TWI836497B - 發電廠用之氨供應單元、發電廠用之氨氣化處理方法、以及發電廠 - Google Patents

發電廠用之氨供應單元、發電廠用之氨氣化處理方法、以及發電廠 Download PDF

Info

Publication number
TWI836497B
TWI836497B TW111125056A TW111125056A TWI836497B TW I836497 B TWI836497 B TW I836497B TW 111125056 A TW111125056 A TW 111125056A TW 111125056 A TW111125056 A TW 111125056A TW I836497 B TWI836497 B TW I836497B
Authority
TW
Taiwan
Prior art keywords
ammonia
condenser
container
vaporizer
heat transfer
Prior art date
Application number
TW111125056A
Other languages
English (en)
Other versions
TW202317858A (zh
Inventor
竹井康裕
外野雅彦
住田忠
山內康弘
Original Assignee
日商三菱重工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商三菱重工業股份有限公司 filed Critical 日商三菱重工業股份有限公司
Publication of TW202317858A publication Critical patent/TW202317858A/zh
Application granted granted Critical
Publication of TWI836497B publication Critical patent/TWI836497B/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K17/00Using steam or condensate extracted or exhausted from steam engine plant
    • F01K17/06Returning energy of steam, in exchanged form, to process, e.g. use of exhaust steam for drying solid fuel or plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K5/00Feeding or distributing other fuel to combustion apparatus
    • F23K5/02Liquid fuel
    • F23K5/14Details thereof
    • F23K5/22Vaporising devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Feeding And Controlling Fuel (AREA)

Abstract

發電廠用之氨供應單元係具備至少1個氨氣化器。氨氣化器設置在用於將從渦輪機排出的蒸氣實施凝汽處理之凝汽器的內部。氨氣化器構成為,使用凝汽器的內部之蒸氣或凝結水作為熱源來將液氨實施氣化處理。

Description

發電廠用之氨供應單元、發電廠用之氨氣化處理方法、以及發電廠
本發明係關於發電廠用之氨供應單元、發電廠用之氨氣化處理方法、以及發電廠。
本申請案是主張基於2021年7月12日申請之日本特願2021-114843號的優先權,並將其內容援用於此。
在專利文獻1揭示使用液化天然氣(以下稱為LNG)作為燃料之發電廠,凝汽器是透過冷卻介質配管來與LNG氣化器連接。從渦輪機流入凝汽器的蒸氣,藉由流經冷卻介質配管的冷卻水將熱回收,使進行熱回收後的冷卻水流入LNG氣化器而運用於LNG的氣化處理。
[先前技術文獻] [專利文獻]
[專利文獻1]日本特開平8-200017號公報
在上述專利文獻,並未揭示用於將液氨氣化處理的構成,也沒有揭示用於為了確保用於將液氨氣化處理的熱量之構成。又,在上述專利文獻之凝汽器的內部,由於僅進行通過渦輪機的蒸氣和流經冷卻介質配管的冷卻水間之熱交換,有在凝汽器內的凝汽處理不足的疑慮。在此情況,有凝汽器之內部的壓力無法充分下降而使發電效率降低的疑慮。
本發明之目的是為了提供可確保用於將液氨氣化處理的熱量且提高熱循環之熱效率的發電廠用之氨供應單元、發電廠用之氨氣化處理方法、以及發電廠。
本發明的至少一實施形態的發電廠用之氨供應單元,係具備有用於將液氨實施氣化處理之至少1個氨氣化器,前述至少1個氨氣化器設置在用於將從渦輪機排出的蒸氣實施凝汽處理之凝汽器的內部。
本發明的至少一實施形態的發電廠用之氨氣化處理方法,係具備:藉由設置在凝汽器的內部之至少1個氨氣化器將液氨實施氣化處理之氣化處理工序,前述凝汽器係用於將來自渦輪機的蒸氣實施凝汽處理。
本發明的至少一實施形態之發電廠,係具備:鍋爐、用於以來自前述鍋爐的蒸氣作為動力源進行旋轉之渦輪機、 用於藉由前述渦輪機的旋轉進行發電之發電機、 用於將從前述渦輪機排出的前述蒸氣實施凝汽處理之凝汽器、及 設置在前述凝汽器的內部且用於將液氨實施氣化處理之至少1個氨氣化器。
依據本發明,能夠提供可確保用於將液氨氣化處理的熱量且提高熱循環之熱效率的發電廠用之氨供應單元、發電廠用之氨氣化處理方法、以及發電廠。
以下,針對本發明的較佳實施形態,參照圖式做說明。又並非藉由該實施形態來限定本發明,又當實施形態有複數個的情況,還包含將各實施形態組合而構成者。在以下的說明,上或上方表示鉛直方向上側,下或下方表示鉛直方向下側,鉛直方向不是嚴格的鉛直方向而包含誤差。 又作為實施形態所記載或圖式所示的構成零件之尺寸、材質、形狀、其相對配置等,並非用於限定本發明的範圍,不過只是說明例。 例如,「朝某一方向」、「沿某一方向」、「平行」、「正交」、「中心」、「同心」或「同軸」等之表示相對或絕對的配置之表現,並非僅嚴格地表示那樣的配置,也表示帶有公差、或以可獲得相同功能的程度之角度或距離相對地位移之狀態。 例如,「同一」、「相等」及「均質」等的表示事物相等的狀態之表現,並非僅嚴格地表示相等的狀態,也表示帶有公差、或存在可獲得相同功能的程度之差的狀態。 例如四角形狀、圓筒形狀等之表示形狀的表現,不僅表示幾何學上嚴格的定義之四角形狀、圓筒形狀等的形狀,在可獲得相同效果的範圍內,也表示包含凹凸部、倒角部等的形狀。 另一方面,「具備」、「包含」或「具有」一構成要件的表現,並非將其他構成要件的存在除外之排他性表現。 又對於同樣的構成,會有賦予同一符號而將說明省略的情形。
<鍋爐10及發電廠1的概要> 圖1係顯示本發明的一實施形態之鍋爐的概略圖。
本發明的一實施形態之鍋爐10是燃煤(燃粉煤)鍋爐,其使用將煤(含碳固體燃料)粉碎而成的粉煤作為微粉燃料,利用燃燒器讓該微粉燃料燃燒,可將藉由該燃燒所產生的熱與供水、蒸氣進行熱交換而生成過熱蒸氣。本實施形態的鍋爐10,除了微粉燃料,還讓將液氨氣化處理所生成的氨氣藉由燃燒器燃燒。因此,在本實施形態的鍋爐10,是進行粉煤和氨氣之混燒。
在本實施形態,如圖1所示般,鍋爐10係具有:爐膛11、燃燒裝置12、燃燒氣體通路13。爐膛11是呈四方筒的中空形狀且沿著鉛直方向設置。構成爐膛11之爐膛壁101,是由複數根傳熱管和用於將其等連接之鰭片(fin)所構成,讓藉由微粉燃料或氨氣的至少一方之燃燒所產生之熱與流過傳熱管的內部之水、蒸氣進行熱交換,藉此抑制爐膛壁101的溫度上升。
燃燒裝置12設置在構成爐膛11之爐膛壁101的下部側。在本實施形態,燃燒裝置12具有:裝設於爐膛壁101之複數個燃燒器(例如21,22,23,24,25)。例如燃燒器21,22,23,24,25,是以沿著爐膛11之周方向隔著均等間隔配設者為1組(set),沿著鉛直方向配置有複數段(例如,在圖1有5段)。但關於爐膛的形狀、每一段之燃燒器的數量、段數、配置等,並不限定於本實施形態。
燃燒器21,22,23是與氨氣供應管69連結。氨氣供應管69是用於將液氨氣化處理來生成氨氣的發電廠用之氨供應單元60(以下會有簡稱為「氨供應單元60」的情況)之構成要件。關於氨供應單元60,稍後將詳細說明。
燃燒器24,25是透過粉煤供應管29,33來連結於複數個粉碎機(mill)34,35(以下會有將粉碎機34,35總稱為「粉碎機3」的情況)。該粉碎機3構成為,例如在殼體內將粉碎台(圖示省略)可驅動旋轉地支承,在該粉碎台的上方將複數個粉碎輥(圖示省略)可與粉碎台之旋轉連動旋轉地支承。若將煤投入複數個粉碎輥和粉碎台之間,經粉碎後,藉由搬運用氣體(1次空氣、氧化性氣體)搬運到粉碎機3之殼體內的分級機(圖示省略),可將被分級到既定的粒徑範圍內之微粉燃料從粉煤供應管29,33供應給燃燒器24,25。又搬運用氣體也兼具有讓微粉燃料乾燥的作用。
上述搬運用氣體,是從導入外氣之1次空氣通風機31(PAF:Primary Air Fan)透過空氣管30送到粉碎機3。空氣管30係具備:讓從1次空氣通風機31送出的空氣當中之由空氣加熱器42加熱後的熱空氣流過之熱空氣誘導管30A、讓從1次空氣通風機31送出的空氣當中之未經由空氣加熱器42而接近常溫的冷空氣流過之冷空氣誘導管30B、及讓熱空氣和冷空氣合流而流過之搬運用氣體流路30C。在熱空氣誘導管30A和冷空氣誘導管30B分別設置熱空氣擋板30D和冷空氣擋板30E。按照粉煤燃料的供應條件來調整各擋板的開度,藉此調整流過搬運用氣體流路30C之搬運用氣體的流量及溫度。又在本實施形態,流過搬運用氣體流路30C的搬運用氣體,是包含來自熱空氣誘導管30A的熱空氣。亦即,空氣管30構成為,將藉由空氣加熱器42加熱後的熱空氣導引到將作為燃料的煤粉碎之粉碎機3。
爐膛11,是在燃燒器21,22,23,24,25的裝設位置設置風箱36,在該風箱36連結空氣導管(風道)37的一端部。在空氣導管37之另一端部設置強制通風機(FDF:Forced Draft Fan)38。
燃燒氣體通路13,如圖1所示般,是連結於爐膛11之鉛直方向上部。在燃燒氣體通路13,作為將燃燒氣體的熱回收之熱交換器,係設有過熱器102,103,104、再熱器105,106、省煤器107,藉此於在爐膛11產生之燃燒氣體和流過各熱交換器的內部之供水、蒸氣之間進行熱交換。
燃燒氣體通路13,如圖1所示般,在其下游側連結讓進行了熱交換之燃燒氣體排出的煙道14。在煙道14設置:用於將流過空氣導管37和空氣管30的空氣加熱之空氣加熱器(空氣預熱器)42。在空氣加熱器42中,在流過空氣導管37的外氣和流過煙道14的燃燒氣體之間進行熱交換,可將供應給燃燒器21,22,23,24,25的燃燒用空氣升溫。又在空氣加熱器42中,在朝向熱空氣誘導管30A流動的外氣和流過煙道14的燃燒氣體之間進行熱交換,可將外氣改變成熱空氣。因此,空氣加熱器42構成為,使用鍋爐10的排熱將外氣加熱。
又在煙道14之比空氣加熱器42更上游側的位置設置脫硝裝置43。脫硝裝置43,是將具有將氨、尿素水等的氮氧化物還原的作用之還原劑供應給煙道14內,利用設置在脫硝裝置43內之脫硝觸媒的觸媒作用來促進被供應還原劑之燃燒氣體中的氮氧化物和還原劑之反應,藉此將燃燒氣體中的氮氧化物除去或減少。又上述氨氣供應管69亦可連接於脫硝裝置43。亦即,從氨供應單元60供應的氨氣可作為還原劑使用。在此情況的氨供應單元60,在圖1是用2點鏈線圖示。 連結於煙道14之氣體導管41,在比空氣加熱器42更下游側的位置設置:靜電集塵機等的集塵裝置44、誘導通風機(IDF:Induced Draft Fan)45、脫硫裝置46等,在下游端部設置煙囪50。
另一方面,若將複數個粉碎機34,35(3)驅動,所生成的微粉燃料會和搬運用氣體(1次空氣、氧化性氣體)一起通過粉煤供應管29,33供應給燃燒器24,25。又和從煙道14排出的廢氣空氣在加熱器42進行熱交換,被加熱的燃燒用空氣(2次空氣、氧化性氣體)是從空氣導管37透過風箱36供應給燃燒器21,22,23,24,25。燃燒器24,25,是將由微粉燃料和搬運用氣體所混合成的微粉燃料混合氣吹入爐膛11,並將燃燒用空氣吹入爐膛11,這時可使微粉燃料混合氣著火而形成火焰。在爐膛11內的下部產生火焰,高溫的燃燒氣體在該爐膛11內上升,而沿著燃燒氣體通路13被排出。在與微粉燃料混合氣的開始吹入同時(或微粉燃料混合氣的著火後),燃燒器21,22,23將氨氣吹入爐膛11,藉此產生氨氣的燃燒,而進行粉煤和氨的混燒。又作為氧化性氣體,在本實施形態是使用空氣。氧氣比例比空氣更多或更少者亦可,藉由謀求其與燃料流量之最適化即可使用。
然後,如圖1所示般,燃燒氣體在配置於燃燒氣體通路13之第2過熱器103、第3過熱器104、第1過熱器102(以下會有簡稱為「過熱器」的情況)、第2再熱器106、第1再熱器105(以下會有簡稱為「再熱器」的情況)、省煤器107進行熱交換之後,藉由脫硝裝置43將氮氧化物還原除去,藉由集塵裝置44將粒子狀物質除去,藉由脫硫裝置46將硫氧化物除去之後,從煙囪50往大氣中排出。相對於燃燒氣體流,各熱交換器不一定要依前述順序配置。
又在圖1中,並非將燃燒氣體通路13內之各熱交換器(過熱器102,103,104、再熱器105,106、省煤器107)的位置準確地顯示,各熱交換器之相對於燃燒氣體流的配置順序也不限定於圖1的記載。
圖2係本發明的一實施形態之發電廠的概略圖。本實施形態的發電廠1,作為一例係具備:包含上述各熱交換器之鍋爐10、使用來自鍋爐10的蒸氣作為動力源來進行旋轉之渦輪機110、藉由渦輪機110的旋轉來進行發電之發電機115、將從渦輪機110排出的蒸氣實施凝汽處理之凝汽器114、將藉由凝汽器114凝汽處理後之凝結水送往鍋爐10之鍋爐供水泵123、氨供應單元60。鍋爐10、渦輪機110、凝汽器114及鍋爐供水泵123是形成規定的熱循環(例如郎肯循環(Rankine cycle))。在該熱循環,是藉由從渦輪機110取出的功,使發電機115生成電力。在該熱循環的循環加熱介質,是在三相點以上的壓力和溫度循環之水。 在一實施形態,除了氨供應單元60以外之發電廠1的上述構成要件都是現有的設備,氨供應單元60是對這些現有的設備追加設置。
本實施形態的渦輪機110,例如由高壓渦輪機111、中壓渦輪機112及低壓渦輪機113所構成,透過從流過燃燒氣體通路13(參照圖1)之燃燒氣體進行熱回收的再熱器105,106將高壓渦輪機111和中壓渦輪機112互相連接。在低壓渦輪機113連結凝汽器114。在凝汽器114收容傳熱管117,傳熱管117構成為讓冷卻水流過內部。冷卻水是例如海水、淡水或半鹹水等。在本實施形態的凝汽器114之內部,設置作為氨供應單元60的構成要件之至少1個氨氣化器61。氨氣化器61構成為將液氨實施氣化處理。將低壓渦輪機113旋轉驅動後的蒸氣流入凝汽器114,利用冷卻水和液氨冷卻而成為凝結水。這時,藉由氨氣化器61將液氨實施氣化處理而生成氨氣。
凝汽器114透過供水管線L1連結於省煤器107。在供水管線L1設置例如凝汽泵(CP)121、低壓供水加熱器122、鍋爐供水泵(BFP)123、高壓供水加熱器124。驅動渦輪機111,112,113(110)之蒸氣的一部分被抽取,透過抽氣管線(圖示省略)作為熱源供應給高壓供水加熱器124和低壓供水加熱器122,藉此將供應給省煤器107的供水加熱。
在上述實施形態,鍋爐10是採用與氨氣進行混燒之燃煤鍋爐,但亦可為燃煤專燒鍋爐。在此情況,氨供應單元60只要構成為將作為還原劑之氨氣往煙道14供應即可。 又作為在鍋爐10所使用的燃料,亦可為生質燃料、在石油精煉時產生之PC(石油焦:Petroleum Coke)燃料、石油殘渣等的固體燃料。又作為燃料並不限定於固體燃料,也能使用重油、輕油、重質油等的石油類、工場廢液等的液體燃料,再者,作為燃料也能使用氣體燃料(天然氣、副產氣體等)。再者,也能運用於將這些燃料組合來使用之混燒鍋爐。 又氣化的氨氣,除了鍋爐10的燃料,也能作為其他發電手段(氣渦輪機發電等)的燃料。再者,藉由設置在氣渦輪機複合循環發電廠的凝汽器114氣化後的氨氣,可作為氣渦輪機的燃料來使用。
<氨供應單元60之詳細的第1例示> 圖3係顯示本發明的第1實施形態之氨供應單元的概略圖。在詳細說明第1實施形態的氨供應單元60A(60)之前,先對凝汽器114做詳細地說明。凝汽器114包含用於收容傳熱管117之第1容器81。凝汽器114配置在渦輪機110(低壓渦輪機113)的正下方。 第1實施形態的氨供應單元60A(60)係具備:貯留液氨之氨貯槽71、設置在凝汽器114的內部之至少1個氨氣化器61、用於從氨貯槽71將液氨供應給氨氣化器61之供應管線72、及設置在供應管線72之供應泵73。作為一例,氨氣化器61是設置在凝汽器114之第1容器81的內部之傳熱管,隨著供應泵73的驅動而從氨貯槽71供應的液氨,在流過傳熱管的過程進行氣化。
在本實施形態,從渦輪機110(低壓渦輪機113)流入凝汽器114的第1容器81之蒸氣,和流過上述傳熱管117的冷卻水之間進行熱交換,並和流過氨氣化器61的液氨之間進行熱交換。藉此,將凝汽器114內的蒸氣實施凝汽處理而生成凝結水,並將位於氨氣化器61的液氨實施氣化處理而生成氨氣。氨氣從氨氣化器61排出而供應給例如鍋爐10。
又傳熱管117或氨氣化器61,亦可浸漬於積存在凝汽器114的底部之凝結水(圖示省略)。例如當氨氣化器61浸漬於凝結水的情況,是在液氨和凝結水之間進行熱交換。在此情況也是,氨氣化器61以凝結水作為熱源將液氨實施氣化處理,且通過凝結水的冷卻,凝汽器114可將蒸氣實施凝汽處理。又浸漬於凝結水之氨氣化器61,在蒸氣的流動方向上,亦可配置在傳熱管117的下游側。再者,僅複數個氨氣化器61之任一個配置在傳熱管117的下游側亦可。又氨供應單元60不具備氨貯槽71及供應泵73亦可。例如,對於氨氣化器61之液氨的供應,是藉由貯留液氨之大型槽車或船舶等來進行亦可。
依據上述構成,氨氣化器61是使用凝汽器114的內部之蒸氣或凝結水之至少一方作為直接熱源來對液氨實施氣化處理。因此,可確保用於將液氨氣化處理的熱源。同時,除了冷卻水,液氨也使用於凝汽處理,可促進凝汽器114的凝汽處理。結果,使凝汽器114的內部壓力充分下降,而使包含渦輪機110、凝汽器114及鍋爐10之例如郎肯循環等的熱循環之熱效率提高。如此可實現:能確保用於將液氨氣化處理的熱量且提高熱循環的熱效率之氨供應單元60。 又氨之相對於發熱量之蒸發潛熱的比例約6%,縱使與例如丙烷(相對於發熱量之蒸發潛熱的比例約0.8%)等的燃料比較,也非常高。因此,當使用從渦輪機110抽取的蒸氣作為熱源來將液氨實施氣化處理的情況,容易導致發電效率降低。然而,在本實施形態,是利用在凝汽器114被排熱的熱來進行液氨的氣化處理,並促進凝汽器114的壓力下降,因此能提高渦輪機110的渦輪機效率,而抑制發電效率降低。
在圖3所例示的實施形態,氨氣化器61包含並列設置之2個以上的氣化器61A。在圖示的實施形態,是設置作為傳熱管之2個氣化器61A。從氨貯槽71供應的液氨,在流過任一個氣化器61A的過程進行氣化。2個氣化器61A可在彼此不同的時點運轉(氣化處理),亦可同時運轉。依據上述構成,在並列設置之2個以上的氣化器61A分別排出同等程度的溫度之氨氣。因此,使到達了規定溫度之氨氣的每單位時間的生成量增大。
在本實施形態,將2個氣化器61A的運轉狀態互相切換。更詳細的說,氨供應單元60A具備:用於將各氣化器61A的運轉狀態切換之切換閥76。本例的切換閥76,是設置在2個液氨供應管74各個之開閉閥,切換閥76的個數為2個。在將切換閥76開啟之液氨供應管74,讓來自供應管線72的液氨流過而供應給氣化器61A。藉此,使氣化器61A運轉而實行氣化處理。又在其他實施形態,切換閥76可以是設置在2個液氨供應管74和供應管線72的連接部之三通閥(流路切換閥)。在此情況,切換閥76的個數是1個。
圖4係顯示本發明的一實施形態之2個氣化器的運轉期間之概念圖。在本實施形態是構成為,2個氣化器61A按照切換閥76的動作而交互實行氣化處理。在圖4所例示的實施形態,一方的氣化處理之結束時刻和另一方的氣化處理之開始時刻是相同的,但在其他實施形態,是從一方的氣化處理結束後經過規定的時間,再開始另一方的氣化處理。 又在另外的實施形態,是在一方的氣化處理結束前開始進行另一方的氣化處理。切換時使二個氣化器重複一定時間進行運轉,可減少切換時之流量的變動,能穩定地供應一定量的氨氣。
因為液氨的溫度極低,蒸氣或凝結水可能成為霜或冰等的析出物而附著在運轉中的氣化器61A。作為具體的一例,析出物是附著在構成氣化器61A之傳熱管的外表面。又如此般析出物的附著,在氣化器61A浸漬於凝結水的情況也可能發生。 若氣化器61A就那樣繼續進行氣化處理,析出物會進一步堆積,可能阻害對於液氨之熱傳遞,而有在從氣化器61A排出的氨氣殘存液氨的疑慮。針對這點,依據上述構成係具有:一方的氣化器61A進行氣化處理且另一方的氣化器61A暫停的時間帶。在另一方的氣化器61A上附著的析出物,可利用凝汽器114內部之蒸氣或凝結水予以除去。如此,氨供應單元60A可持續且穩定地實行液氨的氣化處理。 如此般,與讓並列設置之2個以上的氣化器61A全部同時運轉相比,將各氣化器61A的運轉狀態選擇性地切換可將到達了規定溫度之氨氣持續且穩定地生成。
返回圖3,第1實施形態的氨供應單元60A係包含:用於偵測氣化器61A之出口側的氨氣的溫度之溫度感測器78。在圖示的實施形態,溫度感測器78設置在2個氨氣出口管77的各個。2個氨氣出口管77分別連接於2個氣化器61A的出口。在本實施形態,流過2個氨氣出口管77的氨氣經由上述氨氣供應管69供應給鍋爐10。
氨供應單元60A具備有控制器90,控制器90構成為根據2個溫度感測器78的計測結果來控制切換閥76。但在圖3中,為了便於讓圖式易於觀察,控制器90僅電氣連接於一方的溫度感測器78及一方的切換閥76。 控制器90係具備:執行各種運算處理之處理器、將由處理器所處理的各種資料非暫時或暫時儲存之記憶體。處理器是藉由CPU、GPU、MPU、DSP、其等以外的各種運算裝置、或其等的組合等來實現。記憶體是藉由ROM、RAM、快閃記憶體、或其等的組合等來實現。又控制器90亦可構成為控制發電廠1。
為了避免在氨氣化器61堆積過多的析出物,控制器90是通過切換閥76的控制來調整氨氣化器61的運轉期間。其原理如下。隨著氨氣化器61上的析出物堆積越多,用於液氨的氣化處理之熱量降低,因此氨氣的出口溫度有下降的傾向。因此,因應從運轉中的氨氣化器61排出之氨氣的出口溫度滿足規定的下降條件(詳如後述),將運轉中的氨氣化器61之氣化處理暫停,並在另一方的氨氣化器61開始進行氣化處理。藉此,將實行氣化處理的氨氣化器61自動切換,可抑制液氨被從氨氣化器61排出。
根據上述原理,本實施形態的控制器90,當判定為藉由一方的溫度感測器78所計測之出口溫度滿足規定的下降條件的情況,將2個切換閥76控制成:將對應於一方的溫度感測器78之開啟中的切換閥76閉關,並將關閉中之另一方的切換閥76開啟。該控制,藉由從控制器90將控制信號送往各切換閥76來實現。 又上述下降條件,是根據由溫度感測器78所計測之出口溫度所界定的溫度特性值低於規定的閾值。本實施形態的溫度特性值,是與由溫度感測器78所計測的出口溫度相同。其他實施形態的溫度特性值,是藉由溫度感測器78之複數次的計測來界定。作為具體的一例,溫度特性值是氨氣之出口溫度的溫度平均值、溫度預測值、或溫度變化率等。又當氨氣的出口溫度持續下降的情況,上述溫度變化率成為負值。
又在其他實施形態,可將單一的溫度感測器78設置在氨氣供應管69。在此情況也是,只要2個氣化器61A的運轉期間不重疊,就能根據該溫度感測器78的偵測結果來偵測從運轉中的氣化器61A排出之氨氣的出口溫度。因此,控制器90可根據單一的溫度感測器78之偵測結果來控制切換閥76。
依據上述構成,可依據氨氣的出口溫度來自動實行切換閥76的開閉動作。如此,可自動抑制在氨氣化器61上之析出物的過度堆積。
圖3所例示的氨供應單元60A構成為,將藉由氣化處理所生成之氨氣供應給鍋爐10。更具體的說,氨供應單元60A係具備:用於將藉由氨氣化器61氣化處理後的氨氣供應給鍋爐10之氨氣供應管69。依據上述構成,可將液氨改變成氨氣而作為燃料供應給鍋爐10。因此,可有效地活用凝汽器114的熱源,而將作為燃料的氨氣供應給鍋爐10。
在圖3所例示的實施形態,氨供應單元60A的第1容器81係收容氨氣化器61和傳熱管117。氨氣化器61相對於傳熱管117,是位於蒸氣流動方向上之上游側。依據上述構成,在凝汽器114中,在進行蒸氣和冷卻水的熱交換之前,是進行蒸氣和液氨的熱交換。從被冷卻水冷卻之前的蒸氣對液氨進行傳熱,因此可確保將液氨氣化處理的熱量。
<氨供應單元60之詳細的第2例示> 圖5係顯示本發明的第2實施形態之氨供應單元的概略圖。第2實施形態的氨供應單元60B(60)係具備:收容至少1個氨氣化器61之第2容器82、及將凝汽器114的第1容器81和第2容器82連通之連通管85。來自渦輪機110(低壓渦輪機113)的蒸氣是經由連通管85流入第2容器82。所流入的蒸氣,藉由與流過氨氣化器61的液氨進行熱交換而被凝結。因此,因為第2容器82具有將來自渦輪機110的蒸氣凝汽的作用,其是構成凝汽器114的一部分。在第2容器82產生的凝結水,經由作為氨供應單元60B的構成要件之排水管83流入第1容器81。 又在圖示的實施形態,連通管85雖是連結於第1容器81和第2容器82,但連通管85亦可連接於位於渦輪機110及第1容器81間的蒸氣流路89和第2容器82。在此情況也是,只要蒸氣流路89的下游端與第1容器81連接,第1容器81和第2容器82就互相並列設置。在圖5的例示,氨氣化器61雖具備設置於第2容器82的內部之2個氣化器61A,但將這2個氣化器61A互相並列連接亦可。又在第1容器81的內部設置其他氨氣化器61亦可。亦即,氨氣化器61的個數亦可為2個以上。
依據上述構成,縱使第1容器81是現有的設備,只要將第2容器82、排水管83及連通管85追加設置,就能完成氨供應單元60B。如此,使氨供應單元60B的施工變容易。
在圖5所例示的實施形態,第2容器82的底部82A設置在比第1容器81的底部81A更高的位置。依據上述構成,易於讓在第2容器82產生的凝結水經由排水管83流入第1容器81。因此,可讓蒸氣或凝結水暢行無阻地循環。
<氨供應單元60之詳細的第3例示> 圖6係顯示本發明的第3實施形態之氨供應單元的概略圖。第3實施形態的氨供應單元60C(60),其與氨供應單元60B的差異點在於,將第1容器81和第2容器82串列設置。說明構成的具體差異在於,蒸氣流路89的連接對象是由第1容器81改變成第2容器82,氨供應單元60C(60)是代替連通管85(參照圖5)而具備連通管86。蒸氣流路89是形成渦輪機110(低壓渦輪機113)的下游側流路,且連接於渦輪機110和第2容器82。連通管86連接於第2容器82和第1容器81。因此,從渦輪機110排出的蒸氣是經由蒸氣流路89流入第2容器82。在第2容器82產生的凝結水透過排水管83流入第1容器81,且在第2容器82的凝汽處理殘存的蒸氣透過連通管86流入第1容器81,第1容器81是將殘存的蒸氣實施凝汽處理。
依據上述構成,縱使第1容器81是現有的設備,只要將蒸氣流路89的連接對象改變,並追加設置第2容器82、排水管83及連通管86,就能完成氨供應單元60C。可減少鑽孔作業等之對現有的第1容器之追加施工,因此可實現氨供應單元60C的施工容易化。
<發電廠用的氨氣化處理方法之例示> 圖7係顯示本發明的一實施形態之發電廠用的氨氣化處理方法之流程圖。圖8係顯示本發明的一實施形態之氣化處理工序的流程圖。在圖7、圖8所示的流程圖,作為一例是由控制器90實行。又藉由以下所說明的氨氣化處理方法生成之氨氣,可作為燃料或還原劑之任一者來使用。在以下的說明,會有將步驟簡稱為「S」的情況。
如圖7所示般,當發電廠用的氨氣化處理方法開始時,是實行氣化處理工序(S11)。在氣化處理工序,藉由至少1個氨氣化器61將液氨實施氣化處理。作為具體的一例,在本例的氣化處理工序,是將互相並列連接之2個以上的氣化器61A各個的運轉狀態切換。各氣化器61A的運轉狀態之切換,是根據溫度感測器78的偵測結果由控制器90控制切換閥76來實行。以下所說明的實施形態,氨氣化器61的個數為2個,2個切換閥76分別設置在2個液氨供應管74。
如圖8所示般,在氣化處理工序,首先在一方的氨氣化器61實行氣化處理(S31)。控制器90對都是關閉中的2個切換閥76中之一方的切換閥76發送用於切換成開啟狀態之控制信號。藉此,在一方的氨氣化器61讓液氨流過,而實行液氨的氣化處理。隨著氣化處理所生成的氨氣,作為例如鍋爐10的燃料來利用。
接下來,根據與實行氣化處理之氨氣化器61對應的溫度感測器78之計測結果,判定所界定的溫度特性值是否滿足下降條件(S33)。當控制器90判定為未滿足下降條件的情況(33:否),判定是否將氣化處理工序結束(S35)。例如,控制器90根據是否接收到從操作者送來之氣化處理工序的結束指示信號來判定。當控制器90判定不結束氣化處理工序的情況(S35:否),處理返回S33。只要在運轉中的氨氣化器61上沒有堆積過多的析出物,在未滿足下降條件(S33:否)且未接收氣化處理工序之結束指示信號的期間(S35:否),控制器90反覆進行S33、S35。
不久,當在運轉中的氨氣化器61上附著一定量的析出物而滿足下降條件時(S33:是),控制器90將實行氣化處理的氨氣化器61進行切換(S37)。控制器90以將開啟中的切換閥76關閉並將關閉中的切換閥76開啟的方式,對2個切換閥76分別發送控制信號。然後,處理返回S33。如此般,控制器90反覆進行S31~S37,藉此使2個氨氣化器61交互地自動實行氣化處理。
若判定為將氣化處理工序結束(S35:是),控制器90讓正在實行氣化處理的氨氣化器61停止(S39)。具體而言,控制器90以使開啟中的切換閥76關閉的方式對該切換閥76發送控制信號。氣化處理工序的結束後,處理返回圖7所例示的流程,氨之氣化處理方法結束。
<總結> 上述幾個實施形態所記載的內容,例如可如以下般掌握。
1)本發明的至少一實施形態的發電廠用之氨供應單元(60),係設置在用於將從渦輪機(110)排出的蒸氣實施凝汽處理之凝汽器(114)的內部,且具備有用於將液氨實施氣化處理之至少1個氨氣化器(61)。
依據上述1)的構成,氨氣化器(61)是使用凝汽器(114)的內部之蒸氣或凝結水之至少一方作為直接熱源來將液氨實施氣化處理。因此,可確保用於將液氨氣化處理之熱源。同時,除了冷卻水,液氨也使用於凝汽處理,可促進凝汽器(114)的凝汽處理。結果,使凝汽器(114)的內部壓力充分下降,而使包含渦輪機(110)及凝汽器(114)的熱循環之熱效率提高。如此可實現:能確保用於將液氨氣化處理的熱量且提高熱循環的熱效率之發電廠用的氨供應單元(60)。
2)在幾個實施形態,是在上述1)所記載的氨供應單元(60)中, 前述凝汽器(114)係包含:構成為讓冷卻水在內部流過之傳熱管(117)、及收容前述傳熱管(117)之第1容器(81), 該氨供應單元(60)具備有第2容器(82),該第2容器(82)係以形成前述凝汽器(114)之一部分的方式設置成與前述第1容器(81)連通,且收容前述至少1個氨氣化器(61)。
依據上述2)的構成,縱使包含傳熱管(117)和第1容器(81)之凝汽器(114)為現有的設備,仍能使氨供應單元(60)之追加設置施工容易化。
3)在幾個實施形態,是在上述2)所記載的氨供應單元(60)中, 前述第2容器(82)的底部(82A),係設置在比前述第1容器(81)的底部(81A)更高的位置。
依據上述3)的構成,易於讓在第2容器(82)產生的凝結水流入第1容器(81)。因此,可讓蒸氣或凝結水暢行無阻地循環。
4)在幾個實施形態,是在上述1)所記載的氨供應單元(60)中, 前述凝汽器(114)係包含:構成為讓冷卻水在內部流過之傳熱管(117)、及收容前述傳熱管(117)之第1容器(81), 前述至少1個氨氣化器(61),係在前述第1容器(81)內配置在前述傳熱管(117)的上游側。
依據上述4)的構成,凝汽器(114)中的蒸氣,在和冷卻水進行熱交換之前是和液氨進行熱交換。藉此,可確保用於將液氨氣化處理的熱量。
5)在幾個實施形態,是在上述1)至4)之任一者所記載的氨供應單元(60)中, 前述至少1個氨氣化器(61)係包含並列設置之2個以上的氣化器(61A)。
依據上述5)的構成,在並列設置之2個以上的氣化器(61A)分別排出同等程度的溫度之氨氣。因此,使到達了規定溫度之氨氣的每單位時間的生成量增大。
6)在幾個實施形態,係在上述5)所記載的氨供應單元(60)中, 其進一步具備:用於將各前述氣化器(61A)的運轉狀態切換之切換閥(76)。
隨著液氨的氣化處理而附著在氨氣化器(61)上之霜或冰等的析出物,有阻害對液氨之熱傳遞的疑慮。針對這點,依據上述6)的構成,藉由切換閥(76)的切換,可抑制在任一氣化器(61A)上之析出物的過度堆積。
7)在幾個實施形態,係在上述6)所記載的氨供應單元(60)中, 其進一步具備: 用於偵測各前述氣化器(61A)之出口側之氨氣的溫度之溫度感測器(78)、及 用於根據前述溫度感測器(78)的偵測結果來控制前述切換閥(76)之控制器(90)。
依據上述7)的構成,可依據氨氣的出口溫度而由控制器(90)控制切換閥(76),可自動抑制在氣化器(61A)上之析出物的過度堆積。
8)在幾個實施形態,係在上述1)至7)之任一者所記載的氨供應單元(60)中, 其進一步具備:用於將藉由前述氨氣化器(61)氣化處理後的氨氣供應給鍋爐(10)之氨氣供應管(69)。
依據上述8)的構成,可將液氨改變成氨氣而作為燃料供應給鍋爐(10)。因此,可有效地活用凝汽器(114)的熱源,而將作為燃料的氨氣供應給鍋爐(10)。
9)本發明的至少一實施形態的發電廠用之氨氣化處理方法, 係具備:藉由設置在凝汽器(114)的內部之至少1個氨氣化器(61)將液氨氣化處理之氣化處理工序(S11),前述凝汽器(114)係用於將來自渦輪機(110)的蒸氣實施凝汽處理。
依據上述9)的構成,基於與上述1)同樣的理由,可實現:能確保用於將液氨氣化處理的熱量且提高熱循環的熱效率之發電廠用的氨氣化處理方法。
10)在幾個實施形態,係在上述9)所記載的發電廠用之氨氣化處理方法中, 前述至少1個氨氣化器(61)係包含互相並列連接之2個以上的氣化器(61A), 在前述氣化處理工序(S11),將各前述氣化器(61A)的運轉狀態切換。
依據上述10)的構成,可抑制在任一氣化器(61A)上之析出物的過度堆積。
11)在幾個實施形態,係在上述10)所記載的發電廠用之氨氣化處理方法中, 在前述氣化處理工序(S11),係根據用於偵測各前述氣化器(61A)的出口側之氨氣的溫度之溫度感測器(78)的偵測結果,來控制用於切換各前述氣化器(61A)的運轉狀態之切換閥(76)。
依據上述11)的構成,根據氨氣的溫度來控制切換閥(76),可將氣化器(61A)的運轉狀態穩定地切換。
12)本發明的至少一實施形態之發電廠(1),係具備: 鍋爐(10)、 用於以來自前述鍋爐(10)的蒸氣作為動力源進行旋轉之渦輪機(110)、 用於藉由前述渦輪機(110)的旋轉進行發電之發電機(115)、 用於將從前述渦輪機(110)排出的前述蒸氣實施凝汽處理之凝汽器(114)、及 設置在前述凝汽器(114)的內部且用於將液氨實施氣化處理之至少1個氨氣化器(61)。
依據上述12)的構成,基於與上述1)同樣的理由,可實現:能確保用於將液氨氣化處理的熱量且提高熱循環的熱效率之發電廠(1)。
1:發電廠 10:鍋爐 60:氨供應單元 61:氨氣化器 61A:氣化器 69:氨氣供應管 76:切換閥 78:溫度感測器 81:第1容器 81A:底部 82:第2容器 82A:底部 83:排水管 85,86:連通管 89:蒸氣流路 90:控制器 110:渦輪機 111:渦輪機 114:凝汽器 115:發電機 117:傳熱管
[圖1]係顯示本發明的一實施形態之鍋爐的概略圖。 [圖2]係顯示本發明的一實施形態之發電廠的概略圖。 [圖3]係顯示本發明的第1實施形態之氨供應單元的概略圖。 [圖4]係顯示本發明的一實施形態之2個氣化器的運轉期間之概念圖。 [圖5]係顯示本發明的第2實施形態之氨供應單元的概略圖。 [圖6]係顯示本發明的第3實施形態之氨供應單元的概略圖。 [圖7]係顯示本發明的一實施形態之發電廠用之氨氣化處理方法的流程圖。 [圖8]係顯示本發明的一實施形態之氣化處理工序的流程圖。
10:鍋爐
60,60A:氨供應單元
61:氨氣化器
61A:氣化器
69:氨氣供應管
71:氨貯槽
72:供應管線
73:供應泵
74:液氨供應管
76:切換閥
77:氨氣出口管
78:溫度感測器
81:第1容器
89:蒸氣流路
90:控制器
110:渦輪機
113:低壓渦輪機
114:凝汽器
117:傳熱管

Claims (13)

  1. 一種發電廠用之氨供應單元,係具備有用於將液氨實施氣化處理之至少1個氨氣化器,前述至少1個氨氣化器設置在用於將從渦輪機排出的蒸氣實施凝汽處理之凝汽器的內部,前述凝汽器係包含:構成為讓冷卻水在內部流過之傳熱管、及收容前述傳熱管之第1容器,該氨供應單元具備有第2容器,該第2容器係以形成前述凝汽器之一部分的方式設置成與前述第1容器連通,且收容前述至少1個氨氣化器。
  2. 如請求項1所述之發電廠用之氨供應單元,其中,前述第2容器的底部係設置在比前述第1容器的底部更高的位置。
  3. 一種發電廠用之氨供應單元,係具備有用於將液氨實施氣化處理之至少1個氨氣化器,前述至少1個氨氣化器設置在用於將從渦輪機排出的蒸氣實施凝汽處理之凝汽器的內部,前述凝汽器係具備:構成為讓冷卻水在內部流過之傳熱管、及收容前述傳熱管之第1容器,前述至少1個氨氣化器係在前述第1容器內配置在前述傳熱管的上游側。
  4. 如請求項1至3之任一項所述之發電廠用之氨供應單元,其中, 前述至少1個氨氣化器係包含並列設置之2個以上的氣化器。
  5. 如請求項4所述之發電廠用之氨供應單元,其係進一步具備:用於將各前述氣化器的運轉狀態切換之切換閥。
  6. 如請求項5所述之發電廠用之氨供應單元,其係進一步具備:用於偵測各前述氣化器之出口側的氨氣的溫度之溫度感測器、及用於根據前述溫度感測器的偵測結果來控制前述切換閥之控制器。
  7. 如請求項1或3所述之發電廠用之氨供應單元,其係進一步具備:用於將藉由前述氨氣化器氣化處理後的氨氣供應給鍋爐之氨氣供應管。
  8. 一種發電廠用之氨氣化處理方法,係具備:藉由設置在凝汽器的內部之至少1個氨氣化器將液氨實施氣化處理之氣化處理工序,前述凝汽器係用於將來自渦輪機的蒸氣實施凝汽處理,前述凝汽器係包含:構成為讓冷卻水在內部流過之傳熱管、及收容前述傳熱管之第1容器,前述至少1個氨氣化器收容在第2容器,該第2容器係 以形成前述凝汽器之一部分的方式設置成與前述第1容器連通。
  9. 一種發電廠用之氨氣化處理方法,係具備:藉由設置在凝汽器的內部之至少1個氨氣化器將液氨實施氣化處理之氣化處理工序,前述凝汽器係用於將來自渦輪機的蒸氣實施凝汽處理,前述凝汽器係具備:構成為讓冷卻水在內部流過之傳熱管、及收容前述傳熱管之第1容器,前述至少1個氨氣化器係在前述第1容器內配置在前述傳熱管的上游側。
  10. 如請求項8或9所述之發電廠用之氨氣化處理方法,其中,前述至少1個氨氣化器係包含:互相並列連接之2個以上的氣化器,在前述氣化處理工序,係切換各前述氣化器的運轉狀態。
  11. 如請求項10所述之發電廠用之氨氣化處理方法,其中,在前述氣化處理工序,係根據用於偵測各前述氣化器的出口側之氨氣的溫度之溫度感測器的偵測結果,來控制用於切換各前述氣化器的運轉狀態之切換閥。
  12. 一種發電廠,係具備:鍋爐、用於以來自前述鍋爐的蒸氣作為動力源進行旋轉之渦 輪機、用於藉由前述渦輪機的旋轉進行發電之發電機、用於將從前述渦輪機排出的前述蒸氣實施凝汽處理之凝汽器、及設置在前述凝汽器的內部且用於將液氨實施氣化處理之至少1個氨氣化器,前述凝汽器係包含:構成為讓冷卻水在內部流過之傳熱管、及收容前述傳熱管之第1容器,該氨供應單元具備有第2容器,該第2容器係以形成前述凝汽器之一部分的方式設置成與前述第1容器連通,且收容前述至少1個氨氣化器。
  13. 一種發電廠,係具備:鍋爐、用於以來自前述鍋爐的蒸氣作為動力源進行旋轉之渦輪機、用於藉由前述渦輪機的旋轉進行發電之發電機、用於將從前述渦輪機排出的前述蒸氣實施凝汽處理之凝汽器、及設置在前述凝汽器的內部且用於將液氨實施氣化處理之至少1個氨氣化器,前述凝汽器係具備:構成為讓冷卻水在內部流過之傳熱管、及收容前述傳熱管之第1容器,前述至少1個氨氣化器係在前述第1容器內配置在前述傳熱管的上游側。
TW111125056A 2021-07-12 2022-07-05 發電廠用之氨供應單元、發電廠用之氨氣化處理方法、以及發電廠 TWI836497B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-114843 2021-07-12
JP2021114843A JP7455781B2 (ja) 2021-07-12 2021-07-12 発電プラント用のアンモニア供給ユニット、発電プラント用のアンモニア気化処理方法、及び発電プラント

Publications (2)

Publication Number Publication Date
TW202317858A TW202317858A (zh) 2023-05-01
TWI836497B true TWI836497B (zh) 2024-03-21

Family

ID=84919996

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111125056A TWI836497B (zh) 2021-07-12 2022-07-05 發電廠用之氨供應單元、發電廠用之氨氣化處理方法、以及發電廠

Country Status (4)

Country Link
JP (1) JP7455781B2 (zh)
KR (1) KR20240017924A (zh)
TW (1) TWI836497B (zh)
WO (1) WO2023286588A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024113237A (ja) * 2023-02-09 2024-08-22 三菱重工業株式会社 水素アンモニア関連のアセット管理装置、管理方法およびプログラム
JP7495023B1 (ja) 2023-03-28 2024-06-04 Jfeスチール株式会社 製造設備及び製造設備の操業方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107044650A (zh) * 2017-02-06 2017-08-15 国网安徽省电力公司电力科学研究院 一种火电厂液氨脱硝汽轮机联合节能循环系统
JP2018200029A (ja) * 2017-05-29 2018-12-20 株式会社Ihi 発電システム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08200017A (ja) 1995-01-23 1996-08-06 Ishikawajima Harima Heavy Ind Co Ltd 火力発電プラントのランキンサイクル

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107044650A (zh) * 2017-02-06 2017-08-15 国网安徽省电力公司电力科学研究院 一种火电厂液氨脱硝汽轮机联合节能循环系统
JP2018200029A (ja) * 2017-05-29 2018-12-20 株式会社Ihi 発電システム

Also Published As

Publication number Publication date
TW202317858A (zh) 2023-05-01
JP2023011172A (ja) 2023-01-24
WO2023286588A1 (ja) 2023-01-19
KR20240017924A (ko) 2024-02-08
JP7455781B2 (ja) 2024-03-26

Similar Documents

Publication Publication Date Title
TWI836497B (zh) 發電廠用之氨供應單元、發電廠用之氨氣化處理方法、以及發電廠
BRPI0609999B1 (pt) caldeira de recuperação de licor usado na indústria de polpa e papel e método para produzir energia em uma usina de polpa
US20120129112A1 (en) Method Of And A System For Combusting Fuel In An Oxyfuel Combustion Boiler
CN101311624B (zh) 用于蒸汽发生器的节能装置
CN205605255U (zh) 一种生物质垃圾锅炉组联合发电系统
CN107270274A (zh) 超超临界燃煤机组新型启动方式实现机组全负荷脱硝投入
WO2016133116A1 (ja) 排ガス熱回収システム
CN108775573A (zh) 一种新型焚烧垃圾发电锅炉
CN106839790A (zh) 一种电转炉烟气余热发电系统
JP7261113B2 (ja) ボイラの制御装置、ボイラシステム、発電プラント、及びボイラの制御方法
JP5137598B2 (ja) 汽力発電設備における通風系統
JP5843391B2 (ja) 廃棄物発電システム
JP2001280863A (ja) 熱交換器及び該熱交換器を備えた発電装置
CN206281365U (zh) 一种高温废气余热利用系统
TWI828950B (zh) 水處理裝置及發電廠以及水處理方法
CN206479052U (zh) 一种电转炉烟气余热发电系统
TWI818615B (zh) 氨燃料供應單元、發電廠、以及鍋爐之運轉方法
JPH01252890A (ja) 冶金用炉の排熱回収方法
JP2023068871A (ja) 排熱回収装置
JP5766527B2 (ja) 貫流ボイラの制御方法及び装置
JP2016041939A (ja) 廃棄物発電システム
CN216079743U (zh) 一种高效稳定运行的锅炉系统
CN211854932U (zh) 一种余热余气发电装置
JP6707058B2 (ja) 廃熱ボイラ、廃熱回収システム、及び廃熱回収方法
Tumanovskii et al. A coal-fired boiler for a new-generation power unit for ultrasupercritical steam conditions