WO2023279652A1 - 磁场下浸入式磷化物合成及连续生长装置和方法 - Google Patents
磁场下浸入式磷化物合成及连续生长装置和方法 Download PDFInfo
- Publication number
- WO2023279652A1 WO2023279652A1 PCT/CN2021/136321 CN2021136321W WO2023279652A1 WO 2023279652 A1 WO2023279652 A1 WO 2023279652A1 CN 2021136321 W CN2021136321 W CN 2021136321W WO 2023279652 A1 WO2023279652 A1 WO 2023279652A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- temperature zone
- temperature
- crucible
- shielding layer
- magnetic field
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 35
- 238000007654 immersion Methods 0.000 title claims abstract description 7
- 230000002194 synthesizing effect Effects 0.000 title claims abstract description 7
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 57
- 238000002347 injection Methods 0.000 claims abstract description 57
- 239000007924 injection Substances 0.000 claims abstract description 57
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 54
- 238000003786 synthesis reaction Methods 0.000 claims abstract description 54
- 239000000155 melt Substances 0.000 claims abstract description 39
- 239000013078 crystal Substances 0.000 claims abstract description 29
- 229910052751 metal Inorganic materials 0.000 claims abstract description 15
- 239000002184 metal Substances 0.000 claims abstract description 15
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 15
- 239000011574 phosphorus Substances 0.000 claims abstract description 15
- 230000003068 static effect Effects 0.000 claims abstract description 14
- 229910052810 boron oxide Inorganic materials 0.000 claims abstract description 8
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 claims abstract description 8
- 238000010438 heat treatment Methods 0.000 claims abstract description 6
- 238000009413 insulation Methods 0.000 claims description 19
- 238000002844 melting Methods 0.000 claims description 5
- 230000008018 melting Effects 0.000 claims description 5
- 239000011261 inert gas Substances 0.000 claims description 3
- 229920006395 saturated elastomer Polymers 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims description 2
- 239000007787 solid Substances 0.000 abstract description 10
- 239000000463 material Substances 0.000 abstract description 7
- 239000004065 semiconductor Substances 0.000 abstract description 6
- 238000002360 preparation method Methods 0.000 abstract description 3
- 238000007667 floating Methods 0.000 abstract description 2
- 230000000694 effects Effects 0.000 abstract 1
- 239000010453 quartz Substances 0.000 description 17
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 17
- 238000009529 body temperature measurement Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- 229910052738 indium Inorganic materials 0.000 description 5
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 5
- 239000002994 raw material Substances 0.000 description 4
- 229910005540 GaP Inorganic materials 0.000 description 3
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- HZXMRANICFIONG-UHFFFAOYSA-N gallium phosphide Chemical compound [Ga]#P HZXMRANICFIONG-UHFFFAOYSA-N 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000004321 preservation Methods 0.000 description 2
- MOHPKPMGPNKIKH-UHFFFAOYSA-N [Zn].[Ge].[P] Chemical compound [Zn].[Ge].[P] MOHPKPMGPNKIKH-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B30/00—Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions
- C30B30/04—Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions using magnetic fields
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B11/00—Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
- C30B11/04—Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method adding crystallising materials or reactants forming it in situ to the melt
- C30B11/06—Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method adding crystallising materials or reactants forming it in situ to the melt at least one but not all components of the crystal composition being added
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B15/00—Single-crystal growth by pulling from a melt, e.g. Czochralski method
- C30B15/02—Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/40—AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/40—AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C30B29/44—Gallium phosphide
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the invention belongs to the field of semiconductor material preparation, in particular to a method for synthesizing and growing semiconductor phosphide by means of phosphorus immersion into metal melt under the action of a static magnetic field.
- Semiconductor phosphides include indium phosphide, gallium phosphide, phosphorus germanium zinc, etc., which are widely used in microelectronics, optoelectronics, acousto-optic and other fields.
- the synthesis of these phosphides is mainly through injection synthesis technique and diffusion synthesis technique.
- the diffusion synthesis method has long diffusion time, low efficiency, and low purity of synthetic materials.
- Injection synthesis technology is to directly inject phosphorus gas into the melt, a large number of bubbles accompany the flow of the melt, and the synthesis efficiency is very high.
- the injection synthesis technique is the most efficient method for the large-scale synthesis of phosphides.
- the usual injection synthesis technology is to heat the quartz bubble loaded with red phosphorus, and then inject the sublimated phosphorus gas into the melt through the injection pipe connected to the quartz bubble. This method faces problems such as system pressure balance control, which can easily lead to Melt sucks back into the injection tube and solidifies to block the injection tube, then explodes.
- the object of the present invention is to solve the above-mentioned problems.
- a immersion type phosphide synthesis and growth device under a magnetic field including a main furnace body, a crucible in the main furnace body, a heater and an insulating layer on the periphery of the crucible, and the synthesis and growth device is also It includes an injection synthesis system connected with a driving device.
- the injection synthesis system carries red phosphorus and sinks into the crucible under the action of the driving device; a static magnetic field generator is arranged outside the main furnace body.
- the injection synthesis system includes a cylindrical red phosphorus injector, and injection holes are arranged around the red phosphorus injector.
- the injection synthesis system also includes 3-5 disc-shaped shielding layers on the red phosphorus injector, the diameter of the shielding layer is 1-10mm smaller than the inner diameter of the crucible, and the shielding layer is provided with through holes.
- the crucible is divided into different temperature zones, between the two shielding layers, above the top shielding layer, and below the bottom shielding layer are the range of temperature zones; each temperature zone is equipped with an independent heater and galvanic couple.
- the red phosphorus injector and the shield are connected to the drive unit and are raised and lowered at the same time.
- a heat insulation board is arranged at a position corresponding to the shielding layer.
- the shielding layers are provided with temperature measuring holes at the same position to cooperate with the thermocouples on the top of the furnace.
- the present invention also proposes a method for synthesizing and continuously growing phosphide under a magnetic field, comprising the following steps:
- the injector loaded with solid red phosphorus is located in the lowest area of the crucible.
- the solid red phosphorus is heated and sublimated into gas, and forms bubbles to float up in the melt, and is quickly absorbed in the high temperature area.
- the red phosphorus sinks into the melt in the form of a solid, and floats up from the bottom of the crucible after gasification, which overcomes the problems of sucking back caused by phosphorus bubbles; Melt convection in the direction of temperature gradient makes the synthesis process more stable and rapid.
- Fig. 1 is the device structural representation realizing the method of the present invention
- Fig. 2 is the schematic diagram of synthesis system structure
- FIG. 1 Schematic diagram of thermal field and material assembly
- Figure 4 is a schematic diagram of LEC crystal growth
- Figure 5 is a schematic diagram of VGF crystal growth
- Figure 6 is a schematic diagram of the structure of the cap
- Fig. 7 is a schematic diagram of a quartz wire mesh structure
- Figure 8 is a schematic diagram of the isolation layer covered by the quartz screen.
- 1 main furnace body; 2: upper furnace cover; 3: furnace chassis; 4: static magnetic field generator; 5: injection synthesis system; 5-1: synthesis main rod; 5-2: first shielding layer; 5 -3: second shielding layer; 5-4: third shielding layer; 5-5: red phosphorus injector; 5-6: penetration hole; 5-7: first temperature measuring hole; 5-8: second Temperature measuring hole; 5-9: third temperature measuring hole; 5-10: injection hole; 5-11: charging port; 5-12: sealing cap; 6: injection rod; 6-1: injection system screw; 6-2: injection rotation drive; 6-3: injection lifting drive; 6-4: injection lifting plate; 7: crucible; 7-1: lining; 8: boron oxide; 9: melt; 10: first heat preservation layer; 11: second insulation layer; 12: third insulation layer; 13: fourth insulation layer; 14: lower insulation layer; 15: first heater; 16: second heater; 17: third heater; 18: fourth heater; 19; crucible support; 20: crucible rod; 21: crucible rod drive
- an immersion-type phosphide synthesis and growth device under a magnetic field the main furnace body 1, the upper furnace cover 2, and the furnace chassis 3 form a crystal growth space, and there is a crucible 7 in the space, supporting a crucible support 19, and a lower insulation layer 14 , crucible rod 20 and crucible rod drive 21.
- a heater and an insulating layer are arranged on the periphery of the crucible 7 .
- the injection synthesis system 5 in the main furnace body 1 has a synthesis main rod 5-1, and 3-5 disc-shaped shielding layers are arranged on the upper end of the synthesis main rod 5-1. The closer the edge of the shielding layer is to the inner wall of the crucible, the better.
- the diameter of the shielding layer is 1-10 mm smaller than the inner diameter of the crucible 7, and three shielding layers are provided, respectively
- the first shielding layer 5-2, the second shielding layer 5-3 and the third shielding layer 5-4, each shielding layer is provided with a through hole 5-6; a cylindrical red phosphorus is arranged below the synthetic main body rod 5-1
- the injector 5-5, the periphery of the red phosphorus injector 5-5, including the upper surface, the lower surface and the side are provided with injection holes 5-10.
- the bottom of the injection synthesis system 5 is provided with a charging port 5-11, which is used in conjunction with a sealing cap 5-12, as shown in Fig. 2 and Fig. 6 .
- the diameter of the injection holes 5-10 is 5-10mm, and the distance between centers of the injection holes 5-10 is greater than twice the diameter.
- the diameter of the through holes 5-6 is 5-10mm, and the distance between centers of the through holes 5-6 is greater than twice the diameter.
- Phosphorus bubbles rise in the melt through injection holes 5-10 and through holes 5-6. Theoretically, the more pores, the smaller the size, the more bubbles are formed, and the best synthetic absorption.
- a bubble dividing device is arranged on the red phosphorus injector 5-5 and the shielding layer.
- the bubble dividing device can be a wire arranged in the hole, but since the diameters of the injection holes 5-10 and the penetration holes 5-6 are not large, it is difficult to set them up.
- the quartz screen 40 is used as the bubble splitting device, the grid of the quartz screen 40 is a square, and the side length of the square is less than 3 mm, which is less than the diameter of the through hole 5-6, ensuring that each There are quartz wires above the holes 5-6.
- the quartz screen is circular, matching the size of the red phosphorus injector 5-5 and the shielding layer.
- the quartz screen covered in the shielding layer is also provided with holes matching the thermocouple 22 on the top of the furnace.
- there are 3 shielding layers and the quartz screen 40 can be set on the red phosphorus injector 5-5 and each shielding layer, and the quartz screen 40 can only be set on the third shielding layer 5-4 at the bottom. .
- the red phosphorus injector 5-5 and the shielding layer are connected on the driving device through the synthetic main body rod 5-1, and rise and fall simultaneously.
- the driving device includes an injection rod 6, an injection system screw 6-1, an injection rotation drive 6-2, an injection lifting drive 6-3 and an injection lifting plate 6-4, and the injection rod 6 is connected to the synthetic main body rod 5-1.
- the system is also configured with a furnace top thermocouple 22 that passes through the upper furnace cover 2 and can move up and down.
- the furnace top thermocouple 22 is aligned with the position of the crucible 7 .
- the first shielding layer 5-2, the second shielding layer 5-3 and the third shielding layer 5-4 are provided at the same position with the first temperature measuring hole 5-7 and the second temperature measuring hole 5 matched with the furnace top thermocouple 22 -8.
- the third temperature measuring holes 5-9 allow the furnace top thermocouple 22 to pass through each shielding layer and enter the inside of the crucible.
- the top thermocouple 22 has a drive device to move up and down, and the drive device includes a temperature measurement drive 22-1, a temperature measurement fixed plate 22-2 and a temperature measurement lead screw 22-3.
- the crucible 7 is divided into different temperature zones, between the two shielding layers, above the top shielding layer, and below the bottom shielding layer are the temperature ranges; each temperature zone is provided with an independent heater and galvanic couple .
- the crucible is divided into 4 temperature zones: the first temperature zone is above the first shielding layer 5-2, the first shielding layer 5-2 and the second shielding layer 5 Between -3 is the second temperature zone, between the second shielding layer 5-3 and the third shielding layer 5-4 is the third temperature zone, and below the third shielding layer 5-4 is the fourth temperature zone.
- Each temperature zone is surrounded by the first insulation layer 10, the second insulation layer 11, the third insulation layer 12 and the fourth insulation layer 13 respectively; in the range corresponding to each temperature zone on the periphery of the crucible 7, an independent heater first heater is set 15.
- the second heater 16, the third heater 17, and the fourth heater are equipped with the first thermocouple 26, the second thermocouple 27, the third thermocouple 28, and the fourth thermocouple 29.
- a heat insulation board is arranged in the insulation layer on the periphery of the crucible 7, and the positions of the heat insulation board correspond to the positions of the first shielding layer 5-2, the second shielding layer 5-3 and the third shielding layer 5-4.
- a static magnetic field generator 4 is arranged at a position corresponding to the crucible 7 .
- the quartz injection system with multi-layer baffles into the indium melt .
- the gradient distribution of indium melt temperature is realized.
- the injector loaded with solid red phosphorus is located in the lowest area, with a temperature of 600-700°C, and the highest temperature in the high-temperature area is 30-200°C higher than the melting point of the synthetic semiconductor material.
- the solid red phosphorus is sublimated into a gas by heating, and forms bubbles to float up in the melt, and is quickly absorbed in the high temperature area, and the transverse magnetic field suppresses the speed of the bubbles to realize the synthesis of phosphide.
- the method for synthesizing and continuously growing phosphide under a magnetic field is as follows:
- the metal solid raw material 31 is metal indium, gallium or other low melting point metals.
- the block red phosphorus 30 is loaded into the red phosphorus injector 5-5 through the charging port 5-11, and the sealing cap 5-12 is welded to the charging port 5-11.
- the injection synthesis system 5 is assembled on the injection rod 6 through the synthesis body rod 5-1. Start the injection rotary drive 6-2 and the injection lift drive 6-3 so that the red phosphorus injector 5-5 is away from the top of the crucible 7 .
- the crystal growth space is evacuated to 10-5 Pa-10Pa through the vacuum pipeline 38; the inert gas is filled through the inflation pipeline 39, so that the pressure in the crystal growth space reaches the maximum pressure when the melt 9 is heated above the saturated vapor pressure.
- the pressure is greater than 6-8MPa, and if growing gallium phosphide, the pressure is greater than 6-10MPa.
- the heating temperature is 250-300°C
- the metal solid raw material 31 is melted into the melt 9 (the fusing point of indium is 156.61°C, The melting point of gallium is 29.8°C), and boron oxide 8 turns into a liquid.
- the temperature is controlled by the results measured by the first thermocouple 26 , the second thermocouple 27 , the third thermocouple 28 , and the fourth thermocouple 29 .
- the injection rod 6 is rotated by the injection rotation drive 6-2, so that the synthetic body rod 5-1 is located at the center of the crucible 7; the injection synthesis system 5 is lowered by the injection lifting drive 6-3 until the first shielding layer 5-2, the second shielding layer The layer 5 - 3 , the third shield layer 5 - 4 are aligned with the heat shield between the first heater 15 , the second heater 16 , the third heater 17 , and the fourth heater 18 .
- the lower end of the red phosphorus injector 5-5 is about 5 mm away from the bottom of the crucible 7 .
- T1 Tm+(20-100)°C
- T2 Tm+20°C
- T3 900-1000°C
- T4 600-700°C in sequence.
- the transverse magnetic field and the first shielding layer 5-2, the second shielding layer 5-3, and the third shielding layer 5-4 inhibit the convection of the melt in each temperature zone, so that a temperature gradient is established between each temperature zone.
- the heat insulation boards arranged on the periphery of the crucible 7 corresponding to the dividing positions of each temperature zone limit the transfer of heat in the insulation layer.
- the red phosphorus 30 in the red phosphorus injector 5-5 starts to be heated and sublimated, enters the melt 9 through the injection hole 5-10, and floats up through the third The penetration hole 5-6 on the shielding layer 5-4, the second shielding layer 5-3, and the first shielding layer 5-2 enters the third temperature zone, the second temperature zone, and the first temperature zone.
- the injection hole 5-10 and the permeation hole 5-6 also have a function of separating air bubbles.
- the transverse magnetic field reduces the deformation of the bubbles in the process of floating up, and reduces the rising rate of the bubbles, increases the residence time of the phosphorus gas in the bubbles in the melt 9, and is more fully absorbed by the melt.
- the injection synthesis system 5 is slowly lifted out of the crucible 7 by the injection lifting drive 6-3, and the injection synthesis system 5 is rotated so that it leaves the top of the crucible 7.
- Stop the work of the transverse magnetic field generator 4 adjust the temperature of the first temperature zone, the second temperature zone, the third temperature zone, and the fourth temperature zone, so that a temperature of 20-100° C. is established from the melt surface to the bottom in the melt 9 cm temperature gradient.
- a VGF seed crystal 35 , a fifth heater 34 and a fifth thermocouple 36 are arranged at the bottom of the crucible 7 .
- the temperature of the seed crystal region can be precisely regulated.
- the injection synthesis system 5 is slowly lifted out of the crucible 7 by the injection lifting drive 6-3, and the injection synthesis system 5 is rotated so that it leaves the top of the crucible 7.
- VGF crystal growth was carried out to obtain VGF crystal 33 , as shown in FIG. 5 .
- the furnace top thermocouple 22 is inserted into the melt through the upper insulation cover 37 .
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
Abstract
一种磁场下浸入式磷化物合成及连续生长装置及方法,属于半导体材料制备领域,特别是在静态磁场作用下,采用磷浸入金属熔体的方式进行半导体磷化物合成及生长的装置和方法。装置包括炉体、注入合成系统和静磁场发生器;方法包括A、加热坩埚,使坩埚内的金属和覆盖物氧化硼融化;B、将红磷浸入坩埚;C、在坩埚外围施加静磁场,调节温度梯度,开始合成;D、合成完毕后,进行晶体生长。采用上述方法,红磷以固体的形式沉入熔体,气化后从坩埚底部上浮,克服了采用磷泡产生的倒吸等问题;横向静磁场抑制气泡上浮速率,同时抑制温度梯度方向的熔体对流,使合成过程更加平稳、迅速。
Description
本发明属于半导体材料制备领域,特别是在静态磁场作用下,采用磷浸入金属熔体的方式进行半导体磷化物合成及生长的方法。
半导体磷化物包含磷化铟、磷化镓、磷锗锌等,广泛应用于微电子、光电子、声光等领域。这些磷化物的合成主要通过注入合成技术和扩散合成技术。
扩散合成方法,扩散时间长、效率低、合成材料的纯度低。注入合成技术是直接将磷气体注入到熔体中,大量的气泡伴随着熔体的流动,合成效率非常高。注入合成技术是大规模合成磷化物的最有效的方法。通常的注入合成技术是将装载红磷的石英泡进行加热,然后与石英泡相连的注入管将升华的磷气体注入到熔体中,这种方法面临着系统压力平衡控制等问题,极易导致熔体倒吸进入注入管并凝固堵塞注入管,然后发生爆炸。
为解决这个问题,发明了利用磷粉和金属粉混合投入熔体的方法进行合成,以及在磷气体中混入惰性气体增大石英泡内的压力以防止倒吸等方法。上述方法对设备及工艺要求较高。
发明内容
本发明的目的是解决上述问题。
为达到发明目的,采用以下技术方案:一种磁场下浸入式磷化物合成及生长装置,包括主炉体、主炉体内的坩埚、坩埚外围的加热器和保温层,所述合成及生长装置还包括连接驱动装置的注入合成系统,注入合成系统承载红磷,在驱动装置的作用下,沉入坩埚;在主炉体外部设置静磁场发生器。
所述注入合成系统包括圆柱形的红磷注入器,红磷注入器周边设置注入孔。
所述注入合成系统还包括红磷注入器上面的3-5个圆盘形屏蔽层,屏蔽层的直径小于坩埚的内径1-10mm,屏蔽层上设置透过孔。
根据屏蔽层的位置,将坩埚分为不同的温区,两个屏蔽层之间、顶端的屏蔽层上面、底端屏蔽层下面为温区范围;各温区设置独立的加热器和电偶。
红磷注入器和屏蔽层连接在驱动装置上,同时升降。
坩埚外围的保温层中,对应屏蔽层的位置设置隔热板。
所述各屏蔽层在同一位置开设与炉顶热电偶配合的测温孔。
基于上述装置,本发明还提出了一种磁场下合成及连续生长磷化物的方法,包括以下步骤:
A、加热坩埚,使坩埚内的金属和覆盖物氧化硼融化。
B、将红磷浸入坩埚。
C、在坩埚外围施加静磁场,调节温度梯度,开始合成。
D、合成完毕后,进行晶体生长。
装载固体红磷的注入器位于坩埚最低区域,固体红磷受热升华为气体,并形成气泡在熔体中上浮,在高温区被快速吸收。
采用本发明提供的装置和方法,红磷以固体的形式沉入熔体,气化后从坩埚底部上浮,克服了采用磷泡产生的倒吸等问题;横向静磁场抑制气泡上浮速率,同时抑制温度梯度方向的熔体对流,使合成过程更加平稳、迅速。
图1为实现本发明方法的装置结构示意图;
图2为合成系统结构示意图;
图3热场及物料装配示意图;
图4为LEC晶体生长示意图;
图5为VGF晶体生长示意图;
图6为封帽结构示意图;
图7为石英丝网结构示意图;
图8石英丝网覆盖隔离层示意图。
其中,1:主炉体;2:上炉盖;3:炉底盘;4:静磁场发生器;5:注入合成系统;5-1:合成主体杆;5-2:第一屏蔽层;5-3:第二屏蔽层;5-4:第三屏蔽层;5-5:红磷注入器;5-6:透过孔;5-7:第一测温孔;5-8:第二测温孔;5-9:第三测温孔;5-10:注入孔;5-11:装料口;5-12:封帽;6:注入杆;6-1:注入系统丝杠;6-2:注入旋转驱动;6-3:注入升降驱动;6-4:注入升降板;7:坩埚;7-1:内衬;8:氧化硼;9:熔体;10:第一保温层;11:第二保温层;12:第三保温层;13:第四保温层;14:下保温层;15:第一加热器;16:第二加热器;17:第三加热器;18:第四加热器;19;坩埚支撑;20:坩埚杆;21:坩埚杆驱动;22:炉顶热电偶;22-1:测温驱动;22-2:测温固定板;22-3:测温丝杠;23:籽晶杆;23-1:生长系统丝杠;23-2:生长旋转驱动;23-3:生长升降驱动;23-4:生长升降板;24:籽晶夹头;25:LEC籽晶;26:第一热电偶;27:第二热电偶;28:第三热电偶; 29:第四热电偶;30:红磷;31:金属固体原料;32:LEC晶体;33:VGF晶体;34;第五加热器;35:VGF籽晶;36:第五热电偶;37:上保温盖;38:真空管路;39:充气管路;40:石英丝网。
下面结合附图,通过实施例对本发明做进一步说明。
参看图1,一种磁场下浸入式磷化物合成及生长装置,主炉体1、上炉盖2、炉底盘3组成晶体生长空间,空间内有坩埚7,配套坩埚支撑19、下保温层14、坩埚杆20和坩埚杆驱动21。坩埚7外围有加热器和保温层。
参看图2,主炉体1内的注入合成系统5有合成主体杆5-1,在合成主体杆5-1上端设置3-5个圆盘形屏蔽层。屏蔽层的边缘距坩埚的内壁越近越好,为了不影响注入合成系统5在坩埚内上下移动,本实施例中,屏蔽层的直径小于坩埚7的内径1-10mm,设置3个,分别为第一屏蔽层5-2、第二屏蔽层5-3和第三屏蔽层5-4,各屏蔽层上设置透过孔5-6;在合成主体杆5-1下面设置圆柱形的红磷注入器5-5,红磷注入器5-5周边,包括上表面、下表面和侧面设置注入孔5-10。
注入合成系统5底部设置装料口5-11,配合封帽5-12使用,如图2、图6所示。
注入孔5-10的直径为5-10mm,注入孔5-10中心间距大于其直径两倍。
透过孔5-6直径为5-10mm,透过孔5-6中心间距大于其直径两倍。
磷气泡通过注入孔5-10和透过孔5-6在熔体内上升。理论上说孔越多,尺寸越小,形成的气泡越多,合成的吸收最好。
磷气泡经注入孔5-10和透过孔5-6通过时,有些会破裂成更小的气泡。
为了更均匀地分割气泡,增大气泡与熔体的接触面积,在红磷注入器5-5和屏蔽层上设置气泡分割装置。
气泡分割装置可以是设置在孔内的线,但由于注入孔5-10和透过孔5-6的直径都不大,设置比较困难。
本实施例中,如图7所示,采用石英丝网40为气泡分割装置,石英丝网40的网格为正方形,正方形边长小于3mm,小于透过孔5-6的直径,保证每个透过孔5-6的上面都有石英丝。石英丝网为圆形,配合红磷注入器5-5和屏蔽层的尺寸。
覆盖在屏蔽层的石英丝网,还设置配合炉顶热电偶22的孔。本实施例中,有3个屏蔽层,可以在红磷注入器5-5和各屏蔽层上设置石英丝网40,也可以只在最下面的第三屏蔽层5-4设置石英丝网40。
石英丝网与屏蔽层的配合如图8所示。
红磷注入器5-5和屏蔽层通过合成主体杆5-1连接在驱动装置上,同时升降。
驱动装置包括注入杆6、注入系统丝杠6-1、注入旋转驱动6-2、注入升降驱动6-3和注入升降板6-4,注入杆6连接合成主体杆5-1。
系统还配置穿过上炉盖2、可上下移动的炉顶热电偶22,炉顶热电偶22对准坩埚7的位置。
第一屏蔽层5-2、第二屏蔽层5-3和第三屏蔽层5-4在同一位置开设与炉顶热电偶22配合的第一测温孔5-7、第二测温孔5-8、第三测温孔5-9,实现炉顶热电偶22穿过各屏蔽层进入坩埚内部。
炉顶热电偶22有驱动装置实现上下移动,驱动装置包括测温驱动22-1、测温固定板22-2和测温丝杠22-3。
根据屏蔽层的位置,将坩埚7分为不同的温区,两个屏蔽层之间、顶端的屏蔽层上面、底端屏蔽层下面为温区范围;各温区设置独立的加热器和电偶。
参看图1,本实施例中,有3个屏蔽层,将坩埚分成4个温区:第一屏蔽层5-2上面为第一温区,第一屏蔽层5-2和第二屏蔽层5-3之间为第二温区,第二屏蔽层5-3和第三屏蔽层5-4之间为第三温区,第三屏蔽层5-4下面为第四温区。
各温区分别由第一保温层10、第二保温层11、第三保温层12和第四保温层13围绕;在坩埚7外围各温区对应的范围,设置独立的加热器第一加热器15、第二加热器16、第三加热器17、第四加热器,并配套第一热电偶26、第二热电偶27、第三热电偶28、第四热电偶29。
在坩埚7外围的保温层中设置隔热板,隔热板的位置与第一屏蔽层5-2、第二屏蔽层5-3和第三屏蔽层5-4的位置对应。
在主炉体1外部,对应坩埚7的位置设置静磁场发生器4。
使用上述装置,首先将铟熔体加热至250-300℃,然后将带有多层挡片的石英注入系统插入
铟熔体中。通过设计多温区控制加热、注入系统多层挡片、给熔体施加横向静磁场来抑制对流,实现铟熔体温度的梯度分布。装载固体红磷的注入器位于最低区域,温度为600-700℃,高温区域最高温度为高于合成半导体材料的熔点30-200℃。固体红磷受热升华为气体,并形成气泡在熔体中上浮,在高温区被快速吸收,横向磁场抑制气泡上浮速率,实现磷化物的合成。
使用上述装置,磁场下合成及连续生长磷化物的方法如下:
A、加热坩埚,使坩埚内的金属和覆盖物氧化硼融化。
B、将红磷浸入坩埚。
C、在坩埚外围施加静磁场,调节温度梯度,开始合成。
D、合成完毕后,进行晶体生长。
材料准备。
如图3所示,装配炉体和坩埚。
将氧化硼8和金属固体原料31装入坩埚7中。金属固体原料31为金属铟、镓或者其他低熔点金属。
将块状红磷30通过装料口5-11装入红磷注入器5-5中,将封帽5-12焊接装料口5-11。
将注入合成系统5通过合成主体杆5-1装配到注入杆6上。启动注入旋转驱动6-2和注入升降驱动6-3使得红磷注入器5-5远离坩埚7正上方。
材料合成。
如图1所示,通过真空管路38将晶体生长空间抽真空至10
-5Pa―10Pa;通过充气管路39充入惰性气体,使晶体生长空间内的压力达到熔体9被加热到最高压力的饱和蒸气压以上。
如果生长磷化铟,压力大于6-8MPa,如果生长磷化镓,压力大于6-10MPa。
启动第一加热器15、第二加热器16、第三加热器17、第四加热器18,加热温度为250-300℃,金属固体原料31熔化为熔体9(铟的熔点是156.61℃,镓的熔点是29.8℃),氧化硼8转变为液态。
温度通过第一热电偶26、第二热电偶27、第三热电偶28、第四热电偶29测量的结果进行控制。
通过注入旋转驱动6-2旋转注入杆6,使得合成主体杆5-1位于坩埚7的中心;通过注入升降驱动6-3下降注入合成系统5,直至第一屏蔽层5-2、第二屏蔽层5-3、第三屏蔽层5-4与第一加热器15、第二加热器16、第三加热器17、第四加热器18之间的隔热板对齐。此时红磷注入器5-5低端距坩埚7底部5mm左右。
通过测温驱动22-1驱动炉顶热电偶22向下运动,依次穿过液态氧化硼、第一测温孔5-7、第二测温孔5-8、第三测温孔5-9插入熔体9中,分别测量第一温区、第二温区、第三温区、第四温区中熔体9的温度。
启动横向磁场发生器4,给熔体9中施加0.1-2T的横向静磁场,抑制熔体9的上下对 流。
调节第一加热器15、第二加热器16、第三加热器17、第四加热器18的功率,使得第一温区、第二温区、第三温区、第四温区中熔体9中心的温度依次缓慢加热至T1=Tm+(20-100)℃、T2=Tm+20℃、T3=900-1000℃、T4=600-700℃。Tm为被合成物质的熔点,如合成磷化铟,Tm=1062℃;合成磷化镓,Tm=1465℃。。
横向磁场和第一屏蔽层5-2、第二屏蔽层5-3、第三屏蔽层5-4抑制了各温区间熔体的对流,使得各温区之间建立起温度梯度。同时,在坩埚7外围对应各温区分割位置设置的隔热板,限制了热量在保温层的传递。
当第四温区中熔体9温度达到600-700℃后,红磷注入器5-5的红磷30开始受热升华,通过注入孔5-10进入熔体9中,并依次上浮通过第三屏蔽层5-4、第二屏蔽层5-3、第一屏蔽层5-2上的透过孔5-6进入第三温区、第二温区、第一温区。
升华的磷气泡通过石英丝网时,被石英丝分割成小气泡。另外,注入孔5-10和透过孔5-6对气泡也有分割作用。
随着气泡上升进入各温区,随着温度升高,气泡内的磷气体被吸收的速度越来越快。
横向磁场减少了气泡上浮过程中的形变,并降低气泡的上升速率,增加了气泡中磷气体在熔体9的停留时间,被熔体更充分地吸收。
当产生了磷气泡后,逐渐增加第四温区、第三温区、第二温区中熔体9的温度,温度增加速率为50-100℃/h,直至第四温区、第三温区、第二温区熔体9温度达到T4=Tm+20℃、T3=Tm+20℃、T2=Tm+(20-100)℃。
以上过程完成材料合成。
晶体生长。
法生长晶体:
当红磷30完全气化,没有气泡发生后,调节第一温区、第二温区、第三温区、第四温区的温度均达到Tm+50℃,保持20-30min。
通过注入升降驱动6-3将注入合成系统5缓慢提出坩埚7,转动注入合成系统5,使其离开坩埚7正上方。
停止横向磁场发生器4的工作,调节第一温区、第二温区、第三温区、第四温区的温度,使得熔体9中从熔体表面到底部建立起20-100℃/cm的温度梯度。
如图1和图4所示,通过生长旋转驱动23-2和生长升降驱动23-3,启动籽晶杆23旋转并下降,待安装在籽晶夹头24上的LEC籽晶25接触熔体9后开始提拉,进行晶体生长, 获得LEC晶体32。
法生长晶体:
此时,坩埚7底部设置VGF籽晶35、第五加热器34和第五热电偶36。通过第五加热器34和第五热电偶36,可以精确调控籽晶区域的温度。
当红磷30完全气化,没有气泡发生后,调节第一温区、第二温区、第三温区、第四温区的温度均达到Tm+50℃,保持5-10小时。
通过注入升降驱动6-3将注入合成系统5缓慢提出坩埚7,转动注入合成系统5,使其离开坩埚7正上方。
停止横向磁场发生器4的工作,通过生长升降驱动23-3下降上保温盖37,调节第一温区、第二温区、第三温区、第四温区的温度,使得熔体9中从底部到熔体表面建立起3-5℃/cm的温度梯度。
进行VGF晶体生长,获得VGF晶体33,如图5所示。图中,炉顶热电偶22穿过上保温盖37插入熔体。
Claims (10)
- 一种磁场下浸入式磷化物合成及生长装置,包括主炉体(1)、主炉体内的坩埚(7)、坩埚(7)外围的加热器和保温层,其特征在于,所述合成及生长装置还包括连接驱动装置的注入合成系统(5),注入合成系统(5)承载红磷(30),在驱动装置的作用下,沉入坩埚(7);在主炉体(1)外部设置静磁场发生器(4);所述注入合成系统(5)包括圆柱形的红磷注入器(5-5),红磷注入器(5-5)周边设置注入孔(5-10);所述注入合成系统(5)还包括红磷注入器(5-5)上面的3-5个圆盘形屏蔽层,屏蔽层的直径小于坩埚(7)的内径1-10mm,屏蔽层上设置透过孔(5-6);根据屏蔽层的位置,将坩埚(7)分为不同的温区,两个屏蔽层之间、顶端的屏蔽层上面、底端屏蔽层下面为温区范围;各温区设置独立的加热器和电偶;红磷注入器(5-5)和屏蔽层连接在驱动装置上,同时升降;坩埚(7)外围的保温层中,对应屏蔽层的位置设置隔热板;所述各屏蔽层在同一位置开设与炉顶热电偶(22)配合的测温孔。
- 根据权利要求1所述的磁场下浸入式磷化物合成及生长装置,其特征在于,所述合成系统(5)设置3个屏蔽层,分别为第一屏蔽层(5-2)、第二屏蔽层(5-3)、第三屏蔽层(5-4);3个屏蔽层将坩埚(7)分成4个温区:第一屏蔽层(5-2)上面为第一温区,第一屏蔽层(5-2)和第二屏蔽层(5-3)之间为第二温区,第二屏蔽层(5-3)和第三屏蔽层(5-4)之间为第三温区,第三屏蔽层(5-4)下面为第四温区;各温区对应的加热器分别为第一加热器(15)、第二加热器(16)、第三加热器(17)、第四加热器(18)。
- 一种磁场下合成及连续生长磷化物的方法,使用权利要求1-2任一所述的磁场下浸入式磷化物合成及生长装置完成,其特征在于包括以下步骤:A、加热坩埚,使坩埚内的金属和覆盖物氧化硼融化;B、将红磷浸入坩埚;C、在坩埚外围施加静磁场,调节温度梯度,开始合成;D、合成完毕后,进行晶体生长。
- 根据权利要求3所述的方法,其特征在于,步骤A中,首先对主炉体(1)抽真空至10 -5Pa―10Pa,然后充入惰性气体达到熔体(9)被加热到最高压力的饱和蒸气压以上;启动第一加热器(15)、第二加热器(16)、第三加热器(17)、第四加热器(18),加热温度为250-300℃,坩埚(7)内的金属形成熔体(9)。
- 根据权利要求4所述的方法,其特征在于,步骤B中,红磷注入器(5-5)中放置红磷;在驱动装置的作用下,使得红磷注入器(5-5)低端接近坩埚(7)底部5mm左右。
- 根据权利要求4所述的方法,其特征在于,步骤C中,横向磁场发生器(4).给熔体(9)中施加0.1-2T的横向静磁场。
- 根据权利要求6所述的方法,其特征在于,步骤C中,调节第一加热器(15)、第二加热器(16)、第三加热器(17)、第四加热器(18)的功率,使得第一温区、第二温区、第三温区、第四温区中熔体(9)的温度依次缓慢加热至T1=Tm+(20-100)℃、T2=Tm+20℃、T3=900-1000℃、T4=600-700℃;当产生磷气泡后,逐渐增加第四温区、第三温区、第二温区中熔体(9)的温度,温度增加速率为50-100℃/h,直至第四温区、第三温区、第二温区熔体(9)的温度达到T4=Tm+20℃、T3=Tm+20℃、T2=Tm+(20-100)℃;Tm为被合成物质的熔点。
- 根据权利要求6所述的方法,其特征在于,步骤D中,采用LEC法或VFG发生长晶体。
- 根据权利要求8所述的方法,其特征在于,当红磷完全气化,没有气泡发生后,调节第一温区、第二温区、第三温区、第四温区的温度均达到Tm+50℃,保持20-30min;停止横向磁场发生器(4)的工作,调节第一温区、第二温区、第三温区、第四温区的温度,使熔体(9)从表面到底部建立20-100℃/cm的温度梯度;籽晶接触熔体(9)后开始提拉,进行晶体生长,获得LEC晶体。
- 根据权利要求8所述的方法,其特征在于,在坩埚(7)底部设置有VGF籽晶(35);当红磷30完全气化,没有气泡发生后,调节第一温区、第二温区、第三温区、第四温区的温度均达到Tm+50℃,保持5-10小时;停止横向磁场发生器(4)的工作,调节第一温区、第二温区、第三温区、第四温区的温度,使熔体(9)从表面到底部建立3-5℃/cm的温度梯度;进行VGF晶体生长,获得VGF晶体。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110760633.2A CN113502546B (zh) | 2021-07-06 | 2021-07-06 | 一种磁场下合成及连续生长磷化物的方法 |
CN202110760633.2 | 2021-07-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023279652A1 true WO2023279652A1 (zh) | 2023-01-12 |
Family
ID=78011308
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/136321 WO2023279652A1 (zh) | 2021-07-06 | 2021-12-08 | 磁场下浸入式磷化物合成及连续生长装置和方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113502546B (zh) |
WO (1) | WO2023279652A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113502546B (zh) * | 2021-07-06 | 2022-08-19 | 中国电子科技集团公司第十三研究所 | 一种磁场下合成及连续生长磷化物的方法 |
CN118109907B (zh) * | 2024-03-12 | 2024-09-10 | 西安交通大学 | 一种利用行波磁场强制驱动粘附气泡的方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5431125A (en) * | 1991-06-14 | 1995-07-11 | The United States Of America As Represented By The Secretary Of The Air Force | Twin-free crystal growth of III-V semiconductor material |
CN108358180A (zh) * | 2017-12-08 | 2018-08-03 | 中国电子科技集团公司第十三研究所 | 利用承载气体进行磷化物原位注入合成的方法 |
CN111424310A (zh) * | 2020-06-02 | 2020-07-17 | 中国电子科技集团公司第十三研究所 | 一种液态磷注入法合成磷化铟的方法 |
CN113502546A (zh) * | 2021-07-06 | 2021-10-15 | 中国电子科技集团公司第十三研究所 | 一种磁场下合成及连续生长磷化物的方法 |
CN113512755A (zh) * | 2021-07-06 | 2021-10-19 | 中国电子科技集团公司第十三研究所 | 一种磁场下浸入式磷化物合成及生长装置 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IN162525B (zh) * | 1984-02-08 | 1988-06-04 | Pfizer | |
US5252175A (en) * | 1990-06-29 | 1993-10-12 | The United States Of America As Represented By The Secretary Of The Air Force | Capillary pressure relief for magnetic Kyropoulos growth of semiconductor crystals |
JPH06239694A (ja) * | 1993-02-15 | 1994-08-30 | Nisshin Steel Co Ltd | 液相エピタキシャル成長装置用融液ホルダー |
IL128827A0 (en) * | 1999-03-04 | 2000-01-31 | Solmecs Israel Ltd | Apparatus for growing single crystals |
WO2004090202A1 (ja) * | 2003-04-03 | 2004-10-21 | Mitsubishi Chemical Corporation | 酸化亜鉛単結晶 |
JP2006016241A (ja) * | 2004-07-01 | 2006-01-19 | Canon Inc | 結晶製造方法及び装置、露光装置及びデバイス製造方法 |
WO2006068062A1 (ja) * | 2004-12-22 | 2006-06-29 | Tokuyama Corporation | フッ化金属単結晶体の引上げ装置および該装置を用いたフッ化金属単結晶体の製造方法 |
US8021481B2 (en) * | 2008-08-07 | 2011-09-20 | Soraa, Inc. | Process and apparatus for large-scale manufacturing of bulk monocrystalline gallium-containing nitride |
CN102586862B (zh) * | 2012-03-08 | 2014-07-30 | 天津市环欧半导体材料技术有限公司 | 一种提高直拉硅单晶电阻率均匀性的行波磁场法 |
JP2014047107A (ja) * | 2012-08-31 | 2014-03-17 | Kyocera Crystal Device Corp | 人工水晶の製造方法及び人工水晶 |
CN105369344A (zh) * | 2015-12-15 | 2016-03-02 | 洛阳西格马炉业股份有限公司 | 一种温场梯度竖直移动法制备片状单晶的方法及装置 |
CN105671637A (zh) * | 2016-02-02 | 2016-06-15 | 北京华进创威电子有限公司 | 一种pvt法生长碳化硅单晶缓释的装置 |
CN108018601A (zh) * | 2017-12-19 | 2018-05-11 | 清远先导材料有限公司 | 晶体生长装置、生长方法及其应用 |
JP7160006B2 (ja) * | 2019-09-19 | 2022-10-25 | 信越半導体株式会社 | 単結晶引上げ装置および単結晶引上げ方法 |
CN112410883A (zh) * | 2020-11-16 | 2021-02-26 | 宇泽半导体(云南)有限公司 | 一种改进的磷化铟晶体合成和生长工艺及装置 |
CN112680780A (zh) * | 2020-12-08 | 2021-04-20 | 广东先导先进材料股份有限公司 | 氧化镓晶体生长装置及生长方法 |
-
2021
- 2021-07-06 CN CN202110760633.2A patent/CN113502546B/zh active Active
- 2021-12-08 WO PCT/CN2021/136321 patent/WO2023279652A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5431125A (en) * | 1991-06-14 | 1995-07-11 | The United States Of America As Represented By The Secretary Of The Air Force | Twin-free crystal growth of III-V semiconductor material |
CN108358180A (zh) * | 2017-12-08 | 2018-08-03 | 中国电子科技集团公司第十三研究所 | 利用承载气体进行磷化物原位注入合成的方法 |
CN111424310A (zh) * | 2020-06-02 | 2020-07-17 | 中国电子科技集团公司第十三研究所 | 一种液态磷注入法合成磷化铟的方法 |
CN113502546A (zh) * | 2021-07-06 | 2021-10-15 | 中国电子科技集团公司第十三研究所 | 一种磁场下合成及连续生长磷化物的方法 |
CN113512755A (zh) * | 2021-07-06 | 2021-10-19 | 中国电子科技集团公司第十三研究所 | 一种磁场下浸入式磷化物合成及生长装置 |
Also Published As
Publication number | Publication date |
---|---|
CN113502546A (zh) | 2021-10-15 |
CN113502546B (zh) | 2022-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023279652A1 (zh) | 磁场下浸入式磷化物合成及连续生长装置和方法 | |
CN113512755B (zh) | 一种磁场下浸入式磷化物合成及生长装置 | |
WO2021098347A1 (zh) | 一种利用铟磷混合物制备磷化铟晶体的系统 | |
TWI522500B (zh) | 矽單結晶及其製造方法 | |
KR100861412B1 (ko) | 다결정 실리콘 잉곳 제조장치 | |
JPH11310496A (ja) | 一方向凝固組織を有するシリコンインゴットの製造方法およびその製造装置 | |
JP2008105896A (ja) | SiC単結晶の製造方法 | |
WO2019109367A1 (zh) | 一种水平注入合成后旋转连续vgf晶体生长的装置及方法 | |
CN105247115A (zh) | 单晶硅制造方法 | |
WO2018154874A1 (ja) | シリコン単結晶の製造方法、整流部材、および、単結晶引き上げ装置 | |
US2975036A (en) | Crystal pulling apparatus | |
CN112204174B (zh) | 单晶硅的氧浓度推断方法及单晶硅的制造方法 | |
KR101275382B1 (ko) | 단결정 냉각장치 및 단결정 냉각장치를 포함하는 단결정 성장장치 | |
CN215251334U (zh) | 一种磷浸入式磷化物合成及生长装置 | |
US20240352624A1 (en) | Apparatus and method for synthesizing and continuously growing phosphide in magnetic field in immersion fashion | |
CN111074346A (zh) | 一种提拉法制备高纯单晶锗的装置及方法 | |
CN113308744B (zh) | 一种半绝缘磷化铟的制备装置 | |
CN110820043A (zh) | 晶体生长装置及生长方法 | |
CN203530489U (zh) | 多晶硅铸锭炉热场结构 | |
RU2355831C2 (ru) | Способ выращивания полых цилиндрических монокристаллов кремния на основе способа чохральского и устройство для его осуществления | |
CN203530493U (zh) | 多晶硅铸锭炉 | |
JP2012236755A (ja) | 再使用が可能なシリコン溶融用二重坩堝を備える単結晶シリコンインゴット成長装置 | |
CN108070908A (zh) | 4H-SiC晶体生长设备及方法 | |
TWI682077B (zh) | 矽單結晶的製造方法 | |
CN113308739A (zh) | 注入合成后连续lec与vgf结合制备化合物半导体晶体的系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21949137 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18577074 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21949137 Country of ref document: EP Kind code of ref document: A1 |