WO2023279673A1 - 比较器阈值电压选择电路及方法 - Google Patents

比较器阈值电压选择电路及方法 Download PDF

Info

Publication number
WO2023279673A1
WO2023279673A1 PCT/CN2021/140252 CN2021140252W WO2023279673A1 WO 2023279673 A1 WO2023279673 A1 WO 2023279673A1 CN 2021140252 W CN2021140252 W CN 2021140252W WO 2023279673 A1 WO2023279673 A1 WO 2023279673A1
Authority
WO
WIPO (PCT)
Prior art keywords
threshold voltage
comparator
ideal
alternative
voltage
Prior art date
Application number
PCT/CN2021/140252
Other languages
English (en)
French (fr)
Inventor
陈玺
王健安
付东兵
陈光炳
刘璐
李飞
沈晓峰
季瑾月
Original Assignee
重庆吉芯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆吉芯科技有限公司 filed Critical 重庆吉芯科技有限公司
Publication of WO2023279673A1 publication Critical patent/WO2023279673A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/22Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral
    • H03K5/24Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral the characteristic being amplitude
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/124Sampling or signal conditioning arrangements specially adapted for A/D converters
    • H03M1/1245Details of sampling arrangements or methods

Definitions

  • the invention relates to the technical field of integrated circuits, in particular to a comparator threshold voltage selection circuit and method.
  • High-speed and high-precision analog-to-digital converters mostly adopt a pipeline-level architecture in order to take into account both speed and accuracy requirements.
  • the comparator is mainly used to build a sub-analog-to-digital converter (Sub-ADC).
  • Sub-ADC sub-analog-to-digital converter
  • the non-inverting input terminal of the comparator 130 is connected to the input voltage Vin, and the inverting The input terminal is connected to the threshold voltage Vref provided by the threshold voltage generation module 110 through the path selection module 120.
  • One of its core indicators is the offset voltage Vo brought by the circuit structure and production process, and a large offset voltage Vo will cause the comparator 130 to input
  • the comparison judgment between the input voltage Vin at the terminal and the threshold voltage Vref is wrong, causing the output signal of the pipeline at this stage to exceed the range, and finally manifested as the overall differential nonlinear error/integral nonlinear error (DNL/INL) code loss of the analog-to-digital converter. Therefore, it is necessary to design the circuit structure or use correction means to ensure that the offset voltage of the comparator is small enough to meet the design requirements.
  • the idea of correcting the offset voltage is mainly to calculate the deviation value of the offset voltage through different methods, and incorporate this value into the threshold voltage of the comparator to eliminate the influence.
  • the calculation process of these different methods requires a determination voltage, so an additional circuit is used for auxiliary calculations, which increases the complexity of the circuit implementation, such as the one adopted in the patent 201610444100.2 "A Comparator Offset Voltage Self-Correction Circuit” technical solutions.
  • the object of the present invention is to provide a technical solution for selecting a threshold voltage of a comparator to solve the above-mentioned technical problems.
  • the present invention provides a comparator threshold voltage selection circuit for the threshold voltage selection of a comparator in a pipeline-level analog-to-digital converter, including:
  • a threshold voltage generating module one end is connected to the first voltage, the other end is connected to the second voltage, and N alternative threshold voltages are provided externally;
  • a channel selection module the input terminal is connected to the threshold voltage generation module, the output terminal is connected to the inverting input terminal of the comparator, and the N candidate threshold voltages are connected to the inverting input terminal of the comparator one by one, And the on-off state of the alternative threshold voltage is controlled by the control terminal;
  • a determination module the input terminal is connected to the output terminal of the comparator, the output terminal is connected to the control terminal of the path selection module, and the on-off states of the N candidate threshold voltages are controlled according to the output of the comparator;
  • the non-inverting input terminal of the comparator is connected to an ideal threshold voltage, and N is an integer greater than 1.
  • the threshold voltage generation module includes N+1 resistors, and the N+1 resistors are sequentially connected in series to form a resistor string, one end of the resistor string is connected to the first voltage, and the other end is connected to the second voltage. voltage, and one of the alternative threshold voltages is output from the common end of two adjacent resistors.
  • the resistance values of the N+1 resistors are equal, and the difference between two adjacent candidate threshold voltages is equal to the offset voltage deviation value of the comparator.
  • the path selection module includes N control switches arranged in parallel, the input terminals of the N control switches are connected to the N candidate threshold voltages in one-to-one correspondence, and the output terminals of the N control switches connected to the inverting input of the comparator.
  • the determination module includes a counter and a state machine, the input of the counter is connected to the output of the comparator, the output of the counter is connected to the input of the state machine, and the output of the state machine
  • the terminals are connected to the control ends of the N control switches, and the state machine controls the on-off states of the N control switches respectively.
  • the present invention also provides a comparator threshold voltage selection method for the threshold voltage selection of a comparator in a pipeline-level analog-to-digital converter, including steps:
  • the tolerance of the arithmetic sequence is the offset voltage deviation value of the comparator, and N is an integer greater than 1.
  • each of the candidate threshold voltages and the ideal threshold voltage needs to be compared n times, if the comparison is completed after one comparison If the output of the comparator is 1, the count is increased by one. If the output count of the comparator reaches the set value m after n comparisons are completed, the threshold voltage selection ends, and the alternative threshold voltage is less than the ideal threshold voltage, and the corresponding The alternative threshold voltage of is used as the threshold voltage of the comparator; wherein, m is an integer greater than 1, n is an integer greater than 2, and m is less than or equal to n.
  • the candidate threshold voltage needs to be increased. range of voltage values, providing the candidate threshold voltage with a smaller value and comparing it with the ideal threshold voltage until one of the candidate threshold voltages smaller than the ideal threshold voltage is found.
  • the comparator threshold voltage selection circuit and method of the present invention have at least the following beneficial effects:
  • the entire comparator threshold voltage selection circuit is a simple structure based on the comparator, without changing the flow
  • the circuit structure of the Sub-ADC in the stage analog-to-digital converter does not need to add additional computing units, so this circuit structure can be adapted to any pipeline-level analog-to-digital converter, when the pipeline-level analog-to-digital converter circuit is powered on Automatically selects the appropriate comparator threshold for a wide range of applications.
  • FIG. 1 is a schematic structural diagram of a sub-ADC in a pipeline-level ADC in the prior art.
  • FIG. 2 is a schematic structural diagram of a comparator threshold voltage selection circuit in the present invention.
  • FIG. 3 is a schematic structural diagram of a comparator threshold voltage selection circuit in an embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing steps of a method for selecting a threshold voltage of a comparator in the present invention.
  • FIG. 5 is a schematic diagram of an output state of a determination module in an embodiment of the present invention.
  • the present invention provides a comparator threshold voltage selection circuit for the threshold voltage selection of a comparator in a pipeline-level analog-to-digital converter, which includes:
  • the threshold voltage generation module 210 is connected to the first voltage V P at one end and the second voltage V M at the other end, and provides N alternative threshold voltages externally, that is, the alternative threshold voltages V 1 , V 2 , . . . , V N-1 and V N ;
  • the channel selection module 220 the input terminal is connected to the threshold voltage generation module 210, and the output terminal is connected to the inverting input terminal of the comparator 240, and the N candidate threshold voltages (that is, the candidate threshold voltages V 1 , V 2 , ..., V N- 1 and V N ) are connected to the inverting input terminal of the comparator 240 one by one, and the on-off states of the alternative threshold voltages V 1 , V 2 , ..., V N-1 and V N are controlled one by one by the control terminal V Control of O1, V O2 ,..., V ON-1 and V ON ;
  • the decision module 230 the input terminal is connected to the output terminal of the comparator 240, the output terminal is connected to the control terminal of the path selection module 220, and N alternative threshold voltages V 1 , V 2 , ..., V N-1 are controlled according to the output of the comparator 240 And the on-off state of V N ;
  • the non-inverting input terminal of the comparator 240 is connected to the ideal threshold voltage V 0 , and N is an integer greater than 1.
  • the threshold voltage generating module 210 includes N + 1 resistors, namely resistors R 1 , R 2 , . R N+1 are serially connected in series to form a resistor string. One end of the resistor string is connected to the first voltage V P and the other end is connected to the second voltage V M .
  • the common end of two adjacent resistors outputs an alternative threshold voltage, that is, the resistor R 1
  • the alternative threshold voltage V 1 is output at the common end of the resistor R 2
  • the alternative threshold voltage V 2 is output at the common end of the resistor R 2 and the resistor R 3 , ..., the common end of the resistor R N and the resistor R N+1
  • An alternative threshold voltage V N is output.
  • the resistance values of the N + 1 resistors are equal, that is, the resistance values of the resistors R 1 , R 2 , .
  • the first voltage V P is the designed theoretical value of the last comparator threshold, and the first The second voltage V M is the design theoretical value of the next comparator threshold, and the ideal threshold voltage V 0 is the design theoretical value of the current comparator threshold.
  • the channel selection module 220 includes N control switches arranged in parallel, that is, control switches S 1 , S 2 , ... S N-1 and S N , and the input terminals of the N control switches are connected to the N
  • the alternative threshold voltages are connected in one - to - one correspondence, that is, the input terminal of the control switch S1 is connected with the alternative threshold voltage V1, the input terminal of the control switch S2 is connected with the alternative threshold voltage V2, ..., the input of the control switch S N
  • the terminal is connected to the alternative threshold voltage V N
  • the output terminals of the N control switches are connected to the inverting input terminal of the comparator 240 .
  • the determination module 230 includes a counter and a state machine
  • the input terminal of the counter is connected to the output terminal of the comparator 240
  • the output terminal of the counter is connected to the input terminal of the state machine
  • the output terminal of the state machine is connected to N control
  • the control terminal of the switch that is, the output terminal of the state machine is respectively connected with the control terminal V O1 of the control switch S 1 , the control terminal V O2 of the control switch S 2 , ... and the control terminal V ON of the control switch S N
  • the state machine is connected to the N
  • the on-off states of the control switches S 1 , S 2 , ... SN-1 and SN are respectively controlled.
  • the threshold voltage generating module 210 includes 6 resistors, namely resistors R 1 , R 2 , R 3 , R 4 , and R 5 and R 6 , resistors R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are sequentially connected in series to form a resistor string, one end of the resistor string is connected to the first voltage V P , the other end is connected to the second voltage V M , the threshold voltage
  • the generation module 210 provides 5 candidate threshold voltages to the outside, namely, candidate threshold voltages V 1 , V 2 , V 3 , V 4 and V 5 .
  • the path selection module 220 includes five control switches arranged in parallel, namely control switches S 1 , S 2 , S 3 , S 4 and S 4 , and the input terminal of the control switch S 1 is connected to The alternative threshold voltage V1 is connected, the output terminal of the control switch S1 is connected with the inverting input terminal of the comparator 240, the control terminal V O1 of the control switch S1 is connected with the output terminal of the determination machine in the determination module 230, and the control switch S
  • the input terminal of 2 is connected to the alternative threshold voltage V2
  • the output terminal of the control switch S2 is connected to the inverting input terminal of the comparator 240
  • the control terminal V O2 of the control switch S2 is connected to the output terminal of the determination machine in the determination module 230 connected
  • the input terminal of the control switch S3 is connected with the alternative threshold voltage V3
  • the output terminal of the control switch S3 is connected with the inverting input terminal of the comparator 240
  • the control terminal V O3 of the control switch S3 is connected
  • the present invention also provides a kind of comparator threshold voltage selection method, is used for the threshold voltage selection of the comparator in pipeline level analog-to-digital converter, and it comprises steps:
  • the tolerance of the arithmetic sequence is the offset voltage deviation value of the comparator 240 , and N is an integer greater than 1.
  • the candidate threshold voltages V 1 , V 2 , ..., V N-1 and V N are compared with the ideal threshold voltage V 0 in sequence until one is found that is less than
  • the step S2 of the alternative threshold voltage V j of the ideal threshold voltage V 0 further includes:
  • the alternative threshold voltage V i and the ideal threshold voltage V 0 need to be compared n times, if the output of the comparator 240 is If it is 1, the count is increased by one. If the output count of the comparator 240 reaches the set value m after n comparisons are completed, the threshold voltage selection ends, the alternative threshold voltage V i is less than the ideal threshold voltage V 0 , and the corresponding alternative threshold voltage
  • the voltage V i serves as the threshold voltage of the comparator 240 ; wherein, m is an integer greater than 1, n is an integer greater than 2, m is less than or equal to n, and i is a positive integer less than or equal to N.
  • the comparator threshold voltage selection circuit shown in Figure 3 its working principle is as follows: the current threshold of the comparator is selected by five times of determination, If the judgment ends at any one time, the next cycle will not be performed;
  • the first judgment, the counter is cleared, the output state 1 of the judgment module 230 makes the control switch S5 conduction, the control switch S1/S2/S3 / S4 is disconnected, and the non - inverting input terminal of the comparator 240 is connected Ideal threshold voltage V 0 , at this time, the ideal threshold voltage V 0 is equal to the alternative threshold voltage V 3 , and the inverting input terminal of the comparator 240 is connected to the alternative threshold voltage V 5 ; if the output of the comparator 240 is 1 at this time, then keep The output of the decision module 230, the counter adds one; the comparator 240 compares n times, if the counter reaches the set value m (m ⁇ n) after the n times of comparison, then keep the output of the decision module 230, the threshold selection ends, and the alternative The threshold voltage V5 is used as the threshold voltage of the comparator 240; if the counter does not reach the set value m, the output of the determination module 230 changes and enters the next selection;
  • the second judgment, the counter is cleared, the output state 2 of the judgment module 230 makes the control switch S4 conduction, the control switch S1/S2/S3 / S5 is disconnected, and the non - inverting input terminal of the comparator 240 is connected
  • the inverting input terminal of the comparator 240 is connected to the alternative threshold voltage V 4 ; if the output of the comparator 240 is 1 at this time, the output of the judgment module 230 is kept, and the counter is incremented by one; the comparator 240 performs n times Compare, if the counter reaches set value m (m ⁇ n) after n times of comparisons, then keep the output of decision module 230, the threshold value selection ends, and the alternative threshold voltage V 4 is used as the threshold voltage of comparator 240; if the counter does not reach Set the value m, then the output of the judgment module 230 changes, and enters the next selection;
  • the third judgment, the counter is cleared, the output state 3 of the judgment module 230 makes the control switch S3 conduction, the control switch S1/S2/ S4 / S5 is disconnected, and the non - inverting input terminal of the comparator 240 is connected
  • the inverting input terminal of the comparator 240 is connected to the alternative threshold voltage V 3 ; if the output of the comparator 240 is 1 at this time, the output of the judgment module 230 is kept, and the counter is incremented by one; the comparator 240 performs n times Compare, if the counter reaches set value m (m ⁇ n) after n times of comparison, then keep the output of decision module 230, the threshold selection finishes, with alternative threshold voltage V 3 as the threshold voltage of comparator 240; If counter does not reach Set the value m, then the output of the judgment module 230 changes, and enters the next selection;
  • the fourth judgment, the counter is cleared, the output state 4 of the judgment module 230 makes the control switch S2 conduction, the control switch S1/S3 / S4/ S5 is disconnected, and the non - inverting input terminal of the comparator 240 is connected
  • the inverting input terminal of the comparator 240 is connected to the alternative threshold voltage V 2 ; if the output of the comparator 240 is 1 at this time, the output of the judgment module 230 is kept, and the counter is incremented by one; the comparator 240 performs n times Compare, if the counter reaches the set value m (m ⁇ n) after n times of comparisons, then keep the output of the decision module 230, the threshold selection ends, and the alternative threshold voltage V 2 is used as the threshold voltage of the comparator 240; if the counter does not reach Set the value m, then the output of the judgment module 230 changes, and enters the next selection;
  • the fifth judgment, the counter is cleared, the output state 5 of the judgment module 230 makes the control switch S1 conduction, the control switch S2/S3 / S4/S5 is disconnected, and the non - inverting input terminal of the comparator 240 is connected
  • the inverting input terminal of the comparator 240 is connected to the alternative threshold voltage V 1 ; if the output of the comparator 240 is 1 at this time, the output of the judgment module 230 is kept, and the counter is incremented by one; the comparator 240 performs n times Compare, if the counter reaches the set value m (m ⁇ n) after n times of comparisons, then keep the output of the decision module 230, the threshold selection ends, and the alternative threshold voltage V 1 is used as the threshold voltage of the comparator 240; if the counter does not reach If the value m is set, the output of the determination module 230 is state 0, which means that the offset voltage of the comparator 240 has exceeded the correction range, and the correction
  • a plurality of alternative threshold voltages are provided first, and then the ideal threshold voltage of the comparator is compared and determined with the plurality of alternative threshold voltages one by one, which can Quickly and effectively select an alternative threshold voltage that is slightly smaller than the ideal threshold voltage as the threshold voltage of the comparator. Based on the gradual approach of the deviation value of the offset voltage, the threshold voltage can be effectively corrected, eliminating the impact of the offset voltage on the output of the comparator.
  • the entire comparator threshold voltage selection circuit is a simple structure based on the comparator, without changing the Sub-ADC circuit structure in the pipeline-level analog-to-digital converter, and without adding additional Therefore, the circuit structure can be adapted to any pipeline-level analog-to-digital converter, and the appropriate comparator threshold is automatically selected when the pipeline-level analog-to-digital converter circuit is powered on, and has a wide range of applications.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Analogue/Digital Conversion (AREA)
  • Manipulation Of Pulses (AREA)

Abstract

一种比较器阈值电压选择电路及方法,在该方法中,先提供多个备选阈值电压(V 1 、V 2、…、V N-1及V N),再将比较器(240)的理想阈值电压(V 0)与多个备选阈值电压(V 1 、V 2、…、V N-1及V N)逐一比较判定,能快速有效地选择出略小于理想阈值电压(V 0)的备选阈值电压作为比较器(240)的阈值电压,基于失调电压的偏差值的逐渐逼近,能有效地对阈值电压进行校正,消除了失调电压对比较器(240)输出结果准确性的影响,进而消除了系统上的失码问题;且整个比较器阈值电压选择电路为基于比较器(240)的简单结构,不改变流水级模数转换器中Sub-ADC电路结构,不需要增加额外的运算单元,该电路结构可以适配在任何流水级模数转换器中,在流水级模数转换器电路上电时自动选择合适的比较器阈值,适用范围广。

Description

比较器阈值电压选择电路及方法 技术领域
本发明涉及集成电路技术领域,特别是涉及一种比较器阈值电压选择电路及方法。
背景技术
高速高精度模数转换器多采用流水级架构,以便同时兼顾速度和精度要求。在流水级模数转换器中,比较器主要用于搭建子模数转换器(Sub-ADC),如图1所示,比较器130的同相输入端接输入电压Vin,比较器130的反相输入端经过通路选择模块120接阈值电压产生模块110提供的阈值电压Vref,其核心指标之一就是由电路结构及生产工艺带来的失调电压Vo,而大的失调电压Vo会使比较器130输入端的输入电压Vin和阈值电压Vref之间的比较判决出错,导致该级流水线输出信号超量程,最终表现为模数转换器整体微分非线性误差/积分非线性误差(DNL/INL)失码。因此,必须从电路结构设计上,或者使用校正手段来保证比较器的失调电压足够小,满足设计要求。
目前,失调电压的校正思路主要是通过不同方式的计算得到失调电压的偏差值,并将这个数值并入比较器阈值电压中,以此消除影响。但这些不同方式的计算过程需要一个判定电压,因此用到额外的电路来进行辅助运算,此举加了电路实现的复杂度,例如专利201610444100.2《一种比较器失调电压自校正电路》的所采用的技术方案。
有鉴于此,目前亟需一种电路结构简单且可靠性高的比较器阈值电压校正技术方案。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种比较器的阈值电压选择技术方案,用于解决上述技术问题。
首先,为实现上述目的及其他相关目的,本发明提供一种比较器阈值电压选择电路,用于流水级模数转换器中比较器的阈值电压选择,包括:
阈值电压产生模块,一端接第一电压,另一端接第二电压,对外提供N个备选阈值电压;
通路选择模块,输入端接所述阈值电压产生模块,输出端接所述比较器的反相输入端,将N个所述备选阈值电压一一接入所述比较器的反相输入端,且所述备选阈值电压的通断状态受控制端的控制;
判定模块,输入端接所述比较器的输出端,输出端接所述通路选择模块的控制端,根据所述比较器的输出控制N个所述备选阈值电压的通断状态;
其中,所述比较器的同相输入端接理想阈值电压,N为大于1的整数。
可选地,所述阈值电压产生模块包括N+1个电阻,N+1个所述电阻依次串联构成电阻串,所述电阻串的一端接所述第一电压、另一端接所述第二电压,相邻两个所述电阻的公共端处输出一个所述备选阈值电压。
可选地,N+1个所述电阻的阻值相等,且相邻两个所述备选阈值电压的差值等于所述比较器的失调电压偏差值。
可选地,所述通路选择模块包括N个并行设置的控制开关,N个所述控制开关的输入端与N个所述备选阈值电压一一对应连接,N个所述控制开关的输出端接所述比较器的反相输入端。
可选地,所述判定模块包括计数器和状态机,所述计数器的输入端接所述比较器的输出端,所述计数器的输出端接所述状态机的输入端,所述状态机的输出端接N个所述控制开关的控制端,所述状态机对N个所述控制开关的通断状态分别进行控制。
其次,为实现上述目的及其他相关目的,本发明还提供一种比较器阈值电压选择方法,用于流水级模数转换器中比较器的阈值电压选择,包括步骤:
提供理想阈值电压与N个备选阈值电压,N个所述备选阈值电压构成递增的等差数列,且所述理想阈值电压为所述等差数列的中位数;
从所述等差数列的第一项开始,按顺序依次将所述备选阈值电压与所述理想阈值电压进行比较,直到找到一个小于所述理想阈值电压的所述备选阈值电压,且将对应的所述备选阈值电压作为所述比较器的阈值电压;
其中,所述等差数列的公差为所述比较器的失调电压偏差值,N为大于1的整数。
可选地,从所述等差数列的第一项开始,按顺序依次将所述备选阈值电压与所述理想阈值电压进行比较,直到找到一个小于所述理想阈值电压的所述备选阈值电压的步骤包括:
将所述理想阈值电压接入所述比较器的同相输入端;
从所述等差数列的第一项开始,按顺序依次将所述备选阈值电压接入所述比较器的反相输入端,并比较所述备选阈值电压与所述理想阈值电压的大小,直到找到一个小于所述理想阈值电压的所述备选阈值电压。
可选地,在比较所述备选阈值电压与所述理想阈值电压的大小时,每个所述备选阈值电压与所述理想阈值电压要经过n次比较,若一次比较完成后所述比较器的输出为1则计数加一,若n次比较完成后所述比较器的输出计数达到设定值m则阈值电压选择结束,所述备选阈值电压小于所述理想阈值电压,且将对应的所述备选阈值电压作为所述比较器的阈值电压; 其中,m为大于1的整数,n为大于2的整数,m小于等于n。
可选地,若N个所述备选阈值电压与所述理想阈值电压均比较完成后,仍没有找到小于所述理想阈值电压的所述备选阈值电压,则需要增加所述备选阈值电压的电压取值范围,提供取值更小的所述备选阈值电压与所述理想阈值电压进行比较,直到找到一个小于所述理想阈值电压的所述备选阈值电压。
如上所述,本发明的比较器阈值电压选择电路及方法至少具有以下有益效果:
先提供多个备选阈值电压,再将比较器的理想阈值电压与多个备选阈值电压逐一比较判定,能快速有效地找出略小于理想阈值电压的备选阈值电压作为比较器的阈值电压,对阈值电压进行校正,消除了失调电压对比较器输出结果准确性的影响,进而消除了系统上的失码问题;且整个比较器阈值电压选择电路为基于比较器的简单结构,不改变流水级模数转换器中Sub-ADC的电路结构,不需要增加额外的运算单元,因此,该电路结构可以适配在任何流水级模数转换器中,在流水级模数转换器电路上电时自动选择合适的比较器阈值,适用范围广。
附图说明
图1显示为现有技术中一种流水级模数转换器中子模数转换器的结构示意图。
图2显示为本发明中比较器阈值电压选择电路的结构示意图。
图3显示为本发明一实施例中比较器阈值电压选择电路的结构示意图。
图4显示为本发明中比较器阈值电压选择方法的步骤示意图。
图5显示为本发明一实施例中判定模块的输出状态的示意图。
110、210-阈值电压产生模块,120、220-通路选择模块,230-判定模块,130、240-比较器,VDD-工作电压,GND-地,V O-失调电压,Vref-阈值电压,Vin-输入电压,V P-第一电压,V M-第二电压,V 1、V 2、…、V N-1及V N-备选阈值电压,V 0-理想阈值电压,R 1、R 2、…、R N及R N+1-电阻,S 1、S 2、…S N-1及S N-控制开关,V O1、V O2、…、V ON-1及V ON-控制开关的控制端。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精 神下进行各种修饰或改变。
请参阅图2至图5。需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。本说明书所附图式所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明所揭示的技术内容得能涵盖的范围内。
如图2所示,本发明提供一种比较器阈值电压选择电路,用于流水级模数转换器中比较器的阈值电压选择,其包括:
阈值电压产生模块210,一端接第一电压V P,另一端接第二电压V M,对外提供N个备选阈值电压,即备选阈值电压V 1、V 2、…、V N-1及V N
通路选择模块220,输入端接阈值电压产生模块210,输出端接比较器240的反相输入端,将N个备选阈值电压(即备选阈值电压V 1、V 2、…、V N-1及V N)一一接入比较器240的反相输入端,且备选阈值电压V 1、V 2、…、V N-1及V N的通断状态一一对应地受控制端V O1、V O2、…、V ON-1及V ON的控制;
判定模块230,输入端接比较器240的输出端,输出端接通路选择模块220的控制端,根据比较器240的输出控制N个备选阈值电压V 1、V 2、…、V N-1及V N的通断状态;
其中,比较器240的同相输入端接理想阈值电压V 0,N为大于1的整数。
详细地,图2所示,阈值电压产生模块210包括N+1个电阻,即电阻R 1、R 2、…、R N及R N+1,电阻R 1、R 2、…、R N及R N+1依次串联构成电阻串,电阻串的一端接第一电压V P、另一端接第二电压V M,相邻两个电阻的公共端处输出一个备选阈值电压,即电阻R 1与电阻R 2的公共端处输出备选阈值电压V 1,电阻R 2与电阻R 3的公共端处输出备选阈值电压V 2,…,电阻R N与电阻R N+1的公共端处输出备选阈值电压V N
其中,N+1个电阻的阻值相等,即电阻R 1、R 2、…、R N及R N+1的阻值相等,且相邻两个备选阈值电压的差值等于比较器240的失调电压偏差值各Δ,即V 1-V 2=V 2-V 3=…=V N-1-V N=Δ;第一电压V P为上一个比较器阈值的设计理论值,第二电压V M为下一个比较器阈值的设计理论值,理想阈值电压V 0为当前比较器阈值的设计理论值。
详细地,如图2所示,通路选择模块220包括N个并行设置的控制开关,即控制开关S 1、 S 2、…S N-1及S N,N个控制开关的输入端与N个备选阈值电压一一对应连接,即控制开关S 1的输入端与备选阈值电压V 1连接,控制开关S 2的输入端与备选阈值电压V 2连接,…,控制开关S N的输入端与备选阈值电压V N连接,N个控制开关的输出端接比较器240的反相输入端。
详细地,如图2所示,判定模块230包括计数器和状态机,计数器的输入端接比较器240的输出端,计数器的输出端接状态机的输入端,状态机的输出端接N个控制开关的控制端,即状态机的输出端分别与控制开关S 1的控制端V O1、控制开关S 2的控制端V O2、…及控制开关S N的控制端V ON连接,状态机对N个控制开S 1、S 2、…S N-1及S N的通断状态分别进行控制。
在本发明的一可选实施例中,如图3所示,N的取值为5,阈值电压产生模块210包括6个电阻,即电阻R 1、R 2、R 3、R 4、R 5及R 6,电阻R 1、R 2、R 3、R 4、R 5及R 6依次串联构成电阻串,电阻串的一端接第一电压V P、另一端接第二电压V M,阈值电压产生模块210对外提供5个备选阈值电压,即备选阈值电压V 1、V 2、V 3、V 4及V 5
与此对应的,如图3所示,通路选择模块220包括5个并行设置的控制开关,即控制开关S 1、S 2、S 3、S 4及S 4,控制开关S 1的输入端与备选阈值电压V 1连接,控制开关S 1的输出端与比较器240的反相输入端连接,控制开关S 1的控制端V O1与判定模块230中判定机的输出端连接,控制开关S 2的输入端与备选阈值电压V 2连接,控制开关S 2的输出端与比较器240的反相输入端连接,控制开关S 2的控制端V O2与判定模块230中判定机的输出端连接,控制开关S 3的输入端与备选阈值电压V 3连接,控制开关S 3的输出端与比较器240的反相输入端连接,控制开关S 3的控制端V O3与判定模块230中判定机的输出端连接,控制开关S 4的输入端与备选阈值电压V 4连接,控制开关S 4的输出端与比较器240的反相输入端连接,控制开关S 4的控制端V O4与判定模块230中判定机的输出端连接,控制开关S 5的输入端与备选阈值电压V 5连接,控制开关S 5的输出端与比较器240的反相输入端连接,控制开关S 5的控制端V O5与判定模块230中判定机的输出端连接。
同时,如图4所示,本发明还提供一种比较器阈值电压选择方法,用于流水级模数转换器中比较器的阈值电压选择,其包括步骤:
S1、提供理想阈值电压V 0与N个备选阈值电压V 1、V 2、…、V N-1及V N,备选阈值电压V 1、V 2、…、V N-1及V N构成递增的等差数列,且理想阈值电压V 0为等差数列的中位数;
S2、从等差数列的第一项开始,按顺序依次将备选阈值电压V 1、V 2、…、V N-1及V N与理想阈值电压V 0进行比较,直到找到一个略小于理想阈值电压V 0的备选阈值电压V j,且将对应的备选阈值电压V j作为比较器240的阈值电压;
其中,等差数列的公差为比较器240的失调电压偏差值,N为大于1的整数。
可选地,从等差数列的第一项开始,按顺序依次将备选阈值电压V 1、V 2、…、V N-1及V N与理想阈值电压V 0进行比较,直到找到一个小于理想阈值电压V 0的备选阈值电压V j的步骤S2进一步包括:
S21、将理想阈值电压V 0接入比较器240的同相输入端;
S22、从等差数列的第一项开始,按顺序依次将备选阈值电压V 1、V 2、…、V N-1及V N接入比较器240的反相输入端,并比较备选阈值电压V 1、V 2、…、V N-1及V N与理想阈值电压V 0的大小,基于失调电压的偏差值的逐渐逼近,直到找到一个略小于理想阈值电压V 0的备选阈值电压V j,其中,j为小于等于N的正整数。
可选地,在比较备选阈值电压V i与理想阈值电压V 0的大小时,备选阈值电压V i与理想阈值电压V 0要经过n次比较,若一次比较完成后比较器240的输出为1则计数加一,若n次比较完成后比较器240的输出计数达到设定值m则阈值电压选择结束,备选阈值电压V i小于理想阈值电压V 0,且将对应的备选阈值电压V i作为比较器240的阈值电压;其中,m为大于1的整数,n为大于2的整数,m小于等于n,i为小于等于N的正整数。
进一步地,若N个备选阈值电压V 1、V 2、…、V N-1及V N与理想阈值电压V 0均比较完成后,仍没有找到小于理想阈值电压V 0的备选阈值电压,这表明比较器240的失调电压已经超过校正范围,则需要增加备选阈值电压的电压取值范围,提供取值更小的备选阈值电压与理想阈值电压V 0进行比较,直到找到一个略小于理想阈值电压V 0的备选阈值电压。
在本发明的一可选实施例中,如图3和图5所示,针对如图3所示的比较器阈值电压选择电路,其工作原理如下:当前比较器的阈值由五次判定选择,任意一次若判定结束,则不再进行下一次循环;
Stp1、第一次判定,计数器清零,判定模块230的输出状态1使控制开关S 5导通,控制开关S 1/S 2/S 3/S 4断开,比较器240的同相输入端接理想阈值电压V 0,此时,理想阈值电压V 0等于备选阈值电压V 3,比较器240的反相输入端接备选阈值电压V 5;若此时比较器240的输出1,则保持判定模块230的输出,计数器加一;比较器240进行n次比较,若n次比较后计数器达到设定值m(m≤n),则保持判定模块230的输出,阈值选择结束,将备选阈值电压V 5作为比较器240的阈值电压;若计数器未达到设定值m,则判定模块230的输出改变,进入下一次选择;
Stp2、第二次判定,计数器清零,判定模块230的输出状态2使控制开关S 4导通,控制开关S 1/S 2/S 3/S 5断开,比较器240的同相输入端接理想阈值电压V 0,比较器240的反相输入 端接备选阈值电压V 4;若此时比较器240的输出1,则保持判定模块230的输出,计数器加一;比较器240进行n次比较,若n次比较后计数器达到设定值m(m≤n),则保持判定模块230的输出,阈值选择结束,将备选阈值电压V 4作为比较器240的阈值电压;若计数器未达到设定值m,则判定模块230的输出改变,进入下一次选择;
Stp3、第三次判定,计数器清零,判定模块230的输出状态3使控制开关S 3导通,控制开关S 1/S 2/S 4/S 5断开,比较器240的同相输入端接理想阈值电压V 0,比较器240的反相输入端接备选阈值电压V 3;若此时比较器240的输出1,则保持判定模块230的输出,计数器加一;比较器240进行n次比较,若n次比较后计数器达到设定值m(m≤n),则保持判定模块230的输出,阈值选择结束,将备选阈值电压V 3作为比较器240的阈值电压;若计数器未达到设定值m,则判定模块230的输出改变,进入下一次选择;
Stp4、第四次判定,计数器清零,判定模块230的输出状态4使控制开关S 2导通,控制开关S 1/S 3/S 4/S 5断开,比较器240的同相输入端接理想阈值电压V 0,比较器240的反相输入端接备选阈值电压V 2;若此时比较器240的输出1,则保持判定模块230的输出,计数器加一;比较器240进行n次比较,若n次比较后计数器达到设定值m(m≤n),则保持判定模块230的输出,阈值选择结束,将备选阈值电压V 2作为比较器240的阈值电压;若计数器未达到设定值m,则判定模块230的输出改变,进入下一次选择;
Stp5、第五次判定,计数器清零,判定模块230的输出状态5使控制开关S 1导通,控制开关S 2/S 3/S 4/S 5断开,比较器240的同相输入端接理想阈值电压V 0,比较器240的反相输入端接备选阈值电压V 1;若此时比较器240的输出1,则保持判定模块230的输出,计数器加一;比较器240进行n次比较,若n次比较后计数器达到设定值m(m≤n),则保持判定模块230的输出,阈值选择结束,将备选阈值电压V 1作为比较器240的阈值电压;若计数器未达到设定值m,则判定模块230的输出为状态0,这表示比较器240的失调电压已经超过校正范围,可以通过增加比较器240的阈值电压的取值范围来增大校正范围,如可以通过增加备选的比较器阈值电压数量来更精确地消除比较器240的失调电压。
综上所述,在本发明所提供的比较器阈值电压选择电路及方法中,先提供多个备选阈值电压,再将比较器的理想阈值电压与多个备选阈值电压逐一比较判定,能快速有效地选择出略小于理想阈值电压的备选阈值电压作为比较器的阈值电压,基于失调电压的偏差值的逐渐逼近,能有效地对阈值电压进行校正,消除了失调电压对比较器输出结果准确性的影响,进而消除了系统上的失码问题;且整个比较器阈值电压选择电路为基于比较器的简单结构,不改变流水级模数转换器中Sub-ADC电路结构,不需要增加额外的运算单元,因此,该电路结 构可以适配在任何流水级模数转换器中,在流水级模数转换器电路上电时自动选择合适的比较器阈值,适用范围广。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (9)

  1. 一种比较器阈值电压选择电路,用于流水级模数转换器中比较器的阈值电压选择,其特征在于,包括:
    阈值电压产生模块,一端接第一电压,另一端接第二电压,对外提供N个备选阈值电压;
    通路选择模块,输入端接所述阈值电压产生模块,输出端接所述比较器的反相输入端,将N个所述备选阈值电压一一接入所述比较器的反相输入端,且所述备选阈值电压的通断状态受控制端的控制;
    判定模块,输入端接所述比较器的输出端,输出端接所述通路选择模块的控制端,根据所述比较器的输出控制N个所述备选阈值电压的通断状态;
    其中,所述比较器的同相输入端接理想阈值电压,N为大于1的整数。
  2. 根据权利要求1所述的比较器阈值电压选择电路,其特征在于,所述阈值电压产生模块包括N+1个电阻,N+1个所述电阻依次串联构成电阻串,所述电阻串的一端接所述第一电压、另一端接所述第二电压,相邻两个所述电阻的公共端处输出一个所述备选阈值电压。
  3. 根据权利要求2所述的比较器阈值电压选择电路,其特征在于,N+1个所述电阻的阻值相等,且相邻两个所述备选阈值电压的差值等于所述比较器的失调电压偏差值。
  4. 根据权利要求1或3所述的比较器阈值电压选择电路,其特征在于,所述通路选择模块包括N个并行设置的控制开关,N个所述控制开关的输入端与N个所述备选阈值电压一一对应连接,N个所述控制开关的输出端接所述比较器的反相输入端。
  5. 根据权利要求4所述的比较器阈值电压选择电路,其特征在于,所述判定模块包括计数器和状态机,所述计数器的输入端接所述比较器的输出端,所述计数器的输出端接所述状态机的输入端,所述状态机的输出端接N个所述控制开关的控制端,所述状态机对N个所述控制开关的通断状态分别进行控制。
  6. 一种比较器阈值电压选择方法,用于流水级模数转换器中比较器的阈值电压选择,其特征在于,包括步骤:
    提供理想阈值电压与N个备选阈值电压,N个所述备选阈值电压构成递增的等差数列,且所述理想阈值电压为所述等差数列的中位数;
    从所述等差数列的第一项开始,按顺序依次将所述备选阈值电压与所述理想阈值电压进 行比较,直到找到一个小于所述理想阈值电压的所述备选阈值电压,且将对应的所述备选阈值电压作为所述比较器的阈值电压;
    其中,所述等差数列的公差为所述比较器的失调电压偏差值,N为大于1的整数。
  7. 根据权利要求6所述的比较器阈值电压选择方法,其特征在于,从所述等差数列的第一项开始,按顺序依次将所述备选阈值电压与所述理想阈值电压进行比较,直到找到一个小于所述理想阈值电压的所述备选阈值电压的步骤包括:
    将所述理想阈值电压接入所述比较器的同相输入端;
    从所述等差数列的第一项开始,按顺序依次将所述备选阈值电压接入所述比较器的反相输入端,并比较所述备选阈值电压与所述理想阈值电压的大小,直到找到一个小于所述理想阈值电压的所述备选阈值电压。
  8. 根据权利要求7所述的比较器阈值电压选择方法,其特征在于,在比较所述备选阈值电压与所述理想阈值电压的大小时,每个所述备选阈值电压与所述理想阈值电压要经过n次比较,若一次比较完成后所述比较器的输出为1则计数加一,若n次比较完成后所述比较器的输出计数达到设定值m则阈值电压选择结束,所述备选阈值电压小于所述理想阈值电压,且将对应的所述备选阈值电压作为所述比较器的阈值电压;其中,m为大于1的整数,n为大于2的整数,m小于等于n。
  9. 根据权利要求8所述的比较器阈值电压选择方法,其特征在于,若N个所述备选阈值电压与所述理想阈值电压均比较完成后,仍没有找到小于所述理想阈值电压的所述备选阈值电压,则需要增加所述备选阈值电压的电压取值范围,提供取值更小的所述备选阈值电压与所述理想阈值电压进行比较,直到找到一个小于所述理想阈值电压的所述备选阈值电压。
PCT/CN2021/140252 2021-07-07 2021-12-22 比较器阈值电压选择电路及方法 WO2023279673A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110770449.6 2021-07-07
CN202110770449.6A CN113507282A (zh) 2021-07-07 2021-07-07 比较器阈值电压选择电路及方法

Publications (1)

Publication Number Publication Date
WO2023279673A1 true WO2023279673A1 (zh) 2023-01-12

Family

ID=78012105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140252 WO2023279673A1 (zh) 2021-07-07 2021-12-22 比较器阈值电压选择电路及方法

Country Status (2)

Country Link
CN (1) CN113507282A (zh)
WO (1) WO2023279673A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112290918B (zh) * 2020-10-30 2024-03-26 湖北锐世数字医学影像科技有限公司 用于对比较器进行阈值校正的方法、装置及系统
CN113507282A (zh) * 2021-07-07 2021-10-15 重庆吉芯科技有限公司 比较器阈值电压选择电路及方法
CN118214423B (zh) * 2024-05-20 2024-07-30 北京中天星控科技开发有限公司成都分公司 基于上下级判断逻辑的比较器阈值电压选择电路及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070146192A1 (en) * 2005-12-28 2007-06-28 Sanyo Electric Co., Ltd. Analog-to-digital converter and threshold-value correcting method
CN108880545A (zh) * 2018-07-06 2018-11-23 北京时代民芯科技有限公司 一种流水线模数转换器比较器失调前台校准电路及方法
CN112422106A (zh) * 2021-01-25 2021-02-26 微龛(广州)半导体有限公司 抑制失调电压的比较器及抑制比较器失调电压的方法
CN112600557A (zh) * 2020-12-16 2021-04-02 东南大学 一种流水线adc数字域增益校准方法
CN113507282A (zh) * 2021-07-07 2021-10-15 重庆吉芯科技有限公司 比较器阈值电压选择电路及方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101404501A (zh) * 2008-10-10 2009-04-08 云南大学 一种并行模数转换器中的比较器的设计方法
CN103176497B (zh) * 2013-03-06 2014-09-24 山东力创赢芯集成电路有限公司 一种比较器失调电压补偿电路及补偿方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070146192A1 (en) * 2005-12-28 2007-06-28 Sanyo Electric Co., Ltd. Analog-to-digital converter and threshold-value correcting method
CN108880545A (zh) * 2018-07-06 2018-11-23 北京时代民芯科技有限公司 一种流水线模数转换器比较器失调前台校准电路及方法
CN112600557A (zh) * 2020-12-16 2021-04-02 东南大学 一种流水线adc数字域增益校准方法
CN112422106A (zh) * 2021-01-25 2021-02-26 微龛(广州)半导体有限公司 抑制失调电压的比较器及抑制比较器失调电压的方法
CN113507282A (zh) * 2021-07-07 2021-10-15 重庆吉芯科技有限公司 比较器阈值电压选择电路及方法

Also Published As

Publication number Publication date
CN113507282A (zh) 2021-10-15

Similar Documents

Publication Publication Date Title
WO2023279673A1 (zh) 比较器阈值电压选择电路及方法
CN102970038B (zh) 校正电容不匹配的逐渐逼近模拟至数字转换器及其方法
JP3229135B2 (ja) アナログ/デジタル変換装置
CN103580692B (zh) 连续渐进式模拟数字转换器与模拟数字转换方法
CN102801424B (zh) 一种Sigma-Delta调制器及模数转换器
EP0436555A4 (en) Error limiting analog to digital converter
CN208299759U (zh) 一种放大器输入失调电压的自动校正电路
CN108880545B (zh) 一种流水线模数转换器比较器失调前台校准电路及方法
CN108494371A (zh) 一种放大器输入失调电压的自动校正电路及校正方法
JP2714999B2 (ja) アナログ/デジタル変換器
CN111711453B (zh) 逐次逼近型模数转换器
CN104113226A (zh) 半导体器件和逆变器系统
CN112653463B (zh) 一种应用于sar-adc的模拟域校准方法
CN103499991B (zh) 具温度感测的模拟数字转换电路及其电子装置
JP5269131B2 (ja) 比較回路および並列型アナログデジタル変換器
CN118214423B (zh) 基于上下级判断逻辑的比较器阈值电压选择电路及方法
CN110890889B (zh) 一种基于统计的sar adc双比较器失调失配校准方法及电路
CN116599535A (zh) 一种基于单位桥接电容的三段式电容阵列结构及方法
US7750834B2 (en) Encoder for a pipelined analog-to-digital converter
US6847322B2 (en) Sequential comparison type AD converter and microcomputer
CN102801421B (zh) 一种复合比较器
JP3131937B2 (ja) アナログ・デジタル変換器
JPH02268521A (ja) A/d変換方法及びa/d変換装置
US20050099329A1 (en) AD converter
TW200534594A (en) Error measurement method of digitally self-calibrating pipeline ADC and apparatus thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21949158

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21949158

Country of ref document: EP

Kind code of ref document: A1