WO2023284441A1 - 由镍铁铜合金制备硫酸镍的方法 - Google Patents
由镍铁铜合金制备硫酸镍的方法 Download PDFInfo
- Publication number
- WO2023284441A1 WO2023284441A1 PCT/CN2022/097188 CN2022097188W WO2023284441A1 WO 2023284441 A1 WO2023284441 A1 WO 2023284441A1 CN 2022097188 W CN2022097188 W CN 2022097188W WO 2023284441 A1 WO2023284441 A1 WO 2023284441A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nickel
- leaching
- iron
- filtrate
- copper
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 52
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 title claims abstract description 38
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 title claims abstract description 38
- GOECOOJIPSGIIV-UHFFFAOYSA-N copper iron nickel Chemical compound [Fe].[Ni].[Cu] GOECOOJIPSGIIV-UHFFFAOYSA-N 0.000 title claims abstract description 28
- 229910000881 Cu alloy Inorganic materials 0.000 title claims abstract description 26
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 155
- 238000002386 leaching Methods 0.000 claims abstract description 83
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 77
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims abstract description 54
- 239000000706 filtrate Substances 0.000 claims abstract description 41
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 35
- 229910021529 ammonia Inorganic materials 0.000 claims abstract description 26
- 229910052921 ammonium sulfate Inorganic materials 0.000 claims abstract description 23
- 238000000605 extraction Methods 0.000 claims abstract description 18
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 claims abstract description 17
- 235000011130 ammonium sulphate Nutrition 0.000 claims abstract description 17
- 229910052742 iron Inorganic materials 0.000 claims abstract description 17
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims abstract description 15
- 238000005260 corrosion Methods 0.000 claims abstract description 14
- 230000007797 corrosion Effects 0.000 claims abstract description 14
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 14
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 13
- 239000012074 organic phase Substances 0.000 claims abstract description 13
- 239000001301 oxygen Substances 0.000 claims abstract description 13
- 239000007788 liquid Substances 0.000 claims abstract description 10
- 239000000463 material Substances 0.000 claims abstract description 9
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims abstract description 8
- 238000000926 separation method Methods 0.000 claims abstract description 8
- 239000002002 slurry Substances 0.000 claims abstract description 6
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 20
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 13
- 229910052757 nitrogen Inorganic materials 0.000 claims description 10
- UYJXRRSPUVSSMN-UHFFFAOYSA-P ammonium sulfide Chemical compound [NH4+].[NH4+].[S-2] UYJXRRSPUVSSMN-UHFFFAOYSA-P 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 8
- 238000001914 filtration Methods 0.000 claims description 7
- XYXNTHIYBIDHGM-UHFFFAOYSA-N ammonium thiosulfate Chemical compound [NH4+].[NH4+].[O-]S([O-])(=O)=S XYXNTHIYBIDHGM-UHFFFAOYSA-N 0.000 claims description 6
- JRKICGRDRMAZLK-UHFFFAOYSA-L peroxydisulfate Chemical compound [O-]S(=O)(=O)OOS([O-])(=O)=O JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 claims description 6
- 238000001556 precipitation Methods 0.000 claims description 6
- 239000002893 slag Substances 0.000 claims description 5
- DHCDFWKWKRSZHF-UHFFFAOYSA-N sulfurothioic S-acid Chemical compound OS(O)(=O)=S DHCDFWKWKRSZHF-UHFFFAOYSA-N 0.000 claims description 4
- QUXFOKCUIZCKGS-UHFFFAOYSA-N bis(2,4,4-trimethylpentyl)phosphinic acid Chemical compound CC(C)(C)CC(C)CP(O)(=O)CC(C)CC(C)(C)C QUXFOKCUIZCKGS-UHFFFAOYSA-N 0.000 claims description 2
- 229910052979 sodium sulfide Inorganic materials 0.000 claims description 2
- GRVFOGOEDUUMBP-UHFFFAOYSA-N sodium sulfide (anhydrous) Chemical compound [Na+].[Na+].[S-2] GRVFOGOEDUUMBP-UHFFFAOYSA-N 0.000 claims description 2
- 239000010949 copper Substances 0.000 abstract description 29
- 229910052802 copper Inorganic materials 0.000 abstract description 26
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 abstract description 25
- 238000004821 distillation Methods 0.000 abstract description 8
- OMZSGWSJDCOLKM-UHFFFAOYSA-N copper(II) sulfide Chemical compound [S-2].[Cu+2] OMZSGWSJDCOLKM-UHFFFAOYSA-N 0.000 abstract description 7
- 239000007787 solid Substances 0.000 abstract description 3
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 abstract description 2
- -1 and thus Substances 0.000 abstract description 2
- 229910001431 copper ion Inorganic materials 0.000 abstract description 2
- 239000002244 precipitate Substances 0.000 abstract description 2
- 239000001166 ammonium sulphate Substances 0.000 abstract 1
- 235000010299 hexamethylene tetramine Nutrition 0.000 abstract 1
- 239000004312 hexamethylene tetramine Substances 0.000 abstract 1
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 abstract 1
- 238000002156 mixing Methods 0.000 abstract 1
- 239000011259 mixed solution Substances 0.000 description 9
- 239000002699 waste material Substances 0.000 description 9
- 239000000243 solution Substances 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 7
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 4
- 238000003723 Smelting Methods 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 150000002815 nickel Chemical class 0.000 description 4
- 241000196324 Embryophyta Species 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 238000009713 electroplating Methods 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- FWFGVMYFCODZRD-UHFFFAOYSA-N oxidanium;hydrogen sulfate Chemical compound O.OS(O)(=O)=O FWFGVMYFCODZRD-UHFFFAOYSA-N 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910000640 Fe alloy Inorganic materials 0.000 description 2
- 235000010627 Phaseolus vulgaris Nutrition 0.000 description 2
- 244000046052 Phaseolus vulgaris Species 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 150000004687 hexahydrates Chemical class 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 239000013067 intermediate product Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 229910000863 Ferronickel Inorganic materials 0.000 description 1
- 241000080590 Niso Species 0.000 description 1
- QXZUUHYBWMWJHK-UHFFFAOYSA-N [Co].[Ni] Chemical compound [Co].[Ni] QXZUUHYBWMWJHK-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 150000004688 heptahydrates Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 239000011504 laterite Substances 0.000 description 1
- 229910001710 laterite Inorganic materials 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- BFDHFSHZJLFAMC-UHFFFAOYSA-L nickel(ii) hydroxide Chemical compound [OH-].[OH-].[Ni+2] BFDHFSHZJLFAMC-UHFFFAOYSA-L 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000009853 pyrometallurgy Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- WWNBZGLDODTKEM-UHFFFAOYSA-N sulfanylidenenickel Chemical compound [Ni]=S WWNBZGLDODTKEM-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/10—Sulfates
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/003—Preparation involving a liquid-liquid extraction, an adsorption or an ion-exchange
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B15/00—Obtaining copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B23/00—Obtaining nickel or cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B23/00—Obtaining nickel or cobalt
- C22B23/04—Obtaining nickel or cobalt by wet processes
- C22B23/0407—Leaching processes
- C22B23/0446—Leaching processes with an ammoniacal liquor or with a hydroxide of an alkali or alkaline-earth metal
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B23/00—Obtaining nickel or cobalt
- C22B23/04—Obtaining nickel or cobalt by wet processes
- C22B23/0453—Treatment or purification of solutions, e.g. obtained by leaching
- C22B23/0461—Treatment or purification of solutions, e.g. obtained by leaching by chemical methods
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/20—Treatment or purification of solutions, e.g. obtained by leaching
- C22B3/26—Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
- C22B3/38—Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds containing phosphorus
- C22B3/384—Pentavalent phosphorus oxyacids, esters thereof
- C22B3/3842—Phosphinic acid, e.g. H2P(O)(OH)
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/20—Treatment or purification of solutions, e.g. obtained by leaching
- C22B3/26—Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
- C22B3/38—Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds containing phosphorus
- C22B3/384—Pentavalent phosphorus oxyacids, esters thereof
- C22B3/3844—Phosphonic acid, e.g. H2P(O)(OH)2
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/20—Treatment or purification of solutions, e.g. obtained by leaching
- C22B3/26—Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
- C22B3/38—Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds containing phosphorus
- C22B3/384—Pentavalent phosphorus oxyacids, esters thereof
- C22B3/3846—Phosphoric acid, e.g. (O)P(OH)3
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/80—Compositional purity
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Definitions
- the invention belongs to the technical field of metallurgy, and in particular relates to a method for preparing nickel sulfate from a nickel-iron-copper alloy.
- nickel sulfate The molecular formula of nickel sulfate is NiSO 4 ⁇ 6H 2 O, which can be classified as nickel salt in primary nickel, but it is not equivalent to nickel salt.
- Nickel salt contains nickel sulfate.
- Nickel sulfate has three forms of anhydrous, hexahydrate and heptahydrate, and most of the commodities are in the form of hexahydrate.
- nickel sulfate is the main nickel salt of electroplating nickel and chemical nickel, and is widely used in manufacturing industries such as machines, instruments, meters, medical devices, and household appliances.
- Battery-grade nickel sulfate is the source of nickel metal in ternary materials, and ternary lithium batteries are the power source of new energy electric vehicles that are currently developing rapidly. Since the nickel content of the ternary lithium battery directly determines the charging capacity of the battery, the development of a high-nickel ternary lithium battery is the general trend.
- the main raw materials of nickel sulfate include high nickel matte, nickel wet process intermediate products, nickel beans/nickel powder, nickel waste, etc.
- the production path of nickel sulfate can be divided into the following types: 1) nickel sulfide ore is produced by pyrometallurgy and atmospheric acid leaching to produce high nickel matte, and then nickel sulfate is produced; 2) laterite nickel ore wet smelting intermediate products, such as smelting hydrogen Nickel cobalt, or by purchasing nickel hydroxide and acid leaching it to obtain nickel sulfate; 3) Pure nickel (such as nickel plate, nickel bean/nickel powder) is acid-dissolved and crystallized to obtain crude nickel sulfate crystals, and then Dissolving impurity removal and concentration to prepare battery-grade nickel sulfate crystals; 4) Using lateritic nickel ore RKEF to produce ferronickel, followed by converter blowing and pressure acid leaching to produce high-grade nickel matte, and then to prepare nickel sulfate;
- nickel-copper-iron alloy In non-ferrous smelting, copper and nickel are often mixed together, which also contains a lot of iron.
- the composition of nickel-copper-iron alloy is generally Fe 5-55%, Cu 10-45%, Ni 3-45%.
- Metals such as copper, nickel, and iron are separated by chemical or wet process, and then the metals are further purified. These processes generally have problems such as high production cost, long process flow, large environmental pollution, and low yield.
- nickel-copper-iron alloy waste is increasing year by year, mainly including waste generated during machining, waste generated during smelting, and damaged alloy components and parts in the industrial sector.
- chemical components of alloy scrap circulating in the domestic market are mainly nickel, copper, and iron. Strengthening the resource utilization of this will undoubtedly have a more positive effect on alleviating the pressure on my country's nickel and copper resources.
- the current utilization method of this alloy scrap is to add it as an alloy element additive in the alloy manufacturing process after classification, and the utilization rate is low and the economic performance is poor.
- the present invention aims to solve at least one of the technical problems in the above-mentioned prior art. For this reason, the present invention proposes a method for preparing nickel sulfate from a nickel-iron-copper alloy, which can produce battery-grade nickel sulfate, and the method has the advantages of short process flow, low consumption of auxiliary materials, and high nickel yield.
- propose a kind of method preparing nickel sulfate by nickel-iron-copper alloy comprise the following steps:
- step S2 performing solid-liquid separation on the slurry leached in step S1 to obtain a first filtrate and a first filter residue, adding a precipitant to the first filtrate, distilling ammonia, and filtering to obtain a nickel-containing leachate;
- step S2 the first filter residue is mixed with ammonia water, ammonium sulfate and corrosion aids, subjected to two-stage leaching, solid-liquid separation to obtain a second filter residue and a second filtrate, and the second filtrate is refluxed Go to the leaching process of step S1.
- step S2 the second filter residue is mixed with ammonia water, ammonium sulfate and corrosion aids, three-stage leaching is performed, and solid-liquid separation is performed to obtain a third filter residue and a third filtrate, and the third filtrate is returned to Used in the leaching process or the second-stage leaching process of step S1, the iron slag is obtained after the third filter residue is washed.
- the leaching is repeated to increase the yield of nickel and at the same time keep the iron in the solid.
- the corrosion promoter is at least one of ammonium sulfide, persulfate or ammonium thiosulfate.
- ammonium sulfide and ammonium thiosulfate as corrosion aids can reduce the dissolution of copper during the leaching process, and the use of persulfate can quickly oxidize metal nickel to accelerate the dissolution.
- step S1 the molar ratio of nitrogen in ammoniacal water and ammonium sulfate is (0.1-20): 1; The total molar concentration of nitrogen in ammoniacal water and ammonium sulfate is 8-15mol/ L.
- step S1 the leaching pressure is 2.5-4.0 MPa, and the leaching temperature is 50-65°C. Further, the leaching time is 6-8h.
- the precipitation agent is at least one of thiosulfate, sodium sulfide or ammonium sulfide. Adding a precipitant can deeply remove copper, and the reaction equation for copper removal is:
- step S2 the ammonia-containing gas generated by the ammonia distillation is condensed to prepare ammonia water for reuse, and the precipitate generated during the ammonia distillation process is used to recover copper.
- the pressure of the second-stage leaching is 3.5-6.0 MPa, and the leaching temperature is 60-75°C. Further, the leaching time is 3-4h.
- the pressure of the three-stage leaching is 5.5-7.0 MPa, and the leaching temperature is 70-85°C. Further, the leaching time is 3-4h.
- the extractant is at least one of P204, P507, DEHPA or Cyanex272.
- step S3 the extracted organic phase obtained after nickel stripping can be re-saponified and recycled.
- step S3 the concentration of the sulfuric acid is 3-5 mol/L.
- the present invention carries out oxidative ammonium dissolution on the nickel-iron-copper alloy by coordinating corrosion aids under high-pressure oxygen and ammonia conditions.
- the method utilizes the different properties of nickel and iron to separate the nickel-iron-copper alloy, wherein nickel It is dissolved in the hexaammine complex of nickel, part of the copper is dissolved in the tetraammine complex of copper, and the iron cannot be dissolved and remains in the solid.
- the reaction equation of the leaching process is as follows:
- the process flow of the present invention is short, which greatly improves the yield of nickel.
- the nickel-iron-copper alloy is directly synthesized in one step to prepare nickel sulfate, and the purity of the obtained nickel sulfate product can reach battery-grade purity, which not only reduces the investment cost, but also reacts
- the process has low energy consumption and less consumption of auxiliary materials, and is suitable for industrialized production; the invention can be widely used in the production process of nickel sulfate, especially in the production of battery-grade nickel sulfate prepared from nickel-iron-copper alloy.
- Fig. 1 is the process flow chart of embodiment 1 of the present invention.
- the present embodiment prepares a kind of battery-grade nickel sulfate by nickel-iron-copper alloy high-pressure ammonia leaching, with reference to Fig. 1, concrete process is:
- step S2 Separating the slurry leached in step S1 into solid-liquid to obtain the first filtrate and the first filter residue, adding thiosulfate to the first filtrate, and sending the first filtrate to the ammonia distillation and copper removal process, after filtering , the filtrate is sent to the extraction process, and the copper sulfide precipitation generated is sent to the copper plant for processing;
- step S4 Use 2L ammonia water-ammonium sulfate mixed solution (composition is the same as step S1) with the first filter residue, and add 3g ammonium sulfide, carry out two-stage leaching under high-pressure oxygen environment, the pressure of second-stage leaching is 5.0MPa, the time of leaching After 3.5 hours, the leaching temperature was 65° C., and the second filter residue and the second filtrate were obtained by filtration, and the second filtrate was refluxed to a leaching process.
- step S5 Use 1L of ammonia water-ammonium sulfate mixed solution (composition is the same as step S1) with the second filter residue, and add 2g of ammonium sulfide, and carry out three-stage leaching under high-pressure oxygen environment, the pressure of three-stage leaching is 5.5MPa, the time of leaching 4h, the leaching temperature is 70°C, and the third filter residue and the third filtrate are obtained by filtration, and the third filtrate is refluxed to the first-stage leaching process or the second-stage leaching process, and the third filter residue is washed to obtain iron slag.
- the obtained nickel sulfate (calculated as nickel) was 32.76g, and the leaching rate of nickel was 96.38%.
- This embodiment prepares a kind of battery-grade nickel sulfate by nickel-iron-copper alloy high-pressure ammonia immersion, and the specific process is:
- step S2 Separating the slurry leached in step S1 into solid-liquid to obtain the first filtrate and the first filter residue, adding thiosulfate to the first filtrate, and sending the first filtrate to the ammonia distillation and copper removal process, after filtering , the filtrate is sent to the extraction process, and the copper sulfide precipitation generated is sent to the copper plant for processing;
- S4 Use ammonia water-ammonium sulfate mixed solution for the first filter residue, add 7g of ammonium thiosulfate, and perform second-stage leaching under high-pressure oxygen environment.
- the pressure of the second-stage leaching is 3.5 MPa, the leaching time is 4 hours, and the leaching temperature is 60 °C, filter to obtain a second filter residue and a second filtrate, and the second filtrate is refluxed to a leaching process.
- S5 Use ammonia water-ammonium sulfate mixed solution for the second filter residue, add 3g of ammonium thiosulfate, and perform three-stage leaching under high-pressure oxygen environment. °C, filter to obtain the third filter residue and the third filtrate, the third filtrate is refluxed to the first-stage leaching process or the second-stage leaching process, and the third filter residue is washed to obtain iron slag.
- This embodiment prepares a kind of battery-grade nickel sulfate by nickel-iron-copper alloy high-pressure ammonia immersion, and the specific process is:
- step S2 Separating the slurry leached in step S1 into solid-liquid to obtain the first filtrate and the first filter residue, adding 46.8g of ammonium sulfide to the first filtrate, and sending the first filtrate to the ammonia distillation and copper removal process, after filtration , the filtrate is sent to the extraction process, and the copper sulfide precipitation generated is sent to the copper plant for processing;
- S4 Use ammonia water-ammonium sulfate mixed solution for the first filter residue, add 8g of persulfate, and perform second-stage leaching under high-pressure oxygen environment.
- the pressure of the second-stage leaching is 6.0MPa, the leaching time is 3 hours, and the leaching temperature is 75°C , and filter to obtain a second filter residue and a second filtrate, and the second filtrate is refluxed to a leaching process.
- S5 Use ammonia water-ammonium sulfate mixed solution for the second filter residue, add 10g of persulfate, and perform three-stage leaching under high-pressure oxygen environment.
- the pressure of the three-stage leaching is 6.0MPa, the leaching time is 3.5h, and the leaching temperature is 80 °C, filter to obtain the third filter residue and the third filtrate, the third filtrate is refluxed to the first-stage leaching process or the second-stage leaching process, and the third filter residue is washed to obtain iron slag.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Geochemistry & Mineralogy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
本发明公开了一种由镍铁铜合金制备硫酸镍的方法,该方法是在高压氧气环境下,将镍铁铜合金粉碎料、氨水、硫酸铵和助蚀剂混合,进行浸出,再将浸出后的浆料进行固液分离,向滤液中加入沉淀剂,进行蒸氨,得到含镍浸出液,然后向含镍浸出液中加入萃取剂萃取镍,得到含镍萃取有机相,再向含镍萃取有机相中加入硫酸进行反萃取镍,得到硫酸镍溶液。本发明利用镍与铁的性质不同,对镍铁铜合金进行分离,镍以镍的六氨络合物溶解,铁无法溶解,继续留在固体中,在收集滤液后,加入沉淀剂,并进行蒸氨除铜,氨水得到了回收利用,铜离子则与沉淀剂反应生成硫化铜沉淀,从而去除了滤液中的铜,进一步提高硫酸镍的纯度。
Description
本发明属于冶金技术领域,具体涉及一种由镍铁铜合金制备硫酸镍的方法。
硫酸镍的分子式是NiSO
4·6H
2O,可以划归于原生镍中的镍盐部分,但不等同于镍盐,镍盐包含硫酸镍。硫酸镍有无水物、六水物和七水物三种形态,商品多是六水物形态。在电镀工业中,硫酸镍是电镀镍和化学镍的主要镍盐,广泛应用于机器、仪器、仪表、医疗器械、家庭用具等制造工业。电池级硫酸镍是三元材料中镍金属的来源,而三元锂电池又是目前发展势头迅猛的新能源电动汽车的动力来源。由于三元锂电池含镍的高低,直接决定电池的带电容量,因此发展高镍的三元锂电池是大势所趋。
硫酸镍的主要原料有高冰镍、镍湿法中间产品、镍豆/镍粉、废镍等。硫酸镍制备路径可以分为下几种:1)硫化镍矿经过火法冶炼、常压酸浸生产出高冰镍,进而制备硫酸镍;2)红土镍矿湿法冶炼中间品,比如冶炼出氢氧化镍钴,或者通过采购氢氧化镍,将其酸浸之后制得硫酸镍;3)纯镍(比如镍板、镍豆/镍粉)经过酸溶,结晶后得到粗制硫酸镍晶体,再经溶解除杂和浓缩备制得到电池级硫酸镍晶体;4)利用红土镍矿RKEF生产镍铁,而后转炉吹炼和加压酸浸,生产出高冰镍,进而制备硫酸镍;5)以废料为原料制取硫酸镍。含镍废料中电镀废料、催化剂、电池废料和废合金等均可用于回收镍。
随着经济的发展,我们对铜、镍的需求在逐步提高,而铜、镍资源逐年降低,势必会枯竭。为了缓解这种资源不足的压力,二次资源的综合利用会越来越重视。
在有色冶炼中,铜、镍常混在一起,其中还夹杂着不少铁,镍铜铁合金的成分一般为Fe 5-55%,Cu 10-45%,Ni 3-45%,工业上一般采用火法或湿法工艺将铜、镍、铁等金属分离,再进一步提纯金属。这些工艺普遍存在生产成本高、工艺流程长,对环境污染大、收率低等问题。
同时镍铜铁合金废料在逐年增加,主要包括机械加工时产生的废料、冶炼过程中产生的废料、工业部门中损坏的合金构件和零件等。另外,目前国内市场上流通的合金废料化学成分以镍、铜、铁为主,加强对此的资源化利用无疑对缓解我国镍、铜资源压力有较为积极的作用。但目前关于此合金废料的利用方式为分类后合金制作工艺中作为合金元素添加剂加入,利用率偏低且经济性表现差。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提出一种一种由镍铁铜合金制备硫酸镍的方法,能够制备出电池级硫酸镍,且该方法具有工艺流程短、辅料消耗量低、镍收率高等优势。
根据本发明的一个方面,提出了一种由镍铁铜合金制备硫酸镍的方法,包括以下步骤:
S1:在高压氧气环境下,将镍铁铜合金粉碎料、氨水、硫酸铵和助蚀剂混合,进行浸出;
S2:将步骤S1浸出后的浆料进行固液分离得到第一滤液和第一滤渣,向第一滤液中加入沉淀剂,进行蒸氨,过滤,得到含镍浸出液;
S3:向含镍浸出液中加入萃取剂萃取镍,静置,分离得到含镍萃取有机相,再向含镍萃取有机相中加入硫酸进行反萃取镍,得到硫酸镍溶液。
在本发明的一些实施方式中,步骤S2中,所述第一滤渣与氨水、硫酸铵和助蚀剂混合,进行二段浸出,固液分离得到第二滤渣和第二滤液,第二滤液回流至步骤S1的浸出工序。
在本发明的一些实施方式中,步骤S2中,所述第二滤渣与氨水、硫酸铵和助蚀剂混合,进行三段浸出,固液分离得到第三滤渣和第三滤液,第三滤液回用于步骤S1的浸出工序或二段浸出工序,所述第三滤渣洗涤后得到铁渣。通过多段浸出工序,反复浸出,提高镍收率的同时,将铁一直保留在固体中。
在本发明的一些实施方式中,所述助蚀剂为硫化铵、过硫酸盐或硫代硫酸铵中的至 少一种。采用硫化铵和硫代硫酸铵作为助蚀剂,可以减少浸出过程中铜的溶解,采用过硫酸盐,可以快速氧化金属镍,起到加速溶解的作用。
在本发明的一些实施方式中,步骤S1中,所述氨水中的氮与硫酸铵的摩尔比为(0.1-20):1;氨水中的氮与硫酸铵的总摩尔浓度为8-15mol/L。
在本发明的一些实施方式中,步骤S1中,所述浸出的压力为2.5-4.0MPa,浸出的温度为50-65℃。进一步地,浸出的时间为6-8h。
在本发明的一些实施方式中,步骤S2中,所述沉淀剂为硫代硫酸盐、硫化钠或硫化铵中的至少一种。加入沉淀剂可以深度除铜,除铜的反应方程式为:
Cu
2++S
2O
3
2-+H
2O==CuS+2H
++SO
4
2-、Cu
2++S
2-==CuS。
在本发明的一些实施方式中,步骤S2中,所述蒸氨产生的含氨气体冷凝制备氨水回用,蒸氨过程中生成的沉淀用于回收铜。
在本发明的一些实施方式中,所述二段浸出的压力为3.5-6.0MPa,浸出的温度为60-75℃。进一步地,浸出的时间为3-4h。
在本发明的一些实施方式中,所述三段浸出的压力为5.5-7.0MPa,浸出的温度为70-85℃。进一步地,浸出的时间为3-4h。
在本发明的一些实施方式中,步骤S3中,所述萃取剂为P204、P507、DEHPA或Cyanex272中的至少一种。
在本发明的一些实施方式中,步骤S3中,反萃取镍后得到的萃取有机相可重新皂化循环利用。
在本发明的一些实施方式中,步骤S3中,所述硫酸的浓度为3-5mol/L。
根据本发明的一种优选的实施方式,至少具有以下有益效果:
1、本发明通过在高压氧气及氨性条件下,配合助蚀剂,对镍铁铜合金进行氧化氨溶,该方法利用镍与铁的性质不同,对镍铁铜合金进行分离,其中,镍以镍的六氨络合物溶解,部分铜以铜的四氨络合物溶解,铁无法溶解,继续留在固体中,浸出过程的反应方程式如下:
2Ni+O
2+8NH
3·H
2O+2(NH
4)
2SO
4==2[Ni(NH
3)
6]SO
4+10H
2O、
2Cu+O
2+4NH
3·H
2O+2(NH
4)
2SO
4==2[Cu(NH
3)
4]SO
4+6H
2O、Fe+O
2==Fe
2O
3;另外,在收集滤液后,加入沉淀剂,并进行蒸氨除铜,此过程中,[Cu(NH
3)
4]
2+==Cu
2++4NH
3,蒸氨促进铜离子电离,氨水得到了回收利用,铜离子则与沉淀剂反应生成硫化铜沉淀,从而去除了滤液中的铜,利于后续萃取时镍的分离,进一步提高硫酸镍的纯度。
2、本发明工艺流程短,极大的提高了镍的收率,将镍铁铜合金直接一步法合成制备硫酸镍,获得硫酸镍产品纯度可达电池级纯度,不但降低了投资成本,且反应过程能耗低,辅料消耗少,适合产业化生产;本发明可广泛应用于硫酸镍的生产工艺中,特别是由镍铁铜合金制备电池级硫酸镍的生产中。
下面结合附图和实施例对本发明做进一步的说明,其中:
图1为本发明实施例1的工艺流程图。
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
本实施例由镍铁铜合金高压氨浸制备了一种电池级硫酸镍,参照图1,具体过程为:
S1:将100g镍铁铜合金破碎成粉状,镍铁铜合金成分:镍33.99%,铁47.35%,铜18.66%,在密闭高压氧气环境下,向镍铁铜合金粉碎料加入10L氨水-硫酸铵混合液,氨水中的氮与硫酸铵的摩尔比为3.3:1,氨水中的氮与硫酸铵的总摩尔浓度为15mol/L,并加入15g硫化铵助蚀剂,进行一段浸出,一段浸出的压力为2.5MPa,浸出的温度为50℃,浸出的时间8h;
S2:将步骤S1浸出后的浆料进行固液分离得到第一滤液和第一滤渣,向第一滤液 中加入硫代硫酸盐,并将第一滤液送入蒸氨除铜工序,经过滤后,滤液送入萃取工序,生成的硫化铜沉淀送铜厂处理;
S3:使用萃取剂P204萃取镍,静置,分离得到含镍萃取有机相和含杂质萃余液,用3mol/L的H
2SO
4溶液从含镍萃取有机相中反萃取镍,得到电池级硫酸镍溶液;
S4:将第一滤渣采用2L氨水-硫酸铵混合液(组成与步骤S1一样),并加入3g硫化铵,在高压氧气环境下进行二段浸出,二段浸出的压力为5.0MPa,浸出的时间3.5h,浸出的温度65℃,过滤得到第二滤渣和第二滤液,第二滤液回流至一段浸出工序。
S5:将第二滤渣采用1L氨水-硫酸铵混合液(组成与步骤S1一样),并加入2g硫化铵,在高压氧气环境下进行三段浸出,三段浸出的压力为5.5MPa,浸出的时间4h,浸出的温度70℃,过滤得到第三滤渣和第三滤液,第三滤液回流至一段浸出工序或二段浸出工序,第三滤渣洗涤后得到铁渣。
得到的硫酸镍(以镍计)32.76g,可知镍的浸出率为96.38%。
实施例2
本实施例由镍铁铜合金高压氨浸制备了一种电池级硫酸镍,具体过程为:
S1:将100g镍铁铜合金破碎成粉状,镍铁铜合金成分:镍42.36%,铁46.19%,铜11.45%,在密闭高压氧气环境下,向镍铁铜合金粉碎料加入7L氨水-硫酸铵混合液,氨水中的氮与硫酸铵的摩尔比为3.6:1,氨水中的氮与硫酸铵的总摩尔浓度为10mol/L,并加入17g硫代硫酸铵助蚀剂,进行一段浸出,一段浸出的压力为4.0MPa,浸出的温度为65℃,浸出的时间6h;
S2:将步骤S1浸出后的浆料进行固液分离得到第一滤液和第一滤渣,向第一滤液中加入硫代硫酸盐,并将第一滤液送入蒸氨除铜工序,经过滤后,滤液送入萃取工序,生成的硫化铜沉淀送铜厂处理;
S3:使用萃取剂P204萃取镍,静置,分离得到含镍萃取有机相和含杂质萃余液,用4mol/L的H
2SO
4溶液从含镍萃取有机相中反萃取镍,得到电池级硫酸镍溶液;
S4:将第一滤渣采用氨水-硫酸铵混合液,并加入7g硫代硫酸铵,在高压氧气环境 下进行二段浸出,二段浸出的压力为3.5MPa,浸出的时间4h,浸出的温度60℃,过滤得到第二滤渣和第二滤液,第二滤液回流至一段浸出工序。
S5:将第二滤渣采用氨水-硫酸铵混合液,并加入3g硫代硫酸铵,在高压氧气环境下进行三段浸出,三段浸出的压力为7.0MPa,浸出的时间3h,浸出的温度85℃,过滤得到第三滤渣和第三滤液,第三滤液回流至一段浸出工序或二段浸出工序,第三滤渣洗涤后得到铁渣。
得到的硫酸镍(以镍计)41.10g,可知镍的浸出率为97.02%。
实施例3
本实施例由镍铁铜合金高压氨浸制备了一种电池级硫酸镍,具体过程为:
S1:将100g镍铁铜合金破碎成粉状,镍铁铜合金成分:镍10.58%,铁45.74%,铜43.68%,在密闭高压氧气环境下,向镍铁铜合金粉碎料加入5L氨水-硫酸铵混合液,氨水中的氮与硫酸铵的摩尔比为2.4:1,氨水中的氮与硫酸铵的总摩尔浓度为8mol/L,并加入5g过硫酸盐助蚀剂,进行一段浸出,一段浸出的压力为3.0MPa,浸出的温度为55℃,浸出的时间7h;
S2:将步骤S1浸出后的浆料进行固液分离得到第一滤液和第一滤渣,向第一滤液中加入46.8g硫化铵,并将第一滤液送入蒸氨除铜工序,经过滤后,滤液送入萃取工序,生成的硫化铜沉淀送铜厂处理;
S3:使用萃取剂P204萃取镍,静置,分离得到含镍萃取有机相和含杂质萃余液,用5mol/L的H
2SO
4溶液从含镍萃取有机相中反萃取镍,得到电池级硫酸镍溶液;
S4:将第一滤渣采用氨水-硫酸铵混合液,并加入8g过硫酸盐,在高压氧气环境下进行二段浸出,二段浸出的压力为6.0MPa,浸出的时间3h,浸出的温度75℃,过滤得到第二滤渣和第二滤液,第二滤液回流至一段浸出工序。
S5:将第二滤渣采用氨水-硫酸铵混合液,并加入10g过硫酸盐,在高压氧气环境下进行三段浸出,三段浸出的压力为6.0MPa,浸出的时间3.5h,浸出的温度80℃,过滤得到第三滤渣和第三滤液,第三滤液回流至一段浸出工序或二段浸出工序,第三滤渣洗 涤后得到铁渣。
得到的硫酸镍(以镍计)10.15g,可知镍的浸出率为95.98%。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。
Claims (10)
- 一种由镍铁铜合金制备硫酸镍的方法,其特征在于,包括以下步骤:S1:在高压氧气环境下,将镍铁铜合金粉碎料、氨水、硫酸铵和助蚀剂混合,进行浸出;S2:将步骤S1浸出后的浆料进行固液分离得到第一滤液和第一滤渣,向第一滤液中加入沉淀剂,进行蒸氨,过滤,得到含镍浸出液;S3:向含镍浸出液中加入萃取剂萃取镍,静置,分离得到含镍萃取有机相,再向含镍萃取有机相中加入硫酸进行反萃取镍,得到硫酸镍溶液。
- 根据权利要求1所述的方法,其特征在于,步骤S2中,所述第一滤渣与氨水、硫酸铵和助蚀剂混合,进行二段浸出,固液分离得到第二滤渣和第二滤液,第二滤液回用于步骤S1的浸出工序。
- 根据权利要求2所述的方法,其特征在于,步骤S2中,所述第二滤渣与氨水、硫酸铵和助蚀剂混合,进行三段浸出,固液分离得到第三滤渣和第三滤液,第三滤液回流至步骤S1的浸出工序或二段浸出工序,所述第三滤渣洗涤后得到铁渣。
- 根据权利要求1-3任一项所述的方法,其特征在于,所述助蚀剂为硫化铵、过硫酸盐或硫代硫酸铵中的至少一种。
- 根据权利要求1所述的方法,其特征在于,步骤S1中,所述氨水中的氮与硫酸铵的摩尔比为(0.1-20):1;氨水中的氮与硫酸铵的总摩尔浓度为8-15mol/L。
- 根据权利要求1所述的方法,其特征在于,步骤S1中,所述浸出的压力为2.5-4.0MPa,浸出的温度为50-65℃。
- 根据权利要求1所述的方法,其特征在于,步骤S2中,所述沉淀剂为硫代硫酸盐、硫化钠或硫化铵中的至少一种。
- 根据权利要求2所述的方法,其特征在于,所述二段浸出的压力为3.5-6.0MPa,浸出的温度为60-75℃。
- 根据权利要求3所述的方法,其特征在于,所述三段浸出的压力为5.5-7.0MPa, 浸出的温度为70-85℃。
- 根据权利要求1所述的方法,其特征在于,步骤S3中,所述萃取剂为P204、P507、DEHPA或Cyanex272中的至少一种。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES202390092A ES2957117A2 (es) | 2021-07-15 | 2022-06-06 | Procedimiento de preparación de sulfato de níquel a partir de una aleación de níquel, hierro y cobre |
DE112022000238.7T DE112022000238T5 (de) | 2021-07-15 | 2022-06-06 | Verfahren zur herstellung von nickelsulfat aus einer nickel-eisen-kupfer-legierung |
MA61496A MA61496A1 (fr) | 2021-07-15 | 2022-06-06 | Procédé de préparation de sulfate de nickel à partir d'un alliage nickel-fer-cuivre |
GB2314823.2A GB2620310A (en) | 2021-07-15 | 2022-06-06 | Method for preparing nickel sulfate from nickel-iron-copper alloy |
US18/260,238 US11952289B2 (en) | 2021-07-15 | 2022-06-06 | Method for preparing nickel sulfate from nickel-iron-copper alloy |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110799807.6A CN113666437B (zh) | 2021-07-15 | 2021-07-15 | 由镍铁铜合金制备硫酸镍的方法 |
CN202110799807.6 | 2021-07-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023284441A1 true WO2023284441A1 (zh) | 2023-01-19 |
Family
ID=78539194
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/097188 WO2023284441A1 (zh) | 2021-07-15 | 2022-06-06 | 由镍铁铜合金制备硫酸镍的方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US11952289B2 (zh) |
CN (1) | CN113666437B (zh) |
DE (1) | DE112022000238T5 (zh) |
ES (1) | ES2957117A2 (zh) |
GB (1) | GB2620310A (zh) |
MA (1) | MA61496A1 (zh) |
WO (1) | WO2023284441A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113666437B (zh) | 2021-07-15 | 2022-11-15 | 广东邦普循环科技有限公司 | 由镍铁铜合金制备硫酸镍的方法 |
CN115231631A (zh) * | 2022-08-10 | 2022-10-25 | 李晓清 | 一种基于氨循环的氨浸制硫酸镍的连续生产工艺 |
CN115821041B (zh) * | 2022-09-01 | 2024-09-10 | 广东邦普循环科技有限公司 | 一种回收镍的方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2726934A (en) * | 1951-09-21 | 1955-12-13 | Sherritt Gordon Mines Ltd | Hydrometallurgical method of extracting metal values |
GB761129A (en) * | 1953-04-02 | 1956-11-14 | Sherritt Gordon Mines Ltd | Method of separating metal values from ammoniacal solutions |
GB1439100A (en) * | 1973-07-05 | 1976-06-09 | Sherritt Gordon Mines Ltd | Treatment of nickel-bearing ammonium carbonate leach liquors |
CN101177735A (zh) * | 2007-12-03 | 2008-05-14 | 长沙市西澳矿业有限公司 | 高压氧氨浸从石煤矿中提取与分离镍钼的工艺 |
CN104651620A (zh) * | 2015-03-20 | 2015-05-27 | 西安瑞鑫科金属材料有限责任公司 | 一种从镍基合金废料中再生高纯硫酸镍的方法 |
CN111057847A (zh) * | 2019-12-30 | 2020-04-24 | 衢州华友钴新材料有限公司 | 一种镍盐制备电池级硫酸镍的绿色方法 |
CN112941313A (zh) * | 2021-01-29 | 2021-06-11 | 广东邦普循环科技有限公司 | 一种粗制镍铁合金的回收方法和应用 |
CN113265532A (zh) * | 2021-04-09 | 2021-08-17 | 广东邦普循环科技有限公司 | 一种镍铁合金湿法浸出镍氨溶液的方法和应用 |
CN113666437A (zh) * | 2021-07-15 | 2021-11-19 | 广东邦普循环科技有限公司 | 由镍铁铜合金制备硫酸镍的方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3767762A (en) * | 1972-01-04 | 1973-10-23 | Sherritt Gordon Mines Ltd | Recovery and separation of nickel and cobalt from reduced laterite nickel ore |
US8221710B2 (en) * | 2007-11-28 | 2012-07-17 | Sherritt International Corporation | Recovering metals from complex metal sulfides |
CN102212698B (zh) * | 2011-05-19 | 2012-06-27 | 江门市芳源环境科技开发有限公司 | 一种综合处理含镍废料回收硫酸镍的方法 |
CN105567974B (zh) * | 2014-11-04 | 2018-03-30 | 格林美股份有限公司 | 含重金属废水渣的金属回收与综合利用工艺 |
CN104928478B (zh) * | 2015-06-09 | 2018-04-27 | 衡阳师范学院 | 一种电镀污泥综合回收有价金属的方法 |
JP6915497B2 (ja) * | 2017-10-23 | 2021-08-04 | 住友金属鉱山株式会社 | 銅とニッケルおよびコバルトの分離方法 |
CN108117105B (zh) * | 2017-12-29 | 2019-11-29 | 江西华赣瑞林稀贵金属科技有限公司 | 一种铜冶炼副产物粗硫酸镍的精制方法 |
CN111498918B (zh) * | 2020-06-01 | 2022-05-20 | 中国恩菲工程技术有限公司 | 一种镍铁材料的湿法处理工艺 |
-
2021
- 2021-07-15 CN CN202110799807.6A patent/CN113666437B/zh active Active
-
2022
- 2022-06-06 US US18/260,238 patent/US11952289B2/en active Active
- 2022-06-06 DE DE112022000238.7T patent/DE112022000238T5/de active Pending
- 2022-06-06 MA MA61496A patent/MA61496A1/fr unknown
- 2022-06-06 ES ES202390092A patent/ES2957117A2/es active Pending
- 2022-06-06 WO PCT/CN2022/097188 patent/WO2023284441A1/zh active Application Filing
- 2022-06-06 GB GB2314823.2A patent/GB2620310A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2726934A (en) * | 1951-09-21 | 1955-12-13 | Sherritt Gordon Mines Ltd | Hydrometallurgical method of extracting metal values |
GB761129A (en) * | 1953-04-02 | 1956-11-14 | Sherritt Gordon Mines Ltd | Method of separating metal values from ammoniacal solutions |
GB1439100A (en) * | 1973-07-05 | 1976-06-09 | Sherritt Gordon Mines Ltd | Treatment of nickel-bearing ammonium carbonate leach liquors |
CN101177735A (zh) * | 2007-12-03 | 2008-05-14 | 长沙市西澳矿业有限公司 | 高压氧氨浸从石煤矿中提取与分离镍钼的工艺 |
CN104651620A (zh) * | 2015-03-20 | 2015-05-27 | 西安瑞鑫科金属材料有限责任公司 | 一种从镍基合金废料中再生高纯硫酸镍的方法 |
CN111057847A (zh) * | 2019-12-30 | 2020-04-24 | 衢州华友钴新材料有限公司 | 一种镍盐制备电池级硫酸镍的绿色方法 |
CN112941313A (zh) * | 2021-01-29 | 2021-06-11 | 广东邦普循环科技有限公司 | 一种粗制镍铁合金的回收方法和应用 |
CN113265532A (zh) * | 2021-04-09 | 2021-08-17 | 广东邦普循环科技有限公司 | 一种镍铁合金湿法浸出镍氨溶液的方法和应用 |
CN113666437A (zh) * | 2021-07-15 | 2021-11-19 | 广东邦普循环科技有限公司 | 由镍铁铜合金制备硫酸镍的方法 |
Also Published As
Publication number | Publication date |
---|---|
GB202314823D0 (en) | 2023-11-08 |
DE112022000238T5 (de) | 2023-08-31 |
CN113666437B (zh) | 2022-11-15 |
ES2957117A2 (es) | 2024-01-11 |
MA61496A1 (fr) | 2023-11-30 |
GB2620310A (en) | 2024-01-03 |
CN113666437A (zh) | 2021-11-19 |
US20230399240A1 (en) | 2023-12-14 |
US11952289B2 (en) | 2024-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023284441A1 (zh) | 由镍铁铜合金制备硫酸镍的方法 | |
US11459636B2 (en) | Method and system for comprehensive recovery and utilization of copper-nickel sulfide ore | |
CN108002408B (zh) | 电池废料制备硫酸镍、锰、锂、钴及四氧化三钴的方法 | |
WO2023035636A1 (zh) | 一种由低冰镍制备硫酸镍的方法 | |
CN104659438A (zh) | 一种利用废电池制备三元正极材料前驱体的方法 | |
CN113387402B (zh) | 利用氢氧化镍钴原料结晶法生产硫酸镍钴盐的方法 | |
CN113735199B (zh) | 由镍铁制备硫酸镍的方法 | |
KR20170061206A (ko) | 폐 리튬 이온 전지를 이용한 전구체 원료의 회수 방법 | |
WO2023045331A1 (zh) | 一种选择性回收废旧锂电池中有价金属的方法 | |
CN108588425B (zh) | 一种钴镍冶金废水渣的处理方法 | |
CN112458280A (zh) | 利用酸性蚀刻液浸出低冰镍提取有价金属的方法 | |
US20230344030A1 (en) | Method for removing elemental copper from ternary battery waste and application thereof | |
CN114132909A (zh) | 一种从退役磷酸锰铁锂电池废料中回收纯金属盐的方法 | |
CN117144139A (zh) | 一种从废旧三元锂离子电池中提取钴的方法 | |
CN116377243A (zh) | 一种镍钴氢氧化物原料分离镍钴锰的方法 | |
CN114933291A (zh) | 一种利用镍铁合金制备高纯磷酸铁锂的方法 | |
WO2019161448A1 (en) | Method for the selective separation and recovery of nickel, copper and cobalt | |
CN114789994B (zh) | 一种由红土镍矿提取制备电池级磷酸铁的方法 | |
CN114645143B (zh) | 一种红土镍矿中镍钴铜锰的分离方法 | |
CN114988382A (zh) | 一种废旧磷酸铁锂电池粉料的回收方法 | |
CN115571925B (zh) | 一种废旧锂电池回收制备碳酸锂和三元前驱体的方法 | |
CN113355540B (zh) | 一种从含钪氢氧化镍钴中回收钪的方法 | |
CN115747478A (zh) | 一种钴生产过程中实现气体循环回收利用的方法 | |
CN115231631A (zh) | 一种基于氨循环的氨浸制硫酸镍的连续生产工艺 | |
CN114574713A (zh) | 一种从含高浓度铁离子的镍钴酸浸出液中分离铁及镍钴的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22841081 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 202314823 Country of ref document: GB Kind code of ref document: A Free format text: PCT FILING DATE = 20220606 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22841081 Country of ref document: EP Kind code of ref document: A1 |