WO2023276781A1 - 逆浸透膜の脱塩性能回復方法及び逆浸透膜の脱塩性能回復装置 - Google Patents

逆浸透膜の脱塩性能回復方法及び逆浸透膜の脱塩性能回復装置 Download PDF

Info

Publication number
WO2023276781A1
WO2023276781A1 PCT/JP2022/024701 JP2022024701W WO2023276781A1 WO 2023276781 A1 WO2023276781 A1 WO 2023276781A1 JP 2022024701 W JP2022024701 W JP 2022024701W WO 2023276781 A1 WO2023276781 A1 WO 2023276781A1
Authority
WO
WIPO (PCT)
Prior art keywords
reverse osmosis
recovery
osmosis membrane
cleaning liquid
cleaning
Prior art date
Application number
PCT/JP2022/024701
Other languages
English (en)
French (fr)
Inventor
孝義 堀
嘉晃 伊藤
龍 上戸
翔 横川
純久 勝西
篤斉 植田
貴裕 桝井
Original Assignee
三菱重工業株式会社
三菱パワー株式会社
共栄社化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社, 三菱パワー株式会社, 共栄社化学株式会社 filed Critical 三菱重工業株式会社
Publication of WO2023276781A1 publication Critical patent/WO2023276781A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/10Accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • B01D65/06Membrane cleaning or sterilisation ; Membrane regeneration with special washing compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • B01D71/12Cellulose derivatives
    • B01D71/14Esters of organic acids
    • B01D71/16Cellulose acetate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the present disclosure relates to a reverse osmosis membrane desalination performance recovery method and a reverse osmosis membrane desalination performance recovery device.
  • the desalination performance recovery method for a reverse osmosis membrane disclosed in Patent Document 1 includes a cleaning step of contacting the reverse osmosis membrane with a cleaning liquid and a recovery step of contacting the recovery liquid with the reverse osmosis membrane after the cleaning process.
  • the present disclosure has been made in view of the above-described problems, and can shorten the time required from the start of the cleaning process to the end of the recovery process.
  • the reverse osmosis membrane desalination performance recovery method includes: a cleaning step of circulating the cleaning liquid and bringing the cleaning liquid into contact with the reverse osmosis membrane; a recovery step of adding a recovery agent to the cleaning liquid in circulation and bringing the recovery agent into contact with the reverse osmosis membrane; Prepare.
  • the reverse osmosis membrane desalination performance recovery device includes: a cleaning liquid tank in which cleaning liquid is stored; a circulation line including the cleaning liquid tank and the reverse osmosis membrane container and provided to circulate the cleaning liquid; a recovery agent addition line connected to the circulation line and provided to add a recovery agent to the cleaning liquid; Prepare.
  • a recovery agent is added to the washing liquid in circulation, and the recovery agent is brought into contact with the reverse osmosis membrane, so that sufficient recovery performance can be obtained.
  • the time required from the start of the cleaning process to the end of the recovery process can be shortened by the time required for discharging the cleaning liquid and preparing the recovery liquid.
  • the amount of chemical used in both processes can be reduced.
  • the recovery agent addition line is connected to the circulation line, the recovery agent can be added to the cleaning liquid circulating in the circulation line to obtain the recovery liquid. . If a recovery agent is added to the circulating cleaning liquid, the recovery agent comes into contact with the reverse osmosis membrane and sufficient recovery performance can be obtained. This eliminates the need to discharge the used cleaning liquid and prepare the recovery liquid, thereby shortening the time required from the start of the cleaning process to the end of the recovery process. Moreover, since there is no need to newly prepare a recovery solution, when the same chemical is used in the cleaning process and the recovery process, the amount of chemical used in both processes can be reduced.
  • FIG. 1 is a schematic diagram schematically showing the configuration of a reverse osmosis membrane desalination performance recovery device according to an embodiment
  • FIG. 4 is a diagram showing the results of a verification test of the desalination performance recovery effect of a reverse osmosis membrane.
  • a reverse osmosis membrane desalination performance recovery method and a reverse osmosis membrane desalination performance recovery device will be described below with reference to the accompanying drawings.
  • the dimensions, materials, shapes, relative arrangements, etc. of the components described as embodiments or shown in the drawings are not intended to limit the scope of the present invention, and are merely illustrative examples. No.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a reverse osmosis membrane desalination performance recovery apparatus 1 according to an embodiment.
  • a reverse osmosis membrane desalination performance recovery apparatus 1 includes a cleaning liquid tank 3 for storing a cleaning liquid CL for cleaning the reverse osmosis membrane, a cleaning liquid tank 3 and a reverse osmosis membrane container 2. and a recovery agent addition line 5 connected to the circulation line 4 through which the cleaning liquid CL circulates.
  • the constituent material of the reverse osmosis membrane housed in the reverse osmosis membrane container 2 is not particularly limited, but from the viewpoint of suppressing deterioration of the reverse osmosis membrane due to the cleaning liquid CL as much as possible, cellulose-based materials such as cellulose acetate, cellulose triacetate, cellulose nitrate, and cellulose are used.
  • a material selected from polymers and polyamide-based polymers such as polyamides and aromatic polyamides is preferable.
  • the cleaning liquid tank 3 may be provided with a heater 31 for heating the cleaning liquid CL.
  • the cleaning liquid CL stored in the cleaning liquid tank 3 is fresh water added with a cleaning chemical and heated to room temperature or preferably to 45° C. or more and 60° C. or less to obtain sufficient detergency while suppressing deterioration of the reverse osmosis membrane. be able to.
  • the temperature of the cleaning water is preferably 45° C. or higher and 60° C. or lower, more preferably 48° C. or higher and 55° C. or lower, from the viewpoints of saving the energy required for heating the cleaning liquid CL and preventing changes in the physical properties of the reverse osmosis membrane. is more preferable, and 50° C. or more and 54° C. or less is even more preferable.
  • Conventional cleaning liquids generally contain oxidizing agents such as hypochlorous acid and hydrogen peroxide for the purpose of enhancing cleaning power. It is preferable not to contain an oxidizing agent such as acid or hydrogen peroxide, which is likely to generate radicals. This is because if the wash water contains an oxidizing agent, the oxidative deterioration of the reverse osmosis membrane is significantly accelerated. However, if the concentration is extremely low, the cleaning water according to the present embodiment may contain an oxidizing agent such as hypochlorous acid or hydrogen peroxide.
  • a specific content concentration is, for example, preferably 0.001 to 1.0% by mass, more preferably 0.01 to 0.1% by mass.
  • the pH of the cleaning water is preferably pH 3.5 to 5.5, more preferably pH 4.0 to 5.5, and even more preferably pH 4.0 to 5.0.
  • a method for adjusting the pH is not particularly limited, and examples thereof include a method of adding an inorganic acid such as hydrochloric acid or sulfuric acid, or an alkaline aqueous solution such as sodium hydroxide or magnesium hydroxide.
  • the washing water may contain an organic acid.
  • Organic acids are less likely to cause film deterioration than oxidants, and can enhance the cleaning effect. Suitable organic acids include, for example, citric acid, phosphonic acid, glycolic acid (hydroxyacetic acid), ethylenediaminetetraacetic acid (EDTA), formic acid, oxalic acid, and the like.
  • the wash water of the present embodiment may contain one or more organic acids selected from the group consisting of a plurality of organic acids exemplified here. Organic acids may be included as organic acid salts with countercations such as ammonium, sodium, calcium, magnesium and the like.
  • the concentration of the organic acid contained in the cleaning water is not particularly limited, and can be appropriately set according to the type of organic acid used within a range that can sufficiently suppress film deterioration.
  • a preferable concentration range of the organic acid is, for example, 0.001 to 5.0% by mass (0.01 to 50 g/L), preferably 0.01 to 3.0% by mass (0.1 to 30 g/L). is more preferred, and 0.02 to 2.0% by mass (0.2 to 20 g/L) is even more preferred.
  • the organic acid contained in the cleaning water is preferably citric acid from the viewpoint of enhancing the cleaning effect and sufficiently suppressing film deterioration.
  • Citric acid may be contained in the form of a citrate paired with a counter cation.
  • the counter cation is not particularly limited, and examples thereof include cations such as ammonium, sodium, potassium and magnesium.
  • washing water containing citric acid and ammonium citrate salt adjusted to pH 3.0 to 5.5, for example, can be obtained by adding a predetermined amount of citric acid to washing water and then dropping ammonia.
  • the citric acid concentration is in the range of 2.0 to 22 g/L.
  • the content of citric acid and citrate per liter of wash water containing citric acid is preferably 3.0 to 22 g, more preferably 5.0 to 20 g, more preferably 7.0 to 7.0 g in terms of mass of citric acid. 15 g is more preferred.
  • the citric acid content is preferably 0.3 to 2.2%, more preferably 0.5 to 2.0%, and 0.5% to 2.0% with respect to 100% of the washing water. 7 to 1.5% is more preferred.
  • the circulation line 4 includes the cleaning liquid tank 3 and the reverse osmosis membrane container 2 .
  • a circulation pump 41 is provided in the circulation line 4 to circulate the cleaning liquid CL through the circulation line 4 .
  • a circulation pump 41 for chemical cleaning is used as the circulation pump 41, but it is not limited to this.
  • a filter 42 may be provided in the circulation line 4 . If the circulation line 4 is provided with a filter 42, solid matter contained in the cleaning liquid CL is removed.
  • a cartridge-type filter 42 is used as the filter 42, but it is not limited to this.
  • the recovery agent addition line 5 is connected between the cleaning liquid tank 3 and the circulation pump 41 so as to add the recovery agent RF to the cleaning liquid CL flowing through the circulation line 4 .
  • the recovery agent RF can be gradually injected into the suction port of the circulation pump 41 and mixed, thereby suppressing uneven concentration of the recovery agent RF in the cleaning liquid CL.
  • the recovery agent addition line 5 is provided with a recovery agent container 51 and a recovery agent pump 52 , and the recovery agent pump 52 adds the recovery agent RF stored in the recovery agent container 51 to the circulating cleaning liquid CL.
  • the recovery agent RF added to the cleaning liquid CL in circulation is a desalination performance recovery agent for the reverse osmosis membrane.
  • a reverse osmosis membrane containing cellulose acetate as a constituent material (hereinafter referred to as “cellulose acetate membrane”) has acetyl groups, and these acetyl groups contribute to the desalination performance of the cellulose acetate membrane.
  • cellulose acetate membrane When a cellulose acetate membrane is used as a reverse osmosis membrane, the acetyl groups decrease due to hydrolysis over time, and the hydroxyl groups increase (the cellulose acetate membrane deteriorates), resulting in a decrease in the desalting performance of the cellulose acetate membrane. .
  • the recovery agent RF shall contain modified polyvinyl alcohol having an acetyl group structure in at least part of the polyvinyl alcohol.
  • the hydrophobic acetyl groups remaining in the cellulose acetate film and the hydrophobic acetyl groups of the modified polyvinyl alcohol are both hydrophobic and are likely to be adsorbed to each other. Therefore, if the recovery agent RF contains denatured polyvinyl alcohol, the hydrophobic acetyl groups of the denatured polyvinyl alcohol are adsorbed to the hydrophobic acetyl groups remaining on the cellulose acetate film, effectively coating the cellulose acetate film. (The desalination performance of the reverse osmosis membrane is restored).
  • Modified polyvinyl alcohol having an acetyl group structure in at least a portion of polyvinyl alcohol includes modified polyvinyl alcohol having a structure in which hydrogen atoms of at least a portion of the hydroxyl groups of polyvinyl alcohol are substituted with acetyl groups.
  • the recovery agent RF added to the circulating cleaning liquid CL contains denatured polyvinyl alcohol and, for example, water as a solvent.
  • the solvent (water) and the modified polyvinyl alcohol dispersed in water added to the water constitute the recovery agent RF added to the cleaning liquid CL in circulation.
  • the degree of acetylation of the modified polyvinyl alcohol is preferably 1% or more, more preferably 15% or more and 30% or less.
  • the degree of acetylation is defined as a value expressed as a percentage of B/(A+B), where A is the molar amount of hydroxyl groups in the modified polyvinyl alcohol and B is the molar amount of acetyl groups in the modified polyvinyl alcohol.
  • the acetylation degree of denatured polyvinyl alcohol of 30% is the upper limit of the acetylation degree at which the denatured polyvinyl alcohol can be dispersed in water.
  • the pH of the recovery agent containing modified polyvinyl alcohol is preferably 3-9, more preferably 3-8, and even more preferably 4-6.
  • the reverse osmosis membrane desalination performance recovery apparatus 1 In the reverse osmosis membrane desalination performance recovery apparatus 1 according to the embodiment, the reverse osmosis membrane for recovering the desalination performance is housed in the reverse osmosis membrane container 2, and the reverse osmosis membrane desalination performance recovery method according to the embodiment is executed. be done.
  • a desalination performance recovery method according to an embodiment includes a cleaning step and a recovery step.
  • the cleaning process is a process of circulating the cleaning liquid CL and bringing the cleaning liquid CL into contact with the reverse osmosis membrane.
  • the cleaning liquid CL stored in the cleaning liquid tank 3 is supplied to the reverse osmosis membrane container 2 through the circulation pump 41 by operating the circulation pump 41, and the cleaning liquid CL contacts the reverse osmosis membrane.
  • the cleaning liquid CL that has come into contact with and passed through the reverse osmosis membrane is discharged from the reverse osmosis membrane container 2 and collected in the cleaning liquid tank 3 .
  • the cleaning liquid CL circulates through the circulation line 4 including the cleaning liquid tank 3 and the reverse osmosis membrane container 2, and the cleaning liquid CL is brought into contact with the reverse osmosis membrane.
  • the washing time is preferably 2 to 12 hours, more preferably 4 to 10 hours, even more preferably 4 to 8 hours.
  • the recovery step is a step of adding a recovery agent RF to the circulating cleaning liquid CL and bringing the recovery agent RF into contact with the reverse osmosis membrane.
  • the recovery agent RF is added to the cleaning liquid CL circulating in the circulation line 4 by operating the recovery agent pump 52 while the circulation pump 41 is operating.
  • the recovery agent RF added to the cleaning liquid CL is supplied to the reverse osmosis membrane container 2 through the circulation pump 41 and the filter 42, and the recovery agent RF contacts the reverse osmosis membrane.
  • the time during which the recovery agent RF added to the cleaning liquid CL in circulation is brought into contact with the reverse osmosis membrane is preferably shorter than the cleaning time, more preferably 50% or less of the cleaning time, for example, 1-3. time is preferred.
  • the reverse osmosis membrane desalination performance recovery device 1 is used for this verification test of the desalination performance recovery effect of the reverse osmosis membrane.
  • the constituent materials of the reverse osmosis membranes used in this verification test are all cellulose acetate and are the same.
  • the concentrations of citric acid contained in the cleaning liquid CL (cleaning water) are all 1.0 to 2.0% by mass and are the same.
  • the temperature of the cleaning liquid CL (cleaning water) is 54° C., which is the same.
  • All of the recovery agents RF are the same modified polyvinyl alcohol having an acetyl group structure in at least part of the polyvinyl alcohol. The degree of acetylation of the modified polyvinyl alcohol is the same in Example and Comparative Examples 1 and 2.
  • the recovery process for 2 hours is performed by adding the recovery agent RF to the cleaning liquid CL in circulation.
  • the cleaning liquid CL is circulated so that the cleaning liquid CL comes into contact with the reverse osmosis membrane.
  • the membrane is contacted with a recovery agent RF.
  • the two hour recovery step may combine cleaning and recovery.
  • a 6-hour recovery process is performed after a 6-hour cleaning process.
  • the cleaning liquid CL is brought into contact with the reverse osmosis membrane by circulating the cleaning liquid CL.
  • the used cleaning liquid CL is discharged.
  • a recovery liquid recovery agent RF
  • the cleaning liquid CL to which the recovery agent RF is added is used as the recovery liquid.
  • the reverse osmosis membrane desalination performance recovery method according to Comparative Example 2 is a method in which the cleaning process and the recovery process proceed simultaneously.
  • the cleaning process and the recovery process proceed simultaneously by circulating the cleaning liquid CL to which the recovery agent RF is added. As a result, the cleaning liquid CL and the recovery agent RF come into contact with the reverse osmosis membrane.
  • FIG. 2 shows the results of the verification test of the example and comparative examples 1 and 2.
  • the B value shown in FIG. 2 is the salt permeability coefficient (B-value), which is a coefficient indicating the permeability of the solute in the reverse osmosis membrane. - Represented by the relational expression of the permeate solute concentration Cp).
  • B-value salt permeability coefficient
  • Cp permeate solute concentration
  • the rate of change in the B value of Example is -52
  • the rate of change in the B value of Comparative Example 1 is -51.
  • the rate of change in the B value of the example does not differ from the rate of change in the B value of the comparative example 1 (although it is slightly higher, it is considered to be within the margin of error), and the same recovery performance is obtained. Therefore, the desalination performance recovery method according to the embodiment can obtain a desalination performance recovery effect equivalent to that of the desalination performance recovery method of Comparative Example 1.
  • the change rate of the B value in Comparative Example 2 is -41, and the change rate of the B value in Comparative Example 1 is -51.
  • the change rate of the B value in Comparative Example 2 is smaller than that in Comparative Example 1, and a sufficient recovery effect is not obtained. Therefore, the desalting performance recovery method according to Comparative Example 2 cannot obtain a desalting performance recovery effect equivalent to that of Examples and Comparative Example 1.
  • the desalination performance recovery method according to the embodiment can obtain the same desalination performance recovery effect as the desalination performance recovery method of Comparative Example 1, so that the used cleaning liquid CL is discharged after the cleaning process is completed.
  • the amount of chemical for example, citric acid
  • the recovery agent addition line 5 is connected downstream of the cleaning liquid CL and upstream of the circulation pump 41 provided in the circulation line 4, the recovery agent RF is gradually injected into the suction port of the circulation pump 41 and mixed. It is possible to suppress unevenness in the concentration of the recovery agent RF in the cleaning liquid CL.
  • the cleaning liquid CL contains citric acid, the cleaning effect is enhanced and film deterioration is suppressed. Further, by including denatured polyvinyl alcohol having an acetyl group structure in at least a part of the polyvinyl alcohol in the recovery agent RF, the hydrophobic acetyl group remaining in the cellulose acetate film is replaced by the hydrophobicity of the denatured polyvinyl alcohol. The acetyl groups are adsorbed, effectively coating the cellulose acetate membrane (recovering the desalination performance of the reverse osmosis membrane).
  • the time required for the recovery process is 50% or less of the time required for the cleaning process, and sufficient recovery performance can be obtained. can.
  • the present invention is not limited to the above-described embodiments, and includes modifications of the above-described embodiments and modes in which these modes are combined as appropriate.
  • the desalination performance recovery method for a reverse osmosis membrane comprises: a cleaning step of circulating the cleaning liquid (CL) and bringing the cleaning liquid (CL) into contact with the reverse osmosis membrane; a recovery step of adding a recovery agent (RF) to the cleaning liquid (CL) in circulation and bringing the recovery agent (RF) into contact with the reverse osmosis membrane; Prepare.
  • sufficient recovery performance can be obtained by adding the recovery agent (RF) to the cleaning liquid (CL) in circulation and bringing the recovery agent (RF) into contact with the reverse osmosis membrane.
  • the time required from the start of the cleaning process to the end of the recovery process can be shortened by the time required for discharging the used cleaning liquid (CL) and preparing the recovery liquid.
  • the amount of chemicals used can be reduced when the same chemical is used in the cleaning process and the recovery process.
  • a reverse osmosis membrane desalination performance recovery method is the reverse osmosis membrane desalination performance recovery method according to [1],
  • the constituent material of the reverse osmosis membrane contains cellulose acetate,
  • the cleaning liquid (CL) contains citric acid,
  • the recovery agent (RF) contains modified polyvinyl alcohol having an acetyl group structure in at least a portion of the polyvinyl alcohol.
  • a cellulose acetate membrane containing cellulose acetate as a constituent material has acetyl groups, and these acetyl groups contribute to the desalting performance of the cellulose acetate membrane.
  • the acetyl groups decrease due to hydrolysis and the hydroxyl groups increase (the cellulose acetate membrane deteriorates) with the passage of time, and the desalination performance of the cellulose acetate membrane decreases.
  • the recovery agent (RF) contains polyvinyl alcohol having an acetyl group structure in at least a part of the polyvinyl alcohol, the acetyl groups contained in the recovery agent (RF) are added to the acetyl groups remaining in the cellulose acetate film. It is adsorbed and effectively coats the cellulose acetate membrane.
  • a reverse osmosis membrane desalination performance recovery method is the reverse osmosis membrane desalination performance recovery method according to [2],
  • the citric acid concentration is 0.3% or more and 2.2% or less
  • the modified polyvinyl alcohol has a degree of acetylation of 1% or more.
  • membrane deterioration can be suppressed while the cleaning effect is enhanced, and a sufficient recovery effect of the reverse osmosis membrane can be obtained.
  • a reverse osmosis membrane desalination performance recovery method is the reverse osmosis membrane desalination performance recovery method according to any one of [1] to [3], The recovery step takes less time than the cleaning step.
  • the time required for the recovery process is shorter than the time required for the conventional recovery process, so the time required from the start of the cleaning process to the end of the recovery process can be shortened.
  • a reverse osmosis membrane desalination performance recovery method is the reverse osmosis membrane desalination performance recovery method according to any one of [1] to [4],
  • the time required for the recovery step is 50% or less of the time required for the cleaning step.
  • the time required for the recovery process is 50% or less of the time required for the cleaning process, and sufficient recovery performance can be obtained, so the time required from the start of the cleaning process to the end of the recovery process is shortened. can.
  • the reverse osmosis membrane desalination performance recovery device (1) comprises: a cleaning liquid tank (3) in which cleaning liquid (CL) is stored; a circulation line (4) including the cleaning liquid tank (3) and the reverse osmosis membrane container (2) and provided so as to circulate the cleaning liquid (CL); a recovery agent addition line (5) connected to the circulation line (4) and provided to add a recovery agent (RF) to the cleaning liquid (CL); Prepare.
  • the recovery agent (RF) is added to the cleaning liquid (CL) circulating through the circulation line (4). be able to. If the recovery agent (RF) is added to the circulating cleaning liquid (CL), the recovery agent (RF) comes into contact with the reverse osmosis membrane and sufficient recovery performance is obtained. This eliminates the need to discharge the used cleaning liquid and prepare the recovery liquid, thereby shortening the time required from the start of the cleaning process to the end of the recovery process. Moreover, since it is not necessary to prepare a recovery solution, the amount of chemicals used can be reduced when the same chemical is used in the cleaning process and the recovery process.
  • a reverse osmosis membrane desalination performance recovery device (1) according to the aspect of [7] is the reverse osmosis membrane desalination performance recovery device (1) according to [6],
  • the circulation line (4) includes a circulation pump (41) provided downstream of the washing tank (3),
  • the recovery agent addition line (5) is connected between the cleaning liquid tank (3) and the circulation pump (41).
  • the recovery agent addition line (5) is connected between the cleaning liquid tank (3) and the circulation pump (41), so that the recovery agent (RF) is sucked into the circulation pump (41). It can be injected little by little into the mouth, and uneven concentration of the recovery agent (RF) in the cleaning liquid (CL) can be suppressed.
  • reverse osmosis membrane desalination performance recovery device reverse osmosis membrane container 3 cleaning liquid tank 31 heater 4 circulation line 41 circulation pump 42 filter 5 recovery agent addition line 51 recovery agent container 52 recovery agent pump CL cleaning solution RF recovery agent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Nanotechnology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

逆浸透膜の脱塩性能回復方法は、洗浄液を循環させて逆浸透膜に洗浄液を接触させる洗浄工程と、循環中の前記洗浄液に回復剤を添加し、前記回復剤を前記逆浸透膜に接触させる回復工程と、を備える。

Description

逆浸透膜の脱塩性能回復方法及び逆浸透膜の脱塩性能回復装置
 本開示は、逆浸透膜の脱塩性能回復方法及び逆浸透膜の脱塩性能回復装置に関する。
 本願は、2021年6月30日に日本国特許庁に出願された特願2021-108976号に基づき優先権を主張し、その内容をここに援用する。
 特許文献1に開示された逆浸透膜の脱塩性能回復方法には、逆浸透膜に洗浄液を接触させる洗浄工程と洗浄工程の後に逆浸透膜に回復液を接触させる回復工程とが含まれる。
特開2015-97990号公報
 しかしながら、特許文献1に開示された逆浸透膜の脱塩性能回復方法では、洗浄工程の終了後に洗浄液を排出してから回復液を調製・接触させるために、洗浄工程の終了から回復工程の開始・終了までに時間が必要となり、洗浄工程の開始から回復工程の終了までに長時間を要していた。また、洗浄工程と回復工程が異なることから洗浄液と回復液とに使用する薬品を別々に用意する必要があり、使用する薬品も多大なものとなっていた。
 本開示は、上述する問題点に鑑みてなされたもので、洗浄工程の開始から回復工程の終了までに要する時間を短くでき、洗浄工程と回復工程で同じ薬剤を使用する場合は、薬品の使用量も少なくできる、逆浸透膜の脱塩性能回復方法及び逆浸透膜の脱塩性能回復装置を提供することを目的とする。
 上記目的を達成するため、本開示に係る逆浸透膜の脱塩性能回復方法は、
 洗浄液を循環させて逆浸透膜に洗浄液を接触させる洗浄工程と、
 循環中の前記洗浄液に回復剤を添加し、前記回復剤を前記逆浸透膜に接触させる回復工程と、
を備える。
 上記目的を達成するため、本開示に係る逆浸透膜の脱塩性能回復装置は、
 洗浄液が貯蔵された洗浄液タンクと、
 前記洗浄液タンク及び逆浸透膜容器を含み、前記洗浄液が循環するように設けられた循環ラインと、
 前記循環ラインに接続され、前記洗浄液に回復剤を添加するように設けられた回復剤添加ラインと、
を備える。
 本開示の逆浸透膜の脱塩性能回復方法によれば、循環中の洗浄液に回復剤を添加させ、回復剤を逆浸透膜に接触させることで、十分な回復性能が得られるので、使用済みの洗浄液の排出と回復液の調製に要する時間の分だけ洗浄工程の開始から回復工程の終了までに要する時間を短くできる。また、新たに回復液を調製する必要がなくなるので、洗浄工程と回復工程で同じ薬剤を使用する場合は、両工程共に使用する薬品の使用量を少なくできる。
 本開示の逆浸透膜の脱塩性能回復装置によれば、回復剤添加ラインが循環ラインに接続されているので、循環ラインを循環中の洗浄液に回復剤を添加し回復液とすることができる。そして、循環中の洗浄液に回復剤を添加すれば、回復剤が逆浸透膜に接触し、十分な回復性能が得られる。これにより、使用済みの洗浄液の排出と回復液の調製の必要がなくなり、洗浄工程の開始から回復工程の終了までに要する時間を短くできる。また、新たに回復液を調製する必要がないので、洗浄工程と回復工程で同じ薬剤を使用する場合は、両工程共に使用する薬品の使用量を少なくできる。
実施形態に係る逆浸透膜の脱塩性能回復装置の構成を概略的に示す模式図である。 逆浸透膜の脱塩性能回復効果の検証試験の結果を示す図である。
 以下、添付図面を参照して実施形態に係る逆浸透膜の脱塩性能回復方法及び逆浸透膜の脱塩性能回復装置について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
<実施形態に係る逆浸透膜の脱塩性能回復装置1の構成>
 図1は、実施形態に係る逆浸透膜の脱塩性能回復装置1の概略構成を示す模式図である。
 図1に示すように、実施形態に係る逆浸透膜の脱塩性能回復装置1は、逆浸透膜を洗浄するための洗浄液CLが貯蔵される洗浄液タンク3、洗浄液タンク3と逆浸透膜容器2との間で洗浄液CLが循環する循環ライン4及び循環ライン4に接続される回復剤添加ライン5を備える。
 逆浸透膜容器2に収容される逆浸透膜の構成材料は特に限定されないが、洗浄液CLによる逆浸透膜の劣化を極力抑制する観点から酢酸セルロース、三酢酸セルロース、硝酸セルロース、セルロース等のセルロース系高分子、及び、ポリアミド、芳香族ポリアミド等のポリアミド系高分子から選択される材料であることが好ましい。
 洗浄液タンク3には、洗浄液CLを加熱するヒータ31を設けてもよい。洗浄液タンク3に貯蔵される洗浄液CLは淡水に洗浄薬剤を添加した常温または好ましくは45°C以上60°以下に加熱した洗浄水であり、逆浸透膜の劣化を抑えつつ十分な洗浄力を得ることができる。洗浄水の温度は、洗浄液CLの加熱に要するエネルギを節約する観点、逆浸透膜の物性変化を予防する観点等から、45°C以上60°C以下が好ましく、48°C以上55°C以下がより好ましく、50°C以上54°C以下が更に好ましい。
 従来の洗浄液には、洗浄力を高める目的で次亜塩素酸や過酸化水素等の酸化剤が含まれていることが一般的であるが、本実施形態に係る洗浄水には、次亜塩素酸や過酸化水素等のラジカルを発生しやすい酸化剤が含まれないことが好ましい。これは、洗浄水が酸化剤を含むと、逆浸透膜の酸化劣化を著しく促進してしまうからである。但し、極めて低濃度であれば、本実施形態に係る洗浄水に次亜塩素酸や過酸化水素等の酸化剤が含まれていてもよい。具体的な含有濃度としては、例えば、好適には0.001~1.0質量%、より好適には0.01~0.1質量%である。
 洗浄水のpHは、強酸もしくは強アルカリの条件になるほど洗浄効果が得られる一方、強酸もしくは強アルカリの条件になるほど膜劣化が進行する傾向がある。このため、洗浄水のpHは、pH3.5~5.5が好ましく、pH4.0~5.5がより好ましく、pH4.0~5.0がさらに好ましい。pHを調整する方法は特に限定されず、例えば、塩酸や硫酸等の無機酸、水酸化ナトリウムや水酸化マグネシウム等のアルカリ水溶液を添加する方法が挙げられる。
 洗浄水には、有機酸を含ませてもよい。有機酸は酸化剤よりも膜劣化の原因になり難く、洗浄効果を高めることができる。好適な有機酸として、例えば、クエン酸、ホスホン酸、グリコール酸(ヒドロキシ酢酸)、エチレンジアミン四酢酸(EDTA)、ギ酸、シュウ酸等が挙げられる。本実施形態の洗浄水には、ここで例示した複数の有機酸からなる群から選択される1種以上の有機酸が含まれていてもよい。有機酸は、アンモニウム、ナトリウム、カルシウム、マグネシウム等のカウンターカチオンを有する有機酸塩として含まれていてもよい。
 洗浄水に含まれる有機酸の濃度は特に限定されず、膜劣化をより充分に抑制できる範囲で、使用する有機酸の種類によって適宜設定できる。好適な有機酸の濃度範囲は、例えば、0.001~5.0質量%(0.01~50g/L)が好ましく、0.01~3.0質量%(0.1~30g/L)がより好ましく、0.02~2.0質量%(0.2~20g/L)がさらに好ましい。
 洗浄水に含まれる有機酸は、洗浄効果を高め、膜劣化を十分に抑制する観点から、クエン酸であることが好ましい。クエン酸はカウンターカチオンと対になるクエン酸塩の形態で含まれていてもよい。カウンターカチオンは特に限定されず、例えば、アンモニウム、ナトリウム、カリウム、マグネシウム等のカチオンが挙げられる。一例として、洗浄水にクエン酸を所定量加えた後、アンモニアを滴下することにより、例えばpH3.0~5.5に調整したクエン酸及びクエン酸アンモニウム塩を含む洗浄水を得ることができる。
 洗浄水にクエン酸及びクエン酸塩の少なくとも一方が含まれる場合、クエン酸濃度として、2.0~22g/Lの範囲で含まれることが好ましい。クエン酸を含む洗浄水1L当たりのクエン酸及びクエン酸塩の含有量は、クエン酸の質量に換算して、3.0~22gが好ましく、5.0~20gがより好ましく、7.0~15gがさらに好ましい。この範囲を質量基準の%に変換すると、洗浄水100%に対して、クエン酸含有量は、0.3~2.2%が好ましく、0.5~2.0%がより好ましく、0.7~1.5%がさらに好ましい。
 循環ライン4は、洗浄液タンク3及び逆浸透膜容器2を含んでいる。循環ライン4には循環ポンプ41が設けられ、循環ライン4に洗浄液CLを循環させる。例えば、循環ポンプ41には化学洗浄用の循環ポンプ41が用いられるが、これに限られるものではない。また、循環ライン4にはフィルタ42が設けられてもよい。循環ライン4にフィルタ42が設けられた場合には、洗浄液CLに含まれる固形物が取り除かれる。例えば、フィルタ42にはカートリッジ式のフィルタ42が用いられるが、これに限定されるものではない。
 回復剤添加ライン5は、循環ライン4を流れる洗浄液CLに回復剤RFを添加するように、洗浄液タンク3と循環ポンプ41との間に接続される。このように接続されると、回復剤RFを循環ポンプ41の吸い込み口に少しずつ注入して混合することができ、洗浄液CL中における回復剤RFの濃度のムラを抑制できる。回復剤添加ライン5には、回復剤容器51及び回復剤ポンプ52が設けられ、回復剤ポンプ52によって回復剤容器51に貯蔵された回復剤RFが循環中の洗浄液CLに添加される。
 循環中の洗浄液CLに添加される回復剤RFは、逆浸透膜の脱塩性能回復剤である。逆浸透膜の構成材料に酢酸セルロースが含まれる膜(以下「酢酸セルロース膜」という)は、アセチル基を有しており、このアセチル基が酢酸セルロース膜の脱塩性能に寄与している。酢酸セルロース膜が逆浸透膜として使用されると、使用時間の経過とともにアセチル基が加水分解により減少して水酸基が増加し(酢酸セルロース膜が変質し)、酢酸セルロース膜の脱塩性能が低下する。よって、逆浸透膜の構成材料に酢酸セルロースが用いられる場合に、回復剤RFに、ポリビニルアルコールの少なくとも一部にアセチル基構造を有する変性ポリビニルアルコールを含むものとする。酢酸セルロース膜に残っている疎水性のアセチル基と変性ポリビニルアルコールの疎水性のアセチル基はともに疎水性を有しているために互いに吸着されやすい。よって、回復剤RFに変性ポリビニルアルコールを含むものとすると、酢酸セルロース膜に残っている疎水性のアセチル基に変性ポリビニルアルコールの疎水性のアセチル基が吸着され、酢酸セルロース膜が効果的にコーティングされる(逆浸透膜の脱塩性能が回復する)。
 ポリビニルアルコールの少なくとも一部にアセチル基構造を有する変性ポリビニルアルコールには、ポリビニルアルコールの少なくとも一部の水酸基の水素原子をアセチル基に置換した構造を有する変性ポリビニルアルコールが含まれる。循環中の洗浄液CLに添加される回復剤RFは、変性ポリビニルアルコールとともに、溶媒として、例えば、水を含んでいる。この場合、溶媒(水)及び水に添加された水中に分散した変性ポリビニルアルコールが循環中の洗浄液CLに添加される回復剤RFを構成する。
 変性ポリビニルアルコールのアセチル化度1%以上が好ましく、15%以上30%以下がより好ましい。アセチル化度は、変性ポリビニルアルコールの水酸基のモル量をA、変性ポリビニルアルコールのアセチル基のモル量をBとして場合に、B/(A+B)を百分率で表した値で定義される。尚、変性ポリビニルアルコールのアセチル化度30%は、変性ポリビニルアルコールが水中で分散できるアセチル化度の上限値である。
 変性ポリビニルアルコールを含む回復剤のpHは、3~9が好ましく、pH3~8がより好ましく、pH4~6がさらに好ましい。
<実施形態に係る逆浸透膜の脱塩性能回復装置1の動作>
 実施形態に係る逆浸透膜の脱塩性能回復装置1では、脱塩性能を回復する逆浸透膜が逆浸透膜容器2に収容され、実施形態に係る逆浸透膜の脱塩性能回復方法が実行される。実施形態に係る脱塩性能回復方法は、洗浄工程及び回復工程を備えている。
 洗浄工程は、洗浄液CLを循環させて逆浸透膜に洗浄液CLを接触させる工程である。洗浄工程では、循環ポンプ41を稼働することによって、洗浄液タンク3に貯蔵された洗浄液CLが循環ポンプ41を通り逆浸透膜容器2に供給され、逆浸透膜に洗浄液CLが接触する。そして、逆浸透膜に接触し逆浸透膜を通過した洗浄液CLは、逆浸透膜容器2から排出され、洗浄液タンク3に回収される。これにより、洗浄液タンク3及び逆浸透膜容器2を含む循環ライン4に洗浄液CLが循環し、逆浸透膜に洗浄液CLが接触させられる。
 洗浄水を逆浸透膜に接触させる時間、すなわち洗浄時間は、長くなるほど洗浄効果が得られる一方、長くなるほど膜劣化が進行する傾向がある。これにより、洗浄時間は2~12時間が好ましく、4~10時間がより好ましく、4~8時間がさらに好ましい。
 回復工程は、循環中の洗浄液CLに回復剤RFを添加し、回復剤RFを逆浸透膜に接触させる工程である。回復工程では、循環ポンプ41を稼働したまま回復剤ポンプ52を稼働することによって、循環ライン4を循環中の洗浄液CLに回復剤RFが添加される。洗浄液CLに添加された回復剤RFは循環ポンプ41及びフィルタ42を通り逆浸透膜容器2に供給され、逆浸透膜に回復剤RFが接触する。
 循環中の洗浄液CLに添加された回復剤RFを逆浸透膜に接触させる時間、すなわち回復時間は、洗浄時間よりも短いことが好ましく、洗浄時間の50%以下がより好ましく、たとえば、1~3時間が好ましい。
<逆浸透膜の脱塩性能回復効果の検証試験>
 逆浸透膜の脱塩性能回復効果の検証試験として、実施形態に係る脱塩性能回復方法に含まれる実施例と、実施形態に係る脱塩性能回復方法と異なる比較例1及び2を行った。
 この逆浸透膜の脱塩性能回復効果の検証試験には、図1に示した実施形態に係る逆浸透膜の脱塩性能回復装置1を用いている。この検証試験に用いている逆浸透膜の構成材料はいずれも酢酸セルロースであり、同一である。洗浄液CL(洗浄水)に含まれるクエン酸の濃度はいずれも1.0~2.0質量%であり、同一である。また、洗浄液CL(洗浄水)の温度はいずれも54°Cであり、同一である。回復剤RFはいずれもポリビニルアルコールの少なくとも一部にアセチル基構造を有する変性ポリビニルアルコールであり、同一である。尚、変性ポリビニルアルコールのアセチル化度は、実施例、比較例1及び2において同一である。
 実施例に係る逆浸透膜の脱塩性能回復方法では、6時間の洗浄工程後に循環中の洗浄液CLに回復剤RFを添加し2時間の回復工程が行われる。6時間の洗浄工程では洗浄液CLを循環させることで逆浸透膜に洗浄液CLが接触し、2時間の回復工程では循環中の洗浄液CLに回復剤RFを添加した洗浄液CLを循環させることで逆浸透膜に回復剤RFが接触する。2時間の回復工程では洗浄と回復を兼ねてもよい。
 比較例1に係る逆浸透膜の脱塩性能回復方法は、6時間の洗浄工程後に6時間の回復工程が行われる。6時間の洗浄工程では洗浄液CLを循環させることで逆浸透膜に洗浄液CLが接触する。6時間の洗浄工程が終了すると使用済みの洗浄液CLを排出する。6時間の回復工程では新たに回復液を調製し循環させることで逆浸透膜に回復液(回復剤RF)が接触する。尚、この検証試験において回復液は、洗浄液CLに回復剤RFを添加したものが用いられている。
 比較例2に係る逆浸透膜の脱塩性能回復方法は、洗浄工程と回復工程を同時に進行させる方法である。比較例2に係る逆浸透膜の脱塩性能回復方法では、回復剤RFを添加した洗浄液CLを循環させることで洗浄工程と回復工程を同時に進行させる。これにより、逆浸透膜に洗浄液CLと回復剤RFとが接触する。
 図2に、実施例、比較例1及び2の検証試験の結果を示す。図2に示すB値は、塩透過係数(B-value)であり、逆浸透膜における溶質の透過性を示す係数であり、一般に、溶質透過流速Js=B値×(膜面の溶質濃度Cm-透過水の溶質濃度Cp)の関係式で表される。また、図2に示す変化率は、処理前のB値に対する処理後のB値の値であり、例えば、B値の変化率が-40と-50とでは後者(-50)の方が逆浸透膜の回復効果が大きいことを意味する。
 図2に示すように、実施例のB値の変化率は-52であり、比較例1のB値の変化率は-51である。実施例のB値の変化率は、比較例1のB値の変化率と差がなく(僅かに上回っているが誤差の範囲であると考えられる)、同等の回復性能が得られている。よって、実施形態に係る脱塩性能回復方法は、比較例1の脱塩性能回復方法と同等の脱塩性能回復効果が得られる。
 比較例2のB値の変化率は-41であり、比較例1のB値の変化率は-51である。比較例2のB値の変化率は、比較例1の変化率よりも小さく、十分な回復効果が得られていない。よって、比較例2に係る脱塩性能回復方法は、実施例及び比較例1と同等の脱塩性能回復効果が得られない。
 上記したように、実施形態に係る脱塩性能回復方法は、比較例1の脱塩性能回復方法と同等の脱塩性能回復効果が得られるので、洗浄工程の終了後に使用済みの洗浄液CLを排出し、回復液を調製する必要がなくなり、使用済みの洗浄液CLの排出と回復液の調製に要する時間の分だけ洗浄工程の開始から回復工程の終了までに要する時間を短くできる。また、使用済みの洗浄液CLを排出し、回復液を調製する必要がないので、洗浄工程と回復工程で同じ薬剤を使用する場合は、薬品(例えば、クエン酸)の使用量を少なくできる。
<実施形態に係る逆浸透膜の脱塩性能回復装置1の効果>
 実施形態に係る逆浸透膜の脱塩性能回復装置1によれば、回復剤添加ライン5が循環ライン4に接続されているので、循環ライン4を循環中の洗浄液CLに回復剤RFを添加することができる。そして、循環中の洗浄液CLに回復剤RFを添加すれば、回復剤RFが逆浸透膜に接触し、十分な回復性能が得られる。これにより、使用済みの洗浄液の排出と回復液の調製の必要がなくなり、洗浄工程の開始から回復工程の終了までに要する時間を短くできる。また、回復液を調製する必要がないので、洗浄工程と回復工程で同じ薬剤を使用する場合は、薬品の使用量を少なくできる。
 回復剤添加ライン5は、洗浄液CLの下流であって循環ライン4に設けられた循環ポンプ41の上流に接続されるので、回復剤RFを循環ポンプ41の吸い込み口に少しずつ注入して混合することができ、洗浄液CL中における回復剤RFの濃度のムラを抑制できる。
<実施形態に係る逆浸透膜の脱塩性能回復方法の効果>
 実施形態に係る逆浸透膜の脱塩性能回復方法によれば、循環中の洗浄液CLに回復剤RFを添加させ、回復剤RFを逆浸透膜に接触させることで、十分な回復性能が得られるので、使用済みの洗浄液の排出と新たな回復液の調製に要する時間の分だけ洗浄工程の開始から回復工程の終了までに要する時間を短くできる。また、新たに回復液を調製する必要がなくなるので、洗浄工程と回復工程で同じ薬剤を使用する場合は、薬品の使用量を少なくできる。
 洗浄液CLにクエン酸が含まれるので、洗浄効果が高められ、膜劣化が抑制される。また、回復剤RFに、ポリビニルアルコールの少なくとも一部にアセチル基構造を有する変性ポリビニルアルコールを含むことにすることで、酢酸セルロース膜に残っている疎水性のアセチル基に変性ポリビニルアルコールの疎水性のアセチル基が吸着され、酢酸セルロース膜が効果的にコーティングされる(逆浸透膜の脱塩性能が回復する)。
 また、回復工程に要する時間は、洗浄工程に要する時間の50%以下で、十分な回復性能が得られるので、薬液の入れ替えに要する時間を除いても、脱塩性能回復方法に要する時間を短くできる。
 本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。
 上記各実施形態に記載の内容は、例えば、以下のように把握される。
[1]の態様に係る逆浸透膜の脱塩性能回復方法は、
 洗浄液(CL)を循環させて逆浸透膜に洗浄液(CL)を接触させる洗浄工程と、
 循環中の前記洗浄液(CL)に回復剤(RF)を添加し、前記回復剤(RF)を前記逆浸透膜に接触させる回復工程と、
を備える。
 このような方法によれば、循環中の洗浄液(CL)に回復剤(RF)を添加させ、回復剤(RF)を逆浸透膜に接触させることで、十分な回復性能が得られるので、使用済みの洗浄液(CL)の排出と回復液の調製に要する時間の分だけ洗浄工程の開始から回復工程の終了までに要する時間を短くできる。また、新たに回復液を調製する必要がなくなるので、洗浄工程と回復工程で同じ薬剤を使用する場合は、薬品の使用量を少なくできる。
[2]別の態様に係る逆浸透膜の脱塩性能回復方法は、[1]に記載の逆浸透膜の脱塩性能回復方法であって、
 前記逆浸透膜の構成材料に酢酸セルロースが含まれ、
 前記洗浄液(CL)にクエン酸が含まれ、
 前記回復剤(RF)に、ポリビニルアルコールの少なくとも一部にアセチル基構造を有する変性ポリビニルアルコールが含まれる。
 このような方法によれば、洗浄液(CL)にクエン酸が含まれるので、洗浄効果が高められ、膜劣化が抑制される。また、酢酸セルロースを構成材料に含む酢酸セルロース膜は、アセチル基を有しており、このアセチル基が酢酸セルロース膜の脱塩性能に寄与している。酢酸セルロース膜は、使用時間の経過とともにアセチル基が加水分解により減少して水酸基が増加し(酢酸セルロース膜が変質し)、酢酸セルロース膜の脱塩性能が低下する。よって、回復剤(RF)に、ポリビニルアルコールの少なくとも一部にアセチル基構造を有するポリビニルアルコールが含まれることで、酢酸セルロース膜に残っているアセチル基に回復剤(RF)に含まれるアセチル基が吸着され、酢酸セルロース膜が効果的にコーティングされる。
[3]別の態様に係る逆浸透膜の脱塩性能回復方法は、[2]に記載の逆浸透膜の脱塩性能回復方法であって、
 前記クエン酸の濃度が0.3%以上2.2%以下であり、
 前記変性ポリビニルアルコールのアセチル化度が1%以上である。
 このような方法によれば、洗浄効果を高めつつ膜劣化を抑制でき、逆浸透膜の回復効果を十分に得ることができる。
[4]別の態様に係る逆浸透膜の脱塩性能回復方法は、[1]から[3]のいずれか一つに記載の逆浸透膜の脱塩性能回復方法であって、
 前記回復工程に要する時間は、前記洗浄工程に要する時間よりも短い。
 このような方法によれば、回復工程に要する時間は、従来の回復工程に要する時間よりも短いので、洗浄工程の開始から回復工程の終了までに要する時間を短くできる。
[5]別の態様に係る逆浸透膜の脱塩性能回復方法は、[1]から[4]のいずれか一つに記載の逆浸透膜の脱塩性能回復方法であって、
 前記回復工程に要する時間は、前記洗浄工程に要する時間の50%以下である。
 このような方法によれば、回復工程に要する時間は、洗浄工程に要する時間の50%以下で、十分な回復性能が得られるので、洗浄工程の開始から回復工程の終了までに要する時間を短くできる。
[6]の態様に係る逆浸透膜の脱塩性能回復装置(1)は、
 洗浄液(CL)が貯蔵された洗浄液タンク(3)と、
 前記洗浄液タンク(3)及び逆浸透膜容器(2)を含み、前記洗浄液(CL)が循環するように設けられた循環ライン(4)と、
 前記循環ライン(4)に接続され、前記洗浄液(CL)に回復剤(RF)を添加するように設けられた回復剤添加ライン(5)と、
を備える。
 このような構成によれば、回復剤添加ライン(5)が循環ライン(4)に接続されているので、循環ライン(4)を循環中の洗浄液(CL)に回復剤(RF)を添加することができる。そして、循環中の洗浄液(CL)に回復剤(RF)を添加すれば、回復剤(RF)が逆浸透膜に接触し、十分な回復性能が得られる。これにより、使用済みの洗浄液の排出と回復液の調製が必要なくなり、洗浄工程の開始から回復工程の終了までに要する時間を短くできる。また、回復液を調製する必要がないので、洗浄工程と回復工程で同じ薬剤を使用する場合は、薬品の使用量を少なくできる。
[7]の態様に係る逆浸透膜の脱塩性能回復装置(1)は、[6]に記載の逆浸透膜の脱塩性能回復装置(1)であって、
 前記循環ライン(4)は、前記洗浄タンク(3)の下流に設けられた循環ポンプ(41)を含み、
 前記回復剤添加ライン(5)は、前記洗浄液タンク(3)と前記循環ポンプ(41)との間に接続される。
 このような構成によれば、回復剤添加ライン(5)は、洗浄液タンク(3)と循環ポンプ(41)との間に接続されるので、回復剤(RF)を循環ポンプ(41)の吸い込み口に少しずつ注入することができ、洗浄液(CL)中における回復剤(RF)の濃度のムラを抑制できる。
1  逆浸透膜の脱塩性能回復装置
2  逆浸透膜容器
3  洗浄液タンク
31  ヒータ
4  循環ライン
41  循環ポンプ
42  フィルタ
5  回復剤添加ライン
51  回復剤容器
52  回復剤ポンプ
CL  洗浄液
RF  回復剤

Claims (7)

  1.  洗浄液を循環させて逆浸透膜に洗浄液を接触させる洗浄工程と、
     循環中の前記洗浄液に回復剤を添加し、前記回復剤を前記逆浸透膜に接触させる回復工程と、
    を備えた、逆浸透膜の脱塩性能回復方法。
  2.  前記逆浸透膜の構成材料に酢酸セルロースが含まれ、
     前記洗浄液にクエン酸が含まれ、
     前記回復剤に、ポリビニルアルコールの少なくとも一部にアセチル基構造を有する変性ポリビニルアルコールが含まれる、
    請求項1に記載の逆浸透膜の脱塩性能回復方法。
  3.  前記クエン酸の濃度が0.3質量%以上2.2質量%以下であり、
     前記変性ポリビニルアルコールのアセチル化度が1%以上である、
    請求項2に記載の逆浸透膜の脱塩性能回復方法。
  4.  前記回復工程に要する時間は、前記洗浄工程に要する時間よりも短い、
    請求項1から3のいずれか一項に記載の逆浸透膜の脱塩性能回復方法。
  5.  前記回復工程に要する時間は、前記洗浄工程に要する時間の50%以下である、
    請求項1から3のいずれか一項に記載の逆浸透膜の脱塩性能回復方法。
  6.  洗浄液が貯蔵された洗浄液タンクと、
     前記洗浄液タンク及び逆浸透膜容器を含み、前記洗浄液が循環するように設けられた循環ラインと、
     前記循環ラインに接続され、前記洗浄液に回復剤を添加するように設けられた回復剤添加ラインと、
    を備えた、
     逆浸透膜の脱塩性能回復装置。
  7.  前記循環ラインは、前記洗浄液タンクの下流に設けられた循環ポンプを含み、
     前記回復剤添加ラインは、前記洗浄液タンクと前記循環ポンプとの間に接続される、請求項6に記載の逆浸透膜の脱塩性能回復装置。
PCT/JP2022/024701 2021-06-30 2022-06-21 逆浸透膜の脱塩性能回復方法及び逆浸透膜の脱塩性能回復装置 WO2023276781A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-108976 2021-06-30
JP2021108976A JP7254309B2 (ja) 2021-06-30 2021-06-30 逆浸透膜の脱塩性能回復方法

Publications (1)

Publication Number Publication Date
WO2023276781A1 true WO2023276781A1 (ja) 2023-01-05

Family

ID=84691785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024701 WO2023276781A1 (ja) 2021-06-30 2022-06-21 逆浸透膜の脱塩性能回復方法及び逆浸透膜の脱塩性能回復装置

Country Status (2)

Country Link
JP (1) JP7254309B2 (ja)
WO (1) WO2023276781A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58109106A (ja) * 1981-12-18 1983-06-29 Kurita Water Ind Ltd 膜性能回復方法
WO2012046141A2 (en) * 2010-10-04 2012-04-12 Saudi Arabian Oil Company Application of rejection enhancing agents (reas) that do not have cloud point limitations on desalination membranes
WO2014103822A1 (ja) * 2012-12-28 2014-07-03 栗田工業株式会社 逆浸透膜の阻止率向上方法、阻止率向上処理剤及び逆浸透膜
JP2016128142A (ja) * 2015-01-09 2016-07-14 東レ株式会社 半透膜の阻止率向上方法
WO2021079867A1 (ja) * 2019-10-24 2021-04-29 三菱パワー株式会社 酢酸セルロース膜用の脱塩性能回復剤及び酢酸セルロース膜の脱塩性能回復方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58109106A (ja) * 1981-12-18 1983-06-29 Kurita Water Ind Ltd 膜性能回復方法
WO2012046141A2 (en) * 2010-10-04 2012-04-12 Saudi Arabian Oil Company Application of rejection enhancing agents (reas) that do not have cloud point limitations on desalination membranes
WO2014103822A1 (ja) * 2012-12-28 2014-07-03 栗田工業株式会社 逆浸透膜の阻止率向上方法、阻止率向上処理剤及び逆浸透膜
JP2016128142A (ja) * 2015-01-09 2016-07-14 東レ株式会社 半透膜の阻止率向上方法
WO2021079867A1 (ja) * 2019-10-24 2021-04-29 三菱パワー株式会社 酢酸セルロース膜用の脱塩性能回復剤及び酢酸セルロース膜の脱塩性能回復方法

Also Published As

Publication number Publication date
JP2023006398A (ja) 2023-01-18
JP7254309B2 (ja) 2023-04-10

Similar Documents

Publication Publication Date Title
CN102553452B (zh) 一种用于清洗反渗透膜的膜清洗剂及其使用方法
CN103657430B (zh) 一种在线式制备高通量复合反渗透膜的方法
CN102407077B (zh) 一种废弃反渗透膜元件的再生方法及其装置
CN104741006A (zh) 反渗透膜去污剂
JP6940962B2 (ja) 中空糸膜装置の洗浄方法、限外ろ過膜装置、超純水製造装置及び中空糸膜装置の洗浄装置
JP6458302B2 (ja) 逆浸透膜洗浄方法及び逆浸透膜洗浄装置
JP2007029939A (ja) 透析用水製造装置およびその殺菌方法
WO2023276781A1 (ja) 逆浸透膜の脱塩性能回復方法及び逆浸透膜の脱塩性能回復装置
JP5267273B2 (ja) 複合半透膜の製造方法
WO2017017995A1 (ja) 逆浸透膜用洗浄剤、洗浄液、および洗浄方法
JP2008520428A (ja) 濾過膜の洗浄方法
JP3231170B2 (ja) 超純水製造装置の洗浄方法
CN103272480B (zh) 一种连续电除盐装置的清洗方法
JP2013154317A (ja) セラミック膜の洗浄方法及び洗浄装置
JPS59156402A (ja) 逆浸透膜による有機物の濃縮方法
JP7177452B2 (ja) 酢酸セルロース膜用の脱塩性能回復剤及び酢酸セルロース膜の脱塩性能回復方法
JP3473465B2 (ja) 膜の洗浄方法
JP2015020081A (ja) 膜モジュールの洗浄方法および膜モジュールの洗浄装置
JP2008036605A (ja) 純水製造装置および純水製造方法
JP4085151B2 (ja) 中空糸膜モジュールの洗浄方法
JPS58119304A (ja) 浸透膜の処理方法
CN101199038A (zh) 基体表面上的有机被膜的除去方法及除去装置
JP3648947B2 (ja) 逆浸透膜エレメントの再生方法及び逆浸透膜モジュール
JP2007245051A (ja) ろ過膜の洗浄方法
CN100450595C (zh) 一种无机膜或超滤膜再生预处理剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22832929

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 523451698

Country of ref document: SA