WO2023281692A1 - 樹脂組成物、樹脂フィルム、多層プリント配線板及び半導体パッケージ - Google Patents

樹脂組成物、樹脂フィルム、多層プリント配線板及び半導体パッケージ Download PDF

Info

Publication number
WO2023281692A1
WO2023281692A1 PCT/JP2021/025766 JP2021025766W WO2023281692A1 WO 2023281692 A1 WO2023281692 A1 WO 2023281692A1 JP 2021025766 W JP2021025766 W JP 2021025766W WO 2023281692 A1 WO2023281692 A1 WO 2023281692A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resin
resin composition
maleimide
resin film
Prior art date
Application number
PCT/JP2021/025766
Other languages
English (en)
French (fr)
Inventor
広喜 葛岡
智彦 小竹
Original Assignee
昭和電工マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工マテリアルズ株式会社 filed Critical 昭和電工マテリアルズ株式会社
Priority to PCT/JP2021/025766 priority Critical patent/WO2023281692A1/ja
Priority to PCT/JP2022/026900 priority patent/WO2023282313A1/ja
Priority to CN202280045600.2A priority patent/CN117561309A/zh
Priority to KR1020237045076A priority patent/KR20240031967A/ko
Priority to EP22837727.1A priority patent/EP4368674A1/en
Priority to JP2023533179A priority patent/JPWO2023282313A1/ja
Priority to TW111125661A priority patent/TW202307039A/zh
Publication of WO2023281692A1 publication Critical patent/WO2023281692A1/ja

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/36Amides or imides
    • C08F222/40Imides, e.g. cyclic imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/12Unsaturated polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/12Unsaturated polyimide precursors
    • C08G73/121Preparatory processes from unsaturated precursors and polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/12Unsaturated polyimide precursors
    • C08G73/126Unsaturated polyimide precursors the unsaturated precursors being wholly aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • C08L53/025Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes modified
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08L79/085Unsaturated polyimide precursors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits

Definitions

  • This embodiment relates to a resin composition, a resin film, a multilayer printed wiring board, and a semiconductor package.
  • the object is to provide a thermosetting resin composition having a low dielectric loss tangent, a low thermal expansion, and excellent wiring embedding properties and flatness.
  • a technique of blending a polybutadiene-based elastomer modified with an acid anhydride in a thermosetting resin composition containing a polyimide compound having two maleimide resin-derived structural units and a diamine compound-derived structural unit is disclosed. ing.
  • thermosetting resin composition of Patent Document 1 is excellent in dielectric loss tangent, low thermal expansion, wiring embedding, etc., but when it is made into a resin film having a thickness that can seal a semiconductor chip, the resin during handling In some cases, cracks were generated in the film. This problem is likely to occur when using a thermosetting resin, which is particularly easy to obtain high heat resistance, and when using an inorganic filler that contributes to low thermal expansion. In order to solve the above problems, it is considered effective to improve the flexibility of the resin composition used for forming the resin film.
  • the term “flexibility of the resin composition” means that, when the resin composition contains an organic solvent or the like and is in a liquid state, the resin composition can be allowed to cool to room temperature (25° C.) by drying the organic solvent. ) means the flexibility when solidified.
  • the present embodiment has a resin composition that can suppress the generation of volatile components during heat curing while having a good low thermal expansion property of the cured product and excellent flexibility in a solid state.
  • An object of the present invention is to provide a product, a resin film, a multilayer printed wiring board and a semiconductor package using the resin composition.
  • the present embodiment relates to the following [1] to [16].
  • [1] (A) a thermosetting resin; (B) a compound that is liquid at 25° C., has a reactive group, and has a molecular weight of 1,000 or less; (C) an inorganic filler; A resin composition containing [2] The resin composition according to [1] above, wherein the component (A) is at least one selected from the group consisting of maleimide resins having at least one N-substituted maleimide group and derivatives of the maleimide resins. thing.
  • the maleimide resin having one or more N-substituted maleimide groups is a maleimide resin containing a condensed ring of an aromatic ring and an aliphatic ring in its molecular structure and having two or more N-substituted maleimide groups. , the resin composition according to the above [2].
  • the component (B) has, as the reactive group, one or more selected from a vinyl group, an allyl group, a maleimide group, a (meth)acryloyl group, an epoxy group, a hydroxyl group, a carboxyl group and an amino group.
  • a resin film comprising the resin composition according to any one of [1] to [8] above.
  • a resin composition that has a good low thermal expansion property in a cured product and is excellent in flexibility in a solid state while suppressing the generation of volatile components during heat curing, the resin composition It is possible to provide resin films, multilayer printed wiring boards and semiconductor packages using materials.
  • a numerical range indicated using “to” indicates a range including the numerical values before and after “to” as the minimum and maximum values, respectively.
  • the notation of a numerical range “X to Y” means a numerical range that is greater than or equal to X and less than or equal to Y.
  • the description "X or more” in this specification means X and a numerical value exceeding X.
  • the description “Y or less” in this specification means Y and a numerical value less than Y.
  • the lower and upper limits of any numerical range recited herein are optionally combined with the lower or upper limits of other numerical ranges, respectively. In the numerical ranges described herein, the lower or upper limit of the numerical range may be replaced with the values shown in the examples.
  • each component and material exemplified in this specification may be used alone or in combination of two or more unless otherwise specified.
  • the content of each component in the resin composition refers to the content of the plurality of substances present in the resin composition when there are multiple substances corresponding to each component in the resin composition, unless otherwise specified. means the total amount of
  • the term "resin composition” means a mixture of two or more components containing at least a resin, and when the resin is a thermosetting resin, the mixture is in a B-stage state.
  • the type and content of each component in the resin composition in the B-stage state refers to the type and content of each component before the B-stage state, that is, the amount of the component blended when producing the resin composition. It shall mean the kind and the compounding amount.
  • solid content refers to non-volatile content excluding volatile substances such as solvents. It also includes starch syrup-like and wax-like ones. Here, room temperature indicates 25° C. in this specification.
  • (Meth)acrylate as used herein means “acrylate” and its corresponding "methacrylate”.
  • (meth)acrylic means “acrylic” and corresponding "methacrylic”
  • (meth)acryloyl means “acryloyl” and corresponding "methacryloyl”.
  • the "molecular weight” of the compound in this specification means the molecular weight that can be calculated from the structural formula when the compound is not a polymer and the structural formula of the compound can be specified, and when the compound is a polymer means number average molecular weight.
  • the number average molecular weight in this specification means a value measured in terms of polystyrene by gel permeation chromatography (GPC; Gas Permeation Chromatography). Specifically, the number average molecular weight herein can be measured by the method described in Examples.
  • the resin composition of this embodiment is (A) a thermosetting resin; (B) a compound that is liquid at 25° C., has a reactive group, and has a molecular weight of 1,000 or less; (C) an inorganic filler; It is a resin composition containing
  • thermosetting resin may be called “(A) component” in the following description.
  • (B) A compound that is liquid at 25°C, has a reactive group, and has a molecular weight of 1,000 or less is referred to as “(B) reactive liquid compound” or “(B) component”.
  • (C) an inorganic filler may be called “(C)component.”
  • liquid means that the viscosity calculated by the following measuring method is 100,000 mPa ⁇ s or less.
  • Method for measuring viscosity> Apparatus: E-type viscometer Cone rotor: 1°34′ ⁇ R24 Temperature: 25°C Sample volume: 1.0 mL Rotation speed: 20rpm
  • the viscosity at 25° C. means the viscosity measured by the above method.
  • the resin composition of the present embodiment can suppress the generation of volatile components during heat curing while having a good low thermal expansion property as a cured product and excellent flexibility in a solid state.
  • the resin composition of the present embodiment contains (B) a compound that is liquid at 25° C. and has a molecular weight of 1,000 or less as a component that improves the flexibility of the resin composition. Since the reactive liquid compound (B) is a liquid component with a relatively low molecular weight, it can well penetrate between the molecules of the resin component, effectively weakening the intermolecular interaction of the resin component, It is considered that the flexibility of the resin composition could be improved.
  • the (B) reactive liquid compound since the (B) reactive liquid compound has a reactive group, the (B) reactive liquid compound may react with itself or with other components during heat curing of the (A) thermosetting resin. That is, the (B) reactive liquid compound contributes to the improvement of flexibility, but volatilization is suppressed by the curing reaction. Therefore, it is believed that the resin composition of the present embodiment was able to improve flexibility while suppressing the generation of volatile components more than when an organic solvent or the like is used as a component for improving flexibility. be done.
  • Each component that the resin composition of the present embodiment may contain will be described below in order.
  • the resin composition of the present embodiment contains (A) a thermosetting resin.
  • the thermosetting resin may be used alone or in combination of two or more.
  • Thermosetting resins include, for example, epoxy resins, phenol resins, maleimide resins, cyanate resins, isocyanate resins, benzoxazine resins, oxetane resins, amino resins, unsaturated polyester resins, allyl resins, dicyclopentadiene resins, Examples include silicone resins, triazine resins, melamine resins, and the like.
  • the thermosetting resin is preferably a maleimide resin from the viewpoint of heat resistance, and is selected from the group consisting of a maleimide resin having one or more N-substituted maleimide groups and a derivative of the maleimide resin. More preferably one or more.
  • maleimide resin one or more selected from the group consisting of maleimide resins having one or more N-substituted maleimide groups and derivatives of the maleimide resins
  • maleimide resin a maleimide resin having one or more N-substituted maleimide groups
  • a maleimide resin derivative having one or more N-substituted maleimide groups is sometimes referred to as a “maleimide resin derivative (AY)” or “(AY) component”.
  • the maleimide resin (AX) is not particularly limited as long as it has one or more N-substituted maleimide groups. From the viewpoint of conductor adhesion and heat resistance, the maleimide resin (AX) is preferably an aromatic maleimide resin having two or more N-substituted maleimide groups. A maleimide resin is more preferred.
  • aromatic maleimide resin means a compound having an N-substituted maleimide group directly bonded to an aromatic ring.
  • aromatic bismaleimide resin as used herein means a compound having two N-substituted maleimide groups directly bonded to an aromatic ring.
  • aromatic polymaleimide resin as used herein means a compound having 3 or more N-substituted maleimide groups directly bonded to an aromatic ring.
  • aliphatic maleimide resin as used herein means a compound having an N-substituted maleimide group directly bonded to an aliphatic hydrocarbon.
  • the maleimide resin (AX) is a maleimide containing a condensed ring of an aromatic ring and an aliphatic ring in its molecular structure and having two or more N-substituted maleimide groups.
  • Resin hereinafter sometimes referred to as “maleimide resin (A1)” or “(A1) component”. ] is preferable.
  • the maleimide resin (A1) is an aromatic resin containing a condensed ring of an aromatic ring and an aliphatic ring in its molecular structure and having two or more N-substituted maleimide groups.
  • Group maleimide resins are preferred.
  • the maleimide resin (A1) is more preferably an aromatic bismaleimide resin containing a condensed ring of an aromatic ring and an aliphatic ring in its molecular structure and having two N-substituted maleimide groups.
  • the condensed ring contained in the maleimide resin (A1) preferably has a condensed bicyclic structure, more preferably an indane ring, from the viewpoints of dielectric properties, conductor adhesion and ease of production.
  • the maleimide resin (A1) containing an indane ring an aromatic bismaleimide resin containing an indane ring is preferable.
  • the indane ring means a condensed bicyclic structure of a 6-membered aromatic ring and a 5-membered saturated aliphatic ring. At least one carbon atom among the ring-forming carbon atoms forming the indane ring has a bonding group for bonding to another group constituting the maleimide resin (A1).
  • the ring-forming carbon atom having the bonding group and other ring-forming carbon atoms may not have a bonding group, a substituent, etc. other than the above bonding group, but by having a bonding group other than the above, 2 preferably form a valence group.
  • the indane ring is preferably included as a divalent group represented by the following general formula (A1-1).
  • R a1 is an alkyl group having 1 to 10 carbon atoms, an alkyloxy group having 1 to 10 carbon atoms, an alkylthio group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, aryloxy group, arylthio group having 6 to 10 carbon atoms, cycloalkyl group having 3 to 10 carbon atoms, halogen atom, hydroxyl group or mercapto group, n a1 is an integer of 0 to 3.
  • R a2 to R a4 each independently represents an alkyl group having 1 to 10 carbon atoms.* represents a bonding site.
  • Examples of the alkyl group having 1 to 10 carbon atoms represented by R a1 in the general formula (A1-1) include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group and the like. These alkyl groups may be linear or branched. Examples of the alkyl group included in the alkyloxy group having 1 to 10 carbon atoms and the alkylthio group having 1 to 10 carbon atoms represented by R a1 include the same alkyl groups having 1 to 10 carbon atoms as described above.
  • Examples of the aryl group having 6 to 10 carbon atoms represented by R a1 include a phenyl group and a naphthyl group.
  • Examples of the aryl group included in the aryloxy group having 6 to 10 carbon atoms and the arylthio group having 6 to 10 carbon atoms represented by R a1 include the same aryl groups having 6 to 10 carbon atoms as described above.
  • Examples of the cycloalkyl group having 3 to 10 carbon atoms represented by R a1 include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a cyclononyl group and a cyclodecyl group.
  • n a1 in the general formula (A1-1) is an integer of 1 to 3
  • R a1 is an alkyl group having 1 to 4 carbon atoms and 3 to 6 carbon atoms from the viewpoint of solvent solubility and reactivity. and an aryl group having 6 to 10 carbon atoms, more preferably an alkyl group having 1 to 4 carbon atoms.
  • alkyl groups having 1 to 10 carbon atoms represented by R a2 to R a4 include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl and decyl. and the like. These alkyl groups may be linear or branched.
  • R a2 to R a4 are preferably alkyl groups having 1 to 4 carbon atoms, more preferably methyl groups and ethyl groups, and still more preferably methyl groups.
  • n a1 in the general formula (A1-1) is an integer of 0 to 3, and when n a1 is 2 or 3, the plurality of R a1 may be the same or different. good too.
  • the divalent group represented by the general formula ( A1-1 ) is represented by the following formula ( A1-1a) is preferably a divalent group, more preferably a divalent group represented by the following formula (A1-1a′), or a divalent group represented by the following formula (A1-1a′′). .
  • the maleimide resin (A1) containing a divalent group represented by the general formula (A1-1) the following general formula (A1-2 ) is preferred.
  • R a1 to R a4 and n a1 are the same as those in the general formula (A1-1) above;
  • R a5 each independently represents an alkyl group having 1 to 10 carbon atoms; ⁇ 10 alkyloxy group, C1-10 alkylthio group, C6-10 aryl group, C6-10 aryloxy group, C6-10 arylthio group, C3-10 a cycloalkyl group, a halogen atom, a nitro group, a hydroxyl group or a mercapto group,
  • n a2 is each independently an integer of 0 to 4
  • n a3 is a number of 0.95 to 10.0.
  • the plurality of R a1s , the plurality of n a1s , the plurality of R a5s , and the plurality of n a2s may be the same or different. good.
  • n a3 exceeds 1 each of the plurality of R a2s , the plurality of R a3s , and the plurality of R a4s may be the same or different.
  • Examples of the alkyl group having 1 to 10 carbon atoms represented by R a5 in the general formula (A1-2) include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group and an octyl group. , a nonyl group, a decyl group, and the like. These alkyl groups may be linear or branched. Examples of the alkyl group included in the alkyloxy group having 1 to 10 carbon atoms and the alkylthio group having 1 to 10 carbon atoms represented by R a5 include the same alkyl groups having 1 to 10 carbon atoms as described above.
  • Examples of the aryl group having 6 to 10 carbon atoms represented by R a5 include a phenyl group and a naphthyl group.
  • Examples of the aryl group contained in the aryloxy group having 6 to 10 carbon atoms and the arylthio group having 6 to 10 carbon atoms represented by R a5 include the same aryl groups having 6 to 10 carbon atoms as described above.
  • Examples of the cycloalkyl group having 3 to 10 carbon atoms represented by R a5 include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a cyclononyl group and a cyclodecyl group. .
  • R a5 is preferably an alkyl group having 1 to 4 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or an aryl group having 6 to 10 carbon atoms, from the viewpoint of solvent solubility and ease of production.
  • An alkyl group having numbers 1 to 3 is more preferred, and a methyl group is even more preferred.
  • n a2 in the general formula (A1-2) is an integer of 0 to 4, and is preferably 1 to 3 from the viewpoint of compatibility with other resins, dielectric properties, conductor adhesion and ease of manufacture. is an integer of, more preferably 2 or 3, more preferably 2.
  • n a2 is 1 or more, the benzene ring and the N-substituted maleimide group have a twisted conformation, and intermolecular stacking is suppressed, thereby tending to further improve solvent solubility.
  • the substitution position of R a5 is preferably ortho to the N-substituted maleimide group.
  • n a3 in the general formula (A1-2) is preferably a number of 0.98 to 8.0, more preferably 1, from the viewpoint of dielectric properties, conductor adhesion, solvent solubility, handling properties and heat resistance. .0 to 7.0, more preferably 1.1 to 6.0. Note that n a3 represents the average number of structural units containing an indane ring.
  • the maleimide resin (A1) represented by the above general formula (A1-2) is represented by the following general formula (A1-3) from the viewpoint of dielectric properties, conductor adhesion, solvent solubility and ease of production. , or more preferably represented by the following general formula (A1-4).
  • R a1 to R a5 and n a1 and n a3 are the same as those in general formula (A1-2) above.
  • R a1 to R a4 and n a1 and n a3 are the same as those in general formula (A1-2) above.
  • maleimide resin (A1) represented by the above general formula (A1-3) examples include, for example, a maleimide resin represented by the following general formula (A1-3-1), a maleimide resin represented by the following general formula (A1-3-2) and maleimide resins represented by the following general formula (A1-3-3).
  • n a3 is the same as in general formula (A1-2) above.
  • the maleimide resin (A1) represented by the above general formula (A1-4) is represented by the following general formula (A1-4-1) from the viewpoint of dielectric properties, conductor adhesion, solvent solubility and ease of production. It is more preferable to be
  • n a3 is the same as in general formula (A1-2) above.
  • the number average molecular weight of the maleimide resin (A1) is not particularly limited, but is preferably 600 to 3,000, more preferably 800 to 2, from the viewpoints of compatibility with other resins, conductor adhesion and heat resistance. 000, more preferably 1,000 to 1,500.
  • the maleimide resin (A1) is, for example, an intermediate amine compound containing a condensed ring of an aromatic ring and an aliphatic ring [hereinafter sometimes simply referred to as an "intermediate amine compound”. ] and maleic anhydride [hereinafter sometimes referred to as “maleimidation reaction”. ] can be produced by a method of
  • the intermediate amine compound of the maleimide resin containing an indane ring is, for example, a compound represented by the following general formula (A1-5) [hereinafter sometimes referred to as "compound A”. ] and a compound represented by the following general formula (A1-6) [hereinafter sometimes referred to as “compound B”. ] in the presence of an acid catalyst [hereinafter sometimes referred to as “cyclization reaction”. ] can be obtained as a compound represented by the following general formula (A1-7).
  • R a1 and n a1 are the same as those in the above general formula (A1-1).
  • R a6 each independently represents the above formula (A1-5-1) or the above formula (A1- 5-2), wherein the ortho position of at least one R a6 of two R a6 is a hydrogen atom.
  • R a5 and n a2 are the same as in the above general formula (A1-2), provided that at least one of the ortho and para positions of the amino group is a hydrogen atom.
  • R a1 , R a5 and n a1 to n a3 are the same as in general formula (A1-2) above.
  • Compound A includes, for example, p- or m-diisopropenylbenzene, p- or m-bis( ⁇ -hydroxyisopropyl)benzene, 1-( ⁇ -hydroxyisopropyl)-3-isopropenylbenzene, 1-( ⁇ -hydroxyisopropyl)-4-isopropenylbenzene, mixtures thereof, nuclear alkyl group-substituted products of these compounds, and nuclear halogen-substituted products of these compounds.
  • Examples of the nucleus alkyl group-substituted product include diisopropenyltoluene and bis( ⁇ -hydroxyisopropyl)toluene.
  • nucleus halogen-substituted compounds examples include chlorodiisopropenylbenzene, chlorobis( ⁇ -hydroxyisopropyl)benzene and the like. These compounds A may be used individually by 1 type, and may be used in combination of 2 or more type.
  • Compound B includes, for example, aniline, dimethylaniline, diethylaniline, diisopropylaniline, ethylmethylaniline, cyclobutylaniline, cyclopentylaniline, cyclohexylaniline, chloroaniline, dichloroaniline, toluidine, xylidine, phenylaniline, nitroaniline, aminophenol , methoxyaniline, ethoxyaniline, phenoxyaniline, naphthoxyaniline, aminothiol, methylthioaniline, ethylthioaniline, phenylthioaniline and the like. These compounds B may be used individually by 1 type, and may be used in combination of 2 or more type.
  • compound A and compound B are combined at a molar ratio (compound B/compound A) of preferably 0.1 to 2.0, more preferably 0.15 to 1.5, and still more preferably is charged at a ratio of 0.2 to 1.0, and the first stage reaction is performed.
  • the compound B to be further added is preferably 0.5 to 20, more preferably 0.6 to 10, and still more preferably 0 in a molar ratio to the previously added compound A (additional compound B/compound A). It is preferable to add at a ratio of 0.7 to 5 and carry out the second reaction.
  • acid catalysts used in the cyclization reaction include inorganic acids such as phosphoric acid, hydrochloric acid, and sulfuric acid; organic acids such as oxalic acid, benzenesulfonic acid, toluenesulfonic acid, methanesulfonic acid, and fluoromethanesulfonic acid; Solid acids such as acidic clay, silica alumina, zeolite, and strongly acidic ion exchange resins; heteropolyhydrochloric acid; These may be used individually by 1 type, and may be used in combination of 2 or more type.
  • inorganic acids such as phosphoric acid, hydrochloric acid, and sulfuric acid
  • organic acids such as oxalic acid, benzenesulfonic acid, toluenesulfonic acid, methanesulfonic acid, and fluoromethanesulfonic acid
  • Solid acids such as acidic clay, silica alumina, zeolite, and strongly acidic ion exchange
  • the amount of the acid catalyst is preferably 5 to 40 parts by mass, more preferably 5 to 35 parts by mass, with respect to 100 parts by mass of the total amount of compound A and compound B charged first. , more preferably 5 to 30 parts by mass.
  • the reaction temperature of the cyclization reaction is preferably 100 to 300°C, more preferably 130 to 250°C, still more preferably 150 to 230°C, from the viewpoint of reaction rate and reaction uniformity.
  • the reaction time of the cyclization reaction is preferably 2 to 24 hours, more preferably 4 to 16 hours, still more preferably 8 to 12 hours, from the viewpoint of productivity and sufficient progress of the reaction.
  • these reaction conditions are not particularly limited and can be appropriately adjusted depending on the type of raw material used.
  • a solvent such as toluene, xylene, chlorobenzene, or the like may be used as necessary.
  • the dehydration reaction may be promoted by using a solvent capable of azeotropic dehydration.
  • a maleimide resin (A1) can be obtained by performing this maleimidation reaction.
  • the equivalent ratio of maleic anhydride to the primary amino group equivalents of the intermediate amine compound in the maleimidation reaction is not particularly limited, but the amount of unreacted primary amino groups And from the viewpoint of reducing the amount of unreacted maleic anhydride, it is preferably 1.0 to 1.5, more preferably 1.05 to 1.3, still more preferably 1.1 to 1.2.
  • the amount of the organic solvent used in the maleimidation reaction is not particularly limited, but from the viewpoint of reaction rate and reaction uniformity, it is preferably 50 to 5,000 parts per 100 parts by mass of the total amount of the intermediate amine compound and maleic anhydride. parts by mass, more preferably 70 to 2,000 parts by mass, and even more preferably 100 to 500 parts by mass.
  • the reaction temperature in the first stage reaction is preferably 10 to 100°C, more preferably 20 to 70°C, still more preferably 30 to 50°C.
  • the reaction time in the first stage reaction is preferably 0.5 to 12 hours, more preferably 0.7 to 8 hours, still more preferably 1 to 4 hours.
  • the reaction in the second step is preferably carried out after adding a catalyst such as toluenesulfonic acid after the reaction in the first step.
  • the reaction temperature in the second stage reaction is preferably 90 to 130°C, more preferably 100 to 125°C, still more preferably 105 to 120°C.
  • the reaction time in the second stage reaction is preferably 2 to 24 hours, more preferably 4 to 15 hours, still more preferably 6 to 10 hours.
  • the above reaction conditions are not particularly limited and can be appropriately adjusted depending on the type of raw material used. After the reaction, unreacted raw materials, other impurities, etc. may be removed by performing purification such as washing with water, if necessary.
  • the maleimide resin (A1) obtained by the above method may contain a maleimide resin containing no indane ring as a by-product.
  • Maleimide resins containing no indane ring include, for example, compounds in which n a3 is 0 in the general formula (A1-2).
  • the content of the maleimide resin not containing the by-product indane ring in the reaction product can be measured, for example, by measuring the GPC of the reaction product.
  • a calibration curve of the elution time versus the number of n a3 is prepared using each compound having n a3 of 0 to 4 in the above general formula (A1-2), and then the reaction product From the elution time of the peak seen in the GPC chart, the number of na3 of the compounds contained in the reaction product and its average value can be grasped. Moreover, the content ratio of the compound having the number of na3 represented by the peak can be grasped from the area ratio of each peak.
  • the maleimide resin (A1) preferably has a low content of maleimide resin containing no indane ring as a by-product.
  • the area ratio of the maleimide resin containing no indane ring as a by-product to the peak area of the entire reaction product is preferably 40% or less, more preferably 30% or less, More preferably 20% or less, particularly preferably 10% or less.
  • the maleimide resin (AX) is a maleimide resin (A2) other than the maleimide resin (A1) [hereinafter sometimes referred to as "maleimide resin (A2)” or “(A2) component”. ] may be.
  • maleimide resin (A2) As the maleimide resin (A2), a maleimide resin represented by the following general formula (A2-1) is preferable.
  • Xa11 is a divalent organic group that does not contain a condensed ring of an aromatic ring and an aliphatic ring.
  • X a11 in general formula (A2-1) above is a divalent organic group that does not contain a condensed ring of an aromatic ring and an aliphatic ring.
  • Examples of the divalent organic group represented by X a11 in general formula (A2-1) include a divalent group represented by general formula (A2-2) below, and general formula (A2-3) below.
  • a divalent group represented by is mentioned.
  • R a11 is an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a halogen atom.
  • n a11 is an integer of 0 to 4. * represents a bonding site.
  • Examples of the aliphatic hydrocarbon group having 1 to 5 carbon atoms represented by R a11 in the general formula (A2-2) include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group and isobutyl t-butyl group, n-pentyl group and other alkyl groups having 1 to 5 carbon atoms; alkenyl groups having 2 to 5 carbon atoms and alkynyl groups having 2 to 5 carbon atoms.
  • the aliphatic hydrocarbon group having 1 to 5 carbon atoms may be linear or branched.
  • the aliphatic hydrocarbon group having 1 to 5 carbon atoms is preferably an aliphatic hydrocarbon group having 1 to 3 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms, and further preferably a methyl group.
  • Halogen atoms include, for example, fluorine, chlorine, bromine, and iodine atoms.
  • n a11 in the general formula (A2-2) is an integer of 0 to 4, preferably an integer of 0 to 2, more preferably 0 or 1, still more preferably 0, from the viewpoint of availability. When n a11 is an integer of 2 or more, the plurality of R a11 may be the same or different.
  • R a12 and R a13 are each independently an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a halogen atom;
  • X a12 is an alkylene group having 1 to 5 carbon atoms;
  • n a12 and n a13 are an alkylidene group, an ether group, a sulfide group, a sulfonyl group, a carbonyloxy group, a keto group, a single bond, or a divalent group represented by the following general formula (A2-3-1). , each independently an integer from 0 to 4. * represents a binding site.)
  • Examples of the aliphatic hydrocarbon group having 1 to 5 carbon atoms represented by R a12 and R a13 in the general formula (A2-3) include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and n-butyl. alkyl groups having 1 to 5 carbon atoms such as isobutyl group, t-butyl group and n-pentyl group; alkenyl groups having 2 to 5 carbon atoms and alkynyl groups having 2 to 5 carbon atoms.
  • the aliphatic hydrocarbon group having 1 to 5 carbon atoms may be linear or branched.
  • the aliphatic hydrocarbon group having 1 to 5 carbon atoms is preferably an aliphatic hydrocarbon group having 1 to 3 carbon atoms from the viewpoint of compatibility with other resins and suppression of gelation of the product during the reaction. , more preferably an alkyl group having 1 to 3 carbon atoms, and more preferably a methyl group or an ethyl group.
  • Halogen atoms include, for example, fluorine, chlorine, bromine, and iodine atoms.
  • Examples of the alkylene group having 1 to 5 carbon atoms represented by X a12 in the general formula (A2-3) include methylene group, 1,2-dimethylene group, 1,3-trimethylene group and 1,4-tetramethylene group, 1,5-pentamethylene group, and the like.
  • the alkylene group having 1 to 5 carbon atoms is preferably an alkylene group having 1 to 3 carbon atoms, more preferably an alkylene group having 1 or 2 carbon atoms, and still more preferably a methylene group.
  • the alkylidene group having 2 to 5 carbon atoms represented by X a12 in the general formula (A2-3) includes, for example, an ethylidene group, a propylidene group, an isopropylidene group, a butylidene group, an isobutylidene group, a pentylidene group and an isopentylidene group. etc.
  • an alkylidene group having 2 to 4 carbon atoms is preferred, an alkylidene group having 2 or 3 carbon atoms is more preferred, and an isopropylidene group is even more preferred.
  • n a12 and n a13 in the general formula (A2-3) are each independently an integer of 0 to 4, and both are readily available, compatible with other resins, and products during the reaction From the viewpoint of suppressing gelation, it is preferably an integer of 1 to 3, more preferably 1 or 2, and still more preferably 2.
  • n a12 +n a13 is preferably an integer of 1 to 8, more preferably an integer of 2 to 6, from the viewpoint of availability, compatibility with other resins, and suppression of gelation of the product during the reaction. Four is preferred.
  • the plurality of R a12s or the plurality of R a13s may be the same or different.
  • the divalent group represented by general formula (A2-3-1) represented by X a12 in general formula (A2-3) is as follows.
  • R a14 and R a15 are each independently an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a halogen atom;
  • X a13 is an alkylene group having 1 to 5 carbon atoms; an alkylidene group, an ether group, a sulfide group, a sulfonyl group, a carbonyloxy group, a keto group or a single bond,
  • n a14 and n a15 are each independently an integer of 0 to 4. * represents a bonding site.
  • Examples of the aliphatic hydrocarbon group having 1 to 5 carbon atoms represented by R a14 and R a15 in the general formula (A2-3-1) include methyl group, ethyl group, n-propyl group, isopropyl group, n C1-5 alkyl groups such as -butyl group, isobutyl group, t-butyl group and n-pentyl group; C2-5 alkenyl groups and C2-5 alkynyl groups.
  • the aliphatic hydrocarbon group having 1 to 5 carbon atoms may be linear or branched.
  • the aliphatic hydrocarbon group having 1 to 5 carbon atoms is preferably an aliphatic hydrocarbon group having 1 to 3 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms, and further preferably a methyl group.
  • Halogen atoms include, for example, fluorine, chlorine, bromine, and iodine atoms.
  • alkylene group having 1 to 5 carbon atoms represented by X a13 in the general formula (A2-3-1) examples include methylene group, 1,2-dimethylene group, 1,3-trimethylene group, 1,4- A tetramethylene group, a 1,5-pentamethylene group and the like can be mentioned.
  • the alkylene group having 1 to 5 carbon atoms is preferably an alkylene group having 1 to 3 carbon atoms, more preferably an alkylene group having 1 or 2 carbon atoms, and still more preferably a methylene group.
  • Examples of the alkylidene group having 2 to 5 carbon atoms represented by X a13 in the general formula (A2-3-1) include ethylidene group, propylidene group, isopropylidene group, butylidene group, isobutylidene group, pentylidene group, isopentyl A lidene group and the like can be mentioned.
  • an alkylidene group having 2 to 4 carbon atoms is preferred, an alkylidene group having 2 or 3 carbon atoms is more preferred, and an isopropylidene group is even more preferred.
  • X a13 in the general formula (A2-3-1) is preferably an alkylidene group having 2 to 5 carbon atoms, more preferably an alkylidene group having 2 to 4 carbon atoms, and further an isopropylidene group. preferable.
  • n a14 and n a15 in the general formula (A2-3-1) are each independently an integer of 0 to 4, and from the viewpoint of availability, both are preferably integers of 0 to 2, and more It is preferably 0 or 1, more preferably 0.
  • n a14 or n a15 is an integer of 2 or more, the plurality of R a14s or the plurality of R a15s may be the same or different.
  • an alkylene group having 1 to 5 carbon atoms, an alkylidene group having 2 to 5 carbon atoms, and the above general formula (A2-3-1) is preferred, an alkylene group having 1 to 5 carbon atoms is more preferred, and a methylene group is even more preferred.
  • n a16 is an integer of 0 to 10. * represents a binding site.
  • n a16 in general formula (A2-4) is preferably an integer of 0 to 5, more preferably an integer of 0 to 4, and still more preferably an integer of 0 to 3, from the viewpoint of availability.
  • n a17 is a number from 0 to 5. * represents a binding site.
  • R a16 and R a17 are each independently a hydrogen atom or an aliphatic hydrocarbon group having 1 to 5 carbon atoms.
  • n a18 is an integer of 1 to 8. * represents a bonding site.
  • Examples of the aliphatic hydrocarbon group having 1 to 5 carbon atoms represented by R a16 and R a17 in the general formula (A2-6) include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and n-butyl. alkyl groups having 1 to 5 carbon atoms such as isobutyl group, t-butyl group and n-pentyl group; alkenyl groups having 2 to 5 carbon atoms and alkynyl groups having 2 to 5 carbon atoms.
  • the aliphatic hydrocarbon group having 1 to 5 carbon atoms may be linear or branched.
  • n a18 in general formula (A2-6) above is an integer of 1 to 8, preferably an integer of 1 to 5, more preferably an integer of 1 to 3, and still more preferably 1.
  • n a18 is an integer of 2 or more, the plurality of R a16 or the plurality of R a17 may be the same or different.
  • maleimide resin (A2) examples include aromatic bismaleimide resins, aromatic polymaleimide resins, and aliphatic maleimide resins.
  • Specific examples of the maleimide resin (A2) include N,N'-ethylenebismaleimide, N,N'-hexamethylenebismaleimide, N,N'-(1,3-phenylene)bismaleimide, N,N'- [1,3-(2-methylphenylene)]bismaleimide, N,N'-[1,3-(4-methylphenylene)]bismaleimide, N,N'-(1,4-phenylene)bismaleimide, Bis(4-maleimidophenyl)methane, bis(3-methyl-4-maleimidophenyl)methane, 3,3'-dimethyl-5,5'-diethyl-4,4'-diphenylmethane bismaleimide, bis(4-maleimide phenyl)ether, bis(4-maleimidophenyl)sulfone
  • maleimide resin derivative (AY) As the maleimide resin derivative (AY), an aminomaleimide resin having a structural unit derived from the maleimide resin (AX) and a structural unit derived from a diamine compound [hereinafter referred to as "aminomaleimide resin (A3)” or “(A3) Sometimes referred to as “ingredients”. ] is preferable.
  • aminomaleimide resin (A3) is a structural unit derived from the maleimide resin (AX) and a diamine compound [hereinafter sometimes referred to as "diamine compound (a)" or “component (a)". ] and a structural unit derived from.
  • the structural unit derived from the maleimide resin (AX) for example, among the N-substituted maleimide groups possessed by the maleimide resin (AX), at least one N-substituted maleimide group undergoes a Michael addition reaction with an amino group possessed by the diamine compound.
  • a structural unit consisting of The structural unit derived from the maleimide resin (AX) contained in the aminomaleimide resin (A3) may be one type alone or two or more types.
  • the content of structural units derived from the maleimide resin (AX) in the aminomaleimide resin (A3) is not particularly limited, but is preferably 5 to 95% by mass, more preferably 30 to 93% by mass, and still more preferably 60 to 90%. % by mass.
  • the content of structural units derived from the maleimide resin (AX) in the aminomaleimide resin (A3) is within the above range, dielectric properties and film handling properties tend to be better.
  • the structural unit derived from the diamine compound (a) for example, one or both of the two amino groups of the diamine compound (a) are N-substituted maleimide groups of the maleimide resin (AX). Structural units obtained by Michael addition reaction can be mentioned.
  • the structural unit derived from the diamine compound (a) contained in the aminomaleimide resin (A3) may be of one type alone or of two or more types.
  • the content of the structural unit derived from the diamine compound (a) in the aminomaleimide resin (A3) is not particularly limited, but is preferably 5 to 95% by mass, more preferably 7 to 70% by mass, and still more preferably 10 to 40%. % by mass.
  • the content of the structural unit derived from the diamine compound (a) in the aminomaleimide resin (A3) is within the above range, dielectric properties, heat resistance, flame retardancy and glass transition temperature tend to be better.
  • the diamine compound (a) for example, the same amine compounds having at least two primary amino groups in one molecule as listed in JP-A-2020-200406 can be used.
  • Specific examples of the diamine compound (a) include 4,4′-diaminodiphenylmethane, 3,3′-dimethyl-4,4′-diaminodiphenylmethane, 3,3′-diethyl-4,4′-diaminodiphenylmethane, 4 ,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl ketone, 4,4'-diaminobiphenyl, 3,3'-dimethyl-4 ,4'-diaminobiphenyl, 2,2'-dimethyl-4,4'-diaminobiphenyl, 3,3
  • the total equivalent weight (Ta2) of the groups (including —NH2 ) derived from the —NH2 groups of the diamine compound (a) and the N-substituted maleimide groups of the maleimide resin (AX) is not particularly limited, but is preferably 0.05 to 10, more preferably 0.05 to 10, from the viewpoint of dielectric properties, heat resistance, flame retardancy and glass transition temperature. is 0.5-7, more preferably 1-5.
  • the group derived from the —NH 2 group of the diamine compound (a) includes —NH 2 itself.
  • the group derived from the N-substituted maleimide group of the maleimide resin (AX) includes the N-substituted maleimide group itself.
  • the number average molecular weight of the aminomaleimide resin (A3) is not particularly limited, it is preferably 400 to 10,000, more preferably 500 to 5,000, still more preferably 600 to 2,000 from the viewpoint of handleability and moldability. 000.
  • the aminomaleimide resin (A3) can be produced, for example, by the method described in JP-A-2020-200406, "(A) Method for producing modified maleimide resin".
  • thermosetting resins described above, from the viewpoint of dielectric properties, conductor adhesion, and heat resistance, (A) thermosetting resins have a condensed aromatic ring and an aliphatic ring in the molecular structure. Maleimide resins containing rings and having two or more N-substituted maleimide groups are preferred.
  • thermosetting resin preferably has a viscosity of more than 100,000 mPa ⁇ s at 25°C measured by the above method, more preferably solid at 25°C.
  • thermosetting resin ((A) content of thermosetting resin)
  • the content of (A) the thermosetting resin is not particularly limited, but is preferably 5 to 60% by mass, more preferably 10 to 40% by mass, still more preferably 15 to 25% by mass.
  • the content of the thermosetting resin is at least the above lower limit, heat resistance, moldability, workability and conductor adhesion tend to be better. Further, when the content of (A) the thermosetting resin is equal to or less than the above upper limit, the dielectric properties tend to be better.
  • the term "resin component” means a resin and a compound that forms a resin through a curing reaction.
  • the resin composition of the present embodiment contains, as optional components, a resin or a compound that forms a resin by a curing reaction in addition to the above components, these optional components are also included in the resin component.
  • Optional components corresponding to the resin component include (D) an elastomer having a molecular weight of more than 1,000, and (E) a curing accelerator, which will be described later.
  • the (C) inorganic filler is not included in the resin component.
  • the content of the resin component in the resin composition of the present embodiment is not particularly limited, but from the viewpoint of low thermal expansion, heat resistance, flame retardancy and conductor adhesion, the total solid content of the resin composition of the present embodiment (100% by mass), preferably 5 to 80% by mass, more preferably 10 to 60% by mass, still more preferably 20 to 40% by mass.
  • the content of the maleimide-based resin in the thermosetting resin is not particularly limited, but is preferably 80 to 100% by mass, more than It is preferably 90 to 100% by mass, more preferably 95 to 100% by mass.
  • the content of the maleimide resin is at least the above lower limit, heat resistance, moldability, workability and conductor adhesion tend to be better.
  • the content of the maleimide resin is equal to or less than the above upper limit, the dielectric properties tend to be better.
  • the reactive liquid compound is not particularly limited as long as it is liquid at 25° C., has a reactive group, and has a molecular weight of 1,000 or less.
  • Reactive liquid compounds may be used singly or in combination of two or more.
  • the reactive liquid compound preferably has 2 or more reactive groups in one molecule, more preferably 2 to 5, more preferably 2 to 4, 2 or 3 Individual ones are particularly preferred.
  • the number of reactive groups is within the above range, excellent flexibility tends to be easily obtained while volatilization during heat curing is more effectively suppressed.
  • the molecular weight of the reactive liquid compound is 1,000 or less, preferably 100-800, more preferably 150-600, still more preferably 200-400. If the molecular weight of the reactive liquid compound (B) is at least the above lower limit, volatilization of the reactive liquid compound (B) before heat curing of the resin composition tends to be suppressed. Further, when the molecular weight of the reactive liquid compound (B) is equal to or less than the above upper limit, there is a tendency to easily obtain superior flexibility.
  • the viscosity of the reactive liquid compound at 25° C. is preferably 1 to 5,000 mPa ⁇ s, more preferably 2 to 1,000 mPa ⁇ s, still more preferably 4 to 500 mPa ⁇ s.
  • the viscosity of the reactive liquid compound (B) at 25° C. is equal to or higher than the above lower limit, volatilization of the reactive liquid compound (B) tends to be suppressed.
  • the viscosity at 25° C. of the (B) reactive liquid compound is equal to or less than the above upper limit, there is a tendency that more excellent flexibility is likely to be obtained.
  • the viscosity at 25° C. of the reactive liquid compound can be measured by the above-described measuring method.
  • the reactive liquid compound has, as the reactive group, one or more selected from a vinyl group, an allyl group, a maleimide group, a (meth)acryloyl group, an epoxy group, a hydroxyl group, a carboxyl group and an amino group. is preferred.
  • the reactive group is more preferably a (meth)acryloyl group or an epoxy group, and more preferably a (meth)acryloyl group from the viewpoint that more excellent dielectric properties can be easily obtained.
  • the (B) reactive liquid compound having a (meth)acryloyl group as a reactive group include, for example, mono(meth)acrylic acid esters, di(meth)acrylic acid esters, trifunctional or higher (meth)acryl (Meth)acrylic acid esters such as acid esters can be mentioned.
  • Examples of mono(meth)acrylic acid esters include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, pentyl (meth)acrylate, hexyl (meth)acrylate, heptyl ( meth)acrylate, 2-ethylhexyl (meth)acrylate, octyl (meth)acrylate, isooctyl (meth)acrylate, nonyl (meth)acrylate, decyl (meth)acrylate, dodecyl (meth)acrylate, lauryl (meth)acrylate, tridecyl ( meth)acrylate, stearyl (meth)acrylate, cyclohexyl (meth)acrylate, cyclopentyl (meth)acrylate, benzyl (meth)acrylate, dicyclopentenyl (meth)acrylate, dicyclopenteny
  • di(meth)acrylic acid esters examples include 1,4-butanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, 1, 10-decanediol di(meth)acrylate, tricyclodecanedi(meth)acrylate, 1,12-dodecanediol di(meth)acrylate, ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate (meth)acrylate, polyethylene glycol di(meth)acrylate, propylene glycol di(meth)acrylate, dipropylene glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, neopentyl glycol di(meth)acrylate, ethoxylated bisphenol
  • dioxane glycol di(meth)acrylate examples include 2-[5-ethyl-5-[(acryloyloxy)methyl]-1,3-dioxan-2-yl]-2,2-dimethylethyl acrylate and the like. mentioned.
  • Examples of (meth)acrylic acid esters having a functionality of 3 or more include trimethylolpropane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, and dipentaerythritol hexa(meth)acrylate.
  • the (meth)acrylic acid ester is preferably a di(meth)acrylic acid ester.
  • the di(meth)acrylic acid ester is preferably a diacrylic acid ester represented by the following general formula (B-1) or a dimethacrylic acid ester represented by the following general formula (B-2), and the following general formula (B -2) is more preferably a dimethacrylate.
  • R b1 is an alkylene group having 1 to 20 carbon atoms.
  • the number of carbon atoms in the alkylene group having 1 to 20 carbon atoms represented by R b1 in the general formulas (B-1) and (B-2) is preferably 4 to 18, more preferably 6 to 15, and still more preferably 8. ⁇ 12.
  • alkylene groups having 1 to 20 carbon atoms include methylene, ethylene, propylene, butylene, pentylene, hexylene, heptylene, octylene, nonylene, decylene, undecylene, dodecylene, and tetradecylene. group, pentadecylene group, and the like.
  • the alkylene group may be linear, branched or cyclic, but preferably linear.
  • the content of (B) the reactive liquid compound is not particularly limited, but is preferably 5 to 60% by mass, more preferably 10 to 40% by mass, still more preferably 15 to 25% by mass.
  • the content of the reactive liquid compound is at least the above lower limit, there is a tendency that more excellent flexibility can be easily obtained.
  • the content of the reactive liquid compound (B) is equal to or less than the above upper limit, the generation of volatile components during heat curing tends to be suppressed.
  • the content of component (B) with respect to the total amount (100% by mass) of components (A), (B) and (C) is preferably 1 to 20% by mass, and more It is preferably 3 to 15% by mass, more preferably 5 to 10% by mass.
  • the content of the reactive liquid compound is at least the above lower limit, more excellent flexibility tends to be obtained. Further, when the content of the reactive liquid compound (B) is equal to or less than the above upper limit, the generation of volatile components during heat curing tends to be suppressed.
  • the resin composition of the present embodiment tends to be more excellent in low thermal expansion, heat resistance and flame retardancy.
  • An inorganic filler may be used individually by 1 type, or may be used in combination of 2 or more type.
  • Inorganic fillers include, for example, silica, alumina, titanium oxide, mica, beryllia, barium titanate, potassium titanate, strontium titanate, calcium titanate, aluminum carbonate, magnesium hydroxide, aluminum hydroxide, silicon aluminum oxide, calcium carbonate, calcium silicate, magnesium silicate, silicon nitride, boron nitride, clay, talc, aluminum borate, silicon carbide and the like.
  • silica, alumina, mica, and talc are preferred, and silica and alumina are more preferred, from the viewpoint of low thermal expansion, heat resistance, and flame retardancy.
  • Silica includes, for example, precipitated silica produced by a wet method and having a high water content, dry-process silica produced by a dry method and containing almost no bound water, and the like.
  • dry process silica include crushed silica, fumed silica, fused silica, etc., depending on the production method.
  • the average particle size of the (C) inorganic filler is not particularly limited, but from the viewpoint of the dispersibility and fine wiring properties of the (C) inorganic filler, it is preferably 0.01 to 20 ⁇ m, more preferably 0.1 to 10 ⁇ m. , more preferably 0.2 to 1 ⁇ m, particularly preferably 0.3 to 0.8 ⁇ m.
  • the average particle size of the inorganic filler (C) is defined as the particle size at the point corresponding to 50% volume when the cumulative frequency distribution curve by particle size is obtained with the total volume of the particles being 100%. That is.
  • the average particle size of the inorganic filler can be measured, for example, with a particle size distribution analyzer using a laser diffraction scattering method.
  • the shape of the inorganic filler includes, for example, a spherical shape, a crushed shape, and the like, and a spherical shape is preferable.
  • a coupling agent may be used in the resin composition of the present embodiment for the purpose of improving the dispersibility of (C) the inorganic filler and the adhesion with the organic component.
  • Examples of coupling agents include silane coupling agents and titanate coupling agents. Among these, silane coupling agents are preferred.
  • Silane coupling agents include, for example, aminosilane coupling agents, vinylsilane coupling agents, and epoxysilane coupling agents.
  • the surface treatment method for (C) the inorganic filler is to mix the (C) inorganic filler into the resin composition and then add the coupling agent.
  • An integral blend treatment method may be used, or a method in which (C) the inorganic filler is previously surface-treated with a coupling agent in a dry or wet manner.
  • the method of surface-treating the (C) inorganic filler with a coupling agent in advance in a dry or wet manner is preferable from the viewpoint that the characteristics of the (C) inorganic filler can be expressed more effectively.
  • the inorganic filler (C) may be dispersed in an organic solvent in advance to form a slurry, and then mixed with other components.
  • the content of (C) the inorganic filler is not particularly limited, but is preferably 20 to 95% by mass, relative to the total solid content (100% by mass) of the resin composition. It is preferably 40 to 90% by mass, more preferably 60 to 80% by mass.
  • the content of the inorganic filler is at least the above lower limit, low thermal expansion, heat resistance and flame retardancy tend to be better.
  • the content of the inorganic filler (C) is equal to or less than the above upper limit, moldability and conductor adhesiveness tend to be better and easier.
  • the resin composition of the present embodiment further includes (D) an elastomer having a molecular weight of more than 1,000 [hereinafter sometimes referred to as "(D) elastomer” or "(D) component". ] is preferably contained.
  • the resin composition of the present embodiment tends to have better dielectric properties by containing (D) an elastomer.
  • the term "elastomer” as used herein means a polymer having a glass transition temperature of 25°C or lower as measured by differential scanning calorimetry according to JIS K 6240:2011.
  • (D) Elastomers may be used singly or in combination of two or more.
  • the molecular weight of the elastomer is greater than 1,000, preferably from 1,050 to 500,000, more preferably from 1,100 to 350,000, even more preferably from 1,150 to 200,000; .
  • the molecular weight of the elastomer is at least the above lower limit, the heat resistance of the resulting resin composition tends to be better maintained. Further, when the molecular weight of the elastomer (D) is equal to or less than the above upper limit, the resulting resin composition tends to have better dielectric properties and conductor adhesion.
  • Elastomer preferably includes, for example, conjugated diene polymer (D1), modified conjugated diene polymer (D2), styrene-based elastomer (D3), and the like. Preferred embodiments of these components are described below.
  • conjugated diene polymer means a polymer of a conjugated diene compound. By containing the conjugated diene polymer (D1), the resin composition of the present embodiment tends to have better dielectric properties.
  • the conjugated diene polymer (D1) may be used alone or in combination of two or more.
  • conjugated diene compounds include 1,3-butadiene, isoprene, 1,3-pentadiene, 2,3-dimethyl-1,3-butadiene, 2-phenyl-1,3-butadiene, 1,3-hexadiene, and the like. are mentioned.
  • the conjugated diene polymer (D1) may be a polymer of one conjugated diene compound or a copolymer of two or more conjugated diene compounds.
  • the conjugated diene polymer (D1) may also be a copolymer of one or more conjugated diene compounds and one or more monomers other than the conjugated diene compounds.
  • the conjugated diene polymer (D1) is a copolymer
  • the polymerization mode is not particularly limited, and may be random polymerization, block polymerization or graft polymerization.
  • the conjugated diene polymer (D1) a conjugated diene polymer having a plurality of vinyl groups in side chains is preferable from the viewpoint of compatibility with other resins and dielectric properties.
  • the number of vinyl groups that the conjugated diene polymer (D1) has in one molecule is not particularly limited, but from the viewpoint of compatibility with other resins and dielectric properties, it is preferably 3 or more, more preferably 5 or more. , more preferably 10 or more.
  • the upper limit of the number of vinyl groups that the conjugated diene polymer (D1) has in one molecule is not particularly limited, it may be 100 or less, 80 or less, or 60 or less. .
  • Examples of the conjugated diene polymer (D1) include polybutadiene having a 1,2-vinyl group, butadiene-styrene copolymer having a 1,2-vinyl group, and polyisoprene having a 1,2-vinyl group. .
  • polybutadiene having a 1,2-vinyl group and a butadiene-styrene copolymer having a 1,2-vinyl group are preferable from the viewpoint of dielectric properties and heat resistance, and polybutadiene having a 1,2-vinyl group is preferable. more preferred.
  • the butadiene-derived 1,2-vinyl group of the conjugated diene polymer (D1) is a vinyl group contained in a butadiene-derived structural unit represented by the following formula (D1-1).
  • the content of structural units having a 1,2-vinyl group with respect to all butadiene-derived structural units constituting the polybutadiene [hereinafter, Sometimes referred to as "vinyl group content”. ] is not particularly limited, but is preferably 50 mol % or more, more preferably 70 mol % or more, and still more preferably 85 mol % or more from the viewpoint of compatibility with other resins, dielectric properties and heat resistance. .
  • the upper limit of the vinyl group content is not particularly limited, and may be 100 mol % or less, 95 mol % or less, or 90 mol % or less.
  • the structural unit having a 1,2-vinyl group a butadiene-derived structural unit represented by the above formula (D1-1) is preferable.
  • the polybutadiene having a 1,2-vinyl group is preferably a 1,2-polybutadiene homopolymer.
  • the number average molecular weight of the conjugated diene polymer (D1) is not particularly limited, but is preferably 1,050 to 3,000, more preferably 1,000 from the viewpoint of compatibility with other resins, dielectric properties and heat resistance. 100 to 2,000, more preferably 1,150 to 1,500.
  • the modified conjugated diene polymer (D2) is a polymer obtained by modifying a conjugated diene polymer. Since the resin composition of the present embodiment contains the modified conjugated diene polymer (D2), it tends to have good heat resistance and low thermal expansion, while easily obtaining excellent dielectric properties.
  • the modified conjugated diene polymer (D2) may be used alone or in combination of two or more.
  • the modified conjugated diene polymer (D2) is selected from the viewpoints of compatibility with other resins, dielectric properties, and conductor adhesion from the (d1) side
  • a conjugated diene polymer having a vinyl group in the chain [hereinafter sometimes referred to as a "conjugated diene polymer (d1)"].
  • (d2) a maleimide resin having two or more N-substituted maleimide groups [hereinafter sometimes referred to as “maleimide resin (d2)”. ] is preferable.
  • conjugated diene polymer (d1) for example, the conjugated diene polymer having a vinyl group in the side chain described as the conjugated diene polymer (D1) can be used, and preferred embodiments are the same.
  • the conjugated diene polymer (d1) may be used alone or in combination of two or more.
  • the maleimide resin (d2) for example, the maleimide resin having two or more N-substituted maleimide groups described as the maleimide resin (AX) can be used, and preferred embodiments are the same.
  • the maleimide resin (d2) may be used alone or in combination of two or more.
  • the modified conjugated diene polymer (D2) has a substituent group [hereinafter referred to as " It may be referred to as "substituent (x)”. ] is preferred.
  • the substituent (x) is a structure derived from the maleimide resin (d2) and represented by the following general formula (D2-1) or (D2 A group containing a structure represented by -2) is preferable.
  • X d1 is a divalent group obtained by removing two N-substituted maleimide groups from the maleimide resin (d2)
  • * d1 is a vinyl group in the side chain of the conjugated diene polymer (d1) is the site that binds to the originating carbon atom.
  • * d2 is the site that binds to another atom.
  • the modified conjugated diene polymer (D2) preferably has a substituent (x) and a vinyl group (y) in side chains.
  • the extent to which the substituent (x) is present in the modified conjugated diene polymer (D2) is determined by the extent to which the vinyl groups of the conjugated diene polymer (d1) are modified by the maleimide resin (d2) [hereinafter referred to as "vinyl group may be referred to as "denaturation rate”. ] can be used as an index.
  • the vinyl group modification rate is not particularly limited, but is preferably 20 to 70%, more preferably 30 to 60%, more preferably 30 to 60%, from the viewpoint of compatibility with other resins, dielectric properties, low thermal expansion and heat resistance. is 35-50%.
  • the vinyl group modification rate is a value determined by the method described in Examples.
  • the vinyl group (y) is preferably a 1,2-vinyl group possessed by a butadiene-derived structural unit.
  • the number average molecular weight of the modified conjugated diene polymer (D2) is not particularly limited, but is preferably 1,100 to 6,000, from the viewpoints of compatibility with other resins, dielectric properties, low thermal expansion and heat resistance. More preferably 1,300 to 4,000, still more preferably 1,500 to 2,000.
  • the modified conjugated diene polymer (D2) can be produced by reacting the conjugated diene polymer (d1) with the maleimide resin (d2).
  • the method for reacting the conjugated diene polymer (d1) and the maleimide resin (d2) is not particularly limited.
  • a conjugated diene polymer (d1), a maleimide resin (d2), a reaction catalyst, and an organic solvent are charged into a reaction vessel and, if necessary, reacted while being heated, kept warm, stirred, etc. to form a modified conjugated diene polymer (D2). can be obtained.
  • the reaction temperature for the above reaction is preferably 70 to 120°C, more preferably 80 to 110°C, still more preferably 85 to 105°C, from the viewpoint of workability and suppression of gelling of the product during the reaction.
  • the reaction time for the above reaction is preferably 0.5 to 15 hours, more preferably 1 to 10 hours, and even more preferably 3 to 7 hours, from the viewpoint of productivity and sufficient progress of the reaction.
  • these reaction conditions are not particularly limited and can be appropriately adjusted depending on the type of raw material used.
  • organic solvent used in the above reaction examples include alcohol solvents such as methanol, ethanol, butanol, butyl cellosolve, ethylene glycol monomethyl ether, and propylene glycol monomethyl ether; ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.
  • alcohol solvents such as methanol, ethanol, butanol, butyl cellosolve, ethylene glycol monomethyl ether, and propylene glycol monomethyl ether
  • ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.
  • aromatic hydrocarbon solvents such as toluene, xylene and mesitylene; ester solvents such as methoxyethyl acetate, ethoxyethyl acetate, butoxyethyl acetate and ethyl acetate; N,N-dimethylformamide, N,N-dimethylacetamide, N nitrogen atom-containing solvents such as -methyl-2-pyrrolidone.
  • An organic solvent may be used individually by 1 type, and may be used in combination of 2 or more type. Among these, toluene is preferable from the viewpoint of resin solubility.
  • the total content of the conjugated diene polymer (d1) and the maleimide resin (d2) in the reaction solution is not particularly limited, but is preferably 10 to 70% by mass, more preferably 15 to 70% by mass. 60% by mass, more preferably 20 to 50% by mass.
  • the total content of the conjugated diene polymer (d1) and the maleimide resin (d2) is at least the above lower limit, a good reaction rate can be obtained, and productivity tends to be better.
  • the total content of the conjugated diene polymer (d1) and the maleimide resin (d2) is equal to or less than the above upper limit, better solubility is obtained, stirring efficiency is improved, and gelation of the product during the reaction is achieved. tend to be more restrained.
  • reaction catalyst an organic peroxide is preferable from the viewpoint of obtaining sufficient reactivity while suppressing gelation of the product during the reaction.
  • organic peroxide those listed below as (E) curing accelerator can be used.
  • One of the reaction catalysts may be used alone, or two or more thereof may be used in combination.
  • the amount of the reaction catalyst used is not particularly limited, but from the viewpoint of reaction rate and reaction uniformity, it is preferably 0.001 to 1 part per 100 parts by mass of the total amount of the conjugated diene polymer (d1) and the maleimide resin (d2). parts by mass, more preferably 0.003 to 0.1 parts by mass, and still more preferably 0.005 to 0.02 parts by mass.
  • the ratio of the number of moles (M m ) of the N-substituted maleimide groups possessed by the maleimide resin (d2) to the number of moles (M v ) of the side-chain vinyl groups possessed by the conjugated diene polymer (d1) during the reaction ( M m /M v ) is not particularly limited, but is preferably 0.001 from the viewpoint of compatibility with other resins of the resulting modified conjugated diene polymer (D2) and suppression of gelation of the product during the reaction. ⁇ 0.5, more preferably 0.005 to 0.1, more preferably 0.008 to 0.05.
  • the styrene-based elastomer (D3) is not particularly limited as long as it is an elastomer having a structural unit derived from a styrene-based compound. Since the resin composition of the present embodiment contains the styrene-based elastomer (D3), it tends to be easy to obtain more excellent dielectric properties.
  • the styrene elastomer (D3) may be used alone or in combination of two or more.
  • styrene-based elastomer (D3) one having a structural unit derived from a styrene-based compound represented by the following general formula (D3-1) is preferable.
  • R d1 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • R d2 is an alkyl group having 1 to 5 carbon atoms
  • n d1 is an integer of 0 to 5.
  • alkyl groups having 1 to 5 carbon atoms represented by R d1 and R d2 in general formula (D3-1) include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group and isobutyl group, t-butyl group, n-pentyl group and the like.
  • Alkyl groups having 1 to 5 carbon atoms may be linear or branched. Among these, an alkyl group having 1 to 3 carbon atoms is preferred, an alkyl group having 1 or 2 carbon atoms is more preferred, and a methyl group is even more preferred.
  • n d1 in the above general formula (D3-1) is an integer of 0 to 5, preferably an integer of 0 to 2, more preferably 0 or 1, still more preferably 0.
  • the styrene-based elastomer (D3) may contain structural units other than structural units derived from styrene-based compounds.
  • Structural units other than the styrene-based compound-derived structural units possessed by the styrene-based elastomer (D3) include, for example, butadiene-derived structural units, isoprene-derived structural units, maleic acid-derived structural units, and maleic anhydride-derived structural units. etc.
  • the butadiene-derived structural unit and the isoprene-derived structural unit may be hydrogenated. When hydrogenated, structural units derived from butadiene become structural units in which ethylene units and butylene units are mixed, and structural units derived from isoprene become structural units in which ethylene units and propylene units are mixed.
  • Examples of the styrene elastomer (D3) include hydrogenated styrene-butadiene-styrene block copolymers, hydrogenated styrene-isoprene-styrene block copolymers, styrene-maleic anhydride copolymers, and the like. be done. Hydrogenated products of styrene-butadiene-styrene block copolymers are SEBS obtained by completely hydrogenating the carbon-carbon double bonds in the butadiene block, and SBBS obtained by partially hydrogenating a heavy bond can be mentioned.
  • the complete hydrogenation in SEBS is usually 90% or more of the entire carbon-carbon double bond, may be 95% or more, may be 99% or more, or may be 100%. There may be.
  • the partial hydrogenation rate in SBBS is, for example, 60 to 85% with respect to the entire carbon-carbon double bond.
  • a hydrogenated styrene-isoprene-styrene block copolymer is obtained as SEPS by hydrogenating the polyisoprene portion.
  • SEBS and SEPS are preferred, and SEBS is more preferred, from the viewpoint of dielectric properties, conductor adhesion, heat resistance, glass transition temperature and low thermal expansion.
  • the content of structural units derived from styrene is not particularly limited, but is preferably 5 to 60% by mass, more preferably 7 to 40% by mass, and still more preferably 10 to 20% by mass.
  • the melt flow rate (MFR) of SEBS is not particularly limited, but is preferably 0.1 to 20 g/10 min, more preferably 1 to 10 g/10 min under the measurement conditions of 230°C and a load of 2.16 kgf (21.2 N). , more preferably 3 to 7 g/10 min.
  • SEBS Commercially available products of SEBS include, for example, Tuftec (registered trademark) H series and M series manufactured by Asahi Kasei Corporation, Septon (registered trademark) series manufactured by Kuraray Co., Ltd., and Kraton (registered trademark) G manufactured by Kraton Polymer Japan Co., Ltd. polymer series and the like.
  • the number average molecular weight of the styrene elastomer (D3) is not particularly limited, it is preferably 10,000 to 500,000, more preferably 50,000 to 350,000, still more preferably 100,000 to 200,000. .
  • (D) elastomers other than the conjugated diene polymer (D1), the modified conjugated diene polymer (D2), and the styrene elastomer (D3) include, for example, polyolefin resins other than these, polyphenylene ether resins, polyester resins, and polyamide resins. resins, polyacrylic resins, and the like.
  • the content of the (D) elastomer is not particularly limited, but the total amount (100% by mass) of the resin components in the resin composition of the present embodiment %, preferably 10 to 80% by mass, more preferably 30 to 70% by mass, and even more preferably 50 to 60% by mass.
  • the content of the elastomer (D) is at least the above lower limit, more excellent dielectric properties tend to be obtained.
  • the content of the (D) elastomer is equal to or less than the above upper limit value, more excellent heat resistance tends to be obtained.
  • the total content of one or more selected from the group consisting of the conjugated diene polymer (D1), the modified conjugated diene polymer (D2) and the styrene elastomer (D3) is not particularly limited, but from the viewpoint of dielectric properties and conductor adhesion Therefore, it is preferably 60 to 100% by mass, more preferably 80 to 100% by mass, still more preferably 90 to 100% by mass, based on the total amount (100% by mass) of the (D) elastomer.
  • (D) Elastomer is one or more selected from the group consisting of a conjugated diene polymer (D1) and a modified conjugated diene polymer (D2) from the viewpoint of dielectric properties and compatibility, a styrene elastomer (D3), It is preferable to contain (D)
  • the elastomer contains one or more selected from the group consisting of the conjugated diene polymer (D1) and the modified conjugated diene polymer (D2) and the styrene elastomer (D3)
  • the styrene elastomer (D3 ) to the content of the conjugated diene polymer (D1) and the modified conjugated diene polymer (D2) [[(D1) + (D2)] / (D3)] is not particularly limited, but the dielectric properties And from the viewpoint of compatibility, it is preferably 0.1 to 5, more preferably 0.2 to 1, still more preferably 0.3 to 0.7.
  • the resin composition of the present embodiment preferably further contains (E) a curing accelerator. Curability of the resin composition of the present embodiment is improved by containing (E) a curing accelerator, and there is a tendency that more excellent dielectric properties, heat resistance, and conductor adhesiveness can be easily obtained.
  • the curing accelerator may be used alone or in combination of two or more.
  • Examples of (E) curing accelerators include acidic catalysts such as p-toluenesulfonic acid; amine compounds such as triethylamine, pyridine, tributylamine and dicyandiamide; methylimidazole, phenylimidazole, 1-cyanoethyl-2-phenylimidazole and the like Imidazole compounds; isocyanate mask imidazole compounds such as addition reaction products of hexamethylene diisocyanate resin and 2-ethyl-4-methylimidazole; tertiary amine compounds; quaternary ammonium compounds; phosphorus compounds such as triphenylphosphine; dicumyl Peroxide, 2,5-dimethyl-2,5-bis(t-butylperoxy)hexyne-3, 2,5-dimethyl-2,5-bis(t-butylperoxy)hexane, t-butylperoxy organic peroxides such as isopropy
  • imidazole compounds isocyanate-masked imidazole compounds, organic peroxides, and carboxylates are preferable, and isocyanate-masked imidazole compounds and organic peroxides are more preferable, from the viewpoint of curing acceleration effect and storage stability.
  • the content of (E) curing accelerator is not particularly limited, but (A) thermosetting resin and (B) reactive liquid compound It is preferably 0.1 to 15 parts by mass, more preferably 1 to 10 parts by mass, and still more preferably 4 to 8 parts by mass, based on the total amount (100 parts by mass) of.
  • the content of the curing accelerator is at least the above lower limit, a sufficient curing acceleration effect tends to be obtained.
  • the content of (E) the curing accelerator is equal to or less than the above upper limit, the storage stability tends to be better.
  • the resin composition of the present embodiment further contains a resin material other than the above components, a flame retardant, an antioxidant, a heat stabilizer, an antistatic agent, an ultraviolet absorber, a pigment, a coloring agent, a lubricant, an organic It may contain one or more optional components selected from the group consisting of solvents and additives other than these. Each of the above optional components may be used alone or in combination of two or more. The content of the above optional components in the resin composition of the present embodiment is not particularly limited, and may be used as necessary within a range that does not impair the effects of the present embodiment. Moreover, the resin composition of the present embodiment may not contain any of the above optional components depending on the desired performance.
  • the resin composition of the present embodiment is used to form a resin film having a thickness of 10 ⁇ m or more from the viewpoint of more effectively expressing the characteristics of the resin composition of the present embodiment, which is excellent in flexibility.
  • it is used to form a resin film having a thickness of 50 ⁇ m or more, more preferably to form a resin film having a thickness of 80 ⁇ m or more, and a resin film having a thickness of 100 ⁇ m or more. More preferably, it is used to form a resin film having a thickness of 130 ⁇ m or more, and is even more preferably used to form a resin film having a thickness of 150 ⁇ m or more.
  • the resin composition of the present embodiment is preferably used for forming a resin film having a thickness of 1,000 ⁇ m or less, and for forming a resin film having a thickness of 700 ⁇ m or less. More preferably, it is used for forming a resin film having a thickness of 500 ⁇ m or less.
  • the resin film of this embodiment is a resin film containing the resin composition of this embodiment.
  • the resin film of the present embodiment can be produced, for example, by applying the resin composition of the present embodiment containing an organic solvent, ie, a resin varnish, to a support, followed by heating and drying.
  • Examples of the support include plastic films, metal foils, release papers and the like.
  • plastic films include polyolefin films such as polyethylene, polypropylene, and polyvinyl chloride; polyethylene terephthalate [hereinafter sometimes referred to as "PET"]. ], polyester films such as polyethylene naphthalate; polycarbonate films, polyimide films and the like. Among these, polyethylene terephthalate film is preferable from the viewpoint of economy and handling.
  • Examples of metal foil include copper foil and aluminum foil. When a copper foil is used as the support, the copper foil can be used as a conductor layer to form a circuit. In this case, a rolled copper foil, an electrolytic copper foil, or the like can be used as the copper foil.
  • a copper foil with a carrier may be used from the viewpoint of improving workability.
  • the support may be subjected to surface treatment such as matte treatment or corona treatment. Further, the support may be subjected to release treatment with a silicone resin release agent, an alkyd resin release agent, a fluororesin release agent, or the like.
  • the thickness of the support is not particularly limited, but is preferably 10 to 150 ⁇ m, more preferably 20 to 100 ⁇ m, still more preferably 25 to 50 ⁇ m, from the viewpoints of ease of handling and economy.
  • a coating device for coating the resin varnish for example, a coating device known to those skilled in the art such as a comma coater, bar coater, kiss coater, roll coater, gravure coater and die coater can be used. These coating apparatuses may be appropriately selected according to the film thickness to be formed. Drying conditions after applying the resin varnish may be appropriately determined according to the content of the organic solvent, the boiling point, etc., and are not particularly limited. For example, in the case of a resin varnish containing 40 to 60% by mass of an aromatic hydrocarbon-based solvent, the drying temperature is not particularly limited, but the productivity and the resin composition of the present embodiment are appropriately B-staged.
  • the drying time is not particularly limited, but from the viewpoint of productivity and moderate B-stage of the resin composition of the present embodiment, it is preferably 1 to 30 minutes, more preferably 2 to 30 minutes. 15 minutes, more preferably 3 to 10 minutes.
  • the content of the organic solvent in the resin film of the present embodiment is preferably 2% by mass or less, more preferably 1% by mass or less, and still more preferably 0.5% by mass with respect to the total amount (100% by mass) of the resin film. % or less, and may be 0% by mass.
  • the content of the organic solvent in the resin film is within the above range, the amount of the organic solvent that volatilizes during heat curing tends to be sufficiently suppressed.
  • the resin film of the present embodiment has a mass reduction rate when heat-dried at 170° C. for 30 minutes in an air atmosphere [hereinafter sometimes referred to as “170° C. mass reduction rate”. ] is preferably 2.0% by mass or less, more preferably 1.5% by mass or less, still more preferably 1.0% by mass or less, and may be 0% by mass.
  • 170° C. mass reduction rate can be measured by the method described in Examples.
  • the thickness of the resin film of the present embodiment can be appropriately determined according to the application of the resin film. It is preferably 10 ⁇ m or more, more preferably 50 ⁇ m or more, still more preferably 80 ⁇ m or more, still more preferably 100 ⁇ m or more, still more preferably 130 ⁇ m or more, and particularly preferably 150 ⁇ m or more.
  • the thickness of the resin film of the present embodiment is preferably 1,000 ⁇ m or less, more preferably 700 ⁇ m or less, and even more preferably 500 ⁇ m or less from the viewpoint of handleability.
  • the resin film of this embodiment may have a protective film.
  • the protective film is provided on the surface of the resin film of the present embodiment opposite to the surface on which the support is provided, and is used for the purpose of preventing foreign matter from adhering to and damaging the resin film. be.
  • the dielectric constant (Dk) at 10 GHz of the cured product of the resin composition and resin film of the present embodiment may be less than 3.0, may be less than 2.9, or may be less than 2.8. good too.
  • the dielectric constant (Dk) is preferably as small as possible, and the lower limit thereof is not particularly limited.
  • the dielectric loss tangent (Df) at 10 GHz of the cured product of the resin composition and resin film of the present embodiment may be less than 0.0030, may be less than 0.0025, or may be less than 0.0015 good too.
  • the dielectric loss tangent (Df) is preferably as small as possible, and the lower limit thereof is not particularly limited.
  • the resin film of the present embodiment is a resin film having a thickness of 150 ⁇ m or more. It is preferable that the cured product of (1) has a dielectric constant of less than 2.8 and a dielectric loss tangent of less than 0.0030 at 10 GHz.
  • the dielectric constant (Dk) and the dielectric loss tangent (Df) are values based on the cavity resonator perturbation method, and more specifically, values measured by the method described in Examples.
  • the resin film of the present embodiment is suitable, for example, as a resin film for forming an insulating layer of a multilayer printed wiring board or a resin film for semiconductor sealing of a semiconductor package.
  • the resin film of the present embodiment is excellent in flexibility and excellent in handleability when used as a resin film having a large thickness, and therefore is suitable as a resin film for semiconductor encapsulation.
  • the multilayer printed wiring board of this embodiment is a multilayer printed wiring board containing the resin film of this embodiment. That is, the multilayer printed wiring board of the present embodiment includes at least a multilayer structure containing the cured resin film of the present embodiment and a conductor circuit layer. A method for manufacturing the multilayer printed wiring board of the present embodiment using the resin film of the present embodiment will be described below.
  • the resin film of the present embodiment is laminated on one side or both sides of a circuit board. Specifically, for example, after the resin film of the present embodiment is placed on a circuit board, the resin film of the present embodiment is laminated on the circuit board while being pressurized and heated by a vacuum laminator, thereby forming the resin film of the present embodiment on the circuit board. Can be stacked.
  • Circuit boards used for multilayer printed wiring boards include, for example, glass epoxy, metal substrates, polyester substrates, polyimide substrates, BT resin substrates, thermosetting polyphenylene ether substrates, and the like, on one or both sides of which a patterned conductor layer ( circuit) is formed. From the viewpoint of adhesiveness, the surface of the conductor layer of the circuit board may be roughened in advance by blackening treatment or the like.
  • the heating temperature for heat curing is not particularly limited, but is preferably 100 to 300.degree. C., more preferably 120 to 280.degree. C., still more preferably 150 to 250.degree.
  • the heating time for heat curing is not particularly limited, but is preferably 2 to 300 minutes, more preferably 5 to 200 minutes, still more preferably 10 to 150 minutes.
  • Drilling is a process of drilling holes in the circuit board and the formed insulating layer by a method such as a drill, laser, plasma, or a combination thereof to form via holes, through holes, and the like.
  • lasers used for drilling include carbon dioxide lasers, YAG lasers, UV lasers, excimer lasers, and the like.
  • the surface of the insulating layer may be roughened with an oxidizing agent.
  • an oxidizing agent such as potassium permanganate and sodium permanganate; bichromate, ozone, hydrogen peroxide, sulfuric acid, and nitric acid.
  • an aqueous solution of sodium hydroxide containing potassium permanganate and an aqueous solution containing sodium permanganate, which are oxidizing agents commonly used in the manufacture of multilayer printed wiring boards by the build-up method, are preferred.
  • the conductor layer can be formed by plating, for example.
  • plating methods include electroless plating and electrolytic plating.
  • Metals for plating include, for example, copper, gold, silver, nickel, platinum, molybdenum, ruthenium, aluminum, tungsten, iron, titanium, chromium, and alloys containing at least one of these metal elements. Among these, copper and nickel are preferable, and copper is more preferable. It is also possible to adopt a method of first forming a plating resist having a pattern opposite to the wiring pattern and then forming the wiring pattern only by electroless plating. Annealing treatment may be performed after the conductor layer is formed. Annealing tends to further improve and stabilize the adhesive strength between the interlayer insulating layer and the conductor layer.
  • Methods of patterning a conductor layer to form a circuit include, for example, a subtractive method, a full additive method, a semi-additive method (SAP: semi-additive process), a modified semi-additive method (m-SAP: modified semi-additive process), etc.
  • SAP semi-additive process
  • m-SAP modified semi-additive process
  • the semiconductor package of this embodiment is a semiconductor package containing the resin film of this embodiment.
  • the semiconductor package of the present embodiment may be, for example, a semiconductor chip mounted on the multilayer printed wiring board of the present embodiment, and the semiconductor chip sealed in the cured product of the resin film of the present embodiment. It may be provided.
  • a semiconductor package in which a semiconductor chip is mounted on the multilayer printed wiring board of the present embodiment is manufactured, for example, by mounting a semiconductor chip, a memory, etc. on the multilayer printed wiring board of the present embodiment by a known method. be able to.
  • a semiconductor package including a semiconductor chip sealed with the cured resin film of the present embodiment can be manufactured, for example, by the following method. First, the resin film of this embodiment is arranged on a semiconductor chip. Next, the resin film is heated and melted, and the semiconductor chip is embedded with the resin composition forming the resin film. After that, the resin composition embedding the semiconductor chip is cured by heating to manufacture a semiconductor package in which the semiconductor chip is sealed with the cured resin composition.
  • the number average molecular weight was measured by the following procedures. (Method for measuring number average molecular weight) The number average molecular weight was calculated from a calibration curve using standard polystyrene by gel permeation chromatography (GPC). The calibration curve is a standard polystyrene: TSK standard POLYSTYRENE (Type; A-2500, A-5000, F-1, F-2, F-4, F-10, F-20, F-40) (manufactured by Tosoh Corporation, (trade name) was used for approximation by a cubic equation. GPC measurement conditions are shown below.
  • the mixture was reacted under a nitrogen atmosphere at 90 to 100° C. for 5 hours with stirring to obtain a modified conjugated diene polymer solution (solid concentration: 35 mass %).
  • the resulting modified conjugated diene polymer had a number average molecular weight of 1,700.
  • the solution containing the 1,2-polybutadiene homopolymer and the aromatic bismaleimide resin containing the indane ring before the start of the reaction and the solution after the reaction were measured for GPC by the above method, and the aromatic containing the indane ring before and after the reaction was measured.
  • a peak area derived from the group bismaleimide resin was determined.
  • the vinyl group modification rate of the aromatic bismaleimide resin containing the indane ring was calculated by the following formula. Incidentally, the vinyl group modification rate corresponds to the reduction rate of the peak area derived from the aromatic bismaleimide resin containing the indane ring due to the reaction.
  • Vinyl group modification rate (%) [(Peak area derived from aromatic bismaleimide resin containing indane ring before reaction start) - (Peak area derived from aromatic bismaleimide resin containing indane ring after reaction completed) ] ⁇ 100/(Peak area derived from aromatic bismaleimide resin containing indane ring before reaction initiation)
  • the vinyl group modification rate obtained from the above formula was 40%.
  • the resin composition obtained in each example was coated on one side of a 50 ⁇ m thick PET film (manufactured by Toyobo Co., Ltd., trade name “Purex A53”) to a thickness such that the thickness of the resin layer after drying was 150 ⁇ m. applied with Thereafter, the resin composition was heated and dried at 105° C. for 5 minutes to bring the resin composition into a B-stage state, thereby producing a resin film (1) with a single-sided PET film (thickness of resin film: 150 ⁇ m). Next, the obtained resin film (1) with a single-sided PET film was cut into a size of 200 mm ⁇ 200 mm and laminated so that the resin films faced each other. Subsequently, a resin film (2) with a double-sided PET film (resin film thickness: 300 ⁇ m) was obtained by laminating at a temperature of 100° C. and a pressure time of 5 seconds using a vacuum laminator.
  • the resin film with double-sided PET film (2) obtained above is cut into a size of 90 mm in length ⁇ 50 mm in width, and the PET film on both sides is peeled off, and then the size is 0.3 mm in thickness ⁇ 90 mm in length ⁇ 50 mm in width. It was put into a die-cut Teflon (registered trademark) sheet. Low-profile copper foils with a thickness of 18 ⁇ m (manufactured by Mitsui Mining & Smelting Co., Ltd., trade name “3EC-VLP-18”) were arranged above and below the resin film contained in the die-cut Teflon (registered trademark) sheet.
  • the low-profile copper foil was arranged with the M surface facing the resin film. Subsequently, the laminate before heat and pressure molding is heat and pressure molded under conditions of a temperature of 180 ° C., a pressure of 2.0 MPa, and a time of 60 minutes, and the resin film is molded into a resin plate and cured to obtain a double-sided copper plate. A resin plate with foil was produced. The thickness of the resin plate portion of the obtained resin plate with copper foil on both sides was 0.3 mm.
  • the copper foil was removed by immersing the resin plate with copper foil on both sides obtained in each example in a 10% by mass solution of ammonium persulfate (manufactured by Mitsubishi Gas Chemical Company, Inc.), which is a copper etchant.
  • the obtained resin plate was cut into a piece having a width of 0.4 mm, a length of 20 mm and a thickness of 0.2 mm, and dried at 105° C. for 1 hour to obtain a test piece.
  • the test piece was clamped with upper and lower grips at both ends in the long side direction with an interval between the grips of 10 mm.
  • thermomechanical measurement apparatus (manufactured by Seiko Instruments Inc., trade name "SS6100")
  • SS6100 thermomechanical measurement apparatus
  • the inflection point of the dimensional change with respect to temperature was defined as the glass transition point
  • the average value of the dimensional change per unit temperature at 30 to 150° C. was defined as the linear expansion coefficient, and evaluation was made according to the following criteria. In the following criteria, A is the most excellent.
  • the copper foil was removed by immersing the resin plate with copper foil on both sides obtained in each example in a 10% by mass solution of ammonium persulfate (manufactured by Mitsubishi Gas Chemical Company, Inc.), which is a copper etchant.
  • the obtained resin plate was cut into a piece having a width of 10 mm, a length of 40 mm and a thickness of 0.2 mm, and then dried at 105° C. for 1 hour to obtain a test piece.
  • the test piece was clamped with upper and lower grips at both ends in the long side direction with a gap between the grips of 20 mm.
  • the tensile modulus of the test piece was obtained under the conditions of a tensile speed of 2 mm / min in an environment of 25 ° C. .
  • Five similar samples were prepared, the tensile modulus was obtained under the same conditions as above, and the average value was taken as the 25° C. tensile modulus.
  • Other detailed conditions and a method for calculating the tensile modulus were performed according to the international standard ISO5271 (1993).
  • the obtained 25° C. tensile modulus was evaluated according to the following criteria. In the following criteria, A is the most excellent. ⁇ Judgment Criteria for Tensile Modulus at 25°C> A: Less than 1.5 GPa B: 1.5 GPa or more
  • the copper foil of the resin plate with copper foil on both sides obtained in each example was processed into a straight line with a width of 5 mm by etching, and then dried at 105° C. for 1 hour to obtain a test piece.
  • the formed straight line-shaped copper foil is attached to a small desktop tester (manufactured by Shimadzu Corporation, trade name "EZ-TEST"), and is peeled off in a 90 ° direction in accordance with JIS C 6481: 1996.
  • the peel strength of the foil was measured.
  • the pulling speed for peeling off the copper foil was 50 mm/min.
  • the obtained peel strength was evaluated according to the following criteria. In the following criteria, A is the most excellent.
  • the copper foil was removed by immersing the resin plate with copper foil on both sides obtained in each example in a 10% by mass solution of ammonium persulfate (manufactured by Mitsubishi Gas Chemical Company, Inc.), which is a copper etchant.
  • the obtained resin plate was cut into a size of 2 mm ⁇ 50 mm, and then dried at 105° C. for 1 hour to obtain a test piece.
  • the dielectric constant (Dk) and dielectric loss tangent (Df) of the test piece were measured at an ambient temperature of 25 ° C. and in the 10 GHz band. Permittivity and dielectric loss tangent were evaluated.
  • A is the most excellent.
  • a test piece was obtained by cutting out the obtained resin plate obtained by removing the copper foil of the resin plate with copper foil on both sides obtained in each example by etching to a length of 10 mm and a width of 10 mm. After blackening the test piece using a graphite spray, the thermal diffusivity was evaluated using a xenon flash analyzer (manufactured by NETZSCH, trade name "LFA447 nanoflash”). The thermal conductivity of the test piece is obtained from the product of this value, the density measured by the Archimedes method, and the specific heat measured by DSC (Differential Scanning Calorimeter; manufactured by Perkin Elmer, trade name "DSC Pyris1"). rice field. The obtained thermal conductivity was evaluated according to the following criteria. In the following criteria, A is the most excellent. ⁇ Determination criteria for thermal conductivity> A: 3.0 W/m ⁇ K or more B: Less than 3.0 W/m ⁇ K
  • Silica Spherical silica treated with an aminosilane coupling agent, average particle size 0.5 ⁇ m
  • Alumina Alumina 1 (average particle size 18 ⁇ m, polyhedral spherical shape), alumina 2 (average particle size 3 ⁇ m, polyhedral spherical shape), alumina 3 (average particle size 0.4 ⁇ m, polyhedral spherical shape) were blended at a mass ratio of 66:24:10.
  • [(D) component] - Modified conjugated diene polymer Modified conjugated diene polymer obtained in Production Example 1, number average molecular weight 1,700 ⁇
  • Imidazole-based curing accelerator isocyanate mask imidazole, manufactured by Daiichi Kogyo Seiyaku Co., Ltd., trade name "G-8009L"
  • the resin compositions obtained in Examples 1 to 7 of the present embodiment have good low thermal expansion properties of the cured products, and the resin films formed from the resin compositions have excellent flexibility.
  • the resin films of Examples 1 to 7 had a 170° C. mass reduction rate of 1.0% by mass or less, indicating that the generation of volatile components during heat curing was suppressed.
  • the resin films of Comparative Examples 1 and 3 were inferior in flexibility, and the resin composition of Comparative Example 2 was inferior in low thermal expansion properties.
  • the resin composition of the present embodiment has a good low thermal expansion property as a cured product, and is excellent in flexibility in a solid state, while being able to suppress the generation of volatile components during heat curing. Therefore, the resin composition of the present embodiment is useful for multilayer printed wiring boards, semiconductor packages, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

(A)熱硬化性樹脂と、(B)25℃で液体状であって、反応性基を有し、分子量が1,000以下である化合物と、(C)無機充填材と、を含有する、樹脂組成物、該樹脂組成物を用いた樹脂フィルム、多層プリント配線板及び半導体パッケージである。

Description

樹脂組成物、樹脂フィルム、多層プリント配線板及び半導体パッケージ
 本実施形態は、樹脂組成物、樹脂フィルム、多層プリント配線板及び半導体パッケージに関する。
 近年、電子機器の小型化及び高性能化によって、プリント配線板及び半導体パッケージ分野においても、配線密度の高度化及び高集積化が進展している。
 これらの電子機器においては、半導体チップの封止材、プリント配線板の基板材料等として、熱硬化性樹脂等の絶縁材料が用いられているが、部品実装時における、絶縁材料と半導体チップの熱膨張率の差に起因する応力の発生が問題になることがある。ここで発生する応力は、半導体パッケージの反りの原因となり、信頼性を低下させる要因となる。
 そこで、絶縁材料の熱膨張率を半導体チップの熱膨張率に近づける方法として、絶縁材料に無機充填材を配合する方法が行われている。
 特許文献1には、誘電正接が低く、低熱膨張であり、配線の埋め込み性及び平坦性に優れる熱硬化性樹脂組成物を提供することを課題として、無機充填材、N-置換マレイミド基を少なくとも2個有するマレイミド樹脂由来の構造単位とジアミン化合物由来の構造単位とを有するポリイミド化合物を含有する熱硬化性樹脂組成物において、酸無水物で変性されているポリブタジエン系エラストマーを配合する技術が開示されている。
特開2018-012747号公報
 特許文献1の熱硬化性樹脂組成物は、誘電正接、低熱膨張性、配線の埋め込み性等に優れる一方で、半導体チップを封止できる程度の厚さを有する樹脂フィルムにした場合、取り扱い時に樹脂フィルムにクラックが発生する場合があった。この問題は、特に高い耐熱性が得られ易い熱硬化性樹脂を使用する場合、及び、低熱膨張性に寄与する無機充填材を使用する場合に発生し易い。上記の問題を解決するためには、樹脂フィルムの形成に用いる樹脂組成物の可撓性を向上させることが有効と考えられる。なお、本明細書における「樹脂組成物の可撓性」とは、樹脂組成物が有機溶媒等を含有して液状である場合、有機溶媒を乾燥することによって、樹脂組成物を室温(25℃)で固形にした場合における可撓性を意味する。
 固形の状態における樹脂組成物の可撓性を向上させる方法として、樹脂組成物中に、固形を保てる程度の有機溶媒を少量含ませる方法が考えられる。しかしながら、有機溶媒を少量含む樹脂組成物は、加熱硬化させる際に、揮発する有機溶媒に起因して硬化物中に空隙が発生したり、硬化物の表面に凹凸が現れたりする場合がある。また、加熱硬化中に有機溶媒が揮発するため、より安全性の高い作業環境を整備する必要も生じる。これらの問題は、樹脂フィルムの厚さを大きくするほど顕在化するため、改善が望まれていた。
 本実施形態は、このような現状に鑑み、硬化物が良好な低熱膨張性を有し、固形の状態で可撓性に優れながらも、加熱硬化中における揮発成分の発生を抑制し得る樹脂組成物、該樹脂組成物を用いた樹脂フィルム、多層プリント配線板及び半導体パッケージを提供することを課題とする。
 本発明者等は上記の課題を解決すべく検討を進めた結果、下記の本実施形態によって当該課題を解決できることを見出した。
 すなわち、本実施形態は、下記[1]~[16]に関する。
[1](A)熱硬化性樹脂と、
 (B)25℃で液体状であって、反応性基を有し、分子量が1,000以下である化合物と、
 (C)無機充填材と、
 を含有する、樹脂組成物。
[2]前記(A)成分が、N-置換マレイミド基を1個以上有するマレイミド樹脂及び該マレイミド樹脂の誘導体からなる群から選択される1種以上である、上記[1]に記載の樹脂組成物。
[3]前記N-置換マレイミド基を1個以上有するマレイミド樹脂が、分子構造中に芳香族環と脂肪族環との縮合環を含み、N-置換マレイミド基を2個以上有するマレイミド樹脂である、上記[2]に記載の樹脂組成物。
[4]前記(B)成分が、前記反応性基として、ビニル基、アリル基、マレイミド基、(メタ)アクリロイル基、エポキシ基、水酸基、カルボキシ基及びアミノ基から選択される1種以上を有するものである、上記[1]~[3]のいずれかに記載の樹脂組成物。
[5]前記(B)成分が、前記反応性基を、1分子中に2個以上有するものである、上記[1]~[4]のいずれかに記載の樹脂組成物。
[6]前記(B)成分が、ジ(メタ)アクリル酸エステルである、上記[1]~[5]のいずれかに記載の樹脂組成物。
[7]前記(A)成分、前記(B)成分及び前記(C)成分の総量(100質量%)に対する、前記(B)成分の含有量が、1~20質量%である、上記[1]~[6]のいずれかに記載の樹脂組成物。
[8]さらに、(D)分子量が1,000を超えるエラストマーを含有する、上記[1]~[7]のいずれかに記載の樹脂組成物。
[9]厚さが80μm以上の樹脂フィルムを形成するために用いられる、上記[1]~[8]のいずれかに記載の樹脂組成物。
[10]上記[1]~[8]のいずれかに記載の樹脂組成物を含有してなる樹脂フィルム。
[11]厚さが80μm以上である、上記[10]に記載の樹脂フィルム。
[12]厚さが150μm以上の樹脂フィルムであって、該樹脂フィルムの硬化物の10GHzにおける誘電率が2.8未満、誘電正接が0.0030未満である、上記[10]に記載の樹脂フィルム。
[13]大気雰囲気下、170℃で30分間加熱乾燥した際における質量減少率が2.0質量%以下である、上記[10]~[12]のいずれかに記載の樹脂フィルム。
[14]上記[10]~[13]のいずれかに記載の樹脂フィルムを含有してなる多層プリント配線板。
[15]上記[10]~[13]のいずれかに記載の樹脂フィルムを含有してなる半導体パッケージ。
[16]前記樹脂フィルムの硬化物に封止された半導体チップを備える、上記[15]に記載の半導体パッケージ。
 本実施形態によれば、硬化物が良好な低熱膨張性を有し、固形の状態で可撓性に優れながらも、加熱硬化中における揮発成分の発生を抑制し得る樹脂組成物、該樹脂組成物を用いた樹脂フィルム、多層プリント配線板及び半導体パッケージを提供することができる。
 本明細書において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
 例えば、数値範囲「X~Y」(X、Yは実数)という表記は、X以上、Y以下である数値範囲を意味する。そして、本明細書における「X以上」という記載は、X及びXを超える数値を意味する。また、本明細書における「Y以下」という記載は、Y及びY未満の数値を意味する。
 本明細書中に記載されている数値範囲の下限値及び上限値は、それぞれ他の数値範囲の下限値又は上限値と任意に組み合わせられる。
 本明細書中に記載されている数値範囲において、その数値範囲の下限値又は上限値は、実施例に示されている値に置き換えてもよい。
 本明細書に例示する各成分及び材料は、特に断らない限り、1種を単独で使用してもよいし、2種以上を併用してもよい。
 本明細書において、樹脂組成物中の各成分の含有量は、樹脂組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、樹脂組成物中に存在する当該複数の物質の合計量を意味する。
 本明細書において「樹脂組成物」とは、少なくとも樹脂を含有する2成分以上の混合物を意味し、樹脂が熱硬化性樹脂である場合は、当該混合物をBステージ状態にしたものも含む。但し、Bステージ状態の樹脂組成物中における各成分の種類及び含有量とは、Bステージ状態にする前における各成分の種類及び含有量、すなわち、樹脂組成物を製造する際に配合した成分の種類及び配合量を意味するものとする。
 本明細書において「固形分」とは、溶媒等の揮発する物質を除いた不揮発分のことであり、樹脂組成物を乾燥させた際に、揮発せずに残る成分を示し、室温で液状、水飴状及びワックス状のものも含む。ここで、本明細書において室温とは25℃を示す。
 本明細書における「(メタ)アクリレート」とは、「アクリレート」及びそれに対応する「メタクリレート」を意味する。同様に「(メタ)アクリル」とは、「アクリル」及びそれに対応する「メタクリル」を意味し、「(メタ)アクリロイル」とは「アクリロイル」及びそれに対応する「メタクリロイル」を意味する。
 本明細書における化合物の「分子量」とは、当該化合物が重合体ではなく、当該化合物の構造式を特定できる場合は、当該構造式から算出できる分子量を意味し、当該化合物が重合体である場合は、数平均分子量を意味する。
 本明細書における数平均分子量は、ゲル浸透クロマトグラフィー(GPC;Gas Permeation Chromatography)によってポリスチレン換算にて測定される値を意味する。具体的には、本明細書における数平均分子量は、実施例に記載される方法によって測定することができる。
 本明細書に記載されている作用機序は推測であって、本実施形態に係る樹脂組成物の効果を奏する機序を限定するものではない。
 本明細書における記載事項を任意に組み合わせた態様も本実施形態に含まれる。
[樹脂組成物]
 本実施形態の樹脂組成物は、
 (A)熱硬化性樹脂と、
 (B)25℃で液体状であって、反応性基を有し、分子量が1,000以下である化合物と、
 (C)無機充填材と、
 を含有する、樹脂組成物である。
 なお、以下の説明において、(A)熱硬化性樹脂を「(A)成分」と称する場合がある。
 また、(B)25℃で液体状であって、反応性基を有し、分子量が1,000以下である化合物を「(B)反応性液状化合物」又は「(B)成分」と称する場合がある。
 また、(C)無機充填材を「(C)成分」と称する場合がある。
 本実施形態において、液体状とは、下記の測定方法で算出される粘度が100,000mPa・s以下であることを意味する。
<粘度の測定方法>
装置:E型粘度計
コーンロータ:1°34’×R24
温度:25℃
サンプル量:1.0mL
回転数:20rpm
 以下、本明細書において、25℃の粘度とは、上記の方法によって測定された粘度を意味する。
 本実施形態の樹脂組成物が、硬化物が良好な低熱膨張性を有し、固形の状態で可撓性に優れながらも、加熱硬化中における揮発成分の発生を抑制し得る理由については、次の通りに推測される。
 本実施形態の樹脂組成物は、樹脂組成物の可撓性を向上させる成分として、(B)25℃で液体状、かつ分子量が1,000以下である化合物を含有する。該(B)反応性液状化合物は、比較的分子量が低い液状成分であるため、樹脂成分の分子間に良好に侵入することができ、樹脂成分の分子間相互作用を効果的に弱めることによって、樹脂組成物の可撓性を向上させることができたと考えられる。
 また、(B)反応性液状化合物は、反応性基を有するため、(A)熱硬化性樹脂の加熱硬化中に、(B)反応性液状化合物同士又は他の成分と反応し得る。すなわち、(B)反応性液状化合物は、可撓性の向上に寄与しながらも、硬化反応によって揮発が抑制されるものである。そのため、本実施形態の樹脂組成物は、可撓性を向上させるための成分として有機溶媒等を使用する場合よりも、揮発成分の発生を抑制しながら可撓性を向上させることができたと考えられる。
 以下、本実施形態の樹脂組成物が含有し得る各成分について順に説明する。
<(A)熱硬化性樹脂>
 本実施形態の樹脂組成物は、(A)熱硬化性樹脂を含有するものである。
 (A)熱硬化性樹脂は、1種を単独で用いてもよく、2種以上を併用してもよい。
 (A)熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、マレイミド樹脂、シアネート樹脂、イソシアネート樹脂、ベンゾオキサジン樹脂、オキセタン樹脂、アミノ樹脂、不飽和ポリエステル樹脂、アリル樹脂、ジシクロペンタジエン樹脂、シリコーン樹脂、トリアジン樹脂、メラミン樹脂等が挙げられる。
 これらの中でも、(A)熱硬化性樹脂としては、耐熱性の観点から、マレイミド樹脂が好ましく、N-置換マレイミド基を1個以上有するマレイミド樹脂及び該マレイミド樹脂の誘導体からなる群から選択される1種以上がより好ましい。
 なお、以下の説明において、「N-置換マレイミド基を1個以上有するマレイミド樹脂及び該マレイミド樹脂の誘導体からなる群から選択される1種以上」を「マレイミド系樹脂」と称する場合がある。
 また、以下の説明で、N-置換マレイミド基を1個以上有するマレイミド樹脂を「マレイミド樹脂(AX)」又は「(AX)成分」と称する場合がある。
 また、N-置換マレイミド基を1個以上有するマレイミド樹脂の誘導体を「マレイミド樹脂誘導体(AY)」又は「(AY)成分」と称する場合がある。
(マレイミド樹脂(AX))
 マレイミド樹脂(AX)は、N-置換マレイミド基を1個以上有するマレイミド樹脂であれば特に限定されない。
 マレイミド樹脂(AX)は、導体接着性及び耐熱性の観点から、N-置換マレイミド基を2個以上有する芳香族マレイミド樹脂であることが好ましく、N-置換マレイミド基を2個以上有する芳香族ビスマレイミド樹脂であることがより好ましい。
 なお、本明細書中、「芳香族マレイミド樹脂」とは、芳香環に直接結合するN-置換マレイミド基を有する化合物を意味する。また、本明細書中、「芳香族ビスマレイミド樹脂」とは、芳香環に直接結合するN-置換マレイミド基を2個有する化合物を意味する。また、本明細書中、「芳香族ポリマレイミド樹脂」とは、芳香環に直接結合するN-置換マレイミド基を3個以上有する化合物を意味する。
 また、本明細書中、「脂肪族マレイミド樹脂」とは、脂肪族炭化水素に直接結合するN-置換マレイミド基を有する化合物を意味する。
 マレイミド樹脂(AX)としては、誘電特性、導体接着性及び耐熱性の観点から、分子構造中に芳香族環と脂肪族環との縮合環を含み、N-置換マレイミド基を2個以上有するマレイミド樹脂[以下、「マレイミド樹脂(A1)」又は「(A1)成分」と称する場合がある。]が好ましい。
〔マレイミド樹脂(A1)〕
 マレイミド樹脂(A1)としては、誘電特性、導体接着性及び耐熱性の観点から、分子構造中に芳香族環と脂肪族環との縮合環を含み、N-置換マレイミド基を2個以上有する芳香族マレイミド樹脂が好ましい。
 また、マレイミド樹脂(A1)としては、分子構造中に芳香族環と脂肪族環との縮合環を含み、N-置換マレイミド基を2個有する芳香族ビスマレイミド樹脂がより好ましい。
 マレイミド樹脂(A1)が含む縮合環は、誘電特性、導体接着性及び製造容易性の観点から、縮合二環式構造を有するものが好ましく、インダン環であることがより好ましい。
 インダン環を含むマレイミド樹脂(A1)としては、インダン環を含む芳香族ビスマレイミド樹脂が好ましい。
 なお、本明細書中、インダン環とは芳香族6員環と飽和脂肪族5員環の縮合二環式構造を意味する。インダン環を形成する環形成炭素原子のうち少なくとも1個の炭素原子は、マレイミド樹脂(A1)を構成する他の基に結合するための結合基を有する。該結合基を有する環形成炭素原子及びその他の環形成炭素原子は上記結合基以外に、結合基、置換基等を有していなくてもよいが、上記以外の結合基を有することによって、2価の基を形成していることが好ましい。
 マレイミド樹脂(A1)において、インダン環は、下記一般式(A1-1)で表される2価の基として含まれることが好ましい。
Figure JPOXMLDOC01-appb-C000001

(式中、Ra1は、炭素数1~10のアルキル基、炭素数1~10のアルキルオキシ基、炭素数1~10のアルキルチオ基、炭素数6~10のアリール基、炭素数6~10のアリールオキシ基、炭素数6~10のアリールチオ基、炭素数3~10のシクロアルキル基、ハロゲン原子、水酸基又はメルカプト基である。na1は0~3の整数である。Ra2~Ra4は、各々独立に、炭素数1~10のアルキル基である。*は結合部位を表す。)
 上記一般式(A1-1)中のRa1で表される炭素数1~10のアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等が挙げられる。これらのアルキル基は、直鎖状又は分岐鎖状のいずれであってもよい。
 Ra1で表される炭素数1~10のアルキルオキシ基、炭素数1~10のアルキルチオ基に含まれるアルキル基としては、上記炭素数1~10のアルキル基と同じものが挙げられる。
 Ra1で表される炭素数6~10のアリール基としては、例えば、フェニル基、ナフチル基等が挙げられる。
 Ra1で表される炭素数6~10のアリールオキシ基及び炭素数6~10のアリールチオ基に含まれるアリール基としては、上記炭素数6~10のアリール基と同じものが挙げられる。
 Ra1で表される炭素数3~10のシクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基等が挙げられる。
 上記一般式(A1-1)中のna1が1~3の整数である場合、Ra1は、溶媒溶解性及び反応性の観点から、炭素数1~4のアルキル基、炭素数3~6のシクロアルキル基、炭素数6~10のアリール基が好ましく、炭素数1~4のアルキル基がより好ましい。
 Ra2~Ra4で表される炭素数1~10のアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等が挙げられる。これらのアルキル基は、直鎖状又は分岐鎖状のいずれであってもよい。これらの中でも、Ra2~Ra4は、炭素数1~4のアルキル基が好ましく、メチル基、エチル基がより好ましく、メチル基がさらに好ましい。
 上記一般式(A1-1)中のna1は、0~3の整数であり、na1が2又は3である場合、複数のRa1同士は、同一であってもよいし、異なっていてもよい。
 以上の中でも、上記一般式(A1-1)で表される2価の基は、製造容易性の観点から、na1が0であり、Ra2~Ra4がメチル基である、下記式(A1-1a)で表される2価の基が好ましく、下記式(A1-1a’)で表される2価の基、下記式(A1-1a’’)で表される2価がより好ましい。
Figure JPOXMLDOC01-appb-C000002

(式中、*は結合部位を表す。)
 上記一般式(A1-1)で表される2価の基を含むマレイミド樹脂(A1)としては、誘電特性、導体接着性、耐熱性及び製造容易性の観点から、下記一般式(A1-2)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000003

(式中、Ra1~Ra4及びna1は、上記一般式(A1-1)中のものと同じである。Ra5は、各々独立に、炭素数1~10のアルキル基、炭素数1~10のアルキルオキシ基、炭素数1~10のアルキルチオ基、炭素数6~10のアリール基、炭素数6~10のアリールオキシ基、炭素数6~10のアリールチオ基、炭素数3~10のシクロアルキル基、ハロゲン原子、ニトロ基、水酸基又はメルカプト基である。na2は、各々独立に、0~4の整数である。na3は、0.95~10.0の数である。)
 上記一般式(A1-2)中、複数のRa1同士、複数のna1同士、複数のRa5同士、複数のna2同士は、各々について、同一であってもよいし、異なっていてもよい。
 na3が1を超える場合、複数のRa2同士、複数のRa3同士及び複数のRa4同士は、各々について、同一であってもよいし、異なっていてもよい。
 上記一般式(A1-2)中のRa5が表す炭素数1~10のアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等が挙げられる。これらのアルキル基は、直鎖状又は分岐鎖状のいずれであってもよい。
 Ra5で表される炭素数1~10のアルキルオキシ基、炭素数1~10のアルキルチオ基に含まれるアルキル基としては、上記炭素数1~10のアルキル基と同じものが挙げられる。
 Ra5で表される炭素数6~10のアリール基としては、例えば、フェニル基、ナフチル基等が挙げられる。
 Ra5で表される炭素数6~10のアリールオキシ基及び炭素数6~10のアリールチオ基に含まれるアリール基としては、上記炭素数6~10のアリール基と同じものが挙げられる。
 Ra5で表される炭素数3~10のシクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基等が挙げられる。
 これらの中でも、Ra5は、溶媒溶解性及び製造容易性の観点から、炭素数1~4のアルキル基、炭素数3~6のシクロアルキル基、炭素数6~10のアリール基が好ましく、炭素数1~3のアルキル基がより好ましく、メチル基がさらに好ましい。
 上記一般式(A1-2)中のna2は、0~4の整数であり、他の樹脂との相容性、誘電特性、導体接着性及び製造容易性の観点から、好ましくは1~3の整数、より好ましくは2又は3、さらに好ましくは2である。
 なお、na2が1以上であることによって、ベンゼン環とN-置換マレイミド基とがねじれた配座を有するものになり、分子間のスタッキング抑制によって溶媒溶解性がより向上する傾向にある。分子間のスタッキングを抑制するという観点から、na2が1以上である場合、Ra5の置換位置は、N-置換マレイミド基に対してオルト位であることが好ましい。
 上記一般式(A1-2)中のna3は、誘電特性、導体接着性、溶媒溶解性、ハンドリング性及び耐熱性の観点から、好ましくは0.98~8.0の数、より好ましくは1.0~7.0の数、さらに好ましくは1.1~6.0の数である。なお、na3は、インダン環を含む構造単位の数の平均値を表す。
 上記一般式(A1-2)で表されるマレイミド樹脂(A1)は、誘電特性、導体接着性、溶媒溶解性及び製造容易性の観点から、下記一般式(A1-3)で表されるもの、又は、下記一般式(A1-4)で表されるものであることがより好ましい。
Figure JPOXMLDOC01-appb-C000004
(式中、Ra1~Ra5及びna1及びna3は、上記一般式(A1-2)中のものと同じである。)
Figure JPOXMLDOC01-appb-I000005

(式中、Ra1~Ra4及びna1及びna3は、上記一般式(A1-2)中のものと同じである。)
 上記一般式(A1-3)で表されるマレイミド樹脂(A1)としては、例えば、下記一般式(A1-3-1)で表されるマレイミド樹脂、下記一般式(A1-3-2)で表されるマレイミド樹脂、下記一般式(A1-3-3)で表されるマレイミド樹脂等が挙げられる。
Figure JPOXMLDOC01-appb-C000006

(式中、na3は、上記一般式(A1-2)中のものと同じである。)
 上記一般式(A1-4)で表されるマレイミド樹脂(A1)は、誘電特性、導体接着性、溶媒溶解性及び製造容易性の観点から、下記一般式(A1-4-1)で表されるものであることがより好ましい。
Figure JPOXMLDOC01-appb-C000007

(式中、na3は、上記一般式(A1-2)中のものと同じである。)
 マレイミド樹脂(A1)の数平均分子量は、特に限定されないが、他の樹脂との相容性、導体接着性及び耐熱性の観点から、好ましくは600~3,000、より好ましくは800~2,000、さらに好ましくは1,000~1,500である。
 マレイミド樹脂(A1)は、例えば、芳香族環と脂肪族環との縮合環を含む中間体アミン化合物[以下、単に「中間体アミン化合物」と略称する場合がある。]と無水マレイン酸とを反応[以下、「マレイミド化反応」と称する場合がある。]させる方法によって製造することができる。
 以下、芳香族環と脂肪族環との縮合環としてインダン環を含むマレイミド樹脂を例に、マレイミド樹脂(A1)の製造方法を説明する。
 インダン環を含むマレイミド樹脂の中間体アミン化合物は、例えば、下記一般式(A1-5)で表される化合物[以下、「化合物A」と称する場合がある。]と、下記一般式(A1-6)で表される化合物[以下、「化合物B」と称する場合がある。]とを、酸触媒存在下で反応[以下、「環化反応」と称する場合がある。]させることによって、下記一般式(A1-7)で表される化合物として得ることができる。
Figure JPOXMLDOC01-appb-C000008

(式中、Ra1及びna1は、上記一般式(A1-1)中のものと同じである。Ra6は、各々独立に、上記式(A1-5-1)又は上記式(A1-5-2)で表される基であり、2つのRa6の少なくとも一方のRa6のオルト位が水素原子である。)
Figure JPOXMLDOC01-appb-C000009

(式中、Ra5及びna2は、上記一般式(A1-2)中のものと同じである。但し、アミノ基のオルト位及びパラ位のうち、少なくとも1つは水素原子である。)
Figure JPOXMLDOC01-appb-C000010
(式中、Ra1、Ra5及びna1~na3は、上記一般式(A1-2)中のものと同じである。)
 化合物Aとしては、例えば、p-又はm-ジイソプロペニルベンゼン、p-又はm-ビス(α-ヒドロキシイソプロピル)ベンゼン、1-(α-ヒドロキシイソプロピル)-3-イソプロペニルベンゼン、1-(α-ヒドロキシイソプロピル)-4-イソプロペニルベンゼン、これらの混合物、これらの化合物の核アルキル基置換体、これらの化合物の核ハロゲン置換体等が挙げられる。
 上記核アルキル基置換体としては、例えば、ジイソプロペニルトルエン、ビス(α-ヒドロキシイソプロピル)トルエン等が挙げられる。
 上記核ハロゲン置換体としては、例えば、クロロジイソプロペニルベンゼン、クロロビス(α-ヒドロキシイソプロピル)ベンゼン等が挙げられる。
 これらの化合物Aは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 化合物Bとしては、例えば、アニリン、ジメチルアニリン、ジエチルアニリン、ジイソプロピルアニリン、エチルメチルアニリン、シクロブチルアニリン、シクロペンチルアニリン、シクロヘキシルアニリン、クロロアニリン、ジクロロアニリン、トルイジン、キシリジン、フェニルアニリン、ニトロアニリン、アミノフェノール、メトキシアニリン、エトキシアニリン、フェノキシアニリン、ナフトキシアニリン、アミノチオール、メチルチオアニリン、エチルチオアニリン、フェニルチオアニリン等が挙げられる。これらの化合物Bは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 環化反応は、例えば、化合物A及び化合物Bを、両者のモル比(化合物B/化合物A)が、好ましくは0.1~2.0、より好ましくは0.15~1.5、さらに好ましくは0.2~1.0となる比率で仕込み、1段階目の反応を行う。
 次いで、さらに追加する化合物Bを、先に加えた化合物Aに対するモル比(追加する化合物B/化合物A)で、好ましくは0.5~20、より好ましくは0.6~10、さらに好ましくは0.7~5となる比率で加え、2段階目の反応を行うことが好ましい。
 環化反応に用いる酸触媒としては、例えば、リン酸、塩酸、硫酸等の無機酸;シュウ酸、ベンゼンスルホン酸、トルエンスルホン酸、メタンスルホン酸、フルオロメタンスルホン酸等の有機酸;活性白土、酸性白土、シリカアルミナ、ゼオライト、強酸性イオン交換樹脂等の固体酸;ヘテロポリ塩酸などが挙げられる。これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 酸触媒の配合量は、反応速度及び反応均一性の観点から、最初に仕込む化合物A及び化合物Bの総量100質量部に対して、好ましくは5~40質量部、より好ましくは5~35質量部、さらに好ましくは5~30質量部である。
 環化反応の反応温度は、反応速度及び反応均一性の観点から、好ましくは100~300℃、より好ましくは130~250℃、さらに好ましくは150~230℃である。
 環化反応の反応時間は、生産性及び十分に反応を進行させるという観点から、好ましくは2~24時間、より好ましくは4~16時間、さらに好ましくは8~12時間である。
 但し、これらの反応条件は、使用する原料の種類等に応じて適宜調整することができ、特に限定されない。
 なお、環化反応の際、必要に応じて、トルエン、キシレン、クロロベンゼン等の溶媒を用いてもよい。また、環化反応の際、副生成物として水が生成する場合は、共沸脱水可能な溶媒を使用することによって、脱水反応を促進させてもよい。
 次に、上記で得られた中間体アミン化合物を、有機溶媒中で無水マレイン酸と反応させることによって、中間体アミン化合物が有する第1級アミノ基をマレイミド基とするマレイミド化反応を行う。このマレイミド化反応を行うことによってマレイミド樹脂(A1)を得ることができる。
 マレイミド化反応における中間体アミン化合物の第1級アミノ基当量に対する無水マレイン酸の当量比(無水マレイン酸/第1級アミノ基)は、特に限定されないが、未反応の第1級アミノ基の量及び未反応の無水マレイン酸の量を低減するという観点から、好ましくは1.0~1.5、より好ましくは1.05~1.3、さらに好ましくは1.1~1.2である。
 マレイミド化反応における有機溶媒の使用量は、特に限定されないが、反応速度及び反応均一性の観点から、中間体アミン化合物と無水マレイン酸の総量100質量部に対して、好ましくは50~5,000質量部、より好ましくは70~2,000質量部、さらに好ましくは100~500質量部である。
 マレイミド化反応は、中間体アミン化合物と無水マレイン酸とを2段階で反応させることが好ましい。
 1段階目の反応における反応温度は、好ましくは10~100℃、より好ましくは20~70℃、さらに好ましくは30~50℃である。
 1段階目の反応における反応時間は、好ましくは0.5~12時間、より好ましくは0.7~8時間、さらに好ましくは1~4時間である。
 2段階目の反応は、1段階目の反応終了後、トルエンスルホン酸等の触媒を加えてから実施することが好ましい。
 2段階目の反応における反応温度は、好ましくは90~130℃、より好ましくは100~125℃、さらに好ましくは105~120℃である。
 2段階目の反応における反応時間は、好ましくは2~24時間、より好ましくは4~15時間、さらに好ましくは6~10時間である。
 但し、上記の反応条件は、使用する原料の種類等に応じて適宜調整することができ、特に限定されない。
 反応後、必要に応じて、水洗等の精製を行うことによって、未反応の原料、他の不純物等を除去してもよい。
 上記の方法によって得られたマレイミド樹脂(A1)は、副生成物として、インダン環を含まないマレイミド樹脂を含有する場合がある。インダン環を含まないマレイミド樹脂としては、例えば、上記一般式(A1-2)中におけるna3が0である化合物である。
 反応生成物中における副生成物であるインダン環を含まないマレイミド樹脂の含有量は、例えば、反応生成物のGPCを測定することによって、測定することができる。具体的には、例えば、上記一般式(A1-2)中のna3が0~4である化合物を各々用いてna3の数に対する溶出時間の検量線を作成した上で、反応生成物のGPCチャートに見られるピークの溶出時間から反応生成物に含まれる化合物のna3の数及びその平均値を把握することができる。また、各々のピークの面積比によって、該ピークが表すna3の数を有する化合物の含有割合を把握することができる。
 マレイミド樹脂(A1)は、副生成物としてのインダン環を含まないマレイミド樹脂の含有量が小さいものが好ましい。そのため、上記反応生成物のGPCチャートにおいて、反応生成物全体のピーク面積に対する、副生成物としてのインダン環を含まないマレイミド樹脂の面積割合は、好ましくは40%以下、より好ましくは30%以下、さらに好ましくは20%以下、特に好ましくは10%以下である。
 マレイミド樹脂(AX)は、上記したマレイミド樹脂(A1)以外のマレイミド樹脂(A2)[以下、「マレイミド樹脂(A2)」又は「(A2)成分」と称する場合がある。]であってもよい。
〔マレイミド樹脂(A2)〕
 マレイミド樹脂(A2)としては、下記一般式(A2-1)で表されるマレイミド樹脂が好ましい。
Figure JPOXMLDOC01-appb-C000011

(式中、Xa11は、芳香族環と脂肪族環との縮合環を含まない2価の有機基である。)
 上記一般式(A2-1)中のXa11は、芳香族環と脂肪族環との縮合環を含まない2価の有機基である。
 上記一般式(A2-1)中のXa11が表す2価の有機基としては、例えば、下記一般式(A2-2)で表される2価の基、下記一般式(A2-3)で表される2価の基、下記一般式(A2-4)で表される2価の基、下記一般式(A2-5)で表される2価の基、下記一般式(A2-6)で表される2価の基等が挙げられる。
Figure JPOXMLDOC01-appb-C000012

(式中、Ra11は、炭素数1~5の脂肪族炭化水素基又はハロゲン原子である。na11は0~4の整数である。*は結合部位を表す。)
 上記一般式(A2-2)中のRa11が表す炭素数1~5の脂肪族炭化水素基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基等の炭素数1~5のアルキル基;炭素数2~5のアルケニル基、炭素数2~5のアルキニル基などが挙げられる。炭素数1~5の脂肪族炭化水素基は、直鎖状又は分岐鎖状のいずれであってもよい。該炭素数1~5の脂肪族炭化水素基としては、炭素数1~3の脂肪族炭化水素基が好ましく、炭素数1~3のアルキル基がより好ましく、メチル基がさらに好ましい。
 ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 上記一般式(A2-2)中のna11は0~4の整数であり、入手容易性の観点から、好ましくは0~2の整数、より好ましくは0又は1、さらに好ましくは0である。
 na11が2以上の整数である場合、複数のRa11同士は、同一であってもよいし、異なっていてもよい。
Figure JPOXMLDOC01-appb-C000013

(式中、Ra12及びRa13は、各々独立に、炭素数1~5の脂肪族炭化水素基又はハロゲン原子である。Xa12は炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基、エーテル基、スルフィド基、スルホニル基、カルボニルオキシ基、ケト基、単結合、又は下記一般式(A2-3-1)で表される2価の基である。na12及びna13は、各々独立に、0~4の整数である。*は結合部位を表す。)
 上記一般式(A2-3)中のRa12及びRa13が表す炭素数1~5の脂肪族炭化水素基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基等の炭素数1~5のアルキル基;炭素数2~5のアルケニル基、炭素数2~5のアルキニル基などが挙げられる。炭素数1~5の脂肪族炭化水素基は、直鎖状又は分岐鎖状のいずれであってもよい。該炭素数1~5の脂肪族炭化水素基としては、他の樹脂との相容性及び反応中における生成物のゲル化抑制の観点から、炭素数1~3の脂肪族炭化水素基が好ましく、炭素数1~3のアルキル基がより好ましく、メチル基、エチル基がさらに好ましい。
 ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 上記一般式(A2-3)中のXa12が表す炭素数1~5のアルキレン基としては、例えば、メチレン基、1,2-ジメチレン基、1,3-トリメチレン基、1,4-テトラメチレン基、1,5-ペンタメチレン基等が挙げられる。該炭素数1~5のアルキレン基としては、炭素数1~3のアルキレン基が好ましく、炭素数1又は2のアルキレン基がより好ましく、メチレン基がさらに好ましい。
 上記一般式(A2-3)中のXa12が表す炭素数2~5のアルキリデン基としては、例えば、エチリデン基、プロピリデン基、イソプロピリデン基、ブチリデン基、イソブチリデン基、ペンチリデン基、イソペンチリデン基等が挙げられる。これらの中でも、炭素数2~4のアルキリデン基が好ましく、炭素数2又は3のアルキリデン基がより好ましく、イソプロピリデン基がさらに好ましい。
 上記一般式(A2-3)中のna12及びna13は、各々独立に、0~4の整数であり、いずれも、入手容易性、他の樹脂との相容性及び反応中における生成物のゲル化抑制の観点から、好ましくは1~3の整数、より好ましくは1又は2、さらに好ましくは2である。
 na12+na13は、入手容易性、他の樹脂との相容性及び反応中における生成物のゲル化抑制の観点から、好ましくは1~8の整数、より好ましくは2~6の整数、さらに好ましくは4である。
 na12又はna13が2以上の整数である場合、複数のRa12同士又は複数のRa13同士は、それぞれ同一であってもよいし、異なっていてもよい。
 上記一般式(A2-3)中のXa12が表す一般式(A2-3-1)で表される2価の基は以下のとおりである。
Figure JPOXMLDOC01-appb-C000014

(式中、Ra14及びRa15は、各々独立に、炭素数1~5の脂肪族炭化水素基又はハロゲン原子である。Xa13は炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基、エーテル基、スルフィド基、スルホニル基、カルボニルオキシ基、ケト基又は単結合である。na14及びna15は、各々独立に、0~4の整数である。*は結合部位を表す。)
 上記一般式(A2-3-1)中のRa14及びRa15が表す炭素数1~5の脂肪族炭化水素基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基等の炭素数1~5のアルキル基;炭素数2~5のアルケニル基、炭素数2~5のアルキニル基などが挙げられる。炭素数1~5の脂肪族炭化水素基は、直鎖状又は分岐鎖状のいずれであってもよい。該炭素数1~5の脂肪族炭化水素基としては、炭素数1~3の脂肪族炭化水素基が好ましく、炭素数1~3のアルキル基がより好ましく、メチル基がさらに好ましい。
 ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 上記一般式(A2-3-1)中のXa13が表す炭素数1~5のアルキレン基としては、例えば、メチレン基、1,2-ジメチレン基、1,3-トリメチレン基、1,4-テトラメチレン基、1,5-ペンタメチレン基等が挙げられる。該炭素数1~5のアルキレン基としては、炭素数1~3のアルキレン基が好ましく、炭素数1又は2のアルキレン基がより好ましく、メチレン基がさらに好ましい。
 上記一般式(A2-3-1)中のXa13が表す炭素数2~5のアルキリデン基としては、例えば、エチリデン基、プロピリデン基、イソプロピリデン基、ブチリデン基、イソブチリデン基、ペンチリデン基、イソペンチリデン基等が挙げられる。これらの中でも、炭素数2~4のアルキリデン基が好ましく、炭素数2又は3のアルキリデン基がより好ましく、イソプロピリデン基がさらに好ましい。
 上記一般式(A2-3-1)中のXa13としては、上記選択肢の中でも、炭素数2~5のアルキリデン基が好ましく、炭素数2~4のアルキリデン基がより好ましく、イソプロピリデン基がさらに好ましい。
 上記一般式(A2-3-1)中のna14及びna15は、各々独立に、0~4の整数であり、入手容易性の観点から、いずれも、好ましくは0~2の整数、より好ましくは0又は1、さらに好ましくは0である。
 na14又はna15が2以上の整数である場合、複数のRa14同士又は複数のRa15同士は、それぞれ同一であってもよいし、異なっていてもよい。
 上記一般式(A2-3)中のXa12としては、上記選択肢の中でも、炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基、上記一般式(A2-3-1)で表される2価の基が好ましく、炭素数1~5のアルキレン基がより好ましく、メチレン基がさらに好ましい。
Figure JPOXMLDOC01-appb-C000015

(式中、na16は0~10の整数である。*は結合部位を表す。)
 上記一般式(A2-4)中のna16は、入手容易性の観点から、好ましくは0~5の整数、より好ましくは0~4の整数、さらに好ましくは0~3の整数である。
Figure JPOXMLDOC01-appb-C000016

(式中、na17は0~5の数である。*は結合部位を表す。)
Figure JPOXMLDOC01-appb-C000017

(式中、Ra16及びRa17は、各々独立に、水素原子又は炭素数1~5の脂肪族炭化水素基である。na18は1~8の整数である。*は結合部位を表す。)
 上記一般式(A2-6)中のRa16及びRa17が表す炭素数1~5の脂肪族炭化水素基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基等の炭素数1~5のアルキル基;炭素数2~5のアルケニル基、炭素数2~5のアルキニル基などが挙げられる。炭素数1~5の脂肪族炭化水素基は、直鎖状又は分岐鎖状のいずれであってもよい。
 上記一般式(A2-6)中のna18は1~8の整数であり、好ましくは1~5の整数、より好ましくは1~3の整数、さらに好ましくは1である。na18が2以上の整数である場合、複数のRa16同士又は複数のRa17同士は、それぞれ同一であってもよいし、異なっていてもよい。
 マレイミド樹脂(A2)としては、例えば、芳香族ビスマレイミド樹脂、芳香族ポリマレイミド樹脂、脂肪族マレイミド樹脂等が挙げられる。
 マレイミド樹脂(A2)の具体例としては、N,N’-エチレンビスマレイミド、N,N’-ヘキサメチレンビスマレイミド、N,N’-(1,3-フェニレン)ビスマレイミド、N,N’-[1,3-(2-メチルフェニレン)]ビスマレイミド、N,N’-[1,3-(4-メチルフェニレン)]ビスマレイミド、N,N’-(1,4-フェニレン)ビスマレイミド、ビス(4-マレイミドフェニル)メタン、ビス(3-メチル-4-マレイミドフェニル)メタン、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド、ビス(4-マレイミドフェニル)エーテル、ビス(4-マレイミドフェニル)スルホン、ビス(4-マレイミドフェニル)スルフィド、ビス(4-マレイミドフェニル)ケトン、ビス(4-マレイミドシクロヘキシル)メタン、1,4-ビス(4-マレイミドフェニル)シクロヘキサン、1,4-ビス(マレイミドメチル)シクロヘキサン、1,4-ビス(マレイミドメチル)ベンゼン、1,3-ビス(4-マレイミドフェノキシ)ベンゼン、1,3-ビス(3-マレイミドフェノキシ)ベンゼン、ビス[4-(3-マレイミドフェノキシ)フェニル]メタン、ビス[4-(4-マレイミドフェノキシ)フェニル]メタン、1,1-ビス[4-(3-マレイミドフェノキシ)フェニル]エタン、1,1-ビス[4-(4-マレイミドフェノキシ)フェニル]エタン、1,2-ビス[4-(3-マレイミドフェノキシ)フェニル]エタン、1,2-ビス[4-(4-マレイミドフェノキシ)フェニル]エタン、2,2-ビス[4-(3-マレイミドフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-マレイミドフェノキシ)フェニル]ブタン、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]ブタン、2,2-ビス[4-(3-マレイミドフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、4,4-ビス(3-マレイミドフェノキシ)ビフェニル、4,4-ビス(4-マレイミドフェノキシ)ビフェニル、ビス[4-(3-マレイミドフェノキシ)フェニル]ケトン、ビス[4-(4-マレイミドフェノキシ)フェニル]ケトン、ビス(4-マレイミドフェニル)ジスルフィド、ビス[4-(3-マレイミドフェノキシ)フェニル]スルフィド、ビス[4-(4-マレイミドフェノキシ)フェニル]スルフィド、ビス[4-(3-マレイミドフェノキシ)フェニル]スルホキシド、ビス[4-(4-マレイミドフェノキシ)フェニル]スルホキシド、ビス[4-(3-マレイミドフェノキシ)フェニル]スルホン、ビス[4-(4-マレイミドフェノキシ)フェニル]スルホン、ビス[4-(3-マレイミドフェノキシ)フェニル]エーテル、ビス[4-(4-マレイミドフェノキシ)フェニル]エーテル、1,4-ビス[4-(4-マレイミドフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-マレイミドフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,4-ビス[4-(3-マレイミドフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(3-マレイミドフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,4-ビス[4-(4-マレイミドフェノキシ)-3,5-ジメチル-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-マレイミドフェノキシ)-3,5-ジメチル-α,α-ジメチルベンジル]ベンゼン、1,4-ビス[4-(3-マレイミドフェノキシ)-3,5-ジメチル-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(3-マレイミドフェノキシ)-3,5-ジメチル-α,α-ジメチルベンジル]ベンゼン、ポリフェニルメタンマレイミド等が挙げられる。
(マレイミド樹脂誘導体(AY))
 マレイミド樹脂誘導体(AY)としては、上記したマレイミド樹脂(AX)由来の構造単位と、ジアミン化合物由来の構造単位とを有するアミノマレイミド樹脂[以下、「アミノマレイミド樹脂(A3)」又は「(A3)成分」と称する場合がある。]が好ましい。
〔アミノマレイミド樹脂(A3)〕
 アミノマレイミド樹脂(A3)は、マレイミド樹脂(AX)由来の構造単位とジアミン化合物[以下、「ジアミン化合物(a)」又は「(a)成分」と称する場合がある。]由来の構造単位とを有する。
《マレイミド樹脂(AX)由来の構造単位》
 マレイミド樹脂(AX)由来の構造単位としては、例えば、マレイミド樹脂(AX)が有するN-置換マレイミド基のうち、少なくとも1つのN-置換マレイミド基が、ジアミン化合物が有するアミノ基とマイケル付加反応してなる構造単位が挙げられる。
 アミノマレイミド樹脂(A3)中に含まれるマレイミド樹脂(AX)由来の構造単位は、1種単独であってもよく、2種以上であってもよい。
 アミノマレイミド樹脂(A3)中におけるマレイミド樹脂(AX)由来の構造単位の含有量は、特に限定されないが、好ましくは5~95質量%、より好ましくは30~93質量%、さらに好ましくは60~90質量%である。アミノマレイミド樹脂(A3)中におけるマレイミド樹脂(AX)由来の構造単位の含有量が上記範囲内であると、誘電特性及びフィルムハンドリング性がより良好になる傾向にある。
《ジアミン化合物(a)由来の構造単位》
 ジアミン化合物(a)由来の構造単位としては、例えば、ジアミン化合物(a)が有する2個のアミノ基のうち、一方又は両方のアミノ基が、マレイミド樹脂(AX)が有するN-置換マレイミド基とマイケル付加反応してなる構造単位が挙げられる。
 アミノマレイミド樹脂(A3)中に含まれるジアミン化合物(a)由来の構造単位は、1種単独であってもよく、2種以上であってもよい。
 アミノマレイミド樹脂(A3)中におけるジアミン化合物(a)由来の構造単位の含有量は、特に限定されないが、好ましくは5~95質量%、より好ましくは7~70質量%、さらに好ましくは10~40質量%である。アミノマレイミド樹脂(A3)中におけるジアミン化合物(a)由来の構造単位の含有量が上記範囲内であると、誘電特性、耐熱性、難燃性及びガラス転移温度がより良好になる傾向にある。
 ジアミン化合物(a)としては、例えば、特開2020-200406号公報に挙げられている1分子中に少なくとも2個の1級アミノ基を有するアミン化合物と同様のものを用いることができる。
 ジアミン化合物(a)の具体例としては、4,4’-ジアミノジフェニルメタン、3,3’-ジメチル-4,4’-ジアミノジフェニルメタン、3,3’-ジエチル-4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルケトン、4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシベンジジン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジアミノジフェニルメタン、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、1,3-ビス〔1-[4-(4-アミノフェノキシ)フェニル]-1-メチルエチル〕ベンゼン、1,4-ビス〔1-[4-(4-アミノフェノキシ)フェニル]-1-メチルエチル〕ベンゼン、4,4’-[1,3-フェニレンビス(1-メチルエチリデン)]ビスアニリン、4,4’-[1,4-フェニレンビス(1-メチルエチリデン)]ビスアニリン、3,3’-[1,3-フェニレンビス(1-メチルエチリデン)]ビスアニリン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、9,9-ビス(4-アミノフェニル)フルオレン等が挙げられる。
 アミノマレイミド樹脂(A3)中における、ジアミン化合物(a)の-NH基由来の基(-NHも含む)の合計当量(Ta2)と、マレイミド樹脂(AX)のN-置換マレイミド基由来の基の合計当量(Ta1)との当量比(Ta2/Ta1)は、特に限定されないが、誘電特性、耐熱性、難燃性及びガラス転移温度の観点から、好ましくは0.05~10、より好ましくは0.5~7、さらに好ましくは1~5である。なお、上記ジアミン化合物(a)の-NH基由来の基とは、-NH自体も含めるものとする。また、上記マレイミド樹脂(AX)のN-置換マレイミド基由来の基とは、N-置換マレイミド基自体も含めるものとする。
 アミノマレイミド樹脂(A3)の数平均分子量は、特に限定されないが、取り扱い性及び成形性の観点から、好ましくは400~10,000、より好ましくは500~5,000、さらに好ましくは600~2,000である。
 アミノマレイミド樹脂(A3)は、例えば、特開2020-200406号公報の「(A)変性マレイミド樹脂の製造方法」に記載の方法によって製造することができる。
 上記で説明した(A)熱硬化性樹脂の中でも、誘電特性、導体接着性及び耐熱性の観点から、(A)熱硬化性樹脂は、分子構造中に芳香族環と脂肪族環との縮合環を含み、N-置換マレイミド基を2個以上有するマレイミド樹脂が好ましい。
 (A)熱硬化性樹脂は、上記の方法によって測定される25℃における粘度が、100,000mPa・s超であるものが好ましく、25℃で固体状であるものがより好ましい。
((A)熱硬化性樹脂の含有量)
 本実施形態の樹脂組成物において、(A)熱硬化性樹脂の含有量は、特に限定されないが、本実施形態の樹脂組成物中の樹脂成分の総量(100質量%)に対して、好ましくは5~60質量%、より好ましくは10~40質量%、さらに好ましくは15~25質量%である。
 (A)熱硬化性樹脂の含有量が上記下限値以上であると、耐熱性、成形性、加工性及び導体接着性がより良好になる傾向にある。また、(A)熱硬化性樹脂の含有量が上記上限値以下であると、誘電特性がより良好になる傾向にある。
 ここで、本明細書において、「樹脂成分」とは、樹脂及び硬化反応によって樹脂を形成する化合物を意味する。
 例えば、本実施形態の樹脂組成物においては、(A)熱硬化性樹脂及び(B)反応性液状化合物が樹脂成分に相当する。
 本実施形態の樹脂組成物が、任意成分として、上記成分以外に樹脂又は硬化反応によって樹脂を形成する化合物を含有する場合、これらの任意成分も樹脂成分に含まれる。樹脂成分に相当する任意成分としては、後述する、(D)分子量が1,000を超えるエラストマー、(E)硬化促進剤等が挙げられる。
 一方、(C)無機充填材は、樹脂成分には含まれないものとする。
 本実施形態の樹脂組成物中における樹脂成分の含有量は、特に限定されないが、低熱膨張性、耐熱性、難燃性及び導体接着性の観点から、本実施形態の樹脂組成物の固形分総量(100質量%)に対して、好ましくは5~80質量%、より好ましくは10~60質量%、さらに好ましくは20~40質量%である。
 (A)熱硬化性樹脂中における上記マレイミド系樹脂の含有量は、特に限定されないが、(A)熱硬化性樹脂の総量(100質量%)に対して、好ましくは80~100質量%、より好ましくは90~100質量%、さらに好ましくは95~100質量%である。
 マレイミド系樹脂の含有量が上記下限値以上であると、耐熱性、成形性、加工性及び導体接着性がより良好になる傾向にある。また、マレイミド系樹脂の含有量が上記上限値以下であると、誘電特性がより良好になる傾向にある。
<(B)反応性液状化合物>
 (B)反応性液状化合物は、25℃で液体状であって、反応性基を有し、分子量が1,000以下である化合物であれば、特に限定されない。
 (B)反応性液状化合物は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 (B)反応性液状化合物は、反応性基を、1分子中に2個以上有するものが好ましく、2~5個有するものがより好ましく、2~4個有するものがさらに好ましく、2個又は3個有するものが特に好ましい。
 反応性基の数が上記範囲内であると、加熱硬化中における揮発がより効果的に抑制されながらも、優れた可撓性が得られ易い傾向にある。
 (B)反応性液状化合物の分子量は、1,000以下であり、好ましくは100~800、より好ましくは150~600、さらに好ましくは200~400である。
 (B)反応性液状化合物の分子量が、上記下限値以上であると、樹脂組成物を加熱硬化する前に(B)反応性液状化合物が揮発することを抑制し易い傾向にある。また、(B)反応性液状化合物の分子量が、上記上限値以下であると、より優れた可撓性が得られ易い傾向にある。
 (B)反応性液状化合物の25℃における粘度は、好ましくは1~5,000mPa・s、より好ましくは2~1,000mPa・s、さらに好ましくは4~500mPa・sである。
 (B)反応性液状化合物の25℃における粘度が、上記下限値以上であると、(B)反応性液状化合物が揮発することを抑制し易い傾向にある。また、(B)反応性液状化合物の25℃における粘度が、上記上限値以下であると、より優れた可撓性が得られ易い傾向にある。
 (B)反応性液状化合物の25℃における粘度は、上記した測定方法によって測定することができる。
 (B)反応性液状化合物は、上記反応性基として、ビニル基、アリル基、マレイミド基、(メタ)アクリロイル基、エポキシ基、水酸基、カルボキシ基及びアミノ基から選択される1種以上を有するものが好ましい。これらの中でも、反応性基は、(メタ)アクリロイル基、エポキシ基がより好ましく、より優れた誘電特性が得られ易いという観点から、(メタ)アクリロイル基がさらに好ましい。
 反応性基として(メタ)アクリロイル基を有する(B)反応性液状化合物の具体例としては、例えば、モノ(メタ)アクリル酸エステル、ジ(メタ)アクリル酸エステル、3官能以上の(メタ)アクリル酸エステル等の(メタ)アクリル酸エステルが挙げられる。
 モノ(メタ)アクリル酸エステルとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ドデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、シクロペンチル(メタ)アクリレート、ベンジル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、メトキシエチル(メタ)アクリレート、エトキシエチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等が挙げられる。
 ジ(メタ)アクリル酸エステルとしては、例えば、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、トリシクロデカンジ(メタ)アクリレート、1,12-ドデカンジオールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エトキシ化ビスフェノールAジ(メタ)アクリレート、エトキシ化ビスフェノールFジ(メタ)アクリレート、ジオキサングリコールジ(メタ)アクリレート等が挙げられる。
 ジオキサングリコールジ(メタ)アクリレートとしては、例えば、アクリル酸2-[5-エチル-5-[(アクリロイルオキシ)メチル]-1,3-ジオキサン-2-イル]-2,2-ジメチルエチル等が挙げられる。
 3官能以上の(メタ)アクリル酸エステルとしては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。
 上記選択肢の中でも、(メタ)アクリル酸エステルとしては、ジ(メタ)アクリル酸エステルが好ましい。
 ジ(メタ)アクリル酸エステルとしては、下記一般式(B-1)で表されるジアクリル酸エステル、下記一般式(B-2)で表されるジメタクリル酸エステルが好ましく、下記一般式(B-2)で表されるジメタクリル酸エステルがより好ましい。
Figure JPOXMLDOC01-appb-C000018

(式中、Rb1は、炭素数1~20のアルキレン基である。)
 上記一般式(B-1)及び(B-2)中のRb1が表す炭素数1~20のアルキレン基の炭素数は、好ましくは4~18、より好ましくは6~15、さらに好ましくは8~12である。
 炭素数1~20のアルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ヘプチレン基、オクチレン基、ノニレン基、デシレン基、ウンデシレン基、ドデシレン基、テトラデシレン基、ペンタデシレン基等が挙げられる。アルキレン基は、直鎖状、分岐鎖状又は環状のいずれであってもよいが、直鎖状であることが好ましい。
((B)反応性液状化合物の含有量)
 本実施形態の樹脂組成物において、(B)反応性液状化合物の含有量は、特に限定されないが、本実施形態の樹脂組成物中の樹脂成分の総量(100質量%)に対して、好ましくは5~60質量%、より好ましくは10~40質量%、さらに好ましくは15~25質量%である。
 (B)反応性液状化合物の含有量が上記下限値以上であると、より優れた可撓性が得られ易い傾向にある。また、(B)反応性液状化合物の含有量が上記上限値以下であると、加熱硬化中における揮発成分の発生を抑制し易い傾向にある。
 本実施形態の樹脂組成物において、(A)成分、(B)成分及び(C)成分の総量(100質量%)に対する、(B)成分の含有量は、好ましくは1~20質量%、より好ましくは3~15質量%、さらに好ましくは5~10質量%である。
 (B)反応性液状化合物の含有量が上記下限値以上であると、より優れた可撓性が得られ易い傾向にある。また、(B)反応性液状化合物の含有量が上記上限値以下であると、加熱硬化中における揮発成分の発生を抑制し易い傾向にある。
<(C)無機充填材>
 本実施形態の樹脂組成物は、(C)無機充填材を含有することによって、より優れた低熱膨張性、耐熱性及び難燃性が得られ易い傾向にある。
 (C)無機充填材は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 (C)無機充填材としては、例えば、シリカ、アルミナ、酸化チタン、マイカ、ベリリア、チタン酸バリウム、チタン酸カリウム、チタン酸ストロンチウム、チタン酸カルシウム、炭酸アルミニウム、水酸化マグネシウム、水酸化アルミニウム、ケイ酸アルミニウム、炭酸カルシウム、ケイ酸カルシウム、ケイ酸マグネシウム、窒化ケイ素、窒化ホウ素、クレー、タルク、ホウ酸アルミニウム、炭化ケイ素等が挙げられる。これらの中でも、低熱膨張性、耐熱性及び難燃性の観点から、シリカ、アルミナ、マイカ、タルクが好ましく、シリカ、アルミナがより好ましい。
 シリカとしては、例えば、湿式法で製造され含水率の高い沈降シリカ、乾式法で製造され結合水等をほとんど含まない乾式法シリカ等が挙げられる。乾式法シリカとしては、さらに、製造法の違いによって、例えば、破砕シリカ、フュームドシリカ、溶融シリカ等が挙げられる。
 (C)無機充填材の平均粒子径は、特に限定されないが、(C)無機充填材の分散性及び微細配線性の観点から、好ましくは0.01~20μm、より好ましくは0.1~10μm、さらに好ましくは0.2~1μm、特に好ましくは0.3~0.8μmである。
 なお、本明細書において、(C)無機充填材の平均粒子径は、粒子の全体積を100%として粒子径による累積度数分布曲線を求めたとき、体積50%に相当する点の粒子径のことである。(C)無機充填材の平均粒子径は、例えば、レーザー回折散乱法を用いた粒度分布測定装置等で測定することができる。
 (C)無機充填材の形状としては、例えば、球状、破砕状等が挙げられ、球状であることが好ましい。
 本実施形態の樹脂組成物には、(C)無機充填材の分散性及び有機成分との密着性を向上させる目的で、カップリング剤を用いてもよい。カップリング剤としては、例えば、シランカップリング剤、チタネートカップリング剤等が挙げられる。これらの中でも、シランカップリング剤が好ましい。シランカップリング剤としては、例えば、アミノシランカップリング剤、ビニルシランカップリング剤、エポキシシランカップリング剤等が挙げられる。
 本実施形態の樹脂組成物にカップリング剤を用いる場合、(C)無機充填材の表面処理方法としては、樹脂組成物中に(C)無機充填材を配合した後、カップリング剤を添加するインテグラルブレンド処理方法であってもよく、予め(C)無機充填材にカップリング剤を乾式又は湿式で表面処理する方法であってもよい。これらの中でも、より効果的に(C)無機充填材の特長を発現できるという観点から、予め(C)無機充填材にカップリング剤を乾式又は湿式で表面処理する方法が好ましい。
 (C)無機充填材は、樹脂組成物への分散性を向上させる目的で、予め有機溶媒中に分散させたスラリーの状態にしてから、他の成分と混合してもよい。
((C)無機充填材の含有量)
 本実施形態の樹脂組成物において、(C)無機充填材の含有量は、特に限定されないが、樹脂組成物の固形分総量(100質量%)に対して、好ましくは20~95質量%、より好ましくは40~90質量%、さらに好ましくは60~80質量%である。
 (C)無機充填材の含有量が上記下限値以上であると、低熱膨張性、耐熱性及び難燃性がより良好になり易い傾向にある。また、(C)無機充填材の含有量が上記上限値以下であると、成形性及び導体接着性がより良好に易い傾向にある。
<(D)分子量が1,000を超えるエラストマー>
 本実施形態の樹脂組成物は、さらに、(D)分子量が1,000を超えるエラストマー[以下、「(D)エラストマー」又は「(D)成分」と称する場合がある。]を含有することが好ましい。
 本実施形態の樹脂組成物は、(D)エラストマーを含有することによって、より優れた誘電特性が得られ易い傾向にある。
 なお、ここでの「エラストマー」とは、JIS K 6240:2011に従って示差走査熱量測定で測定したガラス転移温度が25℃以下である高分子を意味する。
 (D)エラストマーは、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 (D)エラストマーの分子量は、1,000を超えるものであり、好ましくは1,050~500,000、より好ましくは1,100~350,000、さらに好ましくは1,150~200,000である。
 (D)エラストマーの分子量が上記下限値以上であると、得られる樹脂組成物の耐熱性等がより良好に保たれ易い傾向にある。また、(D)エラストマーの分子量が上記上限値以下であると、得られる樹脂組成物の誘電特性及び導体接着性がより良好になり易い傾向にある。
 (D)エラストマーとしては、例えば、共役ジエンポリマー(D1)、変性共役ジエンポリマー(D2)、スチレン系エラストマー(D3)等が好ましく挙げられる。
 以下、これらの成分の好ましい態様について説明する。
(共役ジエンポリマー(D1))
 本明細書中、「共役ジエンポリマー」とは、共役ジエン化合物の重合体を意味する。
 本実施形態の樹脂組成物は、共役ジエンポリマー(D1)を含有することによって、より優れた誘電特性が得られ易い傾向にある。
 共役ジエンポリマー(D1)は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 共役ジエン化合物としては、例えば、1,3-ブタジエン、イソプレン、1,3-ペンタジエン、2,3-ジメチル-1,3-ブタジエン、2-フェニル-1,3-ブタジエン、1,3-ヘキサジエン等が挙げられる。
 共役ジエンポリマー(D1)は、1種の共役ジエン化合物の重合体であってもよく、2種以上の共役ジエン化合物の共重合体であってもよい。
 また、共役ジエンポリマー(D1)は、1種以上の共役ジエン化合物と、1種以上の共役ジエン化合物以外のモノマーと、の共重合体であってもよい。
 共役ジエンポリマー(D1)が共重合体である場合の重合様式は特に限定されず、ランダム重合、ブロック重合又はグラフト重合のいずれであってもよい。
 共役ジエンポリマー(D1)としては、他の樹脂との相容性及び誘電特性の観点から、側鎖に複数のビニル基を有する共役ジエンポリマーが好ましい。
 共役ジエンポリマー(D1)が1分子中に有するビニル基の数は、特に限定されないが、他の樹脂との相容性及び誘電特性の観点から、好ましくは3個以上、より好ましくは5個以上、さらに好ましくは10個以上である。
 共役ジエンポリマー(D1)が1分子中に有するビニル基の数の上限は特に限定されないが、100個以下であってもよく、80個以下であってもよく、60個以下であってもよい。
 共役ジエンポリマー(D1)としては、例えば、1,2-ビニル基を有するポリブタジエン、1,2-ビニル基を有するブタジエン-スチレン共重合体、1,2-ビニル基を有するポリイソプレン等が挙げられる。これらの中でも、誘電特性及び耐熱性の観点から、1,2-ビニル基を有するポリブタジエン、1,2-ビニル基を有するブタジエン-スチレン共重合体が好ましく、1,2-ビニル基を有するポリブタジエンがより好ましい。また、1,2-ビニル基を有するポリブタジエンとしては、1,2-ビニル基を有するポリブタジエンホモポリマーが好ましい。
 共役ジエンポリマー(D1)が有するブタジエン由来の1,2-ビニル基とは、下記式(D1-1)で表されるブタジエン由来の構造単位に含まれるビニル基である。
Figure JPOXMLDOC01-appb-C000019
 共役ジエンポリマー(D1)が1,2-ビニル基を有するポリブタジエンである場合、ポリブタジエンを構成するブタジエン由来の全構造単位に対して、1,2-ビニル基を有する構造単位の含有量[以下、「ビニル基含有率」と称する場合がある。]は、特に限定されないが、他の樹脂との相容性、誘電特性及び耐熱性の観点から、好ましくは50モル%以上、より好ましくは70モル%以上、さらに好ましくは85モル%以上である。また、ビニル基含有率の上限に特に制限はなく、100モル%以下であってもよく、95モル%以下であってもよく、90モル%以下であってもよい。1,2-ビニル基を有する構造単位としては、上記式(D1-1)で表されるブタジエン由来の構造単位が好ましい。
 同様の観点から、1,2-ビニル基を有するポリブタジエンは、1,2-ポリブタジエンホモポリマーであることが好ましい。
 共役ジエンポリマー(D1)の数平均分子量は、特に限定されないが、他の樹脂との相容性、誘電特性及び耐熱性の観点から、好ましくは1,050~3,000、より好ましくは1,100~2,000、さらに好ましくは1,150~1,500である。
(変性共役ジエンポリマー(D2))
 変性共役ジエンポリマー(D2)は、共役ジエンポリマーを変性してなるポリマーである。
 本実施形態の樹脂組成物は、変性共役ジエンポリマー(D2)を含有することによって、良好な耐熱性及び低熱膨張性を有しながらも、より優れた誘電特性が得られ易い傾向にある。
 変性共役ジエンポリマー(D2)は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 例えば、(A)熱硬化性樹脂がマレイミド系樹脂を含む場合、変性共役ジエンポリマー(D2)としては、他の樹脂との相容性、誘電特性及び導体密着性の観点から、(d1)側鎖にビニル基を有する共役ジエンポリマー[以下、「共役ジエンポリマー(d1)」と称する場合がある。]を、(d2)N-置換マレイミド基を2個以上有するマレイミド樹脂[以下、「マレイミド樹脂(d2)」と称する場合がある。]で変性してなる変性共役ジエンポリマーが好ましい。
 共役ジエンポリマー(d1)としては、例えば、上記共役ジエンポリマー(D1)として説明した側鎖にビニル基を有する共役ジエンポリマーを用いることができ、好ましい態様も同様である。
 共役ジエンポリマー(d1)は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 マレイミド樹脂(d2)としては、例えば、上記マレイミド樹脂(AX)として説明したN-置換マレイミド基を2個以上有するマレイミド樹脂を用いることができ、好ましい態様も同様である。
 マレイミド樹脂(d2)は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 変性共役ジエンポリマー(D2)は、側鎖に、共役ジエンポリマー(d1)が有するビニル基と、マレイミド樹脂(d2)が有するN-置換マレイミド基と、が反応してなる置換基[以下、「置換基(x)」と称する場合がある。]を有することが好ましい。
 置換基(x)は、他の樹脂との相容性、誘電特性、低熱膨張性及び耐熱性の観点から、マレイミド樹脂(d2)由来の構造として、下記一般式(D2-1)又は(D2-2)で表される構造を含む基であることが好ましい。
Figure JPOXMLDOC01-appb-C000020

(式中、Xd1は、マレイミド樹脂(d2)から2個のN-置換マレイミド基を除いてなる2価の基であり、*d1は、共役ジエンポリマー(d1)が側鎖に有するビニル基由来の炭素原子に結合する部位である。*d2は、他の原子に結合する部位である。)
 変性共役ジエンポリマー(D2)は、側鎖に、置換基(x)とビニル基(y)とを有することが好ましい。
 変性共役ジエンポリマー(D2)中に置換基(x)がどの程度存在するかは、共役ジエンポリマー(d1)のビニル基がマレイミド樹脂(d2)によってどの程度変性されたのか[以下、「ビニル基変性率」と称する場合がある。]を指標とすることができる。
 ビニル基変性率は、特に限定されないが、他の樹脂との相容性、誘電特性、低熱膨張性及び耐熱性の観点から、好ましくは20~70%、より好ましくは30~60%、さらに好ましくは35~50%である。ここで、ビニル基変性率は、実施例に記載の方法によって求めた値である。
 ビニル基(y)は、ブタジエン由来の構造単位が有する1,2-ビニル基であることが好ましい。
 変性共役ジエンポリマー(D2)の数平均分子量は、特に限定されないが、他の樹脂との相容性、誘電特性、低熱膨張性及び耐熱性の観点から、好ましくは1,100~6,000、より好ましくは1,300~4,000、さらに好ましくは1,500~2,000である。
 変性共役ジエンポリマー(D2)は、共役ジエンポリマー(d1)とマレイミド樹脂(d2)とを反応させることによって製造することができる。
 共役ジエンポリマー(d1)とマレイミド樹脂(d2)とを反応させる方法は特に限定されない。例えば、共役ジエンポリマー(d1)、マレイミド樹脂(d2)、反応触媒及び有機溶媒を反応容器に仕込み、必要に応じて、加熱、保温、撹拌等しながら反応させることによって変性共役ジエンポリマー(D2)を得ることができる。
 上記反応の反応温度は、作業性及び反応中における生成物のゲル化抑制の観点から、好ましくは70~120℃、より好ましくは80~110℃、さらに好ましくは85~105℃である。
 上記反応の反応時間は、生産性及び反応を十分に進行させるという観点から、好ましくは0.5~15時間、より好ましくは1~10時間、さらに好ましくは3~7時間である。
 但し、これらの反応条件は、使用する原料の種類等に応じて適宜調整することができ、特に限定されない。
 上記反応で使用される有機溶媒としては、例えば、メタノール、エタノール、ブタノール、ブチルセロソルブ、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル等のアルコール系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒;トルエン、キシレン、メシチレン等の芳香族炭化水素系溶媒;メトキシエチルアセテート、エトキシエチルアセテート、ブトキシエチルアセテート、酢酸エチル等のエステル系溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等の窒素原子含有溶媒などが挙げられる。
 有機溶媒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらの中でも、樹脂溶解性の観点から、トルエンが好ましい。
 上記反応を有機溶媒中で行う場合、反応溶液中における共役ジエンポリマー(d1)及びマレイミド樹脂(d2)の合計含有量は、特に限定されないが、好ましくは10~70質量%、より好ましくは15~60質量%、さらに好ましくは20~50質量%である。共役ジエンポリマー(d1)及びマレイミド樹脂(d2)の合計含有量が上記下限値以上であると、良好な反応速度が得られ、生産性がより良好になる傾向にある。また、共役ジエンポリマー(d1)及びマレイミド樹脂(d2)の合計含有量が上記上限値以下であると、より良好な溶解性が得られ、撹拌効率が向上し、反応中における生成物のゲル化をより抑制できる傾向にある。
 反応触媒としては、反応中における生成物のゲル化を抑制しつつ、十分な反応性が得られるという観点から、有機過酸化物が好ましい。有機過酸化物としては、後述する(E)硬化促進剤として挙げられるものを使用することができる。
 反応触媒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 反応触媒の使用量は、特に限定されないが、反応速度及び反応均一性の観点から、共役ジエンポリマー(d1)及びマレイミド樹脂(d2)の総量100質量部に対して、好ましくは0.001~1質量部、より好ましくは0.003~0.1質量部、さらに好ましくは0.005~0.02質量部である。
 上記反応を行う際における、共役ジエンポリマー(d1)が有する側鎖ビニル基のモル数(M)に対するマレイミド樹脂(d2)が有するN-置換マレイミド基のモル数(M)の比率(M/M)は、特に限定されないが、得られる変性共役ジエンポリマー(D2)の他の樹脂との相容性及び反応中における生成物のゲル化抑制の観点から、好ましくは0.001~0.5、より好ましくは0.005~0.1、さらに好ましくは0.008~0.05である。
<スチレン系エラストマー(D3)>
 スチレン系エラストマー(D3)としては、スチレン系化合物由来の構造単位を有するエラストマーであれば特に制限はない。
 本実施形態の樹脂組成物は、スチレン系エラストマー(D3)を含有することによって、より優れた誘電特性が得られ易い傾向にある。
 スチレン系エラストマー(D3)は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 スチレン系エラストマー(D3)としては、下記一般式(D3-1)で表されるスチレン系化合物由来の構造単位を有するものが好ましい。
Figure JPOXMLDOC01-appb-C000021

(式中、Rd1は水素原子又は炭素数1~5のアルキル基であり、Rd2は、炭素数1~5のアルキル基である。nd1は、0~5の整数である。)
 上記一般式(D3-1)中のRd1及びRd2が表す炭素数1~5のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基等が挙げられる。炭素数1~5のアルキル基は、直鎖状又は分岐鎖状のいずれであってもよい。これらの中でも、炭素数1~3のアルキル基が好ましく、炭素数1又は2のアルキル基がより好ましく、メチル基がさらに好ましい。
 上記一般式(D3-1)中のnd1は、0~5の整数であり、好ましくは0~2の整数、より好ましくは0又は1、さらに好ましくは0である。
 スチレン系エラストマー(D3)は、スチレン系化合物由来の構造単位以外の構造単位を含有していてもよい。
 スチレン系エラストマー(D3)が有するスチレン系化合物由来の構造単位以外の構造単位としては、例えば、ブタジエン由来の構造単位、イソプレン由来の構造単位、マレイン酸由来の構造単位、無水マレイン酸由来の構造単位等が挙げられる。
 上記ブタジエン由来の構造単位及び上記イソプレン由来の構造単位は、水素添加されていてもよい。水素添加されている場合、ブタジエン由来の構造単位はエチレン単位とブチレン単位とが混合した構造単位となり、イソプレン由来の構造単位はエチレン単位とプロピレン単位とが混合した構造単位となる。
 スチレン系エラストマー(D3)としては、例えば、スチレン-ブタジエン-スチレンブロック共重合体の水素添加物、スチレン-イソプレン-スチレンブロック共重合体の水素添加物、スチレン-無水マレイン酸共重合体等が挙げられる。
 スチレン-ブタジエン-スチレンブロック共重合体の水素添加物は、ブタジエンブロック中の炭素-炭素二重結合を完全水添してなるSEBSと、ブタジエンブロック中の1,2-結合部位の炭素-炭素二重結合を部分水添してなるSBBSが挙げられる。なお、SEBSにおける完全水添とは、通常、全体の炭素-炭素二重結合に対して90%以上であり、95%以上であってもよく、99%以上であってもよく、100%であってもよい。また、SBBSにおける部分水添率は、例えば、全体の炭素-炭素二重結合に対して60~85%である。スチレン-イソプレン-スチレンブロック共重合体の水素添加物は、ポリイソプレン部が水素添加され、SEPSとして得られる。
 これらの中でも、誘電特性、導体接着性、耐熱性、ガラス転移温度及び低熱膨張性の観点から、SEBS、SEPSが好ましく、SEBSがより好ましい。
 上記SEBSにおいて、スチレン由来の構造単位の含有率[以下、「スチレン含有率」と称する場合がある。]は、特に限定されないが、好ましくは5~60質量%、より好ましくは7~40質量%、さらに好ましくは10~20質量%である。
 SEBSのメルトフローレート(MFR)は、特に限定されないが、230℃、荷重2.16kgf(21.2N)の測定条件では、好ましくは0.1~20g/10min、より好ましくは1~10g/10min、さらに好ましくは3~7g/10minである。
 SEBSの市販品としては、例えば、旭化成株式会社製のタフテック(登録商標)Hシリーズ、Mシリーズ、株式会社クラレ製のセプトン(登録商標)シリーズ、クレイトンポリマージャパン株式会社製のクレイトン(登録商標)Gポリマーシリーズ等が挙げられる。
 スチレン系エラストマー(D3)の数平均分子量は、特に限定されないが、好ましくは10,000~500,000、より好ましくは50,000~350,000、さらに好ましくは100,000~200,000である。
 共役ジエンポリマー(D1)、変性共役ジエンポリマー(D2)及びスチレン系エラストマー(D3)以外の(D)エラストマーとしては、例えば、これら以外のポリオレフィン系樹脂、ポリフェニレンエーテル系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリアクリル系樹脂等が挙げられる。
((D)エラストマーの含有量)
 本実施形態の樹脂組成物が(D)エラストマーを含有する場合、(D)エラストマーの含有量は、特に限定されないが、本実施形態の樹脂組成物中の樹脂成分の総量(100質量%)に対して、好ましくは10~80質量%、より好ましくは30~70質量%、さらに好ましくは50~60質量%である。
 (D)エラストマーの含有量が上記下限値以上であると、より優れた誘電特性が得られ易い傾向にある。また、(D)エラストマーの含有量が上記上限値以下であると、より優れた耐熱性が得られ易い傾向にある。
 共役ジエンポリマー(D1)、変性共役ジエンポリマー(D2)及びスチレン系エラストマー(D3)からなる群から選択される1種以上の合計含有量は、特に限定されないが、誘電特性及び導体接着性の観点から、(D)エラストマーの総量(100質量%)に対して、好ましくは60~100質量%、より好ましくは80~100質量%、さらに好ましくは90~100質量%である。
 (D)エラストマーは、誘電特性及び相容性の観点から、共役ジエンポリマー(D1)及び変性共役ジエンポリマー(D2)からなる群から選択される1種以上と、スチレン系エラストマー(D3)と、を含有することが好ましい。
 (D)エラストマーが、共役ジエンポリマー(D1)及び変性共役ジエンポリマー(D2)からなる群から選択される1種以上と、スチレン系エラストマー(D3)と、を含有する場合、スチレン系エラストマー(D3)の含有量に対する、共役ジエンポリマー(D1)及び変性共役ジエンポリマー(D2)の合計含有量の比〔[(D1)+(D2)]/(D3)〕は、特に限定されないが、誘電特性及び相容性の観点から、好ましくは0.1~5、より好ましくは0.2~1、さらに好ましくは0.3~0.7である。
((E)硬化促進剤)
 本実施形態の樹脂組成物は、さらに、(E)硬化促進剤を含有することが好ましい。
 本実施形態の樹脂組成物は、(E)硬化促進剤を含有することによって硬化性が向上し、より優れた誘電特性、耐熱性及び導体接着性が得られ易い傾向にある。
 (E)硬化促進剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 (E)硬化促進剤としては、例えば、p-トルエンスルホン酸等の酸性触媒;トリエチルアミン、ピリジン、トリブチルアミン、ジシアンジアミド等のアミン化合物;メチルイミダゾール、フェニルイミダゾール、1-シアノエチル-2-フェニルイミダゾール等のイミダゾール化合物;ヘキサメチレンジイソシアネート樹脂と2-エチル-4-メチルイミダゾールの付加反応物等のイソシアネートマスクイミダゾール化合物;第3級アミン化合物;第4級アンモニウム化合物;トリフェニルホスフィン等のリン系化合物;ジクミルパーオキサイド、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキシン-3、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン、t-ブチルパーオキシイソプロピルモノカーボネート、1,3-ジ(t-ブチルパーオキシイソプロピル)ベンゼン等の有機過酸化物;マンガン、コバルト、亜鉛等のカルボン酸塩などが挙げられる。
 これらの中でも、硬化促進効果及び保存安定性の観点から、イミダゾール化合物、イソシアネートマスクイミダゾール化合物、有機過酸化物、カルボン酸塩が好ましく、イソシアネートマスクイミダゾール化合物、有機過酸化物がより好ましい。
 本実施形態の樹脂組成物が(E)硬化促進剤を含有する場合、(E)硬化促進剤の含有量は、特に限定されないが、(A)熱硬化性樹脂及び(B)反応性液状化合物の合計量(100質量部)に対して、好ましくは0.1~15質量部、より好ましくは1~10質量部、さらに好ましくは4~8質量部である。
 (E)硬化促進剤の含有量が上記下限値以上であると、十分な硬化促進効果が得られ易い傾向にある。また、(E)硬化促進剤の含有量が上記上限値以下であると、保存安定性がより良好になる傾向にある。
<その他の成分>
 本実施形態の樹脂組成物は、さらに必要に応じて、上記各成分以外の樹脂材料、難燃剤、酸化防止剤、熱安定剤、帯電防止剤、紫外線吸収剤、顔料、着色剤、滑剤、有機溶媒及びこれら以外の添加剤からなる群から選択される1種以上の任意成分を含有していてもよい。
 上記の任意成分は、各々について、1種を単独で使用してもよく、2種以上を組み合わせて用いてもよい。
 本実施形態の樹脂組成物中における上記の任意成分の含有量は特に限定されず、必要に応じて、本実施形態の効果を阻害しない範囲で使用すればよい。
 また、本実施形態の樹脂組成物は、所望する性能に応じて、上記の任意成分を含有しないものであってもよい。
 本実施形態の樹脂組成物は、可撓性に優れるものであるため、樹脂フィルムを構成する樹脂組成物として好適である。
 本実施形態の樹脂組成物は、可撓性に優れる本実施形態の樹脂組成物の特徴をより効果的に発現させる観点から、厚さが10μm以上の樹脂フィルムを形成するために用いられることが好ましく、厚さが50μm以上の樹脂フィルムを形成するために用いられることがより好ましく、厚さが80μm以上の樹脂フィルムを形成するために用いられることがさらに好ましく、厚さが100μm以上の樹脂フィルムを形成するために用いられることがよりさらに好ましく、厚さが130μm以上の樹脂フィルムを形成するために用いられることがよりさらに好ましく、厚さが150μm以上の樹脂フィルムを形成するために用いられることが特に好ましい。
 また、本実施形態の樹脂組成物は、取り扱い性の観点から、厚さが1,000μm以下の樹脂フィルムを形成するために用いられることが好ましく、厚さが700μm以下の樹脂フィルムを形成するために用いられることがより好ましく、厚さが500μm以下の樹脂フィルムを形成するために用いられることがさらに好ましい。
[樹脂フィルム]
 本実施形態の樹脂フィルムは、本実施形態の樹脂組成物を含有してなる樹脂フィルムである。
 本実施形態の樹脂フィルムは、例えば、有機溶媒を含有する本実施形態の樹脂組成物、つまり樹脂ワニスを支持体に塗布してから、加熱乾燥させることによって製造することができる。
 支持体としては、例えば、プラスチックフィルム、金属箔、離型紙等が挙げられる。
 プラスチックフィルムとしては、例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等のポリオレフィンのフィルム;ポリエチレンテレフタレート[以下、「PET」と称する場合がある。]、ポリエチレンナフタレート等のポリエステルフィルム;ポリカーボネートフィルム、ポリイミドフィルムなどが挙げられる。これらの中でも、経済性及び取り扱い性の観点から、ポリエチレンテレフタレートフィルムが好ましい。
 金属箔としては、例えば、銅箔、アルミニウム箔等が挙げられる。支持体に銅箔を用いる場合には、銅箔をそのまま導体層とし、回路を形成することもできる。この場合、銅箔としては、圧延銅箔、電解銅箔等を用いることができる。厚さの薄い銅箔を用いる場合には、作業性を向上させる観点から、キャリア付き銅箔を使用してもよい。
 支持体は、マット処理、コロナ処理等の表面処理を施したものであってもよい。また、支持体は、シリコーン樹脂系離型剤、アルキッド樹脂系離型剤、フッ素樹脂系離型剤等による離型処理を施したものであってもよい。
 支持体の厚さは、特に限定されないが、取り扱い性及び経済性の観点から、好ましくは10~150μm、より好ましくは20~100μm、さらに好ましくは25~50μmである。
 樹脂ワニスを塗布するための塗布装置としては、例えば、コンマコーター、バーコーター、キスコーター、ロールコーター、グラビアコーター、ダイコーター等の当業者に公知の塗布装置を用いることができる。これらの塗布装置は、形成する膜厚に応じて、適宜選択すればよい。
 樹脂ワニスを塗布した後の乾燥条件は、有機溶媒の含有量、沸点等に応じて適宜決定すればよく、特に限定されない。
 例えば、40~60質量%の芳香族炭化水素系溶媒を含有する樹脂ワニスの場合、乾燥温度は、特に限定されないが、生産性及び本実施形態の樹脂組成物を適度にBステージ化させるという観点から、好ましくは50~200℃、より好ましくは80~150℃、さらに好ましくは100~130℃である。
 また、上記樹脂ワニスの場合、乾燥時間は、特に限定されないが、生産性及び本実施形態の樹脂組成物を適度にBステージ化させるという観点から、好ましくは1~30分間、より好ましくは2~15分間、さらに好ましくは3~10分間である。
 本実施形態の樹脂フィルム中における有機溶媒の含有量は、樹脂フィルムの総量(100質量%)に対して、好ましくは2質量%以下、より好ましくは1質量%以下、さらに好ましくは0.5質量%以下であり、0質量%であってもよい。
 樹脂フィルム中における有機溶媒の含有量が上記範囲であると、加熱硬化中に揮発する有機溶媒の量が十分に抑制され易い傾向にある。
 本実施形態の樹脂フィルムは、大気雰囲気下、170℃で30分間加熱乾燥した際における質量減少率[以下、「170℃質量減少率」と称する場合がある。]が、好ましくは2.0質量%以下、より好ましくは1.5質量%以下、さらに好ましくは1.0質量%以下であり、0質量%であってもよい。
 170℃質量減少率が上記範囲であると、加熱硬化中における揮発成分の量が十分に抑制され易い傾向にある。
 170℃質量減少率は、実施例に記載の方法によって測定することができる。
 本実施形態の樹脂フィルムの厚さは、樹脂フィルムの用途に応じて適宜決定することができるが、十分な絶縁信頼性を得るという観点、及び半導体チップ等の埋め込みを可能にするという観点から、好ましくは10μm以上、より好ましくは50μm以上、さらに好ましくは80μm以上、よりさらに好ましくは100μm以上、よりさらに好ましくは130μm以上、特に好ましくは150μm以上である。
 また、本実施形態の樹脂フィルムの厚さは、取り扱い性の観点から、好ましくは1,000μm以下、より好ましくは700μm以下、さらに好ましくは500μm以下である。
 本実施形態の樹脂フィルムは、保護フィルムを有していてもよい。保護フィルムは、本実施形態の樹脂フィルムの支持体が設けられている面とは反対側の面に設けられるものであり、樹脂フィルムへの異物等の付着及び傷付きを防止する目的で使用される。
 本実施形態の樹脂組成物及び樹脂フィルムの硬化物の10GHzにおける誘電率(Dk)は、3.0未満であってもよく、2.9未満であってもよく、2.8未満であってもよい。上記誘電率(Dk)は小さい程好ましく、その下限値に特に制限はないが、他の物性とのバランスを考慮して、例えば、2.4以上であってもよく、2.5以上であってもよい。
 本実施形態の樹脂組成物及び樹脂フィルムの硬化物の10GHzにおける誘電正接(Df)は、0.0030未満であってもよく、0.0025未満であってもよく、0.0015未満であってもよい。上記誘電正接(Df)は小さい程好ましく、その下限値に特に制限はないが、他の物性とのバランスを考慮して、例えば、0.0010以上であってもよく、0.0015以上であってもよい。
 また、本実施形態の樹脂フィルムは、十分な絶縁信頼性を得るという観点、及び半導体チップ等の埋め込みを可能にするという観点からは、厚さが150μm以上の樹脂フィルムであって、該樹脂フィルムの硬化物の10GHzにおける誘電率が2.8未満、誘電正接が0.0030未満であることが好ましい。
 なお、誘電率(Dk)及び誘電正接(Df)は、空洞共振器摂動法に準拠した値であり、より詳細には、実施例に記載する方法によって測定された値である。
 本実施形態の樹脂フィルムは、例えば、多層プリント配線板の絶縁層形成用樹脂フィルム、又は、半導体パッケージの半導体封止用樹脂フィルムとして好適である。特に、本実施形態の樹脂フィルムは可撓性に優れ、厚さが大きい樹脂フィルムとする場合における取り扱い性に優れため、半導体封止用樹脂フィルムとして好適である。
[多層プリント配線板]
 本実施形態の多層プリント配線板は、本実施形態の樹脂フィルムを含有してなる多層プリント配線板である。
 すなわち、本実施形態の多層プリント配線板は、少なくとも、本実施形態の樹脂フィルムの硬化物を含有する多層構造と導体回路層とを含む。
 以下、本実施形態の樹脂フィルムを用いて本実施形態の多層プリント配線板を製造する方法について説明する。
 本実施形態の樹脂フィルムを用いて多層プリント配線板を製造する際、まず、本実施形態の樹脂フィルムを回路基板の片面又は両面に積層する。
 具体的には、例えば、本実施形態の樹脂フィルムを回路基板上に配置した後、真空ラミネーターによって加圧及び加熱しながら回路基板にラミネートすることによって、回路基板上に本実施形態の樹脂フィルムを積層することができる。
 多層プリント配線板に用いられる回路基板としては、例えば、ガラスエポキシ、金属基板、ポリエステル基板、ポリイミド基板、BTレジン基板、熱硬化性ポリフェニレンエーテル基板等の片面又は両面に、パターン加工された導体層(回路)が形成されたものなどが挙げられる。
 回路基板の導体層の表面は、接着性の観点から、黒化処理等によって、予め粗化処理が施されていてもよい。
 次いで、必要に応じて樹脂フィルムの支持体を剥離した後、樹脂フィルムを加熱硬化させて絶縁層を形成する。
 加熱硬化させる際の加熱温度は、特に限定されないが、好ましくは100~300℃、より好ましくは120~280℃、さらに好ましくは150~250℃である。
 加熱硬化させる際の加熱時間は、特に限定されないが、好ましくは2~300分間、より好ましくは5~200分間、さらに好ましくは10~150分間である。
 上記の方法によって絶縁層を形成した後、必要に応じて穴あけを行ってもよい。穴あけは、回路基板及び形成された絶縁層に、ドリル、レーザー、プラズマ、これらの組み合わせ等の方法によって穴あけを行い、ビアホール、スルーホール等を形成する工程である。穴あけに用いるレーザーとしては、例えば、炭酸ガスレーザー、YAGレーザー、UVレーザー、エキシマレーザー等が用いられる。
 次いで、絶縁層の表面を酸化剤によって粗化処理してもよい。また、絶縁層及び回路基板にビアホール、スルーホール等が形成されている場合には、これらを形成する際に発生する、所謂「スミア」を、酸化剤によって除去してもよい。粗化処理と、スミアの除去は同時に行うことができる。粗化処理によって、絶縁層の表面に凹凸のアンカーを形成することができる。
 酸化剤としては、例えば、過マンガン酸カリウム、過マンガン酸ナトリウム等の過マンガン酸塩;重クロム酸塩、オゾン、過酸化水素、硫酸、硝酸などが挙げられる。これらの中でも、ビルドアップ工法による多層プリント配線板の製造に汎用されている酸化剤である、過マンガン酸カリウムの水酸化ナトリウム水溶液、過マンガン酸ナトリウムの水酸化ナトリウム水溶液が好ましい。
 次いで、粗化処理された絶縁層の表面に導体層を形成する。導体層は、例えば、めっきによって形成することができる。
 めっき方法としては、例えば、無電解めっき法、電解めっき法等が挙げられる。めっき用の金属は、例えば、銅、金、銀、ニッケル、白金、モリブデン、ルテニウム、アルミニウム、タングステン、鉄、チタン、クロム、これらの金属元素のうちの少なくとも1種を含む合金等が挙げられる。これらの中でも、銅、ニッケルが好ましく、銅がより好ましい。
 なお、先に配線パターンとは逆パターンのめっきレジストを形成しておき、その後、無電解めっきのみによって配線パターンを形成する方法を採用することもできる。
 また、導体層を形成した後に、アニール処理を施してもよい。アニール処理を施すことによって、層間絶縁層と導体層との間の接着強度がさらに向上及び安定化する傾向にある。
 導体層をパターン加工し、回路形成する方法としては、例えば、サブトラクティブ法、フルアディティブ法、セミアディティブ法(SAP:SemiAdditive Process)、モディファイドセミアディティブ法(m-SAP:modified Semi Additive Process)等の公知の方法を利用することができる。
[半導体パッケージ]
 本実施形態の半導体パッケージは、本実施形態の樹脂フィルムを含有してなる半導体パッケージである。
 本実施形態の半導体パッケージは、例えば、本実施形態の多層プリント配線板に半導体チップを搭載してなるものであってもよく、本実施形態の樹脂フィルムの硬化物に封止された半導体チップを備えるものであってもよい。
 本実施形態の多層プリント配線板に半導体チップを搭載してなる半導体パッケージは、例えば、本実施形態の多層プリント配線板上に、公知の方法によって、半導体チップ、メモリ等を搭載することによって製造することができる。
 本実施形態の樹脂フィルムの硬化物に封止された半導体チップを備える半導体パッケージは、例えば、以下の方法によって製造することができる。
 まず、本実施形態の樹脂フィルムを、半導体チップ上に配置する。次いで、樹脂フィルムを加熱溶融させて、樹脂フィルムを構成する樹脂組成物によって、半導体チップを埋め込む。その後、半導体チップを埋め込んでいる樹脂組成物を加熱により硬化させることによって、半導体チップが樹脂組成物の硬化物によって封止された半導体パッケージを製造することができる。
 以下、実施例を挙げて、本実施形態を具体的に説明する。ただし、本実施形態は以下の実施例に限定されるものではない。
 なお、数平均分子量は以下の手順で測定した。
(数平均分子量の測定方法)
 数平均分子量はゲル浸透クロマトグラフィー(GPC)により、標準ポリスチレンを用いた検量線から換算した。検量線は、標準ポリスチレン:TSKstandard POLYSTYRENE(Type;A-2500、A-5000、F-1、F-2、F-4、F-10、F-20、F-40)(東ソー株式会社製、商品名)を用いて3次式で近似した。GPCの測定条件を、以下に示す。
〔GPCの測定条件〕
 装置:高速GPC装置 HLC-8320GPC
 検出器:紫外吸光検出器 UV-8320[東ソー株式会社製]
 カラム:ガードカラム;TSK Guardcolumn SuperHZ-L+カラム;TSKgel SuperHZM-N+TSKgel SuperHZM-M+TSKgel SuperH-RC(すべて東ソー株式会社製、商品名)
 カラムサイズ:4.6×20mm(ガードカラム)、4.6×150mm(カラム)、6.0×150mm(リファレンスカラム)
溶離液:テトラヒドロフラン
試料濃度:10mg/5mL
注入量:25μL
流量:1.00mL/分
測定温度:40℃
[変性共役ジエンポリマーの製造]
製造例1
 温度計、還流冷却管及び撹拌装置を備えた加熱及び冷却可能な容積2Lのガラス製フラスコ容器に、1,2-ポリブタジエンホモポリマー(数平均分子量=1,200、ビニル基含有率=85%以上)33.8質量部、インダン環を含む芳香族ビスマレイミド樹脂(上記一般式(A1-4-1)で表される化合物、数平均分子量=1,300)1.43質量部、t-ブチルパーオキシイソプロピルカーボネート0.0035質量部及び有機溶媒としてトルエンを投入した。次いで、窒素雰囲気下、90~100℃で5時間、撹拌しながら反応させることによって、変性共役ジエンポリマーの溶液(固形分濃度:35質量%)を得た。得られた変性共役ジエンポリマーの数平均分子量は1,700であった。
 また、反応開始前の1,2-ポリブタジエンホモポリマー及びインダン環を含む芳香族ビスマレイミド樹脂を含む溶液と、反応後の溶液について、上記方法によってGPCを測定し、反応前後におけるインダン環を含む芳香族ビスマレイミド樹脂に由来するピーク面積を求めた。次いで、下記式によりインダン環を含む芳香族ビスマレイミド樹脂のビニル基変性率を計算した。なお、ビニル基変性率は、反応によるインダン環を含む芳香族ビスマレイミド樹脂に由来するピーク面積の減少率に相当するものである。
 ビニル基変性率(%)=[(反応開始前のインダン環を含む芳香族ビスマレイミド樹脂に由来するピーク面積)-(反応終了後のインダン環を含む芳香族ビスマレイミド樹脂に由来するピーク面積)]×100/(反応開始前のインダン環を含む芳香族ビスマレイミド樹脂に由来するピーク面積)
 上記式から求められたビニル基変性率は40%であった。
[樹脂組成物の製造]
実施例1~7、比較例1~3
 表1に記載の各成分を、トルエンと共に表1に記載の配合量に従って配合した後、25℃で又は50~80℃に加熱しながら撹拌及び混合することによって、固形分濃度が約50質量%の樹脂組成物を調製した。なお、表1中、各成分の配合量の単位は質量部であり、溶液の場合は、固形分換算の質量部を意味する。
[樹脂フィルムの製造]
 各例で得た樹脂組成物を、厚さ50μmのPETフィルム(東洋紡株式会社製、商品名「ピューレックスA53」)の一方の面上に、乾燥後の樹脂層の厚さが150μmとなる厚さで塗布した。その後、105℃で5分間加熱乾燥することによって、樹脂組成物をBステージ状態として、片面PETフィルム付き樹脂フィルム(1)(樹脂フィルムの厚さが150μm)を作製した。
 次いで、得られた片面PETフィルム付き樹脂フィルム(1)を200mm×200mmに切り出し、樹脂フィルム同士が対向するように重ね合わせた。続いて、真空ラミネーターを用いて温度100℃、加圧時間5秒で貼合することによって、両面PETフィルム付き樹脂フィルム(2)(樹脂フィルムの厚さが300μm)を得た。
[両面銅箔付き樹脂板の製造]
 上記で得た両面PETフィルム付き樹脂フィルム(2)を長さ90mm×幅50mmのサイズに切り出し、両面のPETフィルムを剥離除去した後、厚さ0.3mm×長さ90mm×幅50mmのサイズに型抜きしたテフロン(登録商標)シートに投入した。型抜きしたテフロン(登録商標)シートに納められた樹脂フィルムの上下に厚さ18μmのロープロファイル銅箔(三井金属鉱業株式会社製、商品名「3EC-VLP-18」)を配置した。なおロープロファイル銅箔は、M面を樹脂フィルム側にして配置した。
 続いて、この加熱加圧成形前の積層物を、温度180℃、圧力2.0MPa、時間60分間の条件で加熱加圧成形し、樹脂フィルムを樹脂板に成形及び硬化させることによって、両面銅箔付き樹脂板を作製した。得られた両面銅箔付き樹脂板の樹脂板部分の厚さは0.3mmであった。
[測定及び評価方法]
 上記実施例及び比較例で得られた樹脂組成物、樹脂フィルム及び両面銅箔付き樹脂板を用いて、下記方法に従って各測定及び評価を行った。結果を表1に示す。
(1.樹脂フィルムの可撓性の評価方法)
 各例で得た片面PETフィルム付き樹脂フィルム(1)を、25℃で、樹脂フィルム面を外側にして直径85mmの樹脂製の円柱に巻き付けた。巻き付けた樹脂フィルムの外観を目視で観察し、以下の判定基準で樹脂フィルムの可撓性を評価した。
<可撓性の判定基準>
 A:樹脂フィルムのクラック及びPETフィルムからの剥離が観察されなかった。
 B:樹脂フィルムのクラック又はPETフィルムからの剥離が観察された。
(2.線膨張係数及びガラス転移温度の測定及び評価方法)
 各例で得た両面銅箔付き樹脂板を、銅エッチング液である過硫酸アンモニウム(三菱ガス化学株式会社製)10質量%溶液に浸漬することによって銅箔を除去した。得られた樹脂板を、幅0.4mm、長さ20mm、厚さ0.2mmに切り出した後、105℃で1時間乾燥したものを試験片とした。該試験片を上下つかみ具で、つかみ具の間隔を10mmとして該試験片の長辺方向両端を挟んだ。次いで、熱機械測定装置(TMA)(セイコーインスツルメンツ株式会社製、商品名「SS6100」)を用いて、引張モード、温度範囲30~300℃、昇温速度5℃/min、荷重4gで寸法変化を測定した。温度に対する寸法変化の変曲点をガラス転移点、30~150℃における単位温度当たりの寸法変化量の平均値を線膨張係数とし、以下の判定基準で評価した。以下の基準においては、Aが最も優れていることを示す。
<線膨張係数の判定基準>
 A:20ppm/k未満
 B:20ppm/k以上、40ppm/k未満
 C:40ppm/k以上
<ガラス転移温度の判定基準>
 A:180℃以上
 B:180℃未満
(3.25℃引張弾性率の測定及び評価方法)
 各例で得た両面銅箔付き樹脂板を銅エッチング液である過硫酸アンモニウム(三菱ガス化学株式会社製)10質量%溶液に浸漬することによって銅箔を除去した。得られた樹脂板を、幅10mm、長さ40mm、厚さ0.2mmに切り出した後、105℃で1時間乾燥したものを試験片とした。該試験片を上下つかみ具で、つかみ具の間隔を20mmとして該試験片の長辺方向両端を挟んだ。次いで、小型卓上試験機(株式会社島津製作所製、商品名「EZ-TEST」)を用いて、25℃の環境下、引張速度2mm/分の条件において、上記試験片の引張弾性率を取得した。同様の試料を5個作製し、上記と同様の条件で引張弾性率を取得し、その平均値を25℃引張弾性率とした。その他の詳細な条件及び引張弾性率の算出方法は、国際規格ISO5271(1993)に準じて行った。得られた25℃引張弾性率を以下の判定基準で評価した。以下の基準においては、Aが最も優れていることを示す。
<25℃引張弾性率の判定基準>
 A:1.5GPa未満
 B:1.5GPa以上
(4.ピール強度の測定方法)
 各例で得た両面銅箔付き樹脂板の銅箔をエッチングにより5mm幅の直線ラインに加工した後、105℃で1時間乾燥したものを試験片とした。形成した直線ライン状の銅箔を小型卓上試験機(株式会社島津製作所製、商品名「EZ-TEST」)に取り付け、JIS C 6481:1996に準拠して、90°方向に引き剥がすことによって銅箔のピール強度を測定した。銅箔を引き剥がす際の引っ張り速度は50mm/minとした。得られたピール強度を以下の判定基準で評価した。以下の基準においては、Aが最も優れていることを示す。
<ピール強度の判定基準>
 A:0.5kN/m以上
 B:0.4kN/m以上、0.5kN/m未満
(5.誘電率及び誘電正接の測定及び評価方法)
 各例で得た両面銅箔付き樹脂板を銅エッチング液である過硫酸アンモニウム(三菱ガス化学株式会社製)10質量%溶液に浸漬することによって銅箔を除去した。得られた樹脂板を、2mm×50mmに切り出した後、105℃で1時間乾燥したものを試験片とした。次いで、空洞共振器摂動法に準拠して、雰囲気温度25℃、10GHz帯にて、上記試験片の比誘電率(Dk)及び誘電正接(Df)を測定し、以下の判定基準で硬化物の誘電率及び誘電正接を評価した。以下の基準においては、Aが最も優れていることを示す。
<誘電率の判定基準>
 A:2.8未満
 B:2.8以上
<誘電正接の判定基準>
 A:0.0015未満
 B:0.0015以上、0.0025未満
 C:0.0025以上、0.0030未満
(6.熱伝導率)
 各例で得た両面銅箔付き樹脂板の銅箔をエッチングにより除去した、得られた樹脂板を、縦10mm、横10mmに切り出したものを試験片とした。該試験片をグラファイトスプレーを使用して黒化処理した後、キセノンフラッシュアナライザー(NETZSCH社製、商品名「LFA447 nanoflash」)を用いて熱拡散率を評価した。この値と、アルキメデス法で測定した密度と、DSC(示差走査熱量測定装置;Perkin Elmer社製、商品名「DSC Pyris1」)にて測定した比熱との積から、試験片の熱伝導率を求めた。得られた熱伝導率を以下の判定基準で評価した。以下の基準においては、Aが最も優れていることを示す。
<熱伝導率の判定基準>
 A:3.0W/m・K以上
 B:3.0W/m・K未満
(7.170℃質量減少率)
 各例で得た片面PETフィルム付き樹脂フィルム(1)からPETフィルムを剥離除去した後、樹脂フィルムを粉砕して得たBステージ状態の粉末を評価サンプルとした。該評価サンプルを用いて、大気雰囲気下、170℃で30分間加熱乾燥した際における質量減少率[{(加熱前の質量-170℃に加熱後の質量)/(加熱前の質量)}×100]を170℃質量減少率とした。結果を表1に示す。なお、表1中、「≦1.0」は、170℃質量減少率が1.0質量%以下であったことを示す。
Figure JPOXMLDOC01-appb-T000022
 なお、表1に示す各成分の詳細は、以下のとおりである。
[(A)成分]
 ・芳香族ビスマレイミド樹脂:上記一般式(A1-4-1)で表されるインダン環を含む芳香族ビスマレイミド樹脂:数平均分子量=1,300、25℃で固体状
[(B)成分]
 ・ビスフェノールF型エポキシ樹脂:エポキシ基当量:155~165g/eq、25℃で液体状(25℃粘度=393mPa・s)、数平均分子量:300
 ・1,9-ノナンジオールジアクリレート:25℃で液体状(25℃粘度=8mPa・s)、分子量:268.35
 ・1,10-デカンジオールジアクリレート:25℃で液体状(25℃粘度=12mPa・s)、分子量:282.38
 ・ジオキサングリコールジアクリレート:アクリル酸2-[5-エチル-5-[(アクリロイルオキシ)メチル]-1,3-ジオキサン-2-イル]-2,2-ジメチルエチル、25℃で液体状(25℃粘度=310mPa・s)、分子量:326.38
 ・1,9-ノナンジオールジメタクリレート:25℃で液体状(25℃粘度=8mPa・s)、分子量:296.4
[(C)成分]
 シリカ:アミノシランカップリング剤処理を施した球状シリカ、平均粒子径0.5μm
 アルミナ:アルミナ1(平均粒子径18μm、多面体球状)、アルミナ2(平均粒径3μm、多面体球状)、アルミナ3(平均粒子径0.4μm、多面体球状)を質量比で66:24:10で配合したもの
[(D)成分]
 ・変性共役ジエンポリマー:製造例1で得た変性共役ジエンポリマー、数平均分子量1,700
 ・スチレン系エラストマー:水添スチレン系熱可塑性エラストマー(スチレン-エチレン-ブチレン-スチレン共重合体)、商品名「タフテックH1221」、スチレン単位含有率=12質量%、230℃、荷重2.16kgfの測定条件におけるMFR=4.5g/10min、数平均分子量=170,000
 ・共役ジエンポリマー:1,2-ポリブタジエンホモポリマー(数平均分子量=1,200、ビニル基含有率=85%以上)
[(E)成分]
 ・1,3-ジ(t-ブチルパーオキシイソプロピル)ベンゼン
 ・イミダゾール系硬化促進剤:イソシアネートマスクイミダゾール、第一工業製薬株式会社製、商品名「G-8009L」
 上記の結果から、本実施形態の実施例1~7で得られた樹脂組成物は、硬化物の低熱膨張性が良好であり、該樹脂組成物から形成した樹脂フィルムは可撓性に優れている。さらに、実施例1~7の樹脂フィルムは、170℃質量減少率が1.0質量%以下であり、加熱硬化中における揮発成分の発生が抑制されていることが分かる。一方、比較例1及び3の樹脂フィルムは可撓性に劣っており、比較例2の樹脂組成物は低熱膨張性に劣っていた。
 本実施形態の樹脂組成物は、硬化物が良好な低熱膨張性を有し、固形の状態で可撓性に優れながらも、加熱硬化中における揮発成分の発生を抑制し得るものである。そのため、本実施形態の樹脂組成物は、多層プリント配線板、半導体パッケージ等に有用である。

 

Claims (16)

  1.  (A)熱硬化性樹脂と、
     (B)25℃で液体状であって、反応性基を有し、分子量が1,000以下である化合物と、
     (C)無機充填材と、
     を含有する、樹脂組成物。
  2.  前記(A)成分が、N-置換マレイミド基を1個以上有するマレイミド樹脂及び該マレイミド樹脂の誘導体からなる群から選択される1種以上である、請求項1に記載の樹脂組成物。
  3.  前記N-置換マレイミド基を1個以上有するマレイミド樹脂が、分子構造中に芳香族環と脂肪族環との縮合環を含み、N-置換マレイミド基を2個以上有するマレイミド樹脂である、請求項2に記載の樹脂組成物。
  4.  前記(B)成分が、前記反応性基として、ビニル基、アリル基、マレイミド基、(メタ)アクリロイル基、エポキシ基、水酸基、カルボキシ基及びアミノ基から選択される1種以上を有するものである、請求項1~3のいずれか1項に記載の樹脂組成物。
  5.  前記(B)成分が、前記反応性基を、1分子中に2個以上有するものである、請求項1~4のいずれか1項に記載の樹脂組成物。
  6.  前記(B)成分が、ジ(メタ)アクリル酸エステルである、請求項1~5のいずれか1項に記載の樹脂組成物。
  7.  前記(A)成分、前記(B)成分及び前記(C)成分の総量(100質量%)に対する、前記(B)成分の含有量が、1~20質量%である、請求項1~6のいずれか1項に記載の樹脂組成物。
  8.  さらに、(D)分子量が1,000を超えるエラストマーを含有する、請求項1~7のいずれか1項に記載の樹脂組成物。
  9.  厚さが80μm以上の樹脂フィルムを形成するために用いられる、請求項1~8のいずれか1項に記載の樹脂組成物。
  10.  請求項1~8のいずれか1項に記載の樹脂組成物を含有してなる樹脂フィルム。
  11.  厚さが80μm以上である、請求項10に記載の樹脂フィルム。
  12.  厚さが150μm以上の樹脂フィルムであって、該樹脂フィルムの硬化物の10GHzにおける誘電率が2.8未満、誘電正接が0.0030未満である、請求項10に記載の樹脂フィルム。
  13.  大気雰囲気下、170℃で30分間加熱乾燥した際における質量減少率が2.0質量%以下である、請求項10~12のいずれか1項に記載の樹脂フィルム。
  14.  請求項10~13のいずれか1項に記載の樹脂フィルムを含有してなる多層プリント配線板。
  15.  請求項10~13のいずれか1項に記載の樹脂フィルムを含有してなる半導体パッケージ。
  16.  前記樹脂フィルムの硬化物に封止された半導体チップを備える、請求項15に記載の半導体パッケージ。
PCT/JP2021/025766 2021-07-08 2021-07-08 樹脂組成物、樹脂フィルム、多層プリント配線板及び半導体パッケージ WO2023281692A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/JP2021/025766 WO2023281692A1 (ja) 2021-07-08 2021-07-08 樹脂組成物、樹脂フィルム、多層プリント配線板及び半導体パッケージ
PCT/JP2022/026900 WO2023282313A1 (ja) 2021-07-08 2022-07-07 樹脂組成物、樹脂フィルム、プリント配線板及び半導体パッケージ
CN202280045600.2A CN117561309A (zh) 2021-07-08 2022-07-07 树脂组合物、树脂膜、印刷电路板和半导体封装体
KR1020237045076A KR20240031967A (ko) 2021-07-08 2022-07-07 수지 조성물, 수지 필름, 프린트 배선판 및 반도체 패키지
EP22837727.1A EP4368674A1 (en) 2021-07-08 2022-07-07 Resin composition, resin film, printed wiring board, and semiconductor package
JP2023533179A JPWO2023282313A1 (ja) 2021-07-08 2022-07-07
TW111125661A TW202307039A (zh) 2021-07-08 2022-07-08 樹脂組成物、樹脂薄膜、印刷線路板及半導體封裝體

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/025766 WO2023281692A1 (ja) 2021-07-08 2021-07-08 樹脂組成物、樹脂フィルム、多層プリント配線板及び半導体パッケージ

Publications (1)

Publication Number Publication Date
WO2023281692A1 true WO2023281692A1 (ja) 2023-01-12

Family

ID=84800748

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2021/025766 WO2023281692A1 (ja) 2021-07-08 2021-07-08 樹脂組成物、樹脂フィルム、多層プリント配線板及び半導体パッケージ
PCT/JP2022/026900 WO2023282313A1 (ja) 2021-07-08 2022-07-07 樹脂組成物、樹脂フィルム、プリント配線板及び半導体パッケージ

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026900 WO2023282313A1 (ja) 2021-07-08 2022-07-07 樹脂組成物、樹脂フィルム、プリント配線板及び半導体パッケージ

Country Status (6)

Country Link
EP (1) EP4368674A1 (ja)
JP (1) JPWO2023282313A1 (ja)
KR (1) KR20240031967A (ja)
CN (1) CN117561309A (ja)
TW (1) TW202307039A (ja)
WO (2) WO2023281692A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011001473A (ja) * 2009-06-19 2011-01-06 Hitachi Chem Co Ltd 電子部品用絶縁材料
JP2020138996A (ja) * 2019-02-26 2020-09-03 味の素株式会社 樹脂組成物
WO2020217677A1 (ja) * 2019-04-26 2020-10-29 Dic株式会社 硬化性樹脂組成物
JP2021032916A (ja) * 2019-08-14 2021-03-01 昭和電工マテリアルズ株式会社 感光性樹脂組成物、感光性樹脂フィルム、多層プリント配線板及び半導体パッケージ、並びに多層プリント配線板の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018012747A (ja) 2016-07-19 2018-01-25 日立化成株式会社 熱硬化性樹脂組成物、層間絶縁用樹脂フィルム、複合フィルム、プリント配線板及びその製造方法
JP2020200406A (ja) 2019-06-11 2020-12-17 昭和電工マテリアルズ株式会社 熱硬化性樹脂組成物、プリプレグ、積層板、プリント配線板及び高速通信対応モジュール

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011001473A (ja) * 2009-06-19 2011-01-06 Hitachi Chem Co Ltd 電子部品用絶縁材料
JP2020138996A (ja) * 2019-02-26 2020-09-03 味の素株式会社 樹脂組成物
WO2020217677A1 (ja) * 2019-04-26 2020-10-29 Dic株式会社 硬化性樹脂組成物
JP2021032916A (ja) * 2019-08-14 2021-03-01 昭和電工マテリアルズ株式会社 感光性樹脂組成物、感光性樹脂フィルム、多層プリント配線板及び半導体パッケージ、並びに多層プリント配線板の製造方法

Also Published As

Publication number Publication date
TW202307039A (zh) 2023-02-16
CN117561309A (zh) 2024-02-13
WO2023282313A1 (ja) 2023-01-12
JPWO2023282313A1 (ja) 2023-01-12
KR20240031967A (ko) 2024-03-08
EP4368674A1 (en) 2024-05-15

Similar Documents

Publication Publication Date Title
WO2020045408A1 (ja) 樹脂材料、積層構造体及び多層プリント配線板
JP6809014B2 (ja) 熱硬化性樹脂組成物、層間絶縁用樹脂フィルム、複合フィルム、プリント配線板及びその製造方法
EP3786230A1 (en) Thermosetting composition, prepreg, metal foil-clad laminate, resin sheet, and printed wiring board
JP7020332B2 (ja) 樹脂組成物
JP2019099712A (ja) 熱硬化性樹脂組成物、プリプレグ、積層板、プリント配線板及び高速通信対応モジュール
WO2023281692A1 (ja) 樹脂組成物、樹脂フィルム、多層プリント配線板及び半導体パッケージ
TW202225208A (zh) 馬來醯亞胺樹脂組成物、預浸體、積層板、樹脂薄膜、印刷線路板及半導體封裝體
JP7298518B2 (ja) 樹脂組成物、樹脂組成物の硬化物、樹脂シート、プリント配線板及び半導体装置
WO2022145377A1 (ja) 樹脂組成物、プリプレグ、積層板、樹脂フィルム、プリント配線板及び半導体パッケージ
WO2023074646A1 (ja) 樹脂付き金属箔、プリント配線板及びその製造方法、並びに半導体パッケージ
JP2023013227A (ja) 樹脂組成物、プリプレグ、積層板、樹脂フィルム、多層プリント配線板、アンテナ装置及びアンテナモジュール
TW202229442A (zh) 馬來醯亞胺樹脂組成物、預浸體、積層板、樹脂薄膜、印刷線路板及半導體封裝體
JP2022022261A (ja) 樹脂組成物
JP2018182004A (ja) 積層板の製造方法、プリント配線板の製造方法、及び半導体パッケージの製造方法
JP2020200406A (ja) 熱硬化性樹脂組成物、プリプレグ、積層板、プリント配線板及び高速通信対応モジュール
WO2023062769A1 (ja) 樹脂シート、積層板、金属張り積層板、プリント配線板及び半導体パッケージ
JP2023060674A (ja) 樹脂組成物、プリプレグ、積層板、樹脂フィルム、プリント配線板及び半導体パッケージ
WO2023033131A1 (ja) 樹脂組成物、プリプレグ、積層板、樹脂フィルム、プリント配線板及び半導体パッケージ
WO2023090351A1 (ja) 樹脂組成物、プリプレグ、積層板、樹脂フィルム、プリント配線板及び半導体パッケージ
WO2022004756A1 (ja) 樹脂組成物
WO2023163086A1 (ja) 樹脂組成物、プリプレグ、積層板、樹脂フィルム、プリント配線板及び半導体パッケージ
WO2024080195A1 (ja) プリプレグ、積層板、プリント配線板及び半導体パッケージ
JP2023110554A (ja) 樹脂組成物、プリプレグ、積層板、樹脂フィルム、プリント配線板及び半導体パッケージ
JP2023013229A (ja) 樹脂組成物、プリプレグ、積層板、樹脂フィルム、多層プリント配線板、アンテナ装置及びアンテナモジュール
JP2022122542A (ja) マレイミド樹脂組成物、プリプレグ、樹脂フィルム、積層板、多層プリント配線板及び半導体パッケージ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21949325

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE