WO2023282150A1 - Sputtering device - Google Patents

Sputtering device Download PDF

Info

Publication number
WO2023282150A1
WO2023282150A1 PCT/JP2022/026009 JP2022026009W WO2023282150A1 WO 2023282150 A1 WO2023282150 A1 WO 2023282150A1 JP 2022026009 W JP2022026009 W JP 2022026009W WO 2023282150 A1 WO2023282150 A1 WO 2023282150A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
gas
magnetic
sputtering apparatus
magnetic field
Prior art date
Application number
PCT/JP2022/026009
Other languages
French (fr)
Japanese (ja)
Inventor
清 久保田
靖典 安東
Original Assignee
日新電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日新電機株式会社 filed Critical 日新電機株式会社
Priority to CN202280020050.9A priority Critical patent/CN117043385A/en
Priority to KR1020237030892A priority patent/KR20230142608A/en
Publication of WO2023282150A1 publication Critical patent/WO2023282150A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/228Gas flow assisted PVD deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation

Definitions

  • the present invention relates to sputtering equipment.
  • a sputtering device is a magnetron sputtering device.
  • a magnetic field is formed on the surface of the target by a magnet provided on the back surface of the target, the gas in the magnetic field is plasmatized, and ions of the plasmatized gas are made to collide with the target.
  • ions collide with the target sputtered particles are sputtered from the target, and the particles form a film on the substrate facing the target.
  • the thickness of the thin film formed on the substrate is uneven due to the density of the gas on the target.
  • An example of technology for suppressing the occurrence of this unevenness is disclosed in Japanese Unexamined Patent Application Publication No. 2002-200012.
  • a set of two targets is provided in a chamber into which a sputtering gas is introduced.
  • the sputtering apparatus of Patent Document 1 is provided with gas inlets for introducing the reactive gas from both sides of the pair of targets, and an exhaust port for exhausting the reactive gas from between the pair of targets.
  • an object of one aspect of the present invention is to realize a sputtering apparatus capable of supplying gas over the entire surface of a target.
  • a sputtering apparatus for sputtering a target in a vacuum vessel to form a film on a substrate, wherein the vacuum vessel holds the target.
  • the holding part When viewed from the vertically downward direction, the holding part includes a gas introduction part for introducing gas into the holding part and a target arrangement position where the target is arranged in the holding part, A pair of openings extending over at least a part of the periphery of the target arrangement position and provided at opposing positions across the target arrangement position for discharging the gas introduced into the holding section into the vacuum vessel. And prepare.
  • gas can be supplied over the entire surface of the target.
  • FIG. 1 is a diagram showing an overall configuration example of a sputtering apparatus according to Embodiment 1;
  • FIG. FIG. 2 is a view of the target holder according to Embodiment 1, taken along line AA in FIG. 1, and is a top view of the assembled target holder.
  • FIG. 2 is a view of the target holder according to Embodiment 1, taken along line BB in FIG. 1, and is a bottom view of the target holder in an assembled state.
  • FIG. 2 is a CC arrow view in FIG. 1 of the target holder according to Embodiment 1;
  • FIG. 2 is a DD arrow view in FIG. 1 of the target holder according to Embodiment 1.
  • FIG. 2 is a view of the target holder according to Embodiment 1, taken along line EE in FIG. 1; 3 is a cross-sectional view of the target holder according to Embodiment 1, taken along the line FF in FIG. 2.
  • FIG. FIG. 3 is a cross-sectional view along GG in FIG. 2 of the target holder according to Embodiment 1; 3 is an enlarged view of the H portion in FIG. 2 of the target holder according to Embodiment 1.
  • FIG. FIG. 8 is a cross-sectional view showing the detailed configuration inside the vacuum vessel according to Embodiment 2;
  • FIG. 11 is a view of the target holder according to Embodiment 2, taken along line II in FIG. 10, and is a bottom view of the assembled target holder.
  • 4 is a schematic diagram of a magnetic field strength adjusting plate according to Embodiments 1 and 3.
  • FIG. 1 An embodiment of the present invention will be described in detail below with reference to FIGS. 1 to 9.
  • FIG. 1 An embodiment of the present invention will be described in detail below with reference to FIGS. 1 to 9.
  • FIG. 1 is a diagram showing an overall configuration example of a sputtering apparatus 1 according to Embodiment 1. As shown in FIG. 1
  • the sputtering apparatus 1 is an apparatus for sputtering a target 30 in a vacuum vessel 2 into which a sputtering gas 10 is introduced to form a film on a substrate 12 .
  • the sputtering apparatus 1 includes a vacuum vessel 2 that is evacuated by an evacuation device 4 .
  • the vacuum vessel 2 is electrically grounded, and a gas 10 for sputtering is introduced therein.
  • the gas 10 is supplied from the gas source 6 to the target holder 32 via the gas introduction pipe 50 and the gas introduction section 51 while the flow rate is adjusted by the flow rate controller 8 .
  • the gas 10 is then introduced into the vacuum vessel 2 via the target holder 32 .
  • An insulating portion 43 is provided between the gas introducing portion 51 and the upper surface portion 3 of the vacuum vessel 2 and between the gas introducing portion 51 and the target holder 32 .
  • Gas 10 is, for example, argon gas.
  • the gas 10 may be a mixed gas of argon gas and active gas (for example, oxygen gas, nitrogen gas, etc.). Active gases are also referred to as reactive gases.
  • a substrate holder 14 for holding the substrate 12 is provided in the vacuum chamber 2 .
  • the sputtering apparatus 1 has a substrate bias power supply 16 .
  • a substrate bias power supply 16 applies a substrate bias voltage Vs to the substrate holder 14 .
  • the substrate bias voltage Vs may be a negative DC voltage, a negative pulse voltage, an AC voltage, or the like.
  • the substrate holder 14 may be electrically grounded when the substrate bias voltage Vs is not applied to the substrate 12 .
  • Reference numeral 40 denotes an insulating portion having a vacuum sealing function.
  • the substrate 12 is an object to be processed on which a thin film is formed by sputtered particles emitted from the target 30 .
  • a glass substrate, a semiconductor substrate, or the like is used as the substrate 12, but it is not limited to this.
  • a target holder (holding portion) 32 for holding the target 30 is provided on the upper surface portion 3 of the vacuum vessel 2 at a position facing the substrate holder 14 .
  • three target holders 32 are provided on the upper surface portion 3 .
  • the number of target holders 32 is not limited as long as at least one target holder 32 is provided on the upper surface portion 3 .
  • the target holder 32 holds the target 30 at a position facing the substrate 12 inside the vacuum vessel 2 .
  • the planar shape of the target 30 is, for example, rectangular, but is not limited to this, and may be circular or the like.
  • the material of the target 30 may be selected according to the film to be formed on the substrate 12 .
  • the target 30 is, for example, In-Ga-Zn-O (indium-gallium-zinc-oxygen) or In-Sn-Zn- It is an oxide semiconductor composed of O (indium-tin-zinc-oxygen) or the like.
  • the material of the target 30 is not limited to this.
  • a target bias power supply 34 is connected to the target 30 via a target holder 32 .
  • the target bias power supply 34 supplies (applies) a target bias voltage Vt to the target 30 .
  • the target bias voltage Vt is a voltage that draws ions (meaning positive ions in this application) in the plasma 22 to the target 30 for sputtering, and is, for example, a negative DC voltage or an AC voltage.
  • the target bias voltage Vt is an AC voltage
  • the AC voltage may be a high-frequency voltage on the order of MHz, such as 13.56 MHz.
  • the target bias voltage Vt may be a low-frequency voltage having a frequency (eg, about 10 kHz to 100 kHz) lower than the output of the high-frequency power supply 24 (eg, 13.56 MHz).
  • a frequency eg, about 10 kHz to 100 kHz
  • the output of the high-frequency power supply 24 eg, 13.56 MHz.
  • an antenna 20 is arranged inside the vacuum container 2 .
  • four antennas 20 are arranged to face each other so as to sandwich the target 30 held by the target holder 32 from both sides.
  • a high frequency power supply 24 is connected to each antenna 20 via a matching circuit 26 .
  • a matching circuit 26 is connected to one end of each antenna 20, and the other end of each antenna 20 is electrically grounded.
  • One end of the high frequency power supply 24 is also electrically grounded.
  • Reference numeral 41 denotes an insulating portion having a vacuum sealing function. Further, a high frequency power supply 24 and a matching circuit 26 may be provided for each antenna 20 respectively.
  • the high frequency power supply 24 supplies high frequency power Pr to each antenna 20 . Specifically, by supplying high-frequency power Pr to each antenna 20 in parallel, an inductively coupled plasma 22 is generated near the surface of the target 30 .
  • the frequency of the high-frequency power Pr output from the high-frequency power supply 24 is, for example, a general 13.56 MHz, but is not limited to this.
  • the sputtering apparatus 1 also includes a control device 46 .
  • the control device 46 controls each part of the sputtering apparatus 1 in an integrated manner.
  • controller 46 controls power supply from high frequency power supply 24 and target bias power supply 34 .
  • the control device 46 also controls the flow rate regulator 8 to control the flow rate of the gas 10 introduced into the vacuum vessel 2 .
  • the gas introduction pipe 50, the gas insulation pipe 501, and the gas introduction portion 51 connected to the flow rate regulator 8 are provided in each of the target holders 32, but are not shown in FIG. Also, the high-frequency power supply 24 is connected to each antenna 20 through a matching circuit 26, but the illustration thereof is omitted in FIG. Furthermore, the target bias power supply 34 is connected to the targets 30 held in each of the target holders 32, but the illustration thereof is omitted in FIG.
  • the antenna 20 is arranged in the vicinity of the target holder 32 inside the vacuum vessel 2 (specifically, in the vicinity of the surface of the target 30 held by the target holder 32).
  • the multiple antennas 20 are arranged along the sides of the rectangular target 30, for example, so as to sandwich the target 30 held by the target holder 32 from both sides. ing.
  • one antenna 20 may be arranged along one side of the target 30 .
  • each antenna 20 is connected to a matching circuit 26 .
  • Each antenna 20 may be a solid structure with a solid body, or may be a hollow structure (eg, tubular or cylindrical).
  • a water cooling structure may be employed in which cooling water passages are provided in the interior of the structure and the antennas 20 are cooled by flowing cooling water.
  • each antenna 20 may have a structure in which a capacitor is inserted in the middle of the antenna conductor.
  • the shape of the antenna 20 is not limited to the shape described above, and may be entirely bar-shaped, U-shaped, C-shaped, coil-shaped, or the like. Also, the shape of the antenna 20 may be a shape corresponding to the planar shape of the target 30 . For example, if the target 30 has a circular planar shape, the antenna 20 may have a circular planar shape.
  • the antenna 20 has a structure in which the antenna conductor is housed inside an insulating member regardless of its structure or shape.
  • the structure or shape of the antenna 20 described above is merely an example, and the antenna 20 may have any structure or shape that can generate the plasma 22 .
  • the antenna 20 is supplied with the high-frequency power Pr independently of the supply of the target bias voltage Vt to the target 30 .
  • the control device 46 independently controls the target bias power supply 34 that supplies the target bias voltage Vt to the target 30 and the high frequency power supply 24 that supplies the high frequency power Pr to the antenna 20 .
  • the target holder 32 is composed of a structural member that defines the structure of the target holder 32, a gas member that introduces the gas 10 near the target 30, and a magnetic circuit member that forms a magnetic field near the surface of the target 30. .
  • the target holder 32 is composed of an electrode member that applies voltage to the target holder 32 , an insulating member that insulates the electrode member, and a cooling member that cools the target holder 32 .
  • FIG. 2 is a view of the target holder 32 according to the first embodiment taken along line AA in FIG. 1, and is a top view of the target holder 32 in an assembled state.
  • FIG. 3 is a view of the target holder 32 according to the first embodiment taken along line BB in FIG. 1, and is a bottom view of the target holder 32 in an assembled state.
  • FIG. 4 is a view of the target holder 32 according to the first embodiment taken along line CC in FIG.
  • FIG. 5 is a view of the target holder 32 according to the first embodiment taken along line DD in FIG.
  • FIG. 6 is a view of the target holder 32 according to the first embodiment taken along line EE in FIG.
  • FIG. 7 is a cross-sectional view of the target holder 32 according to the first embodiment taken along the line FF in FIG.
  • FIG. 8 is a cross-sectional view of the target holder 32 according to the first embodiment taken along the line GG in FIG.
  • the target 30 held by the target holder 32 is omitted for convenience of explanation.
  • the target holder 32 includes a target body 321 and a backing plate 322 as structural members, as shown in FIGS. 7 and 8, for example.
  • the target body 321 is a member that defines various members of the target holder 32 .
  • the target body 321 is formed with grooves and holes for defining various members, or grooves and holes for assembling various members. Functions and configurations of various members will be described later.
  • the backing plate 322 is a plate to which the target 30 is attached. A position where the target 30 is attached (placed) on the surface of the backing plate 322 facing the substrate holder 14 is referred to as a target placement position 30a (see also FIGS. 3 and 6).
  • the backing plate 322 is arranged below the target body 321 .
  • a part of the gas member (for example, the gas discharge port 54) is formed in the backing plate 322. As shown in FIG.
  • the shape (planar shape) of the target body 321 and the backing plate 322 when viewed from the vertically downward direction may be designed according to the shape of the target 30 to be attached. For example, if the target 30 to be attached has a rectangular planar shape, the target body 321 and the backing plate 322 may be designed to have rectangular planar shapes.
  • the corners of the target body 321 and the backing plate 322 may be chamfered.
  • the planar shape of the target body 321 and the backing plate 322 is rectangular, but the corners of the target body 321 and the backing plate 322 are rounded. This shape is due to processing limitations of the upper surface portion 3 on which the target body 321 and the backing plate 322 are provided, reduction of the risk of abnormal electrical discharge occurring at the edges of the target body 321 and the backing plate 322, and the like.
  • the planar shape of the target body 321 and the backing plate 322 may be a rectangular shape in which the corners are not chamfered.
  • the planar shape of the target body 321, the planar shape of the backing plate 322 (the planar shape of the target arrangement position 30a), and the planar shape of the target 30 are expressed as rectangular, the following two Note that it has meaning. That is, in this specification, the rectangular shape includes (i) a shape in which the corners are not chamfered (rectangular shape in the usual sense), and (ii) a rectangular shape in which the corners are chamfered. included.
  • the longitudinal direction of the target body 321 and the backing plate 322 extends in the Y-axis direction (for example, the depth direction of the paper surface in FIGS. 7 and 8). That is, for example, as shown in FIG. 3, the longitudinal direction (long side) of the target placement position 30a extends in the Y-axis direction.
  • the target 30 is attached to the backing plate 322 so that the longitudinal direction (long side) of the target 30 extends in the Y-axis direction.
  • the gas members of the target holder 32 include a gas introduction pipe 50, a gas insulation pipe 501, a gas introduction portion 51, a gas passage (main passage) 52, a gas passage lid 521, and an orifice 522. , a gas branch path (branch path) 53 , and a gas discharge port (opening) 54 .
  • the gas introduction pipe 50 is a path (pipeline) for introducing the gas 10 supplied from the gas source 6 into the target holder 32, and is connected between the gas source 6 and the gas introduction section 51 (see FIG. 1). Further, as shown in FIG. 1, a flow controller 8 is provided in the middle of the gas introduction pipe 50 . Also, the gas insulation pipe 501 is a pipe for insulating the gas introduction pipe 50 and the gas introduction portion 51 .
  • the gas introduction part 51 is a path for introducing the gas 10 into the target holder 32 formed in the target body 321 and communicates with the gas introduction pipe 50 and the gas path 52 .
  • One gas introduction part 51 is provided for each target holder 32 . As shown in FIG. 2, the gas introduction part 51 is provided at the end of each target holder 32 .
  • the gas path 52 is a path formed in the target body 321 that receives the gas 10 introduced from the gas introduction section 51 and flows it to the gas branch path 53 , and communicates with the gas introduction section 51 and the gas branch path 53 .
  • the gas path 52 is provided on the upper surface side of the target body 321 and near the center in the width direction (X-axis direction) of the target body 321 when viewed from the vertically downward direction. is a path formed by extending in the longitudinal direction of (see FIG. 6).
  • the gas 10 introduced from the gas introduction part 51 is dispersed in the longitudinal direction of the target body 321 by the gas path 52 .
  • the gas path lid 521 is a lid for the gas path 52 .
  • the gas path cover 521 can reduce the possibility that the gas 10 will flow out to places other than the gas introduction part 51 and the gas branch path 53 (see FIG. 5).
  • the gas path cover 521 has an orifice 522 that allows the gas 10 from the gas introduction part 51 to flow to the gas path 52 . By providing the orifice 522 in the gas path lid 521, the gas pressure upstream of the orifice 522 can be increased.
  • the gas introducing portion 51 has a vacuum sealing function by pressing the flange portion of the gas introducing portion 51 with the insulating portion 43 .
  • the gas introduction part 51 is electrically connected to the gas path cover 521 and has the same potential as the target bias voltage Vt.
  • the gas introduction pipe 50 and the gas introduction portion 51 are insulated by a gas insulation pipe 501 . Therefore, depending on the high-frequency potential generated in the gas introduction pipe 50 and the gas introduction portion 51 and the pressure of the gas 10 in the gas introduction pipe 50 and the gas introduction portion 51 , electric discharge may occur in the gas 10 .
  • the length of the gas introduction pipe 50 is specified and the orifice 522 is provided in the gas path cover 521 so that such discharge does not occur.
  • the gas branch path 53 is a path that introduces the gas 10 introduced from the gas path 52 formed in the target body 321 to the gas discharge port 54 and communicates with the gas path 52 and the gas discharge port 54 .
  • a plurality of gas branch paths 53 are formed at opposing positions with the gas path 52 interposed therebetween in the width direction (X-axis direction) of the target body 321 (see FIG. 6).
  • one end of the gas branch path 53 extends along the longitudinal direction (Y-axis direction) of the gas path 52 and extends along the longitudinal direction (Y-axis direction) of the gas path 52 . communicates with The other end of the gas branch path 53 communicates with the gas discharge port 54 at a position on the lower surface of the target body 321 that faces the target arrangement position 30a in the width direction of the target body 321 .
  • the gas discharge port 54 is an opening formed in the backing plate 322 that discharges the gas 10 introduced from the gas branch path 53 into the interior of the vacuum vessel 2 and communicates with the gas branch path 53 .
  • a plurality of gas discharge ports 54 are provided over the entire opposing long sides of the target arrangement position 30a when viewed from the vertically downward direction (see FIG. 6). Further, in this embodiment, the plurality of gas discharge ports 54 are provided substantially evenly along each long side of the target arrangement position 30a, and the gas discharge ports 54 provided on each long side are provided so as to face each other. ing.
  • the gas 10 introduced by the gas introduction part 51 is supplied from both long sides of the target 30 to the target 30 attached to the target arrangement position 30a so as to substantially uniformly cover the entire surface of the target 30. be done. Therefore, compared to the case where the gas 10 is supplied from one side of the target 30 , the gas 10 can be supplied substantially uniformly over the entire surface of the target 30 .
  • the arrangement position and the number of the gas discharge ports 54 are not limited to the above, and may be adjusted so that the gas 10 discharged from the gas discharge ports 54 is substantially uniformly supplied to the entire surface of the target 30. .
  • the gas discharge ports 54 may be provided over both short sides of the target placement position 30a, or may be provided on each of the long and short sides of the target placement position 30a. . However, it is easier to supply the gas 10 substantially uniformly over the entire surface of the target 30 by providing it on the long side of the target arrangement position 30a.
  • the pair of gas discharge ports 54 it is not always necessary for the pair of gas discharge ports 54 to be provided so as to face each other.
  • the number of gas discharge ports 54 may differ between the opposing sides of the target arrangement position 30a.
  • the size of each opening of the gas discharge ports 54 may be different.
  • one gas outlet 54 may be provided along the side of the target 30 .
  • the gas discharge ports 54 extend over at least part of the circumference of the target arrangement position 30a and face each other across the target arrangement position 30a so that the gas 10 is supplied substantially uniformly over the entire surface of the target 30. position.
  • the thickness of the gas branch path 53 (cross-sectional area in the YZ cross section) is smaller than the thickness of the gas path 52 (cross-sectional area in the XZ cross section) (see FIGS. 6 and 7). Therefore, the gas 10 flowing through the gas branch path 53 flows less easily than the gas 10 flowing through the gas path 52 . Therefore, the pressure of the gas 10 in the gas path 52 can be increased and, as a result, the pressure can be equalized throughout the gas path 52 . Therefore, the gas 10 can be supplied to each gas branch path 53 substantially evenly. Also, the flow rate of the gas 10 introduced into the target holder 32 is adjusted to be constant.
  • the gas discharged from the gas discharge port 54 The flow velocity of gas 10 can be increased. Therefore, the gas 10 can be distributed so that the coarse and dense portions are reduced over the entire surface of the target 30 .
  • the target holder 32 includes an electrode 71 and an anode 72 as electrode members.
  • the insulating member of the target holder 32 includes an insulating bush 421 , a first insulating plate 422 and a second insulating plate 423 .
  • the electrode 71 is an electrode that inputs the target bias voltage Vt to the target holder 32 .
  • One electrode 71 is provided for each target holder 32 .
  • the electrodes 71 are provided adjacent to the gas introduction section 51 at the end of each target holder 32 .
  • Via electrode 71, target body 321, backing plate 322, and target 30 are charged to target bias voltage Vt.
  • the insulating bush 421 is a bush that insulates the bolt that fixes the target body 321 to the upper surface portion 3 .
  • a plurality of insulating bushes 421 are provided at positions facing each other with the magnetic field strength adjusting plate 61 interposed therebetween along the longitudinal direction (Y-axis direction) of the target holder 32 (see FIG. 2).
  • the first insulating plate 422 is an insulating member provided on a plane parallel to the plane on which the target 30 is provided, between the upper surface portion 3 and the target body 321 . Specifically, the first insulating plate 422 is provided between the gas path lid 521 and the first magnetic plate 63 .
  • the second insulating plate 423 is an insulating member provided between the upper surface portion 3 and the target body 321 on a plane perpendicular to the plane on which the target 30 is provided.
  • a second insulating plate 423 is provided to surround the four corners of the target body 321 .
  • the insulating bushing 421, the first insulating plate 422, and the second insulating plate 423 which are insulating members, electrically ground the target body 321 and the backing plate 322 charged to the target bias voltage Vt. It has a function of insulating from the part 3 .
  • the anode 72 is an electrode for capturing electrons (secondary electrons) generated by collision of ions on the target 30 near the target 30 together with a parallel magnetic field formed between ends of the third magnetic plate 67 to be described later. is. Thereby, the density of the plasma 22 near the target 30 can be increased. Note that the anode 72 is electrically grounded.
  • Secondary electrons from the target 30 are captured by the parallel magnetic field, so the possibility of secondary electrons entering the surface of the substrate 12 can be reduced. Therefore, the possibility that the temperature of the substrate 12 rises can be reduced. Further, by setting the magnetic field intensity of the parallel magnetic field to be small, even if the secondary electrons are not captured by the parallel magnetic field, they disappear without undergoing cyclotron motion. Secondary electrons are, for example, incident on peripheral walls or annihilated by recombination in space. Therefore, the influence of the secondary electrons on the density increase of the plasma 22 near the surface of the substrate 12 can be reduced.
  • the anode 72 is provided near the target placement position 30a and has an annular shape similar to the outer edge of the target placement position 30a.
  • the anode 72 is provided so as to cover the gas outlet 54 and the outer edge of the target 30 arranged at the target arrangement position 30a.
  • the anode 72 is provided on the target holder 32 so as to have a gap with the outer edge of the target 30 . Therefore, the gas 10 emitted from the gas outlet 54 can diffuse toward the target 30 through the gap.
  • the anode 72 prevents the third magnetic plate 67 , which will be described later, from coming into contact with the plasma 22 . Therefore, the risk of impurities being generated inside the vacuum vessel 2 due to the contact of the third magnetic plate 67 with the plasma 22 can be reduced.
  • a magnetic circuit is a circuit that generates a magnetic field, composed of a magnet and a magnetic member that is magnetized by the magnet.
  • a magnet is a substance that generates a magnetic field by magnetomotive force and flows magnetic flux to the outside of the magnet.
  • a magnetic member is a member that conducts the magnetic flux generated by a magnet.
  • the magnetic member includes a yoke (yoke), a ferromagnetic material having a high magnetic permeability such as iron, and the like.
  • a gap which is a gap, may be formed in the magnetic circuit.
  • An air gap may be formed between two magnetic members forming a magnetic circuit.
  • a substance for example, air having a magnetic permeability lower than that of the magnetic member is inserted into the air gap. Therefore, the magnetic resistance in the air gap is greater than that in the magnetic member. Therefore, by adjusting the width of the air gap (the distance between the two magnetic members) provided in the magnetic circuit, the magnetic resistance of the entire magnetic circuit can be changed.
  • the magnetic circuit member of the target holder 32 is a member forming the magnetic circuit described above, and includes a magnet 65 and a magnetic member.
  • the magnetic members include a magnetic field strength adjusting plate (magnetic adjusting member) 61, a magnetic path bolt (fixing member) 62, a first magnetic plate 63, a magnet holding portion 64, a second magnetic plate 66, a third and a magnetic plate 67 .
  • the magnetic field strength adjusting plate 61 is a magnetic member provided on the upper surface portion 3 (that is, the upper surface portion 320 of the target holder 32) exposed to the atmosphere outside the vacuum vessel 2.
  • the magnetic field strength adjusting plate 61 is a pair of magnetic members extending in the longitudinal direction of the target holder 32 (see FIG. 2).
  • a gap 61a is formed between the pair of magnetic field strength adjusting plates 61.
  • the magnetic field strength adjusting plate 61 defines the air gap 61a.
  • the magnetic field strength adjusting plate 61 is formed with a plurality of elongated holes 61b that penetrate the magnetic path bolt 62 and extend in the width direction (X-axis direction) of the air gap 61a (see FIGS. 2 and 9).
  • 9 is an enlarged view of the H section in FIG. 2.
  • the magnetic path bolts 62 are magnetic members that fix each of the magnetic field strength adjustment plates 61 to the target holder 32 . Specifically, the magnetic field strength adjustment plate 61 is fixed to the target holder 32 by passing the magnetic path bolt 62 through the long hole 61b of the magnetic field strength adjustment plate 61 and fixing it to the first magnetic plate 63 .
  • the length in the width direction (X-axis direction) of the long hole 61b is greater than the shaft diameter of the magnetic path bolt 62. Therefore, the penetration position of the magnetic path bolt 62 in the long hole 61b is variable. That is, the fixed position of the magnetic field intensity adjustment plate 61 with respect to the target holder 32 can be changed by the length of the width direction of the long hole 61b. Therefore, by adjusting the fixing position of the magnetic field strength adjusting plate 61, the width of the air gap 61a can be adjusted.
  • the magnetic field strength adjustment plate 61 and the magnetic path bolt 62 function as an adjustment mechanism for adjusting the width of the air gap 61a.
  • both magnetic field strength adjusting plates 61 are formed with long holes 61b, but this is not the only option.
  • only one of the magnetic field strength adjusting plates 61 may be provided with the elongated hole 61 b and the other magnetic field strength adjusting plate 61 may be fixed to the upper surface portion 3 . Even in this case, the position of one magnetic field strength adjusting plate 61 relative to the other magnetic field strength adjusting plate 61 can be changed, so the width of the gap 61a can be adjusted.
  • the first magnetic plate 63 is a pair of magnetic members extending in the longitudinal direction of the target holder 32 (see FIG. 4).
  • the first magnetic plates 63 are fixed between the first insulating plate 422 and the upper surface portion 3 so as to correspond to the two magnetic field intensity adjusting plates 61 respectively.
  • the magnet holders 64 are a pair of magnetic members that hold the magnets 65 .
  • the magnet holders 64 extend in the longitudinal direction of the target holder 32, and each of the magnet holders 64 can hold a plurality of magnets 65 (see FIG. 4).
  • the magnet holding portions 64 are provided at positions facing and adjacent to the first magnetic plates 63, respectively. Note that the magnet holding portion 64 and the first magnetic plate 63 may be in contact with each other. That is, a portion for holding the magnets 65 may be provided in a portion of the first magnetic plate 63 .
  • the magnet 65 is a member having a magnetic strength (magnetomotive force) capable of magnetizing a magnetic member.
  • a semi-permanent magnet for example, is used as the magnet 65. In this case, a desired magnetic circuit can be easily configured at low cost.
  • magnets 65 magnets with different magnetic poles are used in the one magnet holding portion 64 and the other magnet holding portion 64 .
  • one magnet holding portion 64 holds an N pole magnet 65 and the other magnet holding portion 64 holds an S pole magnet 65 .
  • the second magnetic plate 66 is a pair of magnetic members provided in contact with each of the magnet holding portions 64 and extends in the longitudinal direction of the target holder 32 (see FIG. 5). Each of the second magnetic plates 66 is fixed between the second insulating plate 423 and the upper surface portion 3 .
  • the second magnetic plate 66 may be provided at a position separated from the magnet holder 64 as long as a magnetic circuit can be formed.
  • the third magnetic plate 67 is a pair of magnetic members provided in contact with each of the second magnetic plates 66 and extends in the longitudinal direction of the target holder 32 .
  • the third magnetic plate 67 is fixed between the anode 72 and the second magnetic plate 66 by a fixing member (eg, bolt) that fixes the anode 72 to the second magnetic plate 66 (see FIG. 8).
  • the third magnetic plates 67 are arranged at positions facing each other across the target 30 arranged at the target arrangement position 30a when viewed from the vertically downward direction. That is, the third magnetic plate 67 is provided so as to cover the gas discharge port 54 together with the anode 72 .
  • the magnetic field intensity adjusting plate 61 As described above, the magnetic field intensity adjusting plate 61, the magnetic path bolt 62, the first magnetic plate 63, the magnet holding portion 64, the magnet 65, the second magnetic plate 66, and the third magnetic plate 67, One magnetic circuit is formed. That is, the magnetomotive force of the magnet 65 appears at the end of each third magnetic plate 67 and a parallel magnetic field is formed between the ends of the third magnetic plate 67 .
  • the cooling member of the target holder 32 is a member that water-cools the target 30 and includes a cooling water port 81 and a cooling water path 82 .
  • the cooling water port 81 cools the target holder 32 by supplying and discharging cooling water to and from the target holder 32 . As shown in FIG. 2, a cooling water port 81 is provided for each target holder 32 . The cooling water port 81 is provided at the end of each target holder 32 opposite to the end where the gas introduction part 51 is provided. A coolant other than water may be used as the cooling water.
  • the cooling water path 82 is a U-shaped groove provided on the lower surface of the target body 321 along the longitudinal direction of the target body 321 (see FIGS. 3 and 7).
  • the cooling member cools the target holder 32 by causing the cooling water supplied from the water supply port of the cooling water port 81 to flow in a U shape and draining the water from the water outlet of the cooling water port 81 .
  • the sputtering apparatus 1 discharges the gas 10 into the vacuum vessel 2 from a plurality of gas discharge ports 54 provided in the longitudinal direction of the target holder 32 with the target placement position 30a interposed therebetween, thereby performing sputtering. conduct.
  • the anode 72 has a gap from the target 30 and is provided so as to cover the outer edge of the target 30 . That is, the anode 72 is provided below the target 30 so as to protrude toward the target 30 . Therefore, the gas 10 emitted from the gas outlet 54 is emitted onto the surface of the target 30 in the direction in which the anode 72 protrudes, that is, toward the central region of the target 30 . Therefore, the sputtering apparatus 1 can distribute the gas 10 over the entire surface of the target 30 .
  • the gas 10 can be distributed over the entire surface of the target 30 with a substantially uniform concentration. Therefore, the sputtered particles can be emitted substantially uniformly from the target 30, and the film thickness of the thin film formed on the substrate 12 can be made substantially uniform. That is, the film thickness distribution of the substrate 12 can be made uniform.
  • a plurality of target holders 32 are provided for film formation on a large substrate.
  • Each target holder 32 is provided with a plurality of gas discharge ports 54 as described above. Therefore, in each target holder 32 , the gas 10 emitted from the gas outlet 54 is supplied over the entire surface of the target 30 .
  • the flow controller 8 adjusts the total flow rate to be supplied to each gas introduction part 51, and pipes (pipes) such as each gas introduction part 51 are adjusted so that the gas 10 flows substantially uniformly in each gas introduction part 51. is designed. Therefore, in each target holder 32, the amount of gas 10 emitted from the gas outlet 54 can be made uniform.
  • each target holder 32 since the distribution of the gas 10 in each target holder 32 can be made uniform, the film thickness distribution of the substrate 12 facing each target holder 32 can be made uniform.
  • each target holder 32 may be provided with a flow controller 8 individually. Even in this case, the flow rate of the gas 10 flowing through each gas introducing portion 51 can be made uniform.
  • the sputtering apparatus 1 discharges the gas 10 to the target 30 from positions close to the target 30 on both long sides of the target 30 . Therefore, a reactive gas is introduced from both sides of a set of targets 30, and the reactive gas is exhausted from between the set of targets 30 (eg, the sputtering apparatus of Patent Document 1). can be shortened. That is, the pitch between target holders 32 can be reduced. Therefore, since the area of the substrate 12 that does not face the target 30 can be reduced, the film thickness distribution of the substrate 12 can be made more uniform.
  • one evacuation device 4 is provided in the vacuum container 2 . Also, the evacuation device 4 is provided at a position different from the substrate holder 14 provided at the center of the bottom surface of the vacuum chamber 2 . Therefore, the distances between each target holder 32 and the evacuation device 4 are different from each other. As a result, the evacuating speed differs at each target holder 32 arrangement position.
  • a flow controller 8 may be provided for each target holder 32 in order to further homogenize the distribution of the gas 10 to each target 30 .
  • the flow rate of the gas 10 can be adjusted according to the evacuation speed at the arrangement position of each target holder 32 . Therefore, the distribution of the gas 10 to each target 30 can be made uniform regardless of the arrangement position of the evacuation device 4, and as a result, the film thickness distribution of the substrate 12 can be made uniform.
  • a plurality of vacuum pipes connected to the evacuation device 4 may be arranged at symmetrical positions with respect to the group of target holders 32 .
  • the vacuum pipes may be provided on two side walls of the vacuum vessel 2 facing each other and extending along the longitudinal direction of the target holder 32 .
  • the vacuum pipes may be provided in the vicinity of the two side walls at the bottom of the vacuum container 2 . In this case, it is possible to reduce the difference in the speed of evacuation at the position where each target holder 32 is arranged, so that the distribution of the gas 10 to each target 30 can be made uniform. Similar effects can also be obtained by the configuration of Embodiment 2, which will be described later.
  • a parallel magnetic field at a position facing the entire surface of the target 30, electrons can be uniformly captured over the entire surface of the target 30.
  • a plurality of antennas 20 as described above, it is possible to generate plasma 22 so as to face the entire surface of target 30 .
  • the density of plasma 22 may be localized on the surface of target 30 . Localization of the density of the plasma 22 can be suppressed by trapping electrons by forming the parallel magnetic field. Therefore, the entire surface of the target 30 can be uniformly sputtered. Therefore, the film thickness distribution of the substrate 12 can be made uniform.
  • the electrons fly out from the target 30 over a wide range. Therefore, the farther the magnetic pole formed on the third magnetic plate 67 is from the surface of the target 30, the lower the probability of capturing electrons (capture rate, yield) and the larger the configuration of the sputtering apparatus 1 becomes.
  • the third magnetic plate 67 near the target 30 , it is possible to improve the yield of electrons and reduce the size of the sputtering apparatus 1 when the third magnetic plate 67 is provided.
  • the magnetic field strength (magnetic flux density) formed by the magnetic circuit is less than the strength at which magnetron discharge occurs. Since the plasma 22 is generated by the antenna 20 in the sputtering apparatus 1, there is no need to generate a high-strength magnetic field that causes magnetron discharge.
  • the strength of the parallel magnetic field is adjusted by the magnetic strength of the magnet 65 and the width of the gap 61a formed between the pair of magnetic field strength adjusting plates 61 .
  • the magnetic field strength adjusting plate 61 is formed with the long hole 61b extending in the width direction of the magnetic field strength adjusting plate 61 as described above. Therefore, the width of the air gap 61a can be adjusted by changing the fixing position of the magnetic field strength adjusting plate 61 by the magnetic path bolt 62 within the range of the long hole 61b. Therefore, the magnetic resistance in the air gap 61a can be adjusted, so that the magnetic resistance of the magnetic circuit can be adjusted.
  • the width of the air gap 61a may be adjusted to a width capable of forming a parallel magnetic field having a strength capable of uniformly trapping electrons over the entire surface of the target 30 .
  • the width of the gap 61a can be adjusted for each target holder 32. Therefore, electrons can be uniformly captured over the entire surface of the target 30 in each target holder 32 .
  • a substance (air in this embodiment) having a magnetic permeability different from that of the magnetic member is inserted into the air gap 61a. Therefore, by forming the air gap 61a in the magnetic circuit, it is possible to form a magnetic circuit having a magnetic resistance different from that of a magnetic circuit formed only of magnets and magnetic members.
  • the air gap 61a Since the magnetic permeability of air is smaller than that of the magnetic member, the air gap 61a has a large magnetic resistance. Therefore, the greater the width of the air gap 61a, the smaller the intensity of the parallel magnetic field and the worse the intensity distribution. If the intensity distribution of the parallel magnetic field deteriorates, the parallel magnetic field cannot be formed over the entire surface of the target 30, and there is a possibility that the electrons will be captured unevenly. Therefore, the width of the air gap 61a is set to a width that can form a parallel magnetic field at a position facing the entire surface of the target 30, taking into account the magnetic permeability of the material (here, air) that fills the air gap 61a.
  • the material here, air
  • a magnetic circuit and a gas discharge port 54 are provided inside the target holder 32 . Further, along with providing the gas outlet 54 inside the target holder 32 , the gas path 52 and the gas branch path 53 are also provided inside the target holder 32 . Therefore, since it is not necessary to build a path for the gas 10 between the target holders 32, the plurality of target holders 32 can be attached to the upper surface portion 3 so that the plurality of target holders 32 are adjacent to each other. Therefore, the sputtering device 1 can be miniaturized. In addition, by miniaturizing the sputtering apparatus 1, the area of the substrate 12 that is not opposed to the target 30 can be reduced. Therefore, the film thickness distribution of the substrate 12 can be made more uniform.
  • the distribution of the gas 10 on the surface of the target 30 can be uniformed by the position of the gas discharge ports 54 described above. That is, depending on the arrangement position, the gas 10 can be uniformly supplied over the entire surface of the target 30 . Therefore, the film thickness distribution of the substrate 12 can be made uniform. Further, by adjusting the width of the air gap 61a as described above, the strength of the parallel magnetic field can be adjusted so that electrons can be uniformly captured over the entire surface of the target 30. FIG. This adjustment can also make the film thickness distribution of the substrate 12 uniform.
  • the flow rate adjustment of the gas 10 by the flow rate regulator 8 and the arrangement position adjustment of the magnetic field intensity adjustment plate 61 are performed outside the vacuum vessel 2. It can be carried out. Therefore, the film thickness distribution of the substrate 12 can be easily adjusted without opening the vacuum vessel 2 .
  • FIG. 10 is a cross-sectional view showing the detailed configuration inside the vacuum vessel 2 according to the second embodiment.
  • FIG. 11 is a view of the target holder 32 according to the second embodiment taken along line HH in FIG. 10, and is a bottom view of the target holder 32 in an assembled state.
  • the exhaust port 55 is connected to an evacuation device that evacuates the inside of the vacuum vessel 2 and exhausts the gas 10 released from the gas discharge port 54 .
  • the exhaust port 55 is provided at a position adjacent to the target holder 32 on the upper surface portion 3 . In this embodiment, it is provided between the plurality of target holders 32 .
  • a plurality of exhaust ports 55 are provided along the longitudinal direction of the target holder 32 .
  • the exhaust port 55 By providing the exhaust port 55 in the vicinity of the target holder 32 in this manner, an air current is generated in which the gas 10 released from the gas release port 54 flows toward the exhaust port 55 . Due to the generation of this airflow, the distribution of the gas 10 over the entire surface of the target 30 can be made more uniform. In addition, since the exhaust port 55 is provided between the plurality of target holders 32, the airflow generated in each target holder 32 tends to be uniform. Therefore, it becomes easy to uniformize the distribution of the gas 10 at each target 30, and as a result, the film thickness distribution of the substrate 12 can be uniformized.
  • the exhaust port 55 may be provided along the lateral direction of the target holder 32 at a position adjacent to the target holder 32 . That is, the exhaust port 55 may be provided at least partly around the target holder 32 . The distribution of the gas 10 over the entire surface of the target 30 can be made more uniform when the exhaust port 55 is provided along the longitudinal direction of the target holder 32 . Also, the exhaust port 55 may be one opening provided along the longitudinal direction or the lateral direction of the target holder 32 .
  • only one target holder 32 may be provided inside the vacuum vessel 2 . Even in this case, the distribution of the gas 10 over the entire surface of the target 30 can be made more uniform by providing the exhaust port 55 adjacent to the target holder 32 as described above. That is, by providing the exhaust port 55 near one target holder 32, the distribution of the gas 10 over the entire surface of the target 30 can be made more uniform.
  • the vacuum evacuation device 4 may not be provided directly in the vacuum vessel 2 .
  • the vacuum exhaust device 4 may be stopped during sputtering, and exhaust may be performed only through the exhaust port 55 .
  • the gas 10 is exhausted only through the exhaust port 55 without using the evacuation device 4 . Therefore, the unevenness of the exhaust speed of the gas 10 in each target holder 32 can be reduced, so that the distribution of the gas 10 in each target 30 can be made more uniform.
  • the flow controller 8 is provided corresponding to each target holder 32, and the distribution of the gas 10 at each target 30 can be made more uniform without adjusting the flow rate of the gas 10 with each flow controller 8 with high accuracy. can be done.
  • FIG. 12 is a schematic diagram of the magnetic field strength adjustment plate 61 according to the first embodiment and the magnetic field strength adjustment plate 610 according to the third embodiment.
  • Reference numeral 1201 in FIG. 12 indicates the magnetic field strength adjustment plate 61
  • reference numeral 1202 indicates the magnetic field strength adjustment plate 610.
  • FIG. In Embodiment 1, each of the pair of magnetic field strength adjustment plates 61 is composed of one plate. Therefore, the gap 61 a formed between the magnetic field strength adjusting plates 61 has a uniform width (length L) in the longitudinal direction of the magnetic field strength adjusting plates 61 .
  • each of the pair of magnetic field strength adjustment plates 610 (magnetic adjustment members) is divided into a plurality of sections in the longitudinal direction of the magnetic field strength adjustment plates 610 .
  • the pair of magnetic field strength adjustment plates 610 is a magnetic field plate group composed of a plurality of pairs of magnetic field plates. As shown in FIG. 12 , in this embodiment, the pair of magnetic field strength adjustment plates 610 has three pairs of magnetic field plates 611 , 612 and 613 in the longitudinal direction of the magnetic field strength adjustment plates 610 .
  • the width of the air gap 61c formed by the magnetic field plate 611 of the first set is L1.
  • the width of the air gap 61d formed by the second set of magnetic field plates 612 is L2.
  • the width of the air gap 61e formed by the third set of magnetic field plates 613 is L3.
  • Magnetic field plates 611 , 612 and 613 are arranged in this order and placed on top surface 320 of target holder 32 .
  • the magnetic field plates 611 , 612 and 613 are formed with elongated holes (not shown in FIG. 12) extending in the width direction of the magnetic field strength adjusting plate 610 , similar to the magnetic field strength adjusting plate 61 .
  • the widths 61c and 61e of the gaps corresponding to the end regions of the target 30 are made narrower than the width of the gap 61d corresponding to the central region of the target 30 (L1 ⁇ L3 ⁇ L2 ).
  • the magnetic field strength in the gaps 61c and 61e can be made stronger than the magnetic field strength in the gap 61d.
  • the widths 61c, 61d and 61e may be adjusted so that the intensity of the parallel magnetic field is uniform over the entire surface of the target 30.
  • the lengths L1, L2, and L3 may be different depending on the placement of the target 30 and the like.
  • the magnetic field strength adjustment plate 610 does not necessarily need to be divided into the three sections of the magnetic field plates 611, 612 and 613, and may be divided into any number. Further, the length of the width 61a may be different at each position in the longitudinal direction of the magnetic field strength adjustment plate 61 by bending each of the pair of magnetic field strength adjustment plates 61 . For example, the shape of the magnetic field strength adjustment plate 61 may be defined such that the width 61a is maximized at the central portion of the magnetic field strength adjustment plate 61 in the longitudinal direction.
  • both of the magnetic field strength adjustment plates 610 are divided into a plurality of sections, but this is not the only option.
  • only one magnetic field strength adjustment plate 610 may be divided into a plurality of sections. Even in this case, the width of each position in the longitudinal direction of the magnetic field intensity adjustment plate 610 can be individually adjusted.
  • Embodiment 1 air is inserted into the air gap 61a as a substance having a magnetic permeability different from that of the magnetic member.
  • a substance having a magnetic permeability different from that of air may be inserted into the air gap 61a.
  • the reluctance of the magnetic circuit can be adjusted, and as a result, the strength of the parallel magnetic field can be adjusted.
  • carbon steel (magnetic permeability: 1.26 ⁇ 10 ⁇ 4 ⁇ H/m) having a magnetic permeability approximately 100 times higher than that of air (1.26 ⁇ 10 ⁇ 6 ⁇ H/m) was inserted into the air gap 61a. , the reluctance of the magnetic circuit becomes 1/100.
  • a material having a lower magnetic permeability than the magnetic member such as nonmagnetic metal (eg, aluminum) or engineering plastic (eg, PEEK (PolyEtherethErKetone)), may be inserted into the air gap 61a.
  • nonmagnetic metal eg, aluminum
  • engineering plastic eg, PEEK (PolyEtherethErKetone)
  • the magnetic field intensity adjusting plate 61 may be configured by a single plate (for example, a plate made of PEEK) without a gap instead of being configured by a pair of magnetic members.
  • the magnetic resistance of the magnetic circuit can be changed by replacing the magnetic field strength adjusting plate 61 with another magnetic field strength adjusting plate 61 having a magnetic permeability different from that of the magnetic field strength adjusting plate 61 concerned. .
  • the pair of magnets 65 are provided inside the upper surface portion 3, but the positions at which the magnets 65 are provided are not limited to these positions.
  • the magnetic field intensity adjusting plate 61 one magnet having N and S poles may be arranged on the surface of the upper surface portion 3.
  • an N-pole magnet and an S-pole magnet may be arranged on the surface of the upper surface portion 3 . In this case, the strength of the parallel magnetic field can be adjusted by exchanging the magnets.
  • ionization is performed by the plasma 22 from the antenna 20, but the present invention is not limited to this.
  • a magnetic circuit may be used to form a parallel magnetic field with a strength equal to or greater than the magnetron discharge.
  • a sputtering apparatus is a sputtering apparatus that sputters a target in a vacuum vessel to form a film on a substrate, wherein the vacuum vessel includes at least one holder that holds the target,
  • the holding section includes a gas introduction section that introduces gas into the holding section, and at least one area around the target arrangement position where the target is arranged in the holding section when the target arrangement position is viewed from a vertically downward direction. and a pair of openings that are provided at positions facing each other on both sides of the target placement position, and that discharge the gas introduced into the holding part into the vacuum vessel.
  • gas can be supplied from the periphery of the target over the entire surface of the target with a substantially uniform pressure. Therefore, unevenness in gas distribution over the entire surface of the target can be reduced. Therefore, it is possible to reduce the possibility that the thickness of the thin film formed on the substrate will vary.
  • the target arrangement position has a rectangular shape when viewed from the vertically downward direction, and the opening extends over the entire opposite sides of the target arrangement position. may be provided.
  • the gas can be supplied more uniformly over the entire surface of the target.
  • the opening may be provided over the entire opposing long sides of the target arrangement position.
  • the gas can be supplied more uniformly over the entire surface of the target.
  • the holding section includes a magnet and a magnetic member magnetized by the magnet, and the magnet and the magnetic member form a magnetic field above the target arrangement position.
  • a gap may be formed in a part of the magnetic circuit, and the part of the magnetic circuit in which the gap is formed may be provided outside the vacuum vessel.
  • the magnetic resistance of the magnetic circuit can be adjusted without opening the vacuum vessel by the gap provided outside the vacuum vessel.
  • the holding section may include an adjusting mechanism that adjusts the width of the gap.
  • the magnetic resistance of the magnetic circuit can be adjusted by adjusting the width of the air gap.
  • the adjustment mechanism includes a pair of magnetic adjustment members provided on an upper surface portion of the holding portion as part of the magnetic member and defining the gap. At least one magnetic adjustment member of the adjustment members is formed with an elongated hole extending in the width direction of the gap and passing through a fixing member that fixes the magnetic adjustment member to the holding portion as a part of the magnetic member. and a position through which the fixing member penetrates the long hole may be variable.
  • the width of the air gap can be changed by changing the through-position of the elongated hole in the magnetic adjustment member.
  • the target arrangement position has a rectangular shape when viewed from the vertically downward direction, and the pair of magnetic adjustment members extend in the longitudinal direction of the target arrangement position. At least one of the pair of magnetic adjustment members is divided into a plurality of sections along the longitudinal direction, and each of the plurality of sections is provided with the fixing member in the long hole.
  • the width of the gap may be defined by defining the penetrating position of the member.
  • the magnetic resistance of the magnetic circuit can be adjusted in the longitudinal direction of the target arrangement position.
  • a substance having a magnetic permeability different from that of the magnetic member may be inserted into the gap.
  • the magnetic resistance of the magnetic circuit can be adjusted by inserting a material having a different magnetic permeability from the magnetic member into the air gap.
  • a sputtering apparatus may include a plurality of holding parts.
  • the vacuum vessel may include a plurality of exhaust units that evacuate the interior of the vacuum vessel, and the exhaust units may be provided adjacent to the holding unit.
  • the gas distribution over the entire surface of the target can be made more uniform.
  • the holding section includes a gas path communicating between the gas introducing section and the opening, and the gas path receives the gas introduced from the gas introducing section.
  • a main path and a plurality of branch paths communicating with the main path and introducing gas in the main path to the opening, wherein the thickness of each of the plurality of branch paths is greater than the thickness of the main path. may be smaller.

Abstract

In the present invention, a gas is fed over the entire surface of a target. In the present invention, a vacuum container (2) of a sputtering device (1) is provided with at least one target holder (32) for holding a target (30). The target holder is provided with: a gas introduction part (51) for introducing a gas (10); and a pair of gas release ports (54) for releasing the gas into the vacuum container, the gas release ports (54) being provided at opposing positions in at least a part of the surroundings of the target.

Description

スパッタリング装置Sputtering equipment
 本発明はスパッタリング装置に関する。 The present invention relates to sputtering equipment.
 従来から種々のスパッタリング装置が提案されている。スパッタリング装置の一例として、マグネトロンスパッタリング装置が挙げられる。当該マグネトロンスパッタリング装置では、ターゲットの裏面に設けた磁石によって、ターゲットの表面に磁場が形成され、当該磁場中のガスをプラズマ化した上で、プラズマ化したガスのイオンをターゲットに衝突させる。ターゲットにイオンが衝突することで、ターゲットからスパッタ粒子が飛び出し、当該粒子によってターゲットに対向して設けられた基板を成膜する。  Conventionally, various sputtering apparatuses have been proposed. An example of a sputtering device is a magnetron sputtering device. In the magnetron sputtering apparatus, a magnetic field is formed on the surface of the target by a magnet provided on the back surface of the target, the gas in the magnetic field is plasmatized, and ions of the plasmatized gas are made to collide with the target. When the ions collide with the target, sputtered particles are sputtered from the target, and the particles form a film on the substrate facing the target.
 スパッタリング装置では、ターゲット上のガスの粗密により、基板上に成膜される薄膜の膜厚にムラができることが知られている。このムラの発生を抑制する技術の一例が特許文献1に開示されている。特許文献1のスパッタリング装置には、スパッタガスが導入されたチャンバー内に2つのターゲットが一組となって設けられている。そして、特許文献1のスパッタリング装置には、一組のターゲットの両側から反応性ガスを導入するガス導入口と、一組のターゲットの間から反応性ガスを排気する排気口と、が設けられている。 In sputtering equipment, it is known that the thickness of the thin film formed on the substrate is uneven due to the density of the gas on the target. An example of technology for suppressing the occurrence of this unevenness is disclosed in Japanese Unexamined Patent Application Publication No. 2002-200012. In the sputtering apparatus of Patent Document 1, a set of two targets is provided in a chamber into which a sputtering gas is introduced. The sputtering apparatus of Patent Document 1 is provided with gas inlets for introducing the reactive gas from both sides of the pair of targets, and an exhaust port for exhausting the reactive gas from between the pair of targets. there is
日本国特開2013-49884号公報Japanese Patent Application Laid-Open No. 2013-49884
 しかしながら、特許文献1のスパッタリング装置では、一組のターゲットのうちの1つのターゲットにおいて、当該ターゲットの一長辺側にガス導入口が設けられ、当該ターゲットの一長辺と対向する長辺側に排気口が設けられている。そのため、当該ターゲットの、2つの長辺に垂直な方向(当該ターゲットの幅方向)において、当該ターゲットに対する反応性ガスの供給量が不均一となる可能性があった。そのため、ターゲットの表面全体におけるスパッタ粒子の飛び出し量にムラが生じる可能性があった。その結果、基板に形成される薄膜の膜厚にムラが生じる可能性があった。 However, in the sputtering apparatus of Patent Document 1, in one target of a set of targets, a gas inlet is provided on one long side of the target, and a gas inlet is provided on the long side opposite to the one long side of the target. An exhaust port is provided. Therefore, there is a possibility that the amount of reactive gas supplied to the target becomes uneven in the direction perpendicular to the two long sides of the target (the width direction of the target). Therefore, there is a possibility that the amount of sputtered particles projected from the entire surface of the target may be uneven. As a result, the thickness of the thin film formed on the substrate may be uneven.
 そこで、本発明の一態様は、ターゲットの表面全体に亘ってガスを供給することが可能なスパッタリング装置を実現することを目的とする。 Therefore, an object of one aspect of the present invention is to realize a sputtering apparatus capable of supplying gas over the entire surface of a target.
 上記の課題を解決するために、本発明の一態様に係るスパッタリング装置は、真空容器内でターゲットをスパッタさせて基板上に成膜するスパッタリング装置であって、前記真空容器は、前記ターゲットを保持する少なくとも1つの保持部を備え、前記保持部は、前記保持部にガスを導入するガス導入部と、前記保持部において前記ターゲットが配置されるターゲット配置位置を鉛直下方向から見たときに、前記ターゲット配置位置の周囲の少なくとも一部に亘って、かつ前記ターゲット配置位置を挟んで対向する位置に設けられ、前記保持部内に導入された前記ガスを前記真空容器内に放出する一対の開口部と、を備える。 To solve the above problems, a sputtering apparatus according to one aspect of the present invention is a sputtering apparatus for sputtering a target in a vacuum vessel to form a film on a substrate, wherein the vacuum vessel holds the target. When viewed from the vertically downward direction, the holding part includes a gas introduction part for introducing gas into the holding part and a target arrangement position where the target is arranged in the holding part, A pair of openings extending over at least a part of the periphery of the target arrangement position and provided at opposing positions across the target arrangement position for discharging the gas introduced into the holding section into the vacuum vessel. And prepare.
 本発明の一態様によれば、ターゲットの表面全体に亘ってガスを供給することができる。 According to one aspect of the present invention, gas can be supplied over the entire surface of the target.
実施形態1に係るスパッタリング装置の全体的な構成例を示す図である。1 is a diagram showing an overall configuration example of a sputtering apparatus according to Embodiment 1; FIG. 実施形態1に係るターゲットホルダの図1におけるA-A矢視図であり、ターゲットホルダを組み立てた状態における上面図である。FIG. 2 is a view of the target holder according to Embodiment 1, taken along line AA in FIG. 1, and is a top view of the assembled target holder. 実施形態1に係るターゲットホルダの図1におけるB-B矢視図であり、ターゲットホルダを組み立てた状態における下面図である。FIG. 2 is a view of the target holder according to Embodiment 1, taken along line BB in FIG. 1, and is a bottom view of the target holder in an assembled state. 実施形態1に係るターゲットホルダの図1におけるC-C矢視図である。FIG. 2 is a CC arrow view in FIG. 1 of the target holder according to Embodiment 1; 実施形態1に係るターゲットホルダの図1におけるD-D矢視図である。FIG. 2 is a DD arrow view in FIG. 1 of the target holder according to Embodiment 1. FIG. 実施形態1に係るターゲットホルダの図1におけるE-E矢視図である。FIG. 2 is a view of the target holder according to Embodiment 1, taken along line EE in FIG. 1; 実施形態1に係るターゲットホルダの図2におけるF-F断面図である。3 is a cross-sectional view of the target holder according to Embodiment 1, taken along the line FF in FIG. 2. FIG. 実施形態1に係るターゲットホルダの図2におけるG-G断面図である。FIG. 3 is a cross-sectional view along GG in FIG. 2 of the target holder according to Embodiment 1; 実施形態1に係るターゲットホルダの図2におけるH部の拡大図である。3 is an enlarged view of the H portion in FIG. 2 of the target holder according to Embodiment 1. FIG. 実施形態2に係る真空容器内の詳細構成を示す断面図である。FIG. 8 is a cross-sectional view showing the detailed configuration inside the vacuum vessel according to Embodiment 2; 実施形態2に係るターゲットホルダの図10におけるI-I矢視図であり、ターゲットホルダを組み立てた状態における下面図である。FIG. 11 is a view of the target holder according to Embodiment 2, taken along line II in FIG. 10, and is a bottom view of the assembled target holder. 実施形態1および3に係る磁場強度調整プレートの概略図である。4 is a schematic diagram of a magnetic field strength adjusting plate according to Embodiments 1 and 3. FIG.
 〔実施形態1〕
 以下、本発明の一実施形態について、図1~図9を用いて詳細に説明する。
[Embodiment 1]
An embodiment of the present invention will be described in detail below with reference to FIGS. 1 to 9. FIG.
 <スパッタリング装置の全体構成>
 まず、図1を用いて、本実施形態に係るスパッタリング装置1の全体構成について説明する。図1は、実施形態1に係るスパッタリング装置1の全体的な構成例を示す図である。
<Overall Configuration of Sputtering Apparatus>
First, with reference to FIG. 1, the overall configuration of a sputtering apparatus 1 according to this embodiment will be described. FIG. 1 is a diagram showing an overall configuration example of a sputtering apparatus 1 according to Embodiment 1. As shown in FIG.
 図1に示すように、スパッタリング装置1は、スパッタ用のガス10が導入される真空容器2内でターゲット30をスパッタさせて基板12上に成膜する装置である。 As shown in FIG. 1, the sputtering apparatus 1 is an apparatus for sputtering a target 30 in a vacuum vessel 2 into which a sputtering gas 10 is introduced to form a film on a substrate 12 .
 具体的には、スパッタリング装置1は、真空排気装置4によって真空排気される真空容器2を備えている。真空容器2は、電気的に接地されており、その内部にスパッタリング用のガス10が導入される。ガス10は、流量調節器8でその流量を調整されながら、ガス源6から、ガス導入配管50およびガス導入部51を介して、ターゲットホルダ32に供給される。そして、ガス10は、ターゲットホルダ32を介して、真空容器2へと導入される。ガス導入部51と真空容器2の上面部3との間、および、ガス導入部51とターゲットホルダ32との間には、絶縁部43が設けられている。ガス10は、例えば、アルゴンガスである。反応性スパッタリングを行う場合、ガス10は、アルゴンガスと活性ガス(例えば酸素ガス、窒素ガス等)との混合ガスでもあっても構わない。活性ガスは反応性ガスとも称される。 Specifically, the sputtering apparatus 1 includes a vacuum vessel 2 that is evacuated by an evacuation device 4 . The vacuum vessel 2 is electrically grounded, and a gas 10 for sputtering is introduced therein. The gas 10 is supplied from the gas source 6 to the target holder 32 via the gas introduction pipe 50 and the gas introduction section 51 while the flow rate is adjusted by the flow rate controller 8 . The gas 10 is then introduced into the vacuum vessel 2 via the target holder 32 . An insulating portion 43 is provided between the gas introducing portion 51 and the upper surface portion 3 of the vacuum vessel 2 and between the gas introducing portion 51 and the target holder 32 . Gas 10 is, for example, argon gas. When performing reactive sputtering, the gas 10 may be a mixed gas of argon gas and active gas (for example, oxygen gas, nitrogen gas, etc.). Active gases are also referred to as reactive gases.
 真空容器2内には、基板12を保持する基板ホルダ14が設けられている。本実施形態では、スパッタリング装置1は、基板バイアス電源16を備える。基板バイアス電源16は、基板ホルダ14に基板バイアス電圧Vsを印加している。基板バイアス電圧Vsは、負の直流電圧であっても構わないし、負のパルス電圧、交流電圧等でもあっても構わない。また、基板ホルダ14は、基板12に基板バイアス電圧Vsが印加されない場合、電気的に接地されていても構わない。なお、符号40は、真空シール機能を有する絶縁部である。また、基板12は、ターゲット30から放出されたスパッタ粒子により薄膜が形成される被処理物である。基板12としては、ガラス基板、半導体基板等が用いられるが、これに限られるものではない。 A substrate holder 14 for holding the substrate 12 is provided in the vacuum chamber 2 . In this embodiment, the sputtering apparatus 1 has a substrate bias power supply 16 . A substrate bias power supply 16 applies a substrate bias voltage Vs to the substrate holder 14 . The substrate bias voltage Vs may be a negative DC voltage, a negative pulse voltage, an AC voltage, or the like. Further, the substrate holder 14 may be electrically grounded when the substrate bias voltage Vs is not applied to the substrate 12 . Reference numeral 40 denotes an insulating portion having a vacuum sealing function. Also, the substrate 12 is an object to be processed on which a thin film is formed by sputtered particles emitted from the target 30 . A glass substrate, a semiconductor substrate, or the like is used as the substrate 12, but it is not limited to this.
 また、真空容器2の上面部3には、基板ホルダ14に対向する位置に、ターゲット30を保持するターゲットホルダ(保持部)32が設けられている。図1では、ターゲットホルダ32が上面部3に3個備わっている。但し、ターゲットホルダ32の数は限定されず、少なくとも1つのターゲットホルダ32が上面部3に備わっていればよい。ターゲットホルダ32により、ターゲット30は、真空容器2の内部において基板12に対向する位置に保持される。ターゲット30の平面形状は、例えば矩形状であるが、これに限らず、円形状等であっても構わない。 A target holder (holding portion) 32 for holding the target 30 is provided on the upper surface portion 3 of the vacuum vessel 2 at a position facing the substrate holder 14 . In FIG. 1, three target holders 32 are provided on the upper surface portion 3 . However, the number of target holders 32 is not limited as long as at least one target holder 32 is provided on the upper surface portion 3 . The target holder 32 holds the target 30 at a position facing the substrate 12 inside the vacuum vessel 2 . The planar shape of the target 30 is, for example, rectangular, but is not limited to this, and may be circular or the like.
 ターゲット30の材質は、基板12上に形成する膜に応じたものにすれば良い。一例を示せば、基板12上に酸化物半導体薄膜を形成する場合には、ターゲット30は、例えば、In-Ga-Zn-O(インジウム-ガリウム-亜鉛-酸素)、又はIn-Sn-Zn-O(インジウム-スズ-亜鉛-酸素)等から構成される酸化物半導体である。但し、ターゲット30の材質はこれに限られるものではない。 The material of the target 30 may be selected according to the film to be formed on the substrate 12 . As an example, when forming an oxide semiconductor thin film on the substrate 12, the target 30 is, for example, In-Ga-Zn-O (indium-gallium-zinc-oxygen) or In-Sn-Zn- It is an oxide semiconductor composed of O (indium-tin-zinc-oxygen) or the like. However, the material of the target 30 is not limited to this.
 ターゲット30には、ターゲットホルダ32を介してターゲットバイアス電源34が接続されている。ターゲットバイアス電源34は、ターゲット30にターゲットバイアス電圧Vtを供給(印加)するものである。ターゲットバイアス電圧Vtは、プラズマ22中のイオン(本出願では正イオンを意味する)をターゲット30に引き込んでスパッタさせる電圧であり、例えば、負の直流電圧、または交流電圧である。ターゲットバイアス電圧Vtを交流電圧とする場合、当該交流電圧は、例えば、13.56MHzのようなMHzオーダーの高周波電圧であっても構わない。または、ターゲットバイアス電圧Vtは、高周波電源24の出力(例えば13.56MHz)よりも低い周波数(例えば10kHz~100kHz程度)の低周波電圧であっても構わない。ターゲットバイアス電圧Vtを低周波電圧にすると、高周波電源24を用いたプラズマ生成動作との干渉を避けることが容易になる。 A target bias power supply 34 is connected to the target 30 via a target holder 32 . The target bias power supply 34 supplies (applies) a target bias voltage Vt to the target 30 . The target bias voltage Vt is a voltage that draws ions (meaning positive ions in this application) in the plasma 22 to the target 30 for sputtering, and is, for example, a negative DC voltage or an AC voltage. When the target bias voltage Vt is an AC voltage, the AC voltage may be a high-frequency voltage on the order of MHz, such as 13.56 MHz. Alternatively, the target bias voltage Vt may be a low-frequency voltage having a frequency (eg, about 10 kHz to 100 kHz) lower than the output of the high-frequency power supply 24 (eg, 13.56 MHz). By setting the target bias voltage Vt to a low frequency voltage, it becomes easier to avoid interference with the plasma generation operation using the high frequency power supply 24 .
 さらに、真空容器2の内部には、アンテナ20が配置されている。本実施形態では、4本のアンテナ20が、ターゲットホルダ32に保持されたターゲット30を両側から挟むように対向して配置されている。 Furthermore, an antenna 20 is arranged inside the vacuum container 2 . In this embodiment, four antennas 20 are arranged to face each other so as to sandwich the target 30 held by the target holder 32 from both sides.
 各アンテナ20には、整合回路26を介して高周波電源24が接続されている。具体的には、各アンテナ20の一端部に整合回路26が接続され、各アンテナ20の他端部は電気的に接地されている。高周波電源24の一端も電気的に接地されている。なお、符号41は、真空シール機能を有する絶縁部である。また、各アンテナ20用に高周波電源24及び整合回路26をそれぞれ設けても構わない。 A high frequency power supply 24 is connected to each antenna 20 via a matching circuit 26 . Specifically, a matching circuit 26 is connected to one end of each antenna 20, and the other end of each antenna 20 is electrically grounded. One end of the high frequency power supply 24 is also electrically grounded. Reference numeral 41 denotes an insulating portion having a vacuum sealing function. Further, a high frequency power supply 24 and a matching circuit 26 may be provided for each antenna 20 respectively.
 高周波電源24は、高周波電力Prを各アンテナ20に供給するものである。具体的には、各アンテナ20に高周波電力Prが並列に供給されることで、ターゲット30の表面近傍に、誘導結合型のプラズマ22を発生させる。高周波電源24から出力される高周波電力Prの周波数は、例えば、一般的な13.56MHzであるが、これに限られるものではない。 The high frequency power supply 24 supplies high frequency power Pr to each antenna 20 . Specifically, by supplying high-frequency power Pr to each antenna 20 in parallel, an inductively coupled plasma 22 is generated near the surface of the target 30 . The frequency of the high-frequency power Pr output from the high-frequency power supply 24 is, for example, a general 13.56 MHz, but is not limited to this.
 また、スパッタリング装置1は、制御装置46を備えている。制御装置46は、スパッタリング装置1の各部を統括して制御するものである。特に、制御装置46は、高周波電源24及びターゲットバイアス電源34からの電力供給を制御する。また、制御装置46は、流量調節器8を制御して、真空容器2に導入されるガス10の流量を制御する。 The sputtering apparatus 1 also includes a control device 46 . The control device 46 controls each part of the sputtering apparatus 1 in an integrated manner. In particular, controller 46 controls power supply from high frequency power supply 24 and target bias power supply 34 . The control device 46 also controls the flow rate regulator 8 to control the flow rate of the gas 10 introduced into the vacuum vessel 2 .
 なお、流量調節器8に接続されるガス導入配管50、ガス絶縁配管501およびガス導入部51は、ターゲットホルダ32のそれぞれに設けられているが、図1ではその図示を割愛している。また、高周波電源24は、整合回路26を介して各アンテナ20に接続されているが、図1ではその図示を割愛している。さらに、ターゲットバイアス電源34は、ターゲットホルダ32のそれぞれにおいて保持されたターゲット30に接続されているが、図1ではその図示を割愛している。 The gas introduction pipe 50, the gas insulation pipe 501, and the gas introduction portion 51 connected to the flow rate regulator 8 are provided in each of the target holders 32, but are not shown in FIG. Also, the high-frequency power supply 24 is connected to each antenna 20 through a matching circuit 26, but the illustration thereof is omitted in FIG. Furthermore, the target bias power supply 34 is connected to the targets 30 held in each of the target holders 32, but the illustration thereof is omitted in FIG.
 <真空容器の上面部付近の構成>
 次に、図1を用いて、真空容器2の上面部3付近の具体的構成について詳細に説明する。上面部3の付近には、主として、
・ターゲット30の表面近傍においてプラズマ22を発生させるアンテナ20、
・ターゲット30を保持するターゲットホルダ32
が設けられている。
<Structure near the top surface of the vacuum vessel>
Next, with reference to FIG. 1, a specific configuration near the upper surface portion 3 of the vacuum vessel 2 will be described in detail. In the vicinity of the upper surface part 3, mainly
an antenna 20 that generates a plasma 22 near the surface of the target 30;
- A target holder 32 that holds the target 30
is provided.
 (アンテナ)
 図1に示すように、アンテナ20は、真空容器2内部の、ターゲットホルダ32の近傍に(具体的には、ターゲットホルダ32に保持されたターゲット30の表面近傍に)配置されている。本実施形態では、図1に示すように、複数本のアンテナ20は、ターゲットホルダ32に保持されたターゲット30を両側から挟むように、例えば、矩形状のターゲット30の辺に沿うように配置されている。
(antenna)
As shown in FIG. 1, the antenna 20 is arranged in the vicinity of the target holder 32 inside the vacuum vessel 2 (specifically, in the vicinity of the surface of the target 30 held by the target holder 32). In this embodiment, as shown in FIG. 1, the multiple antennas 20 are arranged along the sides of the rectangular target 30, for example, so as to sandwich the target 30 held by the target holder 32 from both sides. ing.
 複数本のアンテナ20をこのように配置することにより、ターゲット30の表面全体と対向するようにプラズマ22を発生させることが可能となる。これにより、ターゲット30の表面全体をスパッタリングすることが可能となり、ターゲット30の利用効率を向上させることが可能となる。但し、この点を考慮しなければ、例えば1本のアンテナ20をターゲット30の片側の辺に沿うように配置しても構わない。 By arranging the multiple antennas 20 in this way, it is possible to generate the plasma 22 so as to face the entire surface of the target 30 . Thereby, the entire surface of the target 30 can be sputtered, and the utilization efficiency of the target 30 can be improved. However, if this point is not considered, for example, one antenna 20 may be arranged along one side of the target 30 .
 また、各アンテナ20は、整合回路26に接続されている。各アンテナ20は、中が詰まった中実構造であっても構わないし、中空構造(例:管状又は筒状)であっても構わない。中空構造の場合、その内部に冷却水路を設け、冷却水を流すことで各アンテナ20を冷却する水冷構造としても構わない。また、各アンテナ20は、アンテナ導体の途中にコンデンサを挿入した構造であっても構わない。 Also, each antenna 20 is connected to a matching circuit 26 . Each antenna 20 may be a solid structure with a solid body, or may be a hollow structure (eg, tubular or cylindrical). In the case of a hollow structure, a water cooling structure may be employed in which cooling water passages are provided in the interior of the structure and the antennas 20 are cooled by flowing cooling water. Further, each antenna 20 may have a structure in which a capacitor is inserted in the middle of the antenna conductor.
 なお、アンテナ20の形状は、上述した形状に限らず、全体が棒状でもあっても構わないし、U字状、C字状、またはコイル状等であっても構わない。また、アンテナ20の形状は、ターゲット30の平面形状に応じた形状としても構わない。例えば、ターゲット30の平面形状が円形状の場合には、アンテナ20の平面形状を円形状にしても構わない。 It should be noted that the shape of the antenna 20 is not limited to the shape described above, and may be entirely bar-shaped, U-shaped, C-shaped, coil-shaped, or the like. Also, the shape of the antenna 20 may be a shape corresponding to the planar shape of the target 30 . For example, if the target 30 has a circular planar shape, the antenna 20 may have a circular planar shape.
 また、アンテナ20は、その構造又は形状に依らず、アンテナ導体が絶縁性部材の内側に収納された構造となっている。 Also, the antenna 20 has a structure in which the antenna conductor is housed inside an insulating member regardless of its structure or shape.
 上述したアンテナ20の構造又は形状はあくまで一例であって、アンテナ20は、プラズマ22を発生させることが可能な構造又は形状であればよい。 The structure or shape of the antenna 20 described above is merely an example, and the antenna 20 may have any structure or shape that can generate the plasma 22 .
 また、アンテナ20には、ターゲット30へのターゲットバイアス電圧Vtの供給とは独立して高周波電力Prが供給される。具体的には、制御装置46(図1参照)が、ターゲット30にターゲットバイアス電圧Vtを供給するターゲットバイアス電源34と、アンテナ20に高周波電力Prを供給する高周波電源24とを独立に制御する。 Also, the antenna 20 is supplied with the high-frequency power Pr independently of the supply of the target bias voltage Vt to the target 30 . Specifically, the control device 46 (see FIG. 1) independently controls the target bias power supply 34 that supplies the target bias voltage Vt to the target 30 and the high frequency power supply 24 that supplies the high frequency power Pr to the antenna 20 .
 (ターゲットホルダの構成)
 ターゲットホルダ32は、ターゲットホルダ32の構造を規定する構造部材と、ターゲット30近傍にガス10を導入するガス部材と、ターゲット30の表面近傍に磁場を形成する磁気回路部材と、により構成されている。また、ターゲットホルダ32は、ターゲットホルダ32に電圧を印加する電極部材と、電極部材を絶縁するための絶縁部材と、ターゲットホルダ32を冷却する冷却部材と、により構成されている。
(Structure of target holder)
The target holder 32 is composed of a structural member that defines the structure of the target holder 32, a gas member that introduces the gas 10 near the target 30, and a magnetic circuit member that forms a magnetic field near the surface of the target 30. . The target holder 32 is composed of an electrode member that applies voltage to the target holder 32 , an insulating member that insulates the electrode member, and a cooling member that cools the target holder 32 .
 上述したターゲットホルダ32の各部材について、図2~図8を用いて説明する。図2は、実施形態1に係るターゲットホルダ32の図1におけるA-A矢視図であり、ターゲットホルダ32を組み立てた状態における上面図である。図3は、実施形態1に係るターゲットホルダ32の図1におけるB-B矢視図であり、ターゲットホルダ32を組み立てた状態における下面図である。図4は、実施形態1に係るターゲットホルダ32の図1におけるC-C矢視図である。図5は、実施形態1に係るターゲットホルダ32の図1におけるD-D矢視図である。図6は、実施形態1に係るターゲットホルダ32の図1におけるE-E矢視図である。図7は、実施形態1に係るターゲットホルダ32の図2におけるF-F断面図である。図8は、実施形態1に係るターゲットホルダ32の図2におけるGーG断面図である。 Each member of the target holder 32 described above will be described with reference to FIGS. 2 to 8. FIG. FIG. 2 is a view of the target holder 32 according to the first embodiment taken along line AA in FIG. 1, and is a top view of the target holder 32 in an assembled state. FIG. 3 is a view of the target holder 32 according to the first embodiment taken along line BB in FIG. 1, and is a bottom view of the target holder 32 in an assembled state. FIG. 4 is a view of the target holder 32 according to the first embodiment taken along line CC in FIG. FIG. 5 is a view of the target holder 32 according to the first embodiment taken along line DD in FIG. FIG. 6 is a view of the target holder 32 according to the first embodiment taken along line EE in FIG. FIG. 7 is a cross-sectional view of the target holder 32 according to the first embodiment taken along the line FF in FIG. FIG. 8 is a cross-sectional view of the target holder 32 according to the first embodiment taken along the line GG in FIG.
 なお、図3では、説明の便宜上、ターゲットホルダ32に保持されたターゲット30の図示は割愛している。 3, the target 30 held by the target holder 32 is omitted for convenience of explanation.
 (ターゲットホルダの構造部材)
 まず、ターゲットホルダ32は構造部材として、例えば図7及び図8に示すように、ターゲットボディ321と、バッキングプレート322とを備える。
(Structural member of target holder)
First, the target holder 32 includes a target body 321 and a backing plate 322 as structural members, as shown in FIGS. 7 and 8, for example.
 ターゲットボディ321は、ターゲットホルダ32の各種部材を規定する部材である。ターゲットボディ321には、各種部材を規定する溝および穴、または、各種部材を組みつけるための溝および穴が形成されている。各種部材の機能および構成は後述する。 The target body 321 is a member that defines various members of the target holder 32 . The target body 321 is formed with grooves and holes for defining various members, or grooves and holes for assembling various members. Functions and configurations of various members will be described later.
 バッキングプレート322は、ターゲット30が取り付けられるプレートである。バッキングプレート322の、基板ホルダ14と対向する側の表面において、ターゲット30が取り付けられる(配置される)位置を、ターゲット配置位置30aと称する(図3および図6も参照)。バッキングプレート322は、ターゲットボディ321の下部に配置される。バッキングプレート322には、ガス部材の一部(例えば、ガス放出口54)が形成されている。 The backing plate 322 is a plate to which the target 30 is attached. A position where the target 30 is attached (placed) on the surface of the backing plate 322 facing the substrate holder 14 is referred to as a target placement position 30a (see also FIGS. 3 and 6). The backing plate 322 is arranged below the target body 321 . A part of the gas member (for example, the gas discharge port 54) is formed in the backing plate 322. As shown in FIG.
 ターゲットボディ321およびバッキングプレート322の、鉛直下方向から見たときの形状(平面形状)は、取付対象となるターゲット30の形状に合わせて設計されていればよい。例えば、取り付けられるターゲット30の平面形状が矩形状であるならば、ターゲットボディ321およびバッキングプレート322の平面形状は、矩形状に設計されていればよい。 The shape (planar shape) of the target body 321 and the backing plate 322 when viewed from the vertically downward direction may be designed according to the shape of the target 30 to be attached. For example, if the target 30 to be attached has a rectangular planar shape, the target body 321 and the backing plate 322 may be designed to have rectangular planar shapes.
 ターゲットボディ321およびバッキングプレート322の平面形状が矩形状である場合、ターゲットボディ321およびバッキングプレート322の角部が面取りされた形状であってもよい。本実施形態では、ターゲットボディ321およびバッキングプレート322の平面形状は矩形状であるが、ターゲットボディ321およびバッキングプレート322の角部はR形状となっている。この形状は、ターゲットボディ321およびバッキングプレート322が設けられる上面部3の加工上の制限、および、ターゲットボディ321およびバッキングプレート322のエッジ部において異常放電が生じるリスクの低減等の理由に起因する。但し、この点を考慮しなければ、ターゲットボディ321およびバッキングプレート322の平面形状は、角部が面取りされていない矩形状であってもよい。 When the target body 321 and the backing plate 322 have a rectangular planar shape, the corners of the target body 321 and the backing plate 322 may be chamfered. In this embodiment, the planar shape of the target body 321 and the backing plate 322 is rectangular, but the corners of the target body 321 and the backing plate 322 are rounded. This shape is due to processing limitations of the upper surface portion 3 on which the target body 321 and the backing plate 322 are provided, reduction of the risk of abnormal electrical discharge occurring at the edges of the target body 321 and the backing plate 322, and the like. However, if this point is not taken into consideration, the planar shape of the target body 321 and the backing plate 322 may be a rectangular shape in which the corners are not chamfered.
 なお、本明細書では、ターゲットボディ321の平面形状、バッキングプレート322の平面形状(ターゲット配置位置30aの平面形状)、およびターゲット30の平面形状が矩形状であると表現した場合、以下の2つの意味を有することに留意されたい。すなわち、本明細書では、当該矩形状には、(i)角部が面取りされていない形状(通常の意味での矩形状)の他、(ii)矩形の角部が面取りされた形状、が含まれる。 In this specification, when the planar shape of the target body 321, the planar shape of the backing plate 322 (the planar shape of the target arrangement position 30a), and the planar shape of the target 30 are expressed as rectangular, the following two Note that it has meaning. That is, in this specification, the rectangular shape includes (i) a shape in which the corners are not chamfered (rectangular shape in the usual sense), and (ii) a rectangular shape in which the corners are chamfered. included.
 本実施形態では、ターゲットボディ321およびバッキングプレート322の長手方向は、Y軸方向(例えば図7および図8において紙面の奥行方向)に延伸している。すなわち、例えば図3に示すように、ターゲット配置位置30aの長手方向(長辺)は、Y軸方向に延伸している。ターゲット30は、ターゲット30の長手方向(長辺)がY軸方向に延伸するように、バッキングプレート322に取り付けられる。 In this embodiment, the longitudinal direction of the target body 321 and the backing plate 322 extends in the Y-axis direction (for example, the depth direction of the paper surface in FIGS. 7 and 8). That is, for example, as shown in FIG. 3, the longitudinal direction (long side) of the target placement position 30a extends in the Y-axis direction. The target 30 is attached to the backing plate 322 so that the longitudinal direction (long side) of the target 30 extends in the Y-axis direction.
 (ターゲットホルダのガス部材)
 図7に示すように、ターゲットホルダ32のガス部材は、ガス導入配管50と、ガス絶縁配管501と、ガス導入部51と、ガス経路(主経路)52と、ガス経路蓋521と、オリフィス522と、ガス分岐経路(分岐経路)53と、ガス放出口(開口部)54とを備える。
(Gas member of target holder)
As shown in FIG. 7, the gas members of the target holder 32 include a gas introduction pipe 50, a gas insulation pipe 501, a gas introduction portion 51, a gas passage (main passage) 52, a gas passage lid 521, and an orifice 522. , a gas branch path (branch path) 53 , and a gas discharge port (opening) 54 .
 ガス導入配管50は、ガス源6から供給されるガス10を、ターゲットホルダ32内に導入する経路(管路)であり、ガス源6とガス導入部51との間に接続されている(図1も参照)。また、図1に示すように、ガス導入配管50の途中に流量調節器8が設けられている。また、ガス絶縁配管501は、ガス導入配管50とガス導入部51とを絶縁するための配管である。 The gas introduction pipe 50 is a path (pipeline) for introducing the gas 10 supplied from the gas source 6 into the target holder 32, and is connected between the gas source 6 and the gas introduction section 51 (see FIG. 1). Further, as shown in FIG. 1, a flow controller 8 is provided in the middle of the gas introduction pipe 50 . Also, the gas insulation pipe 501 is a pipe for insulating the gas introduction pipe 50 and the gas introduction portion 51 .
 ガス導入部51は、ターゲットボディ321に形成された、ターゲットホルダ32内にガス10を導入する経路であり、ガス導入配管50およびガス経路52と連通している。ターゲットホルダ32ごとにガス導入部51が1つ設けられている。図2に示すように、ガス導入部51は、それぞれのターゲットホルダ32の端部に設けられている。 The gas introduction part 51 is a path for introducing the gas 10 into the target holder 32 formed in the target body 321 and communicates with the gas introduction pipe 50 and the gas path 52 . One gas introduction part 51 is provided for each target holder 32 . As shown in FIG. 2, the gas introduction part 51 is provided at the end of each target holder 32 .
 ガス経路52は、ターゲットボディ321に形成された、ガス導入部51から導入されるガス10を受容し、ガス分岐経路53へ流す経路であり、ガス導入部51およびガス分岐経路53と連通している。本実施形態では、ガス経路52は、ターゲットボディ321の上面側であって、かつ、鉛直下方向からみたときにターゲットボディ321の幅方向(X軸方向)における中央付近に設けられ、ターゲットボディ321の長手方向に延伸して形成された経路である(図6参照)。ガス導入部51から導入されたガス10は、ガス経路52によって、ターゲットボディ321の長手方向に分散される。 The gas path 52 is a path formed in the target body 321 that receives the gas 10 introduced from the gas introduction section 51 and flows it to the gas branch path 53 , and communicates with the gas introduction section 51 and the gas branch path 53 . there is In this embodiment, the gas path 52 is provided on the upper surface side of the target body 321 and near the center in the width direction (X-axis direction) of the target body 321 when viewed from the vertically downward direction. is a path formed by extending in the longitudinal direction of (see FIG. 6). The gas 10 introduced from the gas introduction part 51 is dispersed in the longitudinal direction of the target body 321 by the gas path 52 .
 ガス経路蓋521は、ガス経路52の蓋である。ガス経路蓋521によって、ガス導入部51およびガス分岐経路53以外にガス10が流出する可能性を低減できる(図5参照)。また、ガス経路蓋521は、ガス導入部51からのガス10をガス経路52へ流すオリフィス522を備えている。ガス経路蓋521にオリフィス522を設けることにより、オリフィス522より上流部のガス圧力を高くすることができる。 The gas path lid 521 is a lid for the gas path 52 . The gas path cover 521 can reduce the possibility that the gas 10 will flow out to places other than the gas introduction part 51 and the gas branch path 53 (see FIG. 5). Also, the gas path cover 521 has an orifice 522 that allows the gas 10 from the gas introduction part 51 to flow to the gas path 52 . By providing the orifice 522 in the gas path lid 521, the gas pressure upstream of the orifice 522 can be increased.
 ここで、ガス導入部51は、絶縁部43によってガス導入部51の鍔部分が押え込まれていることにより、真空シール機能を有している。また、ガス導入部51は、ガス経路蓋521に電気的に接続されており、ターゲットバイアス電圧Vtと同電位となる。また、ガス導入配管50とガス導入部51とは、ガス絶縁配管501によって絶縁されている。このため、ガス導入配管50およびガス導入部51に発生する高周波の電位と、ガス導入配管50およびガス導入部51におけるガス10の圧力とによっては、ガス10において放電が発生し得る。このような放電が発生しないように、ガス導入配管50の長さが規定されるとともに、ガス経路蓋521にオリフィス522が設けられている。 Here, the gas introducing portion 51 has a vacuum sealing function by pressing the flange portion of the gas introducing portion 51 with the insulating portion 43 . Also, the gas introduction part 51 is electrically connected to the gas path cover 521 and has the same potential as the target bias voltage Vt. Also, the gas introduction pipe 50 and the gas introduction portion 51 are insulated by a gas insulation pipe 501 . Therefore, depending on the high-frequency potential generated in the gas introduction pipe 50 and the gas introduction portion 51 and the pressure of the gas 10 in the gas introduction pipe 50 and the gas introduction portion 51 , electric discharge may occur in the gas 10 . The length of the gas introduction pipe 50 is specified and the orifice 522 is provided in the gas path cover 521 so that such discharge does not occur.
 ガス分岐経路53は、ターゲットボディ321に形成された、ガス経路52から導入されるガス10をガス放出口54へ導入する経路であり、ガス経路52およびガス放出口54と連通している。本実施形態では、ガス分岐経路53は、ターゲットボディ321の幅方向(X軸方向)においてガス経路52を挟んで対向する位置に、複数形成されている(図6参照)。 The gas branch path 53 is a path that introduces the gas 10 introduced from the gas path 52 formed in the target body 321 to the gas discharge port 54 and communicates with the gas path 52 and the gas discharge port 54 . In this embodiment, a plurality of gas branch paths 53 are formed at opposing positions with the gas path 52 interposed therebetween in the width direction (X-axis direction) of the target body 321 (see FIG. 6).
 具体的には、図6に示すように、ガス分岐経路53の一端は、ガス経路52の長手方向(Y軸方向)に沿って延伸する、ガス経路52の両側面のそれぞれにおいて、ガス経路52に連通している。また、ガス分岐経路53の他端は、ターゲットボディ321の下面であって、かつターゲットボディ321の幅方向においてターゲット配置位置30aを挟んで対向する位置において、ガス放出口54と連通している。 Specifically, as shown in FIG. 6 , one end of the gas branch path 53 extends along the longitudinal direction (Y-axis direction) of the gas path 52 and extends along the longitudinal direction (Y-axis direction) of the gas path 52 . communicates with The other end of the gas branch path 53 communicates with the gas discharge port 54 at a position on the lower surface of the target body 321 that faces the target arrangement position 30a in the width direction of the target body 321 .
 ガス放出口54は、バッキングプレート322に形成された、ガス分岐経路53から導入されるガス10を真空容器2の内部に放出する開口部であり、ガス分岐経路53と連通している。本実施形態では、ガス放出口54は、鉛直下方向から見たときに、ターゲット配置位置30aの対向する長辺の全体に亘って複数設けられている(図6参照)。また本実施形態では、複数のガス放出口54は、ターゲット配置位置30aの各長辺において略均等に設けられ、かつ、各長辺に設けられたガス放出口54が互いに対向するように設けられている。そのため、ガス導入部51で導入されたガス10は、ターゲット配置位置30aに取り付けられたターゲット30に対して、ターゲット30の両長辺側から、ターゲット30の表面全体に略均一に亘るように供給される。従って、ターゲット30の片辺側からガス10が供給される場合に比べ、ターゲット30の表面全体に略均一にガス10を供給できる。 The gas discharge port 54 is an opening formed in the backing plate 322 that discharges the gas 10 introduced from the gas branch path 53 into the interior of the vacuum vessel 2 and communicates with the gas branch path 53 . In the present embodiment, a plurality of gas discharge ports 54 are provided over the entire opposing long sides of the target arrangement position 30a when viewed from the vertically downward direction (see FIG. 6). Further, in this embodiment, the plurality of gas discharge ports 54 are provided substantially evenly along each long side of the target arrangement position 30a, and the gas discharge ports 54 provided on each long side are provided so as to face each other. ing. Therefore, the gas 10 introduced by the gas introduction part 51 is supplied from both long sides of the target 30 to the target 30 attached to the target arrangement position 30a so as to substantially uniformly cover the entire surface of the target 30. be done. Therefore, compared to the case where the gas 10 is supplied from one side of the target 30 , the gas 10 can be supplied substantially uniformly over the entire surface of the target 30 .
 なお、ガス放出口54の配置位置および個数は、上記に限られず、ガス放出口54から放出されたガス10が、ターゲット30の表面全体に略均一に供給されるように調整されていればよい。 The arrangement position and the number of the gas discharge ports 54 are not limited to the above, and may be adjusted so that the gas 10 discharged from the gas discharge ports 54 is substantially uniformly supplied to the entire surface of the target 30. .
 例えば、ガス放出口54は、ターゲット配置位置30aの両短辺の全体に亘って設けられていてもよいし、ターゲット配置位置30aの長辺側および短辺側のそれぞれに設けられていてもよい。但し、ターゲット配置位置30aの長辺側に設けた方が、ターゲット30の表面全体に略均一にガス10を供給させやすい。 For example, the gas discharge ports 54 may be provided over both short sides of the target placement position 30a, or may be provided on each of the long and short sides of the target placement position 30a. . However, it is easier to supply the gas 10 substantially uniformly over the entire surface of the target 30 by providing it on the long side of the target arrangement position 30a.
 また、一対のガス放出口54が対向するように設けられている必要は必ずしもない。例えば、ターゲット配置位置30aの対向する辺同士において、ガス放出口54の数が異なっていてもよい。また、ガス放出口54のそれぞれの開口の大きさが異なっていてもよい。さらに、1つのガス放出口54がターゲット30の辺に沿って設けられていてもよい。 Also, it is not always necessary for the pair of gas discharge ports 54 to be provided so as to face each other. For example, the number of gas discharge ports 54 may differ between the opposing sides of the target arrangement position 30a. Moreover, the size of each opening of the gas discharge ports 54 may be different. Furthermore, one gas outlet 54 may be provided along the side of the target 30 .
 つまり、ガス放出口54は、ガス10がターゲット30の表面全体に略均一に供給されるように、ターゲット配置位置30aの周囲の少なくとも一部に亘って、かつターゲット配置位置30aを挟んで対向する位置に設けられていればよい。 In other words, the gas discharge ports 54 extend over at least part of the circumference of the target arrangement position 30a and face each other across the target arrangement position 30a so that the gas 10 is supplied substantially uniformly over the entire surface of the target 30. position.
 ここで、ガス分岐経路53の太さ(YZ断面における断面積)はガス経路52の太さ(XZ断面における断面積)よりも小さい(図6、図7参照)。そのため、ガス分岐経路53を流れるガス10は、ガス経路52を流れるガス10よりも流れにくい。従って、ガス経路52におけるガス10の圧力を高めることができ、その結果、ガス経路52の全体に亘って当該圧力を均等化することができる。そのため、各ガス分岐経路53に略均等にガス10を供給することができる。また、ターゲットホルダ32内に導入されるガス10の流量は一定となるように調節されている。そのため、ガス分岐経路53の太さをガス経路52の太さよりも小さくし、かつ、ガス放出口54の太さをガス分岐経路53の太さよりも小さくすることにより、ガス放出口54から放出されるガス10の流速を高めることができる。そのため、ターゲット30の表面全体において粗密な部分が少なくなるように、ガス10を分散することができる。 Here, the thickness of the gas branch path 53 (cross-sectional area in the YZ cross section) is smaller than the thickness of the gas path 52 (cross-sectional area in the XZ cross section) (see FIGS. 6 and 7). Therefore, the gas 10 flowing through the gas branch path 53 flows less easily than the gas 10 flowing through the gas path 52 . Therefore, the pressure of the gas 10 in the gas path 52 can be increased and, as a result, the pressure can be equalized throughout the gas path 52 . Therefore, the gas 10 can be supplied to each gas branch path 53 substantially evenly. Also, the flow rate of the gas 10 introduced into the target holder 32 is adjusted to be constant. Therefore, by making the thickness of the gas branch path 53 smaller than the thickness of the gas path 52 and the thickness of the gas discharge port 54 smaller than the thickness of the gas branch path 53, the gas discharged from the gas discharge port 54 The flow velocity of gas 10 can be increased. Therefore, the gas 10 can be distributed so that the coarse and dense portions are reduced over the entire surface of the target 30 .
 (ターゲットホルダの電極部材および絶縁部材)
 図2および図3に示すように、ターゲットホルダ32は電極部材として、電極71と、アノード72と、を備える。また、図8に示すように、ターゲットホルダ32の絶縁部材は、絶縁ブッシュ421と、第1絶縁プレート422と、第2絶縁プレート423とを備える。
(Electrode member and insulating member of target holder)
As shown in FIGS. 2 and 3, the target holder 32 includes an electrode 71 and an anode 72 as electrode members. Moreover, as shown in FIG. 8 , the insulating member of the target holder 32 includes an insulating bush 421 , a first insulating plate 422 and a second insulating plate 423 .
 電極71は、ターゲットバイアス電圧Vtをターゲットホルダ32に入力する電極である。電極71は、ターゲットホルダ32ごとに電極71が1つ設けられている。図2に示すように、電極71は、それぞれのターゲットホルダ32の端部にガス導入部51に隣接して設けられている。電極71を介して、ターゲットボディ321、バッキングプレート322、およびターゲット30が、ターゲットバイアス電圧Vtに帯電される。 The electrode 71 is an electrode that inputs the target bias voltage Vt to the target holder 32 . One electrode 71 is provided for each target holder 32 . As shown in FIG. 2, the electrodes 71 are provided adjacent to the gas introduction section 51 at the end of each target holder 32 . Via electrode 71, target body 321, backing plate 322, and target 30 are charged to target bias voltage Vt.
 絶縁ブッシュ421は、上面部3にターゲットボディ321を固定するボルトを絶縁するブッシュである。本実施形態では、絶縁ブッシュ421は、ターゲットホルダ32の長手方向(Y軸方向)に沿って、磁場強度調整プレート61を挟んで対向する位置に複数設けられている(図2参照)。 The insulating bush 421 is a bush that insulates the bolt that fixes the target body 321 to the upper surface portion 3 . In this embodiment, a plurality of insulating bushes 421 are provided at positions facing each other with the magnetic field strength adjusting plate 61 interposed therebetween along the longitudinal direction (Y-axis direction) of the target holder 32 (see FIG. 2).
 第1絶縁プレート422は、上面部3とターゲットボディ321との間の、ターゲット30が設けられる平面と平行な平面に設けられる絶縁部材である。具体的には、第1絶縁プレート422は、ガス経路蓋521と第1磁性プレート63との間に設けられている。 The first insulating plate 422 is an insulating member provided on a plane parallel to the plane on which the target 30 is provided, between the upper surface portion 3 and the target body 321 . Specifically, the first insulating plate 422 is provided between the gas path lid 521 and the first magnetic plate 63 .
 第2絶縁プレート423は、上面部3とターゲットボディ321との間で、ターゲット30が設けられる平面と垂直な平面に設けられる絶縁部材である。第2絶縁プレート423は、ターゲットボディ321の四隅を囲うように設けられている。 The second insulating plate 423 is an insulating member provided between the upper surface portion 3 and the target body 321 on a plane perpendicular to the plane on which the target 30 is provided. A second insulating plate 423 is provided to surround the four corners of the target body 321 .
 絶縁部材である絶縁ブッシュ421と第1絶縁プレート422と第2絶縁プレート423とは、ターゲットバイアス電圧Vtに帯電したターゲットボディ321およびバッキングプレート322を、電気的に接地している真空容器2および上面部3から絶縁する機能を有する。 The insulating bushing 421, the first insulating plate 422, and the second insulating plate 423, which are insulating members, electrically ground the target body 321 and the backing plate 322 charged to the target bias voltage Vt. It has a function of insulating from the part 3 .
 アノード72は、後述する第3磁性プレート67の端部間に形成される平行磁場と共に、ターゲット30近傍において、ターゲット30でのイオンの衝突により発生する電子(2次電子)を捕捉するための電極である。これにより、ターゲット30付近でのプラズマ22の密度を高めることができる。なお、アノード72は、電気的に接地されている。 The anode 72 is an electrode for capturing electrons (secondary electrons) generated by collision of ions on the target 30 near the target 30 together with a parallel magnetic field formed between ends of the third magnetic plate 67 to be described later. is. Thereby, the density of the plasma 22 near the target 30 can be increased. Note that the anode 72 is electrically grounded.
 ターゲット30からの2次電子は、平行磁場により捕捉されるため、基板12の表面に対して2次電子が入射する可能性を低減できる。そのため、基板12の温度が上昇する可能性を低減できる。また、平行磁場の磁場強度を小さく設定することにより、2次電子は、平行磁場により捕捉されなかったとしても、サイクロトロン運動することなく消滅する。2次電子は、例えば、周辺の壁に入射するか、または空間での再結合により消滅する。そのため、基板12の表面近傍でのプラズマ22の高密度化に対して2次電子が与える影響を小さくすることができる。 Secondary electrons from the target 30 are captured by the parallel magnetic field, so the possibility of secondary electrons entering the surface of the substrate 12 can be reduced. Therefore, the possibility that the temperature of the substrate 12 rises can be reduced. Further, by setting the magnetic field intensity of the parallel magnetic field to be small, even if the secondary electrons are not captured by the parallel magnetic field, they disappear without undergoing cyclotron motion. Secondary electrons are, for example, incident on peripheral walls or annihilated by recombination in space. Therefore, the influence of the secondary electrons on the density increase of the plasma 22 near the surface of the substrate 12 can be reduced.
 本実施形態では、アノード72は、図3および図8に示すように、ターゲット配置位置30aの近傍に設けられており、ターゲット配置位置30aの外縁と類似した形状を成す環状形状を有する。本実施形態では、アノード72は、ガス放出口54、およびターゲット配置位置30aに配置されたターゲット30の外縁を覆うように設けられている。また、アノード72は、ターゲット30の外縁と間隙を有するように、ターゲットホルダ32に設けられている。そのため、ガス放出口54で放出されたガス10を、当該間隙からターゲット30に向けて拡散することができる。また、アノード72によって、後述する第3磁性プレート67が、プラズマ22と接しない。そのため、第3磁性プレート67がプラズマ22に接することで不純物が真空容器2内部に発生するリスクを低減することができる。 In this embodiment, as shown in FIGS. 3 and 8, the anode 72 is provided near the target placement position 30a and has an annular shape similar to the outer edge of the target placement position 30a. In this embodiment, the anode 72 is provided so as to cover the gas outlet 54 and the outer edge of the target 30 arranged at the target arrangement position 30a. Also, the anode 72 is provided on the target holder 32 so as to have a gap with the outer edge of the target 30 . Therefore, the gas 10 emitted from the gas outlet 54 can diffuse toward the target 30 through the gap. Also, the anode 72 prevents the third magnetic plate 67 , which will be described later, from coming into contact with the plasma 22 . Therefore, the risk of impurities being generated inside the vacuum vessel 2 due to the contact of the third magnetic plate 67 with the plasma 22 can be reduced.
 (磁気回路について)
 ここで、ターゲットホルダ32の磁気回路部材の説明をする前に、磁気回路について説明する。磁気回路は、磁石と磁石により磁化される磁気部材とで構成された、磁場を生成する回路である。
(Regarding the magnetic circuit)
Here, before explaining the magnetic circuit members of the target holder 32, the magnetic circuit will be explained. A magnetic circuit is a circuit that generates a magnetic field, composed of a magnet and a magnetic member that is magnetized by the magnet.
 磁石は、起磁力によって磁場を生成し、磁束を磁石の外部へと流す物質である。磁気部材は、磁石によって生成された磁束を通す部材である。磁気部材としては、ヨーク(継鉄)、鉄などの透磁率が高い強磁性体等が挙げられる。 A magnet is a substance that generates a magnetic field by magnetomotive force and flows magnetic flux to the outside of the magnet. A magnetic member is a member that conducts the magnetic flux generated by a magnet. The magnetic member includes a yoke (yoke), a ferromagnetic material having a high magnetic permeability such as iron, and the like.
 磁気回路中にはギャップである空隙が形成されていてもよい。空隙は、磁気回路を形成する2つの磁気部材の間に形成されてよい。空隙には、透磁率が磁気部材よりも小さい物質(例えば、空気)が挿入される。そのため、空隙における磁気抵抗は、磁気部材における磁気抵抗に比べ大きい。従って、磁気回路中に設けられた空隙の幅(2つの磁気部材の間の間隔)を調整することにより、磁気回路全体の磁気抵抗を変えることができる。 A gap, which is a gap, may be formed in the magnetic circuit. An air gap may be formed between two magnetic members forming a magnetic circuit. A substance (for example, air) having a magnetic permeability lower than that of the magnetic member is inserted into the air gap. Therefore, the magnetic resistance in the air gap is greater than that in the magnetic member. Therefore, by adjusting the width of the air gap (the distance between the two magnetic members) provided in the magnetic circuit, the magnetic resistance of the entire magnetic circuit can be changed.
 (ターゲットホルダの磁気回路部材)
 図8に示すように、ターゲットホルダ32の磁気回路部材は、上述した磁気回路を形成する部材であり、磁石65と、磁気部材とを備える。当該磁気部材としては、磁場強度調整プレート(磁気調整部材)61と、磁気経路ボルト(固定部材)62と、第1磁性プレート63と、磁石保持部64と、第2磁性プレート66と、第3磁性プレート67とを備える。
(Magnetic circuit member of target holder)
As shown in FIG. 8, the magnetic circuit member of the target holder 32 is a member forming the magnetic circuit described above, and includes a magnet 65 and a magnetic member. The magnetic members include a magnetic field strength adjusting plate (magnetic adjusting member) 61, a magnetic path bolt (fixing member) 62, a first magnetic plate 63, a magnet holding portion 64, a second magnetic plate 66, a third and a magnetic plate 67 .
 磁場強度調整プレート61は、真空容器2の外部の大気側に表出した上面部3(すなわち、ターゲットホルダ32の上面部320)に設けられた磁気部材である。磁場強度調整プレート61は、ターゲットホルダ32の長手方向に延伸する一対の磁気部材である(図2参照)。そして、一対の磁場強度調整プレート61の間には空隙61aが形成されている。すなわち、磁場強度調整プレート61によって空隙61aが規定されている。また、磁場強度調整プレート61には、磁気経路ボルト62を貫通し、空隙61aの幅方向(X軸方向)に延伸する長孔61bが複数形成されている(図2および図9参照)。図9は、図2におけるH部の拡大図である。 The magnetic field strength adjusting plate 61 is a magnetic member provided on the upper surface portion 3 (that is, the upper surface portion 320 of the target holder 32) exposed to the atmosphere outside the vacuum vessel 2. The magnetic field strength adjusting plate 61 is a pair of magnetic members extending in the longitudinal direction of the target holder 32 (see FIG. 2). A gap 61a is formed between the pair of magnetic field strength adjusting plates 61. As shown in FIG. That is, the magnetic field strength adjusting plate 61 defines the air gap 61a. Further, the magnetic field strength adjusting plate 61 is formed with a plurality of elongated holes 61b that penetrate the magnetic path bolt 62 and extend in the width direction (X-axis direction) of the air gap 61a (see FIGS. 2 and 9). 9 is an enlarged view of the H section in FIG. 2. FIG.
 磁気経路ボルト62は、磁場強度調整プレート61のそれぞれをターゲットホルダ32に固定する磁気部材である。具体的には、磁気経路ボルト62を磁場強度調整プレート61の長孔61bに通し、第1磁性プレート63に固定することにより、磁場強度調整プレート61をターゲットホルダ32に固定する。 The magnetic path bolts 62 are magnetic members that fix each of the magnetic field strength adjustment plates 61 to the target holder 32 . Specifically, the magnetic field strength adjustment plate 61 is fixed to the target holder 32 by passing the magnetic path bolt 62 through the long hole 61b of the magnetic field strength adjustment plate 61 and fixing it to the first magnetic plate 63 .
 長孔61bの幅方向(X軸方向)の長さは、磁気経路ボルト62の軸径より大きい。そのため、長孔61bにおける磁気経路ボルト62の貫通位置は可変である。すなわち、長孔61bの幅方向の長さ分、ターゲットホルダ32に対する磁場強度調整プレート61の固定位置を変更することができる。従って、磁場強度調整プレート61の固定位置を調整することにより、空隙61aの幅を調整することができる。このように、磁場強度調整プレート61および磁気経路ボルト62は、空隙61aの幅を調整する調整機構として機能する。 The length in the width direction (X-axis direction) of the long hole 61b is greater than the shaft diameter of the magnetic path bolt 62. Therefore, the penetration position of the magnetic path bolt 62 in the long hole 61b is variable. That is, the fixed position of the magnetic field intensity adjustment plate 61 with respect to the target holder 32 can be changed by the length of the width direction of the long hole 61b. Therefore, by adjusting the fixing position of the magnetic field strength adjusting plate 61, the width of the air gap 61a can be adjusted. Thus, the magnetic field strength adjustment plate 61 and the magnetic path bolt 62 function as an adjustment mechanism for adjusting the width of the air gap 61a.
 なお本実施形態では、磁場強度調整プレート61の両方に長孔61bが形成されているが、これに限られない。例えば、一方の磁場強度調整プレート61にのみ長孔61bが形成され、他方の磁場強度調整プレート61は上面部3に固定されていてもよい。この場合であっても、他方の磁場強度調整プレート61に対する一方の磁場強度調整プレート61の位置を変更できるので、空隙61aの幅を調整することができる。 In this embodiment, both magnetic field strength adjusting plates 61 are formed with long holes 61b, but this is not the only option. For example, only one of the magnetic field strength adjusting plates 61 may be provided with the elongated hole 61 b and the other magnetic field strength adjusting plate 61 may be fixed to the upper surface portion 3 . Even in this case, the position of one magnetic field strength adjusting plate 61 relative to the other magnetic field strength adjusting plate 61 can be changed, so the width of the gap 61a can be adjusted.
 第1磁性プレート63は、ターゲットホルダ32の長手方向に延伸する一対の磁気部材である(図4参照)。第1磁性プレート63はそれぞれ、2つの磁場強度調整プレート61に対応するように、第1絶縁プレート422と上面部3との間に固定されている。 The first magnetic plate 63 is a pair of magnetic members extending in the longitudinal direction of the target holder 32 (see FIG. 4). The first magnetic plates 63 are fixed between the first insulating plate 422 and the upper surface portion 3 so as to correspond to the two magnetic field intensity adjusting plates 61 respectively.
 磁石保持部64は、磁石65を保持する一対の磁気部材である。磁石保持部64は、ターゲットホルダ32の長手方向に延伸し、磁石保持部64のそれぞれにおいて複数の磁石65を保持できるようになっている(図4参照)。磁石保持部64はそれぞれ、第1磁性プレート63のそれぞれと対向し、かつ近接する位置に設けられている。なお、磁石保持部64と第1磁性プレート63とは接触していてもよい。すなわち、第1磁性プレート63の一部に磁石65を保持する部分が設けられていてもよい。 The magnet holders 64 are a pair of magnetic members that hold the magnets 65 . The magnet holders 64 extend in the longitudinal direction of the target holder 32, and each of the magnet holders 64 can hold a plurality of magnets 65 (see FIG. 4). The magnet holding portions 64 are provided at positions facing and adjacent to the first magnetic plates 63, respectively. Note that the magnet holding portion 64 and the first magnetic plate 63 may be in contact with each other. That is, a portion for holding the magnets 65 may be provided in a portion of the first magnetic plate 63 .
 磁石65は、磁気部材を磁化することができる磁気の強度(起磁力)を有する部材である。磁石65としては、例えば半永久磁石が用いられ、この場合、安価にかつ容易に所望の磁気回路を構成することができる。磁石65としては、一方の磁石保持部64と他方の磁石保持部64とにおいて異なる磁極の磁石を用いる。例えば、一方の磁石保持部64はN極の磁石65を保持し、他方の磁石保持部64はS極の磁石65を保持している。 The magnet 65 is a member having a magnetic strength (magnetomotive force) capable of magnetizing a magnetic member. A semi-permanent magnet, for example, is used as the magnet 65. In this case, a desired magnetic circuit can be easily configured at low cost. As the magnets 65 , magnets with different magnetic poles are used in the one magnet holding portion 64 and the other magnet holding portion 64 . For example, one magnet holding portion 64 holds an N pole magnet 65 and the other magnet holding portion 64 holds an S pole magnet 65 .
 第2磁性プレート66は、磁石保持部64のそれぞれに接触して設けられた一対の磁性部材であり、ターゲットホルダ32の長手方向に延伸している(図5参照)。第2磁性プレート66はそれぞれ、第2絶縁プレート423と上面部3との間に固定されている。なお、磁気回路を形成できるのであれば、第2磁性プレート66は、磁石保持部64から離隔した位置に設けられてもよい。 The second magnetic plate 66 is a pair of magnetic members provided in contact with each of the magnet holding portions 64 and extends in the longitudinal direction of the target holder 32 (see FIG. 5). Each of the second magnetic plates 66 is fixed between the second insulating plate 423 and the upper surface portion 3 . The second magnetic plate 66 may be provided at a position separated from the magnet holder 64 as long as a magnetic circuit can be formed.
 第3磁性プレート67は、第2磁性プレート66のそれぞれに接触して設けられた一対の磁性部材であり、ターゲットホルダ32の長手方向に延伸している。第3磁性プレート67は、アノード72を第2磁性プレート66に固定する固定部材(例:ボルト)によって、アノード72と第2磁性プレート66との間に固定されている(図8参照)。また、第3磁性プレート67は、鉛直下方向から見たときに、ターゲット配置位置30aに配置されたターゲット30を挟んで対向する位置に配置されている。すなわち、第3磁性プレート67は、アノード72と共に、ガス放出口54を覆うように設けられている。 The third magnetic plate 67 is a pair of magnetic members provided in contact with each of the second magnetic plates 66 and extends in the longitudinal direction of the target holder 32 . The third magnetic plate 67 is fixed between the anode 72 and the second magnetic plate 66 by a fixing member (eg, bolt) that fixes the anode 72 to the second magnetic plate 66 (see FIG. 8). Further, the third magnetic plates 67 are arranged at positions facing each other across the target 30 arranged at the target arrangement position 30a when viewed from the vertically downward direction. That is, the third magnetic plate 67 is provided so as to cover the gas discharge port 54 together with the anode 72 .
 以上のように、磁場強度調整プレート61と、磁気経路ボルト62と、第1磁性プレート63と、磁石保持部64と、磁石65と、第2磁性プレート66と、第3磁性プレート67とによって、1つの磁気回路が形成されている。すなわち、磁石65の起磁力が、各第3磁性プレート67の端部に現れ、第3磁性プレート67の端部間に平行磁場が形成される。 As described above, the magnetic field intensity adjusting plate 61, the magnetic path bolt 62, the first magnetic plate 63, the magnet holding portion 64, the magnet 65, the second magnetic plate 66, and the third magnetic plate 67, One magnetic circuit is formed. That is, the magnetomotive force of the magnet 65 appears at the end of each third magnetic plate 67 and a parallel magnetic field is formed between the ends of the third magnetic plate 67 .
 (ターゲットホルダの冷却部材)
 図2、図3および図7に示すように、ターゲットホルダ32の冷却部材は、ターゲット30を水冷する部材であり、冷却水口81と、冷却水経路82とを備える。
(Cooling member of target holder)
As shown in FIGS. 2 , 3 and 7 , the cooling member of the target holder 32 is a member that water-cools the target 30 and includes a cooling water port 81 and a cooling water path 82 .
 冷却水口81は、冷却水をターゲットホルダ32に対して給排水することにより、ターゲットホルダ32を冷却する。図2に示すように、ターゲットホルダ32ごとに冷却水口81が設けられている。冷却水口81は、それぞれのターゲットホルダ32における、ガス導入部51が設けられた端部とは反対側の端部に設けられている。冷却水としては、水以外の冷媒が用いられてよい。 The cooling water port 81 cools the target holder 32 by supplying and discharging cooling water to and from the target holder 32 . As shown in FIG. 2, a cooling water port 81 is provided for each target holder 32 . The cooling water port 81 is provided at the end of each target holder 32 opposite to the end where the gas introduction part 51 is provided. A coolant other than water may be used as the cooling water.
 冷却水経路82は、ターゲットボディ321の下面に、ターゲットボディ321の長手方向に沿って設けられたU字状の溝である(図3および図7参照)。冷却部材は、冷却水口81の給水口から供給された冷却水をU字状に流し、冷却水口81の排水口から排水することで、ターゲットホルダ32を冷却する。 The cooling water path 82 is a U-shaped groove provided on the lower surface of the target body 321 along the longitudinal direction of the target body 321 (see FIGS. 3 and 7). The cooling member cools the target holder 32 by causing the cooling water supplied from the water supply port of the cooling water port 81 to flow in a U shape and draining the water from the water outlet of the cooling water port 81 .
 <膜厚分布の均一化のための方策>
 基板12に成膜される薄膜の膜厚分布を均一化するためには、
・ターゲット30の表面におけるガス10の分布(圧力分布)の均一化
・ターゲット30間でのガス10の分布の均一化
・ターゲット30の表面における平行磁場の形成領域
が重要な要素となる。それぞれに関する説明と、その方策を詳細に説明する。
<Measures for Uniformity of Film Thickness Distribution>
In order to uniform the film thickness distribution of the thin film formed on the substrate 12,
- Uniform distribution (pressure distribution) of the gas 10 on the surface of the target 30 - Uniform distribution of the gas 10 between the targets 30 - Formation region of the parallel magnetic field on the surface of the target 30 are important factors. The explanation about each and the measures are explained in detail.
 (ターゲットの表面におけるガスの分布)
 本実施形態では、スパッタリング装置1は、ターゲット配置位置30aを挟んでターゲットホルダ32の長手方向に設けられた複数のガス放出口54から、ガス10を真空容器2内に放出することで、スパッタリングを行う。上述したように、アノード72は、ターゲット30との間に間隙を有し、かつターゲット30の外縁を覆うように設けられている。すなわち、アノード72は、ターゲット30の下方において、ターゲット30側に突出するように設けられている。そのため、ガス放出口54から放出されたガス10は、アノード72の突出方向に向けて、すなわちターゲット30の中央領域に向けて、ターゲット30の表面に放出される。そのため、スパッタリング装置1は、ターゲット30の表面全体に亘ってガス10を分布させることができる。
(Gas distribution on target surface)
In this embodiment, the sputtering apparatus 1 discharges the gas 10 into the vacuum vessel 2 from a plurality of gas discharge ports 54 provided in the longitudinal direction of the target holder 32 with the target placement position 30a interposed therebetween, thereby performing sputtering. conduct. As described above, the anode 72 has a gap from the target 30 and is provided so as to cover the outer edge of the target 30 . That is, the anode 72 is provided below the target 30 so as to protrude toward the target 30 . Therefore, the gas 10 emitted from the gas outlet 54 is emitted onto the surface of the target 30 in the direction in which the anode 72 protrudes, that is, toward the central region of the target 30 . Therefore, the sputtering apparatus 1 can distribute the gas 10 over the entire surface of the target 30 .
 そして、流量調節器8がガス10の流量を調整することで、ターゲット30の表面全体に亘って、略均一な濃度でガス10を分布させることができる。そのため、ターゲット30からスパッタ粒子を略均一に放出させることができ、基板12に成膜される薄膜の膜厚を略均一にすることができる。すなわち、基板12の膜厚分布を均一化することができる。 By adjusting the flow rate of the gas 10 with the flow controller 8, the gas 10 can be distributed over the entire surface of the target 30 with a substantially uniform concentration. Therefore, the sputtered particles can be emitted substantially uniformly from the target 30, and the film thickness of the thin film formed on the substrate 12 can be made substantially uniform. That is, the film thickness distribution of the substrate 12 can be made uniform.
 (ターゲット間でのガスの分布)
 本実施形態では、大型基板に成膜するために、複数のターゲットホルダ32が設けられている。各ターゲットホルダ32には、複数のガス放出口54が上述したように設けられている。そのため、各ターゲットホルダ32において、ガス放出口54から放出されたガス10は、ターゲット30の表面全体に亘って供給される。また、流量調節器8により各ガス導入部51に供給する全流量を調節するとともに、各ガス導入部51において略均等にガス10が流れるように、各ガス導入部51などの管路(配管)が設計されている。そのため、各ターゲットホルダ32において、ガス放出口54からのガス10の放出量を均一化することができる。従って、各ターゲットホルダ32におけるガス10の分布を均一化することができるため、各ターゲットホルダ32に対向した基板12の膜厚分布を均一化することができる。なお、各ターゲットホルダ32には、個別に流量調節器8が設けられていてもよい。この場合であっても、各ガス導入部51を流れるガス10の流量を均一化することができる。
(Distribution of gas between targets)
In this embodiment, a plurality of target holders 32 are provided for film formation on a large substrate. Each target holder 32 is provided with a plurality of gas discharge ports 54 as described above. Therefore, in each target holder 32 , the gas 10 emitted from the gas outlet 54 is supplied over the entire surface of the target 30 . Further, the flow controller 8 adjusts the total flow rate to be supplied to each gas introduction part 51, and pipes (pipes) such as each gas introduction part 51 are adjusted so that the gas 10 flows substantially uniformly in each gas introduction part 51. is designed. Therefore, in each target holder 32, the amount of gas 10 emitted from the gas outlet 54 can be made uniform. Therefore, since the distribution of the gas 10 in each target holder 32 can be made uniform, the film thickness distribution of the substrate 12 facing each target holder 32 can be made uniform. Note that each target holder 32 may be provided with a flow controller 8 individually. Even in this case, the flow rate of the gas 10 flowing through each gas introducing portion 51 can be made uniform.
 また、本実施形態では、スパッタリング装置1は、ターゲット30へのガス10の放出を、ターゲット30の両長辺側においてターゲット30に近接する位置から行っている。そのため、一組のターゲット30の両側から反応性ガスを導入し、一組のターゲット30の間から反応性ガスを排気する構成(例:特許文献1のスパッタリング装置)よりも、ターゲット30間の距離を短くすることができる。つまり、ターゲットホルダ32間のピッチを小さくすることができる。そのため、ターゲット30に対向しない基板12の領域を小さくすることができるため、より基板12の膜厚分布を均一化することができる。 In addition, in the present embodiment, the sputtering apparatus 1 discharges the gas 10 to the target 30 from positions close to the target 30 on both long sides of the target 30 . Therefore, a reactive gas is introduced from both sides of a set of targets 30, and the reactive gas is exhausted from between the set of targets 30 (eg, the sputtering apparatus of Patent Document 1). can be shortened. That is, the pitch between target holders 32 can be reduced. Therefore, since the area of the substrate 12 that does not face the target 30 can be reduced, the film thickness distribution of the substrate 12 can be made more uniform.
 さらに、本実施形態では、1つの真空排気装置4が真空容器2に設けられている。また、真空排気装置4は、真空容器2の底面部の中央部に設けられた基板ホルダ14とは異なる位置に設けられている。そのため、各ターゲットホルダ32と真空排気装置4との距離は互いに異なっている。その結果、各ターゲットホルダ32の配置位置における真空排気の速度は異なる。 Furthermore, in this embodiment, one evacuation device 4 is provided in the vacuum container 2 . Also, the evacuation device 4 is provided at a position different from the substrate holder 14 provided at the center of the bottom surface of the vacuum chamber 2 . Therefore, the distances between each target holder 32 and the evacuation device 4 are different from each other. As a result, the evacuating speed differs at each target holder 32 arrangement position.
 この点を考慮して、各ターゲット30へのガス10の分布をさらに均一化するために、例えば、流量調節器8がターゲットホルダ32ごとに設けられていてもよい。これにより、各ターゲットホルダ32の配置位置における真空排気の速度に応じて、ガス10の流量を調節することができる。従って、真空排気装置4の配置位置に依らず、各ターゲット30へのガス10の分布を均一化することができ、その結果、基板12の膜厚分布を均一化することができる。 In consideration of this point, for example, a flow controller 8 may be provided for each target holder 32 in order to further homogenize the distribution of the gas 10 to each target 30 . Thereby, the flow rate of the gas 10 can be adjusted according to the evacuation speed at the arrangement position of each target holder 32 . Therefore, the distribution of the gas 10 to each target 30 can be made uniform regardless of the arrangement position of the evacuation device 4, and as a result, the film thickness distribution of the substrate 12 can be made uniform.
 または、真空排気装置4に接続される複数の真空配管を、ターゲットホルダ32群に対して対称となる位置に配置してもよい。例えば、上記真空配管は、真空容器2の対向する2つの側壁であって、かつターゲットホルダ32の長手方向に沿って延伸する2つの側壁に設けられていてもよい。また、例えば、上記真空配管は、真空容器2の底部において、上記2つの側壁のそれぞれ近傍に設けられていてもよい。この場合、各ターゲットホルダ32の配置位置における真空排気の速度の相違を小さくすることができるため、各ターゲット30へのガス10の分布を均一化することができる。また、後述する実施形態2の構成によっても同様の効果を得ることができる。 Alternatively, a plurality of vacuum pipes connected to the evacuation device 4 may be arranged at symmetrical positions with respect to the group of target holders 32 . For example, the vacuum pipes may be provided on two side walls of the vacuum vessel 2 facing each other and extending along the longitudinal direction of the target holder 32 . Further, for example, the vacuum pipes may be provided in the vicinity of the two side walls at the bottom of the vacuum container 2 . In this case, it is possible to reduce the difference in the speed of evacuation at the position where each target holder 32 is arranged, so that the distribution of the gas 10 to each target 30 can be made uniform. Similar effects can also be obtained by the configuration of Embodiment 2, which will be described later.
 (磁気回路による効果)
 図8に示すように、一対の第3磁性プレート67がターゲット30の近傍に配置され、一対の第3磁性プレート67のそれぞれに磁極が形成される。そのため、少なくともターゲット30の表面全体と対向する位置に、当該表面に略平行な磁力線の成分を有する磁場分布(平行磁場)を形成できる。そのため、ターゲット30でのイオンの衝突により発生する電子(2次電子)を効率良く捕捉することができる。
(Effect of magnetic circuit)
As shown in FIG. 8, a pair of third magnetic plates 67 are arranged near the target 30, and magnetic poles are formed on each of the pair of third magnetic plates 67. As shown in FIG. Therefore, at least at a position facing the entire surface of the target 30, a magnetic field distribution (parallel magnetic field) having components of magnetic lines of force substantially parallel to the surface can be formed. Therefore, electrons (secondary electrons) generated by ion collisions with the target 30 can be efficiently captured.
 また、ターゲット30の表面全体と対向する位置に平行磁場を形成することにより、ターゲット30の表面全体に亘り一様に電子を捕捉することが可能となる。上述のように複数のアンテナ20を配置することで、ターゲット30の表面全体と対向するようにプラズマ22を発生させることは可能である。しかしこの場合であっても、ターゲット30の表面においてプラズマ22の密度が局在化してしまう可能性はある。上記平行磁場の形成による電子の捕捉により、上記プラズマ22の密度の局在化を抑制できる。そのため、ターゲット30の表面全体を一様にスパッタリングすることが可能となる。従って、基板12の膜厚分布を均一化することができる。 Further, by forming a parallel magnetic field at a position facing the entire surface of the target 30, electrons can be uniformly captured over the entire surface of the target 30. By arranging a plurality of antennas 20 as described above, it is possible to generate plasma 22 so as to face the entire surface of target 30 . However, even in this case, the density of plasma 22 may be localized on the surface of target 30 . Localization of the density of the plasma 22 can be suppressed by trapping electrons by forming the parallel magnetic field. Therefore, the entire surface of the target 30 can be uniformly sputtered. Therefore, the film thickness distribution of the substrate 12 can be made uniform.
 電子は、広範囲に亘りターゲット30から飛び出す。このため、第3磁性プレート67に形成される磁極がターゲット30の表面から離れるほど、当該電子を捕捉する確率(捕捉率、収率)は低下すると共に、スパッタリング装置1の構成が大きくなる。第3磁性プレート67をターゲット30近傍に設けることで、電子の収率を向上させつつ、第3磁性プレート67を設けたときのスパッタリング装置1の小型化を図ることができる。 The electrons fly out from the target 30 over a wide range. Therefore, the farther the magnetic pole formed on the third magnetic plate 67 is from the surface of the target 30, the lower the probability of capturing electrons (capture rate, yield) and the larger the configuration of the sputtering apparatus 1 becomes. By providing the third magnetic plate 67 near the target 30 , it is possible to improve the yield of electrons and reduce the size of the sputtering apparatus 1 when the third magnetic plate 67 is provided.
 なお、磁気回路が形成する磁場強度(磁束密度)は、マグネトロン放電が生じる強度未満である。スパッタリング装置1では、アンテナ20によるプラズマ22を発生させるため、マグネトロン放電を生じさせるような高い強度の磁場を発生させる必要が無い。 It should be noted that the magnetic field strength (magnetic flux density) formed by the magnetic circuit is less than the strength at which magnetron discharge occurs. Since the plasma 22 is generated by the antenna 20 in the sputtering apparatus 1, there is no need to generate a high-strength magnetic field that causes magnetron discharge.
 (磁気回路による磁場の調整)
 また、平行磁場の強度は、磁石65の磁気的な強さと、一対の磁場強度調整プレート61の間に形成される空隙61aの幅とによって調整される。磁場強度調整プレート61には、上述したように、磁場強度調整プレート61の幅方向に延伸する長孔61bが形成されている。そのため、長孔61bの範囲において、磁気経路ボルト62による磁場強度調整プレート61の固定位置を変更することにより、空隙61aの幅を調整することができる。そのため、空隙61aにおける磁気抵抗を調整することができるため磁気回路の磁気抵抗を調整することができる。従って、平行磁場の強度を調整することができるため、ターゲット30の表面全体に亘って一様に電子を捕捉することができる。なお、空隙61aの幅は、ターゲット30の表面全体に亘って一様に電子を捕捉可能な程度の強度を有する平行磁場を形成できる程度の幅に調整されればよい。
(Adjustment of magnetic field by magnetic circuit)
Also, the strength of the parallel magnetic field is adjusted by the magnetic strength of the magnet 65 and the width of the gap 61a formed between the pair of magnetic field strength adjusting plates 61 . The magnetic field strength adjusting plate 61 is formed with the long hole 61b extending in the width direction of the magnetic field strength adjusting plate 61 as described above. Therefore, the width of the air gap 61a can be adjusted by changing the fixing position of the magnetic field strength adjusting plate 61 by the magnetic path bolt 62 within the range of the long hole 61b. Therefore, the magnetic resistance in the air gap 61a can be adjusted, so that the magnetic resistance of the magnetic circuit can be adjusted. Therefore, since the strength of the parallel magnetic field can be adjusted, electrons can be uniformly captured over the entire surface of the target 30 . The width of the air gap 61a may be adjusted to a width capable of forming a parallel magnetic field having a strength capable of uniformly trapping electrons over the entire surface of the target 30 .
 また、本実施形態では、ターゲットホルダ32ごとに空隙61aの幅を調整することができる。そのため、各ターゲットホルダ32において、ターゲット30の表面全体に亘って一様に電子を捕捉することができる。 Also, in the present embodiment, the width of the gap 61a can be adjusted for each target holder 32. Therefore, electrons can be uniformly captured over the entire surface of the target 30 in each target holder 32 .
 また、空隙61aには、磁気部材とは異なる透磁率を有する物質(本実施形態では空気)が挿入される。そのため、磁気回路に空隙61aを形成することにより、磁石と磁気部材とのみで形成した磁気回路とは異なる磁気抵抗を有する磁気回路を形成できる。 A substance (air in this embodiment) having a magnetic permeability different from that of the magnetic member is inserted into the air gap 61a. Therefore, by forming the air gap 61a in the magnetic circuit, it is possible to form a magnetic circuit having a magnetic resistance different from that of a magnetic circuit formed only of magnets and magnetic members.
 なお、空気の透磁率は磁気部材の透磁率よりも小さいことから、空隙61aは大きな磁気抵抗を有する。そのため、空隙61aの幅が大きくなるほど平行磁場の強度は小さくなり、かつその強度分布は悪くなる。平行磁場の強度分布が悪くなった場合、ターゲット30の表面全体において平行磁場を形成できず、電子の捕捉にムラが生じてしまう可能性がある。従って、空隙61aの幅は、空隙61aを満たす物質(ここでは空気)の透磁率を考慮して、ターゲット30の表面全体と対向する位置に平行磁場を形成できる程度の幅に設定される。 Since the magnetic permeability of air is smaller than that of the magnetic member, the air gap 61a has a large magnetic resistance. Therefore, the greater the width of the air gap 61a, the smaller the intensity of the parallel magnetic field and the worse the intensity distribution. If the intensity distribution of the parallel magnetic field deteriorates, the parallel magnetic field cannot be formed over the entire surface of the target 30, and there is a possibility that the electrons will be captured unevenly. Therefore, the width of the air gap 61a is set to a width that can form a parallel magnetic field at a position facing the entire surface of the target 30, taking into account the magnetic permeability of the material (here, air) that fills the air gap 61a.
 (スパッタリング装置の小型化)
 本実施形態では、ターゲットホルダ32の内部に磁気回路およびガス放出口54を設けている。また、ターゲットホルダ32の内部にガス放出口54を設けることに伴い、ガス経路52およびガス分岐経路53も、ターゲットホルダ32の内部に設けている。そのため、ターゲットホルダ32間にガス10の経路を構築する必要がないため、複数のターゲットホルダ32が互いに隣接するように、複数のターゲットホルダ32を上面部3に取り付けることができる。従って、スパッタリング装置1を小型化することができる。また、スパッタリング装置1の小型化によって、ターゲット30が対向しない基板12の領域を小さくすることができる。そのため、より基板12の膜厚分布を均一化できる。
(Miniaturization of sputtering equipment)
In this embodiment, a magnetic circuit and a gas discharge port 54 are provided inside the target holder 32 . Further, along with providing the gas outlet 54 inside the target holder 32 , the gas path 52 and the gas branch path 53 are also provided inside the target holder 32 . Therefore, since it is not necessary to build a path for the gas 10 between the target holders 32, the plurality of target holders 32 can be attached to the upper surface portion 3 so that the plurality of target holders 32 are adjacent to each other. Therefore, the sputtering device 1 can be miniaturized. In addition, by miniaturizing the sputtering apparatus 1, the area of the substrate 12 that is not opposed to the target 30 can be reduced. Therefore, the film thickness distribution of the substrate 12 can be made more uniform.
 (小括)
 以上のように、上述したガス放出口54の配置位置によって、ターゲット30の表面におけるガス10の分布を均一化することができる。すなわち、当該配置位置によって、ターゲット30の表面全体に亘って一様にガス10を供給することができる。従って、基板12の膜厚分布を均一化することができる。また、上述した空隙61aの幅の調整によって、ターゲット30の表面全体に亘って一様に電子を捕捉できるように、平行磁場の強度を調整することができる。この調整によっても、基板12の膜厚分布を均一化することができる。
(Brief Summary)
As described above, the distribution of the gas 10 on the surface of the target 30 can be uniformed by the position of the gas discharge ports 54 described above. That is, depending on the arrangement position, the gas 10 can be uniformly supplied over the entire surface of the target 30 . Therefore, the film thickness distribution of the substrate 12 can be made uniform. Further, by adjusting the width of the air gap 61a as described above, the strength of the parallel magnetic field can be adjusted so that electrons can be uniformly captured over the entire surface of the target 30. FIG. This adjustment can also make the film thickness distribution of the substrate 12 uniform.
 また、基板12の膜厚分布の調整のために、流量調節器8によるガス10の流量調整、および磁場強度調整プレート61の配置位置の調整(空隙61aの調整)を、真空容器2の外部で行うことができる。そのため、真空容器2を開けることなく、容易に基板12の膜厚分布を調整することができる。 Further, in order to adjust the film thickness distribution of the substrate 12, the flow rate adjustment of the gas 10 by the flow rate regulator 8 and the arrangement position adjustment of the magnetic field intensity adjustment plate 61 (adjustment of the gap 61a) are performed outside the vacuum vessel 2. It can be carried out. Therefore, the film thickness distribution of the substrate 12 can be easily adjusted without opening the vacuum vessel 2 .
 〔実施形態2〕
 以下、別の実施形態について、図10および図11を用いて詳細に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
[Embodiment 2]
Another embodiment will be described in detail below with reference to FIGS. 10 and 11. FIG. For convenience of description, members having the same functions as those of the members described in the above embodiments are denoted by the same reference numerals, and description thereof will not be repeated.
 実施形態1では、1つの真空排気装置4によって集中的にガス10を排気していたが、実施形態2では、スパッタリング装置1は、さらに複数の排気口(排気部)55を備える。図10は、実施形態2に係る真空容器2内の詳細構成を示す断面図である。図11は、実施形態2に係るターゲットホルダ32の図10におけるH-H矢視図であり、ターゲットホルダ32を組み立てた状態における下面図である。 In Embodiment 1, the gas 10 is exhausted intensively by one evacuation device 4, but in Embodiment 2, the sputtering device 1 further includes a plurality of exhaust ports (exhaust units) 55. FIG. 10 is a cross-sectional view showing the detailed configuration inside the vacuum vessel 2 according to the second embodiment. FIG. 11 is a view of the target holder 32 according to the second embodiment taken along line HH in FIG. 10, and is a bottom view of the target holder 32 in an assembled state.
 図10に示すように、排気口55は、真空容器2内を真空排気する真空排気装置に接続され、ガス放出口54から放出されたガス10を排気する排気口である。排気口55は、上面部3において、ターゲットホルダ32に隣接する位置に設けられている。本実施形態では、複数のターゲットホルダ32の間に設けられている。図11に示すように、排気口55は、ターゲットホルダ32の長手方向に沿って複数設けられている。 As shown in FIG. 10, the exhaust port 55 is connected to an evacuation device that evacuates the inside of the vacuum vessel 2 and exhausts the gas 10 released from the gas discharge port 54 . The exhaust port 55 is provided at a position adjacent to the target holder 32 on the upper surface portion 3 . In this embodiment, it is provided between the plurality of target holders 32 . As shown in FIG. 11 , a plurality of exhaust ports 55 are provided along the longitudinal direction of the target holder 32 .
 このようにターゲットホルダ32の近傍に排気口55を備えることで、ガス放出口54から放出されたガス10が排気口55に向けて流れる気流が発生する。この気流の発生により、ターゲット30の表面全体におけるガス10の分布を、より均一化することができる。また、排気口55は、複数のターゲットホルダ32間に設けられるため、各ターゲットホルダ32において生じる気流が均一になり易い。そのため、各ターゲット30でのガス10の分布を均一化することが容易になり、結果として基板12の膜厚分布を均一化することができる。 By providing the exhaust port 55 in the vicinity of the target holder 32 in this manner, an air current is generated in which the gas 10 released from the gas release port 54 flows toward the exhaust port 55 . Due to the generation of this airflow, the distribution of the gas 10 over the entire surface of the target 30 can be made more uniform. In addition, since the exhaust port 55 is provided between the plurality of target holders 32, the airflow generated in each target holder 32 tends to be uniform. Therefore, it becomes easy to uniformize the distribution of the gas 10 at each target 30, and as a result, the film thickness distribution of the substrate 12 can be uniformized.
 なお、排気口55は、ターゲットホルダ32に隣接する位置において、ターゲットホルダ32の短手方向に沿って設けられていてもよい。すなわち、排気口55は、ターゲットホルダ32の周囲の少なくとも一部に設けられていればよい。排気口55がターゲットホルダ32の長手方向に沿って設けられている方が、ターゲット30の表面全体におけるガス10の分布を、より均一化することができる。また、排気口55は、ターゲットホルダ32の長手方向または短手方向に沿って設けられた1つの開口部であってもよい。 Note that the exhaust port 55 may be provided along the lateral direction of the target holder 32 at a position adjacent to the target holder 32 . That is, the exhaust port 55 may be provided at least partly around the target holder 32 . The distribution of the gas 10 over the entire surface of the target 30 can be made more uniform when the exhaust port 55 is provided along the longitudinal direction of the target holder 32 . Also, the exhaust port 55 may be one opening provided along the longitudinal direction or the lateral direction of the target holder 32 .
 また、ターゲットホルダ32は、真空容器2の内部に1つだけ設けられる構成であってもよい。この場合であっても、ターゲットホルダ32の隣接した位置に上述したように排気口55が設けられることにより、ターゲット30の表面全体におけるガス10の分布を、より均一化することができる。すなわち、1つのターゲットホルダ32の近傍に排気口55を設けることにより、ターゲット30の表面全体におけるガス10の分布を、より均一化することができる。 Alternatively, only one target holder 32 may be provided inside the vacuum vessel 2 . Even in this case, the distribution of the gas 10 over the entire surface of the target 30 can be made more uniform by providing the exhaust port 55 adjacent to the target holder 32 as described above. That is, by providing the exhaust port 55 near one target holder 32, the distribution of the gas 10 over the entire surface of the target 30 can be made more uniform.
 また、本実施形態では、真空容器2に直接、真空排気装置4が設けられていなくてもよい。また、スパッタリング中、真空排気装置4が停止し、排気口55のみで排気する構成であってもよい。これらの構成の場合、ガス10は、真空排気装置4を用いずに、排気口55のみから排気される。そのため、各ターゲットホルダ32におけるガス10の排気速度のムラを低減することができるため、各ターゲット30でのガス10の分布をより均一化することができる。また、各ターゲットホルダ32に対応して流量調節器8を設け、各流量調節器8によってガス10の流量を精度よく調整せずとも、各ターゲット30でのガス10の分布をより均一化することができる。 Also, in the present embodiment, the vacuum evacuation device 4 may not be provided directly in the vacuum vessel 2 . Alternatively, the vacuum exhaust device 4 may be stopped during sputtering, and exhaust may be performed only through the exhaust port 55 . In these configurations, the gas 10 is exhausted only through the exhaust port 55 without using the evacuation device 4 . Therefore, the unevenness of the exhaust speed of the gas 10 in each target holder 32 can be reduced, so that the distribution of the gas 10 in each target 30 can be made more uniform. Further, the flow controller 8 is provided corresponding to each target holder 32, and the distribution of the gas 10 at each target 30 can be made more uniform without adjusting the flow rate of the gas 10 with each flow controller 8 with high accuracy. can be done.
 〔実施形態3〕
 以下、別の実施形態について、図12を用いて詳細に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
[Embodiment 3]
Another embodiment will be described in detail below with reference to FIG. For convenience of description, members having the same functions as those of the members described in the above embodiments are denoted by the same reference numerals, and description thereof will not be repeated.
 図12は、実施形態1に係る磁場強度調整プレート61、および、実施形態3に係る磁場強度調整プレート610の概略図である。図12の符号1201に磁場強度調整プレート61を示し、符号1202に磁場強度調整プレート610を示している。実施形態1では、一対の磁場強度調整プレート61はそれぞれ、1つのプレートから構成されている。そのため、磁場強度調整プレート61の間に形成される空隙61aは、磁場強度調整プレート61の長手方向に対して一律の幅(長さL)を有する。一方、実施形態3では、一対の磁場強度調整プレート610(磁気調整部材)はそれぞれ、磁場強度調整プレート610の長手方向において複数の区画に分割されている。 FIG. 12 is a schematic diagram of the magnetic field strength adjustment plate 61 according to the first embodiment and the magnetic field strength adjustment plate 610 according to the third embodiment. Reference numeral 1201 in FIG. 12 indicates the magnetic field strength adjustment plate 61, and reference numeral 1202 indicates the magnetic field strength adjustment plate 610. FIG. In Embodiment 1, each of the pair of magnetic field strength adjustment plates 61 is composed of one plate. Therefore, the gap 61 a formed between the magnetic field strength adjusting plates 61 has a uniform width (length L) in the longitudinal direction of the magnetic field strength adjusting plates 61 . On the other hand, in Embodiment 3, each of the pair of magnetic field strength adjustment plates 610 (magnetic adjustment members) is divided into a plurality of sections in the longitudinal direction of the magnetic field strength adjustment plates 610 .
 具体的には、一対の磁場強度調整プレート610は、複数の対となる磁場プレートから構成された磁場プレート群である。図12に示すように、本実施形態では、一対の磁場強度調整プレート610は、磁場強度調整プレート610の長手方向において、3組の一対の磁場プレート611、612および613を有する。1組目の磁場プレート611が形成する空隙61cの幅の長さはL1である。2組目の磁場プレート612が形成する空隙61dの幅の長さはL2である。3組目の磁場プレート613が形成する空隙61eの幅の長さはL3である。磁場プレート611、612および613はこの順で並んでおり、ターゲットホルダ32の上面部320に配置されている。 Specifically, the pair of magnetic field strength adjustment plates 610 is a magnetic field plate group composed of a plurality of pairs of magnetic field plates. As shown in FIG. 12 , in this embodiment, the pair of magnetic field strength adjustment plates 610 has three pairs of magnetic field plates 611 , 612 and 613 in the longitudinal direction of the magnetic field strength adjustment plates 610 . The width of the air gap 61c formed by the magnetic field plate 611 of the first set is L1. The width of the air gap 61d formed by the second set of magnetic field plates 612 is L2. The width of the air gap 61e formed by the third set of magnetic field plates 613 is L3. Magnetic field plates 611 , 612 and 613 are arranged in this order and placed on top surface 320 of target holder 32 .
 磁場プレート611、612および613には、磁場強度調整プレート61と同様、磁場強度調整プレート610の幅方向に延伸する長孔(図12においては不図示)が形成されている。これにより、空隙61c、61dおよび61eのそれぞれの幅の長さL1、L2およびL3を規定することができる。すなわち、長さL1、L2およびL3をそれぞれ調整することにより、平行磁場の強度を、ターゲット30の長手方向における位置に応じて調整することができる。ターゲット30の長手方向における平行磁場の強度のムラを容易に低減することができるため、特にターゲット30が長尺の場合に大きな効果が見込める。 The magnetic field plates 611 , 612 and 613 are formed with elongated holes (not shown in FIG. 12) extending in the width direction of the magnetic field strength adjusting plate 610 , similar to the magnetic field strength adjusting plate 61 . This makes it possible to define width lengths L1, L2 and L3 of the gaps 61c, 61d and 61e, respectively. That is, by adjusting the lengths L1, L2 and L3 respectively, the intensity of the parallel magnetic field can be adjusted according to the position of the target 30 in the longitudinal direction. Since unevenness in strength of the parallel magnetic field in the longitudinal direction of the target 30 can be easily reduced, a large effect can be expected particularly when the target 30 is long.
 ここで一般に、ターゲット30の長手方向において、ターゲット30の端部領域に近いほど、平行磁場の強度が弱くなり易い。そのため、例えば、図12に示すように、ターゲット30の両端部領域に対応する空隙の幅61cおよび61eを、ターゲット30の中央領域に対応する空隙61dの幅よりも狭くする(L1≒L3<L2)。これにより、空隙61cおよび61eにおける磁場強度を、空隙61dの磁場強度より強めることができる。 Here, generally, in the longitudinal direction of the target 30, the closer to the end region of the target 30, the weaker the strength of the parallel magnetic field tends to be. For this reason, for example, as shown in FIG. 12, the widths 61c and 61e of the gaps corresponding to the end regions of the target 30 are made narrower than the width of the gap 61d corresponding to the central region of the target 30 (L1≈L3<L2 ). Thereby, the magnetic field strength in the gaps 61c and 61e can be made stronger than the magnetic field strength in the gap 61d.
 但し、ターゲット30の表面全体に亘って平行磁場の強度が一様になるように、幅61c、61dおよび61eが調整されればよい。例えば、ターゲット30の配置などによっては、長さL1、L2およびL3をそれぞれ異なる長さとしてもよい。 However, the widths 61c, 61d and 61e may be adjusted so that the intensity of the parallel magnetic field is uniform over the entire surface of the target 30. For example, the lengths L1, L2, and L3 may be different depending on the placement of the target 30 and the like.
 なお、磁場強度調整プレート610は、磁場プレート611、612および613の3つの区画に分割される必要は必ずしもなく、任意の数に分割されてよい。また、一対の磁場強度調整プレート61のそれぞれが湾曲していることにより、磁場強度調整プレート61の長手方向における各位置において、幅61aの長さが異なっていてもよい。例えば、磁場強度調整プレート61の長手方向の中央部で幅61aが最大となるように、磁場強度調整プレート61の形状が規定されていてもよい。 It should be noted that the magnetic field strength adjustment plate 610 does not necessarily need to be divided into the three sections of the magnetic field plates 611, 612 and 613, and may be divided into any number. Further, the length of the width 61a may be different at each position in the longitudinal direction of the magnetic field strength adjustment plate 61 by bending each of the pair of magnetic field strength adjustment plates 61 . For example, the shape of the magnetic field strength adjustment plate 61 may be defined such that the width 61a is maximized at the central portion of the magnetic field strength adjustment plate 61 in the longitudinal direction.
 また、本実施形態では、磁場強度調整プレート610の両方が複数の区画に分割されているが、これに限られない。例えば、一方の磁場強度調整プレート610のみ複数の区画に分割されていてもよい。この場合であっても、磁場強度調整プレート610の長手方向における各位置の幅を、個別に調整することができる。 Also, in the present embodiment, both of the magnetic field strength adjustment plates 610 are divided into a plurality of sections, but this is not the only option. For example, only one magnetic field strength adjustment plate 610 may be divided into a plurality of sections. Even in this case, the width of each position in the longitudinal direction of the magnetic field intensity adjustment plate 610 can be individually adjusted.
 〔変形例1〕
 実施形態1では、磁気部材と異なる透磁率を有する物質として、空隙61aに空気が挿入されている。本変形例では、空気とは異なる透磁率を有する物質を空隙61aに挿入してもよい。これにより、磁気回路の磁気抵抗を調整することができ、その結果、平行磁場の強度を調整することができる。例えば、空気の透磁率(1.26×10-6μH/m)の約100倍の透磁率である炭素鋼(透磁率:1.26×10-4μH/m)を空隙61aに挿入した場合、磁気回路の磁気抵抗は1/100になる。そのため、平行磁場の強度を高めることができる。その他、空隙61aには、非磁性金属(例:アルミニウム)またはエンジニアリングプラスチック(例:PEEK(PolyEtherethErKetone))等の、磁気部材よりも透磁率が低い物質が挿入されてもよい。
[Modification 1]
In Embodiment 1, air is inserted into the air gap 61a as a substance having a magnetic permeability different from that of the magnetic member. In this modification, a substance having a magnetic permeability different from that of air may be inserted into the air gap 61a. Thereby, the reluctance of the magnetic circuit can be adjusted, and as a result, the strength of the parallel magnetic field can be adjusted. For example, carbon steel (magnetic permeability: 1.26×10 −4 μH/m) having a magnetic permeability approximately 100 times higher than that of air (1.26×10 −6 μH/m) was inserted into the air gap 61a. , the reluctance of the magnetic circuit becomes 1/100. Therefore, the strength of the parallel magnetic field can be increased. In addition, a material having a lower magnetic permeability than the magnetic member, such as nonmagnetic metal (eg, aluminum) or engineering plastic (eg, PEEK (PolyEtherethErKetone)), may be inserted into the air gap 61a.
 また、磁場強度調整プレート61を一対の磁気部材で構成するのではなく、空隙を持たない1枚のプレート(例えば、PEEKからなるプレート)で構成してもよい。この場合、磁場強度調整プレート61を、当該磁場強度調整プレート61の透磁率とは異なる透磁率を有する別の磁場強度調整プレート61に交換することによって、磁気回路の磁気抵抗を変更することができる。 Also, the magnetic field intensity adjusting plate 61 may be configured by a single plate (for example, a plate made of PEEK) without a gap instead of being configured by a pair of magnetic members. In this case, the magnetic resistance of the magnetic circuit can be changed by replacing the magnetic field strength adjusting plate 61 with another magnetic field strength adjusting plate 61 having a magnetic permeability different from that of the magnetic field strength adjusting plate 61 concerned. .
 〔変形例2〕
 実施形態1では、上面部3の内部に一対の磁石65を設けたが、磁石65を設ける位置はこの位置に限定されない。例えば、磁場強度調整プレート61の代わりに、上面部3の表面にN極およびS極を有する1つの磁石を配置してもよい。または、上面部3の表面にN極の磁石とS極の磁石とを配置してもよい。この場合、磁石を交換することによって、平行磁場の強度を調整することができる。
[Modification 2]
In Embodiment 1, the pair of magnets 65 are provided inside the upper surface portion 3, but the positions at which the magnets 65 are provided are not limited to these positions. For example, instead of the magnetic field intensity adjusting plate 61, one magnet having N and S poles may be arranged on the surface of the upper surface portion 3. FIG. Alternatively, an N-pole magnet and an S-pole magnet may be arranged on the surface of the upper surface portion 3 . In this case, the strength of the parallel magnetic field can be adjusted by exchanging the magnets.
 〔変形例3〕
 上述した実施形態では、アンテナ20によるプラズマ22により、イオン化を行ったが、これに限定されない。例えば、アンテナ20がなく、磁気回路によって、マグネトロン放電が生じる強度以上の平行磁場を形成してもよい。
[Modification 3]
In the above-described embodiment, ionization is performed by the plasma 22 from the antenna 20, but the present invention is not limited to this. For example, without the antenna 20, a magnetic circuit may be used to form a parallel magnetic field with a strength equal to or greater than the magnetron discharge.
 〔まとめ〕
 本発明の一態様に係るスパッタリング装置は、真空容器内でターゲットをスパッタさせて基板上に成膜するスパッタリング装置であって、前記真空容器は、前記ターゲットを保持する少なくとも1つの保持部を備え、前記保持部は、前記保持部にガスを導入するガス導入部と、前記保持部において前記ターゲットが配置されるターゲット配置位置を鉛直下方向から見たときに、前記ターゲット配置位置の周囲の少なくとも一部に亘って、かつ前記ターゲット配置位置を挟んで対向する位置に設けられ、前記保持部内に導入された前記ガスを前記真空容器内に放出する一対の開口部と、を備える。
〔summary〕
A sputtering apparatus according to an aspect of the present invention is a sputtering apparatus that sputters a target in a vacuum vessel to form a film on a substrate, wherein the vacuum vessel includes at least one holder that holds the target, The holding section includes a gas introduction section that introduces gas into the holding section, and at least one area around the target arrangement position where the target is arranged in the holding section when the target arrangement position is viewed from a vertically downward direction. and a pair of openings that are provided at positions facing each other on both sides of the target placement position, and that discharge the gas introduced into the holding part into the vacuum vessel.
 上記の構成によれば、ターゲットの周囲から略均一な圧力で、ターゲットの表面全体に亘ってガスを供給することができる。そのため、ターゲットの表面全体におけるガス分布のムラを減少させることができる。従って、基板において成膜される薄膜の、膜厚のばらつきが発生する可能性を低減できる。 According to the above configuration, gas can be supplied from the periphery of the target over the entire surface of the target with a substantially uniform pressure. Therefore, unevenness in gas distribution over the entire surface of the target can be reduced. Therefore, it is possible to reduce the possibility that the thickness of the thin film formed on the substrate will vary.
 本発明の一態様に係るスパッタリング装置では、前記鉛直下方向から見たときの前記ターゲット配置位置の形状は、矩形状であり、前記開口部は、前記ターゲット配置位置の対向する辺の全体に亘って設けられてもよい。 In the sputtering apparatus according to an aspect of the present invention, the target arrangement position has a rectangular shape when viewed from the vertically downward direction, and the opening extends over the entire opposite sides of the target arrangement position. may be provided.
 上記の構成によれば、ターゲットの表面全体に亘って、より均一にガスを供給することができる。 According to the above configuration, the gas can be supplied more uniformly over the entire surface of the target.
 本発明の一態様に係るスパッタリング装置では、前記開口部は、前記ターゲット配置位置の対向する長辺の全体に亘って設けられてもよい。 In the sputtering apparatus according to one aspect of the present invention, the opening may be provided over the entire opposing long sides of the target arrangement position.
 上記の構成によれば、ターゲットの表面全体に亘ってさらに均一にガスを供給することができる。 According to the above configuration, the gas can be supplied more uniformly over the entire surface of the target.
 本発明の一態様に係るスパッタリング装置では、前記保持部は、磁石と、磁石により磁化される磁気部材と、を備え、前記磁石および前記磁気部材は、前記ターゲット配置位置の上に磁場を形成する磁気回路を形成するものであり、前記磁気回路の一部には空隙が形成され、前記空隙が形成された前記磁気回路の一部は、前記真空容器の外部に設けられてもよい。 In the sputtering apparatus according to an aspect of the present invention, the holding section includes a magnet and a magnetic member magnetized by the magnet, and the magnet and the magnetic member form a magnetic field above the target arrangement position. A gap may be formed in a part of the magnetic circuit, and the part of the magnetic circuit in which the gap is formed may be provided outside the vacuum vessel.
 上記の構成によれば、真空容器の外部に設けられた空隙によって、真空容器を開けることなく磁気回路の磁気抵抗を調整することができる。 According to the above configuration, the magnetic resistance of the magnetic circuit can be adjusted without opening the vacuum vessel by the gap provided outside the vacuum vessel.
 本発明の一態様に係るスパッタリング装置では、前記保持部は、前記空隙の幅を調整する調整機構を備えてもよい。 In the sputtering apparatus according to one aspect of the present invention, the holding section may include an adjusting mechanism that adjusts the width of the gap.
 上記の構成によれば、空隙の幅を調整することにより、磁気回路の磁気抵抗を調整することができる。 According to the above configuration, the magnetic resistance of the magnetic circuit can be adjusted by adjusting the width of the air gap.
 本発明の一態様に係るスパッタリング装置では、前記調整機構は、前記磁気部材の一部として前記保持部の上面部に設けられ、前記空隙を規定する一対の磁気調整部材を備え、前記一対の磁気調整部材の少なくとも一方の磁気調整部材には、前記磁気部材の一部として前記磁気調整部材を前記保持部に固定する固定部材を貫通し、かつ前記空隙の幅方向に延伸する長孔が形成されており、前記長孔における前記固定部材の貫通位置は可変であってもよい。 In the sputtering apparatus according to an aspect of the present invention, the adjustment mechanism includes a pair of magnetic adjustment members provided on an upper surface portion of the holding portion as part of the magnetic member and defining the gap. At least one magnetic adjustment member of the adjustment members is formed with an elongated hole extending in the width direction of the gap and passing through a fixing member that fixes the magnetic adjustment member to the holding portion as a part of the magnetic member. and a position through which the fixing member penetrates the long hole may be variable.
 上記の構成によれば、磁気調整部材における長孔の貫通位置を変更することで、空隙の幅を変更することができる。 According to the above configuration, the width of the air gap can be changed by changing the through-position of the elongated hole in the magnetic adjustment member.
 本発明の一態様に係るスパッタリング装置では、前記鉛直下方向から見たときの前記ターゲット配置位置の形状は、矩形状であり、前記一対の磁気調整部材は、前記ターゲット配置位置の長手方向に延伸して設けられており、前記一対の磁気調整部材の少なくとも一方の磁気調整部材は、前記長手方向に沿って複数の区画に分割されており、前記複数の区画ごとに、前記長孔における前記固定部材の貫通位置が規定されていることにより、前記空隙の幅を規定してもよい。 In the sputtering apparatus according to the aspect of the present invention, the target arrangement position has a rectangular shape when viewed from the vertically downward direction, and the pair of magnetic adjustment members extend in the longitudinal direction of the target arrangement position. At least one of the pair of magnetic adjustment members is divided into a plurality of sections along the longitudinal direction, and each of the plurality of sections is provided with the fixing member in the long hole. The width of the gap may be defined by defining the penetrating position of the member.
 上記の構成によれば、区画ごとに異なる空隙の幅を規定することができる。そのため、ターゲット配置位置の長手方向において磁気回路の磁気抵抗を調整することができる。 According to the above configuration, it is possible to define a different gap width for each section. Therefore, the magnetic resistance of the magnetic circuit can be adjusted in the longitudinal direction of the target arrangement position.
 本発明の一態様に係るスパッタリング装置では、前記空隙には、前記磁気部材とは異なる透磁率を有する物質が挿入されてもよい。 In the sputtering apparatus according to one aspect of the present invention, a substance having a magnetic permeability different from that of the magnetic member may be inserted into the gap.
 上記の構成によれば、空隙に磁気部材とは透磁率が異なる物質を挿入することで、磁気回路の磁気抵抗を調整することができる。 According to the above configuration, the magnetic resistance of the magnetic circuit can be adjusted by inserting a material having a different magnetic permeability from the magnetic member into the air gap.
 本発明の一態様に係るスパッタリング装置では、前記保持部を複数備えてもよい。 A sputtering apparatus according to an aspect of the present invention may include a plurality of holding parts.
 上記の構成によれば、複数のターゲットによって、より大きな基板に成膜することができる。 According to the above configuration, it is possible to form a film on a larger substrate using a plurality of targets.
 本発明の一態様に係るスパッタリング装置では、前記真空容器は、前記真空容器の内部を真空排気する複数の排気部を備え、前記排気部は、前記保持部に隣接して設けられてもよい。 In the sputtering apparatus according to one aspect of the present invention, the vacuum vessel may include a plurality of exhaust units that evacuate the interior of the vacuum vessel, and the exhaust units may be provided adjacent to the holding unit.
 上記の構成によれば、ターゲットの表面全体におけるガスの分布を、より均一化することができる。 According to the above configuration, the gas distribution over the entire surface of the target can be made more uniform.
 本発明の一態様に係るスパッタリング装置では、前記保持部は、前記ガス導入部と前記開口部とを連通するガス経路を備え、前記ガス経路は、前記ガス導入部から導入されたガスを受容する主経路と、前記主経路と連通し、前記主経路内のガスを前記開口部へ導入する複数の分岐経路とを備え、前記複数の分岐経路のそれぞれの太さは、前記主経路の太さよりも小さくてもよい。 In the sputtering apparatus according to an aspect of the present invention, the holding section includes a gas path communicating between the gas introducing section and the opening, and the gas path receives the gas introduced from the gas introducing section. A main path and a plurality of branch paths communicating with the main path and introducing gas in the main path to the opening, wherein the thickness of each of the plurality of branch paths is greater than the thickness of the main path. may be smaller.
 上記の構成によれば、分岐経路を経由し開口部から放出されるガスの流速を高めることができるため、ターゲットの表面全体において粗密な部分が少なくなるように、ガスを分散させることができる。 According to the above configuration, it is possible to increase the flow velocity of the gas discharged from the opening via the branched path, so that the gas can be dispersed so as to reduce coarse and dense portions on the entire surface of the target.
 〔付記事項〕
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
[Additional notes]
The present invention is not limited to the above-described embodiments, but can be modified in various ways within the scope of the claims, and can be obtained by appropriately combining technical means disclosed in different embodiments. is also included in the technical scope of the present invention.
 1 スパッタリング装置
 2 真空容器
 3、320 上面部
 12 基板
 30 ターゲット
 32 ターゲットホルダ(保持部)
 51 ガス導入部
 52 ガス経路(主経路)
 53 ガス分岐経路(ガス経路、分岐経路)
 54 ガス放出口(開口部)
 55 排気口(排気部)
 61、610 磁場強度調整プレート(磁気調整部材)
 61a、61c、61d、61e 空隙
 61b 長孔
 62 磁気経路ボルト(固定部材)
 63 第1磁性プレート(磁気部材)
 65 磁石
 66 第2磁性プレート(磁気部材)
 67 第3磁性プレート(磁気部材)
 611、612、613 磁場プレート(磁気調整部材)
Reference Signs List 1 sputtering device 2 vacuum vessel 3, 320 upper surface portion 12 substrate 30 target 32 target holder (holding portion)
51 gas introduction part 52 gas path (main path)
53 gas branch path (gas path, branch path)
54 gas outlet (opening)
55 exhaust port (exhaust part)
61, 610 magnetic field intensity adjustment plate (magnetic adjustment member)
61a, 61c, 61d, 61e Air gap 61b Long hole 62 Magnetic path bolt (fixing member)
63 first magnetic plate (magnetic member)
65 magnet 66 second magnetic plate (magnetic member)
67 third magnetic plate (magnetic member)
611, 612, 613 magnetic field plate (magnetic adjustment member)

Claims (11)

  1.  真空容器内でターゲットをスパッタさせて基板上に成膜するスパッタリング装置であって、
     前記真空容器は、前記ターゲットを保持する少なくとも1つの保持部を備え、
     前記保持部は、
      前記保持部にガスを導入するガス導入部と、
      前記保持部において前記ターゲットが配置されるターゲット配置位置を鉛直下方向から見たときに、前記ターゲット配置位置の周囲の少なくとも一部に亘って、かつ前記ターゲット配置位置を挟んで対向する位置に設けられ、前記保持部内に導入された前記ガスを前記真空容器内に放出する一対の開口部と、を備える、スパッタリング装置。
    A sputtering apparatus for sputtering a target in a vacuum vessel to form a film on a substrate,
    The vacuum vessel comprises at least one holder that holds the target,
    The holding part is
    a gas introduction section for introducing gas into the holding section;
    When the target arrangement position where the target is arranged in the holding part is viewed from the vertically downward direction, the and a pair of openings for discharging the gas introduced into the holding part into the vacuum vessel.
  2.  前記鉛直下方向から見たときの前記ターゲット配置位置の形状は、矩形状であり、
     前記開口部は、前記ターゲット配置位置の対向する辺の全体に亘って設けられている、請求項1に記載のスパッタリング装置。
    a shape of the target arrangement position when viewed from the vertically downward direction is a rectangular shape;
    2. The sputtering apparatus according to claim 1, wherein said opening is provided over the entire opposite sides of said target arrangement position.
  3.  前記開口部は、前記ターゲット配置位置の対向する長辺の全体に亘って設けられている、請求項1または2に記載のスパッタリング装置。 The sputtering apparatus according to claim 1 or 2, wherein the opening is provided over the entire opposing long sides of the target arrangement position.
  4.  前記保持部は、磁石と、磁石により磁化される磁気部材と、を備え、
     前記磁石および前記磁気部材は、前記ターゲット配置位置の上に磁場を形成する磁気回路を形成するものであり、
     前記磁気回路の一部には空隙が形成され、
     前記空隙が形成された前記磁気回路の一部は、前記真空容器の外部に設けられている、請求項1から3のいずれか1項に記載のスパッタリング装置。
    The holding unit includes a magnet and a magnetic member magnetized by the magnet,
    the magnet and the magnetic member form a magnetic circuit that forms a magnetic field above the target placement position;
    A gap is formed in a part of the magnetic circuit,
    4. The sputtering apparatus according to any one of claims 1 to 3, wherein a portion of said magnetic circuit in which said air gap is formed is provided outside said vacuum vessel.
  5.  前記保持部は、前記空隙の幅を調整する調整機構を備える、請求項4に記載のスパッタリング装置。 The sputtering apparatus according to claim 4, wherein the holding portion has an adjusting mechanism for adjusting the width of the gap.
  6.  前記調整機構は、前記磁気部材の一部として前記保持部の上面部に設けられ、前記空隙を規定する一対の磁気調整部材を備え、
     前記一対の磁気調整部材の少なくとも一方の磁気調整部材には、前記磁気部材の一部として前記磁気調整部材を前記保持部に固定する固定部材を貫通し、かつ前記空隙の幅方向に延伸する長孔が形成されており、
     前記長孔における前記固定部材の貫通位置は可変である、請求項5に記載のスパッタリング装置。
    The adjustment mechanism includes a pair of magnetic adjustment members provided on the upper surface of the holding portion as part of the magnetic member and defining the gap,
    At least one of the pair of magnetic adjustment members has a length extending in the width direction of the air gap and passing through a fixing member that fixes the magnetic adjustment member to the holding portion as a part of the magnetic member. holes are formed
    6. The sputtering apparatus according to claim 5, wherein the through-position of said fixing member in said elongated hole is variable.
  7.  前記鉛直下方向から見たときの前記ターゲット配置位置の形状は、矩形状であり、
     前記一対の磁気調整部材は、前記ターゲット配置位置の長手方向に延伸して設けられており、
     前記一対の磁気調整部材の少なくとも一方の磁気調整部材は、前記長手方向に沿って複数の区画に分割されており、
     前記複数の区画ごとに、前記長孔における前記固定部材の貫通位置が規定されていることにより、前記空隙の幅を規定している、請求項6に記載のスパッタリング装置。
    a shape of the target arrangement position when viewed from the vertically downward direction is a rectangular shape;
    The pair of magnetic adjustment members are provided extending in the longitudinal direction of the target arrangement position,
    At least one magnetic adjustment member of the pair of magnetic adjustment members is divided into a plurality of sections along the longitudinal direction,
    7. The sputtering apparatus according to claim 6, wherein a width of said gap is defined by defining a penetration position of said fixing member in said elongated hole for each of said plurality of sections.
  8.  前記空隙には、前記磁気部材とは異なる透磁率を有する物質が挿入される、請求項4から7のいずれか1項に記載のスパッタリング装置。 The sputtering apparatus according to any one of claims 4 to 7, wherein a substance having a magnetic permeability different from that of said magnetic member is inserted into said gap.
  9.  前記保持部を複数備える、請求項1から8のいずれか1項に記載のスパッタリング装置。 The sputtering apparatus according to any one of claims 1 to 8, comprising a plurality of said holding parts.
  10.  前記真空容器は、前記真空容器の内部を真空排気する少なくとも1つの排気部を備え、
     前記排気部は、前記保持部に隣接して設けられている、請求項1から9のいずれか1項に記載のスパッタリング装置。
    The vacuum vessel comprises at least one exhaust section for evacuating the interior of the vacuum vessel,
    10. The sputtering apparatus according to any one of claims 1 to 9, wherein said exhaust section is provided adjacent to said holding section.
  11.  前記保持部は、前記ガス導入部と前記開口部とを連通するガス経路を備え、
     前記ガス経路は、
      前記ガス導入部から導入されたガスを受容する主経路と、
      前記主経路と連通し、前記主経路内のガスを前記開口部へ導入する複数の分岐経路とを備え、
     前記複数の分岐経路のそれぞれの太さは、前記主経路の太さよりも小さい、請求項1から10のいずれか1項に記載のスパッタリング装置。
    the holding portion includes a gas path that communicates between the gas introduction portion and the opening;
    The gas path is
    a main path for receiving the gas introduced from the gas introduction portion;
    a plurality of branch paths that communicate with the main path and introduce gas in the main path into the opening;
    The sputtering apparatus according to any one of claims 1 to 10, wherein the thickness of each of the plurality of branch paths is smaller than the thickness of the main path.
PCT/JP2022/026009 2021-07-09 2022-06-29 Sputtering device WO2023282150A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280020050.9A CN117043385A (en) 2021-07-09 2022-06-29 Sputtering device
KR1020237030892A KR20230142608A (en) 2021-07-09 2022-06-29 sputtering device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021114511A JP2023010398A (en) 2021-07-09 2021-07-09 Sputtering device
JP2021-114511 2021-07-09

Publications (1)

Publication Number Publication Date
WO2023282150A1 true WO2023282150A1 (en) 2023-01-12

Family

ID=84801632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026009 WO2023282150A1 (en) 2021-07-09 2022-06-29 Sputtering device

Country Status (5)

Country Link
JP (1) JP2023010398A (en)
KR (1) KR20230142608A (en)
CN (1) CN117043385A (en)
TW (1) TWI823457B (en)
WO (1) WO2023282150A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61110763A (en) * 1984-11-02 1986-05-29 Nec Corp Sputtering electrode
JPH02194171A (en) * 1989-01-20 1990-07-31 Ulvac Corp Magnetron sputtering source
JP2020152968A (en) * 2019-03-20 2020-09-24 日新電機株式会社 Sputtering device
JP2020183550A (en) * 2019-04-26 2020-11-12 日新電機株式会社 Sputtering apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5718767B2 (en) 2011-08-30 2015-05-13 株式会社アルバック Sputtering equipment
JP2020026575A (en) * 2018-08-10 2020-02-20 東京エレクトロン株式会社 Film deposition device, film deposition system, and film deposition method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61110763A (en) * 1984-11-02 1986-05-29 Nec Corp Sputtering electrode
JPH02194171A (en) * 1989-01-20 1990-07-31 Ulvac Corp Magnetron sputtering source
JP2020152968A (en) * 2019-03-20 2020-09-24 日新電機株式会社 Sputtering device
JP2020183550A (en) * 2019-04-26 2020-11-12 日新電機株式会社 Sputtering apparatus

Also Published As

Publication number Publication date
JP2023010398A (en) 2023-01-20
TWI823457B (en) 2023-11-21
TW202317792A (en) 2023-05-01
CN117043385A (en) 2023-11-10
KR20230142608A (en) 2023-10-11

Similar Documents

Publication Publication Date Title
US8778151B2 (en) Plasma processing apparatus
KR100223394B1 (en) Plasma treating device
JP3020580B2 (en) Microwave plasma processing equipment
KR890004880B1 (en) Method and device for sputtering
US9564297B2 (en) Electron beam plasma source with remote radical source
US6236163B1 (en) Multiple-beam ion-beam assembly
US20070205096A1 (en) Magnetron based wafer processing
KR100390540B1 (en) Magnetron plasma etching apparatus
SE521904C2 (en) Hybrid Plasma Treatment Device
US8377269B2 (en) Sputtering apparatus
US8698400B2 (en) Method for producing a plasma beam and plasma source
US11521822B2 (en) Ion gun and vacuum processing apparatus
EP0523695A1 (en) A sputtering apparatus and an ion source
US20130333618A1 (en) Hall effect plasma source
US6864486B2 (en) Ion sources
US20100012033A1 (en) Sheet Plasma Film Forming Apparatus
US20050205412A1 (en) Sputtering device for manufacturing thin films
WO2023282150A1 (en) Sputtering device
JP3246800B2 (en) Plasma equipment
JP2008128887A (en) Plasma source, high frequency ion source using it, negative ion source, ion beam processor, neutral particle beam incident device for nuclear fusion
US20090159441A1 (en) Plasma Film Deposition System
JP2009191340A (en) Film-forming apparatus and film-forming method
US9721760B2 (en) Electron beam plasma source with reduced metal contamination
JP2001210245A (en) Ion source and ion extracting electrode
JP2000156374A (en) Plasma processing apparatus applying sputtering process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22837566

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280020050.9

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237030892

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237030892

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE