WO2023282028A1 - 機械装置の状態監視装置、風力発電装置、状態監視方法、およびプログラム - Google Patents

機械装置の状態監視装置、風力発電装置、状態監視方法、およびプログラム Download PDF

Info

Publication number
WO2023282028A1
WO2023282028A1 PCT/JP2022/024331 JP2022024331W WO2023282028A1 WO 2023282028 A1 WO2023282028 A1 WO 2023282028A1 JP 2022024331 W JP2022024331 W JP 2022024331W WO 2023282028 A1 WO2023282028 A1 WO 2023282028A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling bearing
information
vibration
sound information
data
Prior art date
Application number
PCT/JP2022/024331
Other languages
English (en)
French (fr)
Inventor
謹次 湯川
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021112988A external-priority patent/JP2023009580A/ja
Priority claimed from JP2021188740A external-priority patent/JP2023075685A/ja
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to US18/282,429 priority Critical patent/US20240141871A1/en
Priority to EP22837446.8A priority patent/EP4368959A1/en
Priority to CN202280022947.5A priority patent/CN117043573A/zh
Publication of WO2023282028A1 publication Critical patent/WO2023282028A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • F16C19/527Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to vibration and noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • F03D17/005Monitoring or testing of wind motors, e.g. diagnostics using computation methods, e.g. neural networks
    • F03D17/0065Monitoring or testing of wind motors, e.g. diagnostics using computation methods, e.g. neural networks for diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • F03D17/009Monitoring or testing of wind motors, e.g. diagnostics characterised by the purpose
    • F03D17/015Monitoring or testing of wind motors, e.g. diagnostics characterised by the purpose for monitoring vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • F03D17/027Monitoring or testing of wind motors, e.g. diagnostics characterised by the component being monitored or tested
    • F03D17/032Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/70Bearing or lubricating arrangements
    • F03D80/703Shaft bearings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H1/00Measuring characteristics of vibrations in solids by using direct conduction to the detector
    • G01H1/003Measuring characteristics of vibrations in solids by using direct conduction to the detector of rotating machines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H3/00Measuring characteristics of vibrations by using a detector in a fluid
    • G01H3/10Amplitude; Power
    • G01H3/12Amplitude; Power by electric means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings
    • G01M13/045Acoustic or vibration analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/80Diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/334Vibration measurements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2233/00Monitoring condition, e.g. temperature, load, vibration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to a machine device condition monitoring device, a wind turbine generator, a condition monitoring method, and a program.
  • Patent Document 1 in a bearing deterioration diagnosis device, "rotation-tracking analysis” that analyzes how the magnitude of the vibration noise of the order component of interest changes as the rotation speed increases or decreases is shown. It is Further, Patent Document 1 describes that a database in which rotation speeds and vibration values are associated is defined, and the state of the bearing is determined by comparing this information with the measured vibration values.
  • the object of the present invention is to accurately monitor the state of a mechanical device even when the rotational speed changes in an environment where the rotational speed of the mechanical device can intermittently change. do.
  • a rolling bearing condition monitoring device comprising: a first acquisition means for acquiring vibration information or sound information of the rolling bearing during rotation; a second acquiring means for acquiring the rotational speed of the rolling bearing during rotation; Derivation means for deriving timing for sampling data from the vibration information or the sound information according to the rotation speed so that the number of samples per rotation of the rolling bearing is a predetermined value; generation means for generating monitoring data by sampling data from the vibration information or sound information based on the timing derived by the derivation means; have
  • a condition monitoring device for a machine equipped with a rolling bearing Acquisition means for acquiring vibration information or sound information of the rotating rolling bearing at regular time intervals; conversion means for converting the vibration information or sound information acquired by the acquisition means into a waveform in a state where the rotational motion is at a constant angular velocity; diagnostic means for diagnosing the state of the mechanical device using the vibration information or sound information converted by the conversion means;
  • the wind turbine generator A condition monitoring device and a rolling bearing
  • the condition monitoring device comprises first acquisition means for acquiring vibration information or sound information of the rolling bearing during rotation and rotational speed of the rolling bearing during rotation. and deriving means for deriving the timing of sampling data from the vibration information or the sound information according to the rotational speed so that the number of samples per rotation of the rolling bearing is a predetermined value. and generating means for generating monitoring data by sampling data from the vibration information or sound information based on the timing derived by the deriving means; have
  • a method for monitoring the condition of a mechanical device having a rolling bearing comprising: a first acquiring step of acquiring vibration information or sound information of the rolling bearing during rotation; a second acquisition step of acquiring a rotational speed of the rolling bearing during rotation; a derivation step of deriving a timing for sampling data from the vibration information or the sound information according to the rotational speed so that the number of samples per rotation of the rolling bearing is a predetermined value; a generation step of sampling data from the vibration information or the sound information based on the timing derived in the derivation step to generate data for monitoring; have
  • a method for monitoring the condition of a mechanical device having a rolling bearing comprising: an acquiring step of acquiring vibration information or sound information of the rotating rolling bearing at regular time intervals; a conversion step of converting the vibration information or sound information acquired in the acquisition step into a waveform in a state where the rotational motion is at a constant angular velocity; a diagnosis step of diagnosing the state of the mechanical device using the vibration information or sound information converted in the conversion step; have
  • another form of this invention has the following structures. That is, the program to the computer, a first acquiring step of acquiring vibration information or sound information of the rotating rolling bearing; a second acquisition step of acquiring a rotational speed of the rolling bearing during rotation; a derivation step of deriving a timing for sampling data from the vibration information or the sound information according to the rotational speed so that the number of samples per rotation of the rolling bearing is a predetermined value; a generation step of sampling data from the vibration information or the sound information based on the timing derived in the derivation step to generate data for monitoring; to run.
  • another form of this invention has the following structures. That is, the program to the computer, an acquiring step of acquiring vibration information or sound information of the rotating rolling bearing at regular time intervals; a conversion step of converting the vibration information or sound information acquired in the acquisition step into a waveform in a state where the rotational motion is at a constant angular velocity; a diagnosis step of diagnosing the state of the mechanical device including the rolling bearing using the vibration information or sound information converted in the conversion step; to run.
  • FIG. 4 is a flowchart of state monitoring processing according to the first embodiment;
  • FIG. 5 is a diagram showing an example of a frequency calculation formula for each part of the rolling bearing according to the first embodiment;
  • FIG. 8 is a diagram for explaining conversion of vibration data according to the second embodiment;
  • FIG. 8 is a diagram for explaining conversion of vibration data according to the second embodiment;
  • FIG. 8 is a diagram for explaining conversion of vibration data according to the second embodiment;
  • FIG. 8 is a diagram for explaining conversion of vibration data according to the second embodiment;
  • FIG. 8 is a diagram for explaining conversion of vibration data according to the second embodiment;
  • FIG. 4 is a diagram for explaining an example of waveform detection according to the present invention;
  • FIG. 4 is a diagram for explaining an example of waveform detection according to the present invention;
  • 9 is a flowchart of state monitoring processing according to the second embodiment;
  • FIG. 1 is a schematic configuration diagram of a wind power generator to which the load estimation method according to this embodiment is applied.
  • the wind turbine generator 10 includes a tower 11 erected on the ground, a nacelle 12 supported on the upper end of the tower 11, and a rotor 13 provided at the end of the nacelle 12.
  • a rotation mechanism 14 for adjusting the direction of the nacelle 12 (yaw control) is provided between the tower 11 and the nacelle 12 .
  • a drive train section 21 is stored in the nacelle 12 .
  • the drive train section 21 includes a main shaft 22 , a gearbox 23 , a generator 24 and rolling bearings 25 .
  • the main shaft 22 is connected to a generator 24 via a gearbox 23 .
  • the main shaft 22 is rotatably supported within the nacelle 12 by rolling bearings 25 .
  • a vibration sensor 27 is provided in the rolling bearing 25 that supports the main shaft 22 and the gearbox 23 to measure the vibration generated in the rolling bearing 25 .
  • a rotational speed sensor 29 for detecting the rotational speed of the main shaft 22 is also provided.
  • the power generator 24 is provided with a power generation amount measuring device 28 for measuring the power generation amount.
  • the rotor 13 has a hub 31 and a plurality of blades 32. Each of the plurality of blades 32 radially extends from the hub 31 .
  • the rotor 13 is provided at the end of the main shaft 22 of the drive train section 21 .
  • the hub 31 adjusts the orientation (pitch control) of each of the plurality of blades 32 .
  • the rotation shafts of the gearbox 23 and the generator 24 are also supported by rolling bearings (not shown) provided separately from the rolling bearings 25 .
  • the drive train section 21 is provided with a braking device (not shown) for stopping or decelerating the rotation of the main shaft 22 as necessary.
  • FIG. 1 shows a configuration in which one rolling bearing 25 is provided for one wind turbine generator 10 in order to simplify the explanation, but the present invention is not limited to this configuration.
  • a plurality of rolling bearings 25 may be provided to support the main shaft 22 in the wind turbine generator 10 .
  • FIG. 2 is a schematic configuration diagram showing an example of the functional configuration according to this embodiment.
  • FIG. 2 shows the configuration of the monitoring target rolling bearing 25 and the monitoring device 50 that performs the monitoring operation according to the present embodiment.
  • the rolling bearing 25 rotatably supports the main shaft 22 .
  • the rolling bearing 25 can be applied to, for example, a tapered roller bearing, a cylindrical roller bearing, or the like, but is not limited to these.
  • the monitoring device 50 may be provided inside the wind turbine generator 10 shown in FIG. 1 or may be provided outside the wind turbine generator 10 .
  • 2 shows a configuration in which one monitoring device 50 monitors one rolling bearing 25 in order to simplify the explanation.
  • the configuration is not limited to this configuration, and one monitoring device 50 may be configured to monitor the states of a plurality of rolling bearings 25 .
  • the rolling bearing 25 includes an inner ring 40 which is a rotating ring fitted on the main shaft 22, an outer ring 42 which is a fixed ring fitted on a housing (not shown), and a plurality of rollers arranged between the inner ring 40 and the outer ring 42. It includes a plurality of balls (rollers) that are rolling elements 41 and a retainer 43 that holds the rolling elements 41 so that they can roll. Further, in the rolling bearing 25, friction between the inner ring 40 and the rolling elements 41 and between the outer ring 42 and the rolling elements 41 is reduced by a predetermined lubrication method.
  • the lubrication method is not particularly limited, for example, grease lubrication, oil lubrication, or the like is used. Also, the type of lubricant is not particularly limited.
  • a vibration sensor 27 is provided to detect vibration generated from the rolling bearing 25 while the main shaft 22 is rotating.
  • the vibration sensor 27 is fixed in the vicinity of the outer ring of the housing by bolting, bonding, bolting and bonding, embedding with a molding material, or the like.
  • a detent function may be provided in the case of fixing with bolts. Note that the vibration sensor 27 is not limited to being fixedly installed at the detection position, and may be installed at a position for detecting vibrations due to the rolling bearing 25 during state monitoring. Therefore, the vibration sensor 27 may be detachable or movable.
  • the vibration sensor 27 may be any device that can detect vibration, such as an acceleration sensor, an AE (Acoustic Emission) sensor, an ultrasonic sensor, a shock pulse sensor, or the like. Anything that can convert vibration into an electric signal, such as a mold, can be used.
  • an acceleration sensor such as an acceleration sensor, an AE (Acoustic Emission) sensor, an ultrasonic sensor, a shock pulse sensor, or the like. Anything that can convert vibration into an electric signal, such as a mold, can be used.
  • the vibration sensor 27 uses a vibration detecting element such as a piezoelectric element, the element may be molded in plastic or the like.
  • the rolling bearing 25 is provided with a rotation speed sensor 29 that detects the rotation speed of the inner ring 40 fitted on the main shaft 22 .
  • the inner ring 40 which is a rotating ring
  • the main shaft 22 have the same rotational speed and rotational speed.
  • the rotation speed of the main shaft 22 may vary depending on the direction, amount, and pressure of the wind that the wind turbine generator 10 receives.
  • the rotational speed can be regulated by a braking device (not shown).
  • the rotation speed sensor 29 may detect the rotation speed by detecting an encoder (not shown) provided on the inner ring 40 of the rolling bearing 25, for example.
  • the wind turbine generator 10 and the like according to this embodiment are rotated at a relatively low rotational speed.
  • the rotation speed sensor 29 is configured to detect changes in the rotation speed while the rolling bearing 25 rotates once.
  • the vibration sensor 27 and the rotational speed sensor 29 may be configured to perform detection operations only at specified timings (for example, monitoring time periods), or may be configured to perform detection operations all the time. good.
  • the amplifier 44 amplifies the electrical signal detected by the vibration sensor 27 and inputs it to the monitoring device 50 .
  • the degree of amplification here is not particularly limited, it is defined in advance.
  • the detection timings of the vibration sensor 27 and the rotation speed sensor 29 correspond to each other, and the detection information is processed in association with each other.
  • the monitoring device 50 may be realized, for example, by an information processing device including a control device, a storage device, and an input/output device (not shown).
  • the control device may consist of a CPU (Central Processing Unit), an MPU (Micro Processing Unit), a DSP (Digital Single Processor), or a dedicated circuit.
  • the storage device consists of volatile and non-volatile storage media such as HDD (Hard Disk Drive), ROM (Read Only Memory), RAM (Random Access Memory), etc.
  • HDD Hard Disk Drive
  • ROM Read Only Memory
  • RAM Random Access Memory
  • Various information can be input and output according to instructions from the control device. It is possible.
  • the input/output device notifies external devices and workers according to instructions from the control device.
  • the output method by the input/output device is not particularly limited.
  • the input/output device may be a network interface having a communication function, and may perform various input/output operations by transmitting and receiving data with an external device (not shown) via a network (not shown).
  • the monitoring device 50 includes an A/D conversion section 51, a sampling processing section 52, a vibration signal processing section 53, and a monitoring processing section . Each part may be implemented by reading out a corresponding program from the storage device and executing it by the control device described above. Furthermore, various functions may be realized by the control device controlling the input/output device.
  • the A/D converter 51 acquires the electrical signal detected by the vibration sensor 27 as vibration information via the amplifier 44, and performs A/D (Analog/Digital) conversion according to the contents of the electrical signal. conduct.
  • the sampling processing unit 52 extracts data from the vibration signal processed by the A/D conversion unit 51 to be used for the processing of the vibration signal processing unit 53 and the monitoring processing unit 54 in the latter stage, based on the data detected by the rotational speed sensor 29. Sample based on rotational speed. The sampling method here will be described later.
  • the sampled data is output to the vibration signal processing section 53 .
  • the vibration signal processing unit 53 uses the data sampled by the sampling processing unit 52 to perform signal analysis processing.
  • FFT Fast Fourier Transform
  • Signal analysis processing may be performed by performing envelope processing, or filtering processing using a low-pass filter, band-pass filter, or the like.
  • the monitoring processing unit 54 diagnoses the state of the rolling bearing 25 using the data processed by the vibration signal processing unit 53, and outputs the diagnosis result. For example, a part of the data processed by the vibration signal processing unit 53 may be extracted and the state may be diagnosed using the extracted data.
  • Diagnosis items for state monitoring performed by the monitoring processing unit 54 are not particularly limited, but arbitrary diagnosis items such as abnormal contact, poor lubrication, and damage or deterioration of portions of the rolling bearing 25 may be selected. It can be a target.
  • the monitoring result of the monitoring processing unit 54 may be notified to the outside via a network (not shown), or may control the operation of the wind turbine generator 10 .
  • the rotation mechanism 14 may be controlled to adjust the orientation of the nacelle 12 (yaw control), or the hub 31 may be controlled to control the plurality of blades 32 . You may adjust each direction (pitch control).
  • a braking mechanism (not shown) may be used to control the rotation speed of the main shaft 22 to a predetermined speed.
  • the rotational speed of the rolling bearing 25 can intermittently fluctuate due to external factors such as wind.
  • the rotation speed fluctuates the frequency of vibration of each part of the rolling bearing 25 fluctuates, and the frequency used as the judgment reference cannot be determined, which affects the accuracy of subsequent monitoring operations and diagnostic operations.
  • the rotation speed is relatively slow in a wind power generator or the like, there is a high possibility that the rotation speed fluctuates during one rotation.
  • FIG. 3 is a schematic diagram for explaining data sampling according to this embodiment.
  • the vertical axis is vibration and the horizontal axis is time. Vibration corresponds to the value of the electrical signal converted by the A/D converter 51 .
  • the first section shows an example in which the rotational speed of the rolling bearing 25 is relatively slower than the second section. That is, the rotational speed of the rolling bearing 25 fluctuates.
  • sampling timing differs between the first section and the second section. This changes the sampling period according to the rotation speed so that the number of times of sampling per rotation (the number of data) is the same.
  • ⁇ shown in the graph of FIG. 3 indicates the position of the data to be sampled.
  • FIG. 4 is a flowchart of sampling processing according to this embodiment. This processing is executed by the monitoring device 50.
  • a control device included in the monitoring device 50 reads out from the storage device and executes a program for realizing each part shown in FIG. you can
  • the monitoring device 50 acquires vibration information detected by the vibration sensor 27 .
  • the means for acquiring the vibration information (or sound information) of the rolling bearing during rotation is referred to as the first acquisition means.
  • the process of acquiring vibration information (or sound information) of the rolling bearing 25 during rotation is referred to as a first acquisition process.
  • the monitoring device 50 acquires the rotation speed detected by the rotation speed sensor 29 .
  • the means for acquiring the rotational speed of the rolling bearing 25 during rotation is referred to as second acquisition means.
  • the step of acquiring the rotational speed of the rolling bearing 25 during rotation is referred to as a second acquisition step.
  • the vibration information acquired in S401 and the rotational speed acquired in S402 are associated with detection timings.
  • the monitoring device 50 derives the sampling timing based on the rotational speed acquired using the rotational speed sensor 29 in the process of S402 of FIG.
  • the number of times of sampling per rotation of the rolling bearing 25 is defined, and the timing of sampling data varies according to the rotational speed.
  • the sampling timing is derived. More specifically, a sampling clock synchronized with the rotational speed is used to derive a constant number of samples per rotation.
  • the derivation method may be derivation using a predetermined calculation formula, or may be derivation using a table or the like in which rotation speeds and sampling timings (time intervals, etc.) are associated with each other.
  • a deriving step is a step of deriving the timing for sampling data from vibration information or sound information according to the rotation speed so that the number of samples per rotation of the rolling bearing 25 is a predetermined value.
  • the monitoring device 50 amplifies the electrical signal detected by the vibration sensor 27 in S401 by the amplifier 44 according to the timing derived in S403, and inputs the vibration signal to the monitoring device 50. Sampling data from information.
  • the means for sampling data from the vibration information (or sound information) based on the timing derived by the deriving means to generate monitoring data is referred to as the generating means.
  • a step of sampling data from vibration information (or sound information) to generate monitoring data based on the timing derived in the derivation step is defined as a generation step.
  • the monitoring device 50 performs signal analysis processing on the data sampled at S404.
  • the vibration information may be subjected to FFT (Fast Fourier Transform) analysis, and then the order ratio analysis may be performed.
  • FFT Fast Fourier Transform
  • the sampling data may be subjected to envelope analysis processing and filter processing, and the contents thereof may be changed according to the subsequent monitoring processing.
  • the monitoring device 50 monitors the state of the rolling bearing 25 using the result of the analysis processing at S405.
  • the items to be monitored here are not particularly limited, but arbitrary diagnostic items such as abnormal contact, poor lubrication, damage or deterioration of parts, etc. of each part constituting the rolling bearing 25 may be targets.
  • the frequency of each part of the rolling bearing 25 is calculated using the relational expression shown in FIG. Alternatively, it may be determined that there is no abnormality when the value is equal to or less than a predetermined threshold value.
  • the monitoring device 50 performs notification processing based on the result of the state monitoring processing at S406.
  • the notification may be performed when it is determined that an abnormality has occurred, or the configuration may be such that the notification is performed even when it is determined that there is no abnormality.
  • the notification method is not particularly limited, and the notification method may be switched according to the presence or absence of an abnormality. Then, this processing flow ends.
  • the present embodiment it is possible to accurately monitor the state of the mechanical device even when the rotational speed changes in an environment where the rotational speed of the mechanical device can intermittently change. Moreover, since the rotational speed of the rolling bearing is relatively slow, even if the data acquisition time is long, the influence of fluctuations in the rotational speed during that time can be suppressed to appropriately extract monitoring data.
  • FIG. 6A shows an example of vibration data A obtained from a measurement object via a vibration sensor or the like.
  • the horizontal axis indicates time [s] and the vertical axis indicates amplitude.
  • Vibration data of an actual bearing is data in which many different vibrations with different frequencies are superimposed, but the vibration data A here will be explained using an example in which only two vibration data B and C are included.
  • the angular velocity of the rolling bearing increases with the lapse of time, and the rotational speed increases proportionally.
  • the frequency of the vibration data C gradually increases with the lapse of time, and the waveform of the entire vibration data A shown in FIG. 6A also changes.
  • the envelope shown above the vibration data corresponds to the waveform representing the result of the envelope processing. Note that the number of revolutions is not limited to the variation shown in FIG. 6A, and may change such that it decreases over time, or may increase or decrease within a certain period of time.
  • FIG. 6B shows the result of applying envelope processing to the waveform shown in FIG. 6A and applying FFT (Fast Fourier Transform) processing.
  • the horizontal axis indicates frequency [Hz] and the vertical axis indicates intensity.
  • the frequency peak cannot be detected as shown in the region 601 in FIG. 6B. Therefore, it is impossible to specify what kind of frequency characteristics the vibration data C has, and analysis based on the frequency characteristics becomes difficult.
  • rolling bearings for wind power generators use frequency analysis for condition monitoring.
  • the natural frequency of vibration of rolling bearings is proportional to the angular velocity during rotation, so it is necessary to use data in which the rolling bearing rotates at a constant speed in frequency analysis. Therefore, in the conventional method, when detecting data used for diagnosis, sampling is performed at regular time intervals on the premise that the number of revolutions is stable.
  • the above-described method degrades the accuracy of condition monitoring.
  • the vibration data sampled at equal time intervals in a state where the angular velocity fluctuates is converted into vibration data corresponding to a state in which the angular velocity is constant, that is, rotating at a constant velocity. Convert.
  • FIG. 6C shows an example of vibration data D obtained by applying the process of removing the influence of rotation speed fluctuations according to the present embodiment to the vibration data A shown in FIG. 6A.
  • the horizontal axis indicates time [s] and the vertical axis indicates amplitude.
  • the vibration data A in FIG. 6A is converted so that the angular velocity is constant, that is, it corresponds to a state of uniform rotation.
  • t b that satisfies the following equation (1) is obtained using the original vibration data and a predetermined angular velocity. That is, the time tb when rotating at ⁇ (t) equal to the rotation angle of time ta when rotating at ⁇ 0 is obtained from the following equation (1).
  • the predetermined angular velocity here is explained as the initial angular velocity ⁇ 0 in the vibration data, but it is not limited to this. For example, it may be the average value or the maximum value of angular velocities in a predetermined range of vibration data. Alternatively, it may be an angular velocity at a predetermined timing of the vibration data.
  • vibration data A before conversion and the vibration data D after conversion are converted by the following formula (2).
  • Vibration data D shown in FIG. 6C is obtained by conversion using the above equations (1) and (2). That is, the vibration data D corresponds to waveform data in a state where the angular velocity is constant (here, the initial angular velocity ⁇ 0 ). In FIG. 6C, the envelope shown above the vibration data D corresponds to the waveform representing the result of the envelope processing.
  • FIG. 6D shows the result of applying envelope processing to the waveform shown in FIG. 6C and applying FFT processing.
  • the horizontal axis indicates frequency [Hz] and the vertical axis indicates intensity.
  • the waveform assumes that the rotation speed is constant, a frequency peak can be detected as shown in region 602 in FIG. 6D, and analysis based on the frequency characteristics is possible.
  • the vibration data A(t b ) corresponding to the time t b specified by the above equation (1) can be obtained by a vibration sensor or the like. may not exist in the vibration data A. In such a case, a predetermined range a is set in advance, and vibration data A ( t b ′) may be used to obtain the vibration data D.
  • vibration data D may be obtained.
  • a method other than the above may be used for data interpolation during data conversion, and the interpolation method to be applied may be switched according to the purpose.
  • the sampling processing unit 52 of the monitoring device 50 converts the vibration signal processed by the A/D conversion unit 51 into the data used for the processing of the vibration signal processing unit 53 and the monitoring processing unit 54 in the subsequent stage. Then, conversion processing is performed based on the rotational speed detected by the rotational speed sensor 29 . The conversion processing here is performed by the method described with reference to FIGS. 6A to 6D. The converted data is output to the vibration signal processing section 53 .
  • Data conversion processing will be described below, taking as an example the wind turbine generator 10 to which the state monitoring method according to the present embodiment can be applied.
  • FIG. 7A and 7B show examples of rotational speed information of the rolling bearings 25 included in the wind turbine generator 10 obtained by the rotational speed sensor 29.
  • FIG. 7A the horizontal axis indicates time [s], and the vertical axis indicates the output value of the rotation speed sensor 29 .
  • the rotational speed sensor 29 detects a predetermined marker (not shown) provided on the rolling bearing 25, a peak value as shown in FIG. 7A is output.
  • the configuration of the marker is not particularly limited, for example, it may be provided so as to be detected once each time the rolling bearing 25 makes one rotation.
  • FIG. 7B shows an example of deriving the frequency by performing FFT processing on the signal shown in FIG. 7A.
  • the horizontal axis indicates frequency [Hz] and the vertical axis indicates intensity.
  • the angular velocity can be derived based on the detection timing of the peak value indicated by the signal shown in FIG. 7B.
  • FIG. 8 is a flowchart of sampling processing according to this embodiment. This processing is executed by the monitoring device 50.
  • a control device (not shown) included in the monitoring device 50 reads out a program for realizing each part shown in FIG. 3 from a storage device (not shown) and executes it. It may be realized by
  • the monitoring device 50 acquires vibration data detected by the vibration sensor 27 and rotation speed detected by the rotation speed sensor 29 .
  • the vibration data and rotational speed acquired here are associated with detection timing.
  • the monitoring device 50 converts the vibration data acquired at S801 based on the rotation speed acquired at S801.
  • the angular velocity of the rolling bearing 25 is fluctuating, and assuming that the rolling bearing 25 rotates at a constant angular velocity, the vibration data is converted using the above equations (1) and (2).
  • the monitoring device 50 can derive the angular velocity of the rolling bearing 25 from the rotational speed, and can use this angular velocity for data conversion processing.
  • the monitoring device 50 performs signal analysis processing on the data converted at S802.
  • analysis processing for example, after performing FFT analysis on the vibration information, order ratio analysis may be performed.
  • the sampling data may be subjected to envelope analysis processing and filter processing, and the content thereof may be changed according to subsequent monitoring processing.
  • the monitoring device 50 monitors the state of the rolling bearing 25 using the result of the analysis processing at S803.
  • the items to be monitored here are not particularly limited, for example, the rotation slip of the rolling bearing 25, the revolution slip, abnormal contact of each part constituting the rolling bearing 25, poor lubrication, damage or deterioration of the part, etc. Diagnostic items may be targeted.
  • the frequency of each part of the rolling bearing 25 is calculated using the relational expression shown in FIG. It is also possible to determine whether or not an abnormality has occurred by determining whether or not revolution slip has occurred, or by comparing the peak value of the analysis result with a predetermined threshold value.
  • the monitoring device 50 performs notification processing based on the result of the state monitoring processing at S804.
  • the notification may be performed when it is determined that an abnormality has occurred, or the configuration may be such that the notification is performed even when it is determined that there is no abnormality.
  • the notification method is not particularly limited, and the notification method may be switched according to the presence or absence of an abnormality. Then, this processing flow ends.
  • the vibration sensor 27 is used to detect the vibration of the rolling bearing 25, but the present invention is not limited to this.
  • a sound sensor including a microphone may be used instead of the vibration sensor 27 to detect sound information.
  • the above-described data sampling processing is performed for sound information.
  • a program or application for realizing the functions of one or more embodiments described above is supplied to a system or device using a network or a storage medium, and one or more programs in the computer of the system or device It can also be implemented by a process in which the processor reads and executes the program.
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the present invention is not limited to the above-described embodiments, and those skilled in the art can make modifications and applications by combining each configuration of the embodiments with each other, based on the description of the specification and well-known techniques. It is also contemplated by the present invention that it falls within the scope of protection sought.
  • a condition monitoring device for a machine equipped with a rolling bearing a first acquisition means for acquiring vibration information or sound information of the rolling bearing during rotation; a second acquiring means for acquiring the rotational speed of the rolling bearing during rotation; Derivation means for deriving timing for sampling data from the vibration information or the sound information according to the rotation speed so that the number of samples per rotation of the rolling bearing is a predetermined value; generation means for generating monitoring data by sampling data from the vibration information or sound information based on the timing derived by the derivation means;
  • a condition monitoring device characterized by comprising: According to this configuration, it is possible to monitor the state of the mechanical device with high accuracy even when the rotational speed changes intermittently in an environment where the rotational speed of the mechanical device can change intermittently. For example, it is possible to accurately perform an abnormality diagnosis of the rolling bearing targeting arbitrary diagnosis items such as abnormal contact, poor lubrication, damage and deterioration of parts, etc. of each part constituting the rolling bearing 25 .
  • condition monitoring apparatus wherein the generating means further performs envelope analysis processing or filtering processing on the monitoring data.
  • data to which envelope analysis processing and filtering processing are applied can be generated as data for monitoring.
  • condition monitoring apparatus further comprising diagnostic means for diagnosing the condition of the rolling bearing using the monitoring data generated by the generating means. . According to this configuration, it is possible to perform more accurate condition diagnosis using data sampled according to the rotation speed.
  • a condition monitoring device comprising: According to this configuration, it is possible to monitor the state of the mechanical device with high accuracy even when the rotational speed changes intermittently in an environment where the rotational speed of the mechanical device can change intermittently.
  • the conversion means converts the angular velocity at a predetermined timing when the vibration information or the sound information is acquired by the acquisition means as the constant angular velocity.
  • Condition monitor for example, the initial angular velocity of the vibration data can be used as a reference, and the vibration data can be converted into a waveform of a constant angular velocity, so that the state can be monitored with high accuracy.
  • the state monitoring device according to (5) or (6), characterized in that the conversion is performed using
  • the condition monitoring device according to any one of (5) to (7) characterized by: According to this configuration, it is possible to appropriately derive the angular velocity in the rotational operation of the mechanical device and use it for data conversion.
  • the converting means performs conversion using information obtained by the obtaining means or information obtained by applying envelope processing to the information obtained by the obtaining means ( 5)
  • the condition monitoring device according to any one of (8).
  • the data conversion process can be applied to either the raw data or the data subjected to the envelope processing as the vibration data to be subjected to the data conversion process. can be used properly.
  • a rolling bearing condition monitoring method comprising: a first acquiring step of acquiring vibration information or sound information of the rolling bearing during rotation; a second acquisition step of acquiring a rotational speed of the rolling bearing during rotation; a derivation step of deriving a timing for sampling data from the vibration information or the sound information according to the rotational speed so that the number of samples per rotation of the rolling bearing is a predetermined value; a generation step of sampling data from the vibration information or the sound information based on the timing derived in the derivation step to generate data for monitoring;
  • a condition monitoring method comprising: According to this configuration, it is possible to monitor the state of the mechanical device with high accuracy even when the rotational speed changes intermittently in an environment where the rotational speed of the mechanical device can change intermittently.
  • a method for monitoring the condition of a mechanical device having a rolling bearing comprising: an acquiring step of acquiring vibration information or sound information of the rotating rolling bearing at regular time intervals; a conversion step of converting the vibration information or sound information acquired in the acquisition step into a waveform in a state where the rotational motion is at a constant angular velocity; a diagnosis step of diagnosing the state of the mechanical device using the vibration information or sound information converted in the conversion step;
  • a condition monitoring method comprising: According to this configuration, it is possible to monitor the state of the mechanical device with high accuracy even when the rotational speed changes intermittently in an environment where the rotational speed of the mechanical device can change intermittently.
  • a first acquiring step of acquiring vibration information or sound information of the rotating rolling bearing a second acquisition step of acquiring a rotational speed of the rolling bearing during rotation; a derivation step of deriving a timing for sampling data from the vibration information or the sound information according to the rotational speed so that the number of samples per rotation of the rolling bearing is a predetermined value; a generation step of sampling data from the vibration information or the sound information based on the timing derived in the derivation step to generate data for monitoring; program to run the According to this configuration, it is possible to monitor the state of the mechanical device with high accuracy even when the rotational speed changes intermittently in an environment where the rotational speed of the mechanical device can change intermittently.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Theoretical Computer Science (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

転がり軸受を備える機械装置の状態監視装置であって、回転中の前記転がり軸受の振動情報または音情報を取得する第1の取得手段と、回転中の前記転がり軸受の回転速度を取得する第2の取得手段と、前記転がり軸受の1回転当たりのサンプリング数が所定の値となるように、前記回転速度に応じて前記振動情報または音情報からデータをサンプリングするタイミングを導出する導出手段と、前記導出手段にて導出されたタイミングに基づいて、前記振動情報または音情報からデータをサンプリングして監視用のデータを生成する生成手段とを有する。

Description

機械装置の状態監視装置、風力発電装置、状態監視方法、およびプログラム
 本願発明は、機械装置の状態監視装置、風力発電装置、状態監視方法、およびプログラムに関する。
 従来、風力発電装置などの機械装置は転がり軸受を備える。転がり軸受の状態を監視し、その状態に応じた制御を行うことで、機械装置の不具合などを防止し、より適切に動作させることが行われている。転がり軸受の状態監視に用いられる情報としては、振動、音、もしくは回転速度などが用いられている。
 特許文献1では、軸受劣化診断装置において、回転速度の上昇または下降変化に伴って、着目する次数成分の振動騒音の大きさがどのように変化するかを分析する「回転-トラッキング分析」が示されている。また、特許文献1では、回転数と振動値とを関連付けたデータベースを規定しておき、この情報と測定した振動値とを比較して軸受の状態を判断することが記載されている。
国際公開第2017/145222号
 例えば、風力発電装置では、外部からの風の影響により、断続的な回転速度の変化が生じ得る。特に、風力発電装置では、比較的低速の回転により動作するため、転がり軸受が1回転する間にも回転速度、すなわち、角速度の変化が生じ得る。回転速度が変動した場合には、転がり軸受の部位ごとの振動の周波数が変動してしまうため、転がり軸受が1回転する間のデータを一律に用いて状態監視を行った場合にはその変動に起因して精度が低下してしまう。また、風力発電装置など回転速度が比較的低速である場合には、低周波成分の解析が必要である。このとき、一定数のデータを取得するためには、データのサンプリング時間を長く設定する必要がある。サンプリング時間が長くなるほど回転速度の変動が生じる可能性が高くなり、その影響を受けやすくなる。その結果、転がり軸受に対する適切な状態監視が困難になる。
 上記課題を鑑み、本願発明は、機械装置の回転動作における回転速度が断続的に変化し得る環境下において、回転速度の変化が生じた場合でも機械装置の状態を精度良く監視することを目的とする。
 上記課題を解決するために本願発明は以下の構成を有する。すなわち、転がり軸受の状態監視装置であって、
 回転中の前記転がり軸受の振動情報または音情報を取得する第1の取得手段と、
 回転中の前記転がり軸受の回転速度を取得する第2の取得手段と、
 前記転がり軸受の1回転当たりのサンプリング数が所定の値となるように、前記回転速度に応じて前記振動情報または音情報からデータをサンプリングするタイミングを導出する導出手段と、
 前記導出手段にて導出されたタイミングに基づいて、前記振動情報または音情報からデータをサンプリングして監視用のデータを生成する生成手段と、
を有する。
 また、本願発明の別の形態は以下の構成を有する。すなわち、転がり軸受を備える機械装置の状態監視装置であって、
 回転中の前記転がり軸受の振動情報または音情報を一定の時間間隔にて取得する取得手段と、
 前記取得手段にて取得した振動情報または音情報を、回転動作を一定の角速度とした状態の波形となるように変換する変換手段と、
 前記変換手段にて変換された振動情報または音情報を用いて、前記機械装置の状態を診断する診断手段と、
を有する。
 また、本願発明の別の形態は以下の構成を有する。すなわち、風力発電装置であって、
 状態監視装置と、転がり軸受とを備え、前記状態監視装置は、回転中の前記転がり軸受の振動情報または音情報を取得する第1の取得手段と、回転中の前記転がり軸受の回転速度を取得する第2の取得手段と、前記転がり軸受の1回転当たりのサンプリング数が所定の値となるように、前記回転速度に応じて前記振動情報または音情報からデータをサンプリングするタイミングを導出する導出手段と、前記導出手段にて導出されたタイミングに基づいて、前記振動情報または音情報からデータをサンプリングして監視用のデータを生成する生成手段と、
を有する。
 また、本願発明の別の形態は以下の構成を有する。すなわち、転がり軸受を備える機械装置の状態監視方法であって、
 回転中の前記転がり軸受の振動情報または音情報を取得する第1の取得工程と、
 回転中の前記転がり軸受の回転速度を取得する第2の取得工程と、
 前記転がり軸受の1回転当たりのサンプリング数が所定の値となるように、前記回転速度に応じて前記振動情報または音情報からデータをサンプリングするタイミングを導出する導出工程と、
 前記導出工程にて導出されたタイミングに基づいて、前記振動情報または音情報からデータをサンプリングして監視用のデータを生成する生成工程と、
を有する。
 また、本願発明の別の形態は以下の構成を有する。すなわち、転がり軸受を備える機械装置の状態監視方法であって、
 回転中の前記転がり軸受の振動情報または音情報を一定の時間間隔にて取得する取得工程と、
 前記取得工程にて取得した振動情報または音情報を、回転動作を一定の角速度とした状態の波形となるように変換する変換工程と、
 前記変換工程にて変換された振動情報または音情報を用いて、前記機械装置の状態を診断する診断工程と、
を有する。
 また、本願発明の別の形態は以下の構成を有する。すなわち、プログラムであって、
 コンピュータに、
 回転中の転がり軸受の振動情報または音情報を取得する第1の取得工程と、
 回転中の前記転がり軸受の回転速度を取得する第2の取得工程と、
 前記転がり軸受の1回転当たりのサンプリング数が所定の値となるように、前記回転速度に応じて前記振動情報または音情報からデータをサンプリングするタイミングを導出する導出工程と、
 前記導出工程にて導出されたタイミングに基づいて、前記振動情報または音情報からデータをサンプリングして監視用のデータを生成する生成工程と、
を実行させる。
 また、本願発明の別の形態は以下の構成を有する。すなわち、プログラムであって、
 コンピュータに、
 回転中の転がり軸受の振動情報または音情報を一定の時間間隔にて取得する取得工程と、
 前記取得工程にて取得した振動情報または音情報を、回転動作を一定の角速度とした状態の波形となるように変換する変換工程と、
 前記変換工程にて変換された振動情報または音情報を用いて、前記転がり軸受を備える機械装置の状態を診断する診断工程と、
を実行させる。
 本願発明により、機械装置の回転動作における回転速度が断続的に変化し得る環境下において、回転速度の変化が生じた場合でも機械装置の状態を精度良く監視することが可能となる。
第1の実施形態に係る装置構成の例を示す概略図。 第1の実施形態に係る機能構成の例を示す概略図。 本願発明に係るサンプリングを説明するための概略図。 第1の実施形態に係る状態監視処理のフローチャート。 第1の実施形態に係る転がり軸受の部位ごとの周波数の計算式の例を示す図。 第2の実施形態に係る振動データの変換を説明するための図。 第2の実施形態に係る振動データの変換を説明するための図。 第2の実施形態に係る振動データの変換を説明するための図。 第2の実施形態に係る振動データの変換を説明するための図。 本願発明に係る波形検出の例を説明するための図。 本願発明に係る波形検出の例を説明するための図。 第2の実施形態に係る状態監視処理のフローチャート。
 以下、本願発明を実施するための形態について図面などを参照して説明する。なお、以下に説明する実施形態は、本願発明を説明するための一実施形態であり、本願発明を限定して解釈されることを意図するものではなく、また、各実施形態で説明されている全ての構成が本願発明の課題を解決するために必須の構成であるとは限らない。また、各図面において、同じ構成要素については、同じ参照番号を付すことにより対応関係を示す。
 <第1の実施形態>
 以下、本願発明の第1の実施形態について説明を行う。
 [装置構成]
 以下、本願発明に係る状態監視方法を適用可能な装置の一実施形態を説明する。なお、以下の説明では、適用例として、転がり軸受を含む風力発電装置を例にとって説明するが、風力発電装置に限定されず、それ以外の機械装置であっても同様に適用可能である。本願発明を適用可能な装置としては、転がり軸受を備え、その回転速度が比較的遅い装置や、回転数の変動が大きい装置などが該当する。
 図1は、本実施形態に係る荷重推定方法を適用された風力発電装置の概略構成図である。図1に示すように、風力発電装置10は、地上に立設されたタワー11と、タワー11の上端に支持されたナセル12と、ナセル12の端部に設けられたローター13とを備えている。また、タワー11とナセル12の間には、ナセル12の向きを調整(ヨー制御)するための回動機構14が備えられる。
 ナセル12には、ドライブトレイン部21が格納されている。ドライブトレイン部21は、主軸22、増速機23、発電機24、および転がり軸受25を備える。主軸22は、増速機23を介して発電機24に接続されている。主軸22は、転がり軸受25によってナセル12内に回転可能に支持されている。この主軸22を支持する転がり軸受25、増速機23には、振動センサ27が設けられて転がり軸受25にて生じる振動を測定する。また、主軸22の回転速度を検出する回転速度センサ29が配設される。発電機24には、発電量を測定する発電量測定装置28が配設されている。
 ローター13は、ハブ31と、複数のブレード32とを有している。複数のブレード32それぞれは、ハブ31から放射状に延在されている。ローター13は、ドライブトレイン部21の主軸22の端部に設けられている。ハブ31は、複数のブレード32それぞれの向きを調整(ピッチ制御)する。
 なお、風力発電装置10は、増速機23や発電機24の回転軸も、転がり軸受25とは別個に設けられた転がり軸受(不図示)によって支持されている。また、ドライブトレイン部21には、主軸22の回転を必要に応じて停止または減速させるためのブレーキ装置(不図示)が設けられている。
 上記構造の風力発電装置10は、ローター13のブレード32が風を受けることで主軸22が回転される。すると、その主軸22の回転が増速機23によって増速されて発電機24に伝達され、発電機24によって発電される。また、ローター13のブレード32が風を受けることで、主軸22を介して転がり軸受25に対して、荷重(ラジアル荷重およびアキシアル荷重)が負荷される。なお、図1では、説明を簡略化するために1の風力発電装置10に対して、1の転がり軸受25が設けられた構成を示しているが、この構成に限定するものではなく、1の風力発電装置10において主軸22を支持するために転がり軸受25が複数設けられてもよい。
 [機能構成]
 図2は、本実施形態に係る機能構成の一例を示す概略構成図である。図2には、本実施形態に係る監視対象の転がり軸受25と、監視動作を行う監視装置50の構成が示される。転がり軸受25は、主軸22を回転自在に支持する。なお、本実施形態において、転がり軸受25として、例えば、円すいころ軸受、円筒ころ軸受などに適用可能であるが、これらに限定するものではない。
 監視装置50は、図1に示した風力発電装置10内に設けられてもよいし、風力発電装置10の外部に設けられてもよい。また、図2では、説明を簡略化するために1の転がり軸受25に対して、1の監視装置50により監視する構成を示している。しかし、この構成に限定するものではなく、1の監視装置50が、複数の転がり軸受25の状態監視を行うような構成であってもよい。
 転がり軸受25は、主軸22に外嵌される回転輪である内輪40、ハウジング(不図示)に内嵌される固定輪である外輪42、内輪40及び外輪42との間に配置された複数の転動体41である複数の玉(ころ)、および転動体41を転動自在に保持する保持器43を備える。また、転がり軸受25において、所定の潤滑方式により、内輪40と転動体41の間、および、外輪42と転動体41の間の摩擦が軽減される。潤滑方式は特に限定するものではないが、例えば、グリース潤滑や油潤滑などが用いられる。また、潤滑剤の種類についても特に限定するものではない。
 主軸22の回転中に転がり軸受25から発生する振動を検出する振動センサ27が備えられる。振動センサ27は、ボルト固定、接着、ボルト固定と接着、或いはモールド材による埋め込み等によってハウジングの外輪近傍に固定されている。なお、ボルト固定の場合には、回り止め機能を備えるようにしてもよい。なお、振動センサ27は、検出位置に固定して設置される構成に限定するものではなく、状態監視時に転がり軸受25による振動を検出するための位置に設置されればよい。そのため、振動センサ27は、着脱可能もしくは移動可能な構成であってもよい。
 また、振動センサ27は、振動を検出可能なものであればよく、加速度センサ、AE(Acoustic Emission)センサ、超音波センサ、及びショックパルスセンサ等、検出される加速度、速度、歪み、応力、変位型等、振動を電気信号化できるものであればよい。また、ノイズが多いような環境に位置する風力発電装置10に取り付ける際には、絶縁型を使用する方がノイズの影響を受けることが少ないためより好ましい。さらに、振動センサ27が、圧電素子等の振動検出素子を使用する場合には、この素子をプラスチック等にモールドして構成してもよい。
 また、転がり軸受25には、主軸22に外嵌される内輪40の回転速度を検出する回転速度センサ29が設けられる。本実施形態において、回転輪である内輪40と主軸22の回転速度および回転数は一致している。主軸22の回転速度は、風力発電装置10が受ける風の向きや風量、風圧により変動し得る。更には、ブレーキ装置(不図示)により、回転速度は調整され得る。回転速度センサ29は、例えば、転がり軸受25の内輪40に設けられたエンコーダ(不図示)を検出することで、その回転速度を検出してよい。本実施形態に係る風力発電装置10などは、比較的低速の回転速度にて回転が行われる。そのため、回転速度センサ29は、転がり軸受25が1回転する間の回転速度の変化も検出可能なように構成される。なお、振動センサ27や回転速度センサ29は、指定されたタイミング(例えば、監視時間帯)のみ検出動作を行うような構成であってもよいし、常時検出動作を行うような構成であってもよい。
 増幅器44は、振動センサ27にて検出された電気信号を増幅して監視装置50へ入力する。ここでの増幅の程度は特に限定されるものではないが、予め規定される。なお、振動センサ27と回転速度センサ29の検出タイミングは対応し、その検出情報は対応付けて処理される。
 監視装置50は、例えば、不図示の制御装置、記憶装置、および入出力装置を含んで構成される情報処理装置にて実現されてよい。制御装置は、CPU(Central Processing Unit)、MPU(Micro Processing Unit)、DSP(Digital Single Processor)、または専用回路などから構成されてよい。記憶装置は、HDD(Hard Disk Drive)、ROM(Read Only Memory)やRAM(Random Access Memory)等の揮発性および不揮発性の記憶媒体により構成され、制御装置からの指示により各種情報の入出力が可能である。入出力装置は、制御装置からの指示により、外部装置や作業者への通知を行う。入出力装置による出力方法は特に限定するものではないが、例えば、音声による聴覚的な通知であってもよいし、画面出力による視覚的な通知であってもよい。また、入出力装置は、通信機能を備えたネットワークインターフェースであってもよく、ネットワーク(不図示)を介した外部装置(不図示)とのデータの送受信により各種入出力動作を行ってもよい。
 監視装置50は、A/D変換部51、サンプリング処理部52、振動信号処理部53、および監視処理部54を含んで構成される。各部位は、上述した制御装置が対応するプログラムを記憶装置から読み出して実行することで実現してもよい。更には、制御装置が入出力装置を制御することで各種機能を実現してよい。
 A/D変換部51は、振動センサ27にて検出された電気信号を振動情報として、増幅器44を介して取得し、その電気信号の内容に応じて、A/D(Analog/Digital)変換を行う。
 サンプリング処理部52は、A/D変換部51にて処理された振動信号から後段の振動信号処理部53、および監視処理部54の処理に用いられるデータを、回転速度センサ29にて検出された回転速度に基づいてサンプリングする。ここでのサンプリングの方法については後述する。サンプリングしたデータは、振動信号処理部53へ出力される。
 振動信号処理部53は、サンプリング処理部52にてサンプリングされたデータを用いて、信号解析処理を行う。信号解析処理においてはFFT(Fast Fourier Transform)解析した上で、次数比分析を行う。エンベロープ処理、あるいはローパスフィルタやバンドパスフィルタなどを用いたフィルタ処理を行い信号解析処理を行ってもよい。監視処理部54は、振動信号処理部53にて処理されたデータを用いて、転がり軸受25の状態を診断し、その診断結果を出力する。例えば、振動信号処理部53にて処理されたデータの一部を抽出し、そのデータを用いて状態の診断を行ってもよい。監視処理部54にて行われる状態監視の診断項目は特に限定するものでは無いが、例えば、転がり軸受25を構成する各部位の異常接触、潤滑不良、部位の損傷や劣化など任意の診断項目が対象となってよい。
 なお、監視処理部54の監視結果は、ネットワーク(不図示)を介して外部に報知されてもよいし、風力発電装置10の動作を制御してもよい。ここでの風力発電装置10の動作の制御としては、例えば、回動機構14を制御してナセル12の向きを調整(ヨー制御)してもよいし、ハブ31を制御して複数のブレード32それぞれの向きを調整(ピッチ制御)してもよい。また、ブレーキ機構(不図示)により、主軸22の回転速度が所定の速度となるように制御してよい。
 [サンプリング処理]
 本実施形態において、転がり軸受25は風などの外因により、その回転速度が断続的に変動し得る。回転速度が変動した場合には、転がり軸受25の部位ごとの振動の周波数は変動してしまい、判定基準となる周波数が定まらないため、その後の監視動作や診断動作の精度に影響を与えてしまう。また、風力発電装置などでは、回転速度が比較的遅いため、1回転する間にも回転速度が変動する可能性が高い。
 図3は、本実施形態に係るデータのサンプリングを説明するための概略図である。図3において、縦軸を振動とし、横軸を時間とする。振動は、A/D変換部51にて変換された電気信号の値に対応する。
 図3では、2つの区間を例として挙げる。第1の区間は転がり軸受25の回転速度が相対的に第2の区間よりも遅い例を示す。つまり、転がり軸受25の回転速度が変動している。図3に示すように、第1の区間と第2の区間とでは、サンプリングのタイミングが異なる。これは、1回転当たりのサンプリングの回数(データ数)が同じになるように、回転速度に応じてサンプリング周期を変更している。図3のグラフ中に示した〇は、サンプリングされるデータの位置を示す。
 なお、図3の例では、第1の区間における1回転の後に、回転速度が変化し、第2の区間における1回転が行われる例を示した。実際には、1回転の途中にて回転速度が変動し得るため、1回転の途中でもサンプリングのタイミングは変動し得る。
 [処理フロー]
 図4は、本実施形態に係るサンプリング処理のフローチャートである。本処理は、監視装置50により実行され、例えば、監視装置50が備える制御装置(不図示)が図1に示した各部位を実現するためのプログラムを記憶装置から読み出して実行することにより実現されてよい。
 S401にて、監視装置50は、振動センサ27にて検出された振動情報を取得する。この様に、回転中の前記転がり軸受の振動情報(または、音情報)を取得する手段を、第1の取得手段とする。また、回転中の転がり軸受25の振動情報(または、音情報)を取得する工程を、第1の取得工程とする。
 S402にて、監視装置50は、回転速度センサ29にて検出された回転速度を取得する。この様に、回転中の転がり軸受25の回転速度を取得する手段を、第2の取得手段とする。また、回転中の転がり軸受25の回転速度を取得する工程を、第2の取得工程とする。S401にて取得される振動情報とS402にて取得される回転速度とは、検出タイミングが対応付けられている。
 S403にて、監視装置50は、図4のS402の処理にて回転速度センサ29を用いて取得された回転速度に基づいて、サンプリングのタイミングを導出する。上述したように、転がり軸受25の1回転当たりのサンプリングの回数は規定されており、回転速度に応じてデータをサンプリングするタイミングが変動する。ここでは、そのサンプリングのタイミングを導出する。より具体的には、回転速度に同期したサンプリングクロックを用いて、1回転当たりのサンプリング数が一定となるように導出される。導出方法は、予め規定された計算式を用いて導出してもよいし、回転速度とサンプリングのタイミング(時間間隔など)が対応付けられたテーブルなどを用いて導出してもよい。この様に、転がり軸受25の1回転当たりのサンプリング数が所定の値となるように、回転速度に応じて振動情報または音情報からデータをサンプリングするタイミングを導出する手段を、導出手段とする。また、転がり軸受25の1回転当たりのサンプリング数が所定の値となるように、回転速度に応じて振動情報または音情報からデータをサンプリングするタイミングを導出する工程を、導出工程とする。
 S404にて、監視装置50は、S403にて導出したタイミングに応じて、S401にて振動センサ27により検出された電気信号を増幅器44にて増幅して監視装置50へ入力することにより取得した振動情報からデータをサンプリングする。この様に、導出手段にて導出されたタイミングに基づいて、振動情報(または音情報)からデータをサンプリングして監視用のデータを生成する手段を、生成手段とする。また、導出工程にて導出されたタイミングに基づいて、振動情報(または音情報)からデータをサンプリングして監視用のデータを生成する工程を、生成工程とする。
 S405にて、監視装置50は、S404にてサンプリングされたデータに対して信号解析処理を行う。ここでの解析処理は、例えば、振動情報をFFT(Fast Fourier Transform)解析した上で、次数比分析を行ってよい。サンプリングデータにエンベロープ解析処理やフィルタ処理を施してもよく、後段の監視処理に応じてその内容は変更されてよい。
 S406にて、監視装置50は、S405による解析処理の結果を用いて、転がり軸受25の状態の監視を行う。ここでの監視項目は特に限定するものでは無いが、例えば、転がり軸受25を構成する各部位の異常接触、潤滑不良、部位の損傷や劣化など任意の診断項目が対象となってよい。また、監視項目について、例えば、図5に示す関係式を用いて、転がり軸受25の部位ごとの周波数を計算し、その周波数におけるデータが、予め定めた閾値を超えた場合に異常が生じたと判定してもよいし、予め定めた閾値以下である場合に異常がないと判定してもよい。
 S407にて、監視装置50は、S406による状態監視処理の結果に基づき、報知処理を行う。ここでは、異常が生じたと判定した場合に報知を行ってもよいし、異常がないと判定した場合でも報知を行うような構成であってもよい。また、報知方法は特に限定するものでは無く、異常の有無に応じて報知方法を切り替えてもよい。そして、本処理フローを終了する。
 以上、本実施形態により、機械装置の回転動作における回転速度が断続的に変化し得る環境下において、回転速度の変化が生じた場合でも機械装置の状態を精度良く監視することが可能となる。また、転がり軸受の回転速度が比較的遅いため、データの取得時間が長くなったとしても、その間の回転速度の変動の影響を抑制して監視用のデータを適切に抽出することができる。
 <第2の実施形態>
 本願発明の第2の実施形態について説明する。なお、第1の実施形態と重複する構成については説明を省略し、差分に着目して説明を行う。装置や機能構成などは、第1の実施形態にて図1、図2を用いて説明したものと同様である。
 [振動データの変換]
 まず、本実施形態に係る振動データの変換について説明する。図6A~図6Dは、本実施形態に係る振動データの変換を説明するための図である。図6Aは、計測対象から振動センサ等を介して得られた振動データAの例を示す。図6Aにおいて、横軸は時間[s]を示し、縦軸は振幅を示す。実際の軸受の振動データは多くの異なった周波数の異なる振動が重ね合わされたデータとなるが、ここでの振動データAは2つの振動データB、Cしか含まれていない例を用いて説明する。図6Aに示す例では、時間の経過に伴って転がり軸受の角速度が上昇しそれに比例して回転数が高くなっている。その結果、2つの振動データB、Cのうち、振動データCの周波数が時間の経過と共に徐々に高くなり、図6Aに示す振動データA全体の波形も変化している。図6A中において、振動データの上側に示される包絡線は、エンベロープ処理の結果を示す波形に相当する。なお、回転数は、図6Aに示すような変動に限定されるものではなく、時間の経過に伴って低くなるように変化する場合もあれば、一定期間内に増減するような場合もある。
 図6Bは、図6Aに示す波形にエンベロープ処理を適用し、FFT(Fast Fourier Transform)処理を適用した結果を示す。図6Bにおいて、横軸は周波数[Hz]を示し、縦軸は強度を示す。このとき、振動データCにおいて回転数が変動していることに起因して、図6Bの領域601に示すように、周波数のピークが検出できない。そのため、振動データCがどのような周波数特性を有するかを特定できず、周波数特性に基づいた分析が困難となる。
 上述したように、例えば、風力発電装置用の転がり軸受は、状態監視などの際に周波数解析を用いる。転がり軸受の振動の固有周波数は回転時の角速度と比例しており、周波数解析では一定速度で転がり軸受が回転している状態のデータを使用する必要がある。そのため、従来の手法では、診断時に用いるデータを検出する際には、回転数が安定していることを前提とし、時間的に一定間隔でサンプリングを行っている。しかしながら、転がり軸受が1回転する間に角速度に変動があり、振動の振動数が変わってしまうような場合には、上記のような手法では、状態監視の精度が低下してしまう。
 そこで、本実施形態では、角速度の変動がある状態で、時間的に等間隔にサンプリングした振動データを、角速度が一定である、すなわち、等速にて回転している状態に相当する振動データに変換する。
 図6Cは、図6Aに示す振動データAに対し、本実施形態に係る回転数の変動の影響を除去する処理を適用して得られる振動データDの例を示す。図6Cにおいて、横軸は時間[s]を示し、縦軸は振幅を示す。図6Cでは、図6Aの振動データAを、角速度が一定、すなわち、等速回転している状態に相当するように変換している。
 本実施形態に係る変換方法では、まず、元の振動データと所定の角速度を用いて、以下の式(1)を満たすtを求める。つまり、以下の式(1)により、ωで回っている場合の時間tの回転角と等しくなるω(t)で回っている場合の時間tを求める。ここでの所定の角速度は、振動データにおける初期の角速度ωとして説明するが、これに限定するものではない。例えば、振動データの所定範囲における角速度の平均値であってもよいし、最大値であってもよい。また、振動データの所定のタイミングにおける角速度であってもよい。tは、0であってよい。t=0である場合には、以下の式(1)の左辺にあるtは省略されたものと同等となる。
Figure JPOXMLDOC01-appb-M000002
 さらに、変換前の振動データAと、変換後の振動データDとを、以下の式(2)により変換する。
 D(t)=A(t) ・・・(2)
 A(t):時間tにおける変換前の振動データ
 D(t):時間tにおける変換後の振動データ
 上記の式(1)および式(2)を用いた変換により、図6Cに示す振動データDが得られる。つまり、振動データDは、一定の角速度(ここでは、初期角速度ω)となった状態の波形データに相当する。図6Cにおいて、振動データDの上側に示される包絡線は、エンベロープ処理の結果を示す波形に相当する。
 図6Dは、図6Cに示す波形にエンベロープ処理を適用し、FFT処理を適用した結果を示す。図6Dにおいて、横軸は周波数[Hz]を示し、縦軸は強度を示す。このとき、回転数が一定であるものとした波形のため、図6Dの領域602に示すように、周波数のピークを検出でき、その周波数特性に基づく分析が可能となる。
 なお、上記の流れでは、振動データに対して、データ変換処理、エンベロープ処理、FFT処理の順で行う例を示したが、これに限定するものではない。例えば、エンベロープ処理、データ変換処理、FFT処理の順で行われてもよい。あるいはエンベロープ処理を行わずにデータ変換処理、FFT処理だけの場合もあり得る。
 なお、振動データAを取得する際のサンプリング数は有限であるため、上記の式(1)にて特定される時間tに対応する振動データA(t)が振動センサ等にて得られた振動データAに存在しない場合がある。そのような場合には、所定の範囲aを予め設定しておき、以下の式(3)のように、tを基準として所定の範囲に含まれるt’に対応する振動データA(t’)を用いて、振動データDを求めてもよい。
 D(t)=A(t’) (t-a<t’<t+a) ・・・(3)
 または、以下の式(4)のような、tの前後のt(便宜上、t-1、t+1とする)に対応する振動データA(t)に基づく補間式を規定しておき、振動データDを求めてもよい。
 D(t)={A(t-1)+A(t+1)}/2 ・・・(4)
 データ変換の際のデータの補間方法は、上記以外の方法を用いてもよく、目的に応じて適用する補間方法を切り替えてもよい。
 本実施形態では、監視装置50のサンプリング処理部52が、A/D変換部51にて処理された振動信号から後段の振動信号処理部53、および監視処理部54の処理に用いられるデータに対して、回転速度センサ29にて検出された回転速度に基づいて変換処理を行う。ここでの変換処理は、図6A~図6Dを用いて説明した方法が行われる。変換が行われたデータは、振動信号処理部53へ出力される。
 [データ変換処理]
 以下、本実施形態に係る状態監視方法を適用可能な風力発電装置10を例に挙げたデータ変換処理について説明する。
 図7A、図7Bは、回転速度センサ29にて得られる風力発電装置10が備える転がり軸受25の回転速度情報の例を示す。図7Aにおいて、横軸は時間[s]を示し、縦軸は回転速度センサ29の出力値を示す。例えば、回転速度センサ29が、転がり軸受25に設けられた所定のマーカ(不図示)を検出した際に、図7Aに示すようなピークを示す値が出力される。マーカの構成は特に限定するものではないが、例えば、転がり軸受25が1回転するごとに1回検出されるように設けられてよい。
 図7Bは、図7Aに示す信号に対してFFT処理を行うことで周波数を導出した例を示す。図7Bにおいて、横軸は周波数[Hz]を示し、縦軸は強度を示す。図7Bに示す信号にて示されるピーク値の検出タイミングに基づいて、角速度を導出することができる。
 なお、上記の流れでは、振動データに対して、回転数変換処理、エンベロープ処理、FFT処理の順で行う例を示したが、これに限定するものではない。例えば、エンベロープ処理、回転数変換処理、FFT処理の順で行われてもよい。
 [処理フロー]
 図8は、本実施形態に係るサンプリング処理のフローチャートである。本処理は、監視装置50により実行され、例えば、監視装置50が備える制御装置(不図示)が図3に示した各部位を実現するためのプログラムを記憶装置(不図示)から読み出して実行することにより実現されてよい。
 S801にて、監視装置50は、振動センサ27にて検出された振動データ、および、回転速度センサ29にて検出された回転速度を取得する。ここで取得される振動データおよび回転速度とは、検出タイミングが対応付けられている。
 S802にて、監視装置50は、S801にて取得した回転速度に基づき、S801にて取得した振動データを変換する。ここでは、転がり軸受25の角速度が変動していることを想定し、一定の角速度にて回転しているものとして、上記の式(1)や式(2)を用いて振動データを変換する。なお、監視装置50は、図7Aおよび図7Bを用いて説明したように、回転速度から転がり軸受25の角速度を導出することができ、この角速度をデータ変換処理に利用可能である。
 S803にて、監視装置50は、S802にて変換されたデータに対して信号解析処理を行う。ここでの解析処理は、例えば、振動情報をFFT解析した上で、次数比分析を行ってよい。上述したように、サンプリングデータにエンベロープ解析処理やフィルタ処理を施してもよく、後段の監視処理に応じてその内容は変更されてよい。
 S804にて、監視装置50は、S803による解析処理の結果を用いて、転がり軸受25の状態の監視を行う。ここでの監視項目は特に限定するものでは無いが、例えば、転がり軸受25の自転すべり、公転すべり、あるいは転がり軸受25を構成する各部位の異常接触、潤滑不良、部位の損傷や劣化など任意の診断項目が対象となってよい。また、監視項目について、例えば、図5に示す関係式を用いて、転がり軸受25の部位ごとの周波数を計算し、その周波数とその部位が発生させている考えられるピーク周波数の差異により自転滑り、公転すべりの発生の有無の判断、あるは解析結果のピーク値と予め定めた閾値との比較により異常発生の有無を判断してもよい。
 S805にて、監視装置50は、S804による状態監視処理の結果に基づき、報知処理を行う。ここでは、異常が生じたと判定した場合に報知を行ってもよいし、異常がないと判定した場合でも報知を行うような構成であってもよい。また、報知方法は特に限定するものでは無く、異常の有無に応じて報知方法を切り替えてもよい。そして、本処理フローを終了する。
 以上、本実施形態により、機械装置の回転動作における回転速度が断続的に変化し得る環境下において、回転速度の変化が生じた場合でも機械装置の状態を精度良く監視することが可能となる。
 <その他の実施形態>
 なお、上記の実施形態では、振動センサ27を用いて転がり軸受25の振動を検出する構成を示したが、これに限定するものではない。振動センサ27に代えてマイクを含む音センサを用いて音情報を検出してもよい。この場合、音情報を対象として上述したデータのサンプリング処理を行う。
 また、本願発明において、上述した1以上の実施形態の機能を実現するためのプログラムやアプリケーションを、ネットワーク又は記憶媒体等を用いてシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサがプログラムを読出し実行する処理でも実現可能である。
 また、1以上の機能を実現する回路(例えば、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array))によって実現してもよい。
 このように、本発明は上記の実施形態に限定されるものではなく、実施形態の各構成を相互に組み合わせることや、明細書の記載、並びに周知の技術に基づいて、当業者が変更、応用することも本発明の予定するところであり、保護を求める範囲に含まれる。
 以上の通り、本明細書には次の事項が開示されている。
 (1) 転がり軸受を備える機械装置の状態監視装置であって、
 回転中の前記転がり軸受の振動情報または音情報を取得する第1の取得手段と、
 回転中の前記転がり軸受の回転速度を取得する第2の取得手段と、
 前記転がり軸受の1回転当たりのサンプリング数が所定の値となるように、前記回転速度に応じて前記振動情報または音情報からデータをサンプリングするタイミングを導出する導出手段と、
 前記導出手段にて導出されたタイミングに基づいて、前記振動情報または音情報からデータをサンプリングして監視用のデータを生成する生成手段と、
有することを特徴とする状態監視装置。
 この構成によれば、機械装置の回転動作における回転速度が断続的に変化し得る環境下において、回転速度の変化が生じた場合でも機械装置の状態を精度良く監視することが可能となる。例えば、転がり軸受25を構成する各部位の異常接触、潤滑不良、部位の損傷や劣化など任意の診断項目を対象とした転がり軸受の異常診断を正確に行うことができる。
 (2) 前記生成手段は、前記振動情報または音情報からサンプリングされたデータに対して次数比分析を行うことで、前記監視用のデータを生成することを特徴とする(1)に記載の状態監視装置。
 この構成によれば、回転速度に応じてサンプリングされたデータを用いて実右飛分析を行うことで、より精度の高い監視を行うための監視用のデータを生成することが可能となる。
 (3) 前記生成手段は更に、前記監視用のデータに対し、エンベロープ解析処理またはフィルタ処理を行うことを特徴とする(2)に記載の状態監視装置。
 この構成によれば、監視用のデータとして、エンペローブ解析処理やフィルタ処理を適用したデータを生成することができる。
 (4) 前記生成手段にて生成された監視用のデータを用いて、前記転がり軸受の状態を診断する診断手段を更に有することを特徴とする(2)または(3)に記載の状態監視装置。
 この構成によれば、回転速度に応じてサンプリングされたデータを用いてより精度の高い状態診断を行うことが可能となる。
 (5) 転がり軸受を備える機械装置の状態監視装置であって、
 回転中の前記転がり軸受の振動情報または音情報を一定の時間間隔にて取得する取得手段と、
 前記取得手段にて取得した振動情報または音情報を、回転動作を一定の角速度とした状態の波形となるように変換する変換手段と、
 前記変換手段にて変換された振動情報または音情報を用いて、前記機械装置の状態を診断する診断手段と、
を有することを特徴とする状態監視装置。
 この構成によれば、機械装置の回転動作における回転速度が断続的に変化し得る環境下において、回転速度の変化が生じた場合でも機械装置の状態を精度良く監視することが可能となる。
 (6) 前記変換手段は、前記取得手段にて振動情報または音情報を取得した際の所定のタイミングの角速度を、前記一定の角速度として変換を行う、ことを特徴とする(5)に記載の状態監視装置。
 この構成によれば、例えば、振動データの初期角速度などを基準として振動データを一定の角速度の波形となる様に変換でき、精度良く状態監視を行うことが可能となる。
 (7) 前記変換手段は、
Figure JPOXMLDOC01-appb-M000003
を用いて変換を行う、ことを特徴とする(5)または(6)に記載の状態監視装置。
 (8) 前記転がり軸受の回転中の回転数に基づいて、当該回転中の角速度を導出する導出手段を更に有し、
 前記変換手段は、前記導出手段にて導出された角速度に基づいて、前記取得手段にて取得した振動情報または音情報を変換する、
ことを特徴とする(5)~(7)のいずれかに記載の状態監視装置。
 この構成によれば、機械装置の回転動作における角速度を適切に導出して、データ変換に利用することが可能となる。
 (9) 前記変換手段は、前記取得手段にて取得した情報、または、前記取得手段にて取得した情報にエンベロープ処理を適用して得られる情報を用いて変換を行う、ことを特徴とする(5)~(8)のいずれかに記載の状態監視装置。
 この構成によれば、データ変換処理の対象となる振動データとして、生データまたはエンベロープ処理が行われたデータのいずれにもデータ変換処理が適用でき、目的に応じてデータ変換を行う際の振動データを使い分けることが可能となる。
 (10) (1)~(9)のいずれかに記載の状態監視装置と、
 転がり軸受と、
を備える風力発電装置。
 この構成によれば、風力発電装置において、回転速度が断続的に変化する場合でも回転速度の変化が生じた場合でも機械装置の状態を精度良く監視することが可能となる。
 (11) 転がり軸受の状態監視方法であって、
 回転中の前記転がり軸受の振動情報または音情報を取得する第1の取得工程と、
 回転中の前記転がり軸受の回転速度を取得する第2の取得工程と、
 前記転がり軸受の1回転当たりのサンプリング数が所定の値となるように、前記回転速度に応じて前記振動情報または音情報からデータをサンプリングするタイミングを導出する導出工程と、
 前記導出工程にて導出されたタイミングに基づいて、前記振動情報または音情報からデータをサンプリングして監視用のデータを生成する生成工程と、
を有することを特徴とする状態監視方法。
 この構成によれば、機械装置の回転動作における回転速度が断続的に変化し得る環境下において、回転速度の変化が生じた場合でも機械装置の状態を精度良く監視することが可能となる。
 (12) 転がり軸受を備える機械装置の状態監視方法であって、
 回転中の前記転がり軸受の振動情報または音情報を一定の時間間隔にて取得する取得工程と、
 前記取得工程にて取得した振動情報または音情報を、回転動作を一定の角速度とした状態の波形となるように変換する変換工程と、
 前記変換工程にて変換された振動情報または音情報を用いて、前記機械装置の状態を診断する診断工程と、
を有することを特徴とする状態監視方法。
 この構成によれば、機械装置の回転動作における回転速度が断続的に変化し得る環境下において、回転速度の変化が生じた場合でも機械装置の状態を精度良く監視することが可能となる。
 (13) コンピュータに、
 回転中の転がり軸受の振動情報または音情報を取得する第1の取得工程と、
 回転中の前記転がり軸受の回転速度を取得する第2の取得工程と、
 前記転がり軸受の1回転当たりのサンプリング数が所定の値となるように、前記回転速度に応じて前記振動情報または音情報からデータをサンプリングするタイミングを導出する導出工程と、
 前記導出工程にて導出されたタイミングに基づいて、前記振動情報または音情報からデータをサンプリングして監視用のデータを生成する生成工程と、
を実行させるためのプログラム。
 この構成によれば、機械装置の回転動作における回転速度が断続的に変化し得る環境下において、回転速度の変化が生じた場合でも機械装置の状態を精度良く監視することが可能となる。
 (14) コンピュータに、
 回転中の転がり軸受の振動情報または音情報を一定の時間間隔にて取得する取得工程と、
 前記取得工程にて取得した振動情報または音情報を、回転動作を一定の角速度とした状態の波形となるように変換する変換工程と、
 前記変換工程にて変換された振動情報または音情報を用いて、前記転がり軸受を備える機械装置の状態を診断する診断工程と、
を実行させるためのプログラム。
 この構成によれば、機械装置の回転動作における回転速度が断続的に変化し得る環境下
において、回転速度の変化が生じた場合でも機械装置の状態を精度良く監視することが可
能となる。
 以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。
 なお、本出願は、2021年7月7日出願の日本特許出願(特願2021-112988)、2021年11月19日出願の日本特許出願(特願2021-188740)に基づくものであり、その内容は本出願の中に参照として援用される。
10…風力発電装置
11…タワー
12…ナセル
13…ローター
14…回動機構
21…ドライブトレイン部
22…主軸
23…増速機
24…発電機
25…転がり軸受
27…振動センサ
28…発電量測定装置
29…回転速度センサ
31…ハブ
32…ブレード
40…内輪
41…転動体
42…外輪
43…保持器
44…増幅器
50…監視装置
51…A/D変換部
52…サンプリング処理部
53…振動信号処理部
54…監視処理部

Claims (14)

  1.  転がり軸受を備える機械装置の状態監視装置であって、
     回転中の前記転がり軸受の振動情報または音情報を取得する第1の取得手段と、
     回転中の前記転がり軸受の回転速度を取得する第2の取得手段と、
     前記転がり軸受の1回転当たりのサンプリング数が所定の値となるように、前記回転速度に応じて前記振動情報または音情報からデータをサンプリングするタイミングを導出する導出手段と、
     前記導出手段にて導出されたタイミングに基づいて、前記振動情報または音情報からデータをサンプリングして監視用のデータを生成する生成手段と、
    を有することを特徴とする状態監視装置。
  2.  前記生成手段は、前記振動情報または音情報からサンプリングされたデータに対して次数比分析を行うことで、前記監視用のデータを生成することを特徴とする請求項1に記載の状態監視装置。
  3.  前記生成手段は更に、前記監視用のデータに対し、エンベロープ解析処理またはフィルタ処理を行うことを特徴とする請求項2に記載の状態監視装置。
  4.  前記生成手段にて生成された監視用のデータを用いて、前記転がり軸受の状態を診断する診断手段を更に有することを特徴とする請求項2に記載の状態監視装置。
  5.  転がり軸受を備える機械装置の状態監視装置であって、
     回転中の前記転がり軸受の振動情報または音情報を一定の時間間隔にて取得する取得手段と、
     前記取得手段にて取得した振動情報または音情報を、回転動作を一定の角速度とした状態の波形となるように変換する変換手段と、
     前記変換手段にて変換された振動情報または音情報を用いて、前記機械装置の状態を診断する診断手段と、
    を有することを特徴とする状態監視装置。
  6.  前記変換手段は、前記取得手段にて振動情報または音情報を取得した際の所定のタイミングの角速度を、前記一定の角速度として変換を行う、ことを特徴とする請求項5に記載の状態監視装置。
  7.  前記変換手段は、
    Figure JPOXMLDOC01-appb-M000001
    を用いて変換を行う、ことを特徴とする請求項5に記載の状態監視装置。
  8.  前記転がり軸受の回転中の回転数に基づいて、当該回転中の角速度を導出する導出手段を更に有し、
     前記変換手段は、前記導出手段にて導出された角速度に基づいて、前記取得手段にて取得した振動情報または音情報を変換する、
    ことを特徴とする請求項5に記載の状態監視装置。
  9.  前記変換手段は、前記取得手段にて取得した情報、または、前記取得手段にて取得した情報にエンベロープ処理を適用して得られる情報を用いて変換を行う、ことを特徴とする請求項5に記載の状態監視装置。
  10.  請求項1~9のいずれか一項に記載の状態監視装置と、
     転がり軸受と
    を備える風力発電装置。
  11.  転がり軸受を備える機械装置の状態監視方法であって、
     回転中の前記転がり軸受の振動情報または音情報を取得する第1の取得工程と、
     回転中の前記転がり軸受の回転速度を取得する第2の取得工程と、
     前記転がり軸受の1回転当たりのサンプリング数が所定の値となるように、前記回転速度に応じて前記振動情報または音情報からデータをサンプリングするタイミングを導出する導出工程と、
     前記導出工程にて導出されたタイミングに基づいて、前記振動情報または音情報からデータをサンプリングして監視用のデータを生成する生成工程と、
    を有することを特徴とする状態監視方法。
  12.  転がり軸受を備える機械装置の状態監視方法であって、
     回転中の前記転がり軸受の振動情報または音情報を一定の時間間隔にて取得する取得工程と、
     前記取得工程にて取得した振動情報または音情報を、回転動作を一定の角速度とした状態の波形となるように変換する変換工程と、
     前記変換工程にて変換された振動情報または音情報を用いて、前記機械装置の状態を診断する診断工程と、
    を有することを特徴とする状態監視方法。
  13.  コンピュータに、
     回転中の転がり軸受の振動情報または音情報を取得する第1の取得工程と、
     回転中の前記転がり軸受の回転速度を取得する第2の取得工程と、
     前記転がり軸受の1回転当たりのサンプリング数が所定の値となるように、前記回転速度に応じて前記振動情報または音情報からデータをサンプリングするタイミングを導出する導出工程と、
     前記導出工程にて導出されたタイミングに基づいて、前記振動情報または音情報からデータをサンプリングして監視用のデータを生成する生成工程と、
    を実行させるためのプログラム。
  14.  コンピュータに、
     回転中の転がり軸受の振動情報または音情報を一定の時間間隔にて取得する取得工程と、
     前記取得工程にて取得した振動情報または音情報を、回転動作を一定の角速度とした状態の波形となるように変換する変換工程と、
     前記変換工程にて変換された振動情報または音情報を用いて、前記転がり軸受を備える機械装置の状態を診断する診断工程と、
    を実行させるためのプログラム。
     
PCT/JP2022/024331 2021-07-07 2022-06-17 機械装置の状態監視装置、風力発電装置、状態監視方法、およびプログラム WO2023282028A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/282,429 US20240141871A1 (en) 2021-07-07 2022-06-17 State monitoring apparatus for mechanical apparatus, wind power generation apparatus, state monitoring method, and program
EP22837446.8A EP4368959A1 (en) 2021-07-07 2022-06-17 State monitoring apparatus for mechanical apparatus, wind power generation apparatus, state monitoring method, and program
CN202280022947.5A CN117043573A (zh) 2021-07-07 2022-06-17 机械装置的状态监视装置、风力发电装置、状态监视方法以及程序

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-112988 2021-07-07
JP2021112988A JP2023009580A (ja) 2021-07-07 2021-07-07 転がり軸受の状態監視装置、風力発電装置、状態監視方法、およびプログラム
JP2021188740A JP2023075685A (ja) 2021-11-19 2021-11-19 機械装置の状態監視方法、状態監視システム、状態監視装置、風力発電装置およびプログラム
JP2021-188740 2021-11-19

Publications (1)

Publication Number Publication Date
WO2023282028A1 true WO2023282028A1 (ja) 2023-01-12

Family

ID=84801425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024331 WO2023282028A1 (ja) 2021-07-07 2022-06-17 機械装置の状態監視装置、風力発電装置、状態監視方法、およびプログラム

Country Status (3)

Country Link
US (1) US20240141871A1 (ja)
EP (1) EP4368959A1 (ja)
WO (1) WO2023282028A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56138218A (en) * 1980-03-31 1981-10-28 Hitachi Ltd Axial vibration monitoring method of rotary machine and its equipment
JP2011252761A (ja) * 2010-06-01 2011-12-15 Jfe Advantech Co Ltd 軸受状態監視方法及び軸受状態監視装置
WO2017145222A1 (ja) 2016-02-22 2017-08-31 株式会社日立製作所 軸受劣化診断装置、軸受劣化診断方法及び軸受劣化診断システム
WO2018043009A1 (ja) * 2016-08-31 2018-03-08 Ntn株式会社 状態監視装置
JP2021112988A (ja) 2020-01-20 2021-08-05 日信工業株式会社 バーハンドル車両用ブレーキ液圧制御装置
JP2021188740A (ja) 2020-05-29 2021-12-13 ナブテスコ株式会社 流体バルブ、流体システム、建設機械及び制御方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56138218A (en) * 1980-03-31 1981-10-28 Hitachi Ltd Axial vibration monitoring method of rotary machine and its equipment
JP2011252761A (ja) * 2010-06-01 2011-12-15 Jfe Advantech Co Ltd 軸受状態監視方法及び軸受状態監視装置
WO2017145222A1 (ja) 2016-02-22 2017-08-31 株式会社日立製作所 軸受劣化診断装置、軸受劣化診断方法及び軸受劣化診断システム
WO2018043009A1 (ja) * 2016-08-31 2018-03-08 Ntn株式会社 状態監視装置
JP2021112988A (ja) 2020-01-20 2021-08-05 日信工業株式会社 バーハンドル車両用ブレーキ液圧制御装置
JP2021188740A (ja) 2020-05-29 2021-12-13 ナブテスコ株式会社 流体バルブ、流体システム、建設機械及び制御方法

Also Published As

Publication number Publication date
EP4368959A1 (en) 2024-05-15
US20240141871A1 (en) 2024-05-02

Similar Documents

Publication Publication Date Title
Saruhan et al. Vibration analysis of rolling element bearings defects
Yoon et al. On the use of a single piezoelectric strain sensor for wind turbine planetary gearbox fault diagnosis
JP6665062B2 (ja) 状態監視装置
JP4935165B2 (ja) 異常診断装置及び異常診断方法
US10830637B2 (en) Abnormality diagnosis device and sensor detachment detection method
JP2008249699A (ja) エンジン軸受への損傷を検出する方法
JP4929810B2 (ja) 異常診断装置及び異常診断方法
WO2012023383A1 (ja) 転がり軸受の異常診断装置
JP6971049B2 (ja) 状態監視システム及びそれを備える風力発電装置
JP2009115537A (ja) 振動測定方法
JP4730166B2 (ja) 機械設備の異常診断装置及び異常診断方法
WO2023282028A1 (ja) 機械装置の状態監視装置、風力発電装置、状態監視方法、およびプログラム
WO2018173832A1 (ja) 状態監視装置
CN110219816A (zh) 用于风机故障诊断的方法和系统
JP2023075685A (ja) 機械装置の状態監視方法、状態監視システム、状態監視装置、風力発電装置およびプログラム
JP2023009580A (ja) 転がり軸受の状態監視装置、風力発電装置、状態監視方法、およびプログラム
JP6243940B2 (ja) 風力発電システムの異常予兆診断システム
JP2019128179A (ja) 振動センサの脱落検知方法及び異常診断装置
JP7491471B2 (ja) 転がり軸受の荷重推定装置、転がり軸受を備える機械装置の制御装置、荷重推定方法、およびプログラム
JP2023009579A (ja) 転がり軸受内の接触の強さの監視装置、風力発電装置、接触の強さの監視方法、およびプログラム
KR101378868B1 (ko) 풍력발전기의 이상상태 감지 장치 및 그 방법
JP2017150884A (ja) 異常診断装置および異常診断方法
TWM406738U (en) A device of vibration measuring and diagnosing
JP6639266B2 (ja) 異常診断装置および異常診断方法
JP6736987B2 (ja) 風力発電装置の回転部品の状態監視装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22837446

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18282429

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280022947.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022837446

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022837446

Country of ref document: EP

Effective date: 20240207

NENP Non-entry into the national phase

Ref country code: DE