WO2023273371A1 - 恒温控制方法、电子设备及恒温酒柜 - Google Patents

恒温控制方法、电子设备及恒温酒柜 Download PDF

Info

Publication number
WO2023273371A1
WO2023273371A1 PCT/CN2022/078538 CN2022078538W WO2023273371A1 WO 2023273371 A1 WO2023273371 A1 WO 2023273371A1 CN 2022078538 W CN2022078538 W CN 2022078538W WO 2023273371 A1 WO2023273371 A1 WO 2023273371A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
compartment
corrected
actual
compressor
Prior art date
Application number
PCT/CN2022/078538
Other languages
English (en)
French (fr)
Inventor
王德森
栗江涛
刘仁杰
葛庆艳
张廷秀
龙海柳
李国锋
邢建功
Original Assignee
青岛海尔特种电冰柜有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔特种电冰柜有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔特种电冰柜有限公司
Publication of WO2023273371A1 publication Critical patent/WO2023273371A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • F25D29/005Mounting of control devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D31/00Other cooling or freezing apparatus
    • F25D31/002Liquid coolers, e.g. beverage cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2600/00Control issues
    • F25D2600/06Controlling according to a predetermined profile
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/12Sensors measuring the inside temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Definitions

  • the invention relates to the technical field of refrigeration devices, in particular to a constant temperature control method, electronic equipment and a constant temperature wine cabinet.
  • wine cabinets are widely used in people's lives, such as in homes, airports, hotels and other places. With the improvement of people's quality of life, the performance requirements for wine cabinets are also getting higher and higher. In order to facilitate the long-term storage of wine, it is necessary to maintain a certain temperature in the wine cabinet.
  • the wine cabinets on the market are set with a single cooling function, and multiple evaporators and fans are configured corresponding to multiple compartments in the wine cabinet. That is, when the detected temperature is higher than the set upper limit temperature, the compressor starts cooling, When the temperature is lower than the set lower limit temperature, the compressor will stop.
  • the problem brought by such a single refrigeration method is: for a lower ambient temperature, the temperature in the wine cabinet is too low, such as lower than 5°C, so that it cannot meet the minimum temperature requirements for wine storage;
  • the refrigeration method may cause large fluctuations in the storage temperature of the wine, which is not conducive to the high-quality storage of the wine.
  • the existing constant temperature control methods for wine cabinets usually include dividing the ambient temperature into several intervals, and by controlling the temperature at the startup point and the shutdown point of the compressor with the set gear temperature in each ambient temperature interval to achieve constant temperature .
  • the above method needs to test the temperature of multiple setting gears in each of the divided ring temperature intervals to adjust the start-up point temperature and shutdown point temperature of each compressor in each ring temperature interval; then, after the adjustment In order to confirm the final start-up point temperature and shutdown point temperature, the further verification of the start-up point temperature and shutdown point temperature can be confirmed. Therefore, the existing constant temperature control method needs to consume a lot of time and laboratory resources, which affects the product development progress and time to market.
  • the problem solved by the invention is how to realize the constant temperature control of the refrigeration system and ensure that the actual temperature of the compartment is consistent with the set gear temperature.
  • the technical solution of the present invention provides a constant temperature control method, which is suitable for refrigeration equipment, the refrigeration equipment includes a compartment, and the constant temperature control method includes:
  • the step of obtaining the first difference between the first actual temperature of the compartment and the reference gear temperature includes:
  • the compressor performs refrigeration according to the first corrected start-up point temperature and the first corrected shutdown point temperature, and measures the first actual temperature of the compartment;
  • a first difference between the first actual temperature and the reference gear temperature is calculated.
  • the step of obtaining the second difference between the reference gear temperature and the actual temperature of the compartment under the actual ambient temperature includes:
  • the compressor performs refrigeration according to the first corrected start-up point temperature and the first corrected shut-down point temperature, respectively measures the actual temperatures of the compartments corresponding to the multiple different set ambient temperatures, and obtains multiple a third actual temperature;
  • the second difference corresponding to the actual ambient temperature is obtained according to the linear regression equation.
  • the refrigeration equipment is a constant temperature wine cabinet.
  • the compressor of the refrigeration equipment when the compressor of the refrigeration equipment is controlled to start up according to the temperature at the second corrected start-up point, and the compressor of the refrigeration equipment is controlled to stop according to the temperature at the second corrected shutdown point, the The second actual temperature is equal to the set gear temperature of the compartment.
  • the set gear temperature is greater than or lower than the reference gear temperature.
  • the reference ambient temperature is 32°C; the reference gear temperature is 12°C.
  • the present invention also provides an electronic device, including a memory and a processor, the memory stores a computer program that can run on the processor, and the processor implements the above constant temperature control method when executing the computer program.
  • the present invention further provides a constant temperature wine cabinet.
  • the constant temperature wine cabinet includes: a box body, the box body includes a compartment, and a temperature sensor is arranged in the compartment, and the temperature sensor is used to detect the actual temperature of the compartment. temperature; a refrigeration unit, the refrigeration unit includes a single compressor, a single evaporator and an air duct assembly; and a control board, the control board is electrically connected to the compressor and the temperature sensor; wherein, the control board is used to perform Constant temperature control method as above.
  • the air duct assembly is provided with a damper assembly
  • the damper assembly includes a first valve, a second valve and a switch, and the switch controls the opening of the first valve and the second valve or off.
  • the present invention provides a constant temperature control method, electronic equipment and a constant temperature wine cabinet.
  • the constant temperature control method includes controlling the start-up temperature and shutdown temperature of the compressor under the reference ambient temperature and the reference gear temperature of the compartment. Based on this, under multiple set ambient temperatures and the reference gear temperature of the compartment, the temperature difference of the influence of different ambient temperatures on the set gear temperature of the compartment is obtained. According to this temperature The difference is to correct the temperature at the start point and the stop point of the compressor under the actual ambient temperature, so as to ensure that the set gear temperature and the actual temperature of the compartment are always consistent.
  • FIG. 1 is a flowchart of a constant temperature control method in an embodiment of the present invention.
  • Fig. 2 is a partial structural diagram of a thermostatic wine cabinet in an embodiment of the present invention.
  • Fig. 3 is a structural schematic diagram of another viewing angle of the thermostatic wine cabinet in Fig. 2 .
  • Fig. 4 is a partial cross-sectional schematic diagram of the thermostatic wine cabinet in Fig. 2 .
  • Fig. 5 is an exploded schematic view of the very stable wine cabinet in Fig. 2 .
  • FIG. 6 is an exploded schematic view of the air duct assembly in FIG. 5 .
  • FIG. 7 is a schematic diagram of the valve in the air duct assembly in FIG. 5 being opened.
  • FIG. 8 is an enlarged schematic diagram at the dotted line in FIG. 7 .
  • Fig. 9 is another partial cross-sectional schematic diagram of the thermostatic wine cabinet in Fig. 2 .
  • an embodiment of the present invention provides a constant temperature control method 1000, which is suitable for refrigeration equipment.
  • a constant temperature control method 1000 which is suitable for refrigeration equipment.
  • the refrigeration system can be eliminated.
  • the actual temperature in the compartment of the equipment fluctuates with the ambient temperature, so that the actual temperature in the compartment is the same as the set gear temperature.
  • the thermostatic control method 1000 includes:
  • the compressor of the refrigeration equipment is controlled to start up according to the temperature of the second corrected start point, and the compressor of the refrigeration equipment is controlled to be shut down according to the temperature of the second corrected shutdown point.
  • the step of obtaining the first difference between the first actual temperature of the compartment and the reference gear temperature includes:
  • the compressor performs refrigeration according to the first corrected start-up point temperature and the first corrected shutdown point temperature, and measures the first actual temperature of the compartment;
  • a first difference between a first actual temperature and a reference notch temperature is calculated.
  • the influence value of the reference ambient temperature on the first actual temperature that is, the first difference
  • the first starting point of the compressor is determined by the first difference.
  • the temperature and the temperature of the first shutdown point are corrected to eliminate the influence of the reference ambient temperature on the first actual temperature, ensuring that the first actual temperature and the reference gear temperature can be infinitely close.
  • the refrigeration equipment is, for example, a constant temperature wine cabinet
  • the reference ambient temperature is, for example, 32°C
  • the reference gear temperature is, for example, 12°C.
  • the reference ambient temperature and the reference gear temperature can be adjusted appropriately.
  • the step of obtaining the second difference between the reference gear temperature and the actual temperature of the compartment under the actual ambient temperature includes:
  • the compressor refrigerates according to the first corrected start-up point temperature and the first corrected shut-down point temperature, respectively measures the actual temperatures of the compartments, respectively measures the actual temperatures of the compartments corresponding to multiple different set ambient temperatures, and obtains multiple first 3 actual temperature;
  • the second difference corresponding to the actual ambient temperature is obtained according to the linear regression equation.
  • the parameters of the compressor's first start-up point temperature and first shutdown point temperature are corrected; further testing different set ambient temperatures and reference gear temperature
  • the influence value of different set ambient temperatures on the third actual temperature that is, the third difference
  • a linear regression equation is established to obtain any actual The influence value of the ambient temperature on the actual temperature of the compartment, ie, the second difference value.
  • the first corrected startup point temperature and the first corrected shutdown point temperature of the compressor are corrected by the second difference to form a second corrected startup point temperature and a second corrected shutdown point temperature.
  • the set gear temperature is a temperature that changes from the reference gear temperature, and the set gear temperature is set according to the actual storage requirements. Usually, the set gear temperature is higher or lower than the reference gear temperature.
  • the value of the influence of different ambient temperatures on the actual temperature of the compartment is obtained in essence (the second difference ), which is used as a parameter to correct the start-up point and shutdown point of the compressor, so that the influence of the ambient temperature on the actual temperature is corrected, ensuring that the actual temperature of the compartment is always consistent with the set gear temperature.
  • the multiple different set ambient temperatures include 43°C, 21°C and 12°C.
  • the reference ambient temperature and the reference gear temperature can be adjusted appropriately.
  • the present invention also provides an electronic device, including a memory and a processor, the memory stores a computer program that can run on the processor, and the processor implements the constant temperature control method 1000 when executing the computer program.
  • the present invention also provides a constant temperature wine cabinet 100.
  • the constant temperature wine cabinet 100 includes a cabinet, a refrigeration unit and a control board.
  • the refrigeration unit includes a compressor, an evaporator 40, a fan and an air duct assembly 20; the control unit is electrically connected to the compressor and the temperature sensor; wherein, the control board is used to execute the constant temperature control method 1000.
  • the constant temperature wine cabinet 100 is an air-cooled wine cabinet with dual temperature zones; the air-cooled wine cabinet with dual temperature zones is a vertical wine cabinet, including a cabinet (not shown), a compressor (not shown) and
  • the evaporator 40 is provided with an inner container 10 inside the casing, and the inner container 10 encloses a refrigerated space for wine storage.
  • the constant temperature wine cabinet 100 also includes an air duct assembly 20 disposed in the refrigerated space enclosed by the inner tank 10 for storing wine.
  • the air duct assembly 20 includes a first cover plate 21, a second cover plate 22, and a third cover plate 23 that are snap-connected sequentially in the front-to-rear direction, and the fan 30 and the damper assembly are assembled on the first cover plate 21 and the second cover plate 22, wherein the fan 30 and the damper assembly are respectively fixed on the side surface of the second cover plate 22 facing the first cover plate 21.
  • the first cover plate 21 is disposed close to the rear wall of the inner container 10 .
  • the evaporator 40 is disposed on the surface of the first cover plate 21 facing the rear wall of the inner container 10 .
  • the fan 30 is arranged adjacent to the air door.
  • the fan 30 is arranged adjacent to the air door along the left and right directions.
  • the space between the second cover plate 22 and the third cover plate 23 also includes an upper air supply channel 201 , a lower air supply channel 202 , a first return air channel 203 and a second return air channel 204 .
  • the damper assembly includes a first valve 31 , a second valve 32 and a switch 33 , and the switch 33 is electrically connected to the first valve 31 and the second valve 32 .
  • the second cover plate 22 is provided with a first air outlet 221 and a second air outlet 222, the first valve 31 is arranged at the first air outlet 221, and the second valve 32 is arranged at the second air outlet 222; wherein, the first The air outlet is connected to the upper air duct 201 , and the second air outlet 222 is connected to the lower air duct 202 .
  • the upper air supply duct 201 is also connected to the opening 231 at the top of the third cover plate 23, and the opening 231 is connected to the first air supply port 241 of the upper air supply unit 24, wherein, between the upper air supply unit 24 and the top side wall of the liner 10
  • the space in the space constitutes the upper circulation channel, and the wind sent from the upper air supply channel 201 is delivered to the upper chamber 101 through the opening 231 , the upper circulation channel and the first air supply port 241 .
  • the first air supply port 241 is disposed at the front end of the upper air supply unit 24 , and the front end of the upper air supply unit 24 is close to the front side of the upper compartment 101 .
  • the lower air supply duct 202 is also connected to the first opening 223 on the second cover plate 22, the first opening 223 corresponds to the second opening 233 on the third cover plate 23 and communicates with each other, wherein the second opening 233 communicates with the downward air supply The second air outlet 253 of the wind unit 25 .
  • the lower air supply unit 25 includes a first channel plate 251 and a second channel plate 252, the first channel plate 251 and the second channel plate 252 are engaged and connected, and the space between the first channel plate 251 and the second channel plate 252 forms a lower circulation channel.
  • the air sent from the lower air supply channel 202 is delivered to the lower chamber 102 through the first opening 223 , the second opening 233 , the lower flow channel and the second air supply port 253 .
  • the second air outlet 253 is disposed on a side of the second channel plate 252 facing the lower compartment 102 .
  • the second air outlet 253 is provided at the front end of the second channel plate 252, and the front end of the second channel plate 252 is close to the front side of the compartment.
  • the compartment of the liner 10 is divided into an upper compartment 101 and a lower compartment 102 by a partition 26 , and the lower air supply unit 25 is, for example, engaged and fixed on the side of the partition 26 facing the lower compartment 102 . That is, the lower air supply unit 25 is located in the middle of the compartment of the inner container 10 and located at the top of the lower compartment 102 , but not limited thereto.
  • a first air return port 232 and a second air return port 234 are arranged on the third cover plate 23, and the first air return port 232 communicates with the upper chamber 101 and the first return air duct 203;
  • the tuyere 234 communicates with the lower compartment 102 and the second return air duct 204 ; wherein, the lower ends of the first return air duct 203 and the second return air duct 204 communicate with the evaporator 40 respectively.
  • the first air supply port 241 and the second air supply port 253 are respectively arranged at the top front positions of the upper compartment 101 and the lower compartment 102, which helps to transmit the wind sent by the fan 30 to the entire compartment evenly.
  • the first air return port 232 and the second air return port 234 are arranged at the bottom of the upper compartment 101 and the lower compartment 102 respectively, which helps to pass the air in the compartment through the first return air duct 203 and the first return air duct 203 as soon as possible
  • the second return air channel 204 is delivered to the evaporator 40 to improve the temperature control efficiency.
  • the constant temperature wine cabinet 100 also includes a heating unit, the heating unit includes a first heating wire 51, a second heating wire 52 and a third heating wire 53, the first heating wire 51
  • the heating unit includes a first heating wire 51, a second heating wire 52 and a third heating wire 53, the first heating wire 51
  • the bottom of the dividing plate 26 is set, that is, it is arranged on the bottom of the upper chamber 101;
  • the second heating wire 52 is arranged outside the bottom of the inner bag 10, that is, it is arranged on the bottom of the lower chamber 102;
  • the third heating wire 53 is arranged on On the side of the rear wall of the inner container 10 away from the air duct assembly, the third heating wire 53 is opposite to the evaporator 40 .
  • the third heating wire 53 is set at a position opposite to the evaporator 40, which is convenient for the subsequent constant temperature control of the wine cabinet 100 to quickly provide heat to the evaporator 40. After the fan 30 is started, the evaporator 40 can be quickly The heat at the center is circulated to the compartment for rapid heating.
  • first heating wire 51 and the second heating wire 52 are respectively arranged at the bottom of the upper compartment 101 and the bottom of the lower compartment 102, utilizing the principle of hot air floating up to achieve uniform heating in the compartments.
  • the heat is provided by the heating unit to meet the requirement that the wine cabinet 100 maintain a constant temperature when the ambient temperature is low or the wine cabinet 100 needs to store wine at a relatively high temperature.
  • the wine cabinet 100 generally includes a refrigeration unit, a heating unit, a temperature sensor unit and a control board.
  • the refrigeration unit includes a compressor, an evaporator 40, a fan 30 and an air duct assembly 20.
  • the cold air formed by the heat exchange of the evaporator 40 is conveyed in the compartment in the cabinet of the wine cabinet 100 to realize cooling;
  • the heating unit is used to transmit the heat generated by the heating device to the compartment to realize heating;
  • the temperature sensor unit is used to detect the The actual temperature in the compartment and the actual ambient temperature outside the constant temperature wine cabinet;
  • the control board selects the refrigeration unit for cooling and/or selects the heating unit for heating according to the actual temperature in the compartment.
  • the constant temperature control mode of the wine cabinet 100 generally includes, 1) both the upper compartment 101 and the lower compartment 102 need to be refrigerated; 3) Both the upper chamber 101 and the lower chamber 102 need heating.
  • the constant temperature control process includes a single refrigerating process.
  • the refrigeration process includes:
  • control board obtains the actual temperature of the upper chamber 101 and the actual temperature of the lower chamber 102 respectively.
  • the control board obtains the actual temperature of the upper chamber 101 and the actual temperature of the lower chamber 102 respectively.
  • the second setting gear temperature At the second setting gear temperature;
  • control the main board to obtain the actual ambient temperature use the actual ambient temperature to substitute into the linear regression equation to obtain the corrected temperature difference corresponding to the actual ambient temperature (that is, the second difference in the constant temperature control method 1000), and correct the temperature difference based on this Correct the start-up point temperature and shutdown point temperature of the compressor;
  • the compressor starts and stops according to the corrected start-up point temperature and shutdown point temperature for refrigeration
  • the main controller controls the switch 33 in the damper assembly to control the first valve 31 and the second valve 32 to open respectively, and the blower fan 30 starts to pass the cooling capacity provided by the evaporator 40 through the first damper 221, the upper air supply duct 201 and The upper circulation passage in the upper air supply unit 24 and the first air supply port 241 are delivered to the upper chamber 101, and the actual temperature of the upper chamber 101 is the same as the first set gear temperature; and, the fan 30 starts to evaporate
  • the cold energy provided by the device 40 is transferred to the lower compartment 102 through the second damper 222, the lower air supply duct 202, the lower circulation passage in the lower air supply unit 25 and the second air supply port 253, and the lower compartment 102
  • the actual temperature is the same as the second setting gear temperature.
  • the temperature at the startup point and the temperature at the shutdown point of the compressor have undergone a benchmark correction process , wherein, the benchmark correction process includes: acquiring the benchmark temperature difference between the benchmark gear temperature and the actual temperature of the compartment (that is, the first difference in the constant temperature control method 1000) at the benchmark ambient temperature, and using the benchmark gear
  • the reference temperature difference between the bit temperature and the actual temperature of the compartment is used to perform reference correction on the initial startup point temperature and the initial shutdown point temperature of the compressor to obtain a first corrected startup point temperature and a first corrected shutdown point temperature.
  • the first corrected start-up point temperature and the first corrected shutdown point temperature are corrected according to the corrected temperature difference to obtain the second corrected start-up point temperature and the second corrected shutdown point temperature.
  • Shutdown point temperature operation is performed.
  • the temperature at the first corrected start-up point and the first corrected shut-off point of the compressor undergo a second correction, and the corrected temperature difference of the second correction is obtained through a linear regression equation, which is mainly used to eliminate the actual ambient temperature
  • the effect on the actual temperature of the compartment ensures that the actual temperature of the compartment is consistent with the set gear temperature.
  • the control board recognizes that the temperature between the first set gear temperature and the second set gear temperature is higher than the preset value.
  • the lower one, and control the switch in the damper assembly to open the valve corresponding to a compartment with a lower temperature in the set gear, that is, the room with a lower temperature in the set gear is preferentially refrigerated. Among them, cooling a compartment with a lower set gear temperature is given priority, which helps to make the two compartments reach their corresponding set gear temperatures as soon as possible.
  • the control board controls the switch in the damper assembly and simultaneously connects the switch at the first air outlet of the upper compartment.
  • the first valve and the second valve at the second air outlet connected to the lower compartment are opened together to provide cooling to the upper compartment and the lower compartment at the same time, which also helps to make the two compartments reach their corresponding settings as soon as possible stall temperature.
  • the constant temperature control process of the wine cabinet 100 specifically includes: a cooling process and a heating process.
  • the refrigeration process is similar to the above-mentioned control process in which both the upper chamber 101 and the lower chamber 102 need to be refrigerated, that is, the temperature at the startup point and the temperature at the shutdown point of the compressor that have undergone benchmark correction are calculated twice according to the temperature difference corresponding to the actual ambient temperature.
  • the second correction the compressor runs according to the second correction start point temperature and shutdown point temperature.
  • the switch 33 controls one of the first valve 31 and the second valve 32 to open, and the cold air enters the upper chamber 101 through the upper air supply duct 201, the upper air supply unit 24 and the first air supply port 241, Make the first set gear temperature of the upper compartment 101 the same as the actual temperature; or, cold air enters the lower compartment 102 through the lower air supply duct 202, the lower air supply unit 25 and the second air supply port 253, so that the lower compartment 102
  • the second set temperature of the compartment 102 is the same as the actual temperature.
  • the heating process includes:
  • one of the first heating wire 51 at the bottom of the upper chamber 101 and the second heating wire 52 at the bottom of the lower chamber 102 is controlled to start, and toward the corresponding upper chamber 101 Heat is supplied or directed towards the corresponding lower compartment 102 .
  • the switch 33 controls both the first valve 31 and the second valve 32 to be closed.
  • the third heating wire 53 provides heat toward the evaporator 40, and when the actual temperature of the evaporator 40 rises to the preset temperature, the switch 33 controls the first valve 31 and the second The other one of the valves 32 is opened, the blower fan 30 starts, and the hot air enters the upper chamber 101 through the upper air supply duct 201, the upper air supply unit 24 and the first air supply port 241, so that the first setting of the upper chamber 101
  • the fixed gear temperature is the same as the actual temperature; or, hot air enters the lower compartment 102 through the lower air supply duct 202, the lower air supply unit 25 and the second air supply port 253, so that the second set gear of the lower compartment 102
  • the bit temperature is the same as the actual temperature.
  • the hot air is transferred to the compartment to be heated, so as to realize the actual heating of the compartment to be heated.
  • the temperature becomes the same as the set temperature as quickly as possible, improving the efficiency of the thermostatically controlled heating control.
  • the heating rate of the third heating wire 53 may be greater than the heating rates of the first heating wire 51 and the second heating wire 52 .
  • the constant temperature control process includes a single heating process.
  • the heating process includes:
  • the switch 33 controls the opening of the first valve 31 and the second valve 32 respectively;
  • the fan 30 is started, and the hot air enters the upper chamber 101 through the upper air supply duct 201, the upper air supply unit 24 and the first air supply port 241, so that the first set gear temperature of the upper chamber 101 is the same as the actual temperature; And, the hot air enters the lower chamber 102 through the lower air duct 202 , the lower air unit 25 and the second air outlet 253 , so that the second set temperature of the lower chamber 102 is the same as the actual temperature.
  • the precondition for the simultaneous opening of the first valve 31 and the second valve 32 is that the temperature of the first set gear is similar to the temperature of the second set gear.
  • the control board recognizes that the temperature between the first set gear temperature and the second set gear temperature is higher than the preset value.
  • the higher one, and control the switch in the damper assembly to open the valve corresponding to the room with the higher temperature of the set gear that is, give priority to heating the room with the higher temperature of the set gear.
  • heating a compartment with a higher set gear temperature is given priority, which helps to make the two compartments reach their respective set gear temperatures as soon as possible.
  • the present invention provides a constant temperature control method, electronic equipment, and a constant temperature wine cabinet.
  • the constant temperature control method includes benchmarking the temperature at the startup point and the shutdown point of the compressor under the reference ambient temperature and the reference gear temperature of the compartment. Correction, on this basis, under multiple set ambient temperatures and the reference gear temperature of the compartment, the temperature difference of the influence of different ambient temperatures on the set gear temperature of the compartment is obtained, and according to the temperature difference, the correction Under the actual ambient temperature, the start-up point temperature and the shutdown point temperature of the compressor, thereby ensuring that the set gear temperature and the actual temperature of the compartment are always consistent.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

本发明提供一种恒温控制方法、电子设备及恒温酒柜,所述恒温控制方法包括:于基准环境温度下,获取所述间室的第一实际温度和基准档位温度之间的第一差值;根据所述第一差值,修改所述制冷设备的压缩机的开机点温度和关机点温度,获得第一修正开机点温度和第一修正关机点温度;获取实际环境温度下,所述基准档位温度和所述间室的第二实际温度之间的第二差值;根据所述第二差值,修改所述第一修正开机点温度和所述第一修正关机点温度,获得第二修正开机点温度和第二修正关机点温度;以及控制所述制冷设备的压缩机根据所述第二修正开机点温度开机,以及,控制所述制冷设备的压缩机根据所述第二修正关机点温度停机。

Description

恒温控制方法、电子设备及恒温酒柜 技术领域
本发明涉及冷藏装置技术领域,特别涉及一种恒温控制方法、电子设备及恒温酒柜。
背景技术
酒柜作为一种储存和展示酒或其他饮品的冷藏装置,广泛应用于人们的生活中,如应用在家庭、机场、酒店等场所。随着人们生活品质的提高,对酒柜的性能需求也越来越高。为了便于酒的长期储存,需要使酒柜内保持一定的温度。
目前市场上的酒柜设置为单制冷功能,对应酒柜内的多个间室配置多个蒸发器和风机,即在检测温度高于设定的上限温度时,压缩机启动制冷,而在检测温度低于设定的下限温度时,压缩机停机。这样的单制冷方式带来的问题是:对于较低的环境温度,酒柜中温度由于过低,比如低于5℃,使其并不能满足酒品储藏最低温度的要求;另一方面,单制冷的方式可能使酒品的储藏温度存在较大的波动,不利于酒品的优质储藏。
此外,现有的酒柜恒温控制方法通常包括将环温划分成几个区间,通过控制每个环温区间内的设置档位温度的压缩机的开机点温度和关机点温度不同,从而实现恒温。上述方法需要在划分的每个环温区间测试多个设置档位的温度以调整每个设置档位在每个环温区间内的压缩机的开机点温度和关机点温度;然后,对调整后的开机点温度和关机点温度进一步验证才能确认最终的开机点温度和关机点温度。因此,现有的恒温控制方法需要耗费大量的时间及实验室资源,影响产品开发进度及上 市时间。
发明内容
本发明解决的问题是如何实现制冷系统维持恒温控制,确保间室的实际温度与设定档位温度一致。
为解决上述问题,本发明技术方案提供了一种恒温控制方法,适用于制冷设备,所述制冷设备包括间室,所述恒温控制方法包括:
于基准环境温度下,获取所述间室的第一实际温度和基准档位温度之间的第一差值;
根据所述第一差值,修改所述制冷设备的压缩机的开机点温度和关机点温度,获得第一修正开机点温度和第一修正关机点温度;
获取实际环境温度下,所述基准档位温度和所述间室的第二实际温度之间的第二差值;
根据所述第二差值,修改所述第一修正开机点温度和所述第一修正关机点温度,获得第二修正开机点温度和第二修正关机点温度;以及
控制所述制冷设备的压缩机根据所述第二修正开机点温度开机,以及,控制所述制冷设备的压缩机根据所述第二修正关机点温度停机。
作为可选的技术方案,获取所述间室的第一实际温度和基准档位温度之间的第一差值的步骤包括:
于基准环境温度下,设置所述间室的基准档位温度;
所述压缩机根据所述第一修正开机点温度和所述第一修正关机点温度进行制冷,测量所述间室的所述第一实际温度;
计算所述第一实际温度和所述基准档位温度之间的第一差值。
作为可选的技术方案,获取实际环境温度下,所述基准档位温度和所述间室的实际温度之间的第二差值的步骤包括:
于多个不同的设定环境温度下,设置所述间室的基准档位温度;
所述压缩机根据所述第一修正开机点温度和所述第一修正关机点温度进行制冷,分别测量所述多个不同的设定环境温度对应的所述间室的实际温度,并获得多个第三实际温度;
计算每一第三实际温度和所述基准档位温度之间的差值,获得多个第三差值;
依据多个第三差值和多个不同的设定环境温度建立线性回归方程;
根据所述线性回归方程获得与所述实际环境温度对应的所述第二差值。
作为可选的技术方案,所述制冷设备为恒温酒柜。
作为可选的技术方案,当控制所述制冷设备的压缩机根据所述第二修正开机点温度开机,以及,控制所述制冷设备的压缩机根据所述第二修正关机点温度停机时,所述第二实际温度等于所述间室的设置档位温度。
作为可选的技术方案,所述设置档位温度大于或者小于所述基准档位温度。
作为可选的技术方案,所述基准环境温度为32℃;所述基准档位温度为12℃。
本发明还提供一种电子设备,包括存储器和处理器,所述存储器储存有可在所述处理器上运行的计算机程序,所述处理器执行计算机程序时实现如上所述的恒温控制方法。
本发明又提供一种恒温酒柜,所述恒温酒柜包括:箱体,所述箱体包括间室,所述间室内设置有温度传感器,所述温度传感器用于检测所述间室的实际温度;制冷单元,所述制冷单元包括单一压缩机、单一蒸发器和风道组件;以及控制主板,所述控制主板电连接所述压缩机和所述温度传感器;其中,所述控制主板用于执行如上所述的恒温控制方法。
作为可选的技术方案,所述风道组件内设有风门组件,所述风门组件包括第一阀门、第二阀门和开关,所述开关控制所述第一阀门和所述第二阀门的开启或者关闭。
与现有技术相比,本发明提供一种恒温控制方法、电子设备及恒温酒柜,恒温控制方法包括在基准环境温度和间室的基准档位温度下,对压缩机的开机点温度和关机点温度进行基准修正,在此基础上,在多个设定环境温度和间室的基准档位温度下,获得不同环境温度对间室的设定档位温度影响的温度差值,根据此温度差值,修正实际环境温度下,压缩机的开机点温度和关机点温度,进而确保设定档位温度和间室的实际温度始终维持一致。
以下结合附图和具体实施例对本发明进行详细描述,但不作为对本发明的限定。
附图说明
图1为本发明一实施例中的恒温控制方法的流程图。
图2为本发明一实施例中的恒温酒柜的部分结构示意图。
图3为图2中恒温酒柜另一视角的结构示意图。
图4为图2中恒温酒柜的局部剖面示意图。
图5为图2中很稳酒柜的分解示意图。
图6为图5中风道组件的分解示意图。
图7为图5中风道组件内阀门打开的示意图。
图8为图7中虚线处的放大示意图。
图9为图2中恒温酒柜的另一局部剖面示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,下面结合实施例及附图,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
如图1所示,本发明一实施例中提供一种恒温控制方法1000,其适用于制冷设备,通过修正不同环境温度对制冷设备的压缩机的开机点温度和关机点温度的影响,消除制冷设备的间室内的实际温度随环境温度的波动,实现间室内的实际温度和设定档位温度相同。
恒温控制方法1000包括:
于基准环境温度下,获取间室的第一实际温度和基准档位温度之间的第一差值;
根据第一差值,修改制冷设备的压缩机的开机点温度和关机点温度,获得第一修正开机点温度和第一修正关机点温度;
获取实际环境温度下,基准档位温度和间室的第二实际温度之间的第二差值;
根据第二差值,修改第一修正开机点温度和第一修正关机点温 度,获得第二修正开机点温度和第二修正关机点温度;以及
控制制冷设备的压缩机根据第二修正开机点温度开机,以及,控制制冷设备的压缩机根据第二修正关机点温度停机。
在一较佳的实施方式中,获取间室的第一实际温度和基准档位温度之间的第一差值的步骤包括:
于基准环境温度下,设置间室的基准档位温度;
压缩机根据第一修正开机点温度和第一修正关机点温度进行制冷,并测量间室的第一实际温度;
计算第一实际温度和基准档位温度之间的第一差值。
本实施例中,以基准环境温度和基准档位温度为基础,确定基准环境温度对第一实际温度的影响值,即第一差值,并以第一差值对压缩机的第一开机点温度和第一关机点温度进行修正,得以消除基准环境温度对第一实际温度的影响,确保第一实际温度和基准档位温度之间能够无限接近。
其中,考虑到制冷设备例如是恒温酒柜,因此,基准环境温度例如是32℃,基准档位温度例如是12℃。
此外,依据制冷设备的种类不同,可适当的调整基准环境温度和基准档位温度。
在一较佳的实施方式中,获取实际环境温度下,基准档位温度和间室的实际温度之间的第二差值的步骤包括:
于多个不同的设定环境温度下,设置间室的基准档位温度;
压缩机根据第一修正开机点温度和第一修正关机点温度进行制 冷,分别测量间室的实际温度,分别测量多个不同的设定环境温度对应的间室的实际温度,并获得多个第三实际温度;
计算每一第三实际温度和所述基准档位温度之间的差值,获得多个第三差值;
依据多个第三差值和多个不同的设定环境温度建立线性回归方程;
根据线性回归方程获得与实际环境温度对应的第二差值。
本实施例中,在完成基准环境温度和基准档位温度下,对压缩机的第一开机点温度和第一关机点温度的参数修正后;进一步测试不同的设定环境温度和基准档位温度下,不同的设定环境温度对第三实际温度的影响值,即,第三差值,根据多个不同的设定环境温度和多个第三差值,建立线性回归方程,以获得任意实际环境温度对间室的实际温度的影响值,即,第二差值。最后,通过第二差值修正压缩机的第一修正开机点温度和第一修正关机点温度,形成第二修正开机点温度和第二修正关机点温度。
进一步,设置制冷设备的间室的设定档位温度,控制压缩机按照第二修正开机点温度和第二修正关机点温度进行制冷,此时,间室的第二实际温度和设定档位温度始终相等。
需要说明的是,设置档位温度是在基准档位温度上进行变化的温度,设置档位温度依据实际的储物需求自行设定,通常设置档位温度大于或者小于基准档位温度。
另外,通过测量不同的设定环境温度对基准档位温度对应的实际 温度的影响,并建立线性回归方程,实质上获得了不同的环境温度对间室的实际温度的影响值(第二差值),以此为参数修正压缩机的开机点和关机点,进而使得环境温度对实际温度的影响被修正,确保了间室的实际温度和设定档位温度始终一致。
在一较佳的实施方式中,考虑到制冷设备例如是恒温酒柜,因此,多个不同的设定环境温度包括43℃、21℃和12℃。
此外,依据制冷设备的种类不同,可适当的调整基准环境温度和基准档位温度。
本发明还提供一种电子设备,包括存储器和处理器,所述存储器储存有可在所述处理器上运行的计算机程序,所述处理器执行计算机程序时实现恒温控制方法1000。
如图2至图9所示,本发明还提供一种恒温酒柜100,恒温酒柜100包括箱体、制冷单元和控制主板,箱体包括间室,间室内设置有温度传感器,温度传感器用于检测间室的实际温度;制冷单元包括压缩机,蒸发器40、风机和风道组件20;控制单元电连接压缩机和温度传感器;其中,控制主板用于执行恒温控制方法1000。
本实施例中,恒温酒柜100为双温区风冷酒柜;所述双温区风冷酒柜为立式酒柜,包括箱体(未图示)、压缩机(未图示)和蒸发器40,箱体内设有内胆10,内胆10围成用于储酒的冷藏空间。
恒温酒柜100还包括风道组件20设置于内胆10围成用于储酒的冷藏空间内。
风道组件20包括在前后方向上依序卡合连接的第一盖板21、第 二盖板22和第三盖板23,风机30和风门组件装配于第一盖板21和第二盖板22之间的空间中,其中,风机30和风门组件分别固定于第二盖板22朝向第一盖板21的一侧表面上。另外,第一盖板21靠近内胆10的后壁设置。其中,蒸发器40设置于第一盖板21朝向内胆10的后壁一侧的表面上。
风机30和风门相邻设置,本实例中,沿左右方向风机30和风门相邻布置。
另外,第二盖板22和第三盖板23之间的空间还包括上送风风道201、下送风风道202、第一回风风道203和第二回风风道204。
风门组件包括第一阀门31、第二阀门32以及开关33,开关33电连接第一阀门31和第二阀门32。
第二盖板22上设有第一出风口221和第二出风口222,第一阀门31设置于第一出风口221处,第二阀门32设置于第二出风口222处;其中,第一出风口连通上送风风道201,第二出风口222连通下送风风道202。
上送风风道201还连通第三盖板23顶端的开口231,开口231连通上送风单元24的第一送风口241,其中,上送风单元24和内胆10的顶部侧壁之间的空间构成上流通通道,从上送风风道201中送出的风经开口231、上流通通道以及第一送风口241传递至上间室101中。
在一较佳的实施方式中,第一送风口241设置于上送风单元24的前端,上送风单元24的前端为靠近上间室101的前侧。
下送风风道202还连通第二盖板22上第一开口223,第一开口 223和第三盖板23上的第二开口233相对应且相互贯通,其中,第二开口233连通下送风单元25的第二送风口253。
下送风单元25包括第一通道板251和第二通道板252,第一通道板251和第二通道板252卡合连接,第一通道板251和第二通道板252之间的空间构成下流通通道。从下送风风道202中送出的风经第一开口223、第二开口233、下流通通道以及第二送风口253传递至下间室102中。
其中,第二送风口253设置于第二通道板252朝向下间室102的一侧。较佳的,第二送风口253设置第二通道板252的前端,第二通道板252的前端靠近间室的前侧。
本实施例中,内胆10的间室通过隔板26被划分为上间室101和下间室102,下送风单元25例如卡合固定于隔板26朝向下间室102的一侧。即,下送风单元25位于内胆10的间室的中部,且位于下间室102的顶部,但不以此为限。
如图6至图9所示,第三盖板23上设置第一回风口232和第二回风口234,第一回风口232连通上间室101和第一回风风道203;第二回风口234连通下间室102和第二回风风道204;其中,第一回风风道203和第二回风风道204的的下端分别与蒸发器40连通。
本实施例中,第一送风口241、第二送风口253分别设置于上间室101和下间室102的顶部靠前的位置,有助于将风机30送出的风均匀的传递至整个间室中;第一回风口232和第二回风口234分别设置于上间室101和下间室102的底部靠下的位置,有助于将间室内的 空气尽快通过第一回风道203和第二回风道204传递至蒸发器40,提高温度控制效率。
需要说明的是,酒柜100中仅设置单一蒸发器40、单一风机30,藉由风门组件,将风机30送出的空气朝向上送风风道201和/或下送风风道202中分配,实现单系统酒柜的双温区的恒温控制。
如图2、图3、图5和图6所示,恒温酒柜100还包括加热单元,加热单元包括第一加热丝51,第二加热丝52以及第三加热丝53,第一加热丝51设置隔板26的底部,即,设置于上间室101的底部;第二加热丝52设内胆10的底部的外侧,即,设置于下间室102的底部;第三加热丝53设置于内胆10的后壁的远离风道组件的一侧,其中,第三加热丝53和蒸发器40相对。
本实施例中,将第三加热丝53设置成与蒸发器40相对的位置,便于后续酒柜100的恒温控制时,迅速对蒸发器40提供热量,风机30启动后,可迅速将蒸发器40处的热量循环至间室内,以实现快速升温。
另外,第一加热丝51和第二加热丝52分别设于上间室101和下间室102的底部,利用热空气上浮的原理,可实现间室内的均匀制热。
通过加热单元提供热量,满足环境温度低或者酒柜100需要在较高温度下储存酒品的情况,酒柜100维持恒温的需求。
由上述可知,酒柜100大致包括制冷单元、加热单元、温度传感器单元以及控制主板,,制冷单元包括压缩机、蒸发器40、风机30和风道组件20,利用蒸发器40制冷,并以风机向酒柜100的箱体内 的间室中输送经蒸发器40热交换形成的冷风实现制冷;利用加热单元向所述间室内传递由加热装置产生的热量实现制热;温度传感器单元用于分别检测所述间室内的实际温度和所述恒温酒柜外部的实际环境温度;控制主板根据所述间室内的实际温度选择所述制冷单元制冷和/或选择所述加热单元制热。
而,酒柜100的恒温控制模式大致包括,1)上间室101和下间室102都需要制冷;2)上间室101和下间室102其中之一需要制冷,其中之另一需要制热;3)上间室101和下间室102都需要制热。
当上间室101和下间室102都需要制冷,恒温控制过程包括,单一的制冷过程。
制冷过程包括:
首先,控制主板分别获取上间室101的实际温度和下间室102的实际温度,若判断上间室101的实际温度高于第一设定档位温度,且下间室102的实际温度高于第二设定档位温度;
其次,控制主板获取实际环境温度,利用实际环境温度代入线性回归方程获得与实际环境温度相对应的修正温度差值(即,恒温控制方法1000中的第二差值),根据此修正温度差值修正压缩机的开机点温度和关机点温度;
接着,压缩机根据修正后的开机点温度和关机点温度启停,进行制冷;
然后,控制主控控制风门组件中的开关33控制第一阀门31和第二阀门32分别打开,风机30启动,将蒸发器40提供的冷量通过第 一风门221、上送风风道201以及上送风单元24内的上流通通道和第一送风口241传递至上间室101内,且使得上间室101的实际温度和第一设定档位温度相同;以及,风机30启动,将蒸发器40提供的冷量通过第二风门222、下送风风道202以及下送风单元25内的下流通通道和第二送风口253传递至下间室102内,且使得下间室102的实际温度和第二设定档位温度相同。
需要说明的是,在根据实际环境温度代入线性回归方程获得对应的修正温度差值对压缩机的开机点温度和关机点温度修正之前,压缩机的开机点温度和关机点温度已经经过基准修正过程,其中,基准修正过程包括:获取基准环境温度下,基准档位温度和间室的实际温度之间的基准温度差值(即,恒温控制方法1000中的第一差值),并以基准档位温度和间室的实际温度之间的基准温度差值对压缩机的初始开机点温度和初始关机点温度进行基准修正,获得第一修正开机点温度和第一修正关机点温度。
因此,根据修正温度差值修正第一修正开机点温度和第一修正关机点温度,获得第二修正开机点温度和第二修正关机点温度,压缩机按照第二修正开机点温度和第二修正关机点温度运行。
换言之,经过基准修正之后,压缩机的第一修正开机点温度和第一修正关机点温度再经过二次修正,二次修正的修正温度差值通过线性回归方程获取,主要用于消除实际环境温度对间室的实际温度的影响,确保间室的实际温度和设定档位温度相一致。
另外,当判断第一设定档位温度和第二设定档位温度之间的温差 大于预设值时,控制主板识别第一设定档位温度和第二设定档位温度中温度较低的一个,并控制风门组件中的开关打开与设定档位温度较低的一个间室对应的阀门,即,优先对设定档位温度较低的一个间室进行制冷。其中,优先对设定档位温度较低的一个间室进行制冷,有助于使得两个间室尽快到达各自对应的设定档位温度。
进一步,当判断第一设定档位温度和第二设定档位温度之间的温差小于预设值时,控制主板控制风门组件中的开关同时将连通上间室的第一出风口处的第一阀门和连通下间室的第二出风口处的第二阀门一并打开,同时向上间室和下间室提供冷量,同样也有助于使得两个间室尽快到达各自对应的设定档位温度。
当上间室101和下间室102的其中之一需要制冷,其中之另一需要制热时,酒柜100的恒温控制过程具体包括:制冷过程和制热过程。
制冷过程和上述上间室101和下间室102都需要制冷的控制过程相似,即,对进行过基准修正的压缩机的开机点温度和关机点温度根据实际环境温度对应的温度差值进行二次修正,压缩机按照二次修正的开机点温度和关机点温度运行。打开风机30,开关33控制第一阀门31和第二阀门32的其中之一打开,冷空气通过上送风风道201、上送风单元24和第一送风口241进入上间室101中,使得上间室101的第一设定档位温度和实际温度相同;或者,冷空气通过下送风风道202、下送风单元25和第二送风口253进入下间室102中,使得下间室102的第二设定档位温度和实际温度相同。
制热过程包括:
于压缩机和蒸发器40制冷过程中,控制上间室101的底部的第一加热丝51和下间室102的底部的第二加热丝52的其中之一启动,朝向对应的上间室101供热或者朝向对应的下间室102供热。
开关33控制第一阀门31和第二阀门32都处于关闭状态。
控制与蒸发器40对应的第三加热丝53启动,第三加热丝53朝向蒸发器40提供热量,至蒸发器40的实际温度上升至预设温度时,开关33控制第一阀门31和第二阀门32的其中之另一打开,风机30启动,热空气经上送风风道201、上送风单元24和第一送风口241进入上间室101中,使得上间室101的第一设定档位温度和实际温度相同;或者,热空气通过下送风风道202、下送风单元25和第二送风口253进入下间室102中,使得下间室102的第二设定档位温度和实际温度相同。
本实施例中,通过布置与蒸发器40对应的第三加热丝53,以使对蒸发器40制冷后,再将热空气传递到需要制热的间室内,实现待制热的间室内的实际温度尽快与设定温度相同,提高了恒温控制的制热控制的效率。
另外,第三加热丝53的加热速率可大于第一加热丝51、第二加热丝52的加热速率。
当上间室101和下间室102都需要制热,恒温控制过程包括,单一的制热过程。
制热过程包括:
控制第一加热丝51、第二加热丝52以及第三加热丝53同时启动;
开关33控制第一阀门31和第二阀门32分别打开;
风机30启动,热空气经上送风风道201、上送风单元24和第一送风口241进入上间室101中,使得上间室101的第一设定档位温度和实际温度相同;以及,热空气通过下送风风道202、下送风单元25和第二送风口253进入下间室102中,使得下间室102的第二设定档位温度和实际温度相同。
上述第一阀门31和第二阀门32同时打开的前提条件为,第一设定档位温度和第二设定档位温度相近。
另外,当判断第一设定档位温度和第二设定档位温度之间的温差大于预设值时,控制主板识别第一设定档位温度和第二设定档位温度中温度较高的一个,并控制风门组件中的开关打开与设定档位温度较高的一个间室对应的阀门,即,优先对设定档位温度较高的一个间室进行制热。其中,优先对设定档位温度较高的一个间室进行制热,有助于使得两个间室尽快到达各自对应的设定档位温度。
综上,本发明提供一种恒温控制方法、电子设备及恒温酒柜,恒温控制方法包括在基准环境温度和间室的基准档位温度下,对压缩机的开机点温度和关机点温度进行基准修正,在此基础上,在多个设定环境温度和间室的基准档位温度下,获得不同环境温度对间室的设定档位温度影响的温度差值,根据此温度差值,修正实际环境温度下,压缩机的开机点温度和关机点温度,进而确保设定档位温度和间室的实际温度始终维持一致。
本发明已由上述相关实施例加以描述,然而上述实施例仅为实施 本发明的范例。此外,上面所描述的本发明不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。必需指出的是,本发明还可有其他多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。

Claims (10)

  1. 一种恒温控制方法,适用于制冷设备,所述制冷设备包括间室,其特征在于,所述恒温控制方法包括:
    于基准环境温度下,获取所述间室的第一实际温度和基准档位温度之间的第一差值;
    根据所述第一差值,修改所述制冷设备的压缩机的开机点温度和关机点温度,获得第一修正开机点温度和第一修正关机点温度;
    获取实际环境温度下,所述基准档位温度和所述间室的第二实际温度之间的第二差值;
    根据所述第二差值,修改所述第一修正开机点温度和所述第一修正关机点温度,获得第二修正开机点温度和第二修正关机点温度;以及
    控制所述制冷设备的压缩机根据所述第二修正开机点温度开机,以及,控制所述制冷设备的压缩机根据所述第二修正关机点温度停机。
  2. 根据所述权利要求1所述的恒温控制方法,其特征在于,获取所述间室的第一实际温度和基准档位温度之间的第一差值的步骤包括:
    于基准环境温度下,设置所述间室的基准档位温度;
    所述压缩机根据所述第一修正开机点温度和所述第一修正关机点温度进行制冷,测量所述间室的所述第一实际温度;
    计算所述第一实际温度和所述基准档位温度之间的第一差值。
  3. 根据所述权利要求1所述的恒温控制方法,其特征在于,获取实际环境温度下,所述基准档位温度和所述间室的实际温度之间的第二差值的步骤包括:
    于多个不同的设定环境温度下,设置所述间室的基准档位温度;
    所述压缩机根据所述第一修正开机点温度和所述第一修正关机点温度进行制冷,分别测量所述多个不同的设定环境温度对应的所述间室的 实际温度,并获得多个第三实际温度;
    计算每一第三实际温度和所述基准档位温度之间的差值,获得多个第三差值;
    依据多个第三差值和多个不同的设定环境温度建立线性回归方程;
    根据所述线性回归方程获得与所述实际环境温度对应的所述第二差值。
  4. 根据所述权利要求1所述的恒温控制方法,其特征在于,所述制冷设备为恒温酒柜。
  5. 根据所述权利要求1所述的恒温控制方法,其特征在于,当控制所述制冷设备的压缩机根据所述第二修正开机点温度开机,以及,控制所述制冷设备的压缩机根据所述第二修正关机点温度停机时,所述第二实际温度等于所述间室的设置档位温度。
  6. 根据所述权利要求5所述的恒温控制方法,其特征在于,所述设置档位温度大于或者小于所述基准档位温度。
  7. 根据所述权利要求1所述的恒温控制方法,其特征在于,所述基准环境温度为32℃;所述基准档位温度为12℃。
  8. 一种电子设备,包括存储器和处理器,所述存储器储存有可在所述处理器上运行的计算机程序,其特征在于,
    所述处理器执行计算机程序时实现如权利要求1-7中任意一项所述的恒温控制方法。
  9. 一种恒温酒柜,其特征在于,所述恒温酒柜包括:
    箱体,所述箱体包括间室,所述间室内设置有温度传感器,所述温度传感器用于检测所述间室的实际温度;
    制冷单元,所述制冷单元包括单一压缩机、单一蒸发器和风道组件;以及
    控制主板,所述控制主板电连接所述压缩机和所述温度传感器;其中,所述控制主板用于执行如权利要求1-7中任意一项所述的恒温控制方法。
  10. 如权利要求9所述的恒温酒柜,其特征在于,所述风道组件内设有风门组件,所述风门组件包括第一阀门、第二阀门和开关,所述开关控制所述第一阀门和所述第二阀门的开启或者关闭。
PCT/CN2022/078538 2021-06-28 2022-03-01 恒温控制方法、电子设备及恒温酒柜 WO2023273371A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110718618.1 2021-06-28
CN202110718618.1A CN113503683A (zh) 2021-06-28 2021-06-28 恒温控制方法、电子设备及恒温酒柜

Publications (1)

Publication Number Publication Date
WO2023273371A1 true WO2023273371A1 (zh) 2023-01-05

Family

ID=78011214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/078538 WO2023273371A1 (zh) 2021-06-28 2022-03-01 恒温控制方法、电子设备及恒温酒柜

Country Status (2)

Country Link
CN (1) CN113503683A (zh)
WO (1) WO2023273371A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113503687A (zh) * 2021-06-28 2021-10-15 青岛海尔特种电冰柜有限公司 恒温酒柜
CN113503683A (zh) * 2021-06-28 2021-10-15 青岛海尔特种电冰柜有限公司 恒温控制方法、电子设备及恒温酒柜

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3028673A1 (de) * 1980-07-29 1982-03-04 Eisfink Carl Fink GmbH & Co, 7144 Asberg Temperierschrank fuer getraenke
CN103245164A (zh) * 2013-04-27 2013-08-14 合肥美菱股份有限公司 一种冷藏间室的温度控制方法及控制装置
CN103697657A (zh) * 2013-12-12 2014-04-02 合肥华凌股份有限公司 恒温酒柜及其温度控制方法
CN105605875A (zh) * 2016-02-01 2016-05-25 合肥美的电冰箱有限公司 一种电子冷冻冰箱的控制方法和系统
CN108759289A (zh) * 2018-05-18 2018-11-06 Tcl家用电器(合肥)有限公司 冰箱温度控制方法、装置、冰箱和存储介质
CN109373702A (zh) * 2018-10-12 2019-02-22 合肥华凌股份有限公司 酒柜的恒温控制方法及装置
CN110296560A (zh) * 2019-06-12 2019-10-01 合肥美的电冰箱有限公司 一种冰箱压缩机开停机温度点控制方法、装置及冰箱
CN113503683A (zh) * 2021-06-28 2021-10-15 青岛海尔特种电冰柜有限公司 恒温控制方法、电子设备及恒温酒柜
CN113503687A (zh) * 2021-06-28 2021-10-15 青岛海尔特种电冰柜有限公司 恒温酒柜

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3028673A1 (de) * 1980-07-29 1982-03-04 Eisfink Carl Fink GmbH & Co, 7144 Asberg Temperierschrank fuer getraenke
CN103245164A (zh) * 2013-04-27 2013-08-14 合肥美菱股份有限公司 一种冷藏间室的温度控制方法及控制装置
CN103697657A (zh) * 2013-12-12 2014-04-02 合肥华凌股份有限公司 恒温酒柜及其温度控制方法
CN105605875A (zh) * 2016-02-01 2016-05-25 合肥美的电冰箱有限公司 一种电子冷冻冰箱的控制方法和系统
CN108759289A (zh) * 2018-05-18 2018-11-06 Tcl家用电器(合肥)有限公司 冰箱温度控制方法、装置、冰箱和存储介质
CN109373702A (zh) * 2018-10-12 2019-02-22 合肥华凌股份有限公司 酒柜的恒温控制方法及装置
CN110296560A (zh) * 2019-06-12 2019-10-01 合肥美的电冰箱有限公司 一种冰箱压缩机开停机温度点控制方法、装置及冰箱
CN113503683A (zh) * 2021-06-28 2021-10-15 青岛海尔特种电冰柜有限公司 恒温控制方法、电子设备及恒温酒柜
CN113503687A (zh) * 2021-06-28 2021-10-15 青岛海尔特种电冰柜有限公司 恒温酒柜

Also Published As

Publication number Publication date
CN113503683A (zh) 2021-10-15

Similar Documents

Publication Publication Date Title
WO2023273371A1 (zh) 恒温控制方法、电子设备及恒温酒柜
WO2024026579A1 (zh) 恒温酒柜恒温酒柜
JP6799744B2 (ja) 冷蔵庫
CN107289707A (zh) 风冷冰箱
CN103851874A (zh) 具有变温室的冰箱低温补偿方法
CN106288595A (zh) 风冷冰箱及其控制方法
CN104792089A (zh) 冰箱
CN109737672B (zh) 一种冰箱、冰箱的控制方法及计算机可读存储介质
JP2006275326A (ja) 恒温庫
CN110986476A (zh) 温度控制方法及装置、制冷设备以及计算机可读存储介质
KR20060127664A (ko) 냉장고 및 냉장고의 발효 및 보관방법
JP6211872B2 (ja) 冷蔵庫
JP5743867B2 (ja) 冷却貯蔵庫
US20200284491A1 (en) Cooling control method for refrigerator
JP4183451B2 (ja) 冷却システムの制御装置
KR20100034080A (ko) 냉장고 및 그 제어방법
KR20210080198A (ko) 냉장고 및 그 제어 방법
JP2017044448A (ja) 冷却貯蔵庫
JP2007120912A (ja) 冷蔵庫
JPWO2020170310A1 (ja) 冷蔵庫
CN109405407A (zh) 具有独立间室的冰箱发酵方法及冰箱
CN115371330B (zh) 一种制冷设备的控制方法
JP2022139759A (ja) 冷蔵庫
JP7436217B2 (ja) 冷蔵庫
JP7332462B2 (ja) 温湿度調節庫

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22831202

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE