WO2023275962A1 - 回転電機 - Google Patents

回転電機 Download PDF

Info

Publication number
WO2023275962A1
WO2023275962A1 PCT/JP2021/024455 JP2021024455W WO2023275962A1 WO 2023275962 A1 WO2023275962 A1 WO 2023275962A1 JP 2021024455 W JP2021024455 W JP 2021024455W WO 2023275962 A1 WO2023275962 A1 WO 2023275962A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall
hole
stator
cooling
flow path
Prior art date
Application number
PCT/JP2021/024455
Other languages
English (en)
French (fr)
Inventor
仁 荒川
直樹 岩本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/024455 priority Critical patent/WO2023275962A1/ja
Priority to JP2023531176A priority patent/JP7317270B2/ja
Publication of WO2023275962A1 publication Critical patent/WO2023275962A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/02Machines with one stator and two or more rotors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • This application relates to rotating electric machines.
  • a rotating electric machine is connected to a rotating shaft provided at the center of rotation, and a mechanical transmission that slows down the rotation of the rotating electric machine has been used for applications that require low-speed drive.
  • a mechanical transmission is used, mechanical wear and the like occur in the transmission, so periodic maintenance is required.
  • a rotary electric machine capable of changing the rotation speed of a rotor in a non-contact manner without using a mechanical transmission is disclosed as a magnetic wave gear device or a magnetic geared generator.
  • a magnetic wave gear device comprises a stator having permanent magnets, a first rotor rotating at a low speed and having magnetic pole pieces, and a first rotor having magnetic pole pieces, which rotates at a high speed according to a gear ratio, from the outer peripheral side around a rotating shaft, A second rotor having permanent magnets is provided.
  • the stator has stator coils capable of outputting generated power or controlling generated torque.
  • the allowable temperature of the rotating electrical machine is determined for each part of the rotating electrical machine.
  • the stator coil depends on the heat resistance temperature of the insulation coating
  • the permanent magnets of the stator and the second rotor depend on the demagnetizing temperature of the magnets
  • the first rotor is interposed around the magnetic pole piece.
  • the heat resistance temperature of the insulating material determines the appropriate allowable temperature for each part.
  • a cooling air flow A that blows into the ventilation path on the outer peripheral surface side of the casing and a cooling air flow B that blows into the ventilation path inside the machine are directed in opposite directions by using the outer skin cooling method.
  • a technique for countercurrently blowing air is disclosed (see, for example, Patent Document 1).
  • an object of the present application is to obtain a rotating electrical machine with increased output by suppressing the expansion of variations in temperature distribution and temperature rise occurring in the first rotor and the second rotor.
  • a rotary electric machine disclosed in the present application includes a rotating shaft, a stator core having a plurality of stator slots that open radially inward in a circumferential direction, and a fixing member disposed on the bottom side of each of the plurality of stator slots.
  • a child coil a stator magnet arranged on the opening side of each of the plurality of stator slots so as to have the same magnetic pole direction in the radial direction, and provided between the stator coil and the stator magnet,
  • a stator having a stator magnet cooling channel extending axially therethrough, a cylindrical first body portion, and a plurality of magnetic pole pieces provided on the first body portion at intervals in the circumferential direction.
  • a first rotor that is provided coaxially with the stator so as to face the stator magnet and rotates integrally with the rotating shaft; a cylindrical second main body; and an outer peripheral portion of the second main body and a plurality of permanent magnets arranged at intervals in the circumferential direction, and provided coaxially with the first rotor facing the radially inner wall surface of the first main body a rotor, a peripheral wall surrounding the stator from the outside in the radial direction, a first inner wall connected to the peripheral wall and covering one axial side of the stator, the first rotor, and the second rotor, the a second inner wall connected to the peripheral wall and covering the other axial side of the stator, the first rotor, and the second rotor; a second inner wall connected to the peripheral wall and spaced apart in the axial direction of the first inner wall a housing having a first outer wall covering one side and a second outer wall connected to the peripheral wall and covering the other side of the second inner wall in the axial direction with
  • the second end plate has a second through hole axially penetrating in a radially outer portion thereof, and between the first main body portion and the second rotor, A first cooling channel communicating with the first through hole and the second through hole is formed, a second cooling channel is formed between the first body portion and the stator, and the first inner wall is a first inner wall inner through-hole that communicates with the first cooling channel and penetrates in the axial direction, and a first inner wall inner through-hole that communicates with the second cooling channel and the stator magnet cooling channel, a first inner wall outer through-hole axially penetrating at a radial position radially outer than the second inner wall inner side axially penetrating through the a through hole, and
  • a stator provided between a stator coil and a stator magnet and having a stator magnet cooling passage penetrating in the axial direction, a first rotor, a second rotor, wherein the first through hole of the first end plate of the first rotor is located between the cylindrical first main body portion of the first rotor and the second rotor; and a first cooling channel communicating with a second through hole of a second end plate of the first rotor is formed, and a second cooling channel is formed between the first main body and the stator, In the first cooling passage, the second cooling passage, and the stator magnet cooling passage, the direction of flow of the cooling gas in the axial direction differs at the same position in the axial direction.
  • FIG. 1 is a schematic diagram showing a cross section of a rotating electric machine according to Embodiment 1;
  • FIG. 1 is a schematic diagram showing a main part of a rotating electric machine according to Embodiment 1;
  • FIG. 4 is a schematic diagram showing another cross section of the rotating electric machine according to Embodiment 1.
  • FIG. 2 is a schematic diagram showing a low-speed rotor of the rotary electric machine according to Embodiment 1;
  • FIG. FIG. 4 is a schematic diagram showing another low-speed rotor of the rotary electric machine according to Embodiment 1;
  • 1 is a schematic diagram showing a main part of a housing of a rotating electric machine according to Embodiment 1;
  • FIG. 4 is a schematic diagram showing a main part of another casing of the rotary electric machine according to Embodiment 1;
  • FIG. 4 is a schematic diagram showing a cross section of another rotating electric machine according to the first embodiment;
  • FIG. 7 is a schematic diagram showing a cross section of a rotating electrical machine according to Embodiment 2;
  • FIG. 9 is a schematic diagram showing a cross section of another rotating electric machine according to Embodiment 2;
  • FIG. 7 is a schematic diagram showing a cross section of a rotating electric machine according to Embodiment 3;
  • FIG. 11 is a schematic diagram showing a cross section of another rotating electric machine according to Embodiment 3;
  • FIG. 11 is a schematic diagram showing a cross section of another rotating electric machine according to Embodiment 3;
  • FIG. 11 is a schematic diagram showing a cross section of another rotating electric machine according to Embodiment 3;
  • FIG. 11 is a schematic diagram showing a cross section of a rotating electric machine according to Embodiment 4;
  • FIG. 11 is a schematic diagram showing a cross section of another rotating electric machine according to Embodiment 4;
  • FIG. 11 is a schematic diagram showing a cross section of a rotating electric machine according to Embodiment 5;
  • FIG. 11 is a schematic diagram showing a main part of a rotating electric machine according to Embodiment 5;
  • FIG. 11 is a schematic diagram showing a low-speed rotor of a rotary electric machine according to Embodiment 5;
  • FIG. 12 is a schematic diagram showing another low-speed rotor of the rotary electric machine according to Embodiment 5;
  • FIG. 11 is a schematic diagram showing a main part of a casing of a rotating electric machine according to Embodiment 5;
  • FIG. 12 is a schematic diagram showing a main part of another casing of the rotary electric machine according to Embodiment 5;
  • FIG. 11 is a schematic diagram showing a cross section of another rotating electric machine according to Embodiment 5;
  • FIG. 1 is a schematic diagram showing a cross section of rotating electric machine 100 according to Embodiment 1, and is a diagram showing a cross section perpendicular to rotating shaft 40.
  • FIG. 2 is a schematic diagram showing a main part of rotating electric machine 100.
  • FIG. 3 is a schematic diagram showing another cross section of the rotating electric machine 100, cut along the AA cross section of FIG. 1, and
  • FIG. 5 is a schematic diagram showing the rotor 20 portion, showing the first end plate 22a side
  • FIG. 5 is a schematic diagram showing another low-speed rotor 20 portion of the rotary electric machine 100, showing the first end plate 22a side.
  • FIG. 1 is a schematic diagram showing a cross section of rotating electric machine 100 according to Embodiment 1, and is a diagram showing a cross section perpendicular to rotating shaft 40.
  • FIG. 2 is a schematic diagram showing a main part of rotating electric machine 100.
  • FIG. 3 is a schematic diagram showing another cross section of the rotating electric machine 100, cut along the AA
  • FIG. 6 is a schematic diagram showing a main part of the casing 45 of the rotating electrical machine 100, showing the first inner wall 45b
  • FIG. FIG. 8 is a diagram showing the first inner wall 45b
  • FIG. 8 is a schematic diagram showing a cross section of another rotating electric machine 100 according to Embodiment 1, cut at the same position as in FIG.
  • the rotating electric machine 100 in the present application is a rotating electric machine known as a magnetic geared generator, which includes a stator 10, a low speed rotor 20 as a first rotor, and a high speed rotor 30 as a second rotor. is.
  • the rotating electric machine 100 includes a rotating shaft 40 that is the center of rotation of the rotating electric machine 100 , an annular stator 10 that surrounds the rotating shaft 40 , and a stator 10 that is coaxial with the stator 10 inside the stator 10 . and a high-speed rotor 30 provided coaxially with the low-speed rotor 20 facing the inner side of the low-speed rotor 20 .
  • the stator 10 includes a stator core 13, stator coils 11, and stator magnets 12, as shown in FIG.
  • the annular stator core 13 includes a plurality of stator slots 13a and stator teeth 13b that are open radially inward with respect to the rotating shaft 40 and are alternately spaced in the circumferential direction.
  • a plurality of stator slots 13 a each comprise a stator coil 11 and a stator magnet 12 .
  • the stator coil 11 is arranged on the bottom side of the stator slot 13a.
  • the stator magnets 12 are arranged on the open side of the stator slots 13a.
  • the stator magnets 12 are magnetized to have the same magnetic pole direction in the radial direction.
  • the stator magnet 12 is, for example, a neodymium sintered magnet, but is not limited to this. If the inner diameter side of the stator magnet 12 is the N pole, the inner diameter side of the adjacent stator teeth 13b is the S pole, forming the same number of pole pairs Ns as the number of the stator slots 13a.
  • a stator magnet cooling channel 15 which is a first stator cooling portion, is provided between the stator coil 11 and the stator magnet 12 .
  • the stator magnet cooling flow path 15 is provided to penetrate in the axial direction.
  • the stator coil 11 and the stator magnet 12 face each other with the stator magnet cooling flow path 15 interposed therebetween.
  • the stator coils 11 and the stator magnets 12 are fixed, for example, by bonding them to the wall surfaces of the stator slots 13a, but the fixing method is not limited to this.
  • the cooling gas passages of the stator 10 and the like will be described later.
  • the low-speed rotor 20 is provided on the inner peripheral side of the stator 10 so as to face the stator magnets 12 coaxially with the stator 10 with a narrow first gap 61 interposed therebetween.
  • the low-speed rotor 20 rotates integrally with the rotating shaft 40 .
  • the low-speed rotor 20 has a cylindrical first body portion 26 and a plurality of magnetic pole pieces 21 circumferentially spaced apart on the first body portion, and is rotated at a low speed by external power. .
  • the pole pieces 21 are evenly spaced. Let NL be the number of the pole pieces 21 .
  • the pole piece 21 is secured to the first body portion 26 via an insulating material 25 .
  • the pole piece 21 and the first body portion 26 are insulated.
  • the high-speed rotor 30 is provided coaxially with the low-speed rotor 20 with a narrow second gap 62 interposed therebetween, facing the radially inner wall surface of the first body portion 26 .
  • the high-speed rotor 30 has a cylindrical second body portion 35 and high-speed rotor magnets 31, which are a plurality of permanent magnets arranged at intervals in the circumferential direction on the outer peripheral portion of the second body portion 35. , Nh are formed.
  • the high-speed rotor magnets 31 are arranged at regular intervals.
  • Each size of the first gap 61 and the second gap 62 is, for example, several millimeters.
  • the rotary electric machine 100 includes a fan 43, a heat exchanger 44, and a housing 45 that houses the stator 10, the low speed rotor 20, and the high speed rotor 30, as shown in FIG.
  • the fan 43 is arranged inside the housing 45 and sends out cooling gas.
  • the heat exchanger 44 is arranged inside the housing 45, and the cooling gas sent out from the fan 43 passes through it.
  • the cooling gas circulates inside the housing 45, and a portion through which the cooling gas passes serves as a flow path for the cooling gas.
  • a turbine blade 41 is attached to a rotating shaft 40 protruding outside the rotating electric machine 100 .
  • the housing 45 includes a peripheral wall 45a, a first inner wall 45b, a second inner wall 45c, a first outer wall 45d and a second outer wall 45e.
  • the peripheral wall 45a surrounds the stator 10 from the radial outside.
  • the first inner wall 45b is connected to the peripheral wall 45a and covers one side of the stator 10, the low speed rotor 20 and the high speed rotor 30 in the axial direction.
  • the second inner wall 45c is connected to the peripheral wall 45a and covers the other side of the stator 10, the low speed rotor 20 and the high speed rotor 30 in the axial direction.
  • 45 d of 1st outer walls are connected with the surrounding wall 45a, and cover the axial direction one side of the 1st inner wall 45b at intervals.
  • the second outer wall 45e is connected to the peripheral wall 45a and covers the other axial side of the second inner wall 45c with a space therebetween.
  • Each of the first inner wall 45b, the second inner wall 45c, and the second outer wall 45e is connected to the rotating shaft 40 via the bearing 42. As shown in FIG.
  • the first body portion 26 has a first end plate 22a and a second end plate 22b.
  • the first end plate 22 a extends radially inward from one axial end of the first body portion 26 between the high-speed rotor 30 and the first inner wall 45 b in the axial direction, and is fixed to the rotating shaft 40 . be done.
  • the second end plate 22 b extends radially inward from the other axial end of the first body portion 26 between the high-speed rotor 30 and the second inner wall 45 c in the axial direction, and is fixed to the rotating shaft 40 . be done.
  • the first end plate 22a has a first through hole 23a axially penetrating in its radially outer portion.
  • the second end plate 22b has a second through hole 23b axially penetrating in a radially outer portion.
  • These through-holes are formed radially outside the 3/4 radius of each end plate.
  • Each through hole is a portion not hatched in FIG. In the following cross-sectional views as well, the through holes provided in each part are shown as non-hatched portions.
  • a first cooling passage 71 communicating with the first through hole 23 a and the second through hole 23 b is formed between the first main body portion 26 and the high-speed rotor 30 to provide a cooling path between the first main body portion 26 and the stator 10 .
  • a second cooling channel 72 is formed therebetween. The first cooling channel 71 is part of the second gap 62 and the second cooling channel 72 is part of the first gap 61 .
  • the first inner wall 45b communicates with the first cooling channel 71 and communicates with the first inner wall inner through-hole 47a penetrating in the axial direction, the second cooling channel 72 and the stator magnet cooling channel 15, and communicates with the first cooling channel 71. It has a first inner wall outer through hole 47b that penetrates in the axial direction at a radial position radially outer than the inner wall inner through hole 47a.
  • the second inner wall 45c communicates with the first cooling channel 71 and communicates with the second inner wall inner through-hole 48a extending axially therethrough, the second cooling channel 72 and the stator magnet cooling channel 15, and communicates with the second cooling channel 71. It has a second inner wall outer through hole 48b that penetrates in the axial direction at a radial position radially outer than the inner wall inner through hole 48a.
  • a one side wall flow passage 73 for the cooling gas is formed to communicate between the first inner wall outer through hole 47b and the first inner wall inner through hole 47a.
  • another side wall inner flow passage 74 for the cooling gas is formed, which communicates between the second inner wall outer through-hole 48b and the second inner wall inner through-hole 48a.
  • the fan 43 is arranged between the first inner wall 45b and the first outer wall 45d and between the second inner wall 45c and the second outer wall 45e, or both.
  • the heat exchanger 44 is arranged in one or both of the first inner wall 45b and the first outer wall 45d and the second inner wall 45c and the second outer wall 45e.
  • the fan 43 is arranged inside the one side wall inner channel 73 and sends out cooling gas.
  • the heat exchanger 44 is arranged inside the other side wall inner channel 74 .
  • the arrangement of the fan 43 and the heat exchanger 44 is not limited to this, and the arranged flow paths may be reversed.
  • the fan 43 and the heat exchanger 44 When the fan 43 and the heat exchanger 44 are arranged in separate flow paths, the fan 43 and the heat exchanger 44 can be fixed to the respective flow paths without interfering with each other when the rotating electrical machine 100 is manufactured. productivity can be improved. Further, as shown in FIG. 8, the fan 43 and the heat exchanger 44 may be arranged inside the one side wall inner channel 73 . When the fan 43 and the heat exchanger 44 are arranged in the same channel 73 , the fan 43 and the heat exchanger 44 can be gathered on the side opposite to the turbine blades 41 . can be reduced in size.
  • FIG. 3 shows two types of arrows.
  • An arrow 51 with a circle on the side opposite to the arrow indicates the flow of the cooling gas whose temperature is relatively low due to heat dissipation in the heat exchanger 44 .
  • An arrow 52 with a square on the side opposite to the arrow indicates the flow of cooling gas whose temperature is relatively high due to the heat received from each part.
  • the cooling gas flows in different axial directions at the same position in the axial direction.
  • the direction in which the cooling gas flows is not limited to this, and the cooling gas may flow in the opposite direction. Even if the cooling gas flows in the opposite direction, in the first cooling passage 71, the second cooling passage 72, and the stator magnet cooling passage 15, at the same position in the axial direction, the cooling gas flows in the axial direction. is different.
  • the magnetic pole pieces 21 generate heat as the rotating electric machine 100 operates.
  • the heat generated by the pole pieces 21 is transferred to the insulating material 25, which heats up.
  • the insulating material 25 has a predetermined allowable temperature, and if the allowable temperature is exceeded, the insulation performance may deteriorate and the life may be shortened.
  • One of the measures for mitigating the temperature rise of the insulating material 25 is to increase the amount of circulating air in the rotating electric machine 100 .
  • the first gap 61 and the second gap 62 are very narrow, a large fan is required to secure the necessary air volume. Installation of a large fan poses a problem in terms of cost performance.
  • the temperature of the cooling gas in both the first gap 61 and the second gap 62 is lower on the upstream side and lower on the downstream side. temperature rises, it is inefficient to reduce the maximum temperature of the low-speed rotor 20 .
  • the cooling gas flows in opposite directions in the first gap 61 and the second gap 62, so that the maximum temperature of the low-speed rotor 20 can be efficiently reduced. be able to.
  • the maximum temperature of the low-speed rotor 20 can be reduced while avoiding an increase in size of the fan, problems caused by the insulating material 25 of the low-speed rotor 20 can be suppressed. Since defects of the insulating material 25 are suppressed, the reliability of the rotating electric machine 100 can be improved.
  • the bottleneck of the output of rotating electrical machine 100 is the temperature of low-speed rotor 20
  • the temperature rise during operation of rotating electrical machine 100 is suppressed, so the output of rotating electrical machine 100 can be increased.
  • the cooling gas also flows through the stator magnet cooling passages 15 formed in the stator 10, the stator 10 can also be efficiently cooled.
  • FIGS. 3 and 8 are sectional views, only one first through hole 23a of the first end plate 22a and one second through hole 23b of the second end plate 22b are shown.
  • the numbers of 23a and second through holes 23b are not limited to one.
  • a plurality of first through holes 23a may be provided at intervals.
  • the shape of each of the first through-holes 23a and the second through-holes 23b is not limited to a circular shape, and as shown in FIG. Any shape is acceptable.
  • the first end plate 22a is shown, the same applies to the second through hole 23b of the second end plate 22b.
  • FIGS. 3 and 8 are cross-sectional views, only one first inner wall through-hole 47a, first inner wall outer through-hole 47b, second inner wall inner through-hole 48a, and second inner wall outer through-hole 48b are provided. Although shown, the number of first inner wall inner through-holes 47a, first inner wall outer through-holes 47b, second inner wall inner through-holes 48a, and second inner wall outer through-holes 48b is not limited to one. As shown in FIG. 6, a plurality of first inner wall through holes 47a and first inner wall outer through holes 47b may be provided at intervals.
  • each of the first inner wall inner through-hole 47a, the first inner wall outer through-hole 47b, the second inner wall inner through-hole 48a, and the second inner wall outer through-hole 48b is not limited to a circular shape, and is shown in FIG. , a shape in which a plurality of through-holes are connected along the outer circumference of the first inner wall 45b may be used.
  • the first inner wall 45b is shown, the same applies to the second inner wall inner through-hole 48a and the second inner wall outer through-hole 48b of the second inner wall 45c.
  • the number of fans 43 and heat exchangers 44 is not limited to one.
  • fans 43 may be provided at respective positions corresponding to a plurality of first inner wall inner through holes 47a.
  • the rotary electric machine 100 may be provided with a baffle that suppresses the flow of cooling gas in the radial direction. If the parts of the rotary electric machine 100 are close to each other in the axial direction, the baffles may not be provided because the cooling gas is less likely to flow in the radial direction without providing the baffles. If the respective parts of the rotating electric machine 100 are not close to each other in the axial direction, it is possible to suppress the flow of the cooling gas in the radial direction by providing the baffles. By suppressing the flow of the cooling gas in the radial direction, the cooling gas can efficiently flow through the first cooling channel 71 , the second cooling channel 72 , and the stator magnet cooling channel 15 .
  • the baffle is made of metal or resin, for example.
  • the first baffle 46a is formed in a cylindrical shape, and is arranged radially inward of the first through hole 23a between the one axial side of the high-speed rotor 30 and the first end plate 22a. Coaxially provided.
  • the second baffle 46b is formed in a cylindrical shape, and is arranged radially inward of the second through hole 23b between the other axial side of the high-speed rotor 30 and the second end plate 22b. Coaxially provided.
  • the first baffle 46a is fixed to the high speed rotor 30 or the first end plate 22a.
  • the second baffle 46b is fixed to the high speed rotor 30 or the second end plate 22b.
  • the third baffle 46c is formed in a cylindrical shape, and is radially inward of the first inner wall inner through-hole 47a and the first through-hole 23a between the one axial side of the first end plate 22a and the first inner wall 45b. , and provided coaxially with the stator 10 .
  • the fourth baffle 46d is formed in a tubular shape, and is radially inward of the second inner wall inner through-hole 48a and the second through-hole 23b between the other axial side of the second end plate 22b and the second inner wall 45c. , and provided coaxially with the stator 10 .
  • the third baffle 46c is fixed to the first end plate 22a or the first inner wall 45b.
  • the fourth baffle 46d is fixed to the second end plate 22b or the second inner wall 45c.
  • the fifth baffle 46e is formed in a cylindrical shape, and is located radially inward of the first inner wall outer through-hole 47b between the end surface of the low-speed rotor 20 on one axial side and the first inner wall 45b. It is arranged radially outside the hole 23 a and the first inner wall inner through-hole 47 a and provided coaxially with the stator 10 .
  • the sixth baffle 46f is formed in a cylindrical shape, and is located radially inward of the second inner wall outer through-hole 48b between the end surface of the low speed rotor 20 on the other axial side and the second inner wall 45c. It is arranged radially outside of the hole 23b and the second inner wall inner through-hole 48a and provided coaxially with the stator 10 .
  • a fifth baffle 46e is fixed to the first end plate 22a or the first inner wall 45b, and a sixth baffle 46f is fixed to the second end plate 22b or the second inner wall 45c.
  • the rotating electric machine 100 includes the stator 10 having the stator magnet cooling passage 15 provided between the stator coil 11 and the stator magnet 12 and penetrating in the axial direction.
  • a low-speed rotor 20 and a high-speed rotor 30 and between the cylindrical first body portion 26 of the low-speed rotor 20 and the high-speed rotor 30, the first through hole 23a of the first end plate 22a and the A first cooling channel 71 communicating with the second through hole 23b of the second end plate 22b is formed, and a second cooling channel 72 is formed between the first main body portion 26 and the stator 10 to provide a first cooling Since the flow path 71, the second cooling flow path 72, and the stator magnet cooling flow path 15 have different axial directions in which the cooling gas flows at the same position in the axial direction, the low-speed rotor 20 and the high-speed rotation are controlled.
  • a first baffle 46a arranged radially inside the first through hole 23a and provided coaxially with the stator 10, and a first baffle 46a arranged radially inside the second through hole 23b and provided coaxially with the stator 10.
  • the second baffle 46b is provided, it is possible to suppress the flow of the cooling gas in the radial direction, so that the cooling gas can efficiently flow through the first cooling flow path 71 .
  • a third baffle 46c arranged radially inward of the first inner wall inner through hole 47a and the first through hole 23a and provided coaxially with the stator 10, a second inner wall inner through hole 48a and the second through hole 46c If the fourth baffle 46d is arranged radially inward of the hole 23b and provided coaxially with the stator 10, it is possible to suppress the flow of the cooling gas in the radial direction.
  • the cooling gas can be efficiently flowed to 71 .
  • the cooling gas can be suppressed from flowing in the radial direction. be able to.
  • a one side wall flow path 73 for communicating the cooling gas between the first inner wall outer through hole 47b and the first inner wall inner through hole 47a is formed.
  • the cooling gas communicates between the second inner wall outer through hole 48b and the second inner wall inner through hole 48a between the second inner wall 45c and the second outer wall 45e.
  • the heat exchanger 44 is arranged inside the other side wall inner flow path 74, the fan 43 and the heat exchanger 44 do not interfere with each other when the rotating electric machine 100 is manufactured. Since it can be fixed to each flow path, the productivity of rotating electric machine 100 can be improved.
  • a one side wall flow path 73 for communicating the cooling gas between the first inner wall outer through hole 47b and the first inner wall inner through hole 47a is formed. and the heat exchanger 44 is disposed inside the one side wall inner channel 73, between the second inner wall 45c and the second outer wall 45e, between the second inner wall outer through hole 48b and the second inner wall inner through hole 48a.
  • the other side wall inner flow path 74 for the cooling gas communicating with is formed, the size of the rotating electric machine 100 in the axial direction can be reduced.
  • FIG. 9 is a schematic diagram showing a cross section of the rotating electrical machine 100 according to the second embodiment, taken at a position equivalent to the AA cross section position in FIG. 1, and FIG. 10 shows another rotating electrical machine according to the second embodiment. It is a schematic diagram which shows the cross section of 100.
  • FIG. A rotating electric machine 100 according to Embodiment 2 is configured such that a stator core 13 has a stator core cooling flow path 14 that is a second stator cooling portion.
  • the stator core 13 is provided radially outside the stator coil 11 and has a stator core cooling flow path 14 penetrating in the axial direction.
  • the first inner wall 45b has a first inner wall outer second through hole 47c that communicates with the stator core cooling flow path 14 and penetrates in the axial direction at a radial position radially outer than the first inner wall outer through hole 47b.
  • the second inner wall 45c communicates with the stator core cooling passage 14 and has a second inner wall outer second through hole 48c axially penetrating at a radial position radially outer than the second inner wall outer through hole 48b. .
  • a sidewall inner channel 73 is formed. Between the second inner wall 45c and the second outer wall 45e, the other of the cooling gas communicating between the second inner wall outer through-hole 48b and the second inner wall outer second through-hole 48c and the second inner wall inner through-hole 48a A sidewall inner channel 74 is formed.
  • the fan 43 is arranged inside the one side wall inner channel 73 and sends out cooling gas.
  • the heat exchanger 44 is arranged inside the other side wall inner channel 74 . The arrangement of the fan 43 and the heat exchanger 44 is not limited to this, and the arranged flow paths may be reversed.
  • the flow of the cooling gas will be explained using FIG.
  • the cooling gas sent out from the fan 43 flows through the first cooling flow path 71, the other side wall inner flow path 74, the second cooling flow path 72, the stator magnet cooling flow path 15, and the stator core cooling flow, as indicated by the arrows. It flows in the order of channel 14 and one side wall channel 73 .
  • the cooling gas passes through the heat exchanger 44 in the other side wall inner channel 74 .
  • the axial direction in which the cooling gas flows is different.
  • the direction in which the cooling gas flows is not limited to this, and the cooling gas may flow in the opposite direction.
  • the first cooling passage 71, the second cooling passage 72, the stator magnet cooling passage 15, and the stator core cooling passage 14 are arranged at the same position in the axial direction. , the axial directions of cooling gas flow are different.
  • the radially outer side of the stator 10 can be efficiently cooled by the stator core cooling passages 14 . Since the radially outer side of the stator 10 can be efficiently cooled, it is possible to suppress an increase in the variation in temperature distribution in the radial direction of the stator 10 . The radial inner side of the stator 10 is efficiently cooled by the stator magnet cooling flow path 15 .
  • a baffle may be added to the rotary electric machine 100 .
  • the first stator baffle 46g is located radially inward of the stator core cooling flow path 14 and the first inner wall outer second through hole 47c between the one axial side of the stator core 13 and the first inner wall 45b. Moreover, it is arranged radially outside the first inner wall outer through-hole 47 b and provided coaxially with the stator 10 .
  • the second stator baffle 46h is located between the other axial side of the stator core 13 and the second inner wall 45c, radially inward of the stator core cooling flow path 14 and the second inner wall outer second through hole 48c.
  • a first stator baffle 46g is fixed to the stator 10, the first inner wall 45b, or both.
  • a second stator baffle 46h is fixed to the stator 10, the second inner wall 45c, or both.
  • the fan 43 and the heat exchanger 44 may be arranged inside the one side wall inner channel 73 .
  • the fan 43 and the heat exchanger 44 can be concentrated on the side opposite to the turbine blades 41, so that the size of the rotary electric machine 100 in the axial direction can be reduced. can be done.
  • the stator core 13 is provided radially outside the stator coils 11 and has the stator core cooling flow path 14 penetrating in the axial direction. Since the radially outer side of the stator 10 can be efficiently cooled by the stator core cooling passages 14, it is possible to suppress the increase in the radial temperature distribution variation of the stator 10 and the temperature rise. Since the increase in variation in temperature distribution and the temperature rise occurring in the stator 10 are suppressed, the temperature rise during operation of the rotating electrical machine 100 is suppressed, so the output of the rotating electrical machine 100 can be increased.
  • a side wall inner channel 73 is formed, the fan 43 and the heat exchanger 44 are arranged inside one side wall channel 73, and a second inner wall outer through hole 48b is formed between the second inner wall 45c and the second outer wall 45e. and the second inner wall outer second through-hole 48c and the second inner wall inner through-hole 48a are formed to communicate with each other. can be made smaller.
  • the stator core cooling flow path 14 and the first inner wall outer second through hole 47c are arranged radially inward and the first inner wall outer through hole 47b is arranged radially outward.
  • the stator baffle 46g is arranged radially inward of the stator core cooling passage 14 and the second inner wall outer second through hole 48c and radially outer than the second inner wall outer through hole 48b.
  • FIG. 11 is a schematic diagram showing a cross section of the rotating electric machine 100 according to the third embodiment, taken at a position equivalent to the AA cross section position in FIG. 1, and FIG. 12 shows another rotating electric machine according to the third embodiment.
  • 13 is a schematic diagram showing a cross section of another rotary electric machine 100 according to the third embodiment.
  • the radially inner side shows the section of the stator slot 13a
  • the radially outer side shows the section of the stator teeth 13b.
  • a rotary electric machine 100 according to Embodiment 3 has a configuration in which a stator 10 and a low-speed rotor 20 are provided with a ventilation passage extending radially therethrough.
  • the stator core 13 radially penetrates between the second cooling flow path 72 and the stator core cooling flow path 14 at the center in the axial direction of the stator core 13 and is fixed to the second cooling flow path 72 . It has a stator air passage 16 that connects the child core cooling passage 14 and the stator magnet cooling passage 15 .
  • the stator ventilation passages 16 are formed in the stator teeth 13b, as shown in FIG.
  • the first main body portion 26 radially penetrates between the first cooling flow path 71 and the second cooling flow path 72 at the center portion in the axial direction of the first main body portion 26 . It has a low-speed rotor ventilation passage 24 which is a first rotor ventilation passage communicating with the second cooling passage 72 .
  • the number of stator ventilation paths 16 is not limited to one.
  • the stator ventilation path 16 may be provided in each of the stator teeth 13b at different positions in the circumferential direction. Similarly, a plurality of low-speed rotor ventilation passages 24 may be provided at different positions in the circumferential direction of the first body portion 26 .
  • one side first wall inner channel 80a communicating with the first inner wall inner through hole 47a and one side first wall channel 80a communicating with the first inner wall outer second through hole 47c are provided.
  • the other side first wall inner channel 81a communicating with the second inner wall inner through hole 48a and the other side first wall channel 81a communicating with the second inner wall outer second through hole 48c are provided.
  • the first fan 43a which is the fan 43
  • the first heat exchanger 44a which is the heat exchanger 44
  • a second fan 43b which is the fan 43
  • a second heat exchanger 44b which is the heat exchanger 44
  • the first fan 43a sends out cooling gas toward the first inner wall outer through hole 47b side
  • the second fan 43b sends out cooling gas toward the second inner wall outer through hole 48b side.
  • Arrows 51 and 52 shown in FIG. 11 indicate the flow of cooling gas in this case.
  • the flow of the cooling gas is not limited to this.
  • the first fan 43a sends the cooling gas toward the side opposite to the side of the first inner wall outer through-hole 47b, and the second fan 43b blows the second inner wall.
  • the cooling gas may be sent out toward the side opposite to the side of the outer through hole 48b. In this case, the cooling gas flows in the opposite direction to the arrows shown in FIG.
  • Two flow paths are formed from the cooling gas sent from the first fan 43a.
  • One is the second cooling channel 72, the low-speed rotor ventilation channel 24, the first cooling channel 71, the one-side first-wall inner channel 80a, and the one-side third-wall inner channel 80c.
  • the other is the second cooling channel 72 and the stator magnet cooling channel 15, the stator ventilation channel 16, the stator core cooling channel 14, the one side second wall inner channel 80b, the one side third wall inner It flows in order of the flow path 80c.
  • Two flow paths are also formed from the cooling gas sent out from the second fan 43b.
  • One is the second cooling channel 72, the low-speed rotor ventilation channel 24, the first cooling channel 71, the other side first wall inner channel 81a, and the other side third wall inner channel 81c in this order.
  • the other is the second cooling channel 72, the stator magnet cooling channel 15, the stator ventilation channel 16, the stator core cooling channel 14, the other side second wall inner channel 81b, the other side third wall inner It flows in order of the flow path 81c.
  • the cooling gas passes through the first heat exchanger 44a in the one-side third-wall inner channel 80c and passes through the second heat exchanger 44b in the other-side third-wall inner channel 81c.
  • the cooling gas flows in different axial directions at the same position in the axial direction. ing.
  • stator magnet 12 radially penetrates between the second cooling passage 72 and the stator magnet cooling passage 15 at the axial center of the stator magnet 12.
  • stator magnet ventilation passage 16a that communicates the second cooling passage 72 and the stator magnet cooling passage 15, and the stator magnet ventilation passage 16a communicates with the low-speed rotor ventilation passage 24. good too.
  • the first heat exchanger 44a is arranged on one axial side of the first fan 43a, and the second heat exchanger 44b is arranged on the other axial side of the second fan 43b.
  • the first heat exchanger 44a is arranged on the other side in the axial direction of the first fan 43a,
  • the second heat exchanger 44b may be arranged in .
  • the stator core 13 is arranged between the second cooling flow path 72 and the stator core cooling flow path 14 at the central portion of the stator core 13 in the axial direction. It has a stator ventilation passage 16 that radially penetrates and communicates with the second cooling passage 72, the stator core cooling passage 14, and the stator magnet cooling passage 15, and the first main body portion 26 is the first main body. At the center in the axial direction of the portion 26, the first cooling channel 71 and the second cooling channel 72 are penetrated in the radial direction, and the first cooling channel 71 and the second cooling channel 72 are communicated with each other.
  • the low-speed rotor air passage 24 which is the first rotor air passage
  • the first cooling passage 71 and the stator core cooling flow on both axial sides of the stator air passage 16 and the low-speed rotor air passage 24
  • the cooling gas flows in opposite directions in the respective portions of the passage 14, the second cooling passage 72 and the stator magnet cooling passage 15, the temperature distribution produced in the low speed rotor 20, the high speed rotor 30 and the stator 10 is It is possible to suppress the expansion of the variation of the temperature and the temperature rise. Since the increase in variation in temperature distribution and temperature rise occurring in the low-speed rotor 20, the high-speed rotor 30, and the stator 10 are suppressed, the temperature rise during operation of the rotating electrical machine 100 is suppressed. can be increased.
  • stator magnet 12 radially penetrates between the second cooling flow path 72 and the stator magnet cooling flow path 15 at the axial center of the stator magnet 12 and is fixed to the second cooling flow path 72. If the stator magnet ventilation passage 16 a communicates with the child magnet cooling passage 15 , the number of cooling gas passages flowing in the radial direction is increased. Allows gas to flow easily.
  • FIG. 14 is a schematic diagram showing a cross section of the rotating electrical machine 100 according to the fourth embodiment, taken at a position equivalent to the AA section position in FIG. 1, and FIG. 15 shows another rotating electrical machine according to the fourth embodiment. It is a schematic diagram which shows the cross section of 100.
  • FIG. A rotary electric machine 100 according to Embodiment 4 has a structure in which a high-speed rotor 30 has a flow path inside.
  • the second body portion 35 has a third end plate 32a and a fourth end plate 32b.
  • the third end plate 32 a extends radially inward from one axial end of the second body portion 35 and is connected to the rotating shaft 40 via a bearing 42 .
  • the fourth end plate 32 b extends radially inward from the other axial end of the second body portion 35 and is connected to the rotating shaft 40 via a bearing 42 .
  • the third end plate 32a has a third through hole 33a penetrating in the axial direction.
  • the fourth end plate 32b has a fourth through hole 33b that penetrates in the axial direction.
  • a third cooling passage 75 is formed inside the high-speed rotor 30 to communicate with the third through-hole 33a and the fourth through-hole 33b.
  • the high-speed rotor 30 radially penetrates between the first cooling passage 71 and the third cooling passage 75 at the axial center of the second main body portion 35 , and connects the first cooling passage 71 and the third cooling passage 75 . It has a high-speed rotor ventilation passage 34 that is a second rotor ventilation passage that communicates with the three cooling passages 75 . A plurality of high-speed rotor ventilation passages 34 may be provided at different positions in the circumferential direction of the high-speed rotor 30 .
  • the first end plate 22a has a first inner through-hole 23c that communicates with the third through-hole 33a at a radial position radially inner than the first through-hole 23a and penetrates in the axial direction.
  • the second end plate 22b has a second inner through-hole 23d axially penetrating through the second through-hole 23b and communicating with the fourth through-hole 33b at a radial position radially inner than the second through-hole 23b.
  • the first inner wall 45b has a first inner wall inner second through hole 47d that communicates with the third cooling flow path 75 and penetrates in the axial direction at a radial position radially inner than the first inner wall inner through hole 47a.
  • the second inner wall 45c has a second inner wall inner second through hole 48d that communicates with the third cooling flow path 75 and penetrates in the axial direction at a radial position radially inner than the second inner wall inner through hole 48a.
  • first one side wall inner flow path 82a for the cooling gas that communicates between the first inner wall inner through hole 47a and the first inner wall inner second through hole 47d. It is formed.
  • a second one side wall inner flow path 82b for communicating between the first inner wall outer through hole 47b and the first inner wall outer second through hole 47c is provided. It is formed.
  • a first other side wall inner channel 82c communicating between the second inner wall inner through hole 48a and the second inner wall inner second through hole 48d is formed.
  • a second other side wall inner flow path 82d is formed that communicates between the second inner wall outer through hole 48b and the second inner wall outer second through hole 48c.
  • a first one-side fan 43c, which is the fan 43, and a first one-side heat exchanger 44c, which is the heat exchanger 44, are arranged in the first one-side wall inner channel 82a.
  • a second one-side fan 43d, which is the fan 43, and a second one-side heat exchanger 44d, which is the heat exchanger 44, are arranged in the second one-side wall inner flow path 82b.
  • the first other-side fan 43e, which is the fan 43, and the first other-side heat exchanger 44e, which is the heat exchanger 44, are arranged in the first other-side wall inner flow path 82c.
  • a second other-side fan 43f, which is the fan 43, and a second other-side heat exchanger 44f, which is the heat exchanger 44, are arranged in the second other-side wall inner flow path 82d.
  • the first one-side fan 43c sends out cooling gas toward the first inner wall inner second through-hole 47d side
  • the second one-side fan 43d directs the cooling gas toward the first inner wall outer through-hole 47b side
  • the other side fan 43e sends cooling gas toward the second inner wall inner second through hole 48d side
  • the second other side fan 43f sends out cooling gas toward the second inner wall outer side through hole 48b side.
  • Arrows 51 and 52 shown in FIG. 14 indicate the flow of cooling gas in this case.
  • the flow of the cooling gas is not limited to this.
  • 43d is directed to the side opposite to the side of the first inner wall outer through-hole 47b
  • the first other side fan 43e is directed to the side opposite to the side of the second inner wall inner second through-hole 48d.
  • the side fan 43f may send the cooling gas toward the side opposite to the side of the second inner wall outer through-hole 48b. In this case, the cooling gas flows in the opposite direction to the arrows shown in FIG.
  • the cooling gas sent out from the first one-side fan 43c passes through the third cooling channel 75, the high-speed rotor ventilation channel 34, the first cooling channel 71, the first one-side wall inner channel, as indicated by the arrows. 82a.
  • the cooling gas sent out from the second one-side fan 43d passes through the second cooling passage 72, the stator magnet cooling passage 15, the stator air passage 16 and the stator magnet air passage 16a, the stator core cooling passage 14 , second one side wall inner channel 82b.
  • the cooling gas sent out from the first other-side fan 43e flows through the third cooling channel 75, the high-speed rotor ventilation channel 34, the first cooling channel 71, and the first other-side wall inner channel 82c in this order.
  • the cooling gas sent out from the second other-side fan 43f passes through the second cooling passage 72, the stator magnet cooling passage 15, the stator air passage 16 and the stator magnet air passage 16a, the stator core cooling passage 14 , second other side wall inner channel 82d.
  • the cooling gas flows in opposite directions in the respective parts of the magnet cooling channel 15 and the stator core cooling channel 14 .
  • the passage of the cooling gas formed by one fan 43 can be shortened compared to the first and second embodiments.
  • the main pressure loss that occurs in the cooling gas flow path inside rotating electric machine 100 is friction loss when the cooling gas passes through first cooling flow path 71 or second cooling flow path 72 having a small cross-sectional area. Since the passage of the cooling gas is shortened, the amount of boost required for one fan 43 can be reduced. Further, since the cooling gas also flows through the third cooling passage 75 formed in the high-speed rotor 30, the high-speed rotor 30 can be cooled more efficiently.
  • a baffle may be added to the rotary electric machine 100 .
  • the seventh baffle 46i is formed in a cylindrical shape and extends radially inward from the third through hole 33a and the first inner through hole 23c between the one axial side of the high speed rotor 30 and the first end plate 22a. It is arranged and provided coaxially with the stator 10 .
  • the eighth baffle 46j is formed in a cylindrical shape, and extends radially inward from the fourth through hole 33b and the second inner through hole 23d between the other axial side of the high speed rotor 30 and the second end plate 22b. It is arranged and provided coaxially with the stator 10 .
  • the ninth baffle 46k is formed in a cylindrical shape, and has a larger diameter than the first inner through hole 23c and the first inner wall inner second through hole 47d between the one axial side of the low speed rotor 20 and the first inner wall 45b. It is arranged on the inner side of the direction and provided coaxially with the stator 10 .
  • the tenth baffle 46l is formed in a cylindrical shape and has a diameter larger than the second inner through hole 23d and the second inner wall inner second through hole 48d between the other axial side of the low speed rotor 20 and the second inner wall 45c. It is arranged on the inner side of the direction and provided coaxially with the stator 10 .
  • the seventh baffle 46i is fixed to the high speed rotor 30 or the first end plate 22a.
  • the eighth baffle 46j is fixed to the high speed rotor 30 or the second end plate 22b.
  • the ninth baffle 46k is fixed to the low speed rotor 20 or the first inner wall 45b.
  • the tenth baffle 46l is fixed to the low speed rotor 20 or the second inner wall 45c.
  • a first one-side heat exchanger 44c is arranged on one side in the axial direction of the first one-side fan 43c, and a second one-side heat exchanger is arranged on one side in the axial direction of the second one-side fan 43d.
  • a first heat exchanger 44e is arranged on the other side in the axial direction of the first other side fan 43e, and a second other side heat exchanger 44e is arranged on the other side in the axial direction of the second other side fan 43f.
  • a heat exchanger 44f is arranged.
  • the third cooling flow path 75 communicating with the third through-hole 33a and the fourth through-hole 33b is formed inside the high-speed rotor 30, and the high-speed rotor 30 has a high-speed rotor ventilation passage 34 radially penetrating between the first cooling passage 71 and the third cooling passage 75 at the axial center of the second body portion 35, and the four fans 43 Therefore, a flow path flowing in the opposite direction is formed through the first cooling flow path 71, the second cooling flow path 72, the third cooling flow path 75, the stator magnet cooling flow path 15, and the stator core cooling flow path 14.
  • the flow path of the cooling gas formed by one fan 43 can be shortened, so the amount of boost required for one fan 43 can be reduced. Since the amount of boost required for one fan 43 can be reduced, it is possible to efficiently suppress variations in temperature distribution and temperature rise occurring in the low-speed rotor 20, the high-speed rotor 30, and the stator 10. FIG. Since the increase in variation in temperature distribution and temperature rise occurring in the low-speed rotor 20, the high-speed rotor 30, and the stator 10 are suppressed, the temperature rise during operation of the rotating electrical machine 100 is suppressed. can be increased.
  • the rotating electrical machine 100 includes the seventh baffle 46i, the eighth baffle 46j, the ninth baffle 46k, and the tenth baffle 46l, it is possible to suppress the flow of the cooling gas in the radial direction. Cooling gas can be efficiently flowed to 75 .
  • FIG. 16 is a schematic diagram showing a cross section of the rotating electric machine 100 according to Embodiment 5, and is a diagram cut at a position equivalent to the AA cross section position in FIG. 1, and FIG. 18 is a schematic diagram showing the portion of the low-speed rotor 20 of the rotating electrical machine 100, showing the first end plate 22a side, and FIG. FIG. 20 is a schematic diagram showing a portion of the rotor 20, showing the side of the first end plate 22a; FIG. 21 is a schematic diagram showing a main part of another housing 45 of the rotating electrical machine 100, showing a first inner wall 45b; FIG.
  • FIG. 22 is a schematic diagram showing a cross section of another rotating electrical machine 100 according to Embodiment 5;
  • FIG. 17 is a view cut at the same position as in FIG. 16;
  • a rotary electric machine 100 according to Embodiment 5 has a configuration in which a high-speed rotor 30 has a plurality of flow paths inside.
  • the third end plate 32a has a third through-hole 33a, a third inner through-hole 33c, and a third inner second through-hole 33e that penetrate in the axial direction in order from the radially outer side to the inner side.
  • the fourth end plate 32b has a fourth through-hole 33b, a fourth inner through-hole 33d, and a fourth inner second through-hole 33f which are axially penetrated in order from the radially outer side to the inner side.
  • 76, the third inner second through hole 33e, and the fourth inner second through hole 33f are partitioned inside the high speed rotor 30 .
  • the first end plate 22a communicates with the third through hole 33a at a radial position radially inner than the first through hole 23a, and is axially penetrated through the first inner through hole 23c and through the first inner through hole 23c.
  • a first inner second through-hole 23e that communicates with the third inner through-hole 33c at a radially inner position radially inward of the first inner second through-hole 23e, and a radially inner second through-hole 23e It has a first inner third through-hole 23g that communicates with the third inner second through-hole 33e at a position and penetrates in the axial direction.
  • the second end plate 22b communicates with the fourth through-hole 33b at a radial position radially inner than the second through-hole 23b, and is axially penetrated through the second inner through-hole 23d and through the second inner through-hole 23d.
  • a second inner second through-hole 23f communicating with the fourth inner through-hole 33d at a radially inner radial position, and axially penetrating through the fourth inner through-hole 23d; It communicates with the fourth inner second through-hole 33f at a position and has a second inner third through-hole 23h that penetrates in the axial direction.
  • the first inner wall 45b communicates with the fourth cooling channel 76, and has a first inner wall inner third through hole 47e axially penetrating at a radial position radially inner than the first inner wall inner second through hole 47d, and a first inner wall inner fourth through hole 47f communicating with the fifth cooling flow path 77 and extending axially through the first inner wall inner third through hole 47e at a radial position radially inner than the first inner wall inner third through hole 47e.
  • the second inner wall 45c communicates with the fourth cooling flow path 76 and has a second inner wall inner third through hole 48e axially penetrating at a radial position radially inner than the second inner wall inner second through hole 48d. and a second inner wall inner fourth through-hole 48f that communicates with the fifth cooling flow path 77 and penetrates in the axial direction at a radial position radially inner than the second inner wall inner third through-hole 48e.
  • a cooling gas flow path 83c in communication with the hole 47e is formed.
  • a one-side fourth wall inner flow path 83d for communicating between the first inner wall outer through hole 47b and the first inner wall outer second through hole 47c is provided. It is formed.
  • a cooling gas communicating between the second inner wall outer side second through hole 48c and the second inner wall inner side through hole 48a and the second inner wall inner side fourth through hole 48f between the second inner wall 45c and the second outer wall 45e. is formed between the second inner wall 45c and the second outer wall 45e, and between the second inner wall 45c and the second outer wall 45e, the second inner wall inner third through hole 48e, the second inner wall inner second through hole 48d and the second A cooling gas passage 84b in communication with the two inner wall outer through-holes 48b is formed.
  • the first one-side fan 43g which is the fan 43
  • the first one-side heat exchanger 44g which is the heat exchanger 44
  • a second one-side fan 43h which is the fan 43
  • a second one-side heat exchanger 44h which is the heat exchanger 44
  • the fan 43 and the heat exchanger 44 are arranged only on one axial side of the rotating electric machine 100, and the fan 43 and the heat exchanger 44 are concentrated on the side opposite to the turbine blades 41. Therefore, the rotating electric machine The axial size of 100 can be reduced.
  • the first one-side fan 43g sends out the cooling gas toward the first inner wall inner second through-hole 47d and the first inner wall third through-hole 47e, and the second one-side fan 43h blows out the first inner wall outer side.
  • the cooling gas is sent out toward the through hole 47b.
  • Arrows 51 and 52 shown in FIG. 16 indicate the flow of cooling gas in this case.
  • the flow of cooling gas is not limited to this.
  • the second one-side fan 43h may also send out the cooling gas toward the side opposite to the side of the first inner wall outer through-hole 47b. In this case, the cooling gas flows in the opposite direction to the arrows shown in FIG.
  • the other-side first-wall inner channel 84a and the other-side second-wall inner channel 84b are provided to intersect. It is desirable that the intersecting channel portions are provided separately as shown in FIG.
  • the other-side first-wall inner channel 84a is provided as a tubular channel pipe, and the cooling gas flowing through the other-side first-wall inner channel 84a flows inside the pipe.
  • the other side second wall inner channel 84b is formed outside the tube.
  • the flow of the cooling gas will be explained using FIG. Three flow paths are formed from the cooling gas sent out from the first one-side fan 43g.
  • One is the third cooling channel 75, the high-speed rotor ventilation channel 34, the first cooling channel 71, the one-side second-wall inner channel 83b, and the one-side third-wall inner channel 83c in this order.
  • the other is the fourth cooling channel 76, the other side second wall inner channel 84b, the third cooling channel 75, the high speed rotor ventilation channel 34, the first cooling channel 71, and the other side first wall inner channel. It flows through the passage 84a, the fifth cooling passage 77, the one-side first-wall inner passage 83a, and the one-side third-wall inner passage 83c in this order.
  • the other is the fourth cooling channel 76, the second inner wall channel 84b on the other side, the second cooling channel 72 and the stator magnet cooling channel 15, the stator ventilation channel 16 and the stator magnet ventilation channel 16a,
  • the stator core cooling channel 14, the other side first wall inner channel 84a, the fifth cooling channel 77, the one side first wall inner channel 83a, and the one side third wall inner channel 83c flow in this order.
  • the cooling gas sent out from the second one-side fan 43h passes through the second cooling passage 72, the stator magnet cooling passage 15, the stator air passage 16 and the stator magnet air passage 16a, the stator core cooling passage 14 , the one-side fourth wall inner channel 83d.
  • the cooling gas passes through the first one-side heat exchanger 44g in the one-side third-wall inner channel 83c, and passes through the second one-side heat exchanger 44h in the one-side fourth-wall inner channel 83d.
  • the cooling gas In the first cooling channel 71 and the stator core cooling channel 14, and the second cooling channel 72, the stator magnet cooling channel 15 and the third cooling channel 75, at the same position in the axial direction, the cooling gas The axial direction of flow is different. Further, the fourth cooling channel 76 and the fifth cooling channel 77 have different axial directions in which the cooling gas flows at the same position in the axial direction.
  • the passage of the cooling gas formed by one fan 43 can be shortened compared to the first and second embodiments.
  • the main pressure loss that occurs in the cooling gas flow path inside rotating electric machine 100 is friction loss when the cooling gas passes through first cooling flow path 71 or second cooling flow path 72 having a small cross-sectional area. Since the passage of the cooling gas is shortened, the amount of boost required for one fan 43 can be reduced. In addition, since the cooling gas also flows through the third cooling channel 75, the fourth cooling channel 76, and the fifth cooling channel 77 formed in the high-speed rotor 30, the high-speed rotor 30 is cooled more efficiently. be able to.
  • FIG. 16 is a cross-sectional view, the first through hole 23a, the first inner through hole 23c, the first inner second through hole 23e, the first inner third through hole 23g, and the second end of the first end plate 22a.
  • second through-hole 23b, second inner through-hole 23d, second inner second through-hole 23f, and second inner third through-hole 23h of the plate 22b are shown, the number of these through-holes is It is not limited to one.
  • a plurality of through holes may be provided at intervals.
  • each of these through holes is not limited to a circular shape, and may be a shape in which a plurality of through holes are connected along the outer periphery of the first end plate 22a as shown in FIG. Although only the example of the first end plate 22a is shown, the same applies to the through holes of the second end plate 22b.
  • FIG. 16 is a cross-sectional view
  • a plurality of through holes may be provided at intervals.
  • the shape of each of these through holes is not limited to a circle, and as shown in FIG. 21, a shape in which a plurality of through holes are connected along the outer periphery of the first inner wall 45b may be used. Although only an example of the first inner wall 45b is shown, the same applies to the through holes of the second inner wall 45c.
  • a baffle may be added to the rotary electric machine 100 .
  • the seventh baffle 46i is formed in a cylindrical shape, and is radially inward of the third through hole 33a and the first inner through hole 23c between the one axial side of the high-speed rotor 30 and the first end plate 22a. Moreover, it is arranged radially outside the third inner through-hole 33c and the first inner second through-hole 23e and is provided coaxially with the stator 10 .
  • the eighth baffle 46j is formed in a cylindrical shape, and is located between the other axial side of the high-speed rotor 30 and the second end plate 22b, radially inside the fourth through hole 33b and the second inner through hole 23d.
  • a seventh baffle 46i is fixed to the high speed rotor 30 or the first end plate 22a.
  • the eighth baffle 46j is fixed to the high speed rotor 30 or the second end plate 22b.
  • the ninth baffle 46k is formed in a cylindrical shape, and has a larger diameter than the first inner through hole 23c and the first inner wall inner second through hole 47d between the one axial side of the low speed rotor 20 and the first inner wall 45b. It is arranged radially inside the first inner side second through hole 23e and the first inner wall inner side third through hole 47e and provided coaxially with the stator 10 .
  • the tenth baffle 46l is formed in a cylindrical shape and has a diameter larger than the second inner through hole 23d and the second inner wall inner second through hole 48d between the other axial side of the low speed rotor 20 and the second inner wall 45c.
  • the ninth baffle 46k is fixed to the low speed rotor 20 or the first inner wall 45b.
  • the tenth baffle 46l is fixed to the low speed rotor 20 or the second inner wall 45c.
  • the eleventh baffle 46m is formed in a cylindrical shape, and between the one axial side of the high-speed rotor 30 and the first end plate 22a, more than the third inner through hole 33c and the first inner second through hole 23e. It is arranged radially inward and radially outward of the third inner second through hole 33e and the first inner third through hole 23g, and is provided coaxially with the stator 10 .
  • the twelfth baffle 46n is formed in a cylindrical shape, and between the other axial side of the high-speed rotor 30 and the second end plate 22b, more than the fourth inner through hole 33d and the second inner second through hole 23f.
  • the eleventh baffle 46m is fixed to the high speed rotor 30 or the first end plate 22a.
  • a twelfth baffle 46n is fixed to the high speed rotor 30 or the second end plate 22b.
  • the thirteenth baffle 46o is formed in a cylindrical shape, and between the one axial side of the low-speed rotor 20 and the first inner wall 45b, a first inner second through hole 23e and a first inner wall inner third through hole 47e are provided. and radially outside the first inner third through-hole 23g and the first inner wall inner fourth through-hole 47f.
  • the fourteenth baffle 46p is formed in a cylindrical shape, and between the other axial side of the low-speed rotor 20 and the second inner wall 45c, a second inner second through hole 23f and a second inner wall inner third through hole 48e are provided. and radially outside the second inner third through-hole 23h and the second inner wall inner fourth through-hole 48f, and provided coaxially with the stator 10 .
  • the thirteenth baffle 46o is fixed to the low speed rotor 20 or the first inner wall 45b.
  • the fourteenth baffle 46p is fixed to the low speed rotor 20 or the second inner wall 45c.
  • a first one-side heat exchanger 44g is arranged on one side in the axial direction of the first one-side fan 43g, and a second one-side heat exchanger is arranged on one side in the axial direction of the second one-side fan 43h.
  • a container 44h is arranged.
  • the third cooling channel 75, the fourth cooling channel 76, and the fifth cooling channel 77 are formed inside the high-speed rotor 30, and the high-speed rotor 30 has a high-speed rotor ventilation passage 34 radially penetrating between the first cooling passage 71 and the third cooling passage 75 at the axial center of the second body portion 35, and two fans 43 form a flow path flowing in the opposite direction through the first cooling flow path 71, the second cooling flow path 72, the third cooling flow path 75, the stator magnet cooling flow path 15, and the stator core cooling flow path 14. Therefore, the flow path of cooling gas formed by one fan 43 can be shortened, so that the amount of boost required for one fan 43 can be reduced.
  • the fan 43 and the heat exchanger 44 are arranged only on one axial side of the rotating electrical machine 100 , and the fan 43 and the heat exchanger 44 are concentrated on the side opposite to the turbine blades 41 , so that the axial size of the rotating electrical machine 100 is reduced. can be made smaller. Further, when the rotary electric machine 100 includes the eleventh baffle 46m, the twelfth baffle 46n, the thirteenth baffle 46o, and the fourteenth baffle 46p, it is possible to suppress the radial flow of the cooling gas. The cooling gas can efficiently flow through the fourth cooling channel 76 and the fifth cooling channel 77 .
  • stator 10 stator, 11 stator coil, 12 stator magnet, 13 stator core, 13a stator slot, 13b stator tooth, 14 stator core cooling channel, 15 stator magnet cooling channel, 16 stator ventilation channel , 16a stator magnet air passage, 20 low speed rotor, 21 magnetic pole piece, 22a first end plate, 22b second end plate, 23a first through hole, 23b second through hole, 23c first inner through hole, 23d second Two inner through holes 23e First inner second through hole 23f Second inner second through hole 23g First inner third through hole 23h Second inner third through hole 24 Low speed rotor air passage 25 Insulation material, 26 first main body, 30 high-speed rotor, 31 high-speed rotor magnet, 32a third end plate, 32b fourth end plate, 33a third through hole, 33b fourth through hole, 33c third inner through hole, 33d fourth inner through-hole, 33e third inner second through-hole, 33f fourth inner second through-hole, 34 high-speed rotor air passage, 35 second main body, 40 rotating shaft, 41 turbine blade

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

回転軸(40)と、固定子鉄心(13)、固定子コイル(11)、固定子磁石(12)、及び固定子コイル(11)と固定子磁石(13)との間に設けられた固定子磁石冷却流路(15)を有した固定子(10)と、筒状の第一本体部(26)と複数の磁極片(21)とを有した第一の回転子と、筒状の第二本体部(35)と複数の永久磁石とを有した第二の回転子と、周壁(45a)、第一内壁(45b)、第二内壁(45c)、第一外壁(45d)、及び第二外壁(45e)を有した筐体(45)と、冷却ガスを送り出すファン(43)と、熱交換器(44)とを備え、第一本体部(26)は、第一貫通孔(23a)を設けた第一端板(22a)及び第二貫通孔(23b)を設けた第二端板(22b)を有し、第一本体部(26)と第二の回転子との間に第一貫通孔(23a)及び第二貫通孔(23b)に連通した第一冷却流路(71)が形成され、第一本体部(26)と固定子(10)との間に第二冷却流路(72)が形成され、第一冷却流路(71)と、第二冷却流路(72)及び固定子磁石冷却流路(15)とでは、軸方向の同じ位置において、冷却ガスの流れる軸方向の方向が異なっている。

Description

回転電機
 本願は、回転電機に関するものである。
 従来から、回転電機が回転の中心に備えた回転軸に連結され、回転電機の回転を減速する機械式変速機が低速駆動を必要とする用途に対して用いられてきた。機械式変速機を用いた場合、機械的な摩耗などが変速機に生じるため、定期的なメンテナンスが必要となる。機械式変速機を用いずに非接触で回転子の回転速度を変速できる回転電機が、磁気波動歯車装置もしくは磁気ギアード発電機として開示されている。磁気波動歯車装置は、回転軸を中心に、外周側から永久磁石を有した固定子、低速で回転し、磁極片を有した第1の回転子、及び変速比に応じて高速で回転し、永久磁石を有した第2の回転子を備える。固定子は、発電電力を出力する、あるいは発生トルクを制御することができる固定子コイルを有する。この回転電機を用いると、非接触で回転子の回転速度を変速できるため、機械的な摩耗などに起因したメンテナンスが不要であり、メンテナンスについての負荷の軽減を実現することができる。また、この回転電機を発電機として使用すれば、機械式変速機なしに1つの回転電機で変速と発電が可能で、発電システムは小型となり、省スペース化が実現される。
 一方、回転電機の許容温度は、回転電機の各部において定められている。例えば、固定子コイルは絶縁被覆の耐熱温度によって、固定子及び第2の回転子が有した永久磁石は磁石の減磁する温度によって、第1の回転子は磁極片の周囲に介挿された絶縁材の耐熱温度によって、各部それぞれの適切な許容温度が決定される。回転電機の各部の温度が許容温度を超過した場合、各部の性能の劣化、寿命の短縮、または不具合のリスクが増加する。そのため、各部における適切な冷却が極めて重要となる。回転電機の冷却技術としては、外皮冷却方式を利用して、ケーシングの外周面側の通風経路に送風する冷却空気流Aと、機内側の通風経路に送風する冷却空気流Bを互いに逆方向に向流させて送風する技術が開示されている(例えば、特許文献1参照)。
特開2014-33584号公報
 上記特許文献1における回転電機では、冷却空気流Aと冷却空気流Bを互いに逆方向に向流させて送風しているため、高い冷却性能と機内温度分布の緩和を図ることができる。しかしながら、磁気波動歯車装置の構成ではなく、磁気波動歯車装置が備えた第1の回転子及び第2の回転子に生じる温度分布のばらつき拡大、及び稼働時の温度上昇を抑制できないという課題があった。また、稼働時の温度上昇が抑制されないため、回転電機の出力を増加できないという課題があった。
 そこで、本願は、第1の回転子及び第2の回転子に生じる温度分布のばらつき拡大及び温度上昇を抑制し、出力を増加させた回転電機を得ることを目的とする。
 本願に開示される回転電機は、回転軸と、径方向内側に開口した固定子スロットを周方向に複数設けた固定子鉄心、複数の前記固定子スロットのそれぞれの底部の側に配置された固定子コイル、複数の前記固定子スロットのそれぞれの開口側に、径方向に同じ磁極方向になるように配置された固定子磁石、及び前記固定子コイルと前記固定子磁石との間に設けられ、軸方向に貫通した固定子磁石冷却流路を有した固定子と、筒状の第一本体部と、周方向に間隔を空けて前記第一本体部に設けられた複数の磁極片とを有し、前記固定子磁石と対向して前記固定子と同軸に設けられ、前記回転軸と一体回転する第一の回転子と、筒状の第二本体部と、前記第二本体部の外周部に周方向に間隔を空けて配置された複数の永久磁石とを有し、前記第一本体部の径方向内側の壁面に対向して前記第一の回転子と同軸に設けられた第二の回転子と、前記固定子を径方向外側から取り囲む周壁、前記周壁に連結され、前記固定子と前記第一の回転子と前記第二の回転子の軸方向一方側を覆う第一内壁、前記周壁に連結され、前記固定子と前記第一の回転子と前記第二の回転子の軸方向他方側を覆う第二内壁、前記周壁に連結され、間隔を空けて前記第一内壁の軸方向一方側を覆う第一外壁、及び前記周壁に連結され、間隔を空けて前記第二内壁の軸方向他方側を覆う第二外壁を有した筐体と、前記筐体の内部に配置され、冷却ガスを送り出すファンと、前記筐体の内部に配置され、前記冷却ガスが通過する熱交換器とを備え、前記第一本体部は、前記第二の回転子と前記第一内壁との軸方向の間を、軸方向一方側の端部から径方向内側に延出し、前記回転軸に固定された第一端板、及び前記第二の回転子と前記第二内壁との軸方向の間を、軸方向他方側の端部から径方向内側に延出し、前記回転軸に固定された第二端板を有し、前記第一端板は、径方向外側の部分に軸方向に貫通した第一貫通孔を有し、前記第二端板は、径方向外側の部分に軸方向に貫通した第二貫通孔を有し、前記第一本体部と前記第二の回転子との間に、前記第一貫通孔及び前記第二貫通孔に連通した第一冷却流路が形成され、前記第一本体部と前記固定子との間に、第二冷却流路が形成され、前記第一内壁は、前記第一冷却流路に連通し、軸方向に貫通した第一内壁内側貫通孔、及び前記第二冷却流路と前記固定子磁石冷却流路に連通し、前記第一内壁内側貫通孔よりも径方向外側の径方向位置で軸方向に貫通した第一内壁外側貫通孔を有し、前記第二内壁は、前記第一冷却流路に連通し、軸方向に貫通した第二内壁内側貫通孔、及び前記第二冷却流路と前記固定子磁石冷却流路に連通し、前記第二内壁内側貫通孔よりも径方向外側の径方向位置で軸方向に貫通した第二内壁外側貫通孔を有し、前記ファンは、前記第一内壁と前記第一外壁との間、及び前記第二内壁と前記第二外壁との間の一方または双方に配置され、前記熱交換器は、前記第一内壁と前記第一外壁との間、及び前記第二内壁と前記第二外壁との間の一方または双方に配置され、前記第一冷却流路と、前記第二冷却流路及び前記固定子磁石冷却流路とでは、軸方向の同じ位置において、冷却ガスの流れる軸方向の方向が異なっているものである。
 本願に開示される回転電機によれば、固定子コイルと固定子磁石との間に設けられ、軸方向に貫通した固定子磁石冷却流路を有した固定子と、第一の回転子と、第二の回転子とを備え、第一の回転子の筒状の第一本体部と第二の回転子との間に、第一の回転子が有した第一端板の第一貫通孔及び第一の回転子が有した第二端板の第二貫通孔に連通した第一冷却流路が形成され、第一本体部と固定子との間に第二冷却流路が形成され、第一冷却流路と、第二冷却流路及び固定子磁石冷却流路とでは、軸方向の同じ位置において、冷却ガスの流れる軸方向の方向が異なっているため、第一の回転子及び第二の回転子に生じる温度分布のばらつき拡大及び温度上昇を抑制することができる。第一の回転子及び第二の回転子に生じる温度分布のばらつき拡大及び温度上昇が抑制されるため、回転電機の稼働時の温度上昇が抑制されるので、回転電機の出力を増加させることができる。
実施の形態1に係る回転電機の断面を示す模式図である。 実施の形態1に係る回転電機の要部を示す模式図である。 実施の形態1に係る回転電機の別の断面を示す模式図である。 実施の形態1に係る回転電機の低速回転子を示す模式図である。 実施の形態1に係る回転電機の別の低速回転子を示す模式図である。 実施の形態1に係る回転電機の筐体の要部を示す模式図である。 実施の形態1に係る回転電機の別の筐体の要部を示す模式図である。 実施の形態1に係る別の回転電機の断面を示す模式図である。 実施の形態2に係る回転電機の断面を示す模式図である。 実施の形態2に係る別の回転電機の断面を示す模式図である。 実施の形態3に係る回転電機の断面を示す模式図である。 実施の形態3に係る別の回転電機の断面を示す模式図である。 実施の形態3に係る別の回転電機の断面を示す模式図である。 実施の形態4に係る回転電機の断面を示す模式図である。 実施の形態4に係る別の回転電機の断面を示す模式図である。 実施の形態5に係る回転電機の断面を示す模式図である。 実施の形態5に係る回転電機の要部を示す模式図である。 実施の形態5に係る回転電機の低速回転子を示す模式図である。 実施の形態5に係る回転電機の別の低速回転子を示す模式図である。 実施の形態5に係る回転電機の筐体の要部を示す模式図である。 実施の形態5に係る回転電機の別の筐体の要部を示す模式図である。 実施の形態5に係る別の回転電機の断面を示す模式図である。
 以下、本願の実施の形態による回転電機を図に基づいて説明する。なお、各図において同一、または相当部材、部位については同一符号を付して説明する。
実施の形態1.
 図1は実施の形態1に係る回転電機100の断面を示す模式図で、回転軸40に垂直な断面を示す図、図2は回転電機100の要部を示す模式図で、図1の破線で囲まれた箇所を拡大して示した図、図3は回転電機100の別の断面を示す模式図で、図1のA-A断面位置で切断した図、図4は回転電機100の低速回転子20の部分を示す模式図で、第一端板22aの側を示す図、図5は回転電機100の別の低速回転子20の部分を示す模式図で、第一端板22aの側を示す図、図6は回転電機100の筐体45の要部を示す模式図で、第一内壁45bを示す図、図7は回転電機100の別の筐体45の要部を示す模式図で、第一内壁45bを示す図、図8は実施の形態1に係る別の回転電機100の断面を示す模式図で、図3と同等の位置で切断した図である。本願における回転電機100は、固定子10、第1の回転子である低速回転子20、及び第2の回転子である高速回転子30を備えた、磁気ギアード発電機として知られている回転電機である。
<回転電機100>
 回転電機100は、図1に示すように、回転電機100の回転の中心である回転軸40と、回転軸40を取り囲む円環状の固定子10と、固定子10の内側に固定子10と同軸に設けられた低速回転子20と、低速回転子20の内側に対向して低速回転子20と同軸に設けられた高速回転子30とを備える。まず、回転電機100の一般的な構造と動作を説明する。
 固定子10は、図2に示すように、固定子鉄心13、固定子コイル11、および固定子磁石12を備える。円環状の固定子鉄心13は、回転軸40についての径方向内側に開口した固定子スロット13aと固定子ティース13bを周方向に交互に等間隔で複数備える。複数の固定子スロット13aは、それぞれが固定子コイル11と固定子磁石12を備える。固定子コイル11は、固定子スロット13aの底部の側に配置される。固定子磁石12は、固定子スロット13aの開口した側に配置される。固定子磁石12は、径方向に同じ磁極方向になるように着磁されている。固定子磁石12は、例えばネオジウム焼結磁石であるが、これに限るものではない。固定子磁石12の内径側をN極とすると、隣接した固定子ティース13bの内径側はS極となり、固定子スロット13aの数と同じ数の極対数Nsが形成される。第1の固定子冷却部である固定子磁石冷却流路15は、固定子コイル11と固定子磁石12との間に設けられる。固定子磁石冷却流路15は、軸方向に貫通して設けられる。固定子コイル11と固定子磁石12とは、固定子磁石冷却流路15を介して対向する。固定子コイル11及び固定子磁石12は、例えば固定子スロット13aの壁面に接着して固定されるが、これらの固定方法はこれに限るものではない。固定子10等が有する冷却ガスの流路については後述する。
 低速回転子20は、固定子10の内周側に固定子磁石12に対向して、狭小な第一間隙61を介して固定子10と同軸に設けられる。低速回転子20は、回転軸40と一体回転する。低速回転子20は、筒状の第一本体部26と、周方向に間隔を空けて第一本体部に配置された複数の磁極片21とを有し、外部からの動力により低速で回転する。本実施の形態では、磁極片21は等間隔に配置される。この磁極片21の数を、NLとする。磁極片21は、絶縁材25を介して第一本体部26に固定される。磁極片21と第一本体部26とは絶縁されている。
 高速回転子30は、第一本体部26の径方向内側の壁面に対向して、狭小な第二間隙62を介して低速回転子20と同軸に設けられる。高速回転子30は、筒状の第二本体部35と、第二本体部35の外周部に周方向に間隔を空けて配置された複数の永久磁石である高速回転子磁石31とを有し、Nhの極対数が形成される。本実施の形態では、高速回転子磁石31は等間隔に配置される。第一間隙61及び第二間隙62のそれぞれの大きさは、例えば数mmである。
 Ns、NL、Nhの関係が、NL=Ns±Nhを満足すれば、固定子磁石12と高速回転子磁石31の磁力の相互作用により、低速回転子20に負のトルクが発生する。これに対して低速回転子20を外部からの動力により回転させることで、低速回転子20に入力を得ることができる。低速回転子20の入力に対して、高速回転子30をフリーランさせるように固定子コイル11に固定子電流を流せば、高速回転子30は低速回転子20のNL/Nh倍の回転速度で回転する。高速回転子30が低速回転子20のNL/Nh倍速で回転すると、固定子コイル11に誘導起電力が発生する。誘導起電力の発生により、固定子コイル11から発電電力が出力される。
 次に、回転電機100が備えるその他の構成要素について説明する。回転電機100は、図3に示すように、ファン43、熱交換器44、及び固定子10と低速回転子20と高速回転子30とを収容する筐体45を備える。ファン43は、筐体45の内部に配置され、冷却ガスを送り出す。熱交換器44は、筐体45の内部に配置され、ファン43から送り出された冷却ガスが通過する。冷却ガスは筐体45の内部を循環し、冷却ガスの通過する箇所が冷却ガスの流路となる。また、回転電機100を洋上風力発電装置に適用する場合、回転電機100の外部に突出した回転軸40にタービンブレード41が取り付けられる。
 筐体45は、周壁45a、第一内壁45b、第二内壁45c、第一外壁45d、第二外壁45eを備える。周壁45aは、固定子10を径方向外側から取り囲む。第一内壁45bは、周壁45aに連結され、固定子10と低速回転子20と高速回転子30の軸方向一方側を覆う。第二内壁45cは、周壁45aに連結され、固定子10と低速回転子20と高速回転子30の軸方向他方側を覆う。第一外壁45dは、周壁45aに連結され、間隔を空けて第一内壁45bの軸方向一方側を覆う。第二外壁45eは、周壁45aに連結され、間隔を空けて第二内壁45cの軸方向他方側を覆う。第一内壁45b、第二内壁45c、及び第二外壁45eのそれぞれは、軸受42を介して回転軸40に連結される。
<回転電機100の冷却ガス流路>
 回転電機100の内部に形成される冷却ガスの流路について説明する。流路の説明と共に、流路が形成される各部位を説明する。第一本体部26は、第一端板22a及び第二端板22bを有する。第一端板22aは、高速回転子30と第一内壁45bとの軸方向の間を、第一本体部26の軸方向一方側の端部から径方向内側に延出し、回転軸40に固定される。第二端板22bは、高速回転子30と第二内壁45cとの軸方向の間を、第一本体部26の軸方向他方側の端部から径方向内側に延出し、回転軸40に固定される。第一端板22aは、径方向外側の部分に、軸方向に貫通した第一貫通孔23aを有する。第二端板22bは、径方向外側の部分に、軸方向に貫通した第二貫通孔23bを有する。これらの貫通孔は、各端板の半径の3/4より径方向外側の部分に形成される。各貫通孔は、図3においてハッチングされていない箇所である。以下の断面図でも各部が備える貫通孔は、ハッチングされていない箇所として示す。
 第一本体部26と高速回転子30との間に、第一貫通孔23a及び第二貫通孔23bに連通した第一冷却流路71が形成され、第一本体部26と固定子10との間に、第二冷却流路72が形成される。第一冷却流路71は、第二間隙62の部分であり、第二冷却流路72は、第一間隙61の部分である。
 第一内壁45bは、第一冷却流路71に連通し、軸方向に貫通した第一内壁内側貫通孔47a、及び第二冷却流路72と固定子磁石冷却流路15に連通し、第一内壁内側貫通孔47aよりも径方向外側の径方向位置で軸方向に貫通した第一内壁外側貫通孔47bを有する。第二内壁45cは、第一冷却流路71に連通し、軸方向に貫通した第二内壁内側貫通孔48a、及び第二冷却流路72と固定子磁石冷却流路15に連通し、第二内壁内側貫通孔48aよりも径方向外側の径方向位置で軸方向に貫通した第二内壁外側貫通孔48bを有する。
 第一内壁45bと第一外壁45dとの間に、第一内壁外側貫通孔47bと第一内壁内側貫通孔47aとの間を連通した冷却ガスの一方側壁内流路73が形成され、第二内壁45cと第二外壁45eとの間に、第二内壁外側貫通孔48bと第二内壁内側貫通孔48aとの間を連通した冷却ガスの他方側壁内流路74が形成される。
 ファン43は、第一内壁45bと第一外壁45dとの間、及び第二内壁45cと第二外壁45eとの間の一方または双方に配置される。熱交換器44は、第一内壁45bと第一外壁45dとの間、及び第二内壁45cと第二外壁45eとの間の一方または双方に配置される。本実施の形態では、ファン43は一方側壁内流路73の内部に配置され、冷却ガスを送り出す。熱交換器44は、他方側壁内流路74の内部に配置される。ファン43と熱交換器44の配置はこれに限るものではなく、配置される流路は逆であっても構わない。ファン43と熱交換器44をそれぞれの流路に分けて配置した場合、回転電機100の製造時にファン43と熱交換器44とが干渉することなくそれぞれの流路に固定できるので、回転電機100の生産性を向上させることができる。また、図8に示すように、ファン43及び熱交換器44を一方側壁内流路73の内部に配置しても構わない。ファン43と熱交換器44とを同じ流路である一方側壁内流路73に配置した場合、ファン43と熱交換器44をタービンブレード41と反対側に集約できるので、回転電機100の軸方向の大きさを小型化することができる。
 図3を用いて、冷却ガスの流れを説明する。ファン43から送り出された冷却ガスは、矢印で示すように、第一冷却流路71、他方側壁内流路74、第二冷却流路72及び固定子磁石冷却流路15、一方側壁内流路73の順に流れる。冷却ガスは、他方側壁内流路74において熱交換器44を通過する。図3には、2種類の矢印を示している。矢の側とは反対側が丸の矢印51は、熱交換器44で放熱されことにより温度が比較的低くなった冷却ガスの流れを示す矢印である。矢の側とは反対側が四角の矢印52は、各部から受熱したことにより温度が比較的高くなった冷却ガスの流れを示す矢印である。第一冷却流路71と、第二冷却流路72及び固定子磁石冷却流路15とでは、軸方向の同じ位置において、冷却ガスの流れる軸方向の方向は異なっている。冷却ガスの流れる方向はこれに限るものではなく、冷却ガスが逆方向に流れても構わない。冷却ガスが逆方向に流れても、第一冷却流路71と、第二冷却流路72及び固定子磁石冷却流路15とでは、軸方向の同じ位置において、冷却ガスの流れる軸方向の方向は異なっている。
 上述した冷却ガスの流れにより得られる効果について説明する。磁極片21は、回転電機100の稼働に伴って発熱する。磁極片21で発生した熱は絶縁材25に伝わり、絶縁材25は昇温する。絶縁材25には予め定められた許容温度があり、許容温度を超過すると絶縁性能が劣化し、寿命が短縮するおそれがある。絶縁材25の昇温を緩和する方策の一つとして、回転電機100内の循環風量を増加させることが挙げられる。しかし、第一間隙61と第二間隙62は非常に狭小であるため、必要な風量を確保するためには大型のファンが必要になる。大型のファンの設置は、コストパフォーマンスの面で問題がある。また、第一間隙61と第二間隙62で冷却ガスが同じ方向に並流する通風方式の場合、第一間隙61と第二間隙62の冷却ガス温度はともに上流側の温度が低く、下流側の温度が高くなるため、低速回転子20の最高温度を低減するには効率が悪い。
 冷却ガスの流れを図3または図8に示した構成にすることで、第一間隙61と第二間隙62で冷却ガスが逆方向に流れるため、低速回転子20の最高温度を効率よく低減することができる。また、低速回転子20及び高速回転子30に生じる温度分布のばらつき拡大及び温度上昇を抑制することができる。また、ファンの大型化を回避しつつ、低速回転子20の最高温度を低減することができるため、低速回転子20の絶縁材25に起因した不具合を抑制することができる。絶縁材25の不具合が抑制されるため、回転電機100の信頼性を向上させることができる。また、回転電機100の出力のボトルネックが低速回転子20の温度であるならば、回転電機100の稼働時の温度上昇が抑制されるため、回転電機100の出力を増加させることができる。また、固定子10内に形成された固定子磁石冷却流路15にも冷却ガスが流れるので、固定子10も効率よく冷却することができる。
 図3及び図8は断面図であるため、第一端板22aの第一貫通孔23a、及び第二端板22bの第二貫通孔23bはそれぞれ一つのみを示したが、第一貫通孔23a及び第二貫通孔23bの数は一つに限るものではない。図4に示すように、間隔を空けて第一貫通孔23aを複数設けても構わない。また、第一貫通孔23a及び第二貫通孔23bのそれぞれの形状は円形に限るものではなく、図5に示すように、第一端板22aの外周に沿うように複数の貫通孔を連結させた形状でも構わない。第一端板22aの例のみを示したが、第二端板22bの第二貫通孔23bについても同様である。
 図3及び図8は断面図であるため、第一内壁内側貫通孔47a、第一内壁外側貫通孔47b、第二内壁内側貫通孔48a、及び第二内壁外側貫通孔48bはそれぞれ一つのみを示したが、第一内壁内側貫通孔47a、第一内壁外側貫通孔47b、第二内壁内側貫通孔48a、及び第二内壁外側貫通孔48bの数は一つに限るものではない。図6に示すように、間隔を空けて第一内壁内側貫通孔47a及び第一内壁外側貫通孔47bを複数設けても構わない。また、第一内壁内側貫通孔47a、第一内壁外側貫通孔47b、第二内壁内側貫通孔48a、及び第二内壁外側貫通孔48bのそれぞれの形状は円形に限るものではなく、図7に示すように、第一内壁45bの外周に沿うように複数の貫通孔を連結させた形状でも構わない。第一内壁45bの例のみを示したが、第二内壁45cの第二内壁内側貫通孔48a及び第二内壁外側貫通孔48bについても同様である。また、ファン43及び熱交換器44の数も一つに限るものではなく、例えば複数の第一内壁内側貫通孔47aに対応したそれぞれの位置にファン43を設けても構わない。
<バッフル>
 回転電機100に、冷却ガスが径方向に流れるのを抑制するバッフルを設けても構わない。回転電機100の各部が軸方向に相互に接近している場合、バッフルを設けなくても冷却ガスは径方向に流れにくいため、バッフルを設けなくても構わない。回転電機100の各部が軸方向に相互に接近していない場合、バッフルを設けることで冷却ガスが径方向に流れるのを抑制することができる。冷却ガスが径方向に流れるのを抑制することで、第一冷却流路71、第二冷却流路72、及び固定子磁石冷却流路15に冷却ガスを効率よく流すことができる。
 バッフルの構成について説明する。バッフルは、例えば、金属または樹脂で作製される。第一バッフル46aは、筒状に形成され、高速回転子30の軸方向一方側と第一端板22aとの間において、第一貫通孔23aよりも径方向内側に配置され、固定子10と同軸に設けられる。第二バッフル46bは、筒状に形成され、高速回転子30の軸方向他方側と第二端板22bとの間において、第二貫通孔23bよりも径方向内側に配置され、固定子10と同軸に設けられる。第一バッフル46aは、高速回転子30または第一端板22aに固定される。第二バッフル46bは、高速回転子30または第二端板22bに固定される。
 第三バッフル46cは、筒状に形成され、第一端板22aの軸方向一方側と第一内壁45bとの間において、第一内壁内側貫通孔47a及び第一貫通孔23aよりも径方向内側に配置され、固定子10と同軸に設けられる。第四バッフル46dは、筒状に形成され、第二端板22bの軸方向他方側と第二内壁45cとの間において、第二内壁内側貫通孔48a及び第二貫通孔23bよりも径方向内側に配置され、固定子10と同軸に設けられる。第三バッフル46cは、第一端板22aまたは第一内壁45bに固定される。第四バッフル46dは、第二端板22bまたは第二内壁45cに固定される。
 第五バッフル46eは、筒状に形成され、低速回転子20の軸方向一方側の端面と第一内壁45bとの間において、第一内壁外側貫通孔47bよりも径方向内側、かつ第一貫通孔23a及び第一内壁内側貫通孔47aよりも径方向外側に配置され、固定子10と同軸に設けられる。第六バッフル46fは、筒状に形成され、低速回転子20の軸方向他方側の端面と第二内壁45cとの間において、第二内壁外側貫通孔48bよりも径方向内側、かつ第二貫通孔23b及び第二内壁内側貫通孔48aよりも径方向外側に配置され、固定子10と同軸に設けられる。第五バッフル46eは、第一端板22aまたは第一内壁45bに固定され、第六バッフル46fは、第二端板22bまたは第二内壁45cに固定される。
 以上のように、実施の形態1による回転電機100は、固定子コイル11と固定子磁石12との間に設けられ、軸方向に貫通した固定子磁石冷却流路15を有した固定子10と、低速回転子20と、高速回転子30とを備え、低速回転子20の筒状の第一本体部26と高速回転子30との間に、第一端板22aの第一貫通孔23a及び第二端板22bの第二貫通孔23bに連通した第一冷却流路71が形成され、第一本体部26と固定子10との間に第二冷却流路72が形成され、第一冷却流路71と、第二冷却流路72及び固定子磁石冷却流路15とでは、軸方向の同じ位置において、冷却ガスの流れる軸方向の方向が異なっているため、低速回転子20及び高速回転子30に生じる温度分布のばらつき拡大及び温度上昇を抑制することができる。低速回転子20及び高速回転子30に生じる温度分布のばらつき拡大及び温度上昇が抑制されるため、回転電機100の稼働時の温度上昇が抑制されるので、回転電機100の出力を増加させることができる。また、固定子10内に形成された固定子磁石冷却流路15にも冷却ガスが流れるので、固定子10も効率よく冷却することができる。
 第一貫通孔23aよりも径方向内側に配置され、固定子10と同軸に設けられた第一バッフル46a、及び第二貫通孔23bよりも径方向内側に配置され、固定子10と同軸に設けられた第二バッフル46bを備えた場合、冷却ガスが径方向に流れるのを抑制することができるので、第一冷却流路71に冷却ガスを効率よく流すことができる。また、第一内壁内側貫通孔47a及び第一貫通孔23aよりも径方向内側に配置され、固定子10と同軸に設けられた第三バッフル46c、及び第二内壁内側貫通孔48a及び第二貫通孔23bよりも径方向内側に配置され、固定子10と同軸に設けられた第四バッフル46dを備えた場合、冷却ガスが径方向に流れるのを抑制することができるので、第一冷却流路71に冷却ガスを効率よく流すことができる。第一内壁外側貫通孔47bよりも径方向内側、かつ第一貫通孔23a及び第一内壁内側貫通孔47aよりも径方向外側に配置され、固定子10と同軸に設けられた第五バッフル46e、及び第二内壁外側貫通孔48bよりも径方向内側、かつ第二貫通孔23b及び第二内壁内側貫通孔48aよりも径方向外側に配置され、固定子10と同軸に設けられた第六バッフル46fを備えた場合、冷却ガスが径方向に流れるのを抑制することができるので、第一冷却流路71、第二冷却流路72、及び固定子磁石冷却流路15に冷却ガスを効率よく流すことができる。
 第一内壁45bと第一外壁45dとの間に、第一内壁外側貫通孔47bと第一内壁内側貫通孔47aとの間を連通した冷却ガスの一方側壁内流路73が形成され、ファン43が一方側壁内流路73の内部に配置され、第二内壁45cと第二外壁45eとの間に、第二内壁外側貫通孔48bと第二内壁内側貫通孔48aとの間を連通した冷却ガスの他方側壁内流路74が形成され、熱交換器44が他方側壁内流路74の内部に配置されている場合、回転電機100の製造時にファン43と熱交換器44とが干渉することなくそれぞれの流路に固定できるので、回転電機100の生産性を向上させることができる。
 第一内壁45bと第一外壁45dとの間に、第一内壁外側貫通孔47bと第一内壁内側貫通孔47aとの間を連通した冷却ガスの一方側壁内流路73が形成され、ファン43及び熱交換器44が一方側壁内流路73の内部に配置され、第二内壁45cと第二外壁45eとの間に、第二内壁外側貫通孔48bと第二内壁内側貫通孔48aとの間を連通した冷却ガスの他方側壁内流路74が形成されている場合、回転電機100の軸方向の大きさを小型化することができる。
実施の形態2.
 実施の形態2に係る回転電機100について説明する。図9は実施の形態2に係る回転電機100の断面を示す模式図で、図1のA-A断面位置と同等の位置で切断した図、図10は実施の形態2に係る別の回転電機100の断面を示す模式図である。実施の形態2に係る回転電機100は、固定子鉄心13が第2の固定子冷却部である固定子鉄心冷却流路14を有した構成になっている。
 固定子鉄心13は、固定子コイル11よりも径方向外側に設けられ、軸方向に貫通した固定子鉄心冷却流路14を有する。第一内壁45bは、固定子鉄心冷却流路14に連通し、第一内壁外側貫通孔47bよりも径方向外側の径方向位置で軸方向に貫通した第一内壁外側第二貫通孔47cを有する。第二内壁45cは、固定子鉄心冷却流路14に連通し、第二内壁外側貫通孔48bよりも径方向外側の径方向位置で軸方向に貫通した第二内壁外側第二貫通孔48cを有する。
 第一内壁45bと第一外壁45dとの間に、第一内壁外側貫通孔47b及び第一内壁外側第二貫通孔47cと、第一内壁内側貫通孔47aとの間を連通した冷却ガスの一方側壁内流路73が形成される。第二内壁45cと第二外壁45eとの間に、第二内壁外側貫通孔48b及び第二内壁外側第二貫通孔48cと、第二内壁内側貫通孔48aとの間を連通した冷却ガスの他方側壁内流路74が形成される。ファン43は、一方側壁内流路73の内部に配置され、冷却ガスを送り出す。熱交換器44は、他方側壁内流路74の内部に配置される。ファン43と熱交換器44の配置はこれに限るものではなく、配置される流路は逆であっても構わない。
 図9を用いて、冷却ガスの流れを説明する。ファン43から送り出された冷却ガスは、矢印で示すように、第一冷却流路71、他方側壁内流路74、第二冷却流路72及び固定子磁石冷却流路15及び固定子鉄心冷却流路14、一方側壁内流路73の順に流れる。冷却ガスは、他方側壁内流路74において熱交換器44を通過する。第一冷却流路71と、第二冷却流路72、固定子磁石冷却流路15、及び固定子鉄心冷却流路14とでは、軸方向の同じ位置において、冷却ガスの流れる軸方向の方向は異なっている。冷却ガスの流れる方向はこれに限るものではなく、冷却ガスが逆方向に流れても構わない。冷却ガスが逆方向に流れても、第一冷却流路71と、第二冷却流路72、固定子磁石冷却流路15、及び固定子鉄心冷却流路14とでは、軸方向の同じ位置において、冷却ガスの流れる軸方向の方向は異なっている。
 このように構成することで、固定子鉄心冷却流路14により固定子10の径方向の外側を効率よく冷却することができる。固定子10の径方向の外側を効率よく冷却できるので、固定子10の径方向の温度分布のばらつき拡大を抑制することができる。固定子10の径方向の内側は、固定子磁石冷却流路15により効率よく冷却される。
 回転電機100に、バッフルを追加して設けても構わない。第一固定子バッフル46gは、固定子鉄心13の軸方向一方側と第一内壁45bとの間において、固定子鉄心冷却流路14及び第一内壁外側第二貫通孔47cよりも径方向内側、かつ第一内壁外側貫通孔47bよりも径方向外側に配置され、固定子10と同軸に設けられる。第二固定子バッフル46hは、固定子鉄心13の軸方向他方側と第二内壁45cとの間において、固定子鉄心冷却流路14及び第二内壁外側第二貫通孔48cよりも径方向内側、かつ第二内壁外側貫通孔48bよりも径方向外側に配置され、固定子10と同軸に設けられる。第一固定子バッフル46gは、固定子10または第一内壁45b、もしくはその両方に固定される。第二固定子バッフル46hは、固定子10または第二内壁45c、もしくはその両方に固定される。このように構成することで、冷却ガスが径方向に流れるのを抑制することができるので、固定子鉄心冷却流路14に冷却ガスを効率よく流すことができる。
 なお、図10に示すように、ファン43及び熱交換器44を一方側壁内流路73の内部に配置しても構わない。ファン43と熱交換器44とを同じ流路に配置した場合、ファン43と熱交換器44をタービンブレード41と反対側に集約できるので、回転電機100の軸方向の大きさを小型化することができる。
 以上のように、実施の形態2による回転電機100は、固定子鉄心13が、固定子コイル11よりも径方向外側に設けられ、軸方向に貫通した固定子鉄心冷却流路14を有したため、固定子鉄心冷却流路14により固定子10の径方向の外側を効率よく冷却することができるので、固定子10の径方向の温度分布のばらつき拡大及び温度上昇を抑制することができる。固定子10に生じる温度分布のばらつき拡大及び温度上昇が抑制されるため、回転電機100の稼働時の温度上昇が抑制されるので、回転電機100の出力を増加させることができる。
 第一内壁45bと第一外壁45dとの間に、第一内壁外側貫通孔47b及び第一内壁外側第二貫通孔47cと、第一内壁内側貫通孔47aとの間を連通した冷却ガスの一方側壁内流路73が形成され、ファン43及び熱交換器44が一方側壁内流路73の内部に配置され、第二内壁45cと第二外壁45eとの間に、第二内壁外側貫通孔48b及び第二内壁外側第二貫通孔48cと、第二内壁内側貫通孔48aとの間を連通した冷却ガスの他方側壁内流路74が形成されている場合、回転電機100の軸方向の大きさを小型化することができる。
 固定子鉄心冷却流路14及び第一内壁外側第二貫通孔47cよりも径方向内側、かつ第一内壁外側貫通孔47bよりも径方向外側に配置され、固定子10と同軸に設けられた第一固定子バッフル46g、及び固定子鉄心冷却流路14及び第二内壁外側第二貫通孔48cよりも径方向内側、かつ第二内壁外側貫通孔48bよりも径方向外側に配置され、固定子10と同軸に設けられた第二固定子バッフル46hを備えた場合、冷却ガスが径方向に流れるのを抑制することができるので、固定子鉄心冷却流路14に冷却ガスを効率よく流すことができる。
実施の形態3.
 実施の形態3に係る回転電機100について説明する。図11は実施の形態3に係る回転電機100の断面を示す模式図で、図1のA-A断面位置と同等の位置で切断した図、図12は実施の形態3に係る別の回転電機100の断面を示す模式図、図13は実施の形態3に係る別の回転電機100の断面を示す模式図である。なお、固定子10の部分については、径方向内側は固定子スロット13aの部分、径方向外側は固定子ティース13bの部分の断面を示す。実施の形態3に係る回転電機100は、固定子10及び低速回転子20が径方向に貫通した通風路を有した構成になっている。
 固定子鉄心13は、固定子鉄心13の軸方向の中心部において、第二冷却流路72と固定子鉄心冷却流路14との間を径方向に貫通し、第二冷却流路72と固定子鉄心冷却流路14と固定子磁石冷却流路15とを連通した固定子通風路16を有する。固定子通風路16は、図2に示すように、固定子ティース13bに形成される。第一本体部26は、第一本体部26の軸方向の中心部において、第一冷却流路71と第二冷却流路72との間を径方向に貫通し、第一冷却流路71と第二冷却流路72とを連通した第一の回転子通風路である低速回転子通風路24を有する。固定子通風路16の数は、一つに限るものではない。固定子通風路16は、周方向に異なる位置の固定子ティース13bのそれぞれに設けても構わない。同様に低速回転子通風路24は、第一本体部26の周方向の異なる位置に複数設けても構わない。
 第一内壁45bと第一外壁45dとの間に、第一内壁内側貫通孔47aに連通した一方側第一壁内流路80aと、第一内壁外側第二貫通孔47cに連通した一方側第二壁内流路80bと、一方側第一壁内流路80a及び一方側第二壁内流路80bと第一内壁外側貫通孔47bとを連通した一方側第三壁内流路80cとが形成される。第二内壁45cと第二外壁45eとの間に、第二内壁内側貫通孔48aに連通した他方側第一壁内流路81aと、第二内壁外側第二貫通孔48cに連通した他方側第二壁内流路81bと、他方側第一壁内流路81a及び他方側第二壁内流路81bと第二内壁外側貫通孔48bとを連通した他方側第三壁内流路81cとが形成される。
 ファン43である第一のファン43a及び熱交換器44である第一の熱交換器44aは、一方側第三壁内流路80cに配置される。ファン43である第二のファン43b及び熱交換器44である第二の熱交換器44bは、他方側第三壁内流路81cに配置される。
 第一のファン43aが第一内壁外側貫通孔47bの側に向けて冷却ガスを送り出すと共に、第二のファン43bが第二内壁外側貫通孔48bの側に向けて冷却ガスを送り出す。図11に示した矢印51及び矢印52は、この場合の冷却ガスの流れを示すものである。なお冷却ガスの流れはこれに限るものではなく、第一のファン43aが第一内壁外側貫通孔47bの側とは反対側に向けて冷却ガスを送り出すと共に、第二のファン43bが第二内壁外側貫通孔48bの側とは反対側に向けて冷却ガスを送り出してもよい。この場合、冷却ガスは図11に示した矢印とは逆方向に流れる構成になる。
 図11を用いて、冷却ガスの流れを説明する。第一のファン43aから送り出された冷却ガスから、2つの流路が形成される。1つは、第二冷却流路72、低速回転子通風路24、第一冷却流路71、一方側第一壁内流路80a、一方側第三壁内流路80cの順に流れる。もう1つは、第二冷却流路72及び固定子磁石冷却流路15、固定子通風路16、固定子鉄心冷却流路14、一方側第二壁内流路80b、一方側第三壁内流路80cの順に流れる。第二のファン43bから送り出された冷却ガスからも、2つの流路が形成される。1つは、第二冷却流路72、低速回転子通風路24、第一冷却流路71、他方側第一壁内流路81a、他方側第三壁内流路81cの順に流れる。もう1つは、第二冷却流路72及び固定子磁石冷却流路15、固定子通風路16、固定子鉄心冷却流路14、他方側第二壁内流路81b、他方側第三壁内流路81cの順に流れる。冷却ガスは、一方側第三壁内流路80cにおいて第一の熱交換器44aを通過し、他方側第三壁内流路81cにおいて第二の熱交換器44bを通過する。第一冷却流路71及び固定子鉄心冷却流路14と、第二冷却流路72及び固定子磁石冷却流路15とでは、軸方向の同じ位置において、冷却ガスの流れる軸方向の方向が異なっている。
 このように構成することで、固定子通風路16と低速回転子通風路24の軸方向の両側における、第一冷却流路71、固定子鉄心冷却流路14、第二冷却流路72、及び固定子磁石冷却流路15のそれぞれの部分において逆方向に冷却ガスが流れるので、低速回転子20、高速回転子30、及び固定子10に生じる温度分布のばらつき拡大及び温度上昇を抑制することができる。低速回転子20、高速回転子30、及び固定子10に生じる温度分布のばらつき拡大及び温度上昇が抑制されるため、回転電機100の稼働時の温度上昇が抑制されるので、回転電機100の出力を増加させることができる。
 また、固定子磁石12が、図12に示すように、固定子磁石12の軸方向の中心部において、第二冷却流路72と固定子磁石冷却流路15との間を径方向に貫通し、第二冷却流路72と固定子磁石冷却流路15とを連通した固定子磁石通風路16aを有し、固定子磁石通風路16aが、低速回転子通風路24に連通している構成としてもよい。このように構成することで、径方向に流れる冷却ガスの流路が増えるので、第二冷却流路72及び固定子磁石冷却流路15に冷却ガスを流しやすくすることができる。
 図12において、第一のファン43aの軸方向一方側に第一の熱交換器44aが配置され、第二のファン43bの軸方向他方側に第二の熱交換器44bが配置される。これらの配置はこれに限るものではなく、図13に示すように、第一のファン43aの軸方向他方側に第一の熱交換器44aが配置され、第二のファン43bの軸方向一方側に第二の熱交換器44bが配置されても構わない。
 以上のように、実施の形態3による回転電機100は、固定子鉄心13が固定子鉄心13の軸方向の中心部において、第二冷却流路72と固定子鉄心冷却流路14との間を径方向に貫通し、第二冷却流路72と固定子鉄心冷却流路14と固定子磁石冷却流路15とを連通した固定子通風路16を有し、第一本体部26が第一本体部26の軸方向の中心部において、第一冷却流路71と第二冷却流路72との間を径方向に貫通し、第一冷却流路71と第二冷却流路72とを連通した第一の回転子通風路である低速回転子通風路24を有したため、固定子通風路16と低速回転子通風路24の軸方向の両側における、第一冷却流路71、固定子鉄心冷却流路14、第二冷却流路72、及び固定子磁石冷却流路15のそれぞれの部分において逆方向に冷却ガスが流れるので、低速回転子20、高速回転子30、及び固定子10に生じる温度分布のばらつき拡大及び温度上昇を抑制することができる。低速回転子20、高速回転子30、及び固定子10に生じる温度分布のばらつき拡大及び温度上昇が抑制されるため、回転電機100の稼働時の温度上昇が抑制されるので、回転電機100の出力を増加させることができる。
 固定子磁石12が、固定子磁石12の軸方向の中心部において、第二冷却流路72と固定子磁石冷却流路15との間を径方向に貫通し、第二冷却流路72と固定子磁石冷却流路15とを連通した固定子磁石通風路16aを有した場合、径方向に流れる冷却ガスの流路が増えるので、第二冷却流路72及び固定子磁石冷却流路15に冷却ガスを流しやすくすることができる。
実施の形態4.
 実施の形態4に係る回転電機100について説明する。図14は実施の形態4に係る回転電機100の断面を示す模式図で、図1のA-A断面位置と同等の位置で切断した図、図15は実施の形態4に係る別の回転電機100の断面を示す模式図である。実施の形態4に係る回転電機100は、高速回転子30が内部に流路を有した構成になっている。
 第二本体部35は、第三端板32a及び第四端板32bを有する。第三端板32aは、第二本体部35の軸方向の一方側の端部から径方向内側に延出し、回転軸40に軸受42を介して連結される。第四端板32bは、第二本体部35の軸方向の他方側の端部から径方向内側に延出し、回転軸40に軸受42を介して連結される。第三端板32aは、軸方向に貫通した第三貫通孔33aを有する。第四端板32bは、軸方向に貫通した第四貫通孔33bを有する。高速回転子30の内部に、第三貫通孔33a及び第四貫通孔33bに連通した第三冷却流路75が形成される。高速回転子30は、第二本体部35の軸方向の中心部において、第一冷却流路71と第三冷却流路75との間を径方向に貫通し、第一冷却流路71と第三冷却流路75とを連通した第二の回転子通風路である高速回転子通風路34を有する。高速回転子通風路34は、高速回転子30の周方向の異なる位置に複数設けて構わない。
 第一端板22aは、第一貫通孔23aよりも径方向内側の径方向位置で第三貫通孔33aに連通し、軸方向に貫通した第一内側貫通孔23cを有する。第二端板22bは、第二貫通孔23bよりも径方向内側の径方向位置で第四貫通孔33bに連通し、軸方向に貫通した第二内側貫通孔23dを有する。第一内壁45bは、第三冷却流路75に連通し、第一内壁内側貫通孔47aよりも径方向内側の径方向位置で軸方向に貫通した第一内壁内側第二貫通孔47dを有する。第二内壁45cは、第三冷却流路75に連通し、第二内壁内側貫通孔48aよりも径方向内側の径方向位置で軸方向に貫通した第二内壁内側第二貫通孔48dを有する。
 第一内壁45bと第一外壁45dとの間に、第一内壁内側貫通孔47aと第一内壁内側第二貫通孔47dとの間を連通する冷却ガスの第一の一方側壁内流路82aが形成される。第一内壁45bと第一外壁45dとの間に、第一内壁外側貫通孔47bと第一内壁外側第二貫通孔47cとの間を連通する冷却ガスの第二の一方側壁内流路82bが形成される。第二内壁45cと第二外壁45eとの間に、第二内壁内側貫通孔48aと第二内壁内側第二貫通孔48dとの間を連通する第一の他方側壁内流路82cが形成される。第二内壁45cと第二外壁45eとの間に、第二内壁外側貫通孔48bと第二内壁外側第二貫通孔48cとの間を連通する第二の他方側壁内流路82dが形成される。
 ファンで43ある第一の一方側ファン43c及び熱交換器44である第一の一方側熱交換器44cは、第一の一方側壁内流路82aに配置される。ファン43である第二の一方側ファン43d及び熱交換器44である第二の一方側熱交換器44dは、第二の一方側壁内流路82bに配置される。ファン43である第一の他方側ファン43e及び熱交換器44である第一の他方側熱交換器44eは、第一の他方側壁内流路82cに配置される。ファン43である第二の他方側ファン43f及び熱交換器44である第二の他方側熱交換器44fは、第二の他方側壁内流路82dに配置される。
 第一の一方側ファン43cが第一内壁内側第二貫通孔47dの側に向けて冷却ガスを送り出すと共に第二の一方側ファン43dは第一内壁外側貫通孔47bの側に向けて、第一の他方側ファン43eは第二内壁内側第二貫通孔48dの側に向けて、第二の他方側ファン43fは第二内壁外側貫通孔48bの側に向けて冷却ガスを送り出す。図14に示した矢印51及び矢印52は、この場合の冷却ガスの流れを示すものである。なお冷却ガスの流れはこれに限るものではなく、第一の一方側ファン43cが第一内壁内側第二貫通孔47dの側とは反対側に向けて冷却ガスを送り出すと共に第二の一方側ファン43dは第一内壁外側貫通孔47bの側とは反対側に向けて、第一の他方側ファン43eは第二内壁内側第二貫通孔48dの側とは反対側に向けて、第二の他方側ファン43fは第二内壁外側貫通孔48bの側とは反対側に向けて冷却ガスを送り出してもよい。この場合、冷却ガスは図14に示した矢印とは逆方向に流れる構成になる。
 図14を用いて、冷却ガスの流れを説明する。第一の一方側ファン43cから送り出された冷却ガスは、矢印で示すように、第三冷却流路75、高速回転子通風路34、第一冷却流路71、第一の一方側壁内流路82aの順に流れる。第二の一方側ファン43dから送り出された冷却ガスは、第二冷却流路72及び固定子磁石冷却流路15、固定子通風路16及び固定子磁石通風路16a、固定子鉄心冷却流路14、第二の一方側壁内流路82bの順に流れる。第一の他方側ファン43eから送り出された冷却ガスは、第三冷却流路75、高速回転子通風路34、第一冷却流路71、第一の他方側壁内流路82cの順に流れる。第二の他方側ファン43fから送り出された冷却ガスは、第二冷却流路72及び固定子磁石冷却流路15、固定子通風路16及び固定子磁石通風路16a、固定子鉄心冷却流路14、第二の他方側壁内流路82dの順に流れる。
 第一冷却流路71及び固定子鉄心冷却流路14と、第二冷却流路72及び固定子磁石冷却流路15及び第三冷却流路75とでは、軸方向の同じ位置において、冷却ガスの流れる軸方向の方向が異なっている。固定子通風路16、固定子磁石通風路16a、及び高速回転子通風路34の軸方向の両側における、第一冷却流路71、第二冷却流路72、第三冷却流路75、固定子磁石冷却流路15、及び固定子鉄心冷却流路14のそれぞれの部分において逆方向に冷却ガスが流れる。
 このように構成することで、一つのファン43から形成される冷却ガスの流路を実施の形態1及び2と比較して短縮することができる。回転電機100の内部の冷却ガスの流路で発生する主たる圧力損失は、断面積の小さい第一冷却流路71または第二冷却流路72を冷却ガスが通過する際の摩擦損失である。冷却ガスの流路が短縮されるので、一つのファン43に必要な昇圧量を低減することができる。また、高速回転子30内に形成された第三冷却流路75にも冷却ガスが流れるので、高速回転子30をさらに効率よく冷却することができる。
 回転電機100に、バッフルを追加して設けても構わない。第七バッフル46iは、筒状に形成され、高速回転子30の軸方向一方側と第一端板22aとの間において、第三貫通孔33a及び第一内側貫通孔23cよりも径方向内側に配置され、固定子10と同軸に設けられる。第八バッフル46jは、筒状に形成され、高速回転子30の軸方向他方側と第二端板22bとの間において、第四貫通孔33b及び第二内側貫通孔23dよりも径方向内側に配置され、固定子10と同軸に設けられる。第九バッフル46kは、筒状に形成され、低速回転子20の軸方向一方側と第一内壁45bとの間において、第一内側貫通孔23c及び第一内壁内側第二貫通孔47dよりも径方向内側に配置され、固定子10と同軸に設けられる。第十バッフル46lは、筒状に形成され、低速回転子20の軸方向他方側と第二内壁45cとの間において、第二内側貫通孔23d及び第二内壁内側第二貫通孔48dよりも径方向内側に配置され、固定子10と同軸に設けられる。
 第七バッフル46iは、高速回転子30または第一端板22aに固定される。第八バッフル46jは、高速回転子30または第二端板22bに固定される。第九バッフル46kは、低速回転子20または第一内壁45bに固定される。第十バッフル46lは、低速回転子20または第二内壁45cに固定される。
 図14において、第一の一方側ファン43cの軸方向一方側に第一の一方側熱交換器44cが配置され、第二の一方側ファン43dの軸方向一方側に第二の一方側熱交換器44dが配置され、第一の他方側ファン43eの軸方向他方側に第一の他方側熱交換器44eが配置され、第二の他方側ファン43fの軸方向他方側に第二の他方側熱交換器44fが配置される。これらの配置はこれに限るものではなく、図15に示すように、ファン43と熱交換器44の配置が軸方向で逆の配置であっても構わない。
 以上のように、実施の形態4による回転電機100は、高速回転子30の内部に第三貫通孔33a及び第四貫通孔33bに連通した第三冷却流路75が形成され、高速回転子30が第二本体部35の軸方向の中心部において、第一冷却流路71と第三冷却流路75との間を径方向に貫通した高速回転子通風路34を有し、4つのファン43により第一冷却流路71、第二冷却流路72、第三冷却流路75、固定子磁石冷却流路15、及び固定子鉄心冷却流路14を逆方向に流れる流路が形成されるため、一つのファン43から形成される冷却ガスの流路を短縮することができるので、一つのファン43に必要な昇圧量を低減することができる。一つのファン43に必要な昇圧量を低減することができるため、低速回転子20、高速回転子30、及び固定子10に生じる温度分布のばらつき拡大及び温度上昇を効率よく抑制することができる。低速回転子20、高速回転子30、及び固定子10に生じる温度分布のばらつき拡大及び温度上昇が抑制されるため、回転電機100の稼働時の温度上昇が抑制されるので、回転電機100の出力を増加させることができる。
 回転電機100が第七バッフル46i、第八バッフル46j、第九バッフル46k、及び第十バッフル46lを備えた場合、冷却ガスが径方向に流れるのを抑制することができるので、第三冷却流路75に冷却ガスを効率よく流すことができる。
実施の形態5.
 実施の形態5に係る回転電機100について説明する。図16は実施の形態5に係る回転電機100の断面を示す模式図で、図1のA-A断面位置と同等の位置で切断した図、図17は回転電機100の要部を示す模式図で、交差した流路を示す図、図18は回転電機100の低速回転子20の部分を示す模式図で、第一端板22aの側を示す図、図19は回転電機100の別の低速回転子20に部分を示す模式図で、第一端板22aの側を示す図、図20は回転電機100の筐体45の要部を示す模式図で、第一内壁45bを示す図、図21は回転電機100の別の筐体45の要部を示す模式図で、第一内壁45bを示す図、図22は実施の形態5に係る別の回転電機100の断面を示す模式図で、図16と同等の位置で切断した図である。実施の形態5に係る回転電機100は、高速回転子30が内部に複数の流路を有した構成になっている。
 第三端板32aは、径方向の外側から内側に向かって順に、軸方向に貫通した第三貫通孔33a、第三内側貫通孔33c、及び第三内側第二貫通孔33eを有する。第四端板32bは、径方向の外側から内側に向かって順に、軸方向に貫通した第四貫通孔33b、第四内側貫通孔33d、及び第四内側第二貫通孔33fを有する。高速回転子30の内部に、第三貫通孔33a及び第四貫通孔33bに連通した第三冷却流路75、第三内側貫通孔33c及び第四内側貫通孔33dに連通した第四冷却流路76、及び第三内側第二貫通孔33e及び第四内側第二貫通孔33fに連通した第五冷却流路77が形成される。第三冷却流路75と第四冷却流路76と第五冷却流路77とは、高速回転子30の内部で仕切られている。
 第一端板22aは、第一貫通孔23aよりも径方向内側の径方向位置で第三貫通孔33aに連通し、軸方向に貫通した第一内側貫通孔23c、第一内側貫通孔23cよりも径方向内側の径方向位置で第三内側貫通孔33cに連通し、軸方向に貫通した第一内側第二貫通孔23e、及び第一内側第二貫通孔23eよりも径方向内側の径方向位置で第三内側第二貫通孔33eに連通し、軸方向に貫通した第一内側第三貫通孔23gを有する。第二端板22bは、第二貫通孔23bよりも径方向内側の径方向位置で第四貫通孔33bに連通し、軸方向に貫通した第二内側貫通孔23d、第二内側貫通孔23dよりも径方向内側の径方向位置で第四内側貫通孔33dに連通し、軸方向に貫通した第二内側第二貫通孔23f、及び第二内側第二貫通孔23fよりも径方向内側の径方向位置で第四内側第二貫通孔33fに連通し、軸方向に貫通した第二内側第三貫通孔23hを有する。
 第一内壁45bは、第四冷却流路76に連通し、第一内壁内側第二貫通孔47dよりも径方向内側の径方向位置で軸方向に貫通した第一内壁内側第三貫通孔47e、及び第五冷却流路77に連通し、第一内壁内側第三貫通孔47eよりも径方向内側の径方向位置で軸方向に貫通した第一内壁内側第四貫通孔47fを有する。 第二内壁45cは、第四冷却流路76に連通し、第二内壁内側第二貫通孔48dよりも径方向内側の径方向位置で軸方向に貫通した第二内壁内側第三貫通孔48e、及び第五冷却流路77に連通し、第二内壁内側第三貫通孔48eよりも径方向内側の径方向位置で軸方向に貫通した第二内壁内側第四貫通孔48fを有する。
 第一内壁45bと第一外壁45dとの間に、第一内壁内側第四貫通孔47fに連通した冷却ガスの一方側第一壁内流路83aと、第一内壁内側貫通孔に連通した冷却ガスの一方側第二壁内流路83bと、一方側第一壁内流路83a及び一方側第二壁内流路83bと第一内壁内側第二貫通孔47d及び第一内壁内側第三貫通孔47eとを連通した冷却ガスの一方側第三壁内流路83cとが形成される。第一内壁45bと第一外壁45dとの間に、第一内壁外側貫通孔47bと第一内壁外側第二貫通孔47cとの間を連通した冷却ガスの一方側第四壁内流路83dが形成される。第二内壁45cと第二外壁45eとの間に、第二内壁外側第二貫通孔48c及び第二内壁内側貫通孔48aと、第二内壁内側第四貫通孔48fとの間を連通した冷却ガスの他方側第一壁内流路84aが形成され、第二内壁45cと第二外壁45eとの間に、第二内壁内側第三貫通孔48eと、第二内壁内側第二貫通孔48d及び第二内壁外側貫通孔48bとの間を連通した冷却ガスの他方側第二壁内流路84bが形成される。
 ファン43である第一の一方側ファン43g及び熱交換器44である第一の一方側熱交換器44gは、一方側第三壁内流路83cに配置される。ファン43である第二の一方側ファン43h及び熱交換器44である第二の一方側熱交換器44hは、一方側第四壁内流路83dに配置される。本実施の形態では、ファン43と熱交換器44は回転電機100の軸方向一方側にのみ配置され、ファン43と熱交換器44がタービンブレード41と反対側に集約されているので、回転電機100の軸方向の大きさを小型化することができる。
 第一の一方側ファン43gが第一内壁内側第二貫通孔47d及び第一内壁内側第三貫通孔47eの側に向けて冷却ガスを送り出すと共に、第二の一方側ファン43hは第一内壁外側貫通孔47bの側に向けて冷却ガスを送り出す。図16に示した矢印51及び矢印52は、この場合の冷却ガスの流れを示すものである。なお冷却ガスの流れはこれに限るものではなく、第一の一方側ファン43gが第一内壁内側第二貫通孔47d及び第一内壁内側第三貫通孔47eの側とは反対側に向けて冷却ガスを送り出すと共に第二の一方側ファン43hは第一内壁外側貫通孔47bの側とは反対側に向けて冷却ガスを送り出してもよい。この場合、冷却ガスは図16に示した矢印とは逆方向に流れる構成になる。
 図16の破線で囲まれた部分において、他方側第一壁内流路84aと他方側第二壁内流路84bとが交差して設けられる。交差した流路の部分は、図17に示すように、分離して設けるのが望ましい。例えば、他方側第一壁内流路84aを筒状に形成した流路管として設け、他方側第一壁内流路84aを流れる冷却ガスは管内を流れる。他方側第二壁内流路84bは管外に形成される。このように構成することで、温度の異なる冷却ガスが混合されるのを抑制することができる。
 図16を用いて、冷却ガスの流れを説明する。第一の一方側ファン43gから送り出された冷却ガスから、3つの流路が形成される。1つは、第三冷却流路75、高速回転子通風路34、第一冷却流路71、一方側第二壁内流路83b、一方側第三壁内流路83cの順に流れる。もう1つは、第四冷却流路76、他方側第二壁内流路84b、第三冷却流路75、高速回転子通風路34、第一冷却流路71、他方側第一壁内流路84a、第五冷却流路77、一方側第一壁内流路83a、一方側第三壁内流路83cの順に流れる。もう1つは、第四冷却流路76、他方側第二壁内流路84b、第二冷却流路72及び固定子磁石冷却流路15、固定子通風路16及び固定子磁石通風路16a、固定子鉄心冷却流路14、他方側第一壁内流路84a、第五冷却流路77、一方側第一壁内流路83a、一方側第三壁内流路83cの順に流れる。第二の一方側ファン43hから送り出された冷却ガスは、第二冷却流路72及び固定子磁石冷却流路15、固定子通風路16及び固定子磁石通風路16a、固定子鉄心冷却流路14、一方側第四壁内流路83dの順に流れる。冷却ガスは、一方側第三壁内流路83cにおいて第一の一方側熱交換器44gを通過し、一方側第四壁内流路83dにおいて第二の一方側熱交換器44hを通過する。
 第一冷却流路71及び固定子鉄心冷却流路14と、第二冷却流路72及び固定子磁石冷却流路15及び第三冷却流路75とでは、軸方向の同じ位置において、冷却ガスの流れる軸方向の方向が異なっている。また、第四冷却流路76と第五冷却流路77とでは、軸方向の同じ位置において、冷却ガスの流れる軸方向の方向が異なっている。
 このように構成することで、一つのファン43から形成される冷却ガスの流路を実施の形態1及び2と比較して短縮することができる。回転電機100の内部の冷却ガスの流路で発生する主たる圧力損失は、断面積の小さい第一冷却流路71または第二冷却流路72を冷却ガスが通過する際の摩擦損失である。冷却ガスの流路が短縮されるので、一つのファン43に必要な昇圧量を低減することができる。また、高速回転子30内に形成された第三冷却流路75、第四冷却流路76、及び第五冷却流路77にも冷却ガスが流れるので、高速回転子30をさらに効率よく冷却することができる。
 図16は断面図であるため、第一端板22aの第一貫通孔23a、第一内側貫通孔23c、第一内側第二貫通孔23e、第一内側第三貫通孔23g、及び第二端板22bの第二貫通孔23b、第二内側貫通孔23d、第二内側第二貫通孔23f、第二内側第三貫通孔23hはそれぞれ一つのみを示したが、これらの貫通孔の数は一つに限るものではない。図18に示すように、間隔を空けてそれぞれの貫通孔を複数設けても構わない。また、これらの貫通孔のそれぞれの形状は円形に限るものではなく、図19に示すように、第一端板22aの外周に沿うように複数の貫通孔を連結させた形状でも構わない。第一端板22aの例のみを示したが、第二端板22bが有する貫通孔についても同様である。
 図16は断面図であるため、第一内壁45bの第一内壁内側貫通孔47a、第一内壁外側貫通孔47b、第一内壁外側第二貫通孔47c、第一内壁内側第二貫通孔47d、第一内壁内側第三貫通孔47e、第一内壁内側第四貫通孔47f、及び第二内壁45cの第二内壁内側貫通孔48a、第二内壁外側貫通孔48b、第二内壁外側第二貫通孔48c、第二内壁内側第二貫通孔48d、第二内壁内側第三貫通孔48e、第二内壁内側第四貫通孔48fはそれぞれ一つのみを示したが、これらの貫通孔の数は一つに限るものではない。図20に示すように、間隔を空けてそれぞれの貫通孔を複数設けても構わない。また、これらの貫通孔のそれぞれの形状は円形に限るものではなく、図21に示すように、第一内壁45bの外周に沿うように複数の貫通孔を連結させた形状でも構わない。第一内壁45bの例のみを示したが、第二内壁45cが有する貫通孔についても同様である。
 回転電機100に、バッフルを追加して設けても構わない。第七バッフル46iは、筒状に形成され、高速回転子30の軸方向一方側と第一端板22aとの間において、第三貫通孔33a及び第一内側貫通孔23cよりも径方向内側、かつ第三内側貫通孔33c及び第一内側第二貫通孔23eよりも径方向外側に配置され、固定子10と同軸に設けられる。第八バッフル46jは、筒状に形成され、高速回転子30の軸方向他方側と第二端板22bとの間において、第四貫通孔33b及び第二内側貫通孔23dよりも径方向内側、かつ第四内側貫通孔33d及び第二内側第二貫通孔23fよりも径方向外側に配置され、固定子10と同軸に設けられる。第七バッフル46iは、高速回転子30または第一端板22aに固定される。第八バッフル46jは、高速回転子30または第二端板22bに固定される。
 第九バッフル46kは、筒状に形成され、低速回転子20の軸方向一方側と第一内壁45bとの間において、第一内側貫通孔23c及び第一内壁内側第二貫通孔47dよりも径方向内側、かつ第一内側第二貫通孔23e及び第一内壁内側第三貫通孔47eよりも径方向外側に配置され、固定子10と同軸に設けられる。第十バッフル46lは、筒状に形成され、低速回転子20の軸方向他方側と第二内壁45cとの間において、第二内側貫通孔23d及び第二内壁内側第二貫通孔48dよりも径方向内側、かつ第二内側第二貫通孔23f及び第二内壁内側第三貫通孔48eよりも径方向外側に配置され、固定子10と同軸に設けられる。第九バッフル46kは、低速回転子20または第一内壁45bに固定される。第十バッフル46lは、低速回転子20または第二内壁45cに固定される。
 第十一バッフル46mは、筒状に形成され、高速回転子30の軸方向一方側と第一端板22aとの間において、第三内側貫通孔33c及び第一内側第二貫通孔23eよりも径方向内側、かつ第三内側第二貫通孔33e及び第一内側第三貫通孔23gよりも径方向外側に配置され、固定子10と同軸に設けられる。第十二バッフル46nは、筒状に形成され、高速回転子30の軸方向他方側と第二端板22bとの間において、第四内側貫通孔33d及び第二内側第二貫通孔23fよりも径方向内側、かつ第四内側第二貫通孔33f及び第二内側第三貫通孔23hよりも径方向外側に配置され、固定子10と同軸に設けられる。第十一バッフル46mは、高速回転子30または第一端板22aに固定される。第十二バッフル46nは、高速回転子30または第二端板22bに固定される。
 第十三バッフル46oは、筒状に形成され、低速回転子20の軸方向一方側と第一内壁45bとの間において、第一内側第二貫通孔23e及び第一内壁内側第三貫通孔47eよりも径方向内側、かつ第一内側第三貫通孔23g及び第一内壁内側第四貫通孔47fよりも径方向外側に配置され、固定子10と同軸に設けられる。第十四バッフル46pは、筒状に形成され、低速回転子20の軸方向他方側と第二内壁45cとの間において、第二内側第二貫通孔23f及び第二内壁内側第三貫通孔48eよりも径方向内側、かつ第二内側第三貫通孔23h及び第二内壁内側第四貫通孔48fよりも径方向外側に配置され、固定子10と同軸に設けられる。第十三バッフル46oは、低速回転子20または第一内壁45bに固定される。第十四バッフル46pは、低速回転子20または第二内壁45cに固定される。
 図16において、第一の一方側ファン43gの軸方向一方側に第一の一方側熱交換器44gが配置され、第二の一方側ファン43hの軸方向一方側に第二の一方側熱交換器44hが配置される。これらの配置はこれに限るものではなく、図22示すように、ファン43と熱交換器44の配置が軸方向で逆の配置であっても構わない。
 以上のように、実施の形態5による回転電機100は、高速回転子30の内部に第三冷却流路75、第四冷却流路76、及び第五冷却流路77が形成され、高速回転子30が第二本体部35の軸方向の中心部において、第一冷却流路71と第三冷却流路75との間を径方向に貫通した高速回転子通風路34を有し、2つのファン43により第一冷却流路71、第二冷却流路72、第三冷却流路75、固定子磁石冷却流路15、及び固定子鉄心冷却流路14を逆方向に流れる流路が形成されるため、一つのファン43から形成される冷却ガスの流路を短縮することができるので、一つのファン43に必要な昇圧量を低減することができる。一つのファン43に必要な昇圧量を低減することができるため、低速回転子20、高速回転子30、及び固定子10に生じる温度分布のばらつき拡大及び温度上昇を効率よく抑制することができる。低速回転子20、高速回転子30、及び固定子10に生じる温度分布のばらつき拡大及び温度上昇が抑制されるため、回転電機100の稼働時の温度上昇が抑制されるので、回転電機100の出力を増加させることができる。
 ファン43と熱交換器44は回転電機100の軸方向一方側にのみ配置され、ファン43と熱交換器44がタービンブレード41と反対側に集約されているので、回転電機100の軸方向の大きさを小型化することができる。また、回転電機100が第十一バッフル46m、第十二バッフル46n、第十三バッフル46o、第十四バッフル46pを備えた場合、冷却ガスが径方向に流れるのを抑制することができるので、第四冷却流路76及び第五冷却流路77に冷却ガスを効率よく流すことができる。
 また本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
 従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
10 固定子、11 固定子コイル、12 固定子磁石、13 固定子鉄心、13a 固定子スロット、13b 固定子ティース、14 固定子鉄心冷却流路、15 固定子磁石冷却流路、16 固定子通風路、16a 固定子磁石通風路、20 低速回転子、21 磁極片、22a 第一端板、22b 第二端板、23a 第一貫通孔、23b 第二貫通孔、23c 第一内側貫通孔、23d 第二内側貫通孔、23e 第一内側第二貫通孔、23f 第二内側第二貫通孔、23g 第一内側第三貫通孔、23h 第二内側第三貫通孔、24 低速回転子通風路、25 絶縁材、26 第一本体部、30 高速回転子、31 高速回転子磁石、32a 第三端板、32b 第四端板、33a 第三貫通孔、33b 第四貫通孔、33c 第三内側貫通孔、33d 第四内側貫通孔、33e 第三内側第二貫通孔、33f 第四内側第二貫通孔、34 高速回転子通風路、35 第二本体部、40 回転軸、41 タービンブレード、42 軸受、43 ファン、44 熱交換器、45 筐体、45a 周壁、45b 第一内壁、45c 第二内壁、45d 第一外壁、45e 第二外壁、46a 第一バッフル、46b 第二バッフル、46c 第三バッフル、46d 第四バッフル、46e 第五バッフル、46f 第六バッフル、46g 第一固定子バッフル、46h 第二固定子バッフル、46i 第七バッフル、46j 第八バッフル、46k 第九バッフル、46l 第十バッフル、46m 第十一バッフル、46n 第十二バッフル、46o 第十三バッフル、46p 第十四バッフル、47a 第一内壁内側貫通孔、47b 第一内壁外側貫通孔、47c 第一内壁外側第二貫通孔、47d 第一内壁内側第二貫通孔、47e 第一内壁内側第三貫通孔、47f 第一内壁内側第四貫通孔、48a 第二内壁内側貫通孔、48b 第二内壁外側貫通孔、48c 第二内壁外側第二貫通孔、48d 第二内壁内側第二貫通孔、48e 第二内壁内側第三貫通孔、48f 第二内壁内側第四貫通孔、51 矢印、52 矢印、61 第一間隙、62 第二間隙、71 第一冷却流路、72 第二冷却流路、73 一方側壁内流路、74 他方側壁内流路、75 第三冷却流路、76 第四冷却流路、77 第五冷却流路、80a 一方側第一壁内流路、80b 一方側第二壁内流路、80c 一方側第三壁内流路、81a 他方側第一壁内流路、81b 他方側第二壁内流路、81c 他方側第三壁内流路、82a 第一の一方側壁内流路、82b 第二の一方側壁内流路、82c 第一の他方側壁内流路、82d 第二の他方側壁内流路、83a 一方側第一壁内流路、83b 一方側第二壁内流路、83c 一方側第三壁内流路、83d 一方側第四壁内流路、84a 他方側第一壁内流路、84b 他方側第二壁内流路、100 回転電機

Claims (15)

  1.  回転軸と、
     径方向内側に開口した固定子スロットを周方向に複数設けた固定子鉄心、複数の前記固定子スロットのそれぞれの底部の側に配置された固定子コイル、複数の前記固定子スロットのそれぞれの開口側に、径方向に同じ磁極方向になるように配置された固定子磁石、及び前記固定子コイルと前記固定子磁石との間に設けられ、軸方向に貫通した固定子磁石冷却流路を有した固定子と、
     筒状の第一本体部と、周方向に間隔を空けて前記第一本体部に設けられた複数の磁極片とを有し、前記固定子磁石と対向して前記固定子と同軸に設けられ、前記回転軸と一体回転する第一の回転子と、
     筒状の第二本体部と、前記第二本体部の外周部に周方向に間隔を空けて配置された複数の永久磁石とを有し、前記第一本体部の径方向内側の壁面に対向して前記第一の回転子と同軸に設けられた第二の回転子と、
     前記固定子を径方向外側から取り囲む周壁、前記周壁に連結され、前記固定子と前記第一の回転子と前記第二の回転子の軸方向一方側を覆う第一内壁、前記周壁に連結され、前記固定子と前記第一の回転子と前記第二の回転子の軸方向他方側を覆う第二内壁、前記周壁に連結され、間隔を空けて前記第一内壁の軸方向一方側を覆う第一外壁、及び前記周壁に連結され、間隔を空けて前記第二内壁の軸方向他方側を覆う第二外壁を有した筐体と、
     前記筐体の内部に配置され、冷却ガスを送り出すファンと、
     前記筐体の内部に配置され、前記冷却ガスが通過する熱交換器と、を備え、
     前記第一本体部は、前記第二の回転子と前記第一内壁との軸方向の間を、軸方向一方側の端部から径方向内側に延出し、前記回転軸に固定された第一端板、及び前記第二の回転子と前記第二内壁との軸方向の間を、軸方向他方側の端部から径方向内側に延出し、前記回転軸に固定された第二端板を有し、
     前記第一端板は、径方向外側の部分に軸方向に貫通した第一貫通孔を有し、
     前記第二端板は、径方向外側の部分に軸方向に貫通した第二貫通孔を有し、
     前記第一本体部と前記第二の回転子との間に、前記第一貫通孔及び前記第二貫通孔に連通した第一冷却流路が形成され、
     前記第一本体部と前記固定子との間に、第二冷却流路が形成され、
     前記第一内壁は、前記第一冷却流路に連通し、軸方向に貫通した第一内壁内側貫通孔、及び前記第二冷却流路と前記固定子磁石冷却流路に連通し、前記第一内壁内側貫通孔よりも径方向外側の径方向位置で軸方向に貫通した第一内壁外側貫通孔を有し、
     前記第二内壁は、前記第一冷却流路に連通し、軸方向に貫通した第二内壁内側貫通孔、及び前記第二冷却流路と前記固定子磁石冷却流路に連通し、前記第二内壁内側貫通孔よりも径方向外側の径方向位置で軸方向に貫通した第二内壁外側貫通孔を有し、
     前記ファンは、前記第一内壁と前記第一外壁との間、及び前記第二内壁と前記第二外壁との間の一方または双方に配置され、
     前記熱交換器は、前記第一内壁と前記第一外壁との間、及び前記第二内壁と前記第二外壁との間の一方または双方に配置され、
     前記第一冷却流路と、前記第二冷却流路及び前記固定子磁石冷却流路とでは、軸方向の同じ位置において、冷却ガスの流れる軸方向の方向が異なっている回転電機。
  2.  筒状に形成され、前記第二の回転子の軸方向一方側と前記第一端板との間において、前記第一貫通孔よりも径方向内側に配置され、前記固定子と同軸に設けられた第一バッフル、及び筒状に形成され、前記第二の回転子の軸方向他方側と前記第二端板との間において、前記第二貫通孔よりも径方向内側に配置され、前記固定子と同軸に設けられた第二バッフルを備え、
     前記第一バッフルは、前記第二の回転子または前記第一端板に固定され、
     前記第二バッフルは、前記第二の回転子または前記第二端板に固定されている請求項1に記載の回転電機。
  3.  筒状に形成され、前記第一端板の軸方向一方側と前記第一内壁との間において、前記第一内壁内側貫通孔及び前記第一貫通孔よりも径方向内側に配置され、前記固定子と同軸に設けられた第三バッフル、及び筒状に形成され、前記第二端板の軸方向他方側と前記第二内壁との間において、前記第二内壁内側貫通孔及び前記第二貫通孔よりも径方向内側に配置され、前記固定子と同軸に設けられた第四バッフルを備え、
     前記第三バッフルは、前記第一端板または前記第一内壁に固定され、
     前記第四バッフルは、前記第二端板または前記第二内壁に固定されている請求項1または2に記載の回転電機。
  4.  筒状に形成され、前記第一の回転子の軸方向一方側の端面と前記第一内壁との間において、前記第一内壁外側貫通孔よりも径方向内側、かつ前記第一貫通孔及び前記第一内壁内側貫通孔よりも径方向外側に配置され、前記固定子と同軸に設けられた第五バッフル、及び筒状に形成され、前記第一の回転子の軸方向他方側の端面と前記第二内壁との間において、前記第二内壁外側貫通孔よりも径方向内側、かつ前記第二貫通孔及び前記第二内壁内側貫通孔よりも径方向外側に配置され、前記固定子と同軸に設けられた第六バッフルを備え、
     前記第五バッフルは、前記第一端板または前記第一内壁に固定され、
     前記第六バッフルは、前記第二端板または前記第二内壁に固定されている請求項1から3のいずれか1項に記載の回転電機。
  5.  前記第一内壁と前記第一外壁との間に、前記第一内壁外側貫通孔と前記第一内壁内側貫通孔との間を連通した冷却ガスの一方側壁内流路が形成され、
     前記ファンは、前記一方側壁内流路の内部に配置され、冷却ガスを送り出し、
     前記第二内壁と前記第二外壁との間に、前記第二内壁外側貫通孔と前記第二内壁内側貫通孔との間を連通した冷却ガスの他方側壁内流路が形成され、
     前記熱交換器は、前記他方側壁内流路の内部に配置されている請求項1から4のいずれか1項に記載の回転電機。
  6.  前記第一内壁と前記第一外壁との間に、前記第一内壁外側貫通孔と前記第一内壁内側貫通孔との間を連通した冷却ガスの一方側壁内流路が形成され、
     前記ファンは、前記一方側壁内流路の内部に配置され、冷却ガスを送り出し、
     前記熱交換器は、前記一方側壁内流路の内部に配置され
     前記第二内壁と前記第二外壁との間に、前記第二内壁外側貫通孔と前記第二内壁内側貫通孔との間を連通した冷却ガスの他方側壁内流路が形成されている請求項1から4のいずれか1項に記載の回転電機。
  7.  前記固定子鉄心は、前記固定子コイルよりも径方向外側に設けられ、軸方向に貫通した固定子鉄心冷却流路を有し、
     前記第一内壁は、前記固定子鉄心冷却流路に連通し、前記第一内壁外側貫通孔よりも径方向外側の径方向位置で軸方向に貫通した第一内壁外側第二貫通孔を有し、
     前記第二内壁は、前記固定子鉄心冷却流路に連通し、前記第二内壁外側貫通孔よりも径方向外側の径方向位置で軸方向に貫通した第二内壁外側第二貫通孔を有し、
     前記第一内壁と前記第一外壁との間に、前記第一内壁外側貫通孔及び前記第一内壁外側第二貫通孔と、前記第一内壁内側貫通孔との間を連通した冷却ガスの一方側壁内流路が形成され、
     前記ファンは、前記一方側壁内流路の内部に配置され、冷却ガスを送り出し、
     前記第二内壁と前記第二外壁との間に、前記第二内壁外側貫通孔及び前記第二内壁外側第二貫通孔と、前記第二内壁内側貫通孔との間を連通した冷却ガスの他方側壁内流路が形成され、
     前記熱交換器は、前記他方側壁内流路の内部に配置され、
     前記第一冷却流路と、前記第二冷却流路、前記固定子磁石冷却流路、及び前記固定子鉄心冷却流路とでは、軸方向の同じ位置において、冷却ガスの流れる軸方向の方向が異なっている請求項1から4のいずれか1項に記載の回転電機。
  8.  前記固定子鉄心は、前記固定子コイルよりも径方向外側に設けられ、軸方向に貫通した固定子鉄心冷却流路を有し、
     前記第一内壁は、前記固定子鉄心冷却流路に連通し、前記第一内壁外側貫通孔よりも径方向外側の径方向位置で軸方向に貫通した第一内壁外側第二貫通孔を有し、
     前記第二内壁は、前記固定子鉄心冷却流路に連通し、前記第二内壁外側貫通孔よりも径方向外側の径方向位置で軸方向に貫通した第二内壁外側第二貫通孔を有し、
     前記第一内壁と前記第一外壁との間に、前記第一内壁外側貫通孔及び前記第一内壁外側第二貫通孔と、前記第一内壁内側貫通孔との間を連通した冷却ガスの一方側壁内流路が形成され、
     前記ファンは、前記一方側壁内流路の内部に配置され、冷却ガスを送り出し、
     前記熱交換器は、前記一方側壁内流路の内部に配置され、
     前記第二内壁と前記第二外壁との間に、前記第二内壁外側貫通孔及び前記第二内壁外側第二貫通孔と、前記第二内壁内側貫通孔との間を連通した冷却ガスの他方側壁内流路が形成され、
     前記第一冷却流路と、前記第二冷却流路、前記固定子磁石冷却流路、及び前記固定子鉄心冷却流路とでは、軸方向の同じ位置において、冷却ガスの流れる軸方向の方向が異なっている請求項1から4のいずれか1項に記載の回転電機。
  9.  前記固定子鉄心は、前記固定子コイルよりも径方向外側に設けられ、軸方向に貫通した固定子鉄心冷却流路、及び前記固定子鉄心の軸方向の中心部において前記第二冷却流路と前記固定子鉄心冷却流路との間を径方向に貫通し、前記第二冷却流路と前記固定子鉄心冷却流路と前記固定子磁石冷却流路とを連通した固定子通風路を有し、
     前記第一本体部は、前記第一本体部の軸方向の中心部において前記第一冷却流路と前記第二冷却流路との間を径方向に貫通し、前記第一冷却流路と前記第二冷却流路とを連通した第一の回転子通風路を有し、
     前記第一内壁は、前記固定子鉄心冷却流路に連通し、前記第一内壁外側貫通孔よりも径方向外側の径方向位置で軸方向に貫通した第一内壁外側第二貫通孔を有し、
     前記第二内壁は、前記固定子鉄心冷却流路に連通し、前記第二内壁外側貫通孔よりも径方向外側の径方向位置で軸方向に貫通した第二内壁外側第二貫通孔を有し、
     前記第一内壁と前記第一外壁との間に、前記第一内壁内側貫通孔に連通した一方側第一壁内流路と、前記第一内壁外側第二貫通孔に連通した一方側第二壁内流路と、前記一方側第一壁内流路及び前記一方側第二壁内流路と前記第一内壁外側貫通孔とを連通した一方側第三壁内流路とが形成され、
     前記第二内壁と前記第二外壁との間に、前記第二内壁内側貫通孔に連通した他方側第一壁内流路と、前記第二内壁外側第二貫通孔に連通した他方側第二壁内流路と、前記他方側第一壁内流路及び前記他方側第二壁内流路と前記第二内壁外側貫通孔とを連通した他方側第三壁内流路とが形成され、
     前記ファンである第一のファン及び前記熱交換器である第一の熱交換器は、前記一方側第三壁内流路に配置され、
     前記ファンである第二のファン及び前記熱交換器である第二の熱交換器は、前記他方側第三壁内流路に配置され、
     前記第一のファンが前記第一内壁外側貫通孔の側に向けて冷却ガスを送り出すと共に前記第二のファンは前記第二内壁外側貫通孔の側に向けて冷却ガスを送り出し、或いは、前記第一のファンが前記第一内壁外側貫通孔の側とは反対側に向けて冷却ガスを送り出すと共に前記第二のファンは前記第二内壁外側貫通孔の側とは反対側に向けて冷却ガスを送り出し、
     前記第一冷却流路及び前記固定子鉄心冷却流路と、前記第二冷却流路及び前記固定子磁石冷却流路とでは、軸方向の同じ位置において、冷却ガスの流れる軸方向の方向が異なっている請求項1から4のいずれか1項に記載の回転電機。
  10.  前記固定子磁石は、前記固定子磁石の軸方向の中心部において、前記第二冷却流路と前記固定子磁石冷却流路との間を径方向に貫通し、前記第二冷却流路と前記固定子磁石冷却流路とを連通した固定子磁石通風路を有し、
     前記固定子磁石通風路は、前記第一の回転子通風路に連通している請求項9に記載の回転電機。
  11.  前記固定子鉄心の軸方向一方側と前記第一内壁との間において、前記固定子鉄心冷却流路及び前記第一内壁外側第二貫通孔よりも径方向内側、かつ前記第一内壁外側貫通孔よりも径方向外側に配置され、前記固定子と同軸に設けられた第一固定子バッフル、及び前記固定子鉄心の軸方向他方側と前記第二内壁との間において、前記固定子鉄心冷却流路及び前記第二内壁外側第二貫通孔よりも径方向内側、かつ前記第二内壁外側貫通孔よりも径方向外側に配置され、前記固定子と同軸に設けられた第二固定子バッフルを備え、
     前記第一固定子バッフルは、前記固定子または前記第一内壁、もしくはその両方に固定され、
     前記第二固定子バッフルは、前記固定子または前記第二内壁、もしくはその両方に固定されている請求項7から10のいずれか1項に記載の回転電機。
  12.  前記第二本体部は、軸方向の一方側の端部から径方向内側に延出し、前記回転軸に軸受を介して連結された第三端板、及び軸方向の他方側の端部から径方向内側に延出し、前記回転軸に軸受を介して連結された第四端板を有し、
     前記第三端板は、軸方向に貫通した第三貫通孔を有し、
     前記第四端板は、軸方向に貫通した第四貫通孔を有し、
     前記第二の回転子の内部に、前記第三貫通孔及び前記第四貫通孔に連通した第三冷却流路が形成され、
     前記第二の回転子は、前記第二本体部の軸方向の中心部において、前記第一冷却流路と前記第三冷却流路との間を径方向に貫通し、前記第一冷却流路と前記第三冷却流路とを連通した第二の回転子通風路を有し、
     前記第一端板は、前記第一貫通孔よりも径方向内側の径方向位置で前記第三貫通孔に連通し、軸方向に貫通した第一内側貫通孔を有し、
     前記第二端板は、前記第二貫通孔よりも径方向内側の径方向位置で前記第四貫通孔に連通し、軸方向に貫通した第二内側貫通孔を有し、
     前記固定子鉄心は、前記固定子コイルよりも径方向外側に設けられ、軸方向に貫通した固定子鉄心冷却流路、及び前記固定子鉄心の軸方向の中心部において前記固定子磁石冷却流路と前記固定子鉄心冷却流路との間を径方向に貫通し、前記固定子磁石冷却流路と前記固定子鉄心冷却流路とを連通した固定子通風路を有し、
     前記固定子磁石は、前記固定子磁石の軸方向の中心部において、前記第二冷却流路と前記固定子磁石冷却流路との間を径方向に貫通し、前記第二冷却流路と前記固定子磁石冷却流路と前記固定子通風路とを連通した固定子磁石通風路を有し、
     前記第一内壁は、前記固定子鉄心冷却流路に連通し、前記第一内壁外側貫通孔よりも径方向外側の径方向位置で軸方向に貫通した第一内壁外側第二貫通孔、及び前記第三冷却流路に連通し、前記第一内壁内側貫通孔よりも径方向内側の径方向位置で軸方向に貫通した第一内壁内側第二貫通孔を有し、
     前記第二内壁は、前記固定子鉄心冷却流路に連通し、前記第二内壁外側貫通孔よりも径方向外側の径方向位置で軸方向に貫通した第二内壁外側第二貫通孔、及び前記第三冷却流路に連通し、前記第二内壁内側貫通孔よりも径方向内側の径方向位置で軸方向に貫通した第二内壁内側第二貫通孔を有し、
     前記第一内壁と前記第一外壁との間に、前記第一内壁内側貫通孔と前記第一内壁内側第二貫通孔との間を連通する冷却ガスの第一の一方側壁内流路が形成され、
     前記第一内壁と前記第一外壁との間に、前記第一内壁外側貫通孔と前記第一内壁外側第二貫通孔との間を連通する冷却ガスの第二の一方側壁内流路が形成され、
     前記第二内壁と前記第二外壁との間に、前記第二内壁内側貫通孔と前記第二内壁内側第二貫通孔との間を連通する第一の他方側壁内流路が形成され、
     前記第二内壁と前記第二外壁との間に、前記第二内壁外側貫通孔と前記第二内壁外側第二貫通孔との間を連通する第二の他方側壁内流路が形成され、
     前記ファンである第一の一方側ファン及び前記熱交換器である第一の一方側熱交換器は、前記第一の一方側壁内流路に配置され、
     前記ファンである第二の一方側ファン及び前記熱交換器である第二の一方側熱交換器は、前記第二の一方側壁内流路に配置され、
     前記ファンである第一の他方側ファン及び前記熱交換器である第一の他方側熱交換器は、前記第一の他方側壁内流路に配置され、
     前記ファンである第二の他方側ファン及び前記熱交換器である第二の他方側熱交換器は、前記第二の他方側壁内流路に配置され、
     前記第一の一方側ファンが前記第一内壁内側第二貫通孔の側に向けて冷却ガスを送り出すと共に前記第二の一方側ファンは前記第一内壁外側貫通孔の側に向けて、前記第一の他方側ファンは前記第二内壁内側第二貫通孔の側に向けて、前記第二の他方側ファンは前記第二内壁外側貫通孔の側に向けて冷却ガスを送り出し、或いは、前記第一の一方側ファンが前記第一内壁内側第二貫通孔の側とは反対側に向けて冷却ガスを送り出すと共に前記第二の一方側ファンは前記第一内壁外側貫通孔の側とは反対側に向けて、前記第一の他方側ファンは前記第二内壁内側第二貫通孔の側とは反対側に向けて、前記第二の他方側ファンは前記第二内壁外側貫通孔の側とは反対側に向けて冷却ガスを送り出し、
     前記第一冷却流路及び前記固定子鉄心冷却流路と、前記第二冷却流路及び前記固定子磁石冷却流路及び前記第三冷却流路とでは、軸方向の同じ位置において、冷却ガスの流れる軸方向の方向が異なっている請求項1から4のいずれか1項に記載の回転電機。
  13.  前記固定子鉄心の軸方向一方側と前記第一内壁との間において、前記固定子鉄心冷却流路及び前記第一内壁外側第二貫通孔よりも径方向内側、かつ前記第一内壁外側貫通孔よりも径方向外側に配置され、前記固定子と同軸に設けられた第一固定子バッフル、前記固定子鉄心の軸方向他方側と前記第二内壁との間において、前記固定子鉄心冷却流路及び前記第二内壁外側第二貫通孔よりも径方向内側、かつ前記第二内壁外側貫通孔よりも径方向外側に配置され、前記固定子と同軸に設けられた第二固定子バッフル、筒状に形成され、前記第二の回転子の軸方向一方側と前記第一端板との間において、前記第三貫通孔及び前記第一内側貫通孔よりも径方向内側に配置され、前記固定子と同軸に設けられた第七バッフル、筒状に形成され、前記第二の回転子の軸方向他方側と前記第二端板との間において、前記第四貫通孔及び前記第二内側貫通孔よりも径方向内側に配置され、前記固定子と同軸に設けられた第八バッフル、筒状に形成され、前記第一の回転子の軸方向一方側と前記第一内壁との間において、前記第一内側貫通孔及び前記第一内壁内側第二貫通孔よりも径方向内側に配置され、前記固定子と同軸に設けられた第九バッフル、及び筒状に形成され、前記第一の回転子の軸方向他方側と前記第二内壁との間において、前記第二内側貫通孔及び前記第二内壁内側第二貫通孔よりも径方向内側に配置され、前記固定子と同軸に設けられた第十バッフルを備え、
     前記第一固定子バッフルは、前記固定子または前記第一内壁、もしくはその両方に固定され、
     前記第二固定子バッフルは、前記固定子または前記第二内壁、もしくはその両方に固定され、
     前記第七バッフルは、前記第二の回転子または前記第一端板に固定され、
     前記第八バッフルは、前記第二の回転子または前記第二端板に固定され、
     前記第九バッフルは、前記第一の回転子または前記第一内壁に固定され、
     前記第十バッフルは、前記第一の回転子または前記第二内壁に固定されている請求項12に記載の回転電機。
  14.  前記第二本体部は、軸方向の一方側の端部から径方向内側に延出し、前記回転軸に軸受を介して連結された第三端板、及び軸方向の他方側の端部から径方向内側に延出し、前記回転軸に軸受を介して連結された第四端板を有し、
     前記第三端板は、径方向の外側から内側に向かって順に、軸方向に貫通した第三貫通孔、第三内側貫通孔、及び第三内側第二貫通孔を有し、
     前記第四端板は、径方向の外側から内側に向かって順に、軸方向に貫通した第四貫通孔、第四内側貫通孔、及び第四内側第二貫通孔を有し、
     前記第二の回転子の内部に、前記第三貫通孔及び前記第四貫通孔に連通した第三冷却流路、前記第三内側貫通孔及び前記第四内側貫通孔に連通した第四冷却流路、及び前記第三内側第二貫通孔及び前記第四内側第二貫通孔に連通した第五冷却流路が形成され、
     前記第三冷却流路と前記第四冷却流路と前記第五冷却流路とは、前記第二の回転子の内部で仕切られており、
     前記第二の回転子は、前記第二本体部の軸方向の中心部において、前記第一冷却流路と前記第三冷却流路との間を径方向に貫通し、前記第一冷却流路と前記第三冷却流路とを連通した第二の回転子通風路を有し、
     前記第一端板は、前記第一貫通孔よりも径方向内側の径方向位置で前記第三貫通孔に連通し、軸方向に貫通した第一内側貫通孔、前記第一内側貫通孔よりも径方向内側の径方向位置で前記第三内側貫通孔に連通し、軸方向に貫通した第一内側第二貫通孔、及び前記第一内側第二貫通孔よりも径方向内側の径方向位置で前記第三内側第二貫通孔に連通し、軸方向に貫通した第一内側第三貫通孔を有し、
     前記第二端板は、前記第二貫通孔よりも径方向内側の径方向位置で前記第四貫通孔に連通し、軸方向に貫通した第二内側貫通孔、前記第二内側貫通孔よりも径方向内側の径方向位置で前記第四内側貫通孔に連通し、軸方向に貫通した第二内側第二貫通孔、及び前記第二内側第二貫通孔よりも径方向内側の径方向位置で前記第四内側第二貫通孔に連通し、軸方向に貫通した第二内側第三貫通孔を有し、
     前記固定子鉄心は、前記固定子コイルよりも径方向外側に設けられ、軸方向に貫通した固定子鉄心冷却流路、及び前記固定子鉄心の軸方向の中心部において前記固定子磁石冷却流路と前記固定子鉄心冷却流路との間を径方向に貫通し、前記固定子磁石冷却流路と前記固定子鉄心冷却流路とを連通した固定子通風路を有し、
     前記固定子磁石は、前記固定子磁石の軸方向の中心部において、前記第二冷却流路と前記固定子磁石冷却流路との間を径方向に貫通し、前記第二冷却流路と前記固定子磁石冷却流路と前記固定子通風路とを連通した固定子磁石通風路を有し、
     前記第一内壁は、前記固定子鉄心冷却流路に連通し、前記第一内壁外側貫通孔よりも径方向外側の径方向位置で軸方向に貫通した第一内壁外側第二貫通孔、前記第三冷却流路に連通し、前記第一内壁内側貫通孔よりも径方向内側の径方向位置で軸方向に貫通した第一内壁内側第二貫通孔、前記第四冷却流路に連通し、前記第一内壁内側第二貫通孔よりも径方向内側の径方向位置で軸方向に貫通した第一内壁内側第三貫通孔、及び前記第五冷却流路に連通し、前記第一内壁内側第三貫通孔よりも径方向内側の径方向位置で軸方向に貫通した第一内壁内側第四貫通孔を有し、
     前記第二内壁は、前記固定子鉄心冷却流路に連通し、前記第二内壁外側貫通孔よりも径方向外側の径方向位置で軸方向に貫通した第二内壁外側第二貫通孔、前記第三冷却流路に連通し、前記第二内壁内側貫通孔よりも径方向内側の径方向位置で軸方向に貫通した第二内壁内側第二貫通孔、第四冷却流路に連通し、前記第二内壁内側第二貫通孔よりも径方向内側の径方向位置で軸方向に貫通した第二内壁内側第三貫通孔、及び前記第五冷却流路に連通し、前記第二内壁内側第三貫通孔よりも径方向内側の径方向位置で軸方向に貫通した第二内壁内側第四貫通孔を有し、
     前記第一内壁と前記第一外壁との間に、前記第一内壁内側第四貫通孔に連通した冷却ガスの一方側第一壁内流路と、前記第一内壁内側貫通孔に連通した冷却ガスの一方側第二壁内流路と、前記一方側第一壁内流路及び前記一方側第二壁内流路と前記第一内壁内側第二貫通孔及び前記第一内壁内側第三貫通孔とを連通した冷却ガスの一方側第三壁内流路とが形成され、
     前記第一内壁と前記第一外壁との間に、前記第一内壁外側貫通孔と前記第一内壁外側第二貫通孔との間を連通した冷却ガスの一方側第四壁内流路が形成され、
     前記第二内壁と前記第二外壁との間に、前記第二内壁外側第二貫通孔及び前記第二内壁内側貫通孔と、前記第二内壁内側第四貫通孔との間を連通した冷却ガスの他方側第一壁内流路が形成され、
     前記第二内壁と前記第二外壁との間に、前記第二内壁内側第三貫通孔と、前記第二内壁内側第二貫通孔及び前記第二内壁外側貫通孔との間を連通した冷却ガスの他方側第二壁内流路が形成され、
     前記ファンである第一の一方側ファン及び前記熱交換器である第一の一方側熱交換器は、前記一方側第三壁内流路に配置され、
     前記ファンである第二の一方側ファン及び前記熱交換器である第二の一方側熱交換器は、前記一方側第四壁内流路に配置され、
     前記第一の一方側ファンが前記第一内壁内側第二貫通孔及び前記第一内壁内側第三貫通孔の側に向けて冷却ガスを送り出すと共に前記第二の一方側ファンは前記第一内壁外側貫通孔の側に向けて冷却ガスを送り出し、或いは、前記第一の一方側ファンが前記第一内壁内側第二貫通孔及び前記第一内壁内側第三貫通孔の側とは反対側に向けて冷却ガスを送り出すと共に前記第二の一方側ファンは前記第一内壁外側貫通孔の側とは反対側に向けて冷却ガスを送り出し
     前記第一冷却流路及び前記固定子鉄心冷却流路と、前記第二冷却流路及び前記固定子磁石冷却流路及び前記第三冷却流路とでは、軸方向の同じ位置において、冷却ガスの流れる軸方向の方向が異なり、
     前記第四冷却流路と前記第五冷却流路とでは、軸方向の同じ位置において、冷却ガスの流れる軸方向の方向が異なっている請求項1から4のいずれか1項に記載の回転電機。
  15.  前記固定子鉄心の軸方向一方側と前記第一内壁との間において、前記固定子鉄心冷却流路及び前記第一内壁外側第二貫通孔よりも径方向内側、かつ前記第一内壁外側貫通孔よりも径方向外側に配置され、前記固定子と同軸に設けられた第一固定子バッフル、前記固定子鉄心の軸方向他方側と前記第二内壁との間において、前記固定子鉄心冷却流路及び前記第二内壁外側第二貫通孔よりも径方向内側、かつ前記第二内壁外側貫通孔よりも径方向外側に配置され、前記固定子と同軸に設けられた第二固定子バッフル、筒状に形成され、前記第二の回転子の軸方向一方側と前記第一端板との間において、前記第三貫通孔及び前記第一内側貫通孔よりも径方向内側、かつ前記第三内側貫通孔及び前記第一内側第二貫通孔よりも径方向外側に配置され、前記固定子と同軸に設けられた第七バッフル、筒状に形成され、前記第二の回転子の軸方向他方側と前記第二端板との間において、前記第四貫通孔及び前記第二内側貫通孔よりも径方向内側、かつ前記第四内側貫通孔及び前記第二内側第二貫通孔よりも径方向外側に配置され、前記固定子と同軸に設けられた第八バッフル、筒状に形成され、前記第一の回転子の軸方向一方側と前記第一内壁との間において、前記第一内側貫通孔及び前記第一内壁内側第二貫通孔よりも径方向内側、かつ前記第一内側第二貫通孔及び前記第一内壁内側第三貫通孔よりも径方向外側に配置され、前記固定子と同軸に設けられた第九バッフル、筒状に形成され、前記第一の回転子の軸方向他方側と前記第二内壁との間において、前記第二内側貫通孔及び前記第二内壁内側第二貫通孔よりも径方向内側、かつ前記第二内側第二貫通孔及び前記第二内壁内側第三貫通孔よりも径方向外側に配置され、前記固定子と同軸に設けられた第十バッフル、筒状に形成され、前記第二の回転子の軸方向一方側と前記第一端板との間において、前記第三内側貫通孔及び前記第一内側第二貫通孔よりも径方向内側、かつ前記第三内側第二貫通孔及び前記第一内側第三貫通孔よりも径方向外側に配置され、前記固定子と同軸に設けられた第十一バッフル、筒状に形成され、前記第二の回転子の軸方向他方側と前記第二端板との間において、前記第四内側貫通孔及び前記第二内側第二貫通孔よりも径方向内側、かつ前記第四内側第二貫通孔及び前記第二内側第三貫通孔よりも径方向外側に配置され、前記固定子と同軸に設けられた第十二バッフル、筒状に形成され、前記第一の回転子の軸方向一方側と前記第一内壁との間において、前記第一内側第二貫通孔及び前記第一内壁内側第三貫通孔よりも径方向内側、かつ前記第一内側第三貫通孔及び前記第一内壁内側第四貫通孔よりも径方向外側に配置され、前記固定子と同軸に設けられた第十三バッフル、及び筒状に形成され、前記第一の回転子の軸方向他方側と前記第二内壁との間において、前記第二内側第二貫通孔及び前記第二内壁内側第三貫通孔よりも径方向内側、かつ前記第二内側第三貫通孔及び前記第二内壁内側第四貫通孔よりも径方向外側に配置され、前記固定子と同軸に設けられた第十四バッフルを備え、
     前記第一固定子バッフルは、前記固定子または前記第一内壁、もしくはその両方に固定され、
     前記第二固定子バッフルは、前記固定子または前記第二内壁、もしくはその両方に固定され、
     前記第七バッフルは、前記第二の回転子または前記第一端板に固定され、
     前記第八バッフルは、前記第二の回転子または前記第二端板に固定され、
     前記第九バッフルは、前記第一の回転子または前記第一内壁に固定され、
     前記第十バッフルは、前記第一の回転子または前記第二内壁に固定され、
     前記第十一バッフルは、前記第二の回転子または前記第一端板に固定され、
     前記第十二バッフルは、前記第二の回転子または前記第二端板に固定され、
     前記第十三バッフルは、前記第一の回転子または前記第一内壁に固定され、
     前記第十四バッフルは、前記第一の回転子または前記第二内壁に固定されている請求項14に記載の回転電機。
PCT/JP2021/024455 2021-06-29 2021-06-29 回転電機 WO2023275962A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/024455 WO2023275962A1 (ja) 2021-06-29 2021-06-29 回転電機
JP2023531176A JP7317270B2 (ja) 2021-06-29 2021-06-29 回転電機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/024455 WO2023275962A1 (ja) 2021-06-29 2021-06-29 回転電機

Publications (1)

Publication Number Publication Date
WO2023275962A1 true WO2023275962A1 (ja) 2023-01-05

Family

ID=84691592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/024455 WO2023275962A1 (ja) 2021-06-29 2021-06-29 回転電機

Country Status (2)

Country Link
JP (1) JP7317270B2 (ja)
WO (1) WO2023275962A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0946984A (ja) * 1995-07-31 1997-02-14 Denso Corp 車両用駆動装置
JP2014033584A (ja) * 2012-08-06 2014-02-20 Fuji Electric Co Ltd 回転電機の風冷構造

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0946984A (ja) * 1995-07-31 1997-02-14 Denso Corp 車両用駆動装置
JP2014033584A (ja) * 2012-08-06 2014-02-20 Fuji Electric Co Ltd 回転電機の風冷構造

Also Published As

Publication number Publication date
JPWO2023275962A1 (ja) 2023-01-05
JP7317270B2 (ja) 2023-07-28

Similar Documents

Publication Publication Date Title
US9621010B2 (en) Rotating electrical machine
US6459180B1 (en) Rotary electric power generator
EP1931017B1 (en) Rotary electric machine
US6130491A (en) Motor with self-cooling fan
JP6136318B2 (ja) 送風ファン
JP6376981B2 (ja) 回転装置
WO2021149128A1 (ja) 固定子およびこれを用いた回転電機
JP2014033584A (ja) 回転電機の風冷構造
JP2015047034A (ja) アキシャルギャップ型発電機
JP2006320083A (ja) モータ
JP2016182004A (ja) 減速機付モータ
WO2018173104A1 (ja) 電動機および送風装置
JP4100170B2 (ja) 回転電機の冷却構造
JP7317270B2 (ja) 回転電機
JP6259087B2 (ja) 回転電機
JP2007244177A (ja) 回転電機
JP2015100177A (ja) モータ
JP2014050219A (ja) 半径方向及び軸方向に延在する流路を備えた冷却構造を有する電動機
WO2021149720A1 (ja) 磁極片装置、磁気歯車、磁気ギアードモータ並びに磁気ギアード発電機
KR20230038794A (ko) 회전 전기 기기
WO2024009414A1 (ja) 回転電機
JP2005312097A (ja) 電動機
JP7504320B1 (ja) モータ
JPH06296340A (ja) 回転電機
JP2007315346A (ja) 電動送風機及びこれを用いた電気掃除機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21948274

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023531176

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21948274

Country of ref document: EP

Kind code of ref document: A1