WO2023276555A1 - 光学レンズ検査装置、および光学レンズ検査方法 - Google Patents
光学レンズ検査装置、および光学レンズ検査方法 Download PDFInfo
- Publication number
- WO2023276555A1 WO2023276555A1 PCT/JP2022/022646 JP2022022646W WO2023276555A1 WO 2023276555 A1 WO2023276555 A1 WO 2023276555A1 JP 2022022646 W JP2022022646 W JP 2022022646W WO 2023276555 A1 WO2023276555 A1 WO 2023276555A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical lens
- illumination member
- illumination
- imaging
- light
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 383
- 238000007689 inspection Methods 0.000 title claims abstract description 136
- 238000000034 method Methods 0.000 title claims description 38
- 238000005286 illumination Methods 0.000 claims abstract description 226
- 238000003384 imaging method Methods 0.000 claims abstract description 119
- 230000007246 mechanism Effects 0.000 claims description 42
- 230000008569 process Effects 0.000 claims description 25
- 230000001678 irradiating effect Effects 0.000 claims description 6
- 230000007547 defect Effects 0.000 description 43
- 238000010586 diagram Methods 0.000 description 27
- 238000001514 detection method Methods 0.000 description 13
- 230000002950 deficient Effects 0.000 description 12
- 238000012545 processing Methods 0.000 description 10
- 238000012546 transfer Methods 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 4
- 238000000149 argon plasma sintering Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 240000001973 Ficus microcarpa Species 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000004308 accommodation Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M11/00—Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/89—Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
- G01N21/892—Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
- G01N21/896—Optical defects in or on transparent materials, e.g. distortion, surface flaws in conveyed flat sheet or rod
Definitions
- the technology disclosed in the present specification relates to an optical lens inspection device and an optical lens inspection method.
- a device described in Patent Document 1 has been proposed as a device for inspecting scratches and the like on optical lenses (hereinafter also simply referred to as "lenses").
- the lens inspection apparatus described in Patent Document 1 includes a camera for imaging a lens from one side of a stage on which the lens is mounted, and a line-shaped inspection light for dark field illumination from the other side of the camera across the lens. and a linear slider capable of linearly moving the line illumination means parallel to the stage.
- an illumination device is linearly moved in a direction orthogonal to an extending direction of linear inspection light for dark field illumination.
- a lens is irradiated with dark-field illumination inspection light projected from the line illumination means, and the dark-field illumination inspection light transmitted through the lens is received by the solid-state imaging device of the imaging device. As the illumination device moves, dark field regions are continuously extracted in synchronism with it, and the dark field regions are combined to generate a dark field image of the entire lens surface.
- the irradiation angle of the light with respect to the lens is always the direction inclined by a predetermined angle with respect to the linear direction in which the illumination device moves. Become. If there is a linear scratch on the lens and the direction of light irradiation is the same as the direction in which the linear scratch on the lens extends, Therefore, the light scattering phenomenon that occurs when inspection light for dark-field illumination collides with it is less likely to occur. Therefore, in such a case, a sufficient scattered light intensity may not be obtained, and the location of the abnormality may not be detected. For this reason, the device described in Patent Document 1 has a problem that it is difficult to detect a flaw or the like depending on the extending direction of the substantially linear flaw or the like.
- This technology relates to an optical lens inspection device and an optical lens inspection method that can easily detect flaws and the like.
- a first aspect of the optical lens inspection apparatus disclosed in the specification of the present application is an apparatus for inspecting an optical lens, comprising: an imaging unit that images the optical lens; an illumination member having a linear or curved shape for irradiating the optical lens with light, and the illumination member rotating about the optical axis of the optical lens relatively to the optical lens and a first rotating part that causes the
- a second aspect of the optical lens inspection apparatus disclosed in the specification of the present application is the optical lens inspection apparatus according to the first aspect, wherein the illumination member is positioned between a position approaching the optical axis and a position away from the optical axis. and a moving mechanism for relatively moving with respect to the optical lens.
- a third aspect of the optical lens inspection apparatus disclosed in the specification of the present application is the optical lens inspection apparatus according to the second aspect, wherein the moving mechanism moves the illumination member so as to be positioned on the main plane of the optical lens. It is composed of a second rotating part that rotates relative to the optical lens about an axis including the center of the lens.
- a fourth aspect of the optical lens inspection apparatus disclosed in the specification of the present application is the optical lens inspection apparatus according to the second aspect, wherein the moving mechanism moves the illumination member on a plane perpendicular to the optical axis. It is composed of a moving part.
- a fifth aspect of the optical lens inspection apparatus disclosed in the specification of the present application is the optical lens inspection apparatus of the fourth aspect, further comprising an irradiation angle changing unit that changes the irradiation direction of the light from the illumination member.
- a sixth aspect of the optical lens inspection apparatus disclosed in the specification of the present application is the optical lens inspection apparatus according to any one of the first to fifth aspects, wherein the illumination member is arranged in the imaging unit to It moves within a range where the bright field light from the illumination member does not enter.
- a seventh aspect of the optical lens inspection apparatus disclosed in the specification of the present application is the optical lens inspection apparatus according to the sixth aspect, wherein the range is the range when a sample optical lens having the same shape as the optical lens is imaged in advance. The range is determined so that the illumination member is not imaged by the imaging unit.
- An eighth aspect of the optical lens inspection apparatus disclosed in the specification of the present application is the optical lens inspection apparatus according to any one of the first to seventh aspects, wherein the illumination members are arranged linearly, and the illumination members are arranged in a straight line.
- the width of the straight line is substantially the same as the diameter of the optical lens or larger than the diameter of the optical lens.
- a ninth aspect of the optical lens inspection apparatus disclosed in the specification of the present application is, in the optical lens inspection apparatus of any of the first to eighth aspects, the quality of the optical lens based on the image captured by the imaging unit. It further comprises a control unit that determines
- a first aspect of the optical lens inspection method disclosed in the specification of the present application is a method for inspecting an optical lens, wherein the illumination member having a linear shape or a curved shape irradiates the optical lens with light, a first imaging step of capturing an image of the optical lens by an imaging unit arranged to face the illumination member with the optical lens interposed therebetween; a rotating step of rotating the optical lens and the illumination member relative to each other and arranging the optical lens and the illumination member in a positional relationship different from that in the first imaging step; and after the rotating step, irradiating the optical lens with light from the illumination member. and a second imaging step of imaging the optical lens with the imaging unit.
- a second aspect of the optical lens inspection method disclosed in the specification of the present application is the optical lens inspection method of the first aspect, wherein a sample optical lens having the same shape as the optical lens is formed by combining the sample optical lens and the illumination member.
- the sample imaging step of imaging with the imaging unit while illuminating with the illumination member, wherein bright field light from the illumination member does not enter in the sample imaging step The relative positional relationship of the illumination member with respect to the sample optical lens and the imaging unit when the image is captured is the same as the optical lens of the illumination member and the imaging unit in the first imaging step and the second imaging step. It is adopted for the relative positional relationship with respect to the part.
- FIG. 1 is a block diagram showing the overall configuration of an inspection system including an optical lens inspection apparatus according to a first embodiment
- FIG. 1 is a schematic diagram showing the overall configuration of an optical lens inspection device according to a first embodiment
- FIG. 4 is a schematic explanatory diagram showing the operation of the moving mechanism of the optical lens inspection device according to the first embodiment together with the overall configuration
- FIG. 4 is an explanatory diagram showing an example of the configuration of light sources of an illumination member
- It is the schematic which shows a moving mechanism.
- It is the schematic which shows a moving mechanism and an optical lens.
- It is a block diagram which shows the relationship of connection with the control part with which a computer is equipped, and each structure of an optical lens inspection apparatus.
- FIG. 10 is a plan view showing the positional relationship between the optical lens and the illumination member after the illumination member is rotated by the first rotating section; It is a flowchart which shows the process by which an optical lens is inspected by the optical lens inspection apparatus regarding 1st Embodiment. It is a figure which shows the positional relationship of an imaging device, an optical lens, and an illumination member by a coordinate system.
- FIG. 11 is a schematic explanatory diagram showing the operation of the movement mechanism of the optical lens inspection device according to the second embodiment together with the overall configuration;
- FIG. 12 is a schematic diagram showing the moving mechanism shown in FIG. 11; FIG.
- FIG. 11 is a flowchart showing a process of determining a moving range of an illumination member by an optical lens inspection device relating to the third embodiment;
- FIG. 4 is an explanatory diagram showing a path of irradiation light from an illumination member to an imaging unit;
- FIG. 4 is an explanatory diagram showing a path of irradiation light from an illumination member to an imaging unit;
- FIG. 4 is an explanatory diagram showing a path of irradiation light from an illumination member to an imaging unit;
- FIG. 4 is an explanatory diagram showing a path of irradiation light from an illumination member to an imaging unit;
- FIG. 4 is an explanatory diagram showing a path of irradiation light from an illumination member to an imaging unit;
- FIG. 4 is an explanatory diagram showing a path of irradiation light from an illumination member to an imaging unit;
- FIG. 4 is an explanatory diagram showing a path of irradiation light from an illumination member to an imaging unit;
- FIG. 4 is an explanatory diagram showing a path of irradiation light from an illumination member to an imaging unit; It is a figure explaining the preferable arrangement
- FIG. 4 is a plan view showing the arrangement of lighting members that do not reflect bright field regions; It is explanatory drawing which shows an optical lens and the illumination member arranged curvilinearly. It is a side view which shows the illumination member and moving mechanism in the modification of 2nd Embodiment.
- XYZ orthogonal coordinate axes (right-handed system) are appropriately attached to each drawing for explaining directions.
- the Z direction on the coordinate axis indicates the vertical direction
- the XY plane is the horizontal plane.
- one side in the X direction may be called the +X side
- the other side may be called the -X side.
- the +Z side indicates the vertical upper side.
- FIG. 1 is a block diagram showing the overall configuration of an inspection system 101.
- Inspection system 101 includes optical lens inspection apparatus 100 according to the present embodiment.
- the inspection system 101 includes a container 102 , a non-defective product container 103 , and a defective product container 104 .
- the accommodation unit 102 accommodates an optical lens to be inspected.
- the non-defective product storage unit 103 receives and stores an optical lens determined to be a non-defective product by the optical lens inspection device 100 .
- the defective product storage unit 104 receives and stores optical lenses that have been determined to be defective by the optical lens inspection apparatus 100 .
- the inspection system 101 further includes transfer mechanisms 105, 106, and 107.
- the transfer mechanism 105 transfers the optical lens between the container 102 and the optical lens inspection device 100 .
- the transfer mechanism 106 transfers the optical lens between the optical lens inspection device 100 and the non-defective product storage section 103 .
- a transfer mechanism 107 transfers the optical lens between the optical lens inspection apparatus 100 and the defective product storage unit 104 .
- the arrows in the figure indicate the directions in which the optical lenses are transported. Note that the transfer mechanism 106 and the transfer mechanism 107 may be configured by the same mechanism, or may be used in common.
- the inspection system 101 is connected to the control unit 50, which will be described later in detail. Each device is controlled by the control unit 50 to process the optical lens.
- FIG. 2 is a schematic diagram showing the overall configuration of the optical lens inspection device 100 according to this embodiment.
- FIG. 3 is a schematic explanatory diagram showing the operation of the moving mechanism 4 of the optical lens inspection apparatus 100 according to the present embodiment together with the overall configuration.
- An optical lens inspection apparatus 100 includes an imaging unit 2 that captures an image of an optical lens 1 to be inspected, an illumination member 3 that irradiates the optical lens 1 with light, and a moving mechanism 4 that moves the illumination member 3. .
- the optical lens inspection device 100 is connected to the computer 5.
- the computer 5 has the function of a control section 50 that controls the overall operation of the inspection system 101 .
- a control unit 50 controls the overall operation of the optical lens inspection apparatus 100 .
- the optical lens 1 is held by an optical lens holding portion (not shown) and fixed to the optical lens inspection device 100 .
- the optical lens holding portion is composed of, for example, a plate-like member having a hollow hole. By holding the peripheral portion of the optical lens 1 in the hollow hole, the optical lens 1 is fixed to the optical lens inspection apparatus 100 .
- the imaging unit 2 has an optical system 21 and an imaging device 22 .
- the optical system 21 has an imaging lens 23 .
- the imaging lens 23 guides the light from the illumination member 3 passing through the optical lens 1 to the imaging device 22 to form an image.
- Optical system 21 further comprises an aperture stop 24 .
- the aperture stop 24 functions as a shield that regulates the amount of light passing through the optical lens 1 and reaching the imaging device 22 .
- the imaging device 22 is, for example, a CCD (Charge Coupled Device) image sensor or a CMOS (Complementary Metal Oxide Semiconductor) image sensor.
- FIG. 7 is a block diagram showing the connection relationship between the control unit 50 and each component of the optical lens inspection device 100.
- the control unit 50 stores a CPU (central processing unit) 51 that is a central processing unit that performs various arithmetic processing, a ROM (read only memory) 52 that is a read-only memory that stores basic programs, and various information. and a RAM (random access memory) 53 that is a readable and writable memory.
- the CPU 51 is connected to the illumination member 3, the moving mechanism 4, the imaging section 2, etc., and the control section 50 controls these.
- the control unit 50 causes the RAM 53 to store the image captured by the imaging unit 2 . Images stored in the RAM 53 are processed by the CPU 51 .
- the control unit 50 is realized by the computer 5, for example.
- FIG. 4 is an explanatory diagram showing an example of the configuration of the light sources of the illumination member 3.
- the illumination member 3 is arranged to face the imaging unit 2 with the optical lens 1 interposed therebetween.
- the lighting member 3 has a plurality of light sources 33 as shown in FIG. These light sources 33 are arranged linearly, for example.
- the illumination member 3 may be composed of a plurality of LEDs (Light Emitting Diodes) arranged in a straight line, may be composed of a linear halogen lamp, or may be composed of a plurality of halogen lamps arranged in a straight line. Alternatively, a plurality of laser light sources may be linearly arranged in parallel.
- LEDs Light Emitting Diodes
- FIG. 5 is a schematic diagram showing the moving mechanism 4
- FIG. 6 is a schematic diagram showing the moving mechanism 4 and the optical lens 1.
- FIG. 5 shows the rotation direction 41R of the first rotating portion 41 that constitutes the moving mechanism 4 .
- FIG. 6 also shows a rotation direction 42S of the second rotating portion 42 that constitutes the moving mechanism 4. As shown in FIG.
- the moving mechanism 4 includes a first rotating portion 41 and a second rotating portion 42 attached to the first rotating portion 41 .
- the lighting member 3 is fixed to the second rotating section 42 so that the irradiation direction of the light source 33 is directed toward the optical lens 1 .
- the first rotating portion 41 rotates the illumination member 3 with respect to the optical lens 1 about the optical axis O1 of the optical lens 1 via the second rotating portion 42 .
- the second rotating part 42 is composed of, for example, a goniometer stage.
- the goniometer stage includes a guide rail 42a and a moving member 42b that moves on the guide rail 42a.
- the guide rail 42a is fixed to the first rotating portion 41 on the first rotating portion 41 side.
- the moving member 42b rotates on the guide rail 42a about the axis O2.
- Axis O2 lies on principal plane P1 of optical lens 1 and includes center C of optical lens 1 .
- the moving member 42b is arranged on the guide rail 42a.
- the guide rail 42a guides the moving member 42b so that the moving member 42b reciprocates in the rotational direction 42S.
- the illumination member 3 moves in the rotational direction 42S.
- the second rotating section 42 moves the illumination member 3 relative to the optical lens 1 between a position closer to the optical axis O1 and a position further away from the optical axis O1.
- the second rotating section 42 moves the lighting member 3 so that the angle between the line connecting the lighting member 3 and the axis O2 and the optical axis O1 is changed.
- the second rotating section 42 when the first rotating section 41 rotates around the optical axis O1, the second rotating section 42 also rotates around the optical axis O1 as the first rotating section 41 rotates.
- the illumination member 3 fixed to the second rotating portion 42 also rotates.
- the irradiation direction 3D of light from the illumination member 3 to the optical lens 1 is changed along with the movement of the moving member 42b on the guide rail 42a.
- the irradiation direction 3D of the light of the illumination member 3 with respect to the optical lens 1 is an illumination angle ⁇ at which the illumination member 3 moves on the goniostage (guide rail 42a) (the illumination angle ⁇ is such that the irradiation direction 3D coincides with the optical axis O1. 0 degree).
- FIG. 8 is a plan view showing the positional relationship between the optical lens 1 and the illumination member 3.
- the width d in which the plurality of light sources 33 are linearly arranged in the illumination member 3 is, for example, approximately the same as the diameter 2R of the optical lens 1 or larger than the diameter 2R.
- d ⁇ 2R substantially the entire surface of the optical lens 1 is illuminated by the illumination member 3 by scanning the illumination member 3 only once in the direction of the arrow S in FIG.
- substantially the entire surface of the optical lens 1 is illuminated by the illumination member 3 by moving the illumination member 3 also in the direction perpendicular to the arrow S direction in the XY plane direction of FIG.
- the image processing performed by the CPU 51 is performed, for example, by using the dark field region 31 extracted from the image captured by the imaging unit 2 .
- a dark field region 31 is a region existing at the boundary between a bright portion and a dark portion.
- the bright portion is the bright field region 32 and the dark portion is the region where the light from the lighting member 3 does not reach.
- the dark field region 31 is a region obtained by excluding the bright field region 32 from the entire region irradiated with light.
- the bright field region 32 refers to a region obtained only from bright field light from the illumination member 3 .
- the extraction of the dark field region 31 is performed by masking the bright field region 32, for example. An image of only the extracted dark field region 31 is obtained. The reason for extracting only the dark field region 31 is that the contrast is enhanced to facilitate the detection of fine flaws.
- a predetermined area of the optical lens 1 is imaged by moving the illumination member 3 in the direction of the arrow S by the second rotating portion 42 .
- a dark field image, which is an image of only the dark field region 31 obtained by this imaging, is created by the control unit 50 .
- the quality of the optical lens 1 is determined based on this dark field image. Note that the predetermined area is, for example, an area in which a portion of the optical lens 1 where there is a high possibility of having a scratch is preferentially determined.
- FIG. 9 is a plan view showing the positional relationship between two positions of the illumination member 3 obtained by rotating the illumination member 3 by the first rotating section 41 and the optical lens 1.
- the first rotating portion 41 changes the direction of the axis O2 of the second rotating portion 42 of the illumination member 3 on the XY plane. Specifically, after the illumination member 3 illuminates a predetermined area of the optical lens 1 by rotating the second rotating part 42 in the initial position of the first rotating part 41 , the first rotating part 41 rotates the illumination member 3 around the optical axis O1. Rotate by a predetermined angle ⁇ . This predetermined angle ⁇ is, for example, 45 degrees around the optical axis O1.
- the optical lens 1 is illuminated from a plurality of angles (a plurality of positions) by the illumination member 3 . Further, when the illumination member 3 is rotated by the first rotating portion 41, the optical lens 1 is illuminated from a plurality of illumination directions 3D.
- the axis O2 is parallel to the X direction at the initial position of the first rotating portion 41, and the lighting member 3 (including the dark field region 31 and the bright field region 32) at this time is indicated by a dashed line.
- the illumination member 3 (including the dark field region 31 and the bright field region 32) after the first rotating portion 41 has rotated from the initial position by the predetermined angle ⁇ is indicated by solid lines and broken lines.
- a dark field region 31 and a bright field region 32 indicated by dashed lines show the state before passing through the optical lens 1 .
- the defect 11 caused by a streak (linear) scratch is irradiated with light from a direction (at an angle of 0 degree or 180 degrees) parallel to the extending direction of the defect 11, Light scattering phenomenon is less likely to occur. For this reason, sufficient contrast may not be obtained between the scratch and the non-scratch portion in the captured image. For this reason, it may not be possible to detect scratches.
- the defect 11 caused by a streaky (straight line) scratch is irradiated with light from a direction with an angle (angles other than 0 degree and 180 degrees), the light scattering phenomenon caused by the scratch occurs. likely to occur.
- the irradiation direction 3D can be set in a plurality of directions, and it is easy to detect linear flaws that have been overlooked until now.
- the transparent optical lens 1 is exemplified as an inspection target. If the transparent optical lens 1 has a defect 11 such as a scratch, the light from the illumination member 3 is scattered by the defect 11 . Since the size of the defect 11 is generally larger than the wavelength of light, when the defect 11 is irradiated with light, the so-called Mie scattering phenomenon (scattering of light by spherical particles having a size equal to or larger than the wavelength of light) occurs. break out. A part of the light scattered by this Mie scattering phenomenon (hereinafter referred to as “scattered light”) is imaged by the imaging unit 2 and image-processed by the control unit 50 to detect the defect 11 .
- scattered light A part of the light scattered by this Mie scattering phenomenon
- Image processing in the control unit 50 is performed by, for example, binarization processing.
- binarized image for example, bright portions are processed as "H” and dark portions are processed as "L". If the scattered light is reflected, the part where the scattered light is reflected becomes bright and is processed as "H”. On the contrary, the part where the light is not reflected becomes dark, and the part is processed as "L”. Therefore, for example, when a portion in which scattered light is reflected in an image to be processed is processed as "H", the control unit 50 determines that the optical lens 1 is defective. On the other hand, if there is no part where scattered light is reflected, the entire image is processed as "L”, and the control unit 50 determines that the optical lens 1 is good.
- FIG. 10 is a flowchart showing the process of inspecting the optical lens 1 by the optical lens inspection apparatus 100 according to the first embodiment.
- step S1 irradiation of light from the illumination member 3 to the optical lens 1 is started.
- the second rotating part 42 rotates (step S2).
- the second rotating part 42 rotates manually or automatically. Automatic rotation is controlled by the controller 50 .
- the second rotating section 42 is configured by a goniometer stage. The relationship between the trajectory of the illumination member 3 rotated by this goniostage and the irradiation position from the illumination member 3 on the principal plane P1 of the optical lens 1 is obtained as follows.
- FIG. 11 is a diagram showing the positional relationship among the imaging device 22, the optical lens 1, and the illumination member 3 in a coordinate system.
- the coordinates (0, 0) of the center C of the optical lens 1 the coordinates (y 0 , 0) of the position D irradiated from the illumination member 3 onto the principal plane P1 of the optical lens 1, and the imaging lens of the imaging unit 2
- the coordinates (y s , z s ) of the position F of the illumination member 3 and the radius r of the arc J representing the possible range of the position F.
- the center C of the optical lens 1 may be regarded as the center of the circle formed by the principal plane P1 of the optical lens 1 .
- Position F is the intersection of arc J and line L.
- the illumination angle ⁇ satisfies the following formula (6).
- the illumination angle ⁇ I when the illumination light from the illumination member 3 illuminates the position D on the optical lens 1 , passes through the center E of the imaging lens and enters the imaging element surface is obtained. be done. That is, it is possible to obtain the illumination angle ⁇ when the position D is imaged in a bright field. Thereby, the movable range of the illumination angle ⁇ with respect to the center position C of the optical lens 1 is obtained.
- step S2 the lighting member 3 rotates about the axis O2 as the second rotating section 42 rotates. Due to the rotation of the illumination member 3, a predetermined area of the optical lens 1 (predetermined area, for example, the entire area where the optical lens 1 is imaged by the imaging unit 2) is illuminated. In step S3, it is determined whether or not the rotation of the second rotating portion 42 has ended. When it is determined that the rotation has ended, the imaging unit 2 takes an image of the optical lens 1 while the light irradiation is maintained (step S4). As described above, the optical lens inspection apparatus 100 irradiates the optical lens 1 with light from the illumination member 3, and the optical lens 1 is detected by the imaging unit 2 arranged facing the illumination member 3 with the optical lens 1 interposed therebetween.
- step S3 Take an image (first imaging step).
- step S3 If it is determined in step S3 that the rotation has not ended, the process returns to step S2 and the second rotating section 42 is rotated.
- step S5 the control unit 50 processes the image captured by the imaging unit 2. This image is processed by extracting only the dark field region 31 as described above. In the control unit 50, a dark field image is formed by only the extracted image of the dark field region 31. FIG. In step S6, the controller 50 determines whether or not the dark field image includes scattered light due to the defect 11 of the optical lens 1 (step S6).
- step S6 If it is determined in step S6 that the scattered light is not included in the dark field image, the optical lens 1 is determined to be good (step S7). If it is determined in step S6 that the scattered light is included in the dark field image, it is determined that the optical lens 1 is defective (step S8).
- step S9 it is determined whether the rotation of the first rotating section 41 is necessary (step S9). This is because it is difficult to detect a flaw that forms a small angle with the projection onto P1 of the light irradiation direction 3D of the illumination member 3 only by scanning the optical lens 1 by the second rotating portion 42 . Therefore, in the present embodiment, after step S11 is executed and the first rotating section 41 rotates, the process returns to step S3.
- the angle by which the first rotating section 41 rotates in step S11 is, for example, 45 degrees around the optical axis O1.
- the second rotating portion 42 rotates again in step S3, so that the illumination member 3 changes the projection direction of the irradiation direction 3D onto P1.
- the optical lens inspection apparatus 100 of the present embodiment even streaky (linear) scratches on the optical lens 1 are easily detected.
- step S9 If the first rotating part 41 has already rotated and the illumination member 3 has projected light onto the optical lens 1 by changing the direction of projection of the irradiation direction 3D onto P1, the first rotating part 41 is rotated in step S9. 41 is determined to be unnecessary. Then, the optical lens 1 is determined to be good (step S10), and the inspection of the optical lens 1 by the optical lens inspection device 100 is completed. On the other hand, if the optical lens 1 needs to be illuminated from a different angle, it is determined in step S9 that the first rotating section 41 needs to be rotated. When it is determined in step S9 that the first rotating portion 41 needs to be rotated, the first rotating portion 41 rotates (step S11) (rotating step).
- the optical lens inspection apparatus 100 rotates the illumination member 3 relatively to the optical lens 1 about the optical axis O1 of the optical lens 1 . Then, the optical lens inspection apparatus 100 arranges the optical lens 1 and the illumination member 3 in a positional relationship different from that in the first imaging step. After the first rotating part 41 rotates, the process returns to step S2. After the rotating process of step S11, the optical lens inspection apparatus 100 irradiates the optical lens 1 with light from the illumination member 3 while rotating the second rotating part 41. 42 is rotated, and an image of the optical lens 1 is imaged by the imaging unit 2 (second imaging step). Then, the optical lens 1 is inspected.
- FIG. 12 is a schematic explanatory diagram showing the operation of the moving mechanism 240 of the optical lens inspection device 200 according to the second embodiment together with the overall configuration.
- the optical lens inspection device 200 of the second embodiment includes a moving mechanism 240.
- the moving mechanism 240 includes a first rotating portion 41 and a planar moving portion 242 fixed to the first rotating portion 41 .
- FIG. 13 is a schematic diagram showing the moving mechanism 240 of FIG. In FIG. 12, the rotation direction 41R of the first rotation portion 41 and the movement direction 242S of the planar movement portion 242, which constitute the moving mechanism 240, are shown.
- the plane moving unit 242 moves the illumination member 3 on a plane (XY plane) perpendicular to the optical axis O1.
- the planar moving portion 242 includes a guide rail 242a and a moving member 242b that moves on the guide rail 242a.
- the guide rail 242 a is fixed to the first rotating portion 41 .
- the guide rail 242a guides the moving member 242b so that the moving member 242b reciprocates in a linear moving direction 242S on the XY plane.
- the illumination member 3 is fixed to the moving member 242b and moves with the movement of the moving member 242b. As the moving member 242b moves in the moving direction 242S, the illumination member 3 moves in the direction 242S. In this manner, the planar movement section 242 moves the illumination member 3 between a position closer to the optical axis O1 and a position further away from the optical axis O1.
- the rotational movement of the illumination member 3 by the second rotating section 42 in step S3 is changed to the linear movement of the illumination member 3 by the planar movement section 242, and the optical lens inspection apparatus 200 A process of inspection by is obtained. That is, in the second embodiment, the position F of the illumination member 3 moves not on the arc J but on a straight line parallel to the Y-axis.
- Other points of the inspection process by the optical lens inspection apparatus 200 are the same as those of the inspection process by the optical lens inspection apparatus 100 .
- the optical lens inspection apparatus 200 employs the planar moving section 242 , it is possible to move the illumination member 3 with a simpler configuration than employing the second rotating section 42 .
- the configuration of the second rotating portion 42 is preferable in that the irradiation direction 3D of the light from the illumination member 3 to the optical lens 1 can be easily changed along with the movement of the moving member 42b.
- the third embodiment utilizes an apparatus having the same configuration as the optical lens inspection apparatus 100 relating to the first embodiment.
- the illumination member 3 moves within a range in which the bright field light from the illumination member 3 does not enter the imaging unit 2 .
- This range is determined in advance by imaging a sample optical lens having the same shape as the optical lens 1 to be inspected.
- FIG. 14 is a flow chart showing the process of determining the moving range of the illumination member 3 by the optical lens inspection apparatus 100 according to the third embodiment.
- the optical lens inspection apparatus 100 illuminates a sample optical lens having the same shape as the optical lens 1 from a plurality of positions with different relative positions with respect to the sample optical lens, using the illumination member 3 .
- the optical lens inspection apparatus 100 captures an image of the sample optical lens by the imaging unit 2 facing the illumination member 3 with the sample optical lens interposed therebetween.
- a sample optical lens having the same shape as the optical lens 1 is inspected.
- a sample optical lens set in the optical lens inspection apparatus 100 is irradiated with light from the illumination member 3 (step S101).
- a lens having the same shape as the optical lens 1 to be actually inspected is adopted as the sample optical lens.
- the imaging unit 2 starts imaging the sample optical lens (step S102).
- step S102 After the illumination member 3 starts irradiating the sample optical lens with light in step S101, the second rotating section 42 rotates (step S102).
- step S102 the lighting member 3 rotates about the axis O2 as the second rotating section 42 rotates.
- a predetermined area of the sample optical lens predetermined area, for example, the entire area where the optical lens 1 is imaged by the imaging unit 2 is illuminated.
- step S103 it is determined whether or not the rotation of the second rotating portion 42 has ended.
- the image of the sample optical lens is captured by the imaging unit 2 (step S104).
- the optical lens inspection apparatus 100 captures an image of the sample optical lens with the imaging unit 2 while illuminating the sample optical lens with the illumination member 3 (sample imaging step). After that, the process proceeds to step S105.
- step S103 If it is determined in step S103 that the rotation has not ended, the process returns to step S102 and the rotation of the second rotating section 42 is continued. Determining whether or not to rotate the first rotating portion 41 is required for the same reason as in the case of the optical lens 1 in the first embodiment.
- step S105 it is determined whether or not the first rotating section 41 needs to be rotated.
- step S105 it is determined that rotation of the first rotating portion 41 is necessary, and the rotation of the first rotating portion 41 is executed and the first rotating portion 41 rotates (step S106).
- the optical lens inspection apparatus 100 illuminates the sample optical lens with the illumination member 3 in a plurality of positional relationships in which the relative positions of the sample optical lens and the illumination member 3 are different.
- the number of rotations of the first rotating section 41 is greater than the number of rotations of the first rotating section 41 during imaging of the optical lens 1 to be imaged later. This is because it is preferable to know the dark field region 31 and the bright field region 32 in the optical lens 1 in advance.
- the process returns to step S102 again. By repeating these operations, the range in which the dark field region can be obtained is grasped in the optical lens 1 to be imaged later.
- step S105 the first rotating part 41 is determined to be unnecessary.
- the image captured by the imaging unit 2 is processed by the control unit 50 in step S107.
- the control unit 50 By processing this image, it is determined whether or not the bright field region 32 is reflected in the captured image.
- 15 to 20 are explanatory diagrams showing paths of irradiation light from the illumination member 3 to the imaging unit 2.
- FIG. 15 and 16 show the case where the illumination member 3, the optical lens 1, and the imaging unit 2 have the same arrangement relationship.
- 17 and 18 show the case where the illumination member 3, the optical lens 1, and the imaging unit 2 are arranged under the same condition.
- 19 and 20 show the case where the illumination member 3, the optical lens 1, and the imaging unit 2 have the same arrangement relationship.
- 15, 17, and 19 show cases where there is no defect 11 in the position of the optical lens 1 irradiated with light from the illumination member 3.
- FIG. 16, 18, and 20 show cases where there is a defect 11 in the position of the optical lens 1 irradiated with light from the illumination member 3.
- FIG. 15 shows a case where the irradiation light from the illumination member 3 collides with the defect 11 of the optical lens 1, causing a scattering phenomenon. Scattered light due to this scattering phenomenon passes through the optical lens 1 , the imaging lens 23 , and the aperture stop 24 and reaches the imaging device 22 . In both FIG. 15 and FIG. 16, the light emitted from the lighting member 3 is reflected in the captured image. Therefore, in the arrangement of the illumination member 3 shown in FIGS. 15 and 16, it is not clear whether the optical lens 1 has the defect 11 or not.
- FIG. 17 shows a case where the irradiation light from the illumination member 3 collides with the defect 11 of the optical lens 1, causing a scattering phenomenon. Part of the scattered light due to this scattering phenomenon passes through the optical lens 1 , the imaging lens 23 , and the aperture stop 24 and reaches the imaging device 22 .
- FIGS. 17 and 18 show the arrangement of the illumination member 3 shown in FIGS. 17 and 18, light is reflected in the captured image only when there is a defect 11 in the optical lens 1, so the presence or absence of the defect 11 in the optical lens 1 is clear. .
- FIG. 19 shows a case where the irradiation light from the illumination member 3 collides with the defect 11 of the optical lens 1, causing a scattering phenomenon. Scattered light due to this scattering phenomenon passes through the optical lens 1 and the aperture stop 24 and reaches the imaging device 22 . Therefore, with the arrangement of the illumination member 3 shown in FIGS. 19 and 20, the presence or absence of the defect 11 in the optical lens 1 becomes clear.
- FIG. 21 is a diagram illustrating an example of a preferable arrangement of the illumination member 3 for clarifying the presence or absence of the defect 11 of the optical lens 1.
- FIG. 4 is a diagram showing; In FIG. 21, the illumination angle .theta. on the horizontal axis indicates the illumination angle .theta. in FIGS.
- the illumination angle ⁇ is controlled by the operation of the second rotating section 42 (first embodiment) or plane moving section 242 (second embodiment).
- P indicates the pixel value of the portion corresponding to the defect 11 in the captured image
- P' indicates the pixel value of the portion corresponding to the periphery of the defect 11 in the captured image.
- the portion corresponding to the defect 11 and the portion corresponding to the periphery of the defect 11 are distinguished from the portion corresponding to the defect 11 and the periphery of the defect 11 in the captured image based on the information of the position where the defect 11 is created. This is done by specifying in advance the position of each pixel of the portion to be processed.
- the range of the illumination angle ⁇ 1 is the region in which the bright field region 32 is reflected. In this range, the pixel values are generally high due to the influence of bright field light. This range is a range in which P and P' are indistinguishable.
- the degree of detection P/P' indicated on the vertical axis (right side) indicates [value of P]/[value of P'].
- the degree of detection P/P′ is 1, and the presence or absence of the defect 11 in the optical lens 1 is not clear. I understand.
- the illumination angle ⁇ is the value ⁇ 2 ( ⁇ 7.5 [deg]) or more
- the degree of detection P/P′ generally exceeds 1.5.
- the degree of detection P/P' exceeds 1.5, the defect 11 becomes so clear that the defect 11 can be fully grasped. Therefore, it can be seen that the presence or absence of the defect 11 in the optical lens 1 becomes clear.
- the degree of detection P/P′ greatly exceeds 1.5, indicating that the presence or absence of the defect 11 in the optical lens 1 is significant.
- the bright-field light from the illumination member 3 is not reflected when the degree of detection P/P' exceeds 1.5.
- the degree of detection P/P′ is 1 when bright field light is reflected in the image.
- the illumination member 3 is arranged under the condition that the degree of detection P/P' increases ( ⁇ 2 ⁇ 16 [deg])
- the difference between the defect 11 and the non-defective portion becomes clear. Therefore, even if the number of images taken is small, the defect 11 can be detected. Therefore, when the degree of detection increases, the number of images to be captured can be reduced, and the optical lens 1 can be inspected in a short time and at low cost.
- FIG. 22 is a plan view showing the arrangement of the lighting members 3 in which the bright field region 32 is not reflected.
- a particularly preferable condition for arranging the illumination member 3 is that the arrangement of the illumination member 3 is such that the distance from the center C of the optical lens 1 in XY plan view is R+w (R is the radius of the optical lens 1, w is the illumination member 1/2 of the width of 3 (2w)).
- R is the radius of the optical lens 1
- w is the illumination member 1/2 of the width of 3 (2w)
- the condition of this illumination angle ⁇ depends on the power of the optical lens 1 .
- step S109 the movement range of the illumination member 3 with respect to the sample optical lens is set to the movement range of the illumination member 3 in the inspection of the optical lens 1. is determined as the range of
- step S110 the optical lens 1 is determined as the range of movement of the illumination member 3 in the inspection of .
- the relative positional relationship between the sample optical lens of the illumination member 3 and the imaging unit 2 when an image in which the bright field light from the illumination member 3 does not enter (is not reflected) is It is employed for the relative positional relationship of the illumination member 3 with respect to the optical lens 1 and the imaging unit 2 in the first imaging process and the second imaging process.
- the optical lens inspection apparatus 100 inspects the optical lens 1 within a predetermined range of movement of the illumination member 3. Specifically, the inspection of the optical lens 1 is performed according to the same flow as the flow in FIG.
- the optical lens inspection apparatus 100 illuminates the optical lens 1 from a plurality of positions relative to the optical lens 1 by the illumination member 3 and captures an image by the imaging unit 2 .
- the optical lens inspection apparatus 100 is a sample optical lens of the illumination member 3 when an image in which the bright field light from the illumination member 3 does not enter (an image in which the bright field region 32 is not reflected) is captured. and the imaging unit 2 is employed as the relative positional relationship of the illumination member 3 with respect to the optical lens 1 and the imaging unit 2 .
- FIG. 23 is an explanatory diagram showing the optical lens 1 and the illumination members 3 arranged in a curved line.
- the light-emitting portions of the illumination member 3 are arranged in a shape (for example, a curved shape) corresponding to the shape of the convex surface or concave surface of the optical lens 1, so that each light-emitting portion of the illumination member 3 and the optical lens 1 are aligned.
- the distances can be approximately the same. This makes it easier for the light emitted from each light-emitting portion to be focused on the imaging section 2 after passing through the optical lens 1 . Therefore, the defect 11 of the optical lens 1 is easily detected.
- the optical lens 1 may rotate relative to the illumination member 3 about the optical axis O1. Therefore, a configuration in which the optical lens 1 rotates instead of the illumination member 3 may be employed.
- the aperture stop 24 may be adjusted by the controller 50 so that bright field light from the illumination member 3 does not enter the imaging lens 23, for example.
- the control unit 50 controls the aperture diaphragm 24 so that the contrast is suitable for image processing.
- the distance between the optical lens 1 and the imaging unit 2 and the distance between the optical lens 1 and the lighting member 3 may also be adjusted under the control of the control unit 50 .
- a position adjustment mechanism for the optical lens 1 a position adjustment mechanism for the imaging unit 2, or a position adjustment mechanism for the illumination member 3 is provided, and these position adjustment mechanisms (none of which are shown) , the above distance is adjusted.
- the second rotating section 42 is configured by, for example, a goniometer stage. However, it is not limited to this.
- step S9 the determination of whether or not the rotation of the first rotating section 41 is necessary (step S9) may be performed before the processing of the image captured by the imaging section 2 (step S5). That is, after acquiring a plurality of images captured by arranging the optical lens 1 and the illumination member 3 in a plurality of different positional relationships, the processing of the plurality of images may be collectively performed.
- FIG. 24 is a side view showing the lighting member 3 and the moving mechanism 240 in the modified example of the second embodiment.
- the optical lens inspection apparatus 200 in this modified example further includes an irradiation angle changing section 233 that changes the irradiation direction 3D of the light from the illumination member 3 .
- the irradiation angle changer 233 connects the illumination member 3 to the planar movement unit 242 .
- the irradiation angle changer 233 is configured to be rotatable around the X-axis direction as a central axis. Therefore, the illumination member 3 rotates around the X-axis as the irradiation angle changing unit 233 rotates.
- the X-axis direction is a direction perpendicular to the moving direction of the moving member 242b. By rotating in the direction perpendicular to the moving direction of the moving member 242b in this manner, the irradiation angle of the light from the illumination member 3 to the optical lens is changed. Therefore, the optical lens is irradiated with light corresponding to the concave-convex shape of the optical lens.
- the optical lens inspection apparatus 200 of the second embodiment allows the lighting member 3 to change the irradiation angle of light without depending on the moving mechanism 240 .
- the optical lens 1 is illuminated by the illumination member 3 from a plurality of angles (a plurality of positions).
- the optical lens inspection devices 100 and 200 include the second rotating section 42, but may be configured without the second rotating section 42.
- the dark field region 31 which is the boundary region between the bright portion and the dark portion, expands.
- the dark field region 31 can be widened by increasing the intensity of the light emitted from the illumination member 3 .
- the intensity of the illumination light from the illumination member 3 is increased to the extent that the dark field region 31 can be widened. If the dark field region 31 is widened, it is conceivable that substantially the entire region of the optical lens 1 can be imaged as a dark field image only by rotating the first rotating part 41 .
- optical lens 2 imaging unit 3 illumination member 3D light irradiation direction 4,240 moving mechanism 5 computer 11 defect 21 optical system 22 imaging device 23 imaging lens 24 aperture stop 31 dark field region 32 bright field region 33 light source 41 first rotation unit 41R Rotational direction of first rotating part 42 Second rotating part 42S Rotational direction of second rotating part 42a, 242a Guide rails 42b, 242b Moving member 50 Control part 51 CPU 52 ROMs 53 RAM REFERENCE SIGNS LIST 100 Optical lens inspection device 101 Inspection system 102 Storage unit 103 Non-defective product storage unit 104 Defective product storage unit 105, 106, 107 Transfer mechanism 230R Rotational direction of illumination member 233 Irradiation angle changing unit 242 Planar moving unit 242S Moving direction O1 Optical lens light Axis O2 Axis of rotation of the second rotating part P1 Principal plane of the optical lens C Center
Landscapes
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- Textile Engineering (AREA)
- Health & Medical Sciences (AREA)
- Immunology (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Testing Of Optical Devices Or Fibers (AREA)
Abstract
光学レンズ検査装置100は光学レンズ1を検査する。光学レンズ検査装置100は、光学レンズ1を撮像する撮像部2と、光学レンズ1を挟んで撮像部2と対向して配置され、光学レンズ1に対して光を照射する直線状に配列される照明部材3と、照明部材3を、光学レンズ1の光軸O1を略中心として光学レンズ1に対して相対的に回転させる第1回転部41とを備える。
Description
本願明細書に開示される技術は、光学レンズ検査装置、および光学レンズ検査方法に関する。
光学レンズ(以下では単に「レンズ」とも称される)の傷等を検査するための装置として、特許文献1に記載の装置が提案されている。この特許文献1に記載のレンズ検査装置は、レンズを搭載するステージに対して一方側からレンズを撮像するカメラと、レンズを挟んでカメラの他方側からライン状の暗視野照明用検査光を照明するライン照明手段と、当該ライン照明手段をステージと平行に直線移動可能なリニアスライダを備える。特許文献1では、ライン状の暗視野照明用検査光の延出方向と直交する方向に照明装置を直線移動させる。ライン照明手段から投光される暗視野照明用検査光がレンズに照射され、レンズを透過した暗視野照明用検査光が撮像装置の固体撮像素子に受光される。照明装置の移動に伴い、それに同期して暗視野領域を連続的に抽出して、各暗視野領域を合成し、レンズ全面の暗視野画像を生成する。
このような特許文献1に記載の装置では、検査に用いる暗視野領域の画像において、レンズに対する光の照射角度は常に、照明装置が移動する直線状の方向に対して所定角度だけ傾斜した方向となる。レンズに線状の傷等が生じている場合であって、光の照射方向とレンズに生じた略直線状の傷等の延在方向とが同方向である場合は、レンズの傷等に対して暗視野照明用検査光が衝突するときに起こる光の散乱現象が起こりにくい。したがって、このような場合には、散乱光強度が十分得られず、異常発生箇所の検出ができないことがある。このため、特許文献1に記載の装置では、略直線状の傷等の延在方向によっては、傷等の検出がし難いという問題があった。
本願明細書に開示される技術は、以上に記載されたような問題に鑑みてなされたものである。この技術は、傷等の検出が容易な光学レンズ検査装置、および光学レンズ検査方法に関する技術である。
本願明細書に開示される光学レンズ検査装置の第1の態様は、光学レンズを検査する装置であって、前記光学レンズを撮像する撮像部と、前記光学レンズを挟んで前記撮像部と対向して配置され、前記光学レンズに対して光を照射する直線状または曲線状を有する照明部材と、前記照明部材を、前記光学レンズの光軸を略中心として前記光学レンズに対して相対的に回転させる第1回転部と、を備える。
本願明細書に開示される光学レンズ検査装置の第2の態様は、第1の態様の光学レンズ検査装置において、前記照明部材を、前記光軸に近づく位置と前記光軸から遠ざかる位置との間で前記光学レンズに対して相対的に移動させる移動機構をさらに備える。
本願明細書に開示される光学レンズ検査装置の第3の態様は、第2の態様の光学レンズ検査装置において、前記移動機構は前記照明部材を、前記光学レンズの主平面上に位置し前記光学レンズの中心を含む軸を略中心として、前記光学レンズに対して相対的に回転させる第2回転部により構成される。
本願明細書に開示される光学レンズ検査装置の第4の態様は、第2の態様の光学レンズ検査装置において、前記移動機構は、前記光軸に垂直な平面上に前記照明部材を移動させる平面移動部により構成される。
本願明細書に開示される光学レンズ検査装置の第5の態様は、第4の態様の光学レンズ検査装置において、前記照明部材の光の照射方向を変更する照射角度変更部をさらに備える。
本願明細書に開示される光学レンズ検査装置の第6の態様は、第1の態様ないし第5の態様のいずれか一つの態様の光学レンズ検査装置において、前記照明部材は、前記撮像部に前記照明部材からの明視野光が入らない範囲で移動する。
本願明細書に開示される光学レンズ検査装置の第7の態様は、第6の態様の光学レンズ検査装置において、前記範囲は、予め前記光学レンズと同一形状のサンプル光学レンズを撮像したときに前記撮像部に前記照明部材が撮像されない範囲に決定される。
本願明細書に開示される光学レンズ検査装置の第8の態様は、第1の態様ないし第7の態様の光学レンズ検査装置において、前記照明部材は直線状に配列され、前記照明部材の配列される直線状の幅は、前記光学レンズの直径と略同一、または、前記光学レンズの直径よりも大きい。
本願明細書に開示される光学レンズ検査装置の第9の態様は、第1の態様ないし第8の態様の光学レンズ検査装置において、前記撮像部で撮像された画像に基づき、前記光学レンズの良否を判定する制御部をさらに備える。
本願明細書に開示される光学レンズ検査方法の第1の態様は、光学レンズを検査する方法であって、直線状または曲線状を有する照明部材から前記光学レンズに対して光を照射しつつ、前記光学レンズを挟んで前記照明部材と対向して配置された撮像部により前記光学レンズを撮像する第1撮像工程と、前記照明部材を、前記光学レンズの光軸を略中心として前記光学レンズに対して相対的に回転させ、前記光学レンズと前記照明部材を前記第1撮像工程と異なる位置関係に配置する回転工程と、前記回転工程後に、前記光学レンズに対して前記照明部材から光を照射しつつ、前記撮像部により前記光学レンズを撮像する第2撮像工程と、を備える。
本願明細書に開示される光学レンズ検査方法の第2の態様は、第1の態様の光学レンズ検査方法において、前記光学レンズと同一形状のサンプル光学レンズを、前記サンプル光学レンズと前記照明部材との相対的な位置が異なる複数の位置関係において、前記照明部材によって照明しつつ、前記撮像部によって撮像するサンプル撮像工程をさらに備え、前記サンプル撮像工程において前記照明部材からの明視野光が入らない画像が撮像されたときの前記照明部材の前記サンプル光学レンズと前記撮像部とに対する相対的な位置関係が、前記第1撮像工程及び前記第2撮像工程における前記照明部材の前記光学レンズと前記撮像部とに対する相対的な位置関係に採用される。
本願明細書に開示される光学レンズ検査装置の第1から第9の態様および光学レンズ検査方法の第1の態様から第2の態様によれば、傷等の検出が容易である。
本願明細書に開示される技術に関連する目的と、特徴と、局面と、利点とは、以下に示される詳細な説明と添付図面とによって、さらに明白となる。
以下、添付される図面を参照しながら実施の形態について説明する。以下の実施の形態では、技術の説明のために詳細な特徴なども示されるが、それらは例示であり、実施の形態が実施可能となるためにそれらすべてが必ずしも必須の特徴ではない。
なお、図面は概略的に示され、説明の便宜のため、適宜、構成の省略、または、構成の簡略化が図面においてなされる。また、異なる図面にそれぞれ示される構成などの大きさおよび位置の相互関係は、必ずしも正確に記載されるものではなく、適宜変更され得るものである。また、断面図ではない平面図などの図面においても、実施の形態の内容を理解することを容易にするために、ハッチングが付される場合がある。
以下に示される説明では、同様の構成要素には図面において同じ符号が付され、それらの名称と機能とについても同様のものとする。したがって、それらについての詳細な説明は、重複を避けるために省略される場合がある。
以下に記載される説明において、ある構成要素を「備える」、「含む」または「有する」などと記載される場合、特に断らない限り、当該記載は他の構成要素の存在を除外する排他的な表現ではない。
以下に記載される説明において、序数、例えば「第1」および「第2」が用いられる場合があっても、これらの用語は、実施の形態の内容を理解することを容易にするために便宜上用いられ、実施の形態において説明される技術はこれらの序数によって生じ得る順序に限定されない。
図面において、理解を容易にする目的で、各部の寸法および数が誇張または簡略化して図示されている場合がある。また、各図面には、方向を説明するためのXYZ直交座標軸(右手系)が適宜に付されている。該座標軸におけるZ方向は鉛直方向を示し、XY平面は水平面である。以下では、X方向の一方側を+X側と呼び、その反対側を-X側と呼ぶことがある。Y軸およびZ軸についても同様であり、+Z側は鉛直上側を示す。
<第1の実施の形態>
以下、第1の実施の形態に関する光学レンズ検査装置100について説明する。
以下、第1の実施の形態に関する光学レンズ検査装置100について説明する。
<光学レンズ検査装置100の構成>
図1は、検査システム101の全体構成を示すブロック図である。検査システム101は、本実施の形態に関する光学レンズ検査装置100を含む。検査システム101は、収容部102と、良品収容部103と、不良品収容部104とを備える。収容部102は、検査対象となる光学レンズを収容する。良品収容部103は、光学レンズ検査装置100で良品と判断された光学レンズを受け取って収容する。不良品収容部104は、光学レンズ検査装置100で不良品と判断された光学レンズを受け取って収容する。
図1は、検査システム101の全体構成を示すブロック図である。検査システム101は、本実施の形態に関する光学レンズ検査装置100を含む。検査システム101は、収容部102と、良品収容部103と、不良品収容部104とを備える。収容部102は、検査対象となる光学レンズを収容する。良品収容部103は、光学レンズ検査装置100で良品と判断された光学レンズを受け取って収容する。不良品収容部104は、光学レンズ検査装置100で不良品と判断された光学レンズを受け取って収容する。
検査システム101は移送機構105,106,107をさらに備える。移送機構105は、収容部102と光学レンズ検査装置100との間で光学レンズを移送する。移送機構106は、光学レンズ検査装置100と良品収容部103との間で光学レンズを移送する。移送機構107は、光学レンズ検査装置100と不良品収容部104との間で光学レンズを移送する。図中の矢印は、光学レンズが移送される方向を示す。なお、移送機構106と移送機構107は、互いに同一の機構によって構成されても良いし、兼用されても良い。
検査システム101は、後に詳細に説明される制御部50と接続される。制御部50により、それぞれの装置が制御されて光学レンズの処理を行う。
図2は、本実施の形態に関する光学レンズ検査装置100の全体構成を示す概略図である。また、図3は、本実施の形態に関する光学レンズ検査装置100の移動機構4の動作を全体構成とともに示す概略説明図である。光学レンズ検査装置100は、検査対象となる光学レンズ1を撮像する撮像部2と、光学レンズ1に対して光を照射する照明部材3と、照明部材3を移動させる移動機構4と、を備える。
光学レンズ検査装置100は、コンピュータ5に接続される。コンピュータ5は、検査システム101の全体動作の制御を行う制御部50の機能を備える。制御部50は光学レンズ検査装置100の全体動作の制御を行う。
光学レンズ1は図示しない光学レンズ保持部により保持されて光学レンズ検査装置100に固定される。光学レンズ保持部は、例えば中空孔が形成された板状部材により構成される。この中空孔に光学レンズ1の周縁部が保持されることにより、光学レンズ1が光学レンズ検査装置100に固定される。
撮像部2は、光学系21と、撮像デバイス22とを有する。光学系21は撮像レンズ23を備える。撮像レンズ23は、光学レンズ1を通過する照明部材3からの光を撮像デバイス22に導いて結像させる。光学系21はさらに開口絞り24を備える。開口絞り24は、光学レンズ1を通過して撮像デバイス22に到達する光の量を調整する遮蔽物として機能する。撮像デバイス22は、例えば、CCD(Charge Coupled Device)イメージセンサ、または、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサである。
図7は、制御部50と光学レンズ検査装置100の各構成との接続の関係を示すブロック図である。例えば制御部50は、各種演算処理を行う中央演算処理装置であるCPU(central processing unit)51と、基本プログラムを記憶する読み出し専用のメモリであるROM(read only memory)52と、各種情報を記憶する読み書き自在のメモリであるRAM(random access memory)53と、を備える。CPU51は照明部材3、移動機構4、撮像部2等に接続され、制御部50はこれらを制御する。また、制御部50は、撮像部2で撮像された画像をRAM53に記憶させる。RAM53で記憶された画像は、CPU51で処理される。制御部50は例えばコンピュータ5によって実現される。
図4は、照明部材3の光源の構成の例を示す説明図である。照明部材3は、光学レンズ1を挟んで撮像部2と対向して配置される。照明部材3は図4に示すように複数の光源33を有する。これらの光源33は例えば直線状に配列される。照明部材3は、複数のLED(Light Emitting Diode)が直線状に配置されることにより構成されても、直線状のハロゲンランプにより構成されても、複数のハロゲンランプが直線状に並列されて構成されても、複数のレーザー光源が直線状に並列されて構成されても良い。
照明部材3は、移動機構4に固定されて、移動機構4の移動に伴って移動する。図5は、移動機構4を示す概略図であり、図6は、移動機構4と光学レンズ1とを示す概略図である。図5においては、移動機構4を構成する第1回転部41の回転方向41Rが示される。また、図6においては、移動機構4を構成する第2回転部42の回転方向42Sが示される。
移動機構4は、第1回転部41と、第1回転部41に取付られる第2回転部42とを備える。照明部材3は、光源33の照射方向が光学レンズ1方向を向くように、第2回転部42に固定される。第1回転部41は、第2回転部42を介して照明部材3を光学レンズ1の光軸O1を略中心として光学レンズ1に対して回転させる。
第2回転部42は、例えば、ゴニオステージにより構成される。ゴニオステージは、ガイドレール42aと、ガイドレール42a上を移動する移動部材42bとを備える。ガイドレール42aは第1回転部41側において第1回転部41に固定される。第1回転部41とは反対側において、軸O2を略中心として、移動部材42bはガイドレール42a上を回転する。軸O2は、光学レンズ1の主平面P1上に位置し光学レンズ1の中心Cを含む。移動部材42bはガイドレール42a上に配置される。ガイドレール42aは、移動部材42bが回転方向42Sに往復移動するように、移動部材42bを案内する。移動部材42bの回転方向42Sへの移動に伴って、照明部材3が回転方向42Sに沿って移動する。このようにして、第2回転部42は、照明部材3を光軸O1に近づく位置と光軸O1から遠ざかる位置との間で光学レンズ1に対して相対的に移動させる。そして、例えば、第2回転部42は、照明部材3を、照明部材3と軸O2を結ぶ線と光軸O1との成す角度が変化するように移動させる。
以上のような構成により、第1回転部41が光軸O1周りに回転すると、第1回転部41の回転に伴って第2回転部42も光軸O1周りに回転する。これにより、第2回転部42に固定される照明部材3も回転する。照明部材3から光学レンズ1への光の照射方向3Dは、移動部材42bのガイドレール42a上の移動に伴って変更される。言い換えると、光学レンズ1に対する照明部材3の光の照射方向3Dが、照明部材3のゴニオステージ(ガイドレール42a)上で移動する照明角度θ(照明角度θは照射方向3Dが光軸O1と一致するところを0度とする)に応じて変更される。
図8は、光学レンズ1と照明部材3との位置関係を示す平面図である。照明部材3において複数の光源33が直線状に配列される幅dは、例えば、光学レンズ1の直径2Rと略同一、または、直径2Rよりも大きい。このように、d≧2Rであれば、照明部材3が図8における矢印S方向へ一度走査されただけで、照明部材3により光学レンズ1の略全面が照射される。ただし、d<2Rであっても、照明部材3が図7のXY平面方向において矢印S方向に垂直な方向にも移動することで、照明部材3により光学レンズ1の略全面が照射される。CPU51で行われる画像の処理は、例えば、撮像部2で撮像された画像から抽出される暗視野領域31を利用することにより行われる。暗視野領域31は、明部と暗部の境界に存在する領域である。ここで、明部とは、明視野領域32のことであり、暗部とは、照明部材3から光が届かない領域のことである。暗視野領域31は、光の照射される全体領域から明視野領域32を除外して得られる領域である。明視野領域32とは、照明部材3からの明視野光のみから得られる領域のことをいう。
暗視野領域31の抽出は、例えば、明視野領域32をマスキング加工することにより行われる。抽出された暗視野領域31のみの画像が得られる。暗視野領域31のみを抽出する理由は、コントラストが強調されて細やかな傷の検出を容易にすることにある。照明部材3が第2回転部42により矢印S方向へ移動することにより、光学レンズ1の所定領域が撮像される。この撮像により得られた暗視野領域31のみの画像である暗視野画像が制御部50で作成される。この暗視野画像に基づいて光学レンズ1の良否が判定される。なお、所定領域は、例えば、光学レンズ1において傷が存在する可能性の高い箇所が優先されて定められる領域である。
図9は、第1回転部41により照明部材3が回転して得られる照明部材3の二つの位置と、光学レンズ1との位置関係を示す平面図である。本実施形態においては、第1回転部41がXY平面上での照明部材3の第2回転部42の軸O2の方向を変える。具体的には、照明部材3が第1回転部41の初期位置において第2回転部42の回転により、光学レンズ1の所定領域を照射した後、第1回転部41により光軸O1を中心に所定角度βだけ回転する。この所定角度βは、例えば、光軸O1周りに45度である。このように、第1回転部41により照明部材3が回転すると、光学レンズ1が照明部材3により複数の角度(複数の位置)から照射される。また、第1回転部41により照明部材3が回転すると、光学レンズ1は複数の照射方向3Dから照射される。
図9において、第1回転部41の初期位置では軸O2がX方向と平行になり、このときの照明部材3(暗視野領域31および明視野領域32を含む。)は一点鎖線で示される。第1回転部41が初期位置から所定角度βで回転した後の照明部材3(暗視野領域31および明視野領域32を含む。)は実線および破線で示される。なお、破線で示される暗視野領域31および明視野領域32は、光学レンズ1を通過する前の状態が示される。
ここで、例えば、筋状(直線状)の傷による欠陥11に対して、欠陥11の延在方向と平行な方向(0度または180度の角度)からの光の照射であると、傷による光の散乱現象が起こりにくい。このため、撮像される画像内での傷と傷のない部分との間でコントラストが十分得られないことがある。このため、傷の検出ができないことがある。これに対し、筋状(直線状)の傷による欠陥11に対して、角度を持った方向(0度および180度を除く角度)からの光の照射であると、傷による光の散乱現象が起こりやすい。このため撮像される画像内での傷による欠陥11と欠陥11のない部分との間でコントラストが向上する。この光学レンズ検査装置100によれば、照射方向3Dが複数の方向に設定可能であって、これまで見逃されることのあった直線状の傷の検出が容易である。
また、本実施形態においては、透明な光学レンズ1が検査対象として例示される。透明な光学レンズ1において傷などの欠陥11がある場合は、照明部材3からの光がその欠陥11によって散乱する。欠陥11のサイズは一般的には光の波長よりも大きいため、欠陥11に光が照射されると、いわゆるミー散乱現象(光の波長程度以上の大きさの球形粒子による光の散乱現象)が起こる。このミー散乱現象により散乱した光(以下、「散乱光」という。)の一部が撮像部2で撮像されて、制御部50において画像処理されることにより、欠陥11が検出される。なお、制御部50における画像処理は、例えば、2値化処理により行われる。2値化処理された画像では、例えば、明るい部分が「H」、暗い部分が「L」として処理される。仮に散乱光が映り込んでいれば、散乱光が映り込んだ部分が明るくなり、その部分が「H」として処理される。反対に、光の映り込まない部分は、暗くなり、その部分は「L」として処理される。したがって、例えば、処理される画像中に散乱光が映り込んだ部分が「H」として処理された場合、制御部50により光学レンズ1が不良であると判断される。一方で、散乱光が映り込んだ部分がなければ、画像全体が「L」として処理され、制御部50により光学レンズ1が良であると判断される。
<第1の実施の形態に関する光学レンズ検査装置100による検査の工程>
図10は、第1の実施の形態に関する光学レンズ検査装置100により光学レンズ1が検査される工程を示すフロー図である。光学レンズ検査装置100により光学レンズ1が検査される場合には、まず、照明部材3から光学レンズ1への光の照射が開始される(ステップS1)。
図10は、第1の実施の形態に関する光学レンズ検査装置100により光学レンズ1が検査される工程を示すフロー図である。光学レンズ検査装置100により光学レンズ1が検査される場合には、まず、照明部材3から光学レンズ1への光の照射が開始される(ステップS1)。
ステップS1で照明部材3から光学レンズ1への光の照射が開始された後、第2回転部42が回転する(ステップS2)。第2回転部42は、手動または自動によって回転する。自動による回転の場合は、制御部50により制御される。本実施形態においては、第2回転部42はゴニオステージにより構成される。このゴニオステージにより回転する照明部材3の軌道と、光学レンズ1の主平面P1における照明部材3からの照射位置との関係は、次のようにして求められる。
図11は、撮像デバイス22、光学レンズ1、および照明部材3の位置関係を座標系で示す図である。図11中、光学レンズ1の中心Cの座標(0,0)、照明部材3から光学レンズ1の主平面P1に照射される位置Dの座標(y0,0)と撮像部2の撮像レンズ23の中心Eとを結ぶ線の光学レンズ1の光軸O1に対する傾きθI、照明部材3の位置Fの座標(ys,zs)、位置Fが取り得る範囲を表す円弧Jの半径r、位置Dと位置Fとを結ぶ線Lの光軸O1に対する傾きθ0、中心Cと位置Fとを結ぶ線Kと光軸O1との間の照明角度θが導入され、下記のように諸量が求められる。なお、光学レンズ1の中心Cとは、光学レンズ1の主平面P1の成す円の中心とみなしてよい。
傾きθ0は、光学レンズ1のパワー(=焦点距離fLの逆数)から、下記式(1)で表される。
また、位置Dと位置Fとを結ぶ線は下記式(2)で表され、円弧Jは下記式(3)で表される。
位置Fは円弧Jと線Lとの交点である。式(2)および式(3)の両方を満足する座標(y、z)のうち、z<0の条件に適合する方が位置Fの座標(ys,zs)として妥当である。式(2)および式(3)を満足するy=ys,z=zsは、それぞれ下記式(4)および式(5)で表される。
照明角度θは下記式(6)を満足する。
この式(6)に対して、式(4)および式(5)を代入すると、下記式(7)が得られる。
式(7)を用いて、照明部材3からの照射光が光学レンズ1上の位置Dを照射し、撮像レンズの中心Eを通過して撮像素子面に入射するときの照明角度θIが求められる。すなわち位置Dを明視野撮像するときの照明角度θを求めることができる。これにより、光学レンズ1の中心位置Cに対する照明角度θの可動範囲が求められる。
ステップS2の実行により、第2回転部42の回転に伴って照明部材3が軸O2を中心として回転する。照明部材3の回転により、光学レンズ1の所定領域(予め決められた領域、例えば、光学レンズ1が撮像部2により撮像される領域全体)が照射される。ステップS3において第2回転部42の回転が終了したか否かが判断される。当該回転が終了したと判断されると、光の照射が維持されつつ撮像部2による光学レンズ1の撮像を行う(ステップS4)。このように光学レンズ検査装置100は、照明部材3から光学レンズ1に対して光を照射しつつ、光学レンズ1を挟んで照明部材3と対向して配置された撮像部2により光学レンズ1を撮像する(第1撮像工程)。光学レンズ1が撮像されるときには、光学レンズ1に焦点が合わされている。その後、処理がステップS5へ進む。なお、ステップS3において当該回転が終了していないと判断されれば、処理がステップS2へ戻って第2回転部42の回転がされる。
ステップS5では、制御部50において、撮像部2で撮像された画像の処理が行われる。この画像の処理は、上述のとおり、暗視野領域31のみを抽出して行われる。制御部50において、抽出された暗視野領域31の画像のみによる暗視野画像が形成される。ステップS6において、光学レンズ1の欠陥11による散乱光が暗視野画像に含まれているかどうかが制御部50によって判断される(ステップS6)。
ステップS6において散乱光が暗視野画像に含まれていると判断されなければ、光学レンズ1が良と判断される(ステップS7)。ステップS6において散乱光が暗視野画像に含まれていると判断されれば、光学レンズ1が不良と判断される(ステップS8)。
ステップS7で、光学レンズ1が良と判断された場合には、第1回転部41の回転が必要かどうかが判断される(ステップS9)。光学レンズ1が第2回転部42による走査のみでは、照明部材3による光の照射方向3DとのP1への射影と成す角度が小さい傷は、検出されにくいためである。このため、本実施形態においては、ステップS11が実行されて第1回転部41が回転した後、処理が再びステップS3に戻る。第1回転部41がステップS11において回転する角度は、光軸O1を中心として、例えば45度である。第1回転部41の回転の後、ステップS3で再度第2回転部42が回転することにより、照明部材3は、照射方向3DのP1への射影の方向を異ならせる。これにより、本実施形態の光学レンズ検査装置100によれば、光学レンズ1の筋状(直線状)の傷等も検出され易い。
すでに第1回転部41が回転し、照明部材3は、照射方向3DのP1への射影の方向を異ならせて光学レンズ1に対して光が照射されていれば、ステップS9で第1回転部41の回転が不要と判断される。そして、光学レンズ1が良と判断されて(ステップS10)、光学レンズ1に対する光学レンズ検査装置100の検査が終了する。これに対し、光学レンズ1に対して別の角度からの照明がさらに必要である場合には、ステップS9で第1回転部41の回転が必要と判断される。ステップS9で第1回転部41の回転が必要と判断されると、第1回転部41が回転する(ステップS11)(回転工程)。光学レンズ検査装置100は、照明部材3を、光学レンズ1の光軸O1を略中心として光学レンズ1に対して相対的に回転させる。そして、光学レンズ検査装置100は、光学レンズ1と照明部材3を第1撮像工程と異なる位置関係に配置する。第1回転部41が回転した後、再びステップS2に戻り、光学レンズ検査装置100は、ステップS11の回転工程後に、光学レンズ1に対して照明部材3から光を照射しつつ、第2回転部42の回転、撮像部2による光学レンズ1の撮像を行う(第2撮像工程)。そして、光学レンズ1の検査が行われる。
<第2の実施の形態>
以下、第2の実施の形態に関する光学レンズ検査装置200について説明する。
以下、第2の実施の形態に関する光学レンズ検査装置200について説明する。
<光学レンズ検査装置200の構成>
図12は、第2の実施の形態に関する光学レンズ検査装置200の移動機構240の動作を全体構成とともに示す概略説明図である。第2の実施の形態の光学レンズ検査装置200は、移動機構240を備える。移動機構240は、第1回転部41と、第1回転部41に固設される平面移動部242とを備える。図13は、図12の移動機構240を示す概略図である。図12においては、移動機構240を構成する第1回転部41の回転方向41Rと平面移動部242の移動方向242Sとが示される。
図12は、第2の実施の形態に関する光学レンズ検査装置200の移動機構240の動作を全体構成とともに示す概略説明図である。第2の実施の形態の光学レンズ検査装置200は、移動機構240を備える。移動機構240は、第1回転部41と、第1回転部41に固設される平面移動部242とを備える。図13は、図12の移動機構240を示す概略図である。図12においては、移動機構240を構成する第1回転部41の回転方向41Rと平面移動部242の移動方向242Sとが示される。
平面移動部242は、光軸O1に垂直な平面(XY平面)上に照明部材3を移動させる。平面移動部242は、ガイドレール242aと、ガイドレール242a上を移動する移動部材242bとを備える。ガイドレール242aは第1回転部41に固定される。ガイドレール242aは、移動部材242bがXY平面上で直線方向の移動方向242Sに往復移動するように、移動部材242bを案内する。照明部材3は、移動部材242bに固定され、移動部材242bの移動に伴って移動する。移動部材242bの移動方向242Sへの移動に伴って、照明部材3が242S方向へ移動する。このようにして、平面移動部242は、照明部材3を光軸O1に近づく位置と光軸O1から遠ざかる位置との間で移動させる。
光学レンズ検査装置100による検査の工程のうち、ステップS3の第2回転部42による照明部材3の回転移動が、平面移動部242による照明部材3の直線移動に変更されて、光学レンズ検査装置200による検査の工程が得られる。すなわち、第2の実施形態においては、照明部材3の位置Fが円弧J上ではなく、Y軸に平行な直線上を移動する。なお、照明角度θ等は、第1の実施形態における式(1)ないし(10)を、位置Fがz=-rの直線上を移動する条件に置き換えて計算することで求めることができる。光学レンズ検査装置200による検査の工程のその他の点は光学レンズ検査装置100による検査の工程と同じである。光学レンズ検査装置200は、平面移動部242を採用するので、第2回転部42を採用するよりも簡易な構成で、照明部材3を移動させることができる。ただし、照明部材3から光学レンズ1への光の照射方向3Dを移動部材42bの移動に伴って簡易に変更できる点で、第2回転部42の構成が好ましい。
<第3の実施の形態>
以下、本願の第3の実施形態について説明する。第3の実施の形態は、第1の実施形態に関する光学レンズ検査装置100と同じ構成の装置が利用される。
以下、本願の第3の実施形態について説明する。第3の実施の形態は、第1の実施形態に関する光学レンズ検査装置100と同じ構成の装置が利用される。
<第3の実施の形態に関する光学レンズ検査装置100による検査の工程>
第3の実施の形態に関する光学レンズ検査装置100により、照明部材3は、撮像部2に照明部材3からの明視野光が入らない範囲で移動する。この範囲は、予め、検査される予定の光学レンズ1と同一形状のサンプル光学レンズが撮像されることにより、決定される。図14は、第3の実施の形態に関する光学レンズ検査装置100による照明部材3の移動する範囲が決定される工程を示すフロー図である。
第3の実施の形態に関する光学レンズ検査装置100により、照明部材3は、撮像部2に照明部材3からの明視野光が入らない範囲で移動する。この範囲は、予め、検査される予定の光学レンズ1と同一形状のサンプル光学レンズが撮像されることにより、決定される。図14は、第3の実施の形態に関する光学レンズ検査装置100による照明部材3の移動する範囲が決定される工程を示すフロー図である。
第3の実施の形態に関する光学レンズ検査装置100は、光学レンズ1と同一形状のサンプル光学レンズを、サンプル光学レンズに対する相対的な位置が異なる複数の位置から照明部材3によって照明する。そして、この光学レンズ検査装置100は、サンプル光学レンズを挟んで照明部材3と対向する撮像部2によって、サンプル光学レンズを撮像する。
具体的には、光学レンズ検査装置100により光学レンズ1が検査される前に、光学レンズ1と同一形状のサンプル光学レンズが検査される。まず、光学レンズ検査装置100にセットされたサンプル光学レンズに対して照明部材3から光が照射される(ステップS101)。サンプル光学レンズとして、実際に検査される光学レンズ1と同一形状のレンズが採用される。ステップS101で、照明部材3による光の照射が開始されると、撮像部2によるサンプル光学レンズの撮像が開始される(ステップS102)。
ステップS101で照明部材3によるサンプル光学レンズへの光の照射が開始された後、第2回転部42が回転する(ステップS102)。
ステップS102の実行により、第2回転部42の回転に伴って照明部材3が軸O2を中心として回転する。照明部材3の回転により、サンプル光学レンズの所定領域(予め決められた領域、例えば、光学レンズ1が撮像部2により撮像される領域全体)が照射される。ステップS103において第2回転部42の回転が終了したか否かが判断される。当該回転が終了したと判断されると、撮像部2によるサンプル光学レンズの撮像が実行される(ステップS104)。このとき、光学レンズ検査装置100は、サンプル光学レンズを、照明部材3によって照明しつつ、撮像部2によって撮像する(サンプル撮像工程)。その後、処理がステップS105へ進む。なお、ステップS103において当該回転が終了していないと判断されれば、処理がステップS102へもどって第2回転部42の回転が継続される。第1回転部41の回転の要否の判断については、第1の実施の形態における光学レンズ1の場合と同様の理由により、必要とされる。
第1の実施の形態における光学レンズ1の場合と同様に、第1回転部41の回転が必要であるかどうかが判断される(ステップS105)。ステップS105で第1回転部41の回転が必要であると判断され、第1回転部41の回転が実行されて第1回転部41が回転する(ステップS106)。これにより、光学レンズ検査装置100は、サンプル光学レンズと照明部材3との相対的な位置が異なる複数の位置関係において、照明部材3によってサンプル光学レンズを照明する。第1回転部41の回転は、後に撮像される光学レンズ1の撮像時の第1回転部41の回転回数よりも多く行われる。光学レンズ1における暗視野領域31および明視野領域32が、事前に把握される方が好ましいためである。第1回転部41が回転した後、処理が再びステップS102に戻る。これらの動作が繰り返されることにより、後に撮像される光学レンズ1において、暗視野領域が得られる範囲が把握される。
すでに第1回転部41が回転し、照明部材3は、照射方向3DのP1への射影の方向を異ならせて光学レンズ1に対して光が照射されていれば、ステップS105で第1回転部41の回転が不要と判断される。
第1回転部41の回転および第2回転部42の回転が終了すると、ステップS107において、撮像部2で撮像された画像の処理が制御部50によって行われる。この画像の処理により、撮像された画像に明視野領域32が映り込んでいるかどうかが判断される。
ここで、撮像される画像に明視野領域32が映り込む場合と、映り込まない場合とを、図を用いて説明する。図15ないし図20は照明部材3から撮像部2までの照射光の経路を示す説明図である。図15および図16は照明部材3、光学レンズ1、および撮像部2の配置関係が同じ条件である場合を示す。図17および図18は照明部材3、光学レンズ1、および撮像部2の配置関係が同じ条件である場合を示す。図19および図20は照明部材3、光学レンズ1、および撮像部2の配置関係が同じ条件である場合を示す。図15、図17、および図19は、光学レンズ1における照明部材3からの光の照射位置に欠陥11がない場合を示す。図16、図18、および図20は、光学レンズ1における照明部材3からの光の照射位置に欠陥11がある場合を示す。
図15および図16において、照明部材3からの照射光の経路を比較する。図15では、照明部材3からの照射光が光学レンズ1、撮像レンズ23、および開口絞り24を通過して撮像デバイス22に到達する。したがって、図15の照明部材3の配置では、撮像される画像に明視野領域32が映り込んでしまう。図16では、照明部材3からの照射光が光学レンズ1の欠陥11に衝突することにより散乱現象が起こる場合が示される。この散乱現象による散乱光が、光学レンズ1、撮像レンズ23、および開口絞り24を通過して撮像デバイス22に到達する。図15においても図16においても照明部材3からの照射光が撮像される画像に映り込んでしまう。このため、図15および図16に示される照明部材3の配置では、光学レンズ1の欠陥11の有無が明確にならない。
図17および図18において、照明部材3からの照射光の経路を比較する。図17では、照明部材3からの照射光は、光学レンズ1を透過するが、開口絞り24に遮断されて、撮像デバイス22に到達していない。したがって、図17の照明部材3の配置では、撮像される画像に明視野領域32が映り込まない。図18では、照明部材3からの照射光が光学レンズ1の欠陥11に衝突することにより散乱現象が起こる場合が示される。この散乱現象による散乱光の一部が、光学レンズ1、撮像レンズ23、および開口絞り24を通過して撮像デバイス22に到達する。図17および図18に示される照明部材3の配置であれば、光学レンズ1に欠陥11が有る場合にのみ撮像される画像に光が映るので、光学レンズ1の欠陥11の有無が明確である。
図19および図20において、照明部材3からの照射光の経路を比較する。図19では、照明部材3からの照射光は、光学レンズ1を透過するが、開口絞り24に遮断されて、撮像デバイス22に到達していない。したがって、図19の照明部材3の配置では、撮像される画像に明視野領域32が映り込まない。図20では、照明部材3からの照射光が光学レンズ1の欠陥11に衝突することにより散乱現象が起こる場合が示される。この散乱現象による散乱光は、光学レンズ1及び開口絞り24を通過して撮像デバイス22に到達する。このため、図19および図20に示される照明部材3の配置であれば、光学レンズ1の欠陥11の有無が明確になる。
以上のように、光学レンズ1の欠陥11の有無が明確になるためには、照明部材3と光学レンズ1と撮像部2との配置関係が重要であることがわかる。図21は、光学レンズ1の欠陥11の有無が明確になるための照明部材3の好ましい配置の一例を説明する図である。より具体的には、予め所定の位置に人為的に欠陥11を設けたサンプル用の光学レンズに対して照明の照射角度を変更しつつ撮像を行った際の、照射角度と検出度合いの関係を示す図である。図21において、横軸の照明角度θは図5および図10における照明角度θを示す。例えば照明角度θは第2回転部42(第1の実施の形態)あるいは平面移動部242(第2の実施の形態)の動作によって制御される。この図において、Pは、撮像された画像において欠陥11に相当する部分の画素値を示し、P´は撮像された画像において欠陥11の周囲に相当する部分の画素値を示す。欠陥11に相当する部分と、欠陥11の周囲に相当する部分との区別は、欠陥11を作成した位置の情報に基づき、撮像画像中で欠陥11に相当する部分と、欠陥11の周囲に相当する部分それぞれの画素の位置を予め指定することにより行われる。なお、図21において、照明角度θ<θ1の範囲は、明視野領域32が映り込んでいる領域である。この範囲では、明視野光の影響により全体的に画素値が高くなっている。この範囲は、PとP´との区別がつかない範囲である。
この図21において、縦軸(右側)に示す検出度合いP/P´は、[Pの値]/[P´の値]を示す。図21を参照すると、照明角度θが値θ1(≒4.5[deg])未満では、検出度合いP/P´が1となっており、光学レンズ1の欠陥11の有無が明確にはならないことがわかる。これに対し、照明角度θが値θ2(≒7.5[deg])以上であれば、検出度合いP/P´が概ね1.5を超えている。検出度合いP/P´が1.5を超えると、欠陥11が十分に把握できる程、欠陥11が明確になる。したがって、光学レンズ1の欠陥11の有無が明確になることがわかる。特に照明角度θが、θ2<θ<16[deg]の場合に、検出度合いP/P´が1.5を大きく超えており、光学レンズ1の欠陥11の有無が顕著になることがわかる。なお、今回の例において、この検出度合いP/P´が1.5を超える場合には、照明部材3による明視野光が映り込んでいないことが実験により判明している。
ここで、照明角度θの値がθ1(≒4.5[deg])未満の検出度合いP/P´が1となる場合というのは、画像に明視野光が映り込む場合である。このように明視野光が映り込むと、明視野光によって欠陥11による散乱光が目立たなくなる。したがって、検出度合いP/P´が大きくなる条件(θ2<θ<16[deg])で照明部材3が配置されると、欠陥11と欠陥11でない部分との相違が明確になる。このため、撮像される画像の枚数が少量であっても欠陥11が検出され得る。このため、検出度合いが大きくなると、撮像される画像の枚数を削減することができ、短時間かつ低コストで光学レンズ1を検査することができる。なお、θ1、θ2は光学レンズ1のパワーおよび欠陥11の位置に依存するため、上述(後述)の数値は一例である。同様に、検出度合いの指標値として、上記の例では1.5としたが、これも一例であり、検査対象とする光学レンズ1のパワー及び欠陥11の位置に応じて適宜調整される。
図22は、明視野領域32が映り込まない照明部材3の配置を示す平面図である。具体的に、照明部材3の特に好ましい配置の条件は、照明部材3の配置が、XY平面視において光学レンズ1の中心Cからの距離がR+w(Rは光学レンズ1の半径、wは照明部材3の幅(2w)の1/2)となることである。この配置の関係であれば、撮像される画像に明視野領域32が映り込まず、検出度合いも大きくなる。ただし、この照明角度θの条件は、光学レンズ1のパワーに依存する。この照明角度θは、第1の実施形態における式(7)で、y0=R+wとすることで算出できる。
以上の説明から、撮像された画像に明視野領域32が映り込むか否かは、照明部材3の配置や撮像部2の開口絞り24の条件の設定によるものが大きいことがわかる。
ステップS108において撮像された画像に明視野領域32が映り込んでいないと判断されれば、ステップS109においてサンプル光学レンズに対する照明部材3の移動の範囲が光学レンズ1の検査での照明部材3の移動の範囲と決定される。
ステップS108において撮像された画像に明視野領域32が映り込んでいると判断されば、ステップS110において明視野領域32が映り込んだ画像における照明部材3の配置条件が除外された範囲が光学レンズ1の検査での照明部材3の移動の範囲と決定される。上述のサンプル撮像工程において、照明部材3からの明視野光が入らない(映り込まない)画像が撮像されたときの照明部材3のサンプル光学レンズと撮像部2に対する相対的な位置関係が、第1撮像工程および第2撮像工程における照明部材3の光学レンズ1と撮像部2に対する相対的な位置関係に採用される。
このようにして、第3の実施の形態に関する光学レンズ検査装置100は、予め決定された照明部材3の移動の範囲で、光学レンズ1を検査する。具体的には、図10におけるフローと同様のフローにより光学レンズ1の検査が行われる。光学レンズ検査装置100は、光学レンズ1を、光学レンズ1に対する相対的な位置が異なる複数の位置から照明部材3によって照明し、撮像部2によって撮像する。
第3の実施の形態に関する光学レンズ検査装置100は、照明部材3からの明視野光が入らない画像(明視野領域32が映り込まない画像)が撮像されたときの照明部材3のサンプル光学レンズと撮像部2とに対する相対的な位置関係が、照明部材3の光学レンズ1と撮像部2とに対する相対的な位置関係に採用される。
上述した実施形態においては、照明部材3は、直線状に配列される構成であるが、直線状に配列される構成に限定されず、曲線状に配列される構成でもよい。図23は、光学レンズ1と曲線状に配列された照明部材3とを示す説明図である。図23のように、照明部材3の発光部分が光学レンズ1の凸面または凹面の形状に対応した形状(例えば、曲線状)に配列されて、照明部材3の各発光部分と光学レンズ1との距離を略同一にすることができる。これにより、各発光部分からの照射光が光学レンズ1を通じた光の撮像部2での焦点位置が合わされ易くなる。したがって、光学レンズ1の欠陥11が検出され易くなる。
上述した実施形態においては、光学レンズ1は、照明部材3に対して光軸O1を略中心として相対的に回転していればよい。したがって、照明部材3に代えて光学レンズ1が回転する構成が採用されてもよい。また、上述した実施形態において、開口絞り24は、例えば、照明部材3からの明視野光が撮像レンズ23へ入らないように制御部50によって調整されてもよい。この場合、例えば、光学レンズ1の撮像時に、制御部50の制御により、画像処理にとって適切なコントラストになるように開口絞り24が調整される。また、例えば、光学レンズ1と撮像部2との距離や光学レンズ1と照明部材3との距離も、制御部50の制御により調整されてもよい。また、上記の実施形態において、例えば、光学レンズ1の位置調整機構、撮像部2の位置調整機構、または照明部材3の位置調整機構が備えられ、これらの位置調整機構(いずれも不図示)によって、上述の距離が調整される。
上述した第1の実施の形態においては、第2回転部42は、例えば、ゴニオステージにより構成されるが、照明部材3と第1回転部41とを軸O2を略中心として回転させる構成であれば、これに限定されない。
上述した第1の実施の形態において、第1回転部41の回転が必要かどうかの判断(ステップS9)は、撮像部2で撮像された画像の処理(ステップS5)の前に行ってもよい。すなわち、光学レンズ1と照明部材3を異なる複数の位置関係に配置して撮像した複数の画像を取得した後に、当該複数の画像の処理をまとめて行ってもよい。
上述の第2の実施の形態における光学レンズ検査装置200を構成する平面移動部242の移動部材242bが、例えば、照明部材3の光の照射角度を変更可能に、照明部材3と連結される構成が採用されて、第2の実施の形態の変形例が得られる。図24は、第2の実施の形態の変形例における照明部材3と移動機構240とを示す側面図である。この変形例における光学レンズ検査装置200は、照明部材3の光の照射方向3Dを変更する照射角度変更部233をさらに備える。照射角度変更部233は、平面移動部242に対して照明部材3を連結する。照射角度変更部233は、X軸方向を中心軸として回転可能に構成される。このため、照射角度変更部233の回転に伴って、照明部材3がX軸に沿った軸周りに回転する。X軸方向は、移動部材242bの移動方向に垂直となる方向である。このように移動部材242bの移動方向と垂直となる方向に回転することにより、照明部材3から光学レンズへの光の照射角度が変更される。したがって、光学レンズの凹凸形状に対応させて、光学レンズに対して光が照射される。言い換えると、図24に示すような変形例は、照明部材3が光の照射角度を移動機構240に依らずに変更させることができる。このような第2の実施の形態における光学レンズ検査装置200によれば、光学レンズ1が照明部材3により複数の角度(複数の位置)から照射される。
上述の実施形態においては、光学レンズ検査装置100,200は、第2回転部42を備えるが、第2回転部42を備えない構成であっても良い。この場合は、照明部材3の照射光の強度を大きくすることにより、明部と暗部との境界の領域としての、暗視野領域31が広がる。このようにして、照明部材3の照射光の強度を大きくして、暗視野領域31を広げることができる。また、このように暗視野領域31が広がることにより、光学レンズ1の全体を撮像するために必要な画像の撮像枚数が低減する。この点で、暗視野領域31を広げることのできる程度に照明部材3の照射光の強度が大きくなることが好ましい。暗視野領域31が広がれば、第1回転部41の回転のみでも、光学レンズ1の略全領域を暗視野画像として撮像可能であると考えられる。
今回開示された実施の形態は例示であって、上述の内容のみに限定されるものではない。本発明の範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内のすべての変更が含まれることが意図される。
1 光学レンズ
2 撮像部
3 照明部材
3D 光の照射方向
4,240 移動機構
5 コンピュータ
11 欠陥
21 光学系
22 撮像デバイス
23 撮像レンズ
24 開口絞り
31 暗視野領域
32 明視野領域
33 光源
41 第1回転部
41R 第1回転部の回転方向
42 第2回転部
42S 第2回転部の回転方向
42a,242a ガイドレール
42b,242b 移動部材
50 制御部
51 CPU
52 ROM
53 RAM
100 光学レンズ検査装置
101 検査システム
102 収容部
103 良品収容部
104 不良品収容部
105,106,107 移送機構
230R 照明部材の回転方向
233 照射角度変更部
242 平面移動部
242S 移動方向
O1 光学レンズの光軸
O2 第2回転部の回転軸
P1 光学レンズの主平面
C 中心
2 撮像部
3 照明部材
3D 光の照射方向
4,240 移動機構
5 コンピュータ
11 欠陥
21 光学系
22 撮像デバイス
23 撮像レンズ
24 開口絞り
31 暗視野領域
32 明視野領域
33 光源
41 第1回転部
41R 第1回転部の回転方向
42 第2回転部
42S 第2回転部の回転方向
42a,242a ガイドレール
42b,242b 移動部材
50 制御部
51 CPU
52 ROM
53 RAM
100 光学レンズ検査装置
101 検査システム
102 収容部
103 良品収容部
104 不良品収容部
105,106,107 移送機構
230R 照明部材の回転方向
233 照射角度変更部
242 平面移動部
242S 移動方向
O1 光学レンズの光軸
O2 第2回転部の回転軸
P1 光学レンズの主平面
C 中心
Claims (11)
- 光学レンズを検査する装置であって、
前記光学レンズを撮像する撮像部と、
前記光学レンズを挟んで前記撮像部と対向して配置され、前記光学レンズに対して光を照射する直線状または曲線状を有する照明部材と、
前記照明部材を、前記光学レンズの光軸を略中心として前記光学レンズに対して相対的に回転させる第1回転部と、
を備える、光学レンズ検査装置。 - 請求項1に記載の光学レンズ検査装置において、
前記照明部材を、前記光軸に近づく位置と前記光軸から遠ざかる位置との間で前記光学レンズに対して相対的に移動させる移動機構をさらに備える、光学レンズ検査装置。 - 請求項2に記載の光学レンズ検査装置において、
前記移動機構は前記照明部材を、前記光学レンズの主平面上に位置し前記光学レンズの中心を含む軸を略中心として、前記光学レンズに対して相対的に回転させる第2回転部により構成される、
光学レンズ検査装置。 - 請求項2に記載の光学レンズ検査装置において、
前記移動機構は、前記光軸に垂直な平面上に前記照明部材を移動させる平面移動部により構成される、
光学レンズ検査装置。 - 請求項4に記載の光学レンズ検査装置において、
前記照明部材の光の照射方向を変更する照射角度変更部をさらに備える、
光学レンズ検査装置。 - 請求項1ないし請求項5のいずれか一つに記載の光学レンズ検査装置において、
前記照明部材は、前記撮像部に前記照明部材からの明視野光が入らない範囲で移動する、
光学レンズ検査装置。 - 請求項6に記載の光学レンズ検査装置において、
前記範囲は、予め前記光学レンズと同一形状のサンプル光学レンズを撮像したときに前記撮像部に前記照明部材が撮像されない範囲に決定される、
光学レンズ検査装置。 - 請求項1ないし請求項7のいずれか一つに記載の光学レンズ検査装置において、
前記照明部材は直線状に配列され、
前記照明部材の配列される直線状の幅は、前記光学レンズの直径と略同一、または、前記光学レンズの直径よりも大きい、光学レンズ検査装置。 - 請求項1ないし請求項8のいずれか一つに記載の光学レンズ検査装置において、
前記撮像部で撮像された画像に基づき、前記光学レンズの良否を判定する制御部をさらに備える、光学レンズ検査装置。 - 光学レンズを検査する方法であって、
直線状または曲線状を有する照明部材から前記光学レンズに対して光を照射しつつ、前記光学レンズを挟んで前記照明部材と対向して配置された撮像部により前記光学レンズを撮像する第1撮像工程と、
前記照明部材を、前記光学レンズの光軸を略中心として前記光学レンズに対して相対的に回転させ、前記光学レンズと前記照明部材を前記第1撮像工程と異なる位置関係に配置する回転工程と、
前記回転工程後に、前記光学レンズに対して前記照明部材から光を照射しつつ、前記撮像部により前記光学レンズを撮像する第2撮像工程と、
を備える光学レンズ検査方法。 - 請求項10に記載の光学レンズ検査方法において、
前記光学レンズと同一形状のサンプル光学レンズを、前記サンプル光学レンズと前記照明部材との相対的な位置が異なる複数の位置関係において、前記照明部材によって照明しつつ、前記撮像部によって撮像するサンプル撮像工程をさらに備え、
前記サンプル撮像工程において前記照明部材からの明視野光が入らない画像が撮像されたときの前記照明部材の前記サンプル光学レンズと前記撮像部とに対する相対的な位置関係が、前記第1撮像工程及び前記第2撮像工程における前記照明部材の前記光学レンズと前記撮像部とに対する相対的な位置関係に採用される、光学レンズ検査方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-108848 | 2021-06-30 | ||
JP2021108848A JP2023006310A (ja) | 2021-06-30 | 2021-06-30 | 光学レンズ検査装置、および光学レンズ検査方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023276555A1 true WO2023276555A1 (ja) | 2023-01-05 |
Family
ID=84691330
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/022646 WO2023276555A1 (ja) | 2021-06-30 | 2022-06-03 | 光学レンズ検査装置、および光学レンズ検査方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2023006310A (ja) |
WO (1) | WO2023276555A1 (ja) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11125577A (ja) * | 1997-10-22 | 1999-05-11 | Asahi Optical Co Ltd | 光学部材検査装置 |
JP2004212353A (ja) * | 2003-01-09 | 2004-07-29 | Tb Optical Co Ltd | 光学的検査装置 |
JP2005127989A (ja) * | 2003-10-03 | 2005-05-19 | Olympus Corp | 傷検出装置および傷検出プログラム |
JP2009085883A (ja) * | 2007-10-02 | 2009-04-23 | Fujinon Corp | 欠陥検査装置 |
JP2015227793A (ja) * | 2014-05-30 | 2015-12-17 | コニカミノルタ株式会社 | 光学部品の検査装置及び検査方法 |
JP2017003412A (ja) * | 2015-06-10 | 2017-01-05 | 富士通株式会社 | レンズ検査装置及びレンズ検査方法 |
US20180195931A1 (en) * | 2015-07-30 | 2018-07-12 | Essilor International (Compagnie Generale D'optique) | Method for checking a geometric characteristic and an optical characteristic of a trimmed ophthalmic lens and associated device |
JP2021096112A (ja) * | 2019-12-16 | 2021-06-24 | コニカミノルタ株式会社 | 透明体の検査装置 |
-
2021
- 2021-06-30 JP JP2021108848A patent/JP2023006310A/ja active Pending
-
2022
- 2022-06-03 WO PCT/JP2022/022646 patent/WO2023276555A1/ja active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11125577A (ja) * | 1997-10-22 | 1999-05-11 | Asahi Optical Co Ltd | 光学部材検査装置 |
JP2004212353A (ja) * | 2003-01-09 | 2004-07-29 | Tb Optical Co Ltd | 光学的検査装置 |
JP2005127989A (ja) * | 2003-10-03 | 2005-05-19 | Olympus Corp | 傷検出装置および傷検出プログラム |
JP2009085883A (ja) * | 2007-10-02 | 2009-04-23 | Fujinon Corp | 欠陥検査装置 |
JP2015227793A (ja) * | 2014-05-30 | 2015-12-17 | コニカミノルタ株式会社 | 光学部品の検査装置及び検査方法 |
JP2017003412A (ja) * | 2015-06-10 | 2017-01-05 | 富士通株式会社 | レンズ検査装置及びレンズ検査方法 |
US20180195931A1 (en) * | 2015-07-30 | 2018-07-12 | Essilor International (Compagnie Generale D'optique) | Method for checking a geometric characteristic and an optical characteristic of a trimmed ophthalmic lens and associated device |
JP2021096112A (ja) * | 2019-12-16 | 2021-06-24 | コニカミノルタ株式会社 | 透明体の検査装置 |
Also Published As
Publication number | Publication date |
---|---|
JP2023006310A (ja) | 2023-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4020144B2 (ja) | 表面状態の検査方法 | |
TWI617801B (zh) | 晶圓檢查方法以及晶圓檢查裝置 | |
JP4847128B2 (ja) | 表面欠陥検査装置 | |
JP5144401B2 (ja) | ウエハ用検査装置 | |
KR101120226B1 (ko) | 표면 검사 장치 | |
CN110073203B (zh) | 检查透明基材上的缺陷的方法和设备 | |
JP2007147433A (ja) | セラミック板の欠陥検出方法と装置 | |
JP2007064801A (ja) | 照明装置及びこれを備えた外観検査装置 | |
JPH08128959A (ja) | 光学的検査方法および光学的検査装置 | |
JP5726628B2 (ja) | 透明体ボトルの外観検査装置及び外観検査方法 | |
JP2012026858A (ja) | 円筒容器の内周面検査装置 | |
JP2017166903A (ja) | 欠陥検査装置及び欠陥検査方法 | |
CN111198190A (zh) | 光学检测系统 | |
KR20160121716A (ko) | 하이브리드 조명 기반 표면 검사 장치 | |
JP2007322166A (ja) | プリント基板検査装置 | |
WO2023276555A1 (ja) | 光学レンズ検査装置、および光学レンズ検査方法 | |
JPH09325122A (ja) | 透明容器内の異物検査方法 | |
JP3078784B2 (ja) | 欠陥検査装置 | |
JP2007333661A (ja) | 電子部品の外観検査方法および外観検査装置 | |
JP2009229221A (ja) | 光学デバイス欠陥検査方法及び光学デバイス欠陥検査装置 | |
JP2008064656A (ja) | 周縁検査装置 | |
JP2000028535A (ja) | 欠陥検査装置 | |
TWI686660B (zh) | 攝像裝置 | |
JP2008139126A (ja) | 欠陥検出装置および欠陥検出方法 | |
JP5100371B2 (ja) | ウェハ周縁端の異物検査方法、及び異物検査装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22832713 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22832713 Country of ref document: EP Kind code of ref document: A1 |