gas flowing through the carrier gas passage 30C includes hot air from the hot air guide pipe 30A. That is, the air pipe 30 is configured to guide the hot air heated by the air heater 42 to the pulverizer 3 that pulverizes coal as fuel.
  • the furnace 11 is provided with a wind box 36 at the mounting positions of the burners 21, 22, 23, 24, and 25, and one end of an air duct (airway) 37 is connected to the wind box 36.
  • the air duct 37 is provided with a forced draft fan (FDF) 38 at the other end.
  • FDF forced draft fan
  • the combustion gas passage 13 is connected to the upper portion of the furnace 11 in the vertical direction, as shown in FIG.
  • the combustion gas passage 13 is provided with superheaters 102, 103, 104, reheaters 105, 106, and an economizer 107 as heat exchangers for recovering the heat of the combustion gas. Heat is exchanged between the combustion gas and feed water or steam flowing through each heat exchanger.
  • the combustion gas passage 13 is connected to a flue 14 through which combustion gas that has undergone heat exchange is discharged.
  • the flue 14 is provided with an air heater (air preheater) 42 for heating air flowing through each of the air duct 37 and the air pipe 30 .
  • air heater 42 heat is exchanged between the outside air flowing through the air duct 37 and the combustion gas flowing through the flue 14 to raise the temperature of the combustion air supplied to the burners 21, 22, 23, 24, 25. can be done.
  • heat is exchanged between the outside air flowing toward the hot air guide pipe 30A and the combustion gas flowing through the flue 14, so that the outside air can be changed into hot air. Therefore, it is understood that the air heater 42 is configured to use exhaust heat from the boiler 10 to heat the outside air.
  • the flue 14 is provided with a denitrification device 43 at a position upstream of the air heater 42 .
  • the denitrification device 43 supplies a reducing agent such as ammonia or urea water, which has a function of reducing nitrogen oxides, into the flue 14, and causes a reaction between the nitrogen oxides in the combustion gas to which the reducing agent is supplied and the reducing agent. is accelerated by the catalytic action of the denitration catalyst installed in the denitration device 43, thereby removing and reducing nitrogen oxides in the combustion gas.
  • the ammonia gas supply pipe 69 described above may be connected to the denitrification device 43 . That is, the ammonia gas supplied from the ammonia supply unit 60 may be used as a reducing agent.
  • the ammonia supply unit 60 in this case is illustrated in FIG. 1 by a chain double-dashed line.
  • the gas duct 41 connected to the flue 14 is provided with a dust collector 44 such as an electric dust collector, an induced draft fan (IDF) 45, a desulfurization device 46, etc., at a position downstream of the air heater 42.
  • a chimney 50 is provided at the end.
  • the produced pulverized fuel is supplied to the burners 24, 25 through the pulverized coal supply pipes 29, 33 together with the carrier gas (primary air, oxidizing gas). be.
  • the heated combustion air secondary air, oxidizing gas
  • the burners 24 and 25 blow into the furnace 11 a pulverized fuel mixture in which pulverized fuel and a carrier gas are mixed, and also blow combustion air into the furnace 11. At this time, the pulverized fuel mixture is ignited to form a flame. can do.
  • a flame is generated in the lower part of the furnace 11 , and high-temperature combustion gas rises inside the furnace 11 and is discharged to the combustion gas passage 13 .
  • the burners 21, 22, and 23 inject ammonia gas into the furnace 11, causing combustion of the ammonia gas, and pulverized coal and ammonia.
  • Co-firing takes place.
  • Air is used as the oxidizing gas in this embodiment. It may have a higher or lower oxygen ratio than air, and can be used by optimizing the fuel flow rate.
  • the combustion gas is transferred to the second superheater 103, the third superheater 104, and the first superheater 102 (hereinafter sometimes simply referred to as superheaters) arranged in the combustion gas passage 13. ), the second reheater 106, the first reheater 105 (hereinafter sometimes simply referred to as a reheater), and the economizer 107.
  • nitrogen oxides are reduced and removed by the denitrification device 43.
  • the dust collector 44 and the sulfur oxides are removed by the desulfurization device 46 the dust is discharged from the stack 50 into the atmosphere.
  • the heat exchangers do not necessarily have to be arranged in the order described above with respect to the combustion gas flow.
  • FIG. 1 does not precisely show the position of each heat exchanger (superheaters 102, 103, 104, reheaters 105, 106, economizer 107) in the combustion gas passage 13.
  • the arrangement order of the exchangers relative to the combustion gas flow is not limited to that shown in FIG.
  • the power plant 1 of this embodiment includes a boiler 10 including each of the heat exchangers described above, a turbine 110 for rotating using the steam from the boiler 10 as a power source, and a power generator for generating power by rotating the turbine 110.
  • a condenser 114 for condensing the steam discharged from the turbine 110;
  • a boiler feed pump 123 for sending the condensed water condensed by the condenser 114 to the boiler 10; and a supply unit 60 .
  • Boiler 10, turbine 110, condenser 114, and boiler feed pump 123 form a defined thermal cycle (eg, Rankine cycle).
  • the work extracted from turbine 110 in this thermal cycle causes generator 115 to produce electrical power.
  • the circulating heat medium in this heat cycle is water circulating at a pressure and temperature above the triple point.
  • all of the above-described components of the power plant 1 except the ammonia supply unit 60 are existing installations, and the ammonia supply unit 60 is retrofitted to these existing installations.
  • the turbine 110 of this embodiment includes, for example, a high-pressure turbine 111, an intermediate-pressure turbine 112, and a low-pressure turbine 113. Reheaters 105 and 106 recover heat from the combustion gas flowing through the combustion gas passage 13 (see FIG. 1). , the high pressure turbine 111 and the intermediate pressure turbine 112 are connected to each other. A condenser 114 is connected to the low pressure turbine 113 . Condenser 114 houses heat transfer tubes 117 configured to allow cooling water to flow therein. Cooling water is, for example, sea water, fresh water, or brackish water. At least one ammonia vaporizer 61 that is a component of the ammonia supply unit 60 is provided inside the condenser 114 of the present embodiment.
  • the ammonia vaporizer 61 is configured to vaporize liquid ammonia.
  • the steam that has driven the low-pressure turbine 113 to rotate flows into the condenser 114 and is cooled by cooling water and liquid ammonia to become condensed water. At this time, the ammonia vaporizer 61 vaporizes the liquid ammonia to generate ammonia gas.
  • the condenser 114 is connected to the economizer 107 via the water supply line L1.
  • the water supply line L1 is provided with, for example, a condensate pump (CP) 121, a low pressure water supply heater 122, a boiler water supply pump (BFP) 123, and a high pressure water supply heater .
  • CP condensate pump
  • BFP boiler water supply pump
  • a part of the steam that drives the turbines 111, 112, 113 (110) is extracted to the low-pressure feed water heater 122 and the high-pressure feed water heater 124, and the high-pressure feed water heater 124 and the low-pressure feed water heater 124 are extracted via a steam extraction line (not shown).
  • 122 as a heat source and the feed water supplied to the economizer 107 is heated.
  • the boiler 10 is a coal-fired boiler in which mixed combustion with ammonia gas is performed, but it may be a coal-fired boiler.
  • the ammonia supply unit 60 may be configured to supply ammonia gas as a reducing agent to the flue 14 .
  • the fuel used in the boiler 10 may be solid fuel such as biomass fuel, PC (petroleum coke) fuel generated during petroleum refining, and petroleum residue.
  • the fuel is not limited to solid fuels, and petroleum oils such as heavy oil, light oil, and heavy oil, and liquid fuels such as factory waste liquids can also be used.Gaseous fuels (natural gas, by-product gas, etc.) ) can also be used.
  • the vaporized ammonia gas may be used as fuel for other power generation means (gas turbine power generation, etc.) other than the fuel for the boiler 10 .
  • the ammonia gas vaporized in the condenser 114 installed in the gas turbine combined cycle plant may be used as fuel for the gas turbine.
  • Condenser 114 includes a first vessel 81 that accommodates heat transfer tubes 117 . Condenser 114 is arranged directly below turbine 110 (low pressure turbine 113).
  • the ammonia supply unit 60A (60) according to the first embodiment includes an ammonia tank 71 that stores liquid ammonia, at least one ammonia vaporizer 61 provided inside the condenser 114, and ammonia from the ammonia tank 71.
  • a supply line 72 for supplying liquid ammonia to the vaporizer 61 and a supply pump 73 provided in the supply line 72 are provided.
  • the ammonia vaporizer 61 is a heat transfer tube provided inside the first container 81 of the condenser 114, and the liquid ammonia supplied from the ammonia tank 71 as the supply pump 73 is driven flows through the heat transfer tube. Vaporize with
  • the steam in the condenser 114 is condensed to produce condensed water, and the liquid ammonia in the ammonia vaporizer 61 is vaporized to produce ammonia gas.
  • Ammonia gas is discharged from the ammonia vaporizer 61 and supplied to the boiler 10, for example.
  • the heat transfer tube 117 or the ammonia vaporizer 61 may be immersed in the condensed water that collects at the bottom of the condenser 114 (not shown).
  • the ammonia vaporizer 61 when the ammonia vaporizer 61 is immersed in condensed water, liquid ammonia exchanges heat with the condensed water. Even in this case, the ammonia vaporizer 61 vaporizes liquid ammonia using the condensed water as a heat source, and the condenser 114 can condensate the steam through cooling of the condensed water.
  • the ammonia vaporizer 61 immersed in the condensed water may be arranged downstream with respect to the heat transfer tube 117 in the direction of steam flow.
  • the ammonia supply unit 60 does not have to include the ammonia tank 71 and the supply pump 73 .
  • the supply of liquid ammonia to the ammonia vaporizer 61 may be performed by a large tank truck or a ship that stores liquid ammonia.
  • the ammonia vaporizer 61 vaporizes liquid ammonia using at least one of steam and condensed water inside the condenser 114 as a direct heat source. Therefore, a heat source for vaporizing liquid ammonia can be secured.
  • liquid ammonia is used for condensate treatment in addition to cooling water, condensate treatment in condenser 114 is accelerated. As a result, the pressure inside the condenser 114 is sufficiently reduced, and the thermal efficiency of the thermal cycle such as the Rankine cycle including the turbine 110, the condenser 114, and the boiler 10 is improved.
  • the ammonia supply unit 60 that can secure the amount of heat for vaporizing the liquid ammonia and improve the thermal efficiency of the heat cycle is realized.
  • the ratio of the latent heat of vaporization to the calorific value of ammonia is about 6%, which is higher than that of fuel such as propane (the ratio of the latent heat of vaporization to the calorific value is about 0.8%). Therefore, when liquid ammonia is vaporized using the steam extracted from the turbine 110 as a heat source, power generation efficiency tends to be lowered.
  • the heat exhausted in the condenser 114 is used to vaporize the liquid ammonia, and the pressure drop in the condenser 114 is accelerated, so the turbine efficiency of the turbine 110 is increased. It is possible to suppress a decrease in power generation efficiency.
  • the ammonia vaporizer 61 includes two or more vaporizers 61A provided in parallel.
  • two vaporizers 61A are provided as heat transfer tubes. Liquid ammonia supplied from the ammonia tank 71 is vaporized while flowing through one of the vaporizers 61A.
  • the two vaporizers 61A may operate (vaporization processing) at different timings, or may operate simultaneously. According to the above configuration, each of the two or more vaporizers 61A provided in parallel discharges ammonia gas having approximately the same temperature. Therefore, the amount of ammonia gas generated per unit time that has reached the specified temperature increases.
  • the ammonia supply unit 60A includes a switching valve 76 for switching the operating state of each vaporizer 61A.
  • the switching valve 76 of this example is an opening/closing valve provided in each of the two liquid ammonia supply pipes 74, and the number of the switching valves 76 is two. Liquid ammonia from the supply line 72 flows through the liquid ammonia supply pipe 74 with the switching valve 76 open, and is supplied to the vaporizer 61A. As a result, the vaporizer 61A is activated to perform the vaporization process.
  • the switching valve 76 may be a three-way valve (channel switching valve) provided at the connection between the two liquid ammonia supply pipes 74 and the supply line 72 . In this case, the number of switching valves 76 is one.
  • FIG. 4 is a graph conceptually illustrating operating periods of two vaporizers in accordance with an embodiment of the present disclosure;
  • the two vaporizers 61A are configured to alternately perform the vaporization process according to the operation of the switching valve 76 .
  • the end time of one vaporization process and the start time of the other vaporization process are the same.
  • the other vaporization process may start.
  • one vaporization process may begin before the other vaporization process ends. This is because when the two vaporizers are operated for a certain period of time at the time of switching, fluctuations in the flow rate at the time of switching are reduced, and a constant amount of ammonia gas can be stably supplied.
  • vapor or condensate may adhere to the operating vaporizer 61A as deposits such as frost or ice.
  • the deposits adhere to the outer surface of the heat transfer tubes forming the vaporizer 61A. It should be noted that such deposition of deposits can occur even when the vaporizer 61A is immersed in condensed water. If the vaporizer 61A continues the vaporization process as it is, there is a risk that the precipitates will accumulate further, hindering the heat transfer to the liquid ammonia, and liquid ammonia may remain in the ammonia gas discharged from the vaporizer 61A. .
  • the ammonia supply unit 60A can continuously and stably perform the liquid ammonia vaporization process.
  • the ammonia supply unit 60A of the first embodiment includes a temperature sensor 78 for detecting the temperature of ammonia gas on the outlet side of the vaporizer 61A.
  • a temperature sensor 78 is provided on each of the two ammonia gas outlet tubes 77 .
  • the two ammonia gas outlet pipes 77 are connected to the outlets of the two vaporizers 61A, respectively.
  • the ammonia gas flowing through the two ammonia gas outlet pipes 77 is supplied to the boiler 10 via the ammonia gas supply pipe 69 described above.
  • the ammonia supply unit 60A includes a controller 90 configured to control the switching valve 76 based on the measurement results of the two temperature sensors 78. However, in FIG. 3, the controller 90 is electrically connected only to one temperature sensor 78 and one switching valve 76 for the convenience of making the drawing easier to see.
  • the controller 90 includes a processor that executes various arithmetic processes, and a memory that non-temporarily or temporarily stores various data processed by the processor.
  • a processor is implemented by a CPU, a GPU, an MPU, a DSP, various arithmetic devices other than these, or a combination thereof.
  • Memory may be implemented by ROM, RAM, flash memory, or a combination thereof. Note that the controller 90 may be configured to control the power plant 1 .
  • the controller 90 is configured to adjust the operating period of the ammonia vaporizer 61 through control of the switching valve 76 so that excessive deposits do not accumulate on the ammonia vaporizer 61 .
  • the principle is as follows. As the deposit accumulates in the ammonia vaporizer 61, the amount of heat used for vaporizing the liquid ammonia decreases, so the outlet temperature of the ammonia gas tends to decrease. Therefore, in response to the fact that the outlet temperature of the ammonia gas discharged from the ammonia vaporizer 61 in operation satisfies a specified drop condition (details will be described later), the vaporization process in the ammonia vaporizer 61 in operation is suspended. , the other ammonia vaporizer 61 starts the vaporization process. As a result, the ammonia vaporizer 61 that performs the vaporization process can be automatically switched, and discharge of liquid ammonia from the ammonia vaporizer 61 can be suppressed.
  • the controller 90 of the present embodiment opens the switching valve corresponding to one of the temperature sensors 78 when determining that the outlet temperature measured by one of the temperature sensors 78 satisfies a specified drop condition.
  • the two switching valves 76 are controlled such that one switching valve 76 is closed and the other switching valve 76 that is closed is opened. This control is realized by sending a control signal from the controller 90 to each switching valve 76 .
  • the above drop condition is that the temperature characteristic value specified based on the outlet temperature measured by the temperature sensor 78 falls below a prescribed threshold value.
  • the temperature characteristic value of this embodiment is the same as the outlet temperature measured by the temperature sensor 78 .
  • the temperature characteristic value of another embodiment is specified by measuring the temperature sensor 78 a plurality of times.
  • the temperature characteristic value is a temperature average value, a temperature prediction value, or a temperature change rate of the ammonia gas outlet temperature.
  • the above temperature change rate becomes a negative value.
  • a single temperature sensor 78 may be provided in the ammonia gas supply pipe 69. Even in this case, if the operating periods of the two vaporizers 61A do not overlap, the outlet temperature of the ammonia gas discharged from the vaporizer 61A in operation is detected based on the detection result of the temperature sensor 78. It is possible. Therefore, the controller 90 can control the switching valve 76 based on the detection result of the single temperature sensor 78 .
  • the switching valve 76 can be automatically opened and closed according to the outlet temperature of the ammonia gas. Therefore, excessive accumulation of deposits in the ammonia vaporizer 61 can be automatically suppressed.
  • the ammonia supply unit 60A exemplified in FIG. 3 is configured to supply the boiler 10 with ammonia gas generated by the vaporization process. More specifically, the ammonia supply unit 60A includes an ammonia gas supply pipe 69 for supplying the boiler 10 with the ammonia gas vaporized by the ammonia vaporizer 61 . According to the above configuration, liquid ammonia can be changed into ammonia gas and supplied to the boiler 10 as fuel. Therefore, the heat source in the condenser 114 can be effectively used to supply ammonia gas as fuel to the boiler 10 .
  • the first container 81 of the ammonia supply unit 60A accommodates the ammonia vaporizer 61 and the heat transfer tube 117.
  • the ammonia vaporizer 61 is positioned upstream with respect to the heat transfer tube 117 in the direction in which the steam flows.
  • heat exchange between steam and liquid ammonia is performed before heat exchange between steam and cooling water. Since heat is transferred from the vapor before it is cooled by the cooling water to the liquid ammonia, it is possible to ensure the amount of heat for vaporizing the liquid ammonia.
  • FIG. 5 is a schematic diagram showing an ammonia supply unit according to a second embodiment of the present disclosure.
  • the ammonia supply unit 60B (60) according to the second embodiment communicates the second container 82 containing at least one ammonia vaporizer 61 with the first container 81 and the second container 82 of the condenser 114.
  • a communicating pipe 85 is provided.
  • Steam from the turbine 110 (low-pressure turbine 113 ) flows into the second container 82 via the communication pipe 85 .
  • the steam that has flowed in is condensed by exchanging heat with liquid ammonia flowing through the ammonia vaporizer 61 .
  • the second vessel 82 forms part of the condenser 114 as it functions to condense the steam from the turbine 110 .
  • Condensed water generated in the second container 82 flows into the first container 81 via a drain pipe 83, which is a component of the ammonia supply unit 60B.
  • the communication pipe 85 is connected to the first vessel 81 and the second vessel 82, but instead of this, the steam flow path 89 between the turbine 110 and the first vessel 81 It may be connected to the second container 82 . Even in this case, if the downstream end of the steam flow path 89 is connected to the first container 81, the first container 81 and the second container 82 are provided in parallel with each other. In the illustration of FIG.
  • the ammonia vaporizer 61 comprises two vaporizers 61A provided inside the second container 82, but these two vaporizers 61A may be connected in parallel with each other. Also, another ammonia vaporizer 61 may be provided inside the first container 81 . That is, the number of ammonia vaporizers 61 may be two or more.
  • the ammonia supply unit 60B can be completed by additionally installing the second container 82, the drain pipe 83, and the communication pipe 85. Therefore, construction of the ammonia supply unit 60B can be facilitated.
  • the bottom portion 82A of the second container 82 is provided at a higher position than the bottom portion 81A of the first container 81. According to the above configuration, the condensed water generated in the second container 82 easily flows into the first container 81 via the drain pipe 83 . Therefore, steam or condensed water can be circulated without stagnation.
  • FIG. 6 is a schematic diagram showing an ammonia supply unit according to a third embodiment of the present disclosure.
  • the ammonia supply unit 60C (60) according to the third embodiment differs from the ammonia supply unit 60B in that the first container 81 and the second container 82 are provided in series. Specifically, the connection destination of the steam passage 89 is replaced with the first container 81 and replaced with the second container 82, and the ammonia supply unit 60C (60) is replaced with the communication pipe 85 (see FIG. 5). , and a communication pipe 86 is provided. Steam flow path 89 forms a downstream flow path of turbine 110 (low-pressure turbine 113 ) and is connected to turbine 110 and second vessel 82 .
  • the communication pipe 86 is connected to the second container 82 and the first container 81 . Accordingly, steam discharged from turbine 110 flows into second vessel 82 via steam flow path 89 .
  • the condensed water generated in the second container 82 flowed through the drain pipe 83, the steam remaining in the condensate treatment of the second container 82 flowed into the first container 81 through the communication pipe 86, and the first container 81 remained. Condensate the steam.
  • ammonia can be The supply unit 60C is completed. Since additional work such as drilling work for the existing first container is reduced, it is possible to realize simplification of construction of the ammonia supply unit 60C.
  • FIG. 7 is a flow chart illustrating an ammonia vaporization method for a power plant according to one embodiment of the present disclosure.
  • FIG. 8 is a flow chart showing a vaporization process according to an embodiment of the present disclosure.
  • the flowcharts shown in FIGS. 7 and 8 are executed by the controller 90 as an example.
  • the ammonia gas generated by the ammonia vaporization method described below may be used as either a fuel or a reducing agent.
  • step may be abbreviated as "S”.
  • the vaporization process is executed (S11).
  • at least one ammonia vaporizer 61 vaporizes liquid ammonia.
  • the operation state of each of two or more vaporizers 61A connected in parallel is switched. Switching of the operation state of each vaporizer 61A is performed by the controller 90 controlling the switching valve 76 based on the detection result of the temperature sensor 78.
  • one of the ammonia vaporizers 61 performs vaporization (S31).
  • the controller 90 transmits a control signal for switching to an open state to one switching valve 76 of the two switching valves 76 that are both closed.
  • liquid ammonia flows into one of the ammonia vaporizers 61, and the liquid ammonia is vaporized.
  • Liquid ammonia generated by the vaporization process is used as fuel for the boiler 10, for example.
  • the controller 90 determines whether the temperature characteristic value specified based on the measurement result of the temperature sensor 78 corresponding to the ammonia vaporizer 61 executing the vaporization process satisfies the lowering condition (S33).
  • the controller 90 determines that the descent condition is not satisfied (33: NO)
  • the controller 90 determines not to end the vaporization process (S35: NO)
  • the process returns to S33.
  • the controller 90 switches the ammonia vaporizer 61 that performs the vaporization process (S37).
  • the controller 90 sends a control signal to each of the two switching valves 76 such that the open switching valve 76 closes and the closed switching valve 76 opens. After that, the process returns to S33. In this manner, the controller 90 repeats S31 to S37 so that the two ammonia vaporizers 61 automatically perform the vaporization process alternately.
  • the controller 90 stops the ammonia vaporizer 61 that is executing the vaporization process (S39). Specifically, the controller 90 sends a control signal to the open switching valve 76 so that the switching valve 76 closes. After the vaporization process is finished, the process returns to the flow illustrated in FIG. 7, and the ammonia vaporization method ends.
  • An ammonia supply unit (60) for a power plant comprises: At least one ammonia vaporizer (61) is provided inside a condenser (114) for condensing the steam discharged from the turbine (110) and for vaporizing liquid ammonia.
  • the ammonia vaporizer (61) vaporizes liquid ammonia using at least one of steam and condensed water inside the condenser (114) as a direct heat source. Therefore, a heat source for vaporizing liquid ammonia can be secured.
  • liquid ammonia is used for condensate treatment in addition to cooling water, condensate treatment in the condenser (114) is accelerated. As a result, the pressure inside the condenser (114) is sufficiently lowered, and the thermal efficiency of the thermal cycle involving the turbine (110) and the condenser (114) is improved. Therefore, an ammonia supply unit (60) for a power plant that can secure the amount of heat for vaporizing liquid ammonia and improve the thermal efficiency of the heat cycle is realized.
  • the ammonia supply unit (60) of 1) above comprising:
  • the condenser (114) is a heat transfer tube (117) configured to allow cooling water to flow therein;
  • a first container (81) that houses the heat transfer tube (117), a second vessel (82) provided in communication with said first vessel (81) to form part of said condenser (114) and containing said at least one ammonia vaporizer (61); .
  • the condensed water generated in the second container (82) easily flows into the first container (81). Therefore, steam or condensed water can be circulated without stagnation.
  • the ammonia supply unit (60) of 1) above comprising: The condenser (114) is a heat transfer tube (117) configured to allow cooling water to flow therein; a first container (81) that houses the heat transfer tube (117); including The at least one ammonia vaporizer (61) is arranged upstream of the heat transfer tube (117) within the first vessel (81).
  • the steam in the condenser (114) exchanges heat with liquid ammonia before heat exchange with cooling water. Thereby, the amount of heat for vaporizing the liquid ammonia can be secured.
  • the at least one ammonia vaporizer (61) includes two or more vaporizers (61A) arranged in parallel.
  • each of the two or more vaporizers (61A) provided in parallel discharges ammonia gas at approximately the same temperature. Therefore, it is possible to increase the amount of ammonia gas generated per unit time that has reached the specified temperature.
  • the ammonia supply unit (60) of 6) above comprising: a temperature sensor (78) for detecting the temperature of the ammonia gas on the outlet side of each vaporizer (61A); and a controller (90) for controlling the switching valve (76) based on the detection result of the temperature sensor (78).
  • the switching valve (76) is controlled by the controller (90) according to the outlet temperature of the ammonia gas, thereby automatically preventing excessive deposits from depositing in the vaporizer (61A). can be suppressed to
  • liquid ammonia can be changed into ammonia gas and supplied to the boiler (10) as fuel. Therefore, the heat source in the condenser (114) can be effectively used to supply ammonia gas as fuel to the boiler (10).
  • An ammonia vaporization method for a power plant comprising: A vaporization step (S11) of vaporizing liquid ammonia by at least one ammonia vaporizer (61) provided inside a condenser (114) for condensing steam from a turbine (110). Prepare.
  • each of the vaporizers (61A) detects the temperature of the ammonia gas on the outlet side of each vaporizer (61A) based on the detection result of the temperature sensor (78) for detecting the temperature of the ammonia gas. control the switching valve (76) for switching the operating state of
  • the operation state of the vaporizer (61A) can be stably switched by controlling the switching valve (76) based on the temperature of the ammonia gas.
  • a power plant (1) comprising: a boiler (10); a turbine (110) for rotating powered by steam from the boiler (10); a generator (115) for generating electricity from rotation of said turbine (110); a condenser (114) for condensing the steam discharged from the turbine (110); at least one ammonia vaporizer (61) provided inside the condenser (114) for vaporizing liquid ammonia; Prepare.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Feeding And Controlling Fuel (AREA)

Abstract

発電プラント用のアンモニア供給ユニットは、少なくとも1つのアンモニア気化器を備える。アンモニア気化器は、タービンから排出される蒸気を復水処理するための復水器の内部に設けられる。アンモニア気化器は、復水器の内部にある蒸気または凝縮水を熱源として、液体アンモニアを気化処理するように構成される。

Description

発電プラント用のアンモニア供給ユニット、発電プラント用のアンモニア気化処理方法、及び発電プラント
 本開示は、発電プラント用のアンモニア供給ユニット、発電プラント用のアンモニア気化処理方法、及び発電プラントに関する。
 本願は、2021年7月12日に日本国特許庁に出願された特願2021-114843号に基づき優先権を主張し、その内容をここに援用する。
 特許文献1は、液化天然ガス(以下、LNGという)が燃料として用いられる発電プラントを開示しており、復水器が冷媒配管を介してLNG気化器と接続される。タービンから復水器に流入した蒸気は冷媒配管を流れる冷却水によって熱を回収され、熱を回収した冷却水はLNG気化器に流入しLNGの気化処理に用いられる。
特開平8-200017号公報
 上記特許文献では、液体アンモニアを気化処理するための構成は開示されておらず、液体アンモニアを気化処理するための熱量を確保するための構成も開示されていない。また、上記特許文献の復水器の内部では、タービンを通過した蒸気と、冷媒配管を流れる冷却水との熱交換が行われるのみであるため、復水器内での復水処理が不十分となるおそれがある。この場合、復水器の内部の圧力が十分に下がらず、発電効率が低下するおそれがある。
 本開示の目的は、液体アンモニアを気化処理するための熱量を確保し、且つ熱サイクルの熱効率を向上できる発電プラント用のアンモニア供給ユニット、発電プラント用のアンモニア気化処理方法、及び発電プラントを提供することである。
 本開示の少なくとも一実施形態に係る発電プラント用のアンモニア供給ユニットは、
 タービンから排出される蒸気を復水処理するための復水器の内部に設けられ、液体アンモニアを気化処理するための少なくとも1つのアンモニア気化器を備える。
 本開示の少なくとも一実施形態に係る発電プラント用のアンモニア気化処理方法は、
 タービンからの蒸気を復水処理するための復水器の内部に設けられた少なくとも1つのアンモニア気化器により、液体アンモニアを気化処理する気化処理工程を備える。
 本開示の少なくとも一実施形態に係る発電プラントは、
 ボイラと、
 前記ボイラからの蒸気を動力源として回転するためのタービンと、
 前記タービンの回転により発電するための発電機と、
 前記タービンから排出される蒸気を復水処理するための復水器と、
 前記復水器の内部に設けられ、液体アンモニアを気化処理するための少なくとも1つのアンモニア気化器と、
を備える。
 本開示によれば、液体アンモニアを気化処理するための熱量を確保し、且つ熱サイクルの熱効率を向上できる発電プラント用のアンモニア供給ユニット、発電プラント用のアンモニア気化処理方法、及び発電プラントを提供できる。
本開示の一実施形態に係るボイラを表す概略図である。 本開示の一実施形態に係る発電プラントの概略図である。 本開示の第1の実施形態に係るアンモニア供給ユニットを示す概略図である。 本開示の一実施形態に係る2つの気化器の稼働期間を概念的に示すグラフである。 本開示の第2の実施形態に係るアンモニア供給ユニットを示す概略図である。 本開示の第3の実施形態に係るアンモニア供給ユニットを示す概略図である。 本開示の一実施形態に係る発電プラント用のアンモニア気化処理方法を示すフローチャートである。 本開示の一実施形態に係る気化処理工程を示すフローチャートである。
 以下、本開示に係る好適な実施形態を図面を参照して説明する。なお、この実施形態により本発明が限定されるものではなく、また、実施形態が複数ある場合には、各実施形態を組み合わせて構成するものも含むものである。以降の説明で、上や上方とは鉛直方向上側を示し、下や下方とは鉛直方向下側を示すものであり、鉛直方向は厳密ではなく誤差を含むものである。
 また、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本開示の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 一方、一の構成要素を「備える」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
 なお、同様の構成については同じ符号を付し説明を省略することがある。
<ボイラ10及び発電プラント1の概要>
 図1は、本開示の一実施形態に係るボイラを表す概略図である。
 本開示の一実施形態に係るボイラ10は、石炭(炭素含有固体燃料)を粉砕した微粉炭を微粉燃料として用い、この微粉燃料をバーナにより燃焼させ、この燃焼により発生した熱を給水や蒸気と熱交換して過熱蒸気を生成することが可能な石炭焚き(微粉炭焚き)ボイラである。本実施形態のボイラ10は、微粉燃料の他に、液体アンモニアを気化処理することで生成されるアンモニアガスをバーナにより燃焼させる。従って、本実施形態のボイラ10では、微粉炭とアンモニアガスとの混焼が行われる。
 本実施形態において、図1に示すように、ボイラ10は、火炉11と燃焼装置12と燃焼ガス通路13を有している。火炉11は、四角筒の中空形状をなして鉛直方向に沿って設置されている。火炉11を構成する火炉壁101は、複数の伝熱管とこれらを接続するフィンとで構成され、微粉燃料またはアンモニアガスの少なくとも一方の燃焼により発生した熱を伝熱管の内部を流通する水や蒸気と熱交換して、火炉壁101の温度上昇を抑制している。
 燃焼装置12は、火炉11を構成する火炉壁101の下部側に設けられている。本実施形態では、燃焼装置12は、火炉壁101に装着された複数のバーナ(例えば21,22,23,24,25)を有している。例えばバーナ21,22,23,24,25は、火炉11の周方向に沿って均等間隔で配設されたものが1セットとして、鉛直方向に沿って複数段(例えば、図1では5段)配置されている。但し、火炉の形状や一つの段におけるバーナの数、段数、配置などはこの実施形態に限定されるものではない。
 バーナ21,22,23は、アンモニアガス供給管69に連結されている。アンモニアガス供給管69は、液体アンモニアを気化処理してアンモニアガスを生成するための発電プラント用のアンモニア供給ユニット60(以下、単にアンモニア供給ユニット60という場合がある)の構成要素である。アンモニア供給ユニット60の詳細は後述する。
 バーナ24,25は、微粉炭供給管29,33を介して複数の粉砕機(ミル)34,35に連結されている(以下、粉砕機34,35を総称して、粉砕機3という場合がある)。この粉砕機3では、例えば、ハウジング内に粉砕テーブル(図示省略)が駆動回転可能に支持され、この粉砕テーブルの上方に複数の粉砕ローラ(図示省略)が粉砕テーブルの回転に連動回転可能に支持されて構成されている。石炭が、複数の粉砕ローラと粉砕テーブルとの間に投入されると、粉砕され、搬送用ガス(1次空気、酸化性ガス)により粉砕機3のハウジング内の分級機(図示省略)に搬送されて、所定の粒径範囲内に分級された微粉燃料を、微粉炭供給管29,33からバーナ24,25に供給することができる。なお、搬送用ガスは微粉燃料を乾燥させる役割も併せて担う。
 上述の搬送用ガスは、外気を取り込む1次空気通風機31(PAF:Primary Air Fan)から空気管30を介して粉砕機3に送出される。空気管30は、1次空気通風機31から送出された空気のうちエアヒータ42で加熱された熱空気が流れる熱空気誘導管30Aと、1次空気通風機31から送出された空気のうちエアヒータ42を経由しない常温に近い冷空気が流れる冷空気誘導管30Bと、熱空気と冷空気が合流して流れるための搬送用ガス流路30Cとを備える。熱空気誘導管30Aと冷空気誘導管30Bにはそれぞれ、熱空気ダンパ30Dと冷空気ダンパ30Eが設けられる。これらダンパの各々の開度が、微粉炭燃料の供給条件に応じて調整されることで、搬送用ガス流路30Cを流れる搬送用ガスの流量及び温度が調整される。なお、本実施形態では、搬送用ガス流路30Cを流れる搬送用ガスには、熱空気誘導管30Aからの熱空気が含まれる。つまり、空気管30は、燃料としての石炭を粉砕する粉砕機3にエアヒータ42で加熱された熱空気を導くように構成される。
 また、火炉11は、バーナ21,22,23,24,25の装着位置に風箱36が設けられており、この風箱36に空気ダクト(風道)37の一端部が連結されている。空気ダクト37は、他端部に押込通風機(FDF:Forced Draft Fan)38が設けられている。
 燃焼ガス通路13は、図1に示すように、火炉11の鉛直方向上部に連結されている。燃焼ガス通路13は、燃焼ガスの熱を回収するための熱交換器として、過熱器102,103,104、再熱器105,106、節炭器107が設けられており、火炉11で発生した燃焼ガスと各熱交換器の内部を流通する給水や蒸気との間で熱交換が行われる。
 燃焼ガス通路13は、図1に示すように、その下流側に熱交換を行った燃焼ガスが排出される煙道14が連結されている。煙道14には、空気ダクト37と空気管30の各々を流れる空気を加熱するためのエアヒータ(空気予熱器)42が設けられる。エアヒータ42において、空気ダクト37を流れる外気と、煙道14を流れる燃焼ガスとの間で熱交換が行われ、バーナ21,22,23,24,25に供給する燃焼用空気を昇温することができる。また、エアヒータ42において、熱空気誘導管30Aに向けて流れる外気と、煙道14を流れる燃焼ガスとの間で熱交換が行われ、外気は熱空気に変化することができる。従って、エアヒータ42はボイラ10の排熱を用いて外気を加熱するように構成されていると了解される。
 また、煙道14は、エアヒータ42より上流側の位置に脱硝装置43が設けられている。脱硝装置43は、アンモニア、尿素水等の窒素酸化物を還元する作用を有する還元剤を煙道14内に供給し、還元剤が供給された燃焼ガス中の窒素酸化物と還元剤との反応を、脱硝装置43内に設置された脱硝触媒の触媒作用により促進させることで、燃焼ガス中の窒素酸化物を除去、低減するものである。なお、上述したアンモニアガス供給管69は、脱硝装置43に接続されてもよい。つまり、アンモニア供給ユニット60から供給されるアンモニアガスは還元剤として用いられてもよい。この場合のアンモニア供給ユニット60は図1では2点鎖線によって図示されている。
 煙道14に連結されるガスダクト41は、エアヒータ42より下流側の位置に、電気集塵機などの集塵装置44、誘引通風機(IDF:Induced Draft Fan)45、脱硫装置46などが設けられ、下流端部に煙突50が設けられている。
 一方、複数の粉砕機34,35(3)が駆動すると、生成された微粉燃料が搬送用ガス(1次空気、酸化性ガス)と共に微粉炭供給管29,33を通してバーナ24,25に供給される。また、煙道14から排出された排ガスとエアヒータ42で熱交換することで、加熱された燃焼用空気(2次空気、酸化性ガス)が、空気ダクト37から風箱36を介してバーナ21,22,23,24,25に供給される。バーナ24,25は、微粉燃料と搬送用ガスとが混合した微粉燃料混合気を火炉11に吹き込むと共に燃焼用空気を火炉11に吹き込み、このときに微粉燃料混合気が着火することで火炎を形成することができる。火炉11内の下部で火炎が生じ、高温の燃焼ガスがこの火炉11内を上昇し、燃焼ガス通路13に排出される。微粉燃料混合気の吹込み開始と同時に(あるいは微粉燃料混合気の着火後)、バーナ21,22,23がアンモニアガスを火炉11に吹き込むことで、アンモニアガスの燃焼が起こり、微粉炭とアンモニアの混焼が行われる。なお、酸化性ガスとして、本実施形態では空気を用いる。空気よりも酸素割合が多いものや逆に少ないものであってもよく、燃料流量との適正化を図ることで使用可能になる。
 その後、燃焼ガスは、図1に示すように、燃焼ガス通路13に配置される第2過熱器103、第3過熱器104、第1過熱器102、(以下単に過熱器と記載する場合もある)、第2再熱器106、第1再熱器105(以下単に再熱器と記載する場合もある)、節炭器107で熱交換した後、脱硝装置43により窒素酸化物が還元除去され、集塵装置44で粒子状物質が除去され、脱硫装置46にて硫黄酸化物が除去された後、煙突50から大気中に排出される。なお、各熱交換器は燃焼ガス流れに対して、必ずしも前記記載順に配置されなくともよい。
 なお、図1では燃焼ガス通路13内の各熱交換器(過熱器102,103,104、再熱器105,106、節炭器107)の位置を正確に示しているものではなく、各熱交換器の燃焼ガス流れに対する配置順も図1の記載に限定されるものではない。
 図2は、本開示の一実施形態に係る発電プラントの概略図である。本実施形態の発電プラント1は、一例として上述の各熱交換器を含むボイラ10と、ボイラ10からの蒸気を動力源として回転するためのタービン110と、タービン110の回転により発電するための発電機115と、タービン110から排出される蒸気を復水処理するための復水器114と、復水器114によって復水処理された凝縮水をボイラ10に送るためのボイラ給水ポンプ123と、アンモニア供給ユニット60とを備える。ボイラ10、タービン110、復水器114、及びボイラ給水ポンプ123は、規定の熱サイクル(例えばランキンサイクル)を形成する。この熱サイクルでタービン110から取り出された仕事によって、発電機115は電力を生成する。この熱サイクルにおける循環熱媒体は、三重点以上の圧力と温度で循環する水である。
 一実施形態では、アンモニア供給ユニット60を除く発電プラント1の上述の構成要素はいずれも既存の設備であり、アンモニア供給ユニット60はこれら既存の設備に対して追設される。
 本実施形態のタービン110は、例えば、高圧タービン111と中圧タービン112と低圧タービン113とから構成され、燃焼ガス通路13(図1参照)を流れる燃焼ガスから熱回収する再熱器105,106を介して、高圧タービン111と中圧タービン112は互いに接続される。低圧タービン113には、復水器114が連結されている。復水器114は、冷却水が内部を流れるように構成された伝熱管117を収容する。冷却水は、例えば、海水、淡水、又は汽水などである。本実施形態の復水器114の内部には、アンモニア供給ユニット60の構成要素である少なくとも1つのアンモニア気化器61が設けられる。アンモニア気化器61は、液体アンモニアを気化処理するように構成される。低圧タービン113を回転駆動した蒸気は、復水器114に流入して、冷却水と液体アンモニアにより冷却されて凝縮水となる。このとき、アンモニア気化器61では液体アンモニアが気化処理されてアンモニアガスが生成される。
 復水器114は、給水ラインL1を介して節炭器107に連結されている。給水ラインL1には、例えば、復水ポンプ(CP)121、低圧給水ヒータ122、ボイラ給水ポンプ(BFP)123、高圧給水ヒータ124が設けられている。低圧給水ヒータ122と高圧給水ヒータ124には、タービン111,112,113(110)を駆動する蒸気の一部が抽気されて、抽気ライン(図示省略)を介して高圧給水ヒータ124と低圧給水ヒータ122に熱源として供給され、節炭器107へ供給される給水が加熱される。
 上述した実施形態では、ボイラ10をアンモニアガスとの混焼が行われる石炭焚きボイラとしたが、石炭専焼ボイラであってもよい。この場合、アンモニア供給ユニット60は、還元剤としてのアンモニアガスを煙道14へ供給するように構成されればよい。
 また、ボイラ10で用いられる燃料としては、バイオマス燃料や石油精製時に発生するPC(石油コークス:Petroleum Coke)燃料、石油残渣などの固体燃料であってもよい。また、燃料として固体燃料に限らず、重油、軽油、重質油などの石油類や工場廃液などの液体燃料も使用することができ、更には、燃料として気体燃料(天然ガス、副生ガスなど)も使用することができる。さらに、これら燃料を組み合わせて使用する混焼焚きボイラにも適用することができる。
 また、気化したアンモニアガスはボイラ10の燃料以外に、他の発電手段(ガスタービン発電等)の燃料としてもよい。さらに、ガスタービンコンバインドサイクルプラントにおいて設置された復水器114で気化されたアンモニアガスを、ガスタービンの燃料として用いてもよい。
 <アンモニア供給ユニット60の詳細の第1の例示>
 図3は、本開示の第1の実施形態に係るアンモニア供給ユニットを示す概略図である。第1の施形態に係るアンモニア供給ユニット60A(60)の詳説に先立ち、復水器114について詳説する。復水器114は、伝熱管117を収容する第1容器81を含む。復水器114はタービン110(低圧タービン113)の真下に配置される。
 第1の実施形態に係るアンモニア供給ユニット60A(60)は、液体アンモニアを貯留するアンモニアタンク71と、復水器114の内部に設けられた少なくとも1つのアンモニア気化器61と、アンモニアタンク71からアンモニア気化器61に液体アンモニアを供給するための供給ライン72と、供給ライン72に設けられた供給ポンプ73とを備える。一例として、アンモニア気化器61は復水器114の第1容器81の内部に設けられた伝熱管であり、供給ポンプ73の駆動に伴いアンモニアタンク71から供給される液体アンモニアは伝熱管を流れる過程で気化する。
 本実施形態では、タービン110(低圧タービン113)から復水器114の第1容器81に流入した蒸気が、上述した伝熱管117を流れる冷却水との間で熱交換をするとともに、アンモニア気化器61を流れる液体アンモニアとの間で熱交換をする。これにより、復水器114内の蒸気は復水処理されて凝縮水が生成されるとともに、アンモニア気化器61にある液体アンモニアは気化処理されてアンモニアガスが生成される。アンモニアガスはアンモニア気化器61から排出され、例えばボイラ10に供給される。
 なお、伝熱管117またはアンモニア気化器61は、復水器114の底部に溜まる凝縮水に浸漬してもよい(図示省略)。例えばアンモニア気化器61が凝縮水に浸漬する場合、液体アンモニアは凝縮水との間で熱交換をする。この場合でも、アンモニア気化器61は凝縮水を熱源として液体アンモニアを気化処理するとともに、凝縮水の冷却を通じて復水器114は蒸気を復水処理できる。また、凝縮水に浸漬するアンモニア気化器61は、蒸気の流れる方向において、伝熱管117に対して下流側に配置されてもよい。さらに、複数のアンモニア気化器61のいずれかのみが伝熱管117に対して下流側に配置されてもよい。また、アンモニア供給ユニット60はアンモニアタンク71と供給ポンプ73を備えなくてもよい。例えば、アンモニア気化器61への液体アンモニアの供給は、液体アンモニアを貯留する大型タンクローリまたは船舶などによって行われてもよい。
 上記構成によれば、アンモニア気化器61は、復水器114の内部にある蒸気または凝縮水の少なくとも一方を直接的な熱源として、液体アンモニアを気化処理する。従って、液体アンモニアを気化処理するための熱源を確保できる。同時に、冷却水の他に液体アンモニアが復水処理に用いられるので、復水器114における復水処理が促進される。結果、復水器114の内部の圧力は十分に下がり、タービン110、復水器114、及びボイラ10を含む例えばランキンサイクルなどの熱サイクルの熱効率は向上する。よって、液体アンモニアを気化処理するための熱量を確保し、且つ熱サイクルの熱効率を向上できるアンモニア供給ユニット60が実現する。
 また、アンモニアにおける発熱量に対する蒸発潜熱の割合は約6%であり、例えばプロパン(発熱量に対する蒸発潜熱の割合は約0.8%)などの燃料と比較しても高い。従って、タービン110から抽気した蒸気を熱源として液体アンモニアを気化処理する場合には、発電効率の低下を招きやすい。しかしながら、本実施形態では、復水器114において排熱されることとなる熱を利用して液体アンモニアの気化処理を行うと共に、復水器114における圧力降下を促進するので、タービン110のタービン効率が上昇し、発電効率の低下を抑制することができる。
 図3で例示される実施形態では、アンモニア気化器61は、並列に設けられた2以上の気化器61Aを含む。図示される実施形態では、伝熱管としての2つの気化器61Aが設けられている。アンモニアタンク71から供給される液体アンモニアは、いずれかの気化器61Aを流れる過程で気化する。2つの気化器61Aは互いに異なるタイミングで稼働(気化処理)してもよし、同時に稼働してもよい。上記構成によれば、並列に設けられた2以上の気化器61Aの各々では、同程度の温度のアンモニアガスが排出される。従って、規定温度に達したアンモニアガスの単位時間当たりの生成量が増大する。
 本実施形態では、2つの気化器61Aの稼働状態は互いに切り替わる。より詳細には、アンモニア供給ユニット60Aは各々の気化器61Aの稼働状態を切り替えるための切替弁76を備える。本例の切替弁76は、2つの液体アンモニア供給管74の各々に設けられる開閉バルブであり、切替弁76の個数は2個である。切替弁76が開いた液体アンモニア供給管74には、供給ライン72からの液体アンモニアが流れて気化器61Aに供給される。これにより、気化器61Aは稼働して気化処理を実行する。なお、他の実施形態では、切替弁76は、2つの液体アンモニア供給管74と供給ライン72との接続部に設けられた3方弁(流路切替弁)であってもよい。この場合、切替弁76の個数は1個である。
 図4は、本開示の一実施形態に係る2つの気化器の稼働期間を概念的に示すグラフである。本実施形態では、2つの気化器61Aは、切替弁76の動作に応じて交互に気化処理を実行するように構成される。図4で例示される実施形態では、一方の気化処理の終了時刻と、他方の気化処理の開始時刻が同じであるが、他の実施形態では、一方の気化処理が終了してから規定の時間を空けて、他方の気化処理が開始してもよい。
 さらに他の実施形態では、一方の気化処理が終了する前に他の気化処理を開始してもよい。切り替え時に二つの気化器が一定の時間重複して稼働したほうが、切り替え時の流量の変動が少なく、安定して一定量のアンモニアガスを供給できるためである。
 液体アンモニアの温度は極めて低いので、蒸気または凝縮水が、稼働中の気化器61Aに霜または氷などの析出物として付着するおそれがある。より具体的な一例として、気化器61Aを構成する伝熱管の外表面に析出物は付着する。なお、このような析出物の付着は、気化器61Aが凝縮水に浸漬する場合であっても発生し得る。
 気化器61Aがそのまま気化処理を継続すると、析出物がさらに堆積し、液体アンモニアへの熱伝達が阻害されるおそれがあり、気化器61Aから排出されるアンモニアガスに液体アンモニアが残存するおそれがある。この点、上記構成によれば、一方の気化器61Aが気化処理し、且つ他方の気化器61Aが休止する時間帯が生じる。他方の気化器61Aでは、付着した析出物が復水器114の内部の蒸気または凝縮水によって除去される。よって、アンモニア供給ユニット60Aは、液体アンモニアの気化処理を継続的且つ安定的に実行することができる。
 このように、並列に設けられた2以上の気化器61Aを全て同時に稼働させるよりも、各々の気化器61Aの稼働状態を選択的に切り替える方が、規定温度に達したアンモニアガスを継続的且つ安定的に生成できる。
 図3に戻り、第1実施形態のアンモニア供給ユニット60Aは、気化器61Aの出口側のアンモニアガスの温度を検出するための温度センサ78を含む。図示される実施形態では、温度センサ78は、2つのアンモニアガス出口管77の各々に設けられる。2つのアンモニアガス出口管77はそれぞれ2つの気化器61Aの出口に接続される。本実施形態では、2つのアンモニアガス出口管77を流れるアンモニアガスが、上述したアンモニアガス供給管69を経由してボイラ10に供給される。
 アンモニア供給ユニット60Aは、2つの温度センサ78の計測結果に基づき切替弁76を制御するように構成されたコントローラ90を備える。但し、図3では図面を見易くする都合、コントローラ90は、一方の温度センサ78及び一方の切替弁76とのみ電気的に接続されている。
 コントローラ90は、各種演算処理を実行するプロセッサと、プロセッサによって処理される各種データを非一時的または一時的に記憶するメモリとを備える。プロセッサは、CPU、GPU、MPU、DSP、これら以外の各種演算装置、又はこれらの組み合わせなどによって実現される。メモリは、ROM、RAM、フラシュメモリ、またはこれらの組み合わせなどによって実現される。なお、コントローラ90は発電プラント1を制御するように構成されてもよい。
 アンモニア気化器61に過度の析出物が堆積しないよう、コントローラ90は切替弁76の制御を通じて、アンモニア気化器61の稼働期間を調整するように構成される。その原理は以下の通りである。アンモニア気化器61に析出物が堆積するほど、液体アンモニアの気化処理に用いられる熱量が低下するため、アンモニアガスの出口温度は下がる傾向にある。従って、稼働中のアンモニア気化器61から排出されるアンモニアガスの出口温度が規定の降下条件(詳細は後述)を満たすことに応答して、稼働中のアンモニア気化器61での気化処理を休止し、他方のアンモニア気化器61で気化処理を開始する。これにより、気化処理を実行するアンモニア気化器61を自動的に切り替え、液体アンモニアがアンモニア気化器61から排出されるのを抑制できる。
 上記の原理に基づき、本実施形態のコントローラ90は、一方の温度センサ78によって計測される出口温度が規定の降下条件を満たすと判定した場合に、一方の温度センサ78に対応する開いた切替弁76が閉じ、閉じている他方の切替弁76が開くよう、2つの切替弁76を制御する。この制御は、コントローラ90から各々の切替弁76に制御信号が送られることで実現する。
 なお、上記の降下条件は、温度センサ78により計測される出口温度に基づいて特定される温度特性値が規定の閾値を下回ることである。本実施形態の温度特性値は、温度センサ78によって計測された出口温度と同一である。他の実施形態の温度特性値は、温度センサ78が複数回に亘り計測することで特定される。より具体的な一例として温度特性値は、アンモニアガスの出口温度の温度平均値、温度予測値、または温度変化率などである。なお、アンモニアガスの出口温度が継続的に低下する場合には、上記の温度変化率は負の値となる。
 なお、他の実施形態では、単一の温度センサ78がアンモニアガス供給管69に設けられてもよい。この場合であっても、2つ気化器61Aの稼働期間が重ならないのであれば、この温度センサ78の検出結果に基づき、稼働中の気化器61Aから排出されるアンモニアガスの出口温度を検出することは可能である。従って、コントローラ90は、単一の温度センサ78の検出結果に基づいて切替弁76を制御できる。
 上記構成によれば、アンモニアガスの出口温度に応じて、切替弁76の開閉動作を自動的に実行させることができる。よって、アンモニア気化器61に析出物が過度に堆積するのを自動的に抑制できる。
 図3で例示されるアンモニア供給ユニット60Aは、気化処理により生成されたアンモニアガスをボイラ10に供給するように構成される。より具体的には、アンモニア供給ユニット60Aは、アンモニア気化器61によって気化処理されたアンモニアガスをボイラ10に供給するためのアンモニアガス供給管69を備える。上記構成によれば、液体アンモニアをアンモニアガスに変化させてボイラ10に燃料として供給できる。従って、復水器114にある熱源を有効に活用して、燃料としてのアンモニアガスをボイラ10に供給することができる。
 図3で例示される実施形態では、アンモニア供給ユニット60Aの第1容器81が、アンモニア気化器61と伝熱管117とを収容する。アンモニア気化器61は伝熱管117に対して、蒸気が流れる方向において上流側に位置する。上記構成によれば、復水器114おいて、蒸気と冷却水との熱交換の前に、蒸気と液体アンモニアとの熱交換が行われる。冷却水によって冷却される前の蒸気から液体アンモニアに伝熱がなされるので、液体アンモニアを気化処理するための熱量を確保できる。
 <アンモニア供給ユニット60の詳細の第2の例示>
 図5は、本開示の第2の実施形態に係るアンモニア供給ユニットを示す概略図である。第2の実施形態に係るアンモニア供給ユニット60B(60)は、少なくとも1つのアンモニア気化器61を収容する第2容器82と、復水器114の第1容器81と第2容器82とを連通する連通管85とを備える。第2容器82には、タービン110(低圧タービン113)からの蒸気が連通管85を経由して流入する。流入した蒸気はアンモニア気化器61を流れる液体アンモニアと熱交換することで凝縮する。従って、第2容器82はタービン110からの蒸気を復水する機能を担うので、復水器114の一部を形成すると了解される。第2容器82で生じた凝縮水は、アンモニア供給ユニット60Bの構成要素である排水管83を経由して第1容器81に流れる。
 なお、図示される実施形態では、連通管85が第1容器81と第2容器82とに接続されるが、これに代えて、タービン110及び第1容器81の間にある蒸気流路89と第2容器82とに接続されてもよい。この場合であっても、蒸気流路89の下流端が第1容器81と接続されているのであれば、第1容器81と第2容器82は互いに並列に設けられる。図5の例示では、アンモニア気化器61は、第2容器82の内部に設けられた2つの気化器61Aを備えるが、これら2つの気化器61Aは互いに並列に接続されてもよい。また、第1容器81の内部に別のアンモニア気化器61が設けられてもよい。つまり、アンモニア気化器61の個数は2個以上であってもよい。
 上記構成によれば、第1容器81が既存の設備であっても、第2容器82、排水管83、及び連通管85を追設すれば、アンモニア供給ユニット60Bは完成する。よって、アンモニア供給ユニット60Bの施工を容易化できる。
 図5で例示される実施形態では、第2容器82の底部82Aは、第1容器81の底部81Aよりも高い位置に設けられる。上記構成によれば、第2容器82で生じた凝縮水が排水管83を経由して第1容器81に流れ易い。従って、蒸気または凝縮水が滞ることなく循環できる。
 <アンモニア供給ユニット60の詳細の第3の例示>
 図6は、本開示の第3実施形態に係るアンモニア供給ユニットを示す概略図である。第3の実施形態に係るアンモニア供給ユニット60C(60)は、第1容器81と第2容器82とが直列に設けられる点で、アンモニア供給ユニット60Bとは異なる。構成の具体的な違いを説明すると、蒸気流路89の接続先を第1容器81に代えて第2容器82とし、アンモニア供給ユニット60C(60)は、連通管85(図5参照)に代えて、連通管86を備える。蒸気流路89は、タービン110(低圧タービン113)の下流側流路を形成しており、タービン110と第2容器82とに接続される。連通管86は、第2容器82と第1容器81とに接続される。従って、タービン110から排出される蒸気は蒸気流路89を経由して第2容器82に流入する。第2容器82で生じた凝縮水は排水管83を介し、第2容器82の復水処理において残存した蒸気は連通管86を介し、第1容器81に流入し、第1容器81は残存した蒸気を復水処理する。
 上記構成によれば、第1容器81が既存の設備であっても、蒸気流路89の接続先を変更し、第2容器82、排水管83、及び連通管86を追設すれば、アンモニア供給ユニット60Cは完成する。穴開け作業など、既存の第1容器に対する追加的な施工が低減するため、アンモニア供給ユニット60Cの施工の容易化を実現できる。
<発電プラント用のアンモニア気化処理方法の例示>
 図7は、本開示の一実施形態に係る発電プラント用のアンモニア気化処理方法を示すフローチャートである。図8は、本開示の一実施形態に係る気化処理工程を示すフローチャートである。図7、図8で示されるフローチャートは、一例としてコントローラ90によって実行される。また、以下で説明するアンモニア気化処理方法によって生成されるアンモニアガスは燃料または還元剤のいずれに用いられてもよい。以下の説明では、ステップを「S」と略記する場合がある。
 図7に示すように、発電プラント用のアンモニア気化処理方法が開始されると、気化処理工程が実行される(S11)。気化処理工程では、少なくとも1つのアンモニア気化器61により、液体アンモニアを気化処理する。より具体的な一例として、本例の気化処理工程では、互いに並列に接続された2以上の気化器61Aの各々の稼働状態を切り替える。各々の気化器61Aの稼働状態の切り替えは、温度センサ78の検出結果に基づいてコントローラ90が切替弁76を制御することで実行される。以下では、アンモニア気化器61の個数は2つであり、2つの切替弁76がそれぞれ2つの液体アンモニア供給管74に設けられる実施形態を説明する。
 図8に示すように、気化処理工程でははじめに、片方のアンモニア気化器61で気化処理を実行する(S31)。コントローラ90は、いずれも閉じている2つの切替弁76のうち片方の切替弁76に対して、開状態に切替わるための制御信号を送信する。これにより、片方のアンモニア気化器61に液体アンモニアが流れ、液体アンモニアの気化処理が実行される。気化処理に伴い生成された液体アンモニアは、例えばボイラ10の燃料として利用される。
 続いて、気化処理を実行しているアンモニア気化器61に対応する温度センサ78の計測結果に基づいて特定される温度特性値が降下条件を満たすか判定される(S33)。降下条件が満たされないとコントローラ90が判定した場合(33:NO)、気化処理工程を終了するかが判定される(S35)。例えば、コントローラ90は、オペレータから送られる気化処理工程の終了指示信号を受信したか否かに基づき判定する。コントローラ90が気化処理工程を終了しないと判定した場合(S35:NO)、処理はS33に戻る。稼働中のアンモニア気化器61に過度の析出物が堆積しなければ、降下条件は満たされず(S33:NO)、気化処理工程の終了指示信号が受信されない間(S35:NO)、コントローラ90はS33、S35を繰り返す。
 やがて、稼働中のアンモニア気化器61に一定量の析出物が付着して降下条件が満たされると(S33:YES)、コントローラ90は、気化処理を実行するアンモニア気化器61を切り替える(S37)。コントローラ90は、開いている切替弁76が閉じ、閉じている切替弁76が開くよう、2つの切替弁76の各々に対して制御信号を送る。その後、処理はS33に戻る。このように、コントローラ90がS31~S37を繰り返すことによって、2つのアンモニア気化器61は交互に気化処理を自動的に実行する。
 気化処理工程を終了すると判定されると(S35:YES)、コントローラ90は、気化処理を実行しているアンモニア気化器61を停止させる(S39)。具体的には、コントローラ90は、開いている切替弁76が閉じるよう、この切替弁76に制御信号を送る。気化処理工程の終了後、処理は図7で例示されるフローに戻り、アンモニアの気化処理方法は終了する。
<まとめ>
 上述した幾つかの実施形態に記載の内容は、例えば以下のように把握されるものである。
1)本開示の少なくとも一実施形態に係る発電プラント用のアンモニア供給ユニット(60)は、
 タービン(110)から排出される蒸気を復水処理するための復水器(114)の内部に設けられ、液体アンモニアを気化処理するための少なくとも1つのアンモニア気化器(61)を備える。
 上記1)の構成によれば、アンモニア気化器(61)は、復水器(114)の内部にある蒸気または凝縮水の少なくとも一方を直接的な熱源として、液体アンモニアを気化処理する。従って、液体アンモニアを気化処理するための熱源を確保できる。同時に、冷却水の他に液体アンモニアが復水処理に用いられるので、復水器(114)における復水処理が促進される。結果、復水器(114)の内部の圧力は十分に下がり、タービン(110)及び復水器(114)を含む熱サイクルの熱効率は向上する。よって、液体アンモニアを気化処理するための熱量を確保し、且つ熱サイクルの熱効率を向上できる発電プラント用のアンモニア供給ユニット(60)が実現する。
2)幾つかの実施形態では、上記1)に記載のアンモニア供給ユニット(60)であって、
 前記復水器(114)は、
  冷却水が内部を流れるように構成された伝熱管(117)と、
  前記伝熱管(117)を収容する第1容器(81)と、を含み、
 前記復水器(114)の一部を形成するように前記第1容器(81)と連通して設けられ、前記少なくとも1つのアンモニア気化器(61)を収容する第2容器(82)を備える。
 上記2)の構成によれば、伝熱管(117)と第1容器(81)を含む復水器(114)が既存の設備であっても、アンモニア供給ユニット(60)を追設する施工を容易化できる。
3)幾つかの実施形態では、上記2)に記載のアンモニア供給ユニット(60)であって、
 前記第2容器(82)の底部(82A)は、前記第1容器(81)の底部(81A)よりも高い位置に設けられる。
 上記3)の構成によれば、第2容器(82)で生じた凝縮水が第1容器(81)に流れ易い。従って、蒸気または凝縮水が滞ることなく循環できる。
4)幾つかの実施形態では、上記1)に記載のアンモニア供給ユニット(60)であって、
 前記復水器(114)は、
  冷却水が内部を流れるように構成された伝熱管(117)と、
  前記伝熱管(117)を収容する第1容器(81)と、
を含み、
 前記少なくとも1つのアンモニア気化器(61)は、前記第1容器(81)内において前記伝熱管(117)の上流側に配置される。
 上記4)の構成によれば、復水器(114)において蒸気は、冷却水との熱交換の前に、液体アンモニアとの熱交換を行う。これにより、液体アンモニアを気化処理するための熱量を確保できる。
5)幾つかの実施形態では、上記1)から4)のいずれかに記載のアンモニア供給ユニット(60)であって、
 前記少なくとも1つのアンモニア気化器(61)は、並列に設けられた2以上の気化器(61A)を含む。
 上記5)の構成によれば、並列に設けられた2以上の気化器(61A)の各々では、同程度の温度のアンモニアガスが排出される。従って、規定温度に達したアンモニアガスの単位時間当たりの生成量を増大させることができる。
6)幾つかの実施形態では、上記5)に記載のアンモニア供給ユニット(60)であって、
 各々の前記気化器(61A)の稼働状態を切り替えるための切替弁(76)をさらに備える。
 液体アンモニアの気化処理に伴いアンモニア気化器(61)に付着する霜または氷などの析出物は、液体アンモニアへの熱伝達を阻害するおそれがある。この点、上記6)の構成によれば、切替弁(76)の切り替えによって、いずれかの気化器(61A)に析出物が過度に堆積するのを抑制できる。
7)幾つかの実施形態では、上記6)に記載のアンモニア供給ユニット(60)であって、
 各々の前記気化器(61A)の出口側のアンモニアガスの温度を検出するための温度センサ(78)と、
 前記温度センサ(78)の検出結果に基づいて前記切替弁(76)を制御するためのコントローラ(90)と、をさらに備える。
 上記7)の構成によれば、アンモニアガスの出口温度に応じて切替弁(76)をコントローラ(90)が制御することで、気化器(61A)に析出物が過度に堆積するのを自動的に抑制できる。
8)幾つかの実施形態では、上記1)から7)のいずれかに記載のアンモニア供給ユニット(60)であって、
 前記アンモニア気化器(61)によって気化処理されたアンモニアガスをボイラ(10)に供給するためのアンモニアガス供給管(69)をさらに備える。
 上記8)の構成によれば、液体アンモニアをアンモニアガスに変化させてボイラ(10)に燃料として供給できる。従って、復水器(114)にある熱源を有効に活用して、燃料としてのアンモニアガスをボイラ(10)に供給することができる。
9)本開示の少なくとも一実施形態に係る発電プラント用のアンモニア気化処理方法は、
 タービン(110)からの蒸気を復水処理するための復水器(114)の内部に設けられた少なくとも1つのアンモニア気化器(61)により、液体アンモニアを気化処理する気化処理工程(S11)を備える。
 上記9)の構成によれば、上記1)と同様の理由によって、液体アンモニアを気化処理するための熱量を確保し、且つ熱サイクルの熱効率を向上できる発電プラント用のアンモニア気化処理方法が実現する。
10)幾つかの実施形態では、上記9)に記載の発電プラント用のアンモニア気化処理方法であって、
 前記少なくとも1つのアンモニア気化器(61)は、互いに並列に接続された2以上の気化器(61A)を含み、
 前記気化処理工程(S11)では、各々の前記気化器(61A)の稼働状態を切り替える。
 上記10)の構成によれば、いずれかの気化器(61A)に析出物が過度に堆積するのを抑制できる。
11)幾つかの実施形態では、上記10)に記載の発電プラント用のアンモニア気化処理方法であって、
 前記気化処理工程(S11)では、各々の前記気化器(61A)の出口側のアンモニアガスの温度を検出するための温度センサ(78)の検出結果に基づいて、各々の前記気化器(61A)の稼働状態を切り替えるための切替弁(76)を制御する。
 上記11)の構成によれば、アンモニアガスの温度に基づいて切替弁(76)を制御することで、気化器(61A)の稼働状態を安定的に切り替えることができる。
12)本開示の少なくとも一実施形態に係る発電プラント(1)は、
 ボイラ(10)と、
 前記ボイラ(10)からの蒸気を動力源として回転するためのタービン(110)と、
 前記タービン(110)の回転により発電するための発電機(115)と、
 前記タービン(110)から排出される前記蒸気を復水処理するための復水器(114)と、
 前記復水器(114)の内部に設けられ、液体アンモニアを気化処理するための少なくとも1つのアンモニア気化器(61)と、
を備える。
 上記12)の構成によれば、上記1)と同様の理由によって、液体アンモニアを気化処理するための熱量を確保し、且つ熱サイクルの熱効率を向上できる発電プラント(1)が実現する。
1   :発電プラント
10  :ボイラ
60  :アンモニア供給ユニット
61  :アンモニア気化器
61A :気化器
69  :アンモニアガス供給管
76  :切替弁
78  :温度センサ
81  :第1容器
81A :底部
82  :第2容器
82A :底部
83  :排水管
85、86:連通管
89  :蒸気流路
90  :コントローラ
110 :タービン
111 :タービン
114 :復水器
115 :発電機
117 :伝熱管

Claims (12)

  1.  タービンから排出される蒸気を復水処理するための復水器の内部に設けられ、液体アンモニアを気化処理するための少なくとも1つのアンモニア気化器を備える、発電プラント用のアンモニア供給ユニット。
  2.  前記復水器は、
      冷却水が内部を流れるように構成された伝熱管と、
      前記伝熱管を収容する第1容器と、
    を含み、
     前記復水器の一部を形成するように前記第1容器と連通して設けられ、前記少なくとも1つのアンモニア気化器を収容する第2容器を備える、
    請求項1に記載の発電プラント用のアンモニア供給ユニット。
  3.  前記第2容器の底部は、前記第1容器の底部よりも高い位置に設けられる、
    請求項2に記載の発電プラント用のアンモニア供給ユニット。
  4.  前記復水器は、
      冷却水が内部を流れるように構成された伝熱管と、
      前記伝熱管を収容する第1容器と、
    を含み、
     前記少なくとも1つのアンモニア気化器は、前記第1容器内において前記伝熱管の上流側に配置される、
    請求項1に記載の発電プラント用のアンモニア供給ユニット。
  5.  前記少なくとも1つのアンモニア気化器は、並列に設けられた2以上の気化器を含む、
    請求項1乃至4の何れか一項に記載の発電プラント用のアンモニア供給ユニット。
  6.  各々の前記気化器の稼働状態を切り替えるための切替弁をさらに備える、
    請求項5に記載の発電プラント用のアンモニア供給ユニット。
  7.  各々の前記気化器の出口側のアンモニアガスの温度を検出するための温度センサと、
     前記温度センサの検出結果に基づいて前記切替弁を制御するためのコントローラと、をさらに備える、
    請求項6に記載の発電プラント用のアンモニア供給ユニット。
  8.  前記アンモニア気化器によって気化処理されたアンモニアガスをボイラに供給するためのアンモニアガス供給管をさらに備える、
    請求項1乃至3の何れか1項に記載の発電プラント用のアンモニア供給ユニット。
  9.  タービンからの蒸気を復水処理するための復水器の内部に設けられた少なくとも1つのアンモニア気化器により、液体アンモニアを気化処理する気化処理工程を備える、発電プラント用のアンモニア気化処理方法。
  10.  前記少なくとも1つのアンモニア気化器は、互いに並列に接続された2以上の気化器を含み、
     前記気化処理工程では、各々の前記気化器の稼働状態を切り替える、
    請求項9に記載の発電プラント用のアンモニア気化処理方法。
  11.  前記気化処理工程では、各々の前記気化器の出口側のアンモニアガスの温度を検出するための温度センサの検出結果に基づいて、各々の前記気化器の稼働状態を切り替えるための切替弁を制御する、
    請求項10に記載の発電プラント用のアンモニア気化処理方法。
  12.  ボイラと、
     前記ボイラからの蒸気を動力源として回転するためのタービンと、
     前記タービンの回転により発電するための発電機と、
     前記タービンから排出される前記蒸気を復水処理するための復水器と、
     前記復水器の内部に設けられ、液体アンモニアを気化処理するための少なくとも1つのアンモニア気化器と、
    を備える発電プラント。
PCT/JP2022/025665 2021-07-12 2022-06-28 発電プラント用のアンモニア供給ユニット、発電プラント用のアンモニア気化処理方法、及び発電プラント WO2023286588A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020247000398A KR20240017924A (ko) 2021-07-12 2022-06-28 발전 플랜트용 암모니아 공급 유닛, 발전 플랜트용 암모니아 기화 처리 방법 및 발전 플랜트

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021114843A JP7455781B2 (ja) 2021-07-12 2021-07-12 発電プラント用のアンモニア供給ユニット、発電プラント用のアンモニア気化処理方法、及び発電プラント
JP2021-114843 2021-07-12

Publications (1)

Publication Number Publication Date
WO2023286588A1 true WO2023286588A1 (ja) 2023-01-19

Family

ID=84919996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/025665 WO2023286588A1 (ja) 2021-07-12 2022-06-28 発電プラント用のアンモニア供給ユニット、発電プラント用のアンモニア気化処理方法、及び発電プラント

Country Status (4)

Country Link
JP (1) JP7455781B2 (ja)
KR (1) KR20240017924A (ja)
TW (1) TWI836497B (ja)
WO (1) WO2023286588A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7495023B1 (ja) 2023-03-28 2024-06-04 Jfeスチール株式会社 製造設備及び製造設備の操業方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018200029A (ja) * 2017-05-29 2018-12-20 株式会社Ihi 発電システム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08200017A (ja) 1995-01-23 1996-08-06 Ishikawajima Harima Heavy Ind Co Ltd 火力発電プラントのランキンサイクル
CN107044650B (zh) * 2017-02-06 2023-04-04 国网安徽省电力公司电力科学研究院 一种火电厂液氨脱硝汽轮机联合节能循环系统

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018200029A (ja) * 2017-05-29 2018-12-20 株式会社Ihi 発電システム

Also Published As

Publication number Publication date
JP2023011172A (ja) 2023-01-24
TWI836497B (zh) 2024-03-21
KR20240017924A (ko) 2024-02-08
TW202317858A (zh) 2023-05-01
JP7455781B2 (ja) 2024-03-26

Similar Documents

Publication Publication Date Title
KR100366873B1 (ko) 선택적 촉매 시스템을 위한 재열 연도 가스
WO2023286588A1 (ja) 発電プラント用のアンモニア供給ユニット、発電プラント用のアンモニア気化処理方法、及び発電プラント
JP2018155448A (ja) 発電プラント及びその運転方法
JP5137598B2 (ja) 汽力発電設備における通風系統
JP2007187352A (ja) ボイラの起動方法
WO2023095579A1 (ja) 燃焼制御方法、燃焼制御装置及び燃焼制御プログラム
CN206281365U (zh) 一种高温废气余热利用系统
JP2021021554A (ja) ボイラの制御装置、ボイラシステム、発電プラント、及びボイラの制御方法
JP2020106012A (ja) 発電プラントのバイパス制御システム及びその制御方法並びに制御プログラム、発電プラント
CN110094747A (zh) 吹灰器运转控制装置、吹灰器运转控制方法及燃烧系统
WO2023002814A1 (ja) アンモニア燃料供給ユニット、発電プラント、及びボイラの運転方法
JP7286530B2 (ja) 水処理装置及び発電プラント並びに水処理方法
JP5766527B2 (ja) 貫流ボイラの制御方法及び装置
JP2023068871A (ja) 排熱回収装置
WO2023120404A1 (ja) アンモニア燃料ボイラシステム
JP2024074568A (ja) アンモニア燃料漏洩検出装置及びボイラシステム並びにアンモニア燃料漏洩検出方法
JP7229796B2 (ja) Bfgバーナ装置、これを備えたボイラ、及びbfgバーナ装置の運転方法
JP6707058B2 (ja) 廃熱ボイラ、廃熱回収システム、及び廃熱回収方法
WO2023120397A1 (ja) アンモニア燃料ボイラシステム
JP2022144706A (ja) ボイラ制御システム及び発電プラント、並びにボイラ制御方法
JP2022112859A (ja) 運転状態改善システム及び発電プラント、並びに運転状態改善方法、並びに運転状態改善プログラム
JP2023124664A (ja) 真空維持装置、及び、蒸気タービンシステムの改造方法
Vishwakarma et al. To Improve Thermal Efficiency of 27mw Coal Fired Power Plant
JPH0421086B2 (ja)
JP2023123154A (ja) ボイラシステム用の配管ユニット、ボイラシステムの改造方法、及びボイラシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22841932

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247000398

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247000398

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2401000086

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE