WO2024026579A1 - 恒温酒柜恒温酒柜 - Google Patents

恒温酒柜恒温酒柜 Download PDF

Info

Publication number
WO2024026579A1
WO2024026579A1 PCT/CN2022/078539 CN2022078539W WO2024026579A1 WO 2024026579 A1 WO2024026579 A1 WO 2024026579A1 CN 2022078539 W CN2022078539 W CN 2022078539W WO 2024026579 A1 WO2024026579 A1 WO 2024026579A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
air supply
corrected
compartment
wine cabinet
Prior art date
Application number
PCT/CN2022/078539
Other languages
English (en)
French (fr)
Inventor
王德森
栗江涛
刘仁杰
葛庆艳
张廷秀
龙海丽
邢建功
李国锋
Original Assignee
青岛海尔特种电冰柜有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔特种电冰柜有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔特种电冰柜有限公司
Publication of WO2024026579A1 publication Critical patent/WO2024026579A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D31/00Other cooling or freezing apparatus
    • F25D31/002Liquid coolers, e.g. beverage cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D31/00Other cooling or freezing apparatus
    • F25D31/005Combined cooling and heating devices

Definitions

  • the invention relates to the technical field of refrigeration devices, and in particular to a constant temperature wine cabinet.
  • wine cabinets are widely used in people's lives, such as in homes, airports, hotels and other places. As people's quality of life improves, the performance requirements for wine cabinets are also getting higher and higher. In order to facilitate the long-term storage of wine, it is necessary to maintain a certain temperature in the wine cabinet.
  • the wine cabinets currently on the market are set up with a single refrigeration function.
  • Multiple evaporators and fans are configured corresponding to multiple compartments in the wine cabinet. That is, when the detected temperature is higher than the set upper limit temperature, the compressor starts cooling, and when the detected temperature is higher than the set upper limit temperature, the compressor starts cooling. When the temperature is lower than the set lower limit temperature, the compressor stops.
  • the problem with such a single refrigeration method is that for lower ambient temperatures, the temperature in the wine cabinet is too low, such as below 5°C, so it cannot meet the minimum temperature requirements for wine storage; on the other hand, a single refrigeration method cannot meet the minimum temperature requirements for wine storage.
  • the refrigeration method may cause large fluctuations in the storage temperature of wine, which is not conducive to high-quality storage of wine.
  • existing wine cabinet constant temperature control methods usually include dividing the ambient temperature into several intervals, and controlling the start-up point temperature and the shutdown point temperature of the compressor to set the gear temperature in each ambient temperature interval to achieve constant temperature. .
  • the above method requires testing the temperature of multiple setting gears in each divided ambient temperature interval to adjust the start-up point temperature and shutdown point temperature of the compressor in each ambient temperature interval for each setting gear; then, the adjusted Only by further verification of the startup point temperature and shutdown point temperature can the final startup point temperature and shutdown point temperature be confirmed. Therefore, existing constant temperature control methods consume a lot of time and laboratory resources, affecting product development progress and time to market.
  • the object of the present invention is to provide a constant temperature wine cabinet.
  • the constant temperature wine cabinet includes: a refrigeration unit.
  • the refrigeration unit includes a compressor, an evaporator, a fan and an air duct assembly.
  • the evaporator is used for refrigeration.
  • the fan is used to transport the cold air formed by the heat exchange of the evaporator to the compartment in the wine cabinet to achieve refrigeration;
  • the heating unit uses the heating unit to transfer the heat generated by the heating unit to the compartment.
  • the heat is used to realize heating;
  • the temperature sensor unit is used to detect the actual temperature inside the room and the actual ambient temperature outside the constant temperature wine cabinet; and a control mainboard, the control mainboard is based on the room temperature.
  • the actual temperature in the room selects the refrigeration unit for cooling and/or the heating unit for heating; wherein, when the control mainboard selects the refrigeration unit for cooling, the control mainboard obtains the actual ambient temperature, and based on the actual The ambient temperature obtains the corresponding corrected temperature difference, and corrects the starting point temperature and shut-down point temperature of the compressor according to the corrected temperature difference; the compressor adjusts the starting point according to the corrected temperature difference. temperature and the shutdown point temperature operation.
  • correcting the startup point temperature and shutdown point temperature of the compressor based on the corrected temperature difference also includes:
  • the compressor operates according to the second corrected starting point temperature and the second corrected starting point temperature.
  • the heating unit includes a first heating wire, a second heating wire and a third heating wire; a partition is provided in the chamber, and the partition divides the chamber into an upper chamber and an upper chamber. Lower chamber; wherein, the first heating wire is disposed on a side surface of the partition facing the lower chamber; the second heating wire is disposed at the bottom of the inner bladder in the box, located in the lower chamber. The bottom of the chamber; the third heating wire is arranged outside the inner bladder in the box, and the third heating wire is opposite to the evaporator.
  • the air duct assembly includes a first cover plate, a second cover plate and a third cover plate connected sequentially in the front and rear direction, and the fan is assembled on the first cover plate and the in the space between the second cover plates.
  • the air duct assembly further includes a damper assembly.
  • the damper assembly is disposed in the space between the first cover plate and the second cover plate.
  • the fan and the damper assembly arranged adjacently;
  • the damper assembly includes a first valve, a second valve and a switch, the switch is electrically connected to the first valve and the second valve;
  • the second cover is provided with a first air outlet and a second Two air outlets, the first valve is provided at the first air outlet, and the second valve is provided at the air outlet; wherein, the switch controls the first valve according to the actual temperature in the compartment. and at least one of the second valves is opened or closed.
  • the air duct assembly also includes an upper air supply duct, an upper air supply unit, a lower air supply duct, and a lower air supply unit; wherein the first air outlet is connected to the upper air supply unit.
  • Air duct, the upper air supply air duct is connected to the upper air supply unit, and the upper air supply unit is connected to the upper chamber; the second air outlet is connected to the lower air supply air duct, and the lower air supply air duct is connected to the upper air supply unit.
  • the air duct is connected to the lower air supply unit, and the lower air supply unit is connected to the lower chamber.
  • the upper air supply unit is disposed on the top of the liner, at the top of the upper compartment; the lower air supply channel is disposed on the partition facing the lower compartment. on one side and located at the top of the lower chamber.
  • the upper air supply unit includes a first air supply outlet, which is close to the front end of the upper air supply unit;
  • the lower air supply unit includes a first channel plate that is snap-connected. , a second channel plate and a second air supply outlet, the second air supply outlet is provided on the side of the second channel plate facing the lower compartment and close to the front end of the second channel plate.
  • the air duct assembly further includes a first return air duct and a second return air duct, and the first return air duct and the second return air duct are provided on the first return air duct.
  • the third cover plate is provided with a first return air outlet and a second return air outlet, and the first return air outlet communicates with the upper chamber and the first return air outlet air duct; the second return air outlet communicates with the lower compartment and the second return air duct; wherein the lower ends of the first return air duct and the second return air duct are respectively connected with the The evaporator is connected.
  • the control mainboard selects the refrigeration unit to cool one of the upper compartment and the lower compartment;
  • the control mainboard selects the heating unit to heat the other one of the upper compartment and the lower compartment;
  • the switch when controlling the heating unit to heat the other one of the upper chamber and the lower chamber, the switch closes the first valve and the second valve, and the third heating wire Heating, so that when the actual temperature of the evaporator rises to a preset temperature, the switch controls the opening of a valve connected to the other one of the upper chamber and the lower chamber.
  • the present invention provides a constant-temperature wine cabinet that performs baseline correction on the starting point temperature and shutdown point temperature of the compressor under the reference ambient temperature and the reference gear temperature of the compartment.
  • the temperature difference that affects the set stall temperature of the compartment under different ambient temperatures.
  • correct the compression under the actual ambient temperature The machine's start-up point temperature and shutdown point temperature ensure that the set gear temperature and the actual temperature of the room are always consistent.
  • the first room and/or the second room of the single-system dual-temperature zone thermostatic wine cabinet can be realized Selective cooling and/or heating.
  • Figure 1 is a flow chart of a constant temperature control method in an embodiment of the present invention.
  • Figure 2 is a partial structural schematic diagram of a constant temperature wine cabinet in an embodiment of the present invention.
  • Figure 3 is a schematic structural diagram of the constant temperature wine cabinet in Figure 2 from another perspective.
  • Figure 4 is a partial cross-sectional schematic diagram of the constant temperature wine cabinet in Figure 2.
  • Figure 5 is an exploded schematic diagram of the very stable wine cabinet in Figure 2.
  • FIG. 6 is an exploded schematic view of the middle duct assembly in FIG. 5 .
  • Figure 7 is a schematic diagram of the valve in the duct assembly of Figure 5 being opened.
  • Figure 8 is an enlarged schematic diagram of the dotted line in Figure 7.
  • Figure 9 is another partial cross-sectional view of the constant temperature wine cabinet in Figure 2.
  • one embodiment of the present invention provides a constant temperature control method 1000, which is suitable for refrigeration equipment.
  • a constant temperature control method 1000 which is suitable for refrigeration equipment.
  • the refrigeration equipment can be eliminated.
  • the actual temperature in the equipment room fluctuates with the ambient temperature, so that the actual temperature in the room is the same as the set temperature.
  • Thermostatic control method 1000 includes:
  • the compressor of the refrigeration equipment is controlled to be started according to the second corrected start-up point temperature, and the compressor of the refrigeration equipment is controlled to be stopped according to the second corrected shutdown point temperature.
  • the step of obtaining the first difference between the first actual temperature of the compartment and the reference gear temperature includes:
  • the compressor performs cooling according to the first corrected start-up point temperature and the first corrected shutdown point temperature, and measures the first actual temperature of the compartment;
  • a first difference between the first actual temperature and the reference range temperature is calculated.
  • the influence value of the reference ambient temperature on the first actual temperature that is, the first difference
  • the first difference is used to determine the first starting point of the compressor.
  • the temperature and the first shutdown point temperature are corrected to eliminate the influence of the reference ambient temperature on the first actual temperature, ensuring that the first actual temperature and the reference gear temperature can be infinitely close.
  • the refrigeration equipment is, for example, a constant-temperature wine cabinet
  • the reference ambient temperature is, for example, 32°C
  • the reference gear temperature is, for example, 12°C.
  • the base ambient temperature and base gear temperature can be appropriately adjusted.
  • the step of obtaining the second difference between the reference gear temperature and the actual temperature of the compartment under the actual ambient temperature includes:
  • the compressor performs cooling according to the first corrected start-up point temperature and the first corrected shutdown point temperature, respectively measures the actual temperature of the chamber, respectively measures the actual temperature of the chambers corresponding to multiple different set ambient temperatures, and obtains multiple first 3 actual temperature;
  • the second difference value corresponding to the actual ambient temperature is obtained according to the linear regression equation.
  • the set gear temperature is a temperature that changes from the base gear temperature.
  • the set gear temperature is set according to the actual storage needs. Usually, the set gear temperature is greater than or less than the base gear temperature.
  • the impact of different ambient temperatures on the actual temperature of the chamber is essentially obtained (the second difference value ), using this as a parameter to correct the start-up and shut-down points of the compressor, thereby correcting the impact of ambient temperature on the actual temperature, ensuring that the actual temperature of the chamber is always consistent with the set temperature.
  • the multiple different set ambient temperatures include 43°C, 21°C and 12°C.
  • the base ambient temperature and base gear temperature can be appropriately adjusted.
  • the present invention also provides an electronic device, including a memory and a processor.
  • the memory stores a computer program that can be run on the processor.
  • the processor executes the computer program, the constant temperature control method 1000 is implemented.
  • the present invention also provides a constant temperature wine cabinet 100.
  • the constant temperature wine cabinet 100 includes a cabinet, a refrigeration unit and a control main board.
  • the cabinet includes a compartment, and a temperature sensor is provided in the compartment.
  • the temperature sensor is It is used to detect the actual temperature of the room;
  • the refrigeration unit includes a compressor, an evaporator 40, a fan and an air duct assembly 20;
  • the control unit is electrically connected to the compressor and the temperature sensor; wherein, the control main board is used to execute the constant temperature control method 1000.
  • the constant-temperature wine cabinet 100 is a dual-temperature zone air-cooled wine cabinet; the dual-temperature zone air-cooled wine cabinet is a vertical wine cabinet, including a box (not shown), a compressor (not shown) and
  • the evaporator 40 is provided with an inner tank 10 in the box, and the inner tank 10 forms a refrigerated space for storing wine.
  • the thermostatic wine cabinet 100 also includes an air duct assembly 20 disposed in the refrigeration space enclosed by the inner container 10 for storing wine.
  • the air duct assembly 20 includes a first cover plate 21 , a second cover plate 22 and a third cover plate 23 that are sequentially connected in the front and rear direction.
  • the fan 30 and the damper assembly are assembled on the first cover plate 21 and the second cover plate. 22 , where the fan 30 and the damper assembly are respectively fixed on the side surface of the second cover plate 22 facing the first cover plate 21 .
  • the first cover 21 is disposed close to the rear wall of the inner pot 10 .
  • the evaporator 40 is disposed on the surface of the first cover 21 facing the rear wall of the inner bladder 10 .
  • the fan 30 and the damper are arranged adjacently.
  • the fan 30 and the damper are arranged adjacently in the left and right direction.
  • the space between the second cover plate 22 and the third cover plate 23 also includes an upper air supply duct 201 , a lower air supply duct 202 , a first return air duct 203 and a second return air duct 204 .
  • the damper assembly includes a first valve 31, a second valve 32 and a switch 33.
  • the switch 33 is electrically connected to the first valve 31 and the second valve 32.
  • the second cover 22 is provided with a first air outlet 221 and a second air outlet 222.
  • the first valve 31 is provided at the first air outlet 221, and the second valve 32 is provided at the second air outlet 222; wherein, the first The air outlet is connected to the upper air supply duct 201, and the second air outlet 222 is connected to the lower air supply duct 202.
  • the upper air supply duct 201 is also connected to the opening 231 at the top of the third cover 23 , and the opening 231 is connected to the first air supply outlet 241 of the upper air supply unit 24 , wherein, between the upper air supply unit 24 and the top side wall of the inner pot 10
  • the space constitutes an upper flow channel, and the air sent from the upper air supply duct 201 is transmitted to the upper chamber 101 through the opening 231, the upper flow channel and the first air supply port 241.
  • the first air supply port 241 is provided at the front end of the upper air supply unit 24 , and the front end of the upper air supply unit 24 is close to the front side of the upper chamber 101 .
  • the downward air supply duct 202 is also connected to the first opening 223 on the second cover plate 22.
  • the first opening 223 and the second opening 233 on the third cover plate 23 correspond to and penetrate each other.
  • the second opening 233 is connected to the downward air supply air duct 202.
  • the lower air supply unit 25 includes a first channel plate 251 and a second channel plate 252.
  • the first channel plate 251 and the second channel plate 252 are engaged and connected.
  • the space between the first channel plate 251 and the second channel plate 252 constitutes the lower air supply unit 25. circulation channel.
  • the air sent out from the down air supply duct 202 is transmitted to the lower chamber 102 through the first opening 223, the second opening 233, the down flow channel and the second air supply opening 253.
  • the second air supply port 253 is provided on the side of the second channel plate 252 facing the lower chamber 102 .
  • the second air supply port 253 is provided at the front end of the second channel plate 252, and the front end of the second channel plate 252 is close to the front side of the compartment.
  • the compartment of the liner 10 is divided into an upper compartment 101 and a lower compartment 102 through the partition 26 .
  • the lower air supply unit 25 is, for example, fastened to the side of the partition 26 facing the lower compartment 102 . That is, the lower air supply unit 25 is located in the middle of the compartment of the inner bladder 10 and at the top of the lower compartment 102, but is not limited to this.
  • the third cover 23 is provided with a first return air outlet 232 and a second return air outlet 234.
  • the first return air outlet 232 connects the upper chamber 101 and the first return air duct 203;
  • the air outlet 234 communicates with the lower chamber 102 and the second return air duct 204; wherein, the lower ends of the first return air duct 203 and the second return air duct 204 are respectively connected with the evaporator 40.
  • the first air supply port 241 and the second air supply port 253 are respectively disposed at the top of the upper chamber 101 and the lower chamber 102, which helps to evenly transmit the wind sent by the fan 30 to the entire room.
  • the first return air outlet 232 and the second return air outlet 234 are respectively provided at the bottom of the upper chamber 101 and the lower chamber 102, which helps the air in the chamber pass through the first return air duct 203 and 202 as quickly as possible.
  • the second return air duct 204 is delivered to the evaporator 40 to improve temperature control efficiency.
  • the constant temperature wine cabinet 100 also includes a heating unit.
  • the heating unit includes a first heating wire 51, a second heating wire 52 and a third heating wire 53.
  • the first heating wire 51 The bottom of the partition 26 is provided, that is, it is provided at the bottom of the upper compartment 101; the second heating wire 52 is provided outside the bottom of the inner pot 10, that is, it is provided at the bottom of the lower compartment 102; the third heating wire 53 is provided at On the side of the rear wall of the inner pot 10 away from the air duct assembly, the third heating wire 53 is opposite to the evaporator 40 .
  • the third heating wire 53 is set in a position opposite to the evaporator 40, so as to quickly provide heat to the evaporator 40 during subsequent constant temperature control of the wine cabinet 100. After the fan 30 is started, the evaporator 40 can be quickly The heat is circulated into the chamber to achieve rapid heating.
  • first heating wire 51 and the second heating wire 52 are respectively provided at the bottom of the upper chamber 101 and the lower chamber 102, and the principle of hot air floating up can be used to achieve uniform heating in the chamber.
  • the heating unit provides heat to meet the need for the wine cabinet 100 to maintain a constant temperature when the ambient temperature is low or the wine cabinet 100 needs to store wine at a higher temperature.
  • the wine cabinet 100 generally includes a refrigeration unit, a heating unit, a temperature sensor unit and a control main board.
  • the refrigeration unit includes a compressor, an evaporator 40, a fan 30 and an air duct assembly 20.
  • the evaporator 40 is used for cooling, and the fan is used to provide cooling.
  • the cold air formed by the heat exchange of the evaporator 40 is transported to the compartments in the wine cabinet 100 to achieve cooling;
  • the heating unit is used to transfer the heat generated by the heating device to the compartments to achieve heating;
  • the temperature sensor unit is used to detect respectively.
  • the actual temperature inside the compartment and the actual ambient temperature outside the constant temperature wine cabinet; the control mainboard selects the refrigeration unit for cooling and/or the heating unit for heating according to the actual temperature inside the compartment.
  • the constant temperature control mode of the wine cabinet 100 generally includes: 1) both the upper chamber 101 and the lower chamber 102 need to be cooled; 2) one of the upper chamber 101 and the lower chamber 102 needs to be cooled, and the other needs to be cooled. Heat; 3) Both the upper chamber 101 and the lower chamber 102 need heating.
  • the constant temperature control process includes a single cooling process.
  • the refrigeration process includes:
  • control mainboard obtains the actual temperature of the upper chamber 101 and the actual temperature of the lower chamber 102 respectively. If it is determined that the actual temperature of the upper chamber 101 is higher than the first set temperature, and the actual temperature of the lower chamber 102 is higher At the second set temperature;
  • control motherboard obtains the actual ambient temperature, uses the actual ambient temperature to be substituted into the linear regression equation to obtain the corrected temperature difference corresponding to the actual ambient temperature (ie, the second difference in the constant temperature control method 1000), and corrects the temperature difference based on this Correct the start-up point temperature and shutdown point temperature of the compressor;
  • the compressor starts and stops based on the corrected start-up point temperature and shutdown point temperature to perform cooling;
  • the switch 33 in the main control damper assembly is controlled to open the first valve 31 and the second valve 32 respectively, and the fan 30 is started to pass the cooling capacity provided by the evaporator 40 through the first damper 221, the upper air supply duct 201 and The upper flow channel and the first air supply port 241 in the upper air supply unit 24 are transmitted to the upper chamber 101, and the actual temperature of the upper chamber 101 is the same as the first set temperature; and, the fan 30 is started to evaporate
  • the cooling capacity provided by the heater 40 is transferred to the lower chamber 102 through the second air door 222, the downflow air duct 202, the downflow passage and the second air supply port 253 in the downflow unit 25, and makes the lower chamber 102
  • the actual temperature is the same as the second setting temperature.
  • the reference correction process includes: obtaining the reference temperature difference between the reference gear temperature and the actual temperature of the chamber under the reference ambient temperature (ie, the first difference in the constant temperature control method 1000), and using the reference gear
  • the reference temperature difference between the position temperature and the actual temperature of the compartment performs a baseline correction on the initial start-up point temperature and the initial shutdown point temperature of the compressor to obtain the first corrected start-up point temperature and the first corrected shutdown point temperature.
  • the first corrected start-up point temperature and the first corrected shutdown point temperature are corrected according to the corrected temperature difference, and the second corrected start-up point temperature and the second corrected shutdown point temperature are obtained.
  • the compressor adjusts the second corrected start-up point temperature and the second corrected shutdown point temperature. Shut-off point temperature operation.
  • the first corrected start-up point temperature and the first corrected shutdown point temperature of the compressor are corrected twice.
  • the corrected temperature difference of the second correction is obtained through the linear regression equation, which is mainly used to eliminate the actual ambient temperature. The influence on the actual temperature of the chamber ensures that the actual temperature of the chamber is consistent with the set temperature.
  • the control main board identifies the temperature of the first set gear temperature and the second set gear temperature which is the higher.
  • the lower one and controls the switch in the damper assembly to open the valve corresponding to a compartment with a lower set gear temperature, that is, priority is given to cooling a compartment with a lower set gear temperature.
  • priority is given to cooling a compartment with a lower set gear temperature, which helps the two compartments reach their corresponding set gear temperatures as soon as possible.
  • the switch in the control main board control damper assembly will simultaneously connect the switch at the first air outlet of the upper chamber.
  • the first valve and the second valve at the second air outlet connecting the lower chamber are opened together to provide cooling capacity to the upper chamber and the lower chamber at the same time, which also helps the two chambers to reach their corresponding settings as soon as possible. Gear temperature.
  • the constant temperature control process of the wine cabinet 100 specifically includes: a cooling process and a heating process.
  • the refrigeration process is similar to the control process in which both the upper chamber 101 and the lower chamber 102 need to be refrigerated. That is, the startup point temperature and shutdown point temperature of the compressor that have been baseline corrected are calculated based on the temperature difference corresponding to the actual ambient temperature. After the second correction, the compressor operates according to the start-up point temperature and shutdown point temperature of the second correction.
  • the fan 30 is turned on, the switch 33 controls one of the first valve 31 and the second valve 32 to open, and the cold air enters the upper chamber 101 through the upper air supply duct 201, the upper air supply unit 24 and the first air supply port 241.
  • the heating process includes:
  • one of the first heating wire 51 at the bottom of the upper chamber 101 and the second heating wire 52 at the bottom of the lower chamber 102 is controlled to be activated toward the corresponding upper chamber 101 Heat is supplied or heat is supplied towards the corresponding lower chamber 102 .
  • the switch 33 controls both the first valve 31 and the second valve 32 to be in a closed state.
  • the third heating wire 53 corresponding to the evaporator 40 is controlled to start, and the third heating wire 53 provides heat toward the evaporator 40.
  • the switch 33 controls the first valve 31 and the second valve 31.
  • the other of the valves 32 is opened, the fan 30 is started, and the hot air enters the upper chamber 101 through the upper air supply duct 201, the upper air supply unit 24 and the first air supply outlet 241, so that the first setting of the upper chamber 101
  • the fixed gear temperature is the same as the actual temperature; alternatively, the hot air enters the lower chamber 102 through the lower air supply duct 202, the lower air supply unit 25 and the second air supply outlet 253, so that the second setting gear of the lower chamber 102
  • the bit temperature and actual temperature are the same.
  • the third heating wire 53 corresponding to the evaporator 40 is arranged, so that after the evaporator 40 is cooled, the hot air is transferred to the room that needs to be heated, thereby realizing the actual heating in the room to be heated.
  • the temperature is the same as the set temperature as soon as possible, which improves the efficiency of thermostatic heating control.
  • the heating rate of the third heating wire 53 may be greater than the heating rates of the first heating wire 51 and the second heating wire 52 .
  • the constant temperature control process includes a single heating process.
  • the heating process includes:
  • the switch 33 controls the first valve 31 and the second valve 32 to open respectively;
  • the fan 30 is started, and the hot air enters the upper chamber 101 through the upper air supply duct 201, the upper air supply unit 24 and the first air supply port 241, so that the first set temperature of the upper chamber 101 is the same as the actual temperature; And, the hot air enters the lower chamber 102 through the lower air supply duct 202, the lower air supply unit 25 and the second air supply outlet 253, so that the second set temperature of the lower chamber 102 is the same as the actual temperature.
  • the prerequisite for the above-mentioned first valve 31 and the second valve 32 to be opened at the same time is that the first set gear temperature and the second set gear temperature are similar.
  • the control main board identifies the temperature of the first set gear temperature and the second set gear temperature which is the higher.
  • heating is given priority to a compartment with a higher set temperature, which helps the two compartments to reach their respective corresponding set temperatures as soon as possible.
  • the present invention provides a constant temperature control method, electronic equipment and a constant temperature wine cabinet.
  • the constant temperature control method includes benchmarking the start-up point temperature and shutdown point temperature of the compressor under the reference ambient temperature and the reference gear temperature of the compartment. Correction, on this basis, under multiple set ambient temperatures and the reference gear temperature of the compartment, the temperature difference value of the influence of different ambient temperatures on the set gear temperature of the compartment is obtained. Based on this temperature difference, the correction Under the actual ambient temperature, the start-up point temperature and shut-down point temperature of the compressor ensure that the set gear temperature and the actual temperature of the chamber are always consistent.
  • the first room and/or the second room of the single-system dual-temperature zone thermostatic wine cabinet can be realized Selective cooling and/or heating.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

本发明提供一种恒温酒柜,包括:制冷单元包括压缩机、蒸发器、风机和风道组件,利用蒸发器制冷,并以所述风机向酒柜箱体内的间室中输送经所述蒸发器热交换形成的冷风实现制冷;利用加热单元向所述间室内传递由加热单元产生的热量实现制热;温度传感器单元用于分别检测所述间室内的实际温度和恒温酒柜外部的实际环境温度;以及控制主板根据间室内的实际温度选择制冷单元制冷和/或选择加热单元制热;其中,控制主板选择制冷单元制冷时,控制主板获取实际环境温度,根据实际环境温度获取对应的修正温度差值,根据修正温度差值修正压缩机的开机点温度和关机点温度;压缩机按照经修正温度差值修正后的开机点温度和关机点温度运行。

Description

恒温酒柜 技术领域
本发明涉及冷藏装置技术领域,特别涉及一种恒温酒柜。
背景技术
酒柜作为一种储存和展示酒或其他饮品的冷藏装置,广泛应用于人们的生活中,如应用在家庭、机场、酒店等场所。随着人们生活品质的提高,对酒柜的性能需求也越来越高。为了便于酒的长期储存,需要使酒柜内保持一定的温度。
目前市场上的酒柜设置为单制冷功能,对应酒柜内的多个间室配置多个蒸发器和风机,即在检测温度高于设定的上限温度时,压缩机启动制冷,而在检测温度低于设定的下限温度时,压缩机停机。这样的单制冷方式带来的问题是:对于较低的环境温度,酒柜中温度由于过低,比如低于5℃,使其并不能满足酒品储藏最低温度的要求;另一方面,单制冷的方式可能使酒品的储藏温度存在较大的波动,不利于酒品的优质储藏。
此外,现有的酒柜恒温控制方法通常包括将环温划分成几个区间,通过控制每个环温区间内的设置档位温度的压缩机的开机点温度和关机点温度不同,从而实现恒温。上述方法需要在划分的每个环温区间测试多个设置档位的温度以调整每个设置档位在每个环温区间内的压缩机的开机点温度和关机点温度;然后,对调整后的开机点温度和关机点温度进一步验证才能确认最终的开机点温度和关机点温度。因此,现有的恒温控制方法需要耗费大量的时间及实验室资源,影响产品开发进度及上市时间。
发明内容
本发明的目的在于提供一种恒温酒柜。
为解决上述问题,本发明技术方案提供了一种恒温酒柜,所述恒温酒柜包括:制冷单元,所述制冷单元包括压缩机、蒸发器、风机和风道组件,利用所述蒸发器制冷,并以所述风机向所述酒柜箱体内的间室中输送经所述蒸发器热交换形成的冷风实现制冷;加热单元,利用所述加热单元向所述间室内传递由所述加热单元产生的热量实现制热;温度传感器单元,所述温度传感器单元用于分别检测所述间室内的实际温度和所述恒温酒柜外部的实际环境温度;以及控制主板,所述控制主板根据所述间室内的实际温度选择所述制冷单元制冷和/或选择所述加热单元制热;其中,所述控制主板选择所述制冷单元制冷时,所述控制主板获取所述实际环境温度,根据所述实际环境温度获取对应的修正温度差值,根据所述修正温度差值修正所述压缩机的开机点温度和关机点温度;所述压缩机按照经所述修正温度差值修正后的所述开机点温度和所述关机点温度运行。
作为可选的技术方案,根据所述修正温度差值修正所述压缩机的开机点温度和关机点温度还包括:
获取基准环境温度下,基准档位温度和所述间室的实际温度之间的温度差值,并以所述基准温度差值对压缩机的初始开机点温度和初始关机点温度进行基准修正,获得第一修正开机点温度和第一修正关机点温度;以及
根据所述修正温度差值修正所述第一修正开机点温度和所述第一修正关机点温度,获得第二修正开机点温度和第二修正开机点温度;
其中,所述压缩机根据所述第二修正开机点温度和所示第二修正开机点温度运行。
作为可选的技术方案,所述加热单元包括第一加热丝、第二加热丝 和第三加热丝;所述间室内设置隔板,所述隔板将所述间室划分为上间室和下间室;其中,所述第一加热丝设置于所述隔板朝向下间室的一侧表面;所述第二加热丝设置于所述箱体内的内胆的底部,位于所述下间室的底部;所述第三加热丝设置于所述箱体内的内胆的外部,且所述第三加热丝与所述蒸发器相对。
作为可选的技术方案,所述风道组件包括在前后方向上依序连接的第一盖板、第二盖板和第三盖板,所述风机装配于所述第一盖板和所述第二盖板之间的空间中。
作为可选的技术方案,所述风道组件还包括风门组件,所述风门组件设置于所述第一盖板和所述第二盖板之间的空间中,所述风机和所述风门组件相邻设置;所述风门组件包括第一阀门、第二阀门和开关,所述开关电连接所述第一阀门和所述第二阀门;所述第二盖板设有第一出风口和第二出风口,所述第一阀门设置于所述第一出风口,所述第二阀门设置于所述出风口;其中,根据所述间室内的实际温度,所述开关控制所述第一阀门和所述第二阀门至少其中之一打开或者关闭。
作为可选的技术方案,所述风道组件还包括上送风风道、上送风单元、下送风风道和下送风单元;其中,所述第一出风口连通所述上送风风道,所述上送风风道连通所述上送风单元,所述上送风单元连通所述上间室;所述第二出风口连通所述下送风风道,所述下送风风道连通所述下送风单元,所述下送风单元连通所述下间室。
作为可选的技术方案,所述上送风单元设置于所述内胆的顶部,位于所述上间室的顶部;所述下送风通道设置于所述隔板朝向所述下间室的一侧,且位于所述下间室的顶部。
作为可选的技术方案,所述上送风单元包括第一送风口,所述第一送风口靠近所述上送风单元的前端;所述下送风单元包括卡合连接的第一通道板、第二通道板和第二送风口,所述第二送风口设置于所述第二通道板朝向所述下间室的一侧,且靠近所述第二通道板的前端。
作为可选的技术方案,所述风道组件还包括第一回风风道和第二回风风道,所述第一回风风道和所述第二回风风道设置于所述第二盖板和所述第三盖板之间;所述第三盖板设有第一回风口和第二回风口,所述第一回风口连通所述上间室和所述第一回风风道;所述第二回风口连通所诉下间室和所述第二回风风道;其中,所述第一回风风道和所述第二回风风道的下端分别与所述蒸发器连通。
作为可选的技术方案,还包括:
所述控制主板选择所述制冷单元朝向所述上间室和所述下间室的其中之一制冷;以及
所述控制主板主板选择所述加热单元朝向所述上间室和所述下间室的其中之另一制热;
其中,控制所述加热单元朝向所述上间室和所述下间室的其中之另一制热时,所述开关关闭所述第一阀门和所述第二阀门,所述第三加热丝加热,使得所述蒸发器的实际温度上升至预设温度时,所述开关控制与所述上间室和所述下间室的其中之另一相互连通的阀门打开。
与现有技术相比,本发明提供一种恒温酒柜,通过在基准环境温度和间室的基准档位温度下,对压缩机的开机点温度和关机点温度进行基准修正,在此基础上,在多个设定环境温度和间室的基准档位温度下,获得不同环境温度对间室的设定档位温度影响的温度差值,根据此温度差值,修正实际环境温度下,压缩机的开机点温度和关机点温度,进而确保设定档位温度和间室的实际温度始终维持一致。
另外,藉由风道组件中的风门组件中的第一阀门和第二阀门的选择性开启和关闭,实现对单系统双温区的恒温酒柜的第一间室和/或第二间室选择性制冷和/或制热。
以下结合附图和具体实施例对本发明进行详细描述,但不作为对本发明的限定。
附图说明
图1为本发明一实施例中的恒温控制方法的流程图。
图2为本发明一实施例中的恒温酒柜的部分结构示意图。
图3为图2中恒温酒柜另一视角的结构示意图。
图4为图2中恒温酒柜的局部剖面示意图。
图5为图2中很稳酒柜的分解示意图。
图6为图5中风道组件的分解示意图。
图7为图5中风道组件内阀门打开的示意图。
图8为图7中虚线处的放大示意图。
图9为图2中恒温酒柜的另一局部剖面示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,下面结合实施例及附图,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
如图1所示,本发明一实施例中提供一种恒温控制方法1000,其适用于制冷设备,通过修正不同环境温度对制冷设备的压缩机的开机点温度和关机点温度的影响,消除制冷设备的间室内的实际温度随环境温度 的波动,实现间室内的实际温度和设定档位温度相同。
恒温控制方法1000包括:
于基准环境温度下,获取间室的第一实际温度和基准档位温度之间的第一差值;
根据第一差值,修改制冷设备的压缩机的开机点温度和关机点温度,获得第一修正开机点温度和第一修正关机点温度;
获取实际环境温度下,基准档位温度和间室的第二实际温度之间的第二差值;
根据第二差值,修改第一修正开机点温度和第一修正关机点温度,获得第二修正开机点温度和第二修正关机点温度;以及
控制制冷设备的压缩机根据第二修正开机点温度开机,以及,控制制冷设备的压缩机根据第二修正关机点温度停机。
在一较佳的实施方式中,获取间室的第一实际温度和基准档位温度之间的第一差值的步骤包括:
于基准环境温度下,设置间室的基准档位温度;
压缩机根据第一修正开机点温度和第一修正关机点温度进行制冷,并测量间室的第一实际温度;
计算第一实际温度和基准档位温度之间的第一差值。
本实施例中,以基准环境温度和基准档位温度为基础,确定基准环境温度对第一实际温度的影响值,即第一差值,并以第一差值对压缩机的第一开机点温度和第一关机点温度进行修正,得以消除基准环境温度对第一实际温度的影响,确保第一实际温度和基准档位温度之间能够无限接近。
其中,考虑到制冷设备例如是恒温酒柜,因此,基准环境温度例如是32℃,基准档位温度例如是12℃。
此外,依据制冷设备的种类不同,可适当的调整基准环境温度和基准档位温度。
在一较佳的实施方式中,获取实际环境温度下,基准档位温度和间室的实际温度之间的第二差值的步骤包括:
于多个不同的设定环境温度下,设置间室的基准档位温度;
压缩机根据第一修正开机点温度和第一修正关机点温度进行制冷,分别测量间室的实际温度,分别测量多个不同的设定环境温度对应的间室的实际温度,并获得多个第三实际温度;
计算每一第三实际温度和所述基准档位温度之间的差值,获得多个第三差值;
依据多个第三差值和多个不同的设定环境温度建立线性回归方程;
根据线性回归方程获得与实际环境温度对应的第二差值。
本实施例中,在完成基准环境温度和基准档位温度下,对压缩机的第一开机点温度和第一关机点温度的参数修正后;进一步测试不同的设定环境温度和基准档位温度下,不同的设定环境温度对第三实际温度的影响值,即,第三差值,根据多个不同的设定环境温度和多个第三差值,建立线性回归方程,以获得任意实际环境温度对间室的实际温度的影响值,即,第二差值。最后,通过第二差值修正压缩机的第一修正开机点温度和第一修正关机点温度,形成第二修正开机点温度和第二修正关机点温度。
进一步,设置制冷设备的间室的设定档位温度,控制压缩机按照第二修正开机点温度和第二修正关机点温度进行制冷,此时,间室的第二实际温度和设定档位温度始终相等。
需要说明的是,设置档位温度是在基准档位温度上进行变化的温度,设置档位温度依据实际的储物需求自行设定,通常设置档位温度大于或者小于基准档位温度。
另外,通过测量不同的设定环境温度对基准档位温度对应的实际温度的影响,并建立线性回归方程,实质上获得了不同的环境温度对间室的实际温度的影响值(第二差值),以此为参数修正压缩机的开机点和关机点,进而使得环境温度对实际温度的影响被修正,确保了间室的实际温度和设定档位温度始终一致。
在一较佳的实施方式中,考虑到制冷设备例如是恒温酒柜,因此,多个不同的设定环境温度包括43℃、21℃和12℃。
此外,依据制冷设备的种类不同,可适当的调整基准环境温度和基准档位温度。
本发明还提供一种电子设备,包括存储器和处理器,所述存储器储存有可在所述处理器上运行的计算机程序,所述处理器执行计算机程序时实现恒温控制方法1000。
如图2至图9所示,本发明还提供一种恒温酒柜100,恒温酒柜100包括箱体、制冷单元和控制主板,箱体包括间室,间室内设置有温度传感器,温度传感器用于检测间室的实际温度;制冷单元包括压缩机,蒸发器40、风机和风道组件20;控制单元电连接压缩机和温度传感器;其中,控制主板用于执行恒温控制方法1000。
本实施例中,恒温酒柜100为双温区风冷酒柜;所述双温区风冷酒柜为立式酒柜,包括箱体(未图示)、压缩机(未图示)和蒸发器40,箱体内设有内胆10,内胆10围成用于储酒的冷藏空间。
恒温酒柜100还包括风道组件20设置于内胆10围成用于储酒的冷藏空间内。
风道组件20包括在前后方向上依序卡合连接的第一盖板21、第二盖板22和第三盖板23,风机30和风门组件装配于第一盖板21和第二盖板22之间的空间中,其中,风机30和风门组件分别固定于第二盖板22朝向第一盖板21的一侧表面上。另外,第一盖板21靠近内胆10的后壁设置。其中,蒸发器40设置于第一盖板21朝向内胆10的后壁一侧 的表面上。
风机30和风门相邻设置,本实例中,沿左右方向风机30和风门相邻布置。
另外,第二盖板22和第三盖板23之间的空间还包括上送风风道201、下送风风道202、第一回风风道203和第二回风风道204。
风门组件包括第一阀门31、第二阀门32以及开关33,开关33电连接第一阀门31和第二阀门32。
第二盖板22上设有第一出风口221和第二出风口222,第一阀门31设置于第一出风口221处,第二阀门32设置于第二出风口222处;其中,第一出风口连通上送风风道201,第二出风口222连通下送风风道202。
上送风风道201还连通第三盖板23顶端的开口231,开口231连通上送风单元24的第一送风口241,其中,上送风单元24和内胆10的顶部侧壁之间的空间构成上流通通道,从上送风风道201中送出的风经开口231、上流通通道以及第一送风口241传递至上间室101中。
在一较佳的实施方式中,第一送风口241设置于上送风单元24的前端,上送风单元24的前端为靠近上间室101的前侧。
下送风风道202还连通第二盖板22上第一开口223,第一开口223和第三盖板23上的第二开口233相对应且相互贯通,其中,第二开口233连通下送风单元25的第二送风口253。
下送风单元25包括第一通道板251和第二通道板252,第一通道板251和第二通道板252卡合连接,第一通道板251和第二通道板252之间的空间构成下流通通道。从下送风风道202中送出的风经第一开口223、第二开口233、下流通通道以及第二送风口253传递至下间室102中。
其中,第二送风口253设置于第二通道板252朝向下间室102的一侧。较佳的,第二送风口253设置第二通道板252的前端,第二通道板 252的前端靠近间室的前侧。
本实施例中,内胆10的间室通过隔板26被划分为上间室101和下间室102,下送风单元25例如卡合固定于隔板26朝向下间室102的一侧。即,下送风单元25位于内胆10的间室的中部,且位于下间室102的顶部,但不以此为限。
如图6至图9所示,第三盖板23上设置第一回风口232和第二回风口234,第一回风口232连通上间室101和第一回风风道203;第二回风口234连通下间室102和第二回风风道204;其中,第一回风风道203和第二回风风道204的的下端分别与蒸发器40连通。
本实施例中,第一送风口241、第二送风口253分别设置于上间室101和下间室102的顶部靠前的位置,有助于将风机30送出的风均匀的传递至整个间室中;第一回风口232和第二回风口234分别设置于上间室101和下间室102的底部靠下的位置,有助于将间室内的空气尽快通过第一回风道203和第二回风道204传递至蒸发器40,提高温度控制效率。
需要说明的是,酒柜100中仅设置单一蒸发器40、单一风机30,藉由风门组件,将风机30送出的空气朝向上送风风道201和/或下送风风道202中分配,实现单系统酒柜的双温区的恒温控制。
如图2、图3、图5和图6所示,恒温酒柜100还包括加热单元,加热单元包括第一加热丝51,第二加热丝52以及第三加热丝53,第一加热丝51设置隔板26的底部,即,设置于上间室101的底部;第二加热丝52设内胆10的底部的外侧,即,设置于下间室102的底部;第三加热丝53设置于内胆10的后壁的远离风道组件的一侧,其中,第三加热丝53和蒸发器40相对。
本实施例中,将第三加热丝53设置成与蒸发器40相对的位置,便于后续酒柜100的恒温控制时,迅速对蒸发器40提供热量,风机30启动后,可迅速将蒸发器40处的热量循环至间室内,以实现快速升温。
另外,第一加热丝51和第二加热丝52分别设于上间室101和下间室102的底部,利用热空气上浮的原理,可实现间室内的均匀制热。
通过加热单元提供热量,满足环境温度低或者酒柜100需要在较高温度下储存酒品的情况,酒柜100维持恒温的需求。
由上述可知,酒柜100大致包括制冷单元、加热单元、温度传感器单元以及控制主板,,制冷单元包括压缩机、蒸发器40、风机30和风道组件20,利用蒸发器40制冷,并以风机向酒柜100的箱体内的间室中输送经蒸发器40热交换形成的冷风实现制冷;利用加热单元向所述间室内传递由加热装置产生的热量实现制热;温度传感器单元用于分别检测所述间室内的实际温度和所述恒温酒柜外部的实际环境温度;控制主板根据所述间室内的实际温度选择所述制冷单元制冷和/或选择所述加热单元制热。
而,酒柜100的恒温控制模式大致包括,1)上间室101和下间室102都需要制冷;2)上间室101和下间室102其中之一需要制冷,其中之另一需要制热;3)上间室101和下间室102都需要制热。
当上间室101和下间室102都需要制冷,恒温控制过程包括,单一的制冷过程。
制冷过程包括:
首先,控制主板分别获取上间室101的实际温度和下间室102的实际温度,若判断上间室101的实际温度高于第一设定档位温度,且下间室102的实际温度高于第二设定档位温度;
其次,控制主板获取实际环境温度,利用实际环境温度代入线性回归方程获得与实际环境温度相对应的修正温度差值(即,恒温控制方法1000中的第二差值),根据此修正温度差值修正压缩机的开机点温度和关机点温度;
接着,压缩机根据修正后的开机点温度和关机点温度启停,进行制 冷;
然后,控制主控控制风门组件中的开关33控制第一阀门31和第二阀门32分别打开,风机30启动,将蒸发器40提供的冷量通过第一风门221、上送风风道201以及上送风单元24内的上流通通道和第一送风口241传递至上间室101内,且使得上间室101的实际温度和第一设定档位温度相同;以及,风机30启动,将蒸发器40提供的冷量通过第二风门222、下送风风道202以及下送风单元25内的下流通通道和第二送风口253传递至下间室102内,且使得下间室102的实际温度和第二设定档位温度相同。
需要说明的是,在根据实际环境温度代入线性回归方程获得对应的修正温度差值对压缩机的开机点温度和关机点温度修正之前,压缩机的开机点温度和关机点温度已经经过基准修正过程,其中,基准修正过程包括:获取基准环境温度下,基准档位温度和间室的实际温度之间的基准温度差值(即,恒温控制方法1000中的第一差值),并以基准档位温度和间室的实际温度之间的基准温度差值对压缩机的初始开机点温度和初始关机点温度进行基准修正,获得第一修正开机点温度和第一修正关机点温度。
因此,根据修正温度差值修正第一修正开机点温度和第一修正关机点温度,获得第二修正开机点温度和第二修正关机点温度,压缩机按照第二修正开机点温度和第二修正关机点温度运行。
换言之,经过基准修正之后,压缩机的第一修正开机点温度和第一修正关机点温度再经过二次修正,二次修正的修正温度差值通过线性回归方程获取,主要用于消除实际环境温度对间室的实际温度的影响,确保间室的实际温度和设定档位温度相一致。
另外,当判断第一设定档位温度和第二设定档位温度之间的温差大于预设值时,控制主板识别第一设定档位温度和第二设定档位温度中温度较低的一个,并控制风门组件中的开关打开与设定档位温度较低的一 个间室对应的阀门,即,优先对设定档位温度较低的一个间室进行制冷。其中,优先对设定档位温度较低的一个间室进行制冷,有助于使得两个间室尽快到达各自对应的设定档位温度。
进一步,当判断第一设定档位温度和第二设定档位温度之间的温差小于预设值时,控制主板控制风门组件中的开关同时将连通上间室的第一出风口处的第一阀门和连通下间室的第二出风口处的第二阀门一并打开,同时向上间室和下间室提供冷量,同样也有助于使得两个间室尽快到达各自对应的设定档位温度。
当上间室101和下间室102的其中之一需要制冷,其中之另一需要制热时,酒柜100的恒温控制过程具体包括:制冷过程和制热过程。
制冷过程和上述上间室101和下间室102都需要制冷的控制过程相似,即,对进行过基准修正的压缩机的开机点温度和关机点温度根据实际环境温度对应的温度差值进行二次修正,压缩机按照二次修正的开机点温度和关机点温度运行。打开风机30,开关33控制第一阀门31和第二阀门32的其中之一打开,冷空气通过上送风风道201、上送风单元24和第一送风口241进入上间室101中,使得上间室101的第一设定档位温度和实际温度相同;或者,冷空气通过下送风风道202、下送风单元25和第二送风口253进入下间室102中,使得下间室102的第二设定档位温度和实际温度相同。
制热过程包括:
于压缩机和蒸发器40制冷过程中,控制上间室101的底部的第一加热丝51和下间室102的底部的第二加热丝52的其中之一启动,朝向对应的上间室101供热或者朝向对应的下间室102供热。
开关33控制第一阀门31和第二阀门32都处于关闭状态。
控制与蒸发器40对应的第三加热丝53启动,第三加热丝53朝向蒸发器40提供热量,至蒸发器40的实际温度上升至预设温度时,开关33控制第一阀门31和第二阀门32的其中之另一打开,风机30启动,热空 气经上送风风道201、上送风单元24和第一送风口241进入上间室101中,使得上间室101的第一设定档位温度和实际温度相同;或者,热空气通过下送风风道202、下送风单元25和第二送风口253进入下间室102中,使得下间室102的第二设定档位温度和实际温度相同。
本实施例中,通过布置与蒸发器40对应的第三加热丝53,以使对蒸发器40制冷后,再将热空气传递到需要制热的间室内,实现待制热的间室内的实际温度尽快与设定温度相同,提高了恒温控制的制热控制的效率。
另外,第三加热丝53的加热速率可大于第一加热丝51、第二加热丝52的加热速率。
当上间室101和下间室102都需要制热,恒温控制过程包括,单一的制热过程。
制热过程包括:
控制第一加热丝51、第二加热丝52以及第三加热丝53同时启动;
开关33控制第一阀门31和第二阀门32分别打开;
风机30启动,热空气经上送风风道201、上送风单元24和第一送风口241进入上间室101中,使得上间室101的第一设定档位温度和实际温度相同;以及,热空气通过下送风风道202、下送风单元25和第二送风口253进入下间室102中,使得下间室102的第二设定档位温度和实际温度相同。
上述第一阀门31和第二阀门32同时打开的前提条件为,第一设定档位温度和第二设定档位温度相近。
另外,当判断第一设定档位温度和第二设定档位温度之间的温差大于预设值时,控制主板识别第一设定档位温度和第二设定档位温度中温度较高的一个,并控制风门组件中的开关打开与设定档位温度较高的一个间室对应的阀门,即,优先对设定档位温度较高的一个间室进行制热。 其中,优先对设定档位温度较高的一个间室进行制热,有助于使得两个间室尽快到达各自对应的设定档位温度。
综上,本发明提供一种恒温控制方法、电子设备及恒温酒柜,恒温控制方法包括在基准环境温度和间室的基准档位温度下,对压缩机的开机点温度和关机点温度进行基准修正,在此基础上,在多个设定环境温度和间室的基准档位温度下,获得不同环境温度对间室的设定档位温度影响的温度差值,根据此温度差值,修正实际环境温度下,压缩机的开机点温度和关机点温度,进而确保设定档位温度和间室的实际温度始终维持一致。
另外,藉由风道组件中的风门组件中的第一阀门和第二阀门的选择性开启和关闭,实现对单系统双温区的恒温酒柜的第一间室和/或第二间室选择性制冷和/或制热。
本发明已由上述相关实施例加以描述,然而上述实施例仅为实施本发明的范例。此外,上面所描述的本发明不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。必需指出的是,本发明还可有其他多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。

Claims (10)

  1. 一种恒温酒柜,其特征在于,所述恒温酒柜包括:
    制冷单元,所述制冷单元包括压缩机、蒸发器、风机和风道组件,利用所述蒸发器制冷,并以所述风机向所述酒柜箱体内的间室中输送经所述蒸发器热交换形成的冷风实现制冷;
    加热单元,利用所述加热单元向所述间室内传递由所述加热单元产生的热量实现制热;
    温度传感器单元,所述温度传感器单元用于分别检测所述间室内的实际温度和所述恒温酒柜外部的实际环境温度;以及
    控制主板,所述控制主板根据所述间室内的实际温度选择所述制冷单元制冷和/或选择所述加热单元制热;
    其中,所述控制主板选择所述制冷单元制冷时,所述控制主板获取所述实际环境温度,根据所述实际环境温度获取对应的修正温度差值,根据所述修正温度差值修正所述压缩机的开机点温度和关机点温度;所述压缩机按照经所述修正温度差值修正后的所述开机点温度和所述关机点温度运行。
  2. 根据权利要求1所述的恒温酒柜,其特征在于,根据所述修正温度差值修正所述压缩机的开机点温度和关机点温度还包括:
    获取基准环境温度下,基准档位温度和所述间室的实际温度之间的温度差值,并以所述基准温度差值对压缩机的初始开机点温度和初始关机点温度进行基准修正,获得第一修正开机点温度和第一修正关机点温度;以及
    根据所述修正温度差值修正所述第一修正开机点温度和所述第一修正关机点温度,获得第二修正开机点温度和第二修正开机点温度;
    其中,所述压缩机根据所述第二修正开机点温度和所示第二修正开机点温度运行。
  3. 根据权利要求1所述的恒温酒柜,其特征在于,所述加热单元包括第一加热丝、第二加热丝和第三加热丝;所述间室内设置隔板,所述隔板将所述间室划分为上间室和下间室;其中,所述第一加热丝设置于所述隔板朝向下间室的一侧表面;所述第二加热丝设置于所述箱体内的内胆的底部,位于所述下间室的底部;所述第三加热丝设置于所述箱体内的内胆的外部,且所述第三加热丝与所述蒸发器相对。
  4. 根据权利要求3所述的恒温酒柜,其特征在于,所述风道组件包括在前后方向上依序连接的第一盖板、第二盖板和第三盖板,所述风机装配于所述第一盖板和所述第二盖板之间的空间中。
  5. 根据权利要求4所述的恒温酒柜,其特征在于,所述风道组件还包括风门组件,所述风门组件设置于所述第一盖板和所述第二盖板之间的空间中,所述风机和所述风门组件相邻设置;所述风门组件包括第一阀门、第二阀门和开关,所述开关电连接所述第一阀门和所述第二阀门;所述第二盖板设有第一出风口和第二出风口,所述第一阀门设置于所述第一出风口,所述第二阀门设置于所述出风口;其中,根据所述间室内的实际温度,所述开关控制所述第一阀门和所述第二阀门至少其中之一打开或者关闭。
  6. 根据权利要求5所述的恒温酒柜,其特征在于,所述风道组件还包括上送风风道、上送风单元、下送风风道和下送风单元;其中,所述第一出风口连通所述上送风风道,所述上送风风道连通所述上送风单元,所述上送风单元连通所述上间室;所述第二出风口连通所述下送风风道,所述下送风风道连通所述下送风单元,所述下送风单元连通所述下间室。
  7. 根据权利要求6所述的恒温酒柜,其特征在于,所述上送风单元设置于所述内胆的顶部,位于所述上间室的顶部;所述下送风通道设置于所述隔板朝向所述下间室的一侧,且位于所述下间室的顶部。
  8. 根据权利要求7所述的恒温酒柜,其特征在于,所述上送风单元包括第一送风口,所述第一送风口靠近所述上送风单元的前端;所述下 送风单元包括卡合连接的第一通道板、第二通道板和第二送风口,所述第二送风口设置于所述第二通道板朝向所述下间室的一侧,且靠近所述第二通道板的前端。
  9. 根据权利要求4所述的恒温酒柜,其特征在于,所述风道组件还包括第一回风风道和第二回风风道,所述第一回风风道和所述第二回风风道设置于所述第二盖板和所述第三盖板之间;所述第三盖板设有第一回风口和第二回风口,所述第一回风口连通所述上间室和所述第一回风风道;所述第二回风口连通所诉下间室和所述第二回风风道;其中,所述第一回风风道和所述第二回风风道的下端分别与所述蒸发器连通。
  10. 根据权利要求5所述的恒温酒柜,其特征在于,还包括:
    所述控制主板选择所述制冷单元朝向所述上间室和所述下间室的其中之一制冷;以及
    所述控制主板主板选择所述加热单元朝向所述上间室和所述下间室的其中之另一制热;
    其中,控制所述加热单元朝向所述上间室和所述下间室的其中之另一制热时,所述开关关闭所述第一阀门和所述第二阀门,所述第三加热丝加热,使得所述蒸发器的实际温度上升至预设温度时,所述开关控制与所述上间室和所述下间室的其中之另一相互连通的阀门打开。
PCT/CN2022/078539 2021-06-28 2022-03-01 恒温酒柜恒温酒柜 WO2024026579A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110718045.2A CN113503687A (zh) 2021-06-28 2021-06-28 恒温酒柜
CN202110718045.2 2021-06-28

Publications (1)

Publication Number Publication Date
WO2024026579A1 true WO2024026579A1 (zh) 2024-02-08

Family

ID=78011242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/078539 WO2024026579A1 (zh) 2021-06-28 2022-03-01 恒温酒柜恒温酒柜

Country Status (2)

Country Link
CN (1) CN113503687A (zh)
WO (1) WO2024026579A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113503687A (zh) * 2021-06-28 2021-10-15 青岛海尔特种电冰柜有限公司 恒温酒柜
CN113503683A (zh) * 2021-06-28 2021-10-15 青岛海尔特种电冰柜有限公司 恒温控制方法、电子设备及恒温酒柜
CN114831441A (zh) * 2022-04-21 2022-08-02 长虹美菱股份有限公司 一种温度控制方法及红酒柜

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3028673A1 (de) * 1980-07-29 1982-03-04 Eisfink Carl Fink GmbH & Co, 7144 Asberg Temperierschrank fuer getraenke
CN103245164A (zh) * 2013-04-27 2013-08-14 合肥美菱股份有限公司 一种冷藏间室的温度控制方法及控制装置
CN103486822A (zh) * 2013-09-30 2014-01-01 合肥华凌股份有限公司 一种恒温酒柜
CN103697657A (zh) * 2013-12-12 2014-04-02 合肥华凌股份有限公司 恒温酒柜及其温度控制方法
CN105605875A (zh) * 2016-02-01 2016-05-25 合肥美的电冰箱有限公司 一种电子冷冻冰箱的控制方法和系统
CN109373702A (zh) * 2018-10-12 2019-02-22 合肥华凌股份有限公司 酒柜的恒温控制方法及装置
CN110296560A (zh) * 2019-06-12 2019-10-01 合肥美的电冰箱有限公司 一种冰箱压缩机开停机温度点控制方法、装置及冰箱
CN113503683A (zh) * 2021-06-28 2021-10-15 青岛海尔特种电冰柜有限公司 恒温控制方法、电子设备及恒温酒柜
CN113503687A (zh) * 2021-06-28 2021-10-15 青岛海尔特种电冰柜有限公司 恒温酒柜

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3028673A1 (de) * 1980-07-29 1982-03-04 Eisfink Carl Fink GmbH & Co, 7144 Asberg Temperierschrank fuer getraenke
CN103245164A (zh) * 2013-04-27 2013-08-14 合肥美菱股份有限公司 一种冷藏间室的温度控制方法及控制装置
CN103486822A (zh) * 2013-09-30 2014-01-01 合肥华凌股份有限公司 一种恒温酒柜
CN103697657A (zh) * 2013-12-12 2014-04-02 合肥华凌股份有限公司 恒温酒柜及其温度控制方法
CN105605875A (zh) * 2016-02-01 2016-05-25 合肥美的电冰箱有限公司 一种电子冷冻冰箱的控制方法和系统
CN109373702A (zh) * 2018-10-12 2019-02-22 合肥华凌股份有限公司 酒柜的恒温控制方法及装置
CN110296560A (zh) * 2019-06-12 2019-10-01 合肥美的电冰箱有限公司 一种冰箱压缩机开停机温度点控制方法、装置及冰箱
CN113503683A (zh) * 2021-06-28 2021-10-15 青岛海尔特种电冰柜有限公司 恒温控制方法、电子设备及恒温酒柜
CN113503687A (zh) * 2021-06-28 2021-10-15 青岛海尔特种电冰柜有限公司 恒温酒柜

Also Published As

Publication number Publication date
CN113503687A (zh) 2021-10-15

Similar Documents

Publication Publication Date Title
WO2024026579A1 (zh) 恒温酒柜恒温酒柜
WO2023273371A1 (zh) 恒温控制方法、电子设备及恒温酒柜
JP5341009B2 (ja) 冷却装置およびこれを備えた環境試験装置
JP2013204891A (ja) 冷蔵庫
KR20190013356A (ko) 차량, 차량용 냉장고, 및 차량용 냉장고의 제어방법
JPS6246126Y2 (zh)
CN110986476B (zh) 温度控制方法及装置、制冷设备以及计算机可读存储介质
CN109737672B (zh) 一种冰箱、冰箱的控制方法及计算机可读存储介质
JP2006275326A (ja) 恒温庫
KR20060127664A (ko) 냉장고 및 냉장고의 발효 및 보관방법
CN113915854A (zh) 冰箱及冰箱恒温控制方法
US2677241A (en) Refrigeration equipment for beer cooling and ice-cube making
JP2021148352A (ja) 冷蔵庫
JP2013113531A (ja) 冷却貯蔵庫
CN207126550U (zh) 摇床
KR20100034080A (ko) 냉장고 및 그 제어방법
JP2001301624A (ja) 配膳車の温度調整風供給装置
CN115371323B (zh) 一种制冷设备及其风道组件
CN109405407A (zh) 具有独立间室的冰箱发酵方法及冰箱
CN209819927U (zh) 一种低温送风试验装置
JP2022139759A (ja) 冷蔵庫
KR102184636B1 (ko) 냉장고 및 냉장고의 압축기 제어 방법
JPH07159015A (ja) 低温庫
JP2001299466A (ja) 配膳車の温度調整風供給装置
JP2021097646A (ja) 温湿度調節庫

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22953396

Country of ref document: EP

Kind code of ref document: A1