WO2023248843A1 - アルカリボロシリケートガラス、曲げガラス、合わせガラス、建築用窓ガラス及び車両用窓ガラス - Google Patents

アルカリボロシリケートガラス、曲げガラス、合わせガラス、建築用窓ガラス及び車両用窓ガラス Download PDF

Info

Publication number
WO2023248843A1
WO2023248843A1 PCT/JP2023/021633 JP2023021633W WO2023248843A1 WO 2023248843 A1 WO2023248843 A1 WO 2023248843A1 JP 2023021633 W JP2023021633 W JP 2023021633W WO 2023248843 A1 WO2023248843 A1 WO 2023248843A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
less
alkali borosilicate
glass according
content
Prior art date
Application number
PCT/JP2023/021633
Other languages
English (en)
French (fr)
Inventor
貴人 梶原
茂輝 澤村
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Publication of WO2023248843A1 publication Critical patent/WO2023248843A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J1/00Windows; Windscreens; Accessories therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium

Definitions

  • the present invention relates to alkali borosilicate glass, bent glass, laminated glass, architectural window glass, and vehicle window glass.
  • glass for vehicles such as automobiles is required to have heat shielding properties from the perspective of energy conservation.
  • the rise in temperature inside the vehicle due to solar radiation can be suppressed, and the cooling load can be reduced.
  • gray glass is required for vehicle glass from the viewpoint of superior design and privacy protection inside the vehicle.
  • Patent Documents 1 and 2 disclose that gray glass can be obtained by adding CoO or Se as a coloring component to soda-lime-silica glass.
  • glass for vehicles is required to be lighter in weight from the viewpoint of fuel efficiency and electricity consumption.
  • Alkali borosilicate glass is an example of a glass that has a lower specific gravity than soda-lime-silica glass, which is a common glass for vehicles.
  • Alkali borosilicate glass has a low specific gravity and is also excellent in resistance to flying stones, so it is preferred as glass for vehicles, and Patent Document 3 discloses glass for vehicles using alkali borosilicate glass.
  • Patent Document 4 discloses that gray glass can be obtained by adding CoO to alkali borosilicate glass.
  • Patent Document 5 discloses that gray glass can be obtained by adding Fe 2 O 3 , Er 2 O 3 , etc. to alkali borosilicate glass.
  • Patent Documents 1, 2, and 4 Se and CoO are used to impart gray color to glass, but since these components are harmful to the human body, it is possible to create glass without using these components. It is desirable to impart a gray color.
  • the alkali borosilicate glass described in Patent Document 5 does not contain Se and CoO as essential components, it produces a weak gray color and is unsatisfactory in terms of design.
  • the visible light transmittance Tv defined by ISO-9050:2003 using a D65 light source is less than 75% when the thickness is converted to 2.0 mm, as described in [1] or [2].
  • alkali borosilicate glass Any one of [1] to [4], where the total iron content converted to Fe 2 O 3 in terms of mol% based on oxides is 0.040% or more and 0.60% or less.
  • Alkali borosilicate glass as described.
  • It has a first glass plate, a second glass plate, and an intermediate film sandwiched between the first glass plate and the second glass plate, A laminated glass, wherein the first glass plate is the alkali borosilicate glass according to any one of [1] to [10] or the bent glass according to [11].
  • the laminated glass according to [12], wherein the second glass plate is the alkali borosilicate glass according to any one of [1] to [10] or the bent glass according to [11].
  • the laminated glass according to [12], wherein the second glass plate is an alkali aluminosilicate glass containing 1.0% or more of Al 2 O 3 in terms of mole percentage based on oxides.
  • the second glass plate is an alkali aluminoborosilicate glass containing 1.0% or more of Al 2 O 3 and 1.0% or more of B 2 O 3 in terms of mole percentage based on oxides. 12].
  • the laminated glass according to [12], wherein the second glass plate is chemically strengthened glass.
  • FIG. 1 is a diagram showing transmission spectra in Examples 1, 6, 9, and 11.
  • FIG. 2 is a graph showing the relationship between the proportion of tricoordinated boron and the dominant wavelength Dw.
  • FIG. 3 is a graph showing the relationship between the proportion of 3-coordinated boron and the excitation purity Pe.
  • FIG. 4 is a cross-sectional view of an example of a laminated glass according to an embodiment of the present invention.
  • FIG. 5 is a conceptual diagram showing a state in which a laminated glass according to an embodiment of the present invention is used as a window glass for a vehicle.
  • FIG. 6 is an enlarged view of the S portion in FIG.
  • FIG. 7 is a sectional view taken along the YY line in FIG. 6.
  • the expression "glass does not substantially contain” a certain component means that the glass does not contain any component except for inevitable impurities, and means that the component is not actively added. Specifically, it means that the content of each of these components in the glass is about 10 mol ppm or less. Regarding Se and CoO, “substantially no content” means that the content of each of these components in the glass is 1 mol ppm or less.
  • the glass of this embodiment may not be able to be used in applications that require heat shielding properties. In some cases, it may be necessary to use expensive raw materials with low iron content. Furthermore, if the total iron content in terms of Fe 2 O 3 is less than 0.03%, there is a risk that more heat radiation will reach the bottom of the melting furnace than necessary during glass melting, putting a load on the melting furnace. .
  • the total iron content converted to Fe 2 O 3 is preferably 0.040% or more, more preferably 0.060% or more, even more preferably 0.080% or more, and 0.10% or more. % or more is particularly preferable, and 0.12% or more is most preferable.
  • FIG. 1 is a diagram showing transmission spectra of glass plates of Examples 1, 6, 9, and 11, which will be described later.
  • the glass of this embodiment has a light absorption spectrum due to Fe ions in the wavelength range of 400 nm to 650 nm, as shown in the transmission spectrum of Example 11 in FIG. It has a flat shape compared to glass.
  • two broad absorptions centering around wavelengths of around 350 nm and around 500 nm tend to increase as in Examples 6 and 9.
  • This broad absorption around a wavelength of 500 nm is considered to be due to inter valence charge transition (IVCT) between Fe 2+ and Fe 3+ contained in the glass.
  • IVCT inter valence charge transition
  • FIG. 2 is a diagram showing the relationship between the dominant wavelength Dw and the proportion of 3-coordinated boron, measured using a standard C light source specified in JIS Z 8701:1999, for glasses of Examples and Comparative Examples to be described later.
  • FIG. 2 it can be seen that as the ratio of three-coordinated boron increases, that is, as the transmittance in the visible range due to IVCT decreases, the dominant wavelength Dw increases and the glass exhibits a brown color.
  • FIG. 2 is a diagram showing the relationship between the dominant wavelength Dw and the proportion of 3-coordinated boron, measured using a standard C light source specified in JIS Z 8701:1999, for glasses of Examples and Comparative Examples to be described later.
  • FIG. 3 is a diagram showing the relationship between the excitation purity Pe and the proportion of 3-coordinated boron, measured using a standard C light source specified in JIS Z 8701:1999, for glasses of Examples and Comparative Examples described below. be.
  • the proportion of 3-coordinated boron increases, the excitation purity Pe also increases.
  • the glass of this embodiment by reducing the proportion of tricoordinated boron, the glass exhibits a gray color and the Young's modulus is improved, making the glass more suitable for use in vehicles and architecture.
  • the reason why the Young's modulus improves is that the ratio of 3-coordinated boron decreases and the 4-coordinated boron increases, resulting in a decrease in non-bridging oxygen and a dense structure, which increases the ion filling rate and bonds that contribute to Young's modulus. This is thought to be due to an increase in dissociation energy.
  • the ratio of 3-coordinated boron to the total amount of 3-coordinated boron and 4-coordinated boron is 20% or more.
  • the proportion of 3-coordinated boron is 20% or more, the stone flying resistance of the glass can be improved.
  • the reason for the improvement in stone chipping resistance is that the proportion of 3-coordinated boron increases, which increases the amount of non-bridging oxygen compared to 4-coordinated boron.
  • the network structure becomes looser. As a result, when a flying stone collides with glass, the network structure of the glass becomes denser, which consumes energy from the collision, suppresses the occurrence of cracks, and improves resistance to flying stones.
  • the ratio of 3-coordinated boron to the total amount of 3-coordinated boron and 4-coordinated boron is more preferably 30% or more, even more preferably 35% or more, even more preferably 37% or more, particularly 39% or more. It is preferably 41% or more, and most preferably 41% or more. That is, the ratio of 3-coordinated boron to the total amount of 3-coordinated boron and 4-coordinated boron is, for example, 20% or more and 61% or less.
  • Al takes a coordination number of 4 to 6 depending on oxygen in glass.
  • four-coordinated Al forms a glass structure as a tetrahedral structure. Since 4-coordinated Al has a negative charge like 4-coordinated boron, the charge is compensated by the alkali metal ion. At this time, the alkali metal ions present in the glass are preferentially coordinated to Al rather than boron.
  • alkali metal oxides in which the content ratio of Al 2 O 3 , alkali metal oxide, and B 2 O 3 is 1:1:1, almost all the alkali metal oxides are 4-coordinated with Al. consumed. If the charge is not compensated by an alkali metal ion, boron exists as a 3-coordinated boron, so at the above ratio, almost all of the boron in the glass will exist as a 3-coordinated boron. Furthermore, like alkali metal oxides, alkaline earth metal oxides also affect the coordination number of boron.
  • ions with lower electronegativity can react with boron and increase the amount of 4-coordinated boron, so the proportion of 4-coordinated boron tends to increase in the order of Ba, Sr, Ca, and Mg, which have lower electronegativity. . Therefore, the ratio of 3-coordinated boron to 4-coordinated boron is adjusted by adjusting the content of alkali metal oxide, alkaline earth metal oxide, and Al 2 O 3 .
  • the glass according to this embodiment has a solar transmittance Te of 90% or less as defined in ISO-9050:2003 when the thickness is converted to 2.0 mm. If Te is 90% or less, the glass has excellent heat shielding properties. Te is preferably 88% or less, more preferably 86% or less, even more preferably 84% or less, particularly preferably 82% or less, and most preferably 80% or less.
  • the lower limit of Te is not particularly limited, but is usually 30% or more, preferably 32% or more, more preferably 34% or more, particularly preferably 36% or more. That is, Te is, for example, 30% or more and 90% or less.
  • the glass according to the present embodiment has a dominant wavelength Dw of 520 nm or more and 574 nm or less, as measured using a standard C light source specified in JIS Z 8701:1999.
  • Dw is preferably 525 nm or more, more preferably 530 nm or more, even more preferably 535 nm or more, and most preferably 540 nm or more.
  • Dw is preferably 573 nm or less, more preferably 570 nm or less, even more preferably 567 nm or less, and most preferably 565 nm or less.
  • the glass according to the present embodiment has an excitation purity Pe of 4.0% or less as measured using a standard C light source specified in JIS Z 8701:1999.
  • Pe is preferably 3.5% or less, more preferably 3.0% or less, even more preferably 2.5% or less, particularly preferably 2.0% or less, and most preferably 1.5% or less.
  • the lower limit of Pe is not particularly limited, but is generally 0.1% or more. That is, Pe is, for example, 0.1% or more and 4.0% or less. When Dw and Pe are within the above ranges, the glass becomes gray and exhibits excellent design.
  • the glass according to this embodiment does not substantially contain Se and CoO.
  • Se and CoO are commonly used as components that give gray color to glass, but on the other hand, these components are harmful to the human body.
  • this embodiment by adjusting the ratio of 3-coordinated boron and 4-coordinated boron, a gray color can be imparted to the glass, so Se and CoO, which are components harmful to the human body, are not added. Glass with excellent design can be obtained.
  • the glass according to this embodiment is expressed as a molar percentage based on oxides, 70% ⁇ SiO2 ⁇ 80% 8.0% ⁇ B2O3 ⁇ 20% 1.0% ⁇ Al2O3 ⁇ 5.0% 0.0% ⁇ Li2O ⁇ 5.0% 2.0% ⁇ Na2O ⁇ 10% 0.0% ⁇ K2O ⁇ 5.0% 0.0% ⁇ MgO ⁇ 5.0% 0.0% ⁇ CaO ⁇ 5.0% 0.0% ⁇ SrO ⁇ 5.0% 0.0% ⁇ BaO ⁇ 5.0% SiO 2 +B 2 O 3 +Al 2 O 3 ⁇ 89% Li2O + Na2O + K2O ⁇ 5.0% It is preferable to include.
  • composition range of each component in the glass of this embodiment will be explained. Note that the composition range of each component hereinafter is expressed in mole percentage based on oxide unless otherwise specified.
  • SiO 2 is a component that makes it easier to ensure the strength required for vehicle applications, architectural applications, etc. by contributing to an improvement in Young's modulus.
  • the content of SiO 2 is preferably 70% or more and 80% or less.
  • the content of SiO 2 is 70% or more, the specific gravity of the glass can be easily reduced, and further, weather resistance can be ensured. Moreover, it suppresses the average linear expansion coefficient from increasing and suppresses thermal cracking of the glass.
  • the content of SiO 2 is more preferably 72% or more, even more preferably 73% or more, and particularly preferably 74% or more.
  • SiO 2 content of 80% or less, the increase in viscosity during glass melting is suppressed, making glass manufacturing easier, and improving the formability of vehicle window glasses, especially windshields, etc. .
  • the content of SiO 2 is more preferably 79% or less, further preferably 78% or less, and particularly preferably 77% or less.
  • B 2 O 3 controls the optical properties of glass, lowers the specific gravity of glass, and also contributes to improving glass strength and solubility.
  • the content of B 2 O 3 is preferably 8.0% or more and 20% or less. When the content of B 2 O 3 is 8.0% or more, it can control the optical properties of the glass, and also contribute to lowering the specific gravity of the glass, improving glass strength, and improving solubility.
  • the content of B 2 O 3 is more preferably 8.5% or more, further preferably 9.0% or more, particularly preferably 9.5% or more, and most preferably 10% or more.
  • the content of B 2 O 3 is more preferably 18% or less, further preferably 16% or less, particularly preferably 15% or less, and most preferably 14% or less.
  • Al 2 O 3 when Al 2 O 3 is 5.0% or less, the content of alkali metals coordinated to boron increases, and the proportion of tricoordinated boron can be reduced. In addition, it suppresses the increase in viscosity during glass melting, facilitates glass production, and improves the moldability of vehicle window glasses, especially windshields.
  • the content of Al 2 O 3 is more preferably 4.5% or less, further preferably 4.0% or less, particularly preferably 3.5% or less, and most preferably 3.0% or less.
  • Li 2 O is a component that greatly improves the solubility of glass when added in a small amount, and also facilitates increasing Young's modulus and contributes to the linear expansion coefficient of glass. Furthermore, the proportion of 4-coordinated boron can be increased by coordinating lithium ions with boron.
  • the content of Li 2 O is preferably 0.0% or more and 5.0% or less. Since the viscosity of the glass is reduced by containing Li 2 O, the moldability of vehicle window glasses, especially windshields, etc. is improved.
  • the glass of this embodiment contains Li 2 O the content is preferably 0.50% or more, more preferably 1.0% or more, even more preferably 1.5% or more, and 1.7% or more. Particularly preferred, and most preferably 2.0% or more.
  • the content of Na 2 O is 10% or less, the linear expansion coefficient can be reduced and thermal cracking of the glass can be suppressed. Furthermore, since the glass has improved resistance to fading, it is suitable for glass that is exposed to the atmosphere for long periods of time, such as vehicle window glass and architectural window glass.
  • the content of Na 2 O is more preferably 9.0% or less, further preferably 8.5% or less, particularly preferably 8.0% or less, and most preferably 7.5% or less.
  • the content of BaO is preferably 5.0% or less.
  • the content of BaO is more preferably 4.0% or less, further preferably 3.0% or less, particularly preferably 2.0% or less, and most preferably 1.0% or less. That is, the BaO content is preferably 0.0% or more and 5.0% or less.
  • R 2 O is preferably 10% or less, more preferably 9.5% or less, particularly preferably 9.0% or less, from the viewpoint of improving stain resistance and suppressing the proportion of 4-coordinated boron from becoming too large. . That is, R 2 O is preferably 5.0% or more and 10% or less. Furthermore, among Li 2 O, Na 2 O, and K 2 O, Li 2 O has the smallest molecular weight and contributes to reducing the weight of the glass. Among 2 O, Na 2 O and K 2 O, it is preferable to contain Li 2 O. Furthermore, it is preferable to contain two or more types of alkali metal components from the viewpoint of improving the stain resistance and suppressing phase separation and devitrification due to the alkali mixing effect.
  • the redox degree of the glass melt can be controlled and adjusted by controlling the raw material composition of the glass, the melting temperature, and the use of a reducing agent such as coke or ammonium chloride.
  • the glass of this embodiment may contain TiO2 . Since TiO 2 has absorption in the ultraviolet region, it reduces the ultraviolet transmittance Tuv and improves the UV cut performance. When the glass of this embodiment contains TiO2 , its content is preferably 0.010% or more, more preferably 0.040% or more, even more preferably 0.075% or more, and particularly preferably 0.15% or more. . Since TiO 2 is colored by light in the visible range, there is a risk that the visible light transmittance Tv may decrease or the color of the glass may change from gray to brown. When the glass of this embodiment contains TiO 2 , it is preferably 0.80% or less, more preferably 0.50% or less, even more preferably 0.40% or less, and particularly preferably 0.30% or less. That is, the content of TiO 2 is preferably 0.0% or more and 0.80% or less.
  • the glass of this embodiment may contain CeO2 . Since CeO 2 has absorption in the ultraviolet region, it reduces the ultraviolet transmittance Tuv and improves the UV cut performance. When the glass of this embodiment contains CeO2 , its content is preferably 0.010% or more, more preferably 0.020% or more, even more preferably 0.040% or more, and particularly preferably 0.070% or more. . When CeO 2 absorbs light in the ultraviolet region, solarization occurs, the transmittance in the visible region decreases, and the color of the glass may not be gray. When the glass of this embodiment contains CeO 2 , it is preferably 0.25% or less, more preferably 0.18% or less, even more preferably 0.14% or less, and particularly preferably 0.10% or less. That is, the content of CeO 2 is preferably 0.0% or more and 0.25% or less.
  • the glass of this embodiment may contain SO3 .
  • SO3 acts as a refining agent and therefore improves the bubble quality of the glass.
  • its content is preferably 0.0010% or more, more preferably 0.0040% or more, even more preferably 0.0070% or more, and particularly preferably 0.015% or more.
  • SO 3 has a high Fe-Redox content, amber coloring may occur and the glass may turn brown.
  • the glass of this embodiment contains SO 3 , it is preferably 0.070% or less, more preferably 0.060% or less, even more preferably 0.050% or less, and particularly preferably 0.040% or less. That is, the content of SO 3 is preferably 0.0% or more and 0.070% or less.
  • the glass of this embodiment may contain Cl.
  • Cl acts as a fining agent and thus improves the bubble quality of the glass.
  • its content is preferably 0.080% or more, more preferably 0.15% or more, even more preferably 0.20% or more, particularly preferably 0.30% or more, Most preferably 0.40% or more. If the Cl content is excessively high, Cl 2 gas volatilized from the glass melt may corrode surrounding members.
  • the glass of this embodiment contains Cl it is preferably 1.5% or less, more preferably 1.2% or less, even more preferably 1.0% or less, and particularly preferably 0.80% or less. That is, the content of Cl is preferably 0.0% or more and 1.5% or less.
  • the glass according to this embodiment has a visible light transmittance Tv calculated by measuring the transmittance with a spectrophotometer using a D65 light source in accordance with the provisions of ISO-9050:2003 when the thickness is converted to 2.0 mm.
  • Tv is preferably 75% or more.
  • Tv is more preferably 78% or more, and even more preferably 80% or more.
  • the upper limit of Tv is not particularly limited, but is, for example, 91% or less. That is, Tv is, for example, 75% or more and 91% or less.
  • the glass according to this embodiment can adjust the absorption of light in the visible range by adjusting the ratio of 3-coordinated boron to 4-coordinated boron as described above. It can also be used as a rear window for cars.
  • the Tv of the glass is preferably less than 75%, more preferably 72% or less, and even more preferably 70% or less.
  • the glass of this embodiment has a low solar transmittance Te and a high visible light transmittance Tv. That is, it is preferable that Tv/Te is 1.05 or more. When Tv/Te is 1.05 or more, the glass exhibits excellent transparency and heat shielding properties, making it more suitable as window glass for vehicles and architecture.
  • the upper limit of Tv/Te is not particularly limited, but is, for example, 1.30 or less. That is, Tv/Te is, for example, 1.05 or more and 1.30 or less.
  • the glass of this embodiment preferably has low ultraviolet transmittance, and when the thickness is converted to 2.0 mm, the ultraviolet transmittance Tuv defined by ISO-9050:2003 is preferably 65% or less.
  • Tuv is more preferably 60% or less, further preferably 55% or less, particularly preferably 50% or less, and most preferably 45% or less. Further, Tuv is, for example, 5% or more. That is, Tuv is, for example, 5% or more and 65% or less.
  • the Young's modulus of the glass of this embodiment is preferably 65 GPa or more, more preferably 68 GPa or more, even more preferably 70 GPa or more, and particularly preferably 72 GPa or more.
  • the Young's modulus is within the above range, the glass has high rigidity and is more suitable for vehicle window glass and the like.
  • the Young's modulus is 80 GPa or less, more preferably 78 GPa or less, and even more preferably 75 GPa or less. That is, the Young's modulus is preferably 65 GPa or more and 80 GPa or less.
  • the temperature T 11 at which the glass viscosity becomes 10 11 [dPa ⁇ s] is preferably 640° C. or lower.
  • T 11 By setting T 11 to 640° C. or less, bending and forming can be performed at a low temperature. Examples of methods for reducing T 11 to 640° C. or lower include increasing the content of B 2 O 3 , R 2 O and RO as glass components and decreasing the content of Al 2 O 3 ; A method of containing Li 2 O may be mentioned.
  • T 11 is more preferably 620°C or less, further preferably 615°C or less, even more preferably 610°C or less, particularly preferably 605°C or less, and most preferably 600°C or less.
  • T 11 is preferably 560°C or higher, more preferably 570°C or higher, even more preferably 575°C or higher, and particularly preferably 580°C or higher. That is, T 11 is preferably 560°C or more and 640°C or less.
  • the temperature T 12 at which the glass viscosity becomes 10 12 [dPa ⁇ s] is preferably 600° C. or lower.
  • T 12 is 600° C. or less, bending and forming can be performed at low temperatures.
  • methods for reducing T 12 to 600°C or lower include increasing the content of B 2 O 3 , R 2 O and RO as glass components and decreasing the content of Al 2 O 3 ; A method of containing Li 2 O may be mentioned.
  • T 12 is more preferably 595°C or less, further preferably 590°C or less, even more preferably 585°C or less, particularly preferably 580°C or less, and most preferably 575°C or less.
  • the average linear expansion coefficient of the glass of this embodiment at 50° C. to 350° C. is preferably 40 ⁇ 10 ⁇ 7 /° C. or more. Since the glass of this embodiment has an average coefficient of linear expansion of 40 ⁇ 10 -7 /°C or more, it is easy to process by air-cooling strengthening, and the difference in coefficient of linear expansion with black ceramic is small, so can suppress cracking.
  • a method may be used in which the contents of B 2 O 3 , R 2 O and RO as glass components are increased and the content of Al 2 O 3 is decreased.
  • the average linear expansion coefficient of the glass of this embodiment at 50°C to 350°C is more preferably 45 ⁇ 10 -7 /°C or higher, even more preferably 47 ⁇ 10 -7 /°C or higher, and even more preferably 50 ⁇ 10 -7 /°C or higher. is particularly preferable, and most preferably 52 ⁇ 10 ⁇ 7 /°C or higher.
  • the average linear expansion coefficient of the glass of this embodiment becomes too large, thermal stress due to the temperature distribution of the glass is likely to occur during the glass forming process, slow cooling process, or windshield forming process. There is a risk of thermal cracking of the glass.
  • the average linear expansion coefficient of the glass of this embodiment may be 70 ⁇ 10 ⁇ 7 /°C or less, preferably 65 ⁇ 10 ⁇ 7 /°C or less, and preferably 63 ⁇ 10 ⁇ 7 /°C or less is more preferable, and even more preferably 60 ⁇ 10 ⁇ 7 /°C or less. That is, the average linear expansion coefficient at 50°C to 350°C is preferably 40 ⁇ 10 ⁇ 7 /°C or more and 70 ⁇ 10 ⁇ 7 /°C or less.
  • the specific gravity of the glass of this embodiment is preferably 2.40 or less. Soda lime glass, which is widely used as vehicle and architectural window glass, has a specific gravity of approximately 2.51, but the glass of this embodiment is alkali borosilicate glass, which has a lower specific gravity than soda lime glass, so it is lightweight. Therefore, from the viewpoint of fuel efficiency and electricity consumption, it can be more suitably used as window glass for vehicles and buildings.
  • the specific gravity of the glass of this embodiment is more preferably 2.38 or less, further preferably 2.36 or less, and particularly preferably 2.34 or less.
  • the specific gravity of the glass of this embodiment is preferably 2.25 or more, and more preferably 2.27 or more, from the viewpoint of improving sound insulation inside the vehicle. That is, the specific gravity of the glass is preferably 2.25 or more and 2.40 or less.
  • T 2.5 is preferably 1600° C. or less.
  • T 4 is preferably 1200°C or less, and T 4 -T L is preferably -50°C or more.
  • T 2.5 represents the temperature at which the glass viscosity becomes 10 2.5 dPa ⁇ s
  • T 4 represents the temperature at which the glass viscosity becomes 10 4 dPa ⁇ s
  • T L represents the temperature at which the glass viscosity becomes 10 4 dPa ⁇ s. Represents the liquidus temperature of glass.
  • T 2.5 or T 4 when T 2.5 or T 4 becomes larger than these predetermined temperatures, it becomes difficult to manufacture large glass by a float method, a roll-out method, a down-draw method, or the like.
  • T 2.5 is more preferably 1550°C or less, even more preferably 1500°C or less, and particularly preferably 1480°C or less.
  • T4 is more preferably 1180°C or less, further preferably 1150°C or less, and particularly preferably 1125°C or less.
  • the lower limits of T 2.5 and T 4 of the glass of this embodiment are not particularly limited, but in order to maintain weather resistance and fading resistance, typically T 2.5 is 1300°C or higher, T 4 is 1000°C or higher.
  • the T 2.5 of the glass of this embodiment is preferably 1350°C or higher, more preferably 1380°C or higher.
  • T4 of the glass of this embodiment is preferably 1020°C or higher, more preferably 1050°C or higher. That is, T2.5 is preferably 1300°C or more and 1600°C or less, and T4 is preferably 1000°C or more and 1200°C or less.
  • T 4 -T L of the glass of this embodiment is preferably -50°C or higher. If this difference is -50°C or more, it is possible to suppress the occurrence of devitrification in the glass during glass molding, improve the mechanical properties of the glass, and obtain glass with improved transparency and excellent quality. It will be done.
  • T 4 -T L of the glass of this embodiment is more preferably -25°C or higher, even more preferably 0°C or higher, and particularly preferably 20°C or higher.
  • the glass of this embodiment preferably has a T g of 460°C or more and 580°C or less.
  • Tg represents a glass transition point. If T g is within this predetermined temperature range, glass can be bent within normal manufacturing conditions. If the T g of the glass of this embodiment is lower than 460°C, there will be no problem with formability, but the alkali content or alkaline earth content will become too large, resulting in excessive thermal expansion of the glass. , problems such as decreased weather resistance and resistance to fading may occur more easily. Furthermore, if the T g of the glass of this embodiment is lower than 460° C., there is a risk that the glass will devitrify in the molding temperature range and cannot be molded.
  • the T g of the glass of this embodiment is more preferably 480°C or higher, even more preferably 490°C or higher, and particularly preferably 500°C or higher.
  • the T g of the glass of this embodiment is more preferably 570°C or less, further preferably 565°C or less, and particularly preferably 560°C or less.
  • the alkali borosilicate glass of this embodiment preferably contains a certain amount of water.
  • Moisture in glass can generally be expressed as a ⁇ -OH value, and the ⁇ -OH value is preferably 0.050 mm -1 or more, more preferably 0.10 mm -1 or more, and even more preferably 0.15 mm -1 or more. Preferably, 0.20 mm ⁇ 1 or more is particularly preferable.
  • ⁇ -OH is obtained by the following formula from the transmittance of glass measured using FT-IR (Fourier transform infrared spectrophotometer).
  • ⁇ -OH (1/X)log 10 (T A /T B ) [mm -1 ]
  • X Thickness of sample [mm]
  • T A Transmittance at reference wave number 4000 cm -1 [%]
  • T B Minimum transmittance near hydroxyl group absorption wave number 3600 cm -1 [%]
  • the ⁇ -OH value of the alkali borosilicate glass of this embodiment is preferably 0.70 mm -1 or less, more preferably 0.60 mm -1 or less, even more preferably 0.50 mm -1 or less, and 0.40 mm - Particularly preferably 1 or less. That is, the ⁇ -OH value is preferably 0.050 mm -1 or more and 0.70 mm -1 or less.
  • a * defined by JIS Z 8781-4:2003 using a D65 light source is preferably -5.0 or more, and -3.0 or more. More preferably, ⁇ 2.0 or more is even more preferable. Moreover, a * is preferably 2.0 or less, more preferably 1.0 or less, and even more preferably 0.0 or less. That is, a * is preferably ⁇ 5.0 or more and 2.0 or less.
  • b * defined in JIS Z 8781-4:2003 using a D65 light source is preferably -5.0 or more, more preferably -3.0 or more, - More preferably 1.0 or more. Further, b * is preferably 5.0 or less, more preferably 3.0 or less, even more preferably 2.0 or less, and particularly preferably 1.5 or less. That is, b * is preferably ⁇ 5.0 or more and 5.0 or less. Since the glass of this embodiment has L * , a * , and b * within the above ranges, it has excellent design and can be suitably used as window glass for vehicles and architecture.
  • the glass may be formed by a known roll-out method or down-draw method, or may have a polished surface and a uniform thickness.
  • the down-draw method is roughly divided into the slot down-draw method and the overflow down-draw method (fusion method), but in both cases, molten glass is continuously flowed down from the molded body to form a band-shaped glass ribbon. This is a method of forming
  • the area of the main surface is preferably 250,000 mm 2 or more, more preferably 450,000 mm 2 or more, and even more preferably 900,000 mm 2 or more.
  • the area of the main surface of the glass of the embodiment is preferably 4,000,000 mm 2 or less, more preferably 3,500,000 mm 2 or less, and even more preferably 3,000,000 mm 2 or less. That is, the area of the main surface of the glass of this embodiment is preferably 250,000 mm 2 or more and 4,000,000 mm 2 or less.
  • the glass of this embodiment preferably has a thickness of 0.50 mm or more in order to improve rigidity and increase strength when a flying stone, vehicle key, etc. come into contact with the glass.
  • the thickness of the glass is more preferably 1.00 mm or more, further preferably 1.50 mm or more, particularly preferably 2.00 mm or more, and most preferably 2.50 mm or more.
  • the thickness of the glass of this embodiment is preferably 4.00 mm or less, more preferably 3.80 mm or less, and 3. More preferably, it is 50 mm or less. That is, the thickness of the glass is preferably 0.50 mm or more and 4.00 mm or less.
  • the glass of this embodiment may be glass that has been strengthened by air-cooling strengthening or chemical strengthening. By performing the above treatment, the strength of the glass can be increased.
  • air-cooling strengthening is a process of forming a compressive stress layer on the glass surface by thermal strengthening treatment. Specifically, a uniformly heated glass plate is rapidly cooled from a temperature near its softening point, and compressive stress is created on the glass surface due to the temperature difference between the glass surface and the inside of the glass. The compressive stress is generated uniformly over the entire surface of the glass, forming a compressive stress layer with a uniform depth over the entire surface of the glass. Thermal strengthening treatment is more suitable for strengthening thick glass sheets than chemical strengthening treatment.
  • the bent glass of this embodiment preferably has a minimum radius of curvature of 500 mm or more and 100,000 mm or less.
  • the radius of curvature of bent glass is calculated by shape simulation of the sample using a laser displacement meter (Dyvoce manufactured by Kozu Seiki Co., Ltd.) based on the amount of warpage inherent in the sample, which was determined by self-weight deflection correction in double-sided differential mode. , the radius of curvature is determined from the shape obtained by simulation.
  • bent glass is formed by heating and bending the alkali borosilicate glass.
  • a method for forming bent glass include a method in which heated glass is placed in a mold and pressed from above by a press means to bend the glass.
  • flat glass is placed on a mold that has a bending surface that corresponds to the desired curved surface, and the mold is carried into a heating furnace in this state, and the glass is heated to the glass softening point temperature in the heating furnace.
  • Another example is a method of heating to a temperature close to the temperature. According to this molding method, the glass curves along the bending surface of the mold due to its own weight as it softens, so that glass having a desired curved surface is manufactured.
  • bending forming using the above-mentioned pressing means is preferable.
  • the bending method using the press means is not particularly limited, and for example, the method described in International Publication No. 2016/093031 etc. can be adopted as appropriate.
  • the bending method using the press means will be exemplified.
  • the alkali borosilicate glass of this embodiment is transported to a press area using a transport conveyor or the like.
  • the alkali borosilicate glass is heated to a temperature at which it can be bent and softened.
  • the temperature at which bending is possible is, for example, a temperature T 11 or higher at which the glass viscosity is 10 11 [dPa ⁇ s].
  • the heating may be performed using a heater or the like in a heating furnace during the process of transporting the film to the press area using a transport conveyor or the like.
  • the bending time under the condition that the heating temperature ( ⁇ T 11 ) is maintained can be set to, for example, 1 second or more.
  • a lower press die (female die) and an upper press die (male die) are arranged at predetermined positions in the press area, and the upper surface shape of the female die and the lower surface shape of the male die are different from each other in the conveying direction.
  • the female mold can be moved up and down between the standby position below the transport conveyor and the press position above. After the glass is transferred from the transport conveyor, the female mold is moved from a predetermined raised position with the glass loaded thereon.
  • the alkali borosilicate glass is press-molded by rising to the press position above the conveyor.
  • the press-formed alkali borosilicate glass is transported to the cooling area using a transport shuttle or the like.
  • the alkali borosilicate glass is cooled by blowing cooling air onto the alkali borosilicate glass.
  • FIG. 4 is a diagram showing an example of the laminated glass 10 according to the present embodiment.
  • the laminated glass 10 includes a first glass plate 11 , a second glass plate 12 , and an intermediate film 13 sandwiched between the first glass plate 11 and the second glass plate 12 .
  • the laminated glass 10 according to the present embodiment is not limited to the embodiment shown in FIG. 4, and can be modified without departing from the spirit of the present invention.
  • the intermediate film 13 may be formed of one layer as shown in FIG. 4, or may be formed of two or more layers.
  • the laminated glass 10 according to the present embodiment may have three or more glass plates, and in that case, an organic resin or the like may be interposed between adjacent glass plates.
  • the laminated glass 10 according to the present embodiment will be described as having only two glass plates, a first glass plate 11 and a second glass plate 12, with an interlayer film 13 sandwiched therebetween.
  • the second glass plate 12 is preferably the above-mentioned alkali borosilicate glass or the above-mentioned bent glass.
  • the first glass plate 11 and the second glass plate 12 may be glass plates having the same composition. , glass plates of different compositions may be used.
  • the type of the glass plate is not particularly limited, and conventionally known glass plates used for vehicle window glasses etc. can be used. Specific examples include alkali aluminosilicate glass, alkali aluminoborosilicate glass, and soda lime glass. These glass plates may be colored or not colored to the extent that transparency is not impaired.
  • the Al 2 O 3 content is more preferably 5.0% or more, more preferably 8.0% or more, from the viewpoint of improving weather resistance, fading resistance, and chemical strengthening properties. is more preferable, and 10% or more is particularly preferable. Further, in order to reduce the viscosity of the glass and make it easier to manufacture, the content of Al 2 O 3 is preferably 18% or less, more preferably 15% or less.
  • the alkali aluminosilicate glass and alkali aluminoborosilicate glass preferably have an R 2 O content of 10% or more, more preferably 12% or more, and even more preferably 13% or more. Further, from the viewpoint of improving the resistance to discoloration, the content of R 2 O is preferably 22% or less, more preferably 20% or less, and even more preferably 18% or less.
  • the above-mentioned alkali aluminoborosilicate glass preferably has a B 2 O 3 content of 2.0% or more, more preferably 3.0% or more, in order to increase the strength when a flying stone, vehicle key, etc. comes into contact with the glass. It is preferably 4.0% or more, and more preferably 4.0% or more.
  • the content of B 2 O 3 is preferably 9.0% or less, more preferably 8.0% or less, and 7.0% or less. is even more preferable.
  • alkali aluminoborosilicate glass examples include glasses having the following compositions. Each component is expressed as a mole percentage on an oxide basis. 61% ⁇ SiO2 ⁇ 77% 1.0% ⁇ Al2O3 ⁇ 20% 1.0% ⁇ B2O3 ⁇ 10% 0.0% ⁇ MgO ⁇ 15% 0.0% ⁇ CaO ⁇ 10% 0.0% ⁇ SrO ⁇ 1.0% 0.0% ⁇ BaO ⁇ 1.0% 0.0% ⁇ Li2O ⁇ 15% 2.0% ⁇ Na2O ⁇ 15% 0.0% ⁇ K2O ⁇ 6.0% 0.0% ⁇ ZrO2 ⁇ 4.0% 0.0% ⁇ TiO2 ⁇ 1.0% 0.0% ⁇ Y2O3 ⁇ 2.0% 10% ⁇ R2O ⁇ 25% 0.0% ⁇ RO ⁇ 20% (R 2 O represents the total content of Li 2 O, Na 2 O, and K 2 O, and RO represents the total content of MgO, CaO, SrO, and BaO.)
  • the second glass plate 12 may be soda lime glass.
  • the soda lime glass may be soda lime glass containing less than 1.0% of Al 2 O 3 .
  • glasses having the following compositions can be exemplified. Each component is expressed as a mole percentage on an oxide basis. 60% ⁇ SiO2 ⁇ 75% 0.0% ⁇ Al2O3 ⁇ 1.0% 2.0% ⁇ MgO ⁇ 11% 2.0% ⁇ CaO ⁇ 10% 0.0% ⁇ SrO ⁇ 3.0% 0.0% ⁇ BaO ⁇ 3.0% 10% ⁇ Na2O ⁇ 18% 0.0% ⁇ K2O ⁇ 8.0% 0.0% ⁇ ZrO2 ⁇ 4.0% 0.0010% ⁇ Fe2O3 ⁇ 5.0 %
  • the thickness of the first glass plate 11 is preferably 2.00 mm or more. When the thickness of the first glass plate 11 is 2.00 mm or more, sound insulation properties and resistance to flying stones are improved.
  • the thickness of the first glass plate 11 is more preferably 2.25 mm or more, further preferably 2.50 mm or more, particularly preferably 2.75 mm or more, and most preferably 3.00 mm or more.
  • the thickness of the first glass plate 11 is preferably 5.00 mm or less. When the thickness of the first glass plate 11 is 5.00 mm or less, the weight of the laminated glass 10 does not become too large, which is preferable from the viewpoint of improving electricity consumption and fuel efficiency when used in a vehicle.
  • the thickness of the first glass plate 11 is more preferably 4.75 mm or less, further preferably 4.50 mm or less, particularly preferably 4.25 mm or less, and most preferably 4.00 mm or less. That is, the thickness of the first glass plate 11 is preferably 2.00 mm or more and 5.00 mm or less.
  • the thickness of the second glass plate 12 is preferably less than 2.00 mm. Since the thickness of the second glass plate 12 is less than 2.00 mm, the weight of the laminated glass 10 does not become too large even if the thickness of the first glass plate 11 increases, improving electricity consumption and fuel efficiency when used in a vehicle. It is preferable in this respect.
  • the thickness of the second glass plate 12 is more preferably 1.80 mm or less, further preferably 1.50 mm or less, particularly preferably 1.30 mm or less, and most preferably 1.10 mm or less. Moreover, the thickness of the second glass plate 12 is preferably 0.500 mm or more.
  • the thickness of the second glass plate 12 when the thickness of the second glass plate 12 is 0.500 mm or more, the strength when a vehicle key or the like comes into contact with the glass inside the vehicle is increased.
  • the thickness of the second glass plate 12 is more preferably 0.700 mm or more, further preferably 0.800 mm or more, and particularly preferably 0.900 mm or more. That is, the thickness of the second glass plate 12 is preferably 0.500 mm or more and less than 2.00 mm.
  • the total thickness of the first glass plate 11, second glass plate 12, and interlayer film 13 is preferably 2.80 mm or more. Sufficient strength can be obtained by having the total thickness of 2.80 mm or more.
  • the total thickness is more preferably 3.00 mm or more, further preferably 3.50 mm or more, even more preferably 4.00 mm or more, particularly preferably 4.50 mm or more, and most preferably 4.70 mm or more.
  • the total thickness may be 6.00 mm or less, preferably 5.80 mm or less, more preferably 5.60 mm or less, and even more preferably 5.40 mm or less. That is, the total thickness is preferably 2.80 mm or more and 6.00 mm or less.
  • the thickness of the first glass plate 11 and the second glass plate 12 may be constant over the entire surface, and the thickness of one or both of the first glass plate 11 and the second glass plate 12 It may be changed from place to place as necessary, such as forming a wedge shape in which the value gradually decreases.
  • One of the first glass plate 11 and the second glass plate 12 may be made of chemically strengthened glass that has been strengthened to improve its strength.
  • the method of chemical strengthening treatment is similar to the chemical strengthening treatment of alkali borosilicate glass described above.
  • Examples of chemically strengthened glass include those obtained by chemically strengthening the above-mentioned alkali aluminosilicate glass and the above-mentioned alkali aluminoborosilicate glass.
  • the shape of the first glass plate 11 and the second glass plate 12 may be a flat plate shape or a curved shape having a curvature on the entire surface or a part thereof.
  • the first glass plate 11 and the second glass plate 12 may have a single curved shape that is curved only in one direction, either the vertical direction or the horizontal direction, or they may be curved in both the vertical direction or the horizontal direction. It may be a multi-curved shape.
  • the radius of curvature may be the same or different in the vertical direction and the horizontal direction.
  • the interlayer film 13 according to this embodiment is sandwiched between the first glass plate 11 and the second glass plate 12.
  • the laminated glass 10 of this embodiment allows the first glass plate 11 and the second glass plate 12 to be firmly bonded together, and also absorbs the impact force when scattered pieces collide with the glass plate. It can be alleviated.
  • organic resins that are generally employed in laminated glass conventionally used as laminated glass for vehicles can be used.
  • organic resins include polyethylene (PE), ethylene vinyl acetate copolymer (EVA), polypropylene (PP), polystyrene (PS), methacrylic resin (PMA), polyvinyl chloride (PVC), and polyethylene terephthalate (PET).
  • the thickness of the intermediate film 13 may be constant over the entire surface, or may vary from place to place as necessary.
  • the difference in linear expansion coefficient between the interlayer film 13 and the first glass plate 11 or the second glass plate 12 may crack when the laminated glass 10 is manufactured through the heating process described below. This may cause warping and poor appearance. Therefore, it is preferable that the difference in linear expansion coefficient between the intermediate film 13 and the first glass plate 11 or the second glass plate 12 be as small as possible.
  • the difference in linear expansion coefficients between the interlayer film 13 and the first glass plate 11 or the second glass plate 12 may be expressed as a difference in average linear expansion coefficients within a predetermined temperature range.
  • the laminated glass 10 of this embodiment can be manufactured in the same manner as conventionally known laminated glasses. For example, by laminating the first glass plate 11, the intermediate film 13, and the second glass plate 12 in this order, and going through a process of heating and pressurizing, the first glass plate 11 and the second glass plate 12 can be stacked with the intermediate film. A laminated glass 10 having a structure in which the laminated glass 10 is bonded via the glass 13 is obtained.
  • the laminated glass 10 according to the present embodiment is defined by ISO-13837:2008 convention A, and the total solar transmittance Tts measured at a wind speed of 4 m/s is preferably 70% or less. Since the total solar transmittance Tts of the laminated glass 10 according to this embodiment is 70% or less, sufficient heat shielding properties can be obtained. Tts is more preferably 68% or less, and even more preferably 66% or less. Further, Tts is, for example, 55% or more. That is, Tts is, for example, 55% or more and 70% or less.
  • the lower limit of c * is not particularly limited, but is usually 0.0 or more. That is, c * is preferably 0.0 or more and 4.0 or less. Since a * , b * , and c * of the glass plate of this embodiment are within the above ranges, the glass plate has excellent design as an architectural window glass and a vehicle window glass.
  • the measurement results are obtained by performing phase correction and baseline correction using the NMR software Delta manufactured by JEOL, and then performing fitting using a Gaussian function to calculate the ratio of 3-coordination and 4-coordination, and calculate the average.
  • the coordination number was determined.
  • Phase correction and baseline correction were appropriately processed by subtracting the spectrum of an empty cell containing no sample. For peak fitting, set the peak top at 20 to 8 ppm for 3-coordination, and 5 to -5 ppm for 4-coordination, and set the peak width appropriately (maximum 1.5 times between each coordination number). A good fitting was obtained by adjusting the ratio as shown below.
  • the concentration was calculated from a calibration curve prepared using the standard solution, and the amount of Fe 2+ was determined. Since Fe 3+ in the sample solution is reduced to Fe 2+ , this amount of Fe 2+ means “[Fe 2+ ]+[Fe 3+ ]” in the sample.
  • a certain amount of the decomposed liquid was taken into a plastic container and immediately mixed with a 2,2'-dipyridyl solution and an ammonium acetate buffer. The solution was added to allow only Fe 2+ to develop color.
  • the coloring solution was made into a certain amount with ion-exchanged water, and the absorbance at a wavelength of 522 nm was measured using a spectrophotometer (U-4100, manufactured by Hitachi, Ltd.). Then, the concentration was calculated from a calibration curve prepared using the standard solution, and the amount of Fe 2+ was calculated. This amount of Fe 2+ means [Fe 2+ ] in the sample. Then, Fe-Redox: [Fe 2+ ]/([Fe 2+ ]+[Fe 3+ ]) was calculated from the above-determined [Fe 2+ ] and [Fe 2+ ] + [Fe 3+ ].
  • Tv Visible light transmittance
  • the solar transmittance Te is the solar transmittance calculated by measuring the transmittance with a spectrophotometer LAMBDA950 manufactured by Perkinelmer in accordance with the regulations of ISO-9050:2003.
  • Dominant wavelength (Dw) The dominant wavelength Dw of transmitted light is the dominant wavelength of transmitted light calculated according to JIS Z 8701:1999.
  • Stimulus purity (Pe) The stimulus purity Pe is the stimulus purity calculated according to JIS Z 8701:1999.
  • Viscosity The temperature T 11 when the viscosity ⁇ , which is a reference for bending workability, becomes 10 11 dPa ⁇ s and the temperature T 12 when the viscosity ⁇ becomes 10 12 dPa ⁇ s were measured using a beam bending method.
  • Tables 1 and 2 The measurement results are shown in Tables 1 and 2.
  • "-" indicates that calculation is not possible because B 2 O 3 is not contained, and a blank column indicates that it has not been measured.
  • the glasses of Examples 11 to 35 which are examples, have a solar transmittance Te of 90% or less, a dominant wavelength Dw of 520 nm or more and 574 nm or less, and an excitation purity Pe of 4.0% or less, and are excellent. It has heat shielding properties and has a good design.
  • Example 1 which is a comparative example
  • the dominant wavelength Dw was 500 nm, and the design was inferior to that of the example.
  • the glass of Example 2 which is a comparative example, had a content of Fe 2 O 3 of less than 0.03% and a proportion of 3-coordinated boron of more than 61%, so the solar transmittance Te was 93%.
  • the heat shielding properties were inferior to those of the examples.
  • the proportion of tricoordinated boron was more than 61%, so the dominant wavelength Dw was more than 574 nm, and the design was inferior to that of the examples.
  • Example 4 to 6 which are comparative examples, the proportion of tricoordinated boron was more than 61%, so the dominant wavelength Dw was more than 574 nm, and the excitation purity Pe was more than 4.0%, which was compared with the example. The design quality was poor.
  • the glass of Example 10 which is a comparative example, had a solar transmittance Te of 91% because the content of Fe 2 O 3 was less than 0.03%, and its heat shielding property was inferior to that of the example. .

Abstract

本発明は、酸化物基準のモル%表示でFe2O3に換算した全鉄の含有量が0.03%以上であり、3配位ホウ素と4配位ホウ素の合計量に対して3配位ホウ素の割合が61%以下であり、Se及びCoOを実質的に含有せず、厚さを2.0mmに換算したときの、ISO-9050:2003規定の日射透過率Teが90%以下であり、JIS Z 8701:1999規定の標準C光源を用いて測定される主波長Dwが520nm以上574nm以下であり、かつJIS Z 8701:1999規定の標準C光源を用いて測定される刺激純度Peが4.0%以下であるアルカリボロシリケートガラスに関する。

Description

アルカリボロシリケートガラス、曲げガラス、合わせガラス、建築用窓ガラス及び車両用窓ガラス
 本発明は、アルカリボロシリケートガラス、曲げガラス、合わせガラス、建築用窓ガラス及び車両用窓ガラスに関する。
 近年、自動車をはじめとする車両用のガラスは、省エネルギーの観点から遮熱性が求められている。遮熱性が高いガラスを車両用に用いることで、日射による車両内の温度の上昇が抑制され、冷房負荷を低減できる。
 また、車両用のガラスは、デザイン的に優れた意匠性や車内のプライバシー保護の観点から、グレーガラスが要求されている。特許文献1、2では、ソーダ石灰シリカ系ガラスに着色成分としてCoOもしくはSeを添加することによって、グレーガラスが得られることが開示されている。
 さらに、上記の特性に加えて、車両用のガラスは、燃費・電費の観点から、より軽量なガラスであることが求められる。車両用のガラスとして一般的なガラスであるソーダ石灰シリカ系ガラスよりも比重が小さいガラスとして、アルカリボロシリケートガラスが挙げられる。
 アルカリボロシリケートガラスは、比重が小さい他に、飛び石耐性にも優れているため、車両用のガラスとして好ましく、特許文献3には、アルカリボロシリケートガラスを用いた車両用のガラスが開示されている。また、特許文献4には、アルカリボロシリケートガラスにCoOを添加することでグレーガラスが得られることが開示されている。さらに、特許文献5には、アルカリボロシリケートガラスにおいて、FeとEr等を添加することでグレーガラスが得られることが開示されている。
日本国特開平9-301736号公報 日本国特開2001-019470号公報 米国特許出願公開第2018/0194114号明細書 日本国特開平7-109147号公報 日本国特開平4-280834号公報
 特許文献1、2および4では、ガラスにグレー色を付与するためにSe、CoOが用いられているが、これらの成分は人体に有害な成分であるため、これらの成分を用いずにガラスにグレー色を付与することが望まれる。
 また、特許文献5に記載のアルカリボロシリケートガラスにおいては、Se、CoOを必須成分としていないが、グレー色の発色が弱く、意匠性の観点で不十分である。
 本発明は、上記課題を鑑みて、優れた遮熱性を有しつつ、有害な元素を用いずに意匠性に優れたアルカリボロシリケートガラス、曲げガラス、合わせガラス、さらに該アルカリボロシリケートガラスや該合わせガラスを用いた建築用窓ガラスまたは車両用窓ガラスを提供することを目的とする。
 本発明者らは、ガラス中の3配位ホウ素と4配位ホウ素の割合を調整することにより、ガラスにグレー色を付与できることを見出し、本発明を完成させた。
 すなわち、本発明は以下の通りである。
[1] 酸化物基準のモル%表示でFeに換算した全鉄の含有量が0.03%以上であり、
 3配位ホウ素と4配位ホウ素の合計量に対して3配位ホウ素の割合が61%以下であり、
 Se及びCoOを実質的に含有せず、
 厚さを2.0mmに換算したときの、ISO-9050:2003規定の日射透過率Teが90%以下であり、JIS Z 8701:1999規定の標準C光源を用いて測定される主波長Dwが520nm以上574nm以下であり、かつJIS Z 8701:1999規定の標準C光源を用いて測定される刺激純度Peが4.0%以下であるアルカリボロシリケートガラス。
[2] 厚さを2.0mmに換算したときの、D65光源を用いてISO-9050:2003で定義される可視光透過率TvとISO-9050:2003で定義される日射透過率Teとの比(Tv/Te)が1.05以上である、[1]に記載のアルカリボロシリケートガラス。
[3] 厚さを2.0mmに換算したときの、D65光源を用いてISO-9050:2003で定義される可視光透過率Tvが75%以上である、[1]または[2]に記載のアルカリボロシリケートガラス。
[4] 厚さを2.0mmに換算したときの、D65光源を用いてISO-9050:2003で定義される可視光透過率Tvが75%未満である、[1]または[2]に記載のアルカリボロシリケートガラス。
[5] 酸化物基準のモル%表示でFeに換算した全鉄の含有量が0.040%以上0.60%以下である、[1]~[4]のいずれか1つに記載のアルカリボロシリケートガラス。
[6] ヤング率が65GPa以上である、[1]~[5]のいずれか1つに記載のアルカリボロシリケートガラス。
[7] ガラス粘度が1011[dPa・s]となる温度T11が640℃以下である、[1]~[6]のいずれか1つに記載のアルカリボロシリケートガラス。
[8] 酸化物基準のモル%表示で、
 70%≦SiO≦80%
 8.0%≦B≦20%
 1.0%≦Al≦5.0%
 0.0%≦LiO≦5.0%
 2.0%≦NaO≦10%
 0.0%≦KO≦5.0%
 0.0%≦MgO≦5.0%
 0.0%≦CaO≦5.0%
 0.0%≦SrO≦5.0%
 0.0%≦BaO≦5.0%
 SiO+B+Al≧89%
 LiO+NaO+KO≧5.0%
を含む、[1]~[7]のいずれか1つに記載のアルカリボロシリケートガラス。
[9] 酸化物基準のモル%表示でFeに換算した全鉄の含有量が0.040%以上0.60%以下であり、Feに換算した全鉄中のFeに換算した2価の鉄の質量割合が10%以上である、[1]~[8]のいずれか1つに記載のアルカリボロシリケートガラス。
[10] LiOを含有する、[1]~[9]のいずれか1つに記載のアルカリボロシリケートガラス。
[11] [1]~[10]のいずれか1つに記載のアルカリボロシリケートガラスからなる、曲げガラス。
[12] 第1ガラス板と、第2ガラス板と、前記第1ガラス板と前記第2ガラス板の間に挟持される中間膜とを有し、
 前記第1ガラス板が、[1]~[10]のいずれか1つに記載のアルカリボロシリケートガラス、または[11]に記載の曲げガラスである、合わせガラス。
[13] 前記第2ガラス板は[1]~[10]のいずれか1つに記載のアルカリボロシリケートガラス、または[11]に記載の曲げガラスである、[12]に記載の合わせガラス。
[14] 前記第2ガラス板は酸化物基準のモル百分率表示でAlを1.0%以上含有するアルカリアルミノシリケートガラスである[12]に記載の合わせガラス。
[15] 前記第2ガラス板は酸化物基準のモル百分率表示でAlを1.0%以上含有し、Bを1.0%以上含有するアルカリアルミノボロシリケートガラスである[12]に記載の合わせガラス。
[16] 前記第2ガラス板は化学強化ガラスである[12]に記載の合わせガラス。
[17] 前記第2ガラス板はソーダライムガラスである[12]に記載の合わせガラス。
[18] [1]~[10]のいずれか1つに記載のアルカリボロシリケートガラス、または[11]に記載の曲げガラスを有する車両用窓ガラス。
[19] [12]~[17]のいずれか1つに記載の合わせガラスを有する車両用窓ガラス。
[20] [1]~[10]のいずれか1つに記載のアルカリボロシリケートガラス、または[11]に記載の曲げガラスを有する建築用窓ガラス。
 本発明によれば、優れた遮熱性を有しつつ、有害な元素を用いずに意匠性に優れたアルカリボロシリケートガラス、曲げガラス、合わせガラス、さらに該アルカリボロシリケートガラスや該合わせガラスを用いた建築用窓ガラスまたは車両用窓ガラスを提供する。
図1は、例1、例6、例9および例11における、透過スペクトルを示す図である。 図2は、3配位ホウ素の割合と主波長Dwとの関係を示すグラフである。 図3は、3配位ホウ素の割合と刺激純度Peとの関係を示すグラフである。 図4は、本発明の一実施形態に係る合わせガラスの一例の断面図である。 図5は、本発明の一実施形態に係る合わせガラスが車両用の窓ガラスとして用いられた状態を表す概念図である。 図6は、図5におけるS部分の拡大図である。 図7は、図6のY-Y線における断面図である。
 以下、本発明の実施形態について、詳細に説明する。また、以下の図面において、同じ作用を奏する部材・部位には同じ符号を付して説明することがあり、重複する説明は省略または簡略化することがある。また、図面に記載の実施形態は、本発明を明瞭に説明するために模式化されており、実際の製品のサイズや縮尺を必ずしも正確に表したものではない。
 本明細書において、ガラスがある成分を「実質的に含有せず」とは、不可避的不純物を除き含有させないことを意味し、その成分は積極的には添加されないことを意味する。具体的には、これらの成分の含有率がガラス中にそれぞれ10モルppm程度以下であることを意味する。なお、Se及びCoOに関して「実質的に含有せず」とは、これらの成分の含有率がガラス中にそれぞれ1モルppm以下であることを意味する。
 本実施形態のアルカリボロシリケートガラスは、酸化物基準のモル%表示でFeに換算した全鉄の含有量が0.03%以上であり、3配位ホウ素と4配位ホウ素の合計量に対して3配位ホウ素の割合が61%以下であり、Se及びCoOを実質的に含有せず、厚さを2.0mmに換算したときの日射透過率Teが90%以下であり、主波長Dwが520nm以上574nm以下であり、刺激純度Peが4.0%以下であることを特徴とする。
 本実施形態のアルカリボロシリケートガラス(以下、単にガラスと称することがある。)において、Feは、必須成分であり、遮熱性及びガラスにグレー色を付与するために含有される。本実施形態のガラスにおいて、酸化物基準のモル%表示でFeに換算した全鉄の含有量は0.03%以上である。ここでいうFeに換算した全鉄の含有量とは、二価鉄の酸化物であるFeOおよび三価鉄の酸化物であるFeを含む全鉄量のことである。
 本実施形態のガラスは、Feに換算した全鉄の含有量が0.03%以上であることにより、可視光透過率の低下を抑制し車両用窓ガラス等に好適なガラスが製造でき、さらに、製造時の原料の溶融が容易となる。
 本実施形態のガラスは、Feに換算した全鉄の含有量が0.03%未満であると、遮熱性が求められる用途に使用できなくなるおそれがあり、また、ガラスの製造のために、鉄の含有量の少ない高価な原料を使用する必要が生じる場合がある。さらに、Feに換算した全鉄の含有量が0.03%未満であると、ガラス溶融時に、必要以上に溶融炉底面に熱輻射が到達し、溶融窯に負荷がかかるおそれもある。本実施形態のガラスにおいて、Feに換算した全鉄の含有量は、0.040%以上が好ましく、0.060%以上がより好ましく、0.080%以上がさらに好ましく、0.10%以上が特に好ましく、0.12%以上が最も好ましい。
 また、鉄は可視域の光に対して着色をもつ。そのため、Feに換算した全鉄の含有量が過剰に多いと可視光透過率Tvが低下するため車両用のウィンドシールドやドアガラスに対して好ましくない。また、後述の刺激純度Peも高くなり、ガラスの色味が濃色となる。その結果、ガラスの色味がグレー色でなくなることから好ましくない。本実施形態のガラスにおけるFeに換算した全鉄の含有量は、0.60%以下が好ましく、0.50%以下がより好ましく、0.40%以下がさらに好ましく、0.30%以下が特に好ましく、0.25%以下が最も好ましい。すなわち、本実施形態のガラスにおいて、酸化物基準のモル%表示でFeに換算した全鉄の含有量は、例えば、0.03%以上、0.60%以下である。
 本実施形態のガラスは3配位ホウ素と4配位ホウ素の合計量に対して3配位ホウ素の割合が61%以下である。本発明者らは、ガラス中に含まれる3配位ホウ素と4配位ホウ素の合計量に対して3配位ホウ素の割合を61%以下とすることで、SeとCoOを含まなくてもガラスがグレー色を示し、意匠性の優れたガラスが得られることを見出した。
 ホウ素はガラス中において、3配位もしくは4配位の酸素配位数をとりうる。4配位のホウ素は、ガラス骨格に入り4面体構造をとる。この時、4面体構造は負に帯電するため、アルカリ金属イオンやアルカリ土類金属イオンによって電荷が補償される。したがって、4配位ホウ素は、非架橋酸素をほとんど生成することなく立体的なガラス構造を形成する。一方、3配位のホウ素はガラス中で非架橋酸素を有し、環状構造(Boroxol ring)などの平面構造をとることが知られている。
 図1は、後述する例1、例6、例9および例11のガラス板における、透過スペクトルを示す図である。本実施形態のガラスは、ホウ素と鉄を含有することで図1の例11の透過スペクトルに示されるように波長400nmから650nmの範囲でFeイオンによる光吸収スペクトルが、例1のソーダ石灰シリカ系ガラスと比較してフラットな形状をとる。しかしながら3配位ホウ素の割合が増加することにより、例6および例9のように波長350nm付近と500nm付近を中心とした2つのブロードな吸収が増加する傾向が見られる。この波長500nm付近のブロードな吸収は、ガラス中に含まれるFe2+とFe3+間の原子価間電荷遷移(IVCT:Inter Valanve Chaege Transfer Transition)によるものと考えられる。3配位ホウ素の割合が増加することによって、Fe2+とFe3+間の原子価間電荷遷移が発生するメカニズムは不明であるが、おそらく、3配位ホウ素が存在することで生じた平面構造によってガラス中のFe同士が近くなるクラスター構造が生じ、Fe2+とFe3+の距離が近くなることによって、電荷遷移が起こりやすくなったと考えられる。
 図1のように3配位ホウ素の割合が大きくなることによって可視域の光の透過率が大きく減少しガラスの色味に大きく影響する。図2は、後述の実施例および比較例のガラスについて、JIS Z 8701:1999規定の標準C光源を用いて測定される主波長Dwと3配位ホウ素の割合との関係を示す図である。図2に示すように、3配位ホウ素の比率が高くなる、つまりIVCTによる可視域の透過率の減少に伴い、主波長Dwが増加しガラスが褐色を示すことがわかる。
 また、図3は、後述の実施例および比較例のガラスについて、JIS Z 8701:1999規定の標準C光源を用いて測定される刺激純度Peと3配位ホウ素の割合との関係を示す図である。図3に示すように、3配位ホウ素の割合が大きくなると刺激純度Peも増加することが分かる。以上の通り、3配位ホウ素の割合を制御することが意匠性の優れたガラスを得るために重要であり、3配位ホウ素の割合が61%以下であれば主波長Dwが574nm以下であり、刺激純度Peの低い無彩色のグレーガラスを達成できる。
 また、本実施形態のガラスは、3配位ホウ素の割合を減少させることにより、ガラスがグレー色を示すとともに、ヤング率が向上し、車両用・建築用としてより好適なガラスとなる。ヤング率が向上する理由としては、3配位ホウ素の割合が減少し4配位ホウ素が増加することで非架橋酸素が減少し緻密な構造をとるため、ヤング率に寄与するイオン充填率や結合乖離エネルギーが増加するためと考えられる。
 したがって、本実施形態において、3配位ホウ素と4配位ホウ素の合計量に対する3配位ホウ素の割合は、61%以下であり、60%以下が好ましく、59%以下がより好ましく、58%以下がさらに好ましく、56%以下が特に好ましく、54%以下が最も好ましい。
 また、3配位ホウ素と4配位ホウ素の合計量に対する3配位ホウ素の割合は20%以上であることが好ましい。3配位ホウ素の割合が20%以上であることにより、ガラスの飛び石耐性を向上できる。飛び石耐性が向上する理由としては、3配位ホウ素の割合が高まることで4配位ホウ素と比較して非架橋酸素が増加することに加え、3配位ホウ素は平面構造をとるためにガラスのネットワーク構造が緩くなる。その結果、ガラスに飛び石が衝突した際にガラスのネットワーク構造が緻密化することで衝突によるエネルギーが消費され、クラックの発生を抑制し、飛び石耐性が向上するものと考えられる。3配位ホウ素と4配位ホウ素の合計量に対する3配位ホウ素の割合は30%以上であることがより好ましく、35%以上がさらに好ましく、37%以上がよりさらに好ましく、39%以上が特に好ましく、41%以上であることが最も好ましい。すなわち、3配位ホウ素と4配位ホウ素の合計量に対する3配位ホウ素の割合は、例えば、20%以上、61%以下である。
 3配位ホウ素と4配位ホウ素の割合の調整は、ガラスの組成を調整することによってできる。具体的には、アルカリ金属酸化物とアルカリ土類金属酸化物、Alの含有量を適宜調整することによって、調整し得る。
 上述したように、4配位ホウ素はアルカリ金属イオンによって電荷が補助され、4面体構造としてガラス中に存在する。すなわち、アルカリ金属酸化物がガラスに添加されると、ホウ素の4配位化に消費され、アルカリ金属イオンに配位されなかったホウ素は、3配位として存在する。したがって、アルカリ金属酸化物の含有量を増加させることによって、ガラス中の3配位ホウ素の割合が減少し、ガラスのグレー色が強まる。
 また、この時、Alの含有量を考慮する必要がある。Alはガラス中において、酸素によって4~6の配位数をとることが知られている。中でも4配位Alは、4面体構造としてガラス構造を形成する。4配位Alは、4配位ホウ素と同様に負の電荷を有するため、アルカリ金属イオンによって電荷が補償される。この時、ガラス中に存在するアルカリ金属イオンは、ホウ素よりも優先的にAlに配位する。具体的には例えば、Alとアルカリ金属酸化物とBの含有量比が1:1:1のガラスの場合、ほぼすべてのアルカリ金属酸化物が、Alの4配位化に消費される。アルカリ金属イオンによって電荷補償されない場合、ホウ素は3配位として存在するため、上記の割合のとき、ガラス中のホウ素のほぼすべては3配位ホウ素として存在することになる。
 またアルカリ金属酸化物と同様にアルカリ土類金属酸化物もホウ素の配位数に影響する。特に電気陰性度の小さなイオンほどホウ素と反応して4配位のホウ素を増やしうるため、電気陰性度が小さなBa、Sr、Ca、Mgの順に4配位のホウ素の比率が増加する傾向にある。
 したがって、3配位ホウ素と4配位ホウ素の割合は、アルカリ金属酸化物とアルカリ土類金属酸化物、Alの含有量を調整することによって調整される。
 ガラス中の3配位ホウ素および4配位ホウ素の割合は、核磁気共鳴:Nuclear Magnetic Resonance(NMR)によって測定できる。詳しくは、後述の実施例に記載の方法によって測定できる。
 本実施形態に係るガラスは、厚さを2.0mmに換算したときの、ISO-9050:2003規定の日射透過率Teが90%以下である。Teが90%以下であれば、ガラスの遮熱性が優れている。Teは、88%以下が好ましく、86%以下がより好ましく、84%以下がさらに好ましく、82%以下が特に好ましく、80%以下が最も好ましい。Teの下限は特に限定されないが、通常30%以上であり、好ましくは32%以上であり、より好ましくは34%以上であり、特に好ましくは36%以上である。すなわち、Teは例えば、30%以上、90%以下である。
 本実施形態に係るガラスは、JIS Z 8701:1999規定の標準C光源を用いて測定される主波長Dwが520nm以上574nm以下である。Dwは525nm以上が好ましく、530nm以上がより好ましく、535nm以上がさらに好ましく、540nm以上が最も好ましい。また、Dwは573nm以下が好ましく、570nm以下がより好ましく、567nm以下がさらに好ましく、565nm以下が最も好ましい。
 本実施形態に係るガラスは、JIS Z 8701:1999規定の標準C光源を用いて測定される刺激純度Peが4.0%以下である。Peは、3.5%以下が好ましく、3.0%以下がより好ましく、2.5%以下がさらに好ましく、2.0%以下が特に好ましく、1.5%以下が最も好ましい。また、Peの下限は特に限定されないが一般的に0.1%以上である。すなわち、Peは例えば、0.1%以上、4.0%以下である。
 DwとPeが上記範囲内であることにより、ガラスがグレー色となり、優れた意匠性を示す。
<ガラス組成>
 本実施形態に係るガラスは、Se及びCoOを実質的に含有しない。Se及びCoOはガラスにグレー色を付与する成分として一般的に用いられているが、一方で、これらの成分は人体に有害な成分である。本実施形態においては、上述したように3配位ホウ素と4配位ホウ素の割合を調整することによって、ガラスにグレー色を付与できるため、人体に有害な成分であるSe及びCoOを添加せずに意匠性の優れたガラスが得られる。
 本実施形態に係るガラスは、酸化物基準のモル百分率表示で、
 70%≦SiO≦80%
 8.0%≦B≦20%
 1.0%≦Al≦5.0%
 0.0%≦LiO≦5.0%
 2.0%≦NaO≦10%
 0.0%≦KO≦5.0%
 0.0%≦MgO≦5.0%
 0.0%≦CaO≦5.0%
 0.0%≦SrO≦5.0%
 0.0%≦BaO≦5.0%
 SiO+B+Al≧89%
 LiO+NaO+KO≧5.0%
 を含むことが好ましい。
 以下、本実施形態のガラスにおける各成分の好ましい組成範囲について説明する。なお、各成分の組成範囲は、以下、特にことわりがない場合、酸化物基準のモル百分率表示とする。
 SiOは、ヤング率の向上に寄与することにより、車両用途、建築用途等に必要とされる強度を確保しやすくする成分である。本実施形態においてSiOの含有量は、70%以上、80%以下であることが好ましい。
 SiOの含有量が70%以上であることにより、ガラスの比重を低減しやすく、さらに、耐候性を確保できる。また、平均線膨張係数が大きくなることを抑制し、ガラスの熱割れを抑制する。SiOの含有量は、72%以上がより好ましく、73%以上がさらに好ましく、74%以上が特に好ましい。
 また、SiOの含有量が80%以下であることにより、ガラス溶融時の粘性の増加が抑制され、ガラス製造が容易となるほか、車両用窓ガラス、特にウィンドシールド等の成形性が向上する。SiOの含有量は、79%以下がより好ましく、78%以下がさらに好ましく、77%以下が特に好ましい。
 Bは、上述のようにガラスの光学特性を制御し、ガラスの比重を低下させ、ガラス強度の向上および溶解性の向上にも寄与する。本実施形態においてBの含有量は、8.0%以上、20%以下であることが好ましい。
 Bの含有量は、8.0%以上であることにより、ガラスの光学特性を制御し、また、ガラスの比重の低下、ガラス強度の向上および溶解性の向上にも寄与できる。Bの含有量は、8.5%以上がより好ましく、9.0%以上がさらに好ましく、9.5%以上が特に好ましく、10%以上が最も好ましい。
 また、Bが20%以下であることにより、ガラスの溶解・成形中にアルカリ元素が揮散しづらく、ガラス品質が低下することを抑制できる。また、耐酸性や耐アルカリ性を向上できる。Bの含有量は、18%以下がより好ましく、16%以下がさらに好ましく、15%以下が特に好ましく、14%以下が最も好ましい。
 本実施形態においてAlの含有量は、1.0%以上、5.0%以下であることが好ましい。Alが1.0%以上であることにより、アルカリ金属が配位した4配位のAlが生成することでガラス中の非架橋酸素が減少し、耐候性、耐ヤケ性および化学耐久性が向上する。また、平均線膨張係数が大きくなりすぎずガラスの熱割れを抑制できるほか、イオン交換を用いた化学強化処理が可能となる。Alの含有量は1.1%以上がより好ましく、1.3%以上がさらに好ましく、1.5%以上が特に好ましく、1.7%以上が最も好ましい。
 また、Alが5.0%以下であることにより、ホウ素に配位するアルカリ金属の含有量が増加し、3配位のホウ素の割合を減少できる。また、ガラス溶融時の粘性が増加することを抑制し、ガラス製造を容易にさせるほか、車両用窓ガラス、特にウィンドシールド等の成形性が向上する。Alの含有量は、4.5%以下がより好ましく、4.0%以下がさらに好ましく、3.5%以下が特に好ましく、3.0%以下が最も好ましい。
 LiOは、少量の添加でガラスの溶解性を大幅に向上させる成分であり、また、ヤング率を大きくしやすくし、ガラスの線膨張係数にも寄与する成分である。さらにリチウムイオンがホウ素に配位することで4配位ホウ素の割合を高めることもできる。本実施形態においてLiOの含有量は、0.0%以上、5.0%以下であることが好ましい。
 LiOを含有させることでガラスの粘性が低下するので、車両用窓ガラス、特にウィンドシールド等の成形性が向上する。本実施形態のガラスにLiOを含有させる場合、その含有量は0.50%以上が好ましく、1.0%以上がより好ましく、1.5%以上がさらに好ましく、1.7%以上が特に好ましく、2.0%以上が最も好ましい。
 LiOの含有量が、5.0%以下であることにより、ガラス製造時の失透もしくは分相の発生を抑制し、ガラスの製造を容易にするほか、線膨張係数を小さくできガラスの熱割れを抑制できる。またリチウム原料は高価であるため原料コストを抑える効果もある。LiOの含有量は、4.5%以下がより好ましく、4.0%以下がさらに好ましく、3.5%以下が特に好ましく、3.0%以下が最も好ましい。
 NaOは、ガラスの溶解性を向上させる成分であり、また、ヤング率を大きくしやすくし、ガラスの線膨張係数にも寄与する成分である。さらにホウ素に配位し4配位ホウ素の割合を高めることもできるほか、Kイオンとのイオン交換による化学強化処理を行うことでガラスの強度を高めることができる。本実施形態においてNaOの含有量は、2.0%以上、10%以下であることが好ましい。
 NaOを2.0%以上含有させることで、ガラスの粘性が低下するため、車両用窓ガラス、特にウィンドシールドの成形性が向上する。NaOの含有量は、3.5%以上がより好ましく、4.0%以上がさらに好ましく、4.5%以上が特に好ましく、5.0%以上が最も好ましい。
 NaOの含有量が10%以下であることにより、線膨張係数を小さくできガラスの熱割れを抑制できる。またガラスの耐ヤケ性が向上するため車両用窓ガラスや建築用窓ガラスのような長期間大気にさらされるガラスとして好適となる。NaOの含有量は9.0%以下がより好ましく、8.5%以下がさらに好ましく、8.0%以下が特に好ましく、7.5%以下が最も好ましい。
 KOは、ガラスの溶解性を向上させる成分であり、また、ヤング率を大きくし、ガラスの線膨張係数にも寄与する成分である。本実施形態においてKOの含有量は、0.0%以上、5.0%以下であることが好ましい。
 KOを含有させることで、ガラスの粘性が低下するので、車両用窓ガラス、特にウィンドシールドの成形性が向上する。さらにホウ素に配位し4配位ホウ素の割合を高めることもできる。一方で、KOはLiOやNaOに比べて線膨張係数や比重を大きくする効果があるため、LiOやNaOに比べて微量の添加が望ましい。KOの含有させる場合、その含有量は0.10%以上がより好ましく、0.20%以上がさらに好ましく、0.30%以上が特に好ましく、0.40%以上が極めて好ましく、0.50%以上が最も好ましい。
 KOの含有量は、5.0%以下であることで線膨張係数や比重の増加を抑制できる。KOの含有量は4.0%以下がより好ましく、3.5%以下がさらに好ましく、3.0%以下が特に好ましく、2.5%以下が最も好ましい。
 MgOは、ガラス原料の溶解を促進し、耐候性や耐ヤケ性およびヤング率を向上させる成分である。さらに上述のように電気陰性度が高いため3配位のホウ素の割合を高めることができる。本実施形態においてMgOの含有量は、0.0%以上、5.0%以下であることが好ましい。MgOを含有させる場合、その含有量は3配位のホウ素の割合が増えすぎるのを抑えるために0.20%以上がより好ましく、0.50%以上がさらに好ましく、0.70%以上が特に好ましく、1.0%以上が最も好ましい。
 また、MgOの含有量が5.0%以下であれば、ガラスが失透しにくくなるとともに、ガラス溶融時の粘性が増加することを抑制し、ガラス製造を容易にさせるほか、車両用窓ガラス、特にウィンドシールド等の成形性が向上する。さらに3配位のホウ素の割合を低く抑えられる。MgOの含有量は、4.0%以下がより好ましく、3.5%以下がさらに好ましく、3.0%以下が特に好ましく、2.5%以下が最も好ましい。
 CaOは、ガラス原料の溶解性を向上させる成分である。さらに上述のように電気陰性度が高いため3配位のホウ素の割合を高めることができる。本実施形態においてCaOの含有量は、0.0%以上、5.0%以下であることが好ましい。CaOを含有させる場合、その含有量は0.20%以上がより好ましく、0.50%以上がさらに好ましく、0.70%以上が特に好ましく、1.0%以上が最も好ましい。これによりガラスの原料の溶解性や車両用窓ガラス、特にウィンドシールド等の成形性が向上する。
 また、CaOの含有量を5.0%以下にすることで、ガラスの密度の増加が避けられ、低脆性になるのを抑制し、強度が維持される。さらに3配位のホウ素の割合を低く抑えられる。CaOの含有量は、4.0%以下がより好ましく、3.5%以下がさらに好ましく、3.0%以下が特に好ましく、2.5%以下が最も好ましい。
 SrOは、ガラス原料の溶解性を向上させる成分である。さらに上述のようにMgやCaよりも電気陰性度が低いため4配位のホウ素の割合を高めることができる。一方でガラスの比重の増加や低脆性となりガラスの強度が低下するおそれがあるため、SrOは積極的には含有させないことが好ましい。本実施形態においてSrOを含有させる場合、その含有量は0.10%以上がより好ましく、0.20%以上がさらに好ましく、0.30%以上が特に好ましく、0.40%以上が極めて好ましく、0.50%以上が最も好ましい。これによりガラスの原料の溶解性や車両用窓ガラス、特にウィンドシールド等の成形性が向上する。
 また、SrOの含有量は5.0%以下が好ましい。SrOの含有量を5.0%以下にすることで、ガラスの比重の増加を抑制できる。また、ガラスの密度の増加が避けられ、低脆性になるのを抑制し、強度が維持される。SrOの含有量は、4.0%以下がより好ましく、3.0%以下がさらに好ましく、2.0%以下が特に好ましく、1.0%以下が最も好ましい。すなわち、SrOの含有量は0.0%以上、5.0%以下であることが好ましい。
 BaOは、ガラス原料の溶解性を向上させる成分である。さらに上述のようにMgやCaよりも電気陰性度が低いため4配位のホウ素の割合を高めることができる。一方でガラスの比重の増加や低脆性となりガラスの強度が低下するおそれがあるため積極的には含有させないことが好ましい。BaOを含有させる場合は、その含有量は0.10%以上がより好ましく、0.20%以上がさらに好ましく、0.30%以上が特に好ましく、0.40%以上が極めて好ましく、0.50%以上が最も好ましい。これによりガラスの原料の溶解性や車両用窓ガラス、特にウィンドシールド等の成形性が向上する。
 また、BaOの含有量は5.0%以下が好ましい。BaOの含有量を5.0%以下にすることで、ガラスの比重の増加を抑制できる。また、ガラスの密度の増加が避けられ、低脆性になるのを抑制し強度が維持される。BaOの含有量は4.0%以下がより好ましく、3.0%以下がさらに好ましく、2.0%以下が特に好ましく、1.0%以下が最も好ましい。すなわち、BaOの含有量は0.0%以上、5.0%以下であることが好ましい。
 本実施形態においてSiO+Al+B、すなわちSiO含有量とAl含有量とB含有量の合計は、89%以上であることが好ましい。SiO+Al+Bが89%以上であることにより、ガラスの比重が低下し、さらにガラスの耐候性や耐ヤケ性が向上するほか、ガラスの線膨張係数が高くなりすぎることを抑制できるため、車両用・建築用の窓ガラスとして好適となる。SiO+Al+Bは、90%以上がより好ましく、91%以上が特に好ましい。
 SiO+Al+Bは、ガラスの原料の溶解性や車両用窓ガラス、特にウィンドシールド等の成形性の向上の観点から、95%以下が好ましく、94%以下がより好ましく、93%以下がさらに好ましい。すなわち、SiO+Al+Bは、89%以上、95%以下が好ましい。
 本実施形態においてLiO、NaOおよびKOの含有量の合計(以下、ROと称することがある)は、5.0%以上であることが好ましい。ROが5.0%以上であることにより、4配位のホウ素の割合を増加させるだけでなく、ヤング率が高くなり、さらにガラスの粘性が低下し、成形性が向上するため、車両用窓ガラス、特にウィンドシールドとして好ましい。また線膨張係数をガラスが熱割れしない範囲で高めることができ風冷強化処理を行うことでガラスの強度を向上できる。ROは、6.0%以上がより好ましく、6.5%以上がさらに好ましく、7.0%以上が特に好ましく、7.5%以上が最も好ましい。
 ROは、耐ヤケ性の向上や4配位ホウ素の割合が多くなりすぎることを抑える観点から、10%以下が好ましく、9.5%以下がさらに好ましく、9.0%以下が特に好ましい。すなわち、ROは5.0%以上、10%以下が好ましい。
 また、LiO、NaOおよびKOの中で、LiOは分子量が最も小さくガラスの軽量化に寄与するほか、ガラスの粘性低下やヤング率向上への寄与も大きいため、LiO、NaOおよびKOの中でも、LiOを含有することが好ましい。さらにアルカリ混合効果による耐ヤケ性向上や分相、失透抑制の観点から2種類以上のアルカリ金属成分を含有することが好ましい。
 本実施形態において、MgO、CaO、SrO、およびBaOの含有量の合計(以下、ROと称することがある)を表す。ROは、0.0%以上、5.0%以下であることが好ましい。ROが5.0%以下であれば、ガラスの脆性が低くなることを抑えガラスの強度を維持したままホウ素の配位数を制御できる。ROは4.5%以下がより好ましく、4.0%以下がさらに好ましく、3.5%以下がよりさらに好ましく、3.0%以下がより一層好ましく、2.5%以下が特に好ましく、2.0%以下が最も好ましい。
 また、車両用窓ガラス、特にウィンドシールドの成形性向上の観点から、ROは0.20%以上がより好ましく、0.50%以上がさらに好ましく、1.0%以上が特に好ましい。
 本実施形態のガラスは、Feに換算した全鉄中のFeに換算した2価の鉄の質量割合(%)(以下、Fe-Redoxという)が10%以上であることが好ましい。Fe-Redoxの値は、Fe換算の全鉄含有量に対するFe換算のFe2+含有量の割合である。そのため、ガラス中のO濃度を表す指標であり、酸化還元状態を表す。
 本実施形態のガラスは、Fe-Redoxが10%以上であることにより近赤外域に吸収をもつFe2+含有量を高めることができるため、その結果、近赤外域の透過率が低下し遮熱性を向上できる。Fe-Redoxは、14%以上がより好ましく、16%以上がさらに好ましく、18%以上が特に好ましい。また、Fe-Redoxは、70%以下であることが好ましい。Fe-Redoxが70%以下であることにより、ガラス中に存在するマイナス2価の硫黄イオンS2-と3価の鉄イオンFe3+の結合によって生じるアンバー発色を抑制し、可視域の透過率の低下を抑えグレー色のガラスを維持できる。Fe-Redoxは、65%以下がより好ましく、60%以下がさらに好ましく、55%以下が特に好ましい。すなわち、Fe-Redoxは10%以上70%以下が好ましい。
 Fe-Redoxは、ガラスの原料構成や溶解温度、コークスや塩化アンモニウムなどの還元剤を用いることでガラスの融液の酸化還元度を制御し調整できる。
 本実施形態のガラスは、上記のSiO、Al、B、MgO、CaO、SrO、BaO、LiO、NaO、KO、Fe以外の成分(以下、「その他成分」ともいう)を含んでいてもよく、含有する場合、その合計含有量は6.0%以下が好ましい。
 その他の成分は、例えば、ZrO、Y,TiO、CeO、Nd、GaO、GeO、MnO、NiO、Cr、V、Er、Au、AgO、CuO、CdO、MoO、SO、Cl、F、SnO、Sbなどが挙げられ、金属イオンでもよく、酸化物でもよい。その他成分は諸目的(例えば清澄および着色)のために合計で6.0%以下含有し得る。その他成分の含有量の合計が6.0%を超えると、SiO+Al+Bが89%を下回り、ガラスの比重の増加や、耐候性や耐ヤケ性の低下のおそれがあるほか、RO量が5.0%を下回り3配位のホウ素の割合の増加やヤング率の低下、ガラスの粘性が高くなるおそれがある。その他成分の含有量は、4.0%以下がより好ましく、2.0%以下がさらに好ましく、1.0%以下がよりさらに好ましく、0.50%以下が特に好ましく、0.10%以下が最も好ましい。
 また、ErはSeと同様にガラスに赤みを加える効果があるが、希少な元素でありコストが高く、後述のフロート法、ロールアウト法、ダウンドロー法などの大量生産プロセスに使用するには埋蔵量の観点からも適さないため、含有量は0.0015%未満が好ましく、実質的に含有しないことがさらに好ましい。また、環境への影響を防ぐため、As、PbOの含有量は、それぞれ0.0015%未満が好ましく、実質的に含有しないことがさらに好ましい。
 本実施形態のガラスは、NiOを含有させると、NiSの生成によりガラス破壊がもたらされ得るため、その含有量は0.0080%以下であることが好ましい。本実施形態のガラスにおけるNiOの含有量は、0.0040%以下がより好ましく、0.0020%以下がさらに好ましく、NiOを実質的に含有しないことが特に好ましい。
 本実施形態のガラスはTiOを含んでもよい。TiOは、紫外域に吸収をもつため紫外線透過率Tuvを低下させUVカット性能を向上させる。本実施形態のガラスがTiOを含む場合、その含有量は0.010%以上が好ましく、0.040%以上がより好ましく、0.075%以上がさらに好ましく、0.15%以上が特に好ましい。TiOは可視域の光に対して着色をもつため、可視光透過率Tvの低下やガラスの色味がグレーから褐色に変化するおそれがある。本実施形態のガラスがTiOを含む場合、0.80%以下が好ましく、0.50%以下がより好ましく、0.40%以下がさらに好ましく、0.30%以下が特に好ましい。すなわち、TiOの含有量は0.0%以上、0.80%以下が好ましい。
 本実施形態のガラスはCeOを含んでもよい。CeOは紫外域に吸収をもつため紫外線透過率Tuvを低下させUVカット性能を向上させる。本実施形態のガラスがCeOを含む場合、その含有量は0.010%以上が好ましく、0.020%以上がより好ましく、0.040%以上がさらに好ましく、0.070%以上が特に好ましい。CeOは紫外域の光を吸収することでソーラリゼーションが生じ、可視域の透過率が低下しガラスの色味がグレー色ではなくなるおそれがある。本実施形態のガラスがCeOを含む場合、0.25%以下が好ましく、0.18%以下がより好ましく、0.14%以下がさらに好ましく、0.10%以下が特に好ましい。すなわち、CeOの含有量は0.0%以上、0.25%以下が好ましい。
 本実施形態のガラスはCrを含んでもよい。Crは、酸化剤として作用して、Fe2+量を制御できる。本実施形態のガラスがCrを含む場合、その含有量は0.0020%以上が好ましく、0.0040%以上がより好ましい。Crは可視域の光に対して着色をもつため、可視光透過率の低下のおそれがある。本実施形態のガラスがCrを含む場合、0.020%以下が好ましく、0.016%以下がより好ましく、0.012%以下がさらに好ましく、0.0080%以下が特に好ましい。すなわち、Crの含有量は0.0%以上、0.020%以下が好ましい。
 本実施形態のガラスはSnOを含んでもよい。SnOは、還元剤として作用して、FeO量を制御できる。本実施形態のガラスがSnOを含む場合、その含有量は0.010%以上が好ましく、0.040%以上がより好ましく、0.060%以上がさらに好ましく、0.080%以上が特に好ましい。一方、ガラス製造時にSnO由来の欠点を抑制するために、本実施形態のガラスにおけるSnOの含有量は、0.40%以下が好ましく、0.30%以下がより好ましく、0.20%以下がさらに好ましく、0.15%以下が特に好ましい。すなわち、SnOの含有量は0.0%以上、0.40%以下が好ましい。
 本実施形態のガラスはSOを含んでもよい。SOは清澄剤として作用するためガラスの泡品質を向上させる。本実施形態のガラスがSOを含む場合、その含有量は0.0010%以上が好ましく、0.0040%以上がより好ましく、0.0070%以上がさらに好ましく、0.015%以上が特に好ましい。SOはFe-Redoxが高い場合アンバー発色が生じガラスが褐色になるおそれがある。本実施形態のガラスがSOを含む場合、0.070%以下が好ましく、0.060%以下がより好ましく、0.050%以下がさらに好ましく、0.040%以下が特に好ましい。すなわち、SOの含有量は0.0%以上、0.070%以下が好ましい。
 本実施形態のガラスはClを含んでもよい。Clは清澄剤として作用するためガラスの泡品質を向上させる。本実施形態のガラスがClを含む場合、その含有量は0.080%以上が好ましく、0.15%以上がより好ましく、0.20%以上がさらに好ましく、0.30%以上が特に好ましく、0.40%以上が最も好ましい。Clの含有量が過剰に多いとガラスの融液から揮散したClガスが周囲の部材を腐食するおそれがある。本実施形態のガラスがClを含む場合、1.5%以下が好ましく、1.2%以下がより好ましく、1.0%以下がさらに好ましく、0.80%以下が特に好ましい。すなわち、Clの含有量は0.0%以上、1.5%以下が好ましい。
<その他の特性>
(可視光透過率:Tv)
 本実施形態に係るガラスは、厚さを2.0mmに換算したときの、ISO-9050:2003の規定に従いD65光源を用いて分光光度計により透過率を測定して算出した可視光透過率Tvが75%以上であることが好ましい。Tvが75%以上であることによって、優れた透明性を有するため、車両用のウィンドシールドやドアガラスとして好適に用いられる。Tvは、78%以上がより好ましく、80%以上がさらに好ましい。Tvの上限は特に限定されないが、例えば91%以下である。すなわち、Tvは例えば75%以上、91%以下である。
 また、本実施形態に係るガラスは、上述したように3配位ホウ素と4配位ホウ素の割合を調整することにより、可視域の光の吸収を調整できるため、本実施形態に係るガラスを車両用のリアガラスとして用いることもできる。本実施形態に係るガラスを車両用のリアガラスとして用いる場合、ガラスのTvは75%未満であることが好ましく、72%以下がより好ましく、70%以下がさらに好ましい。
 本実施形態のガラスは、日射透過率Teが低く、かつ、可視光透過率Tvが高いことが好ましい。すなわち、Tv/Teが1.05以上であることが好ましい。Tv/Teが1.05以上であることにより、優れた透明性と遮熱性を示すガラスとなり、車両用・建築用の窓ガラスとしてより好適となる。Tv/Teの上限は特に限定されないが、例えば、1.30以下である。すなわち、Tv/Teは例えば1.05以上、1.30以下である。
(紫外線透過率:Tuv)
 本実施形態のガラスは、紫外線の透過性は低いことが好ましく、厚さを2.0mmに換算したとき、ISO-9050:2003で定義される紫外線透過率Tuvは、65%以下が好ましい。Tuvは60%以下がより好ましく、55%以下がさらに好ましく、50%以下が特に好ましく、45%以下が最も好ましい。また、Tuvは、例えば5%以上である。すなわち、Tuvは例えば5%以上、65%以下である。
(ヤング率)
 本実施形態のガラスのヤング率は、65GPa以上が好ましく、68GPa以上がより好ましく、70GPa以上がさらに好ましく、72GPa以上が特に好ましい。ヤング率が上記範囲であることで、ガラスが高い剛性を有し、車両用の窓ガラス等に対してより好適となる。
 一方、ヤング率が高すぎるとガラスが変形しにくくなるため、飛び石が衝突したときのエネルギーを吸収できずにガラスが割れるおそれがある。そのため、ヤング率は80GPa以下であり、78GPa以下がより好ましく、75GPa以下がさらに好ましい。すなわち、ヤング率は65GPa以上、80GPa以下が好ましい。
(T11
 本実施形態のガラスにおいて、ガラス粘度が1011[dPa・s]となる温度T11が640℃以下であることが好ましい。T11が640℃以下であることにより、低い温度での曲げ加工成形が可能となる。
 T11を640℃以下にする方法としては、例えば、ガラスの成分のB、ROおよびROの含有量を増やし、Alの含有量を減らす方法、ROの中でもLiOを含有させる方法が挙げられる。本実施形態のガラスにおいて、T11は620℃以下がより好ましく、615℃以下がさらに好ましく、610℃以下がよりさらに好ましく、605℃以下が特に好ましく、600℃以下が最も好ましい。
 また、ウィンドシールドに印刷される黒セラミックの焼成温度の観点から、T11は560℃以上が好ましく、570℃以上がより好ましく、575℃以上がさらに好ましく、580℃以上が特に好ましい。すなわち、T11は560℃以上、640℃以下が好ましい。
(T12
 本実施形態のガラスにおいて、ガラス粘度が1012[dPa・s]となる温度T12が600℃以下であることが好ましい。T12が600℃以下であることにより、低い温度での曲げ加工成形が可能となる。
 T12を600℃以下にする方法としては、例えば、ガラスの成分のB、ROおよびROの含有量を増やし、Alの含有量を減らす方法、ROの中でもLiOを含有させる方法が挙げられる。本実施形態のガラスにおいて、T12は595℃以下がより好ましく、590℃以下がさらに好ましく、585℃以下がよりさらに好ましく、580℃以下が特に好ましく、575℃以下が最も好ましい。
 また、ウィンドシールドに印刷される黒セラミックの焼成温度の観点から、T12は540℃以上が好ましく、545℃以上がより好ましく、550℃以上がさらに好ましく、555℃以上が特に好ましく、560℃以上が最も好ましい。すなわち、T12は540℃以上、600℃以下が好ましい。
(平均線膨張係数)
 本実施形態のガラスの50℃~350℃における平均線膨張係数は、40×10-7/℃以上であることが好ましい。本実施形態のガラスは、平均線膨張係数が40×10-7/℃以上であることで、風冷強化による処理が容易になるほか、黒セラミックとの線膨張係数の差が小さくなり黒セラミックの割れを抑制できる。平均線膨張係数を上記範囲とするには、ガラスの成分のB、ROおよびROの含有量を増やし、Alの含有量を減らす方法が挙げられる。
 本実施形態のガラスの50℃~350℃における平均線膨張係数は、45×10-7/℃以上がより好ましく、47×10-7/℃以上がさらに好ましく、50×10-7/℃以上が特に好ましく、52×10-7/℃以上が最も好ましい。
 一方、本実施形態のガラスは、平均線膨張係数が大きくなりすぎるとガラスの成形工程、徐冷工程、またはウィンドシールドの成形工程において、ガラスの温度分布に起因する熱応力が発生しやすくなり、ガラスの熱割れが発生するおそれがある。また、本実施形態のガラスは、平均線膨張係数が大きくなりすぎるとまた車両用窓ガラスや建築用窓ガラスとして用いた場合にヒートショックによる割れが発生するおそれもある。本実施形態のガラスの50℃~350℃における平均線膨張係数は、70×10-7/℃以下であればよく、65×10-7/℃以下が好ましく、63×10-7/℃以下がより好ましく、60×10-7/℃以下がさらに好ましい。すなわち、50℃~350℃における平均線膨張係数は、40×10-7/℃以上、70×10-7/℃以下が好ましい。
(比重)
 本実施形態のガラスの比重は、2.40以下であることが好ましい。
 車両用や建築用窓ガラスとして広く用いられるソーダライム系ガラスは比重が約2.51であるが、本実施形態のガラスは、ソーダライム系ガラスよりも比重の小さいアルカリボロシリケートガラスであるため軽量であり、燃費や電費の観点から、車両用・建築用の窓ガラスとしてより好適に用い得る。本実施形態のガラスの比重は、2.38以下がより好ましく、2.36以下がさらに好ましく、2.34以下が特に好ましい。また、本実施形態のガラスの比重は、車内の遮音性を高める観点から2.25以上が好ましく、2.27以上がさらに好ましい。すなわち、ガラスの比重は、2.25以上、2.40以下が好ましい。
 また、本実施形態のガラスにおいて、T2.5は、1600℃以下が好ましい。また、本実施形態のガラスにおいて、Tは、1200℃以下が好ましく、T-Tは、-50℃以上が好ましい。なお、本明細書において、T2.5は、ガラス粘度が102.5dPa・sとなる温度を表し、Tは、ガラス粘度が10dPa・sとなる温度を表し、Tはガラスの液相温度を表す。
 本実施形態のガラスは、T2.5またはTがこれら所定温度より大きくなると、フロート法、ロールアウト法、ダウンドロー法等によって大きなガラスを製造することが困難になる。本実施形態のガラスにおいて、T2.5は、1550℃以下がより好ましく、1500℃以下がさらに好ましく、1480℃以下が特に好ましい。本実施形態のガラスにおいて、Tは、1180℃以下がより好ましく、1150℃以下がさらに好ましく、1125℃以下が特に好ましい。
 また、本実施形態のガラスのT2.5およびTの下限は特に限定されないが、耐候性や耐ヤケ性を維持するためには、典型的にはT2.5は1300℃以上、Tは1000℃以上である。本実施形態のガラスのT2.5は1350℃以上が好ましく、1380℃以上がより好ましい。本実施形態のガラスのTは、1020℃以上が好ましく、1050℃以上がより好ましい。すなわち、T2.5は1300℃以上、1600℃以下が好ましく、Tは1000℃以上、1200℃以下が好ましい。
 さらに、フロート法での製造を可能とするため、本実施形態のガラスのT-Tは、-50℃以上が好ましい。この差が-50℃以上であれば、ガラス成形時にガラス中に失透が発生することを抑制でき、ガラスの機械的特性が向上する、さらに、透明性が向上し品質の優れたガラスが得られる。本実施形態のガラスのT-Tは、-25℃以上がより好ましく、0℃以上がさらに好ましく、20℃以上が特に好ましい。
 また、本実施形態のガラスは、Tが460℃以上、580℃以下が好ましい。なお、本明細書において、Tは、ガラス転移点を表す。Tがこの所定温度範囲内であれば、通常の製造条件の範囲内でガラスの曲げ加工ができる。本実施形態のガラスのTが460℃より低いと、成形性には問題は生じないが、アルカリ含有量、あるいはアルカリ土類含有量が大きくなりすぎて、ガラスの熱膨張が過大になったり、耐候性や耐ヤケ性が低下する等の問題が発生しやすくなったりする。また、本実施形態のガラスのTが460℃より低いと、成形温度域において、ガラスが失透し成形できないおそれがある。
 本実施形態のガラスのTは、480℃以上がより好ましく、490℃以上がさらに好ましく、500℃以上が特に好ましい。一方、ガラス曲げ加工時の製造を容易にする観点から、本実施形態のガラスのTは、570℃以下がより好ましく、565℃以下がさらに好ましく、560℃以下が特に好ましい。
 本実施形態のアルカリボロシリケートガラスにおいて、該ガラス中に水分が存在すると、T11およびT12を下げる効果があり、ガラスの曲げ成形が容易になる。そのため、本実施形態のアルカリボロシリケートガラスは、水分を一定程度含有することが好ましい。ガラス中の水分は一般的にβ-OH値という値で表現でき、β-OH値は0.050mm-1以上が好ましく、0.10mm-1以上がより好ましく、0.15mm-1以上がさらに好ましく、0.20mm-1以上が特に好ましい。β-OHは、FT-IR(フーリエ変換赤外分光光度計)を用いて測定したガラスの透過率より、下記式によって得られる。
 β-OH=(1/X)log10(T/T)[mm-1
  X:サンプルの厚さ[mm]
  T:参照波数4000cm-1における透過率[%]
  T:水酸基吸収波数3600cm-1付近における最小透過率[%]
 一方、ガラス中の水分量が多すぎると、ガラスのネットワーク構造に影響して飛び石耐性が悪化するおそれがある。そのため、本実施形態のアルカリボロシリケートガラスのβ-OH値は、0.70mm-1以下が好ましく、0.60mm-1以下がより好ましく、0.50mm-1以下がさらに好ましく、0.40mm-1以下が特に好ましい。すなわち、β-OH値は0.050mm-1以上、0.70mm-1以下が好ましい。
 本実施形態のガラスは、厚さを2.00mmに換算したとき、D65光源を用いJIS Z 8781-4:2003で定義されるLは84.0以上が好ましく、86.0以上がより好ましく、88.0以上がさらに好ましく、90.0以上がさらに好ましい。また、Lの上限は特に限定されないが100.0以下である。すなわち、Lは84.0以上、100.0以下が好ましい。
 本実施形態のガラスは、厚さを2.00mmに換算したとき、D65光源を用いJIS Z 8781-4:2003で定義されるaは-5.0以上が好ましく、-3.0以上がより好ましく、-2.0以上がさらに好ましい。また、aは2.0以下が好ましく、1.0以下がより好ましく、0.0以下がさらに好ましい。すなわち、aは-5.0以上、2.0以下が好ましい。
 さらに、厚さを2.00mmに換算したとき、D65光源を用いてJIS Z 8781-4:2003で定義されるbは-5.0以上が好ましく、-3.0以上がより好ましく、-1.0以上がさらに好ましい。また、bは5.0以下が好ましく、3.0以下がより好ましく、2.0以下がさらに好ましく、1.5以下が特に好ましい。すなわち、bは-5.0以上、5.0以下が好ましい。
 本実施形態のガラスは、L、aおよびbが上記範囲であることにより、意匠性に優れ、車両用・建築用の窓ガラスとして好適に用い得る。
 さらに、本実施形態のガラスはc={(a+(b1/2で求められるcが3.5以下であることが好ましく、3.0以下がより好ましく、2.5以下がさらに好ましく、2.0以下が特に好ましい。cが小さいほど彩度が低くなり、ガラスが濃いグレー色となる。また、cの下限は特に限定されないが、通常0.0以上である。すなわち、cは0.0以上、3.5以下であることが好ましい。
 本実施形態のガラスは、例えば、公知のフロート法で成形されたフロートガラスであることが好ましい。フロート法では、溶かしたガラス素地を錫等の溶融金属の上に浮かべ、厳密な温度操作で厚さ、板幅の均一なガラスを成形できるほか大面積のガラスを得ることもできる。
 または公知のロールアウト法やダウンドロー法で成形されたガラスでもよく、表面が研磨され、板厚の均一なガラスとしてもよい。ここでダウンドロー法は、スロットダウンドロー法とオーバーフローダウンドロー法(フュージョン法)とに大別されるが、いずれも、成形体から溶融ガラスを連続的に流れ落として、帯板状のガラスリボンを形成する手法である。
 本実施形態のガラスの形状は特に限定されないが、主面の面積は250000mm以上が好ましく、450000mm以上がより好ましく、900000mm以上がさらに好ましい。ガラスの面積が上記範囲であると、様々な車種に対応できる。また、ガラスの面積が大きすぎると、ガラスの取り扱いが困難になる、加熱時の温度分布が不均一になる、曲げ成形後の寸法精度が悪くなるなど、曲げ成形の難易度があがるため、本実施形態のガラスは、主面の面積が、4000000mm以下が好ましく、3500000mm以下がより好ましく、3000000mm以下がさらに好ましい。すなわち、本実施形態のガラスは、主面の面積が250000mm以上、4000000mm以下であることが好ましい。
 また、本実施形態のガラスは、剛性向上や飛び石、車両のカギなどがガラスに接触した際の強度を高めるために、厚みが0.50mm以上であることが好ましい。ガラスの厚みは、1.00mm以上がより好ましく、1.50mm以上がさらに好ましく、2.00mm以上が特に好ましく、2.50mm以上が最も好ましい。また、ガラスの重量増加にともなう燃費、電費の増加抑制の観点から、本実施形態のガラスは、厚みが4.00mm以下であることが好ましく、3.80mm以下であることがより好ましく、3.50mm以下であることがさらに好ましい。すなわち、ガラスの厚みは、0.50mm以上、4.00mm以下が好ましい。
 本実施形態のガラスは風冷強化や化学強化による強化処理が施されたガラスであってもよい。上記の処理を行うことでガラスの強度を高めることができる。
 ここで、風冷強化とは、熱強化処理によってガラス表面に圧縮応力層を形成する処理である。具体的には、均一に加熱したガラス板を軟化点付近の温度から急冷し、ガラス表面とガラス内部との温度差によってガラス表面に圧縮応力を形成する。圧縮応力はガラスの表面全体に均一に生じ、ガラスの表面全体に均一な深さの圧縮応力層が形成される。熱強化処理は、化学強化処理に比べて、板厚の厚いガラス板の強化に適している。
 また、化学強化とは、ガラス転移点以下の温度で、イオン交換によりガラス表面のイオン半径が小さなアルカリ金属イオン(典型的には、LiイオンまたはNaイオン)を、イオン半径のより大きなアルカリ金属イオン(典型的には、NaイオンまたはKイオン)に交換することで、ガラス表面に圧縮応力層を形成する処理である。化学強化処理方法は公知の方法によって実施でき、例えばイオン交換法などがある。イオン交換法は、ガラス板を処理液(例えば硝酸カリウム溶融塩)に浸漬し、ガラスに含まれるイオン半径の小さなイオン(例えばNaイオン)をイオン半径の大きなイオン(例えばKイオン)に交換することで、ガラス表面に圧縮応力を生じさせる。
 ガラス板表面の圧縮応力(以下、表面圧縮応力CSともいう)の大きさ、ガラス板表面に形成される圧縮応力層の深さDOLは、それぞれ、ガラス組成、化学強化処理時間、および化学強化処理温度により調整できる。
[曲げガラス]
 本実施形態に係る曲げガラスは、上記アルカリボロシリケートガラスからなる。すなわち、上記アルカリボロシリケートガラスを曲げて成形される。本実施形態の曲げガラスは、平板形状の上記アルカリボロシリケートガラスを重力成形又はプレス成形などにより湾曲形状に成形した曲げガラスであってよい。
 本実施形態の曲げガラスは、所定の曲率で湾曲するガラスであって、上下方向または左右方向のいずれか一方向にのみ湾曲する単曲ガラスでもよいし、上下方向または左右方向の両方向に湾曲する複曲ガラスでもよい。
 本実施形態の曲げガラスは、曲率半径の最小値が500mm以上100000mm以下であることが好ましい。曲げガラスの曲率半径は、サンプルを、レーザー変位計(神津精機社製のDyvoce)を用いて、両面差分モードによる自重たわみ補正により求められたサンプル本来が持つ反り量を元に形状シミュレーションにより算出し、シミュレーションで得られた形状から曲率半径が求められる。
[曲げガラスの製造方法]
 本実施形態に係る曲げガラスの製造方法においては、上記アルカリボロシリケートガラスを加熱して曲げることで、曲げガラスを成形する。
 曲げガラスの成形方法としては、加熱したガラスを成形型に載置した状態で上方よりプレス手段によって押圧して曲げ成形する方法が挙げられる。
 また、所望の湾曲面に対応する曲げ成形面を有する成形型に、平板状のガラスを載置し、この状態で成形型を加熱炉内に搬入し、加熱炉内でガラスをガラス軟化点温度付近まで加熱する方法も挙げられる。この成形方法によれば、ガラスは、軟化に伴い自重によって成形型の曲げ成形面に沿って湾曲するため、所望の湾曲面を有するガラスに製造される。
 本実施形態においては、生産性向上および成形後の面精度向上の観点から、上記プレス手段による曲げ成形が好ましい。上記プレス手段による曲げ成形方法は特に制限されず、例えば、国際公開第2016/093031号等に記載の方法を適宜採用できる。以下、上記プレス手段による曲げ成形方法について、例示的に説明する。
 まず、本実施形態のアルカリボロシリケートガラスを搬送コンベア等でプレスエリアまで搬送する。つづいて、プレスエリアにおいて、アルカリボロシリケートガラスを曲げ成形可能な温度に加熱して軟化させる。
 ここで、曲げ成形可能な温度としては、例えば、ガラス粘度が1011[dPa・s]となる温度T11以上である。なお、当該加熱は、搬送コンベア等でプレスエリアまで搬送する過程で、加熱炉でヒータなどにより行ってもよい。
 また、加熱温度(≧T11)を維持した条件における曲げ成形時間としては、例えば、1秒以上に設定できる。
 プレスエリアの所定位置には、プレス用下型(雌型)とプレス用上型(雄型)とが配設されており、雌型の上面形状および雄型の下面形状は、搬送方向や及び直交方向に曲げ成形されるアルカリボロシリケートガラスの湾曲形状に対応する。雌型は、搬送コンベアの下方の待機位置と上方のプレス位置との間で昇降可能であり、搬送コンベアからガラスが移載された後、ガラスを載置された状態で、所定の上昇位置から搬送コンベアの上方のプレス位置まで上昇することで、アルカリボロシリケートガラスがプレス成形される。
 つづいて、プレス成形されたアルカリボロシリケートガラスを搬送シャトル等で冷却エリアへ搬送する。冷却エリアでは、アルカリボロシリケートガラスに冷却エアを吹き付ける等によりアルカリボロシリケートガラスを冷却する。
 以上の工程により、曲げガラスが成形される。なお上記では、本実施形態のアルカリボロシリケートガラスの曲げ成形について説明したが、後述する合わせガラスの状態で上記曲げ成形を行ってもよい。
[合わせガラス]
 本実施形態に係る合わせガラスは、第1ガラス板と、第2ガラス板と、第1ガラス板と第2ガラス板の間に挟持される中間膜と、を有し、第1ガラス板が、上記アルカリボロシリケートガラス、または上記曲げガラスである。
 図4は、本実施形態に係る合わせガラス10の一例を示す図である。合わせガラス10は、第1ガラス板11と、第2ガラス板12と、第1ガラス板11と第2ガラス板12の間に挟持される中間膜13と、を有する。なお、本実施形態に係る合わせガラス10は、図4の態様に限定されず、本発明の趣旨を逸脱しない範囲で変更が可能である。例えば、中間膜13は、図4に示すように1層で形成されてもよく、2層以上で形成されてもよい。また、本実施形態に係る合わせガラス10は、3枚以上のガラス板を有してもよく、その場合、隣り合うガラス板間に有機樹脂等を介してもよい。以下、本実施形態に係る合わせガラス10は、ガラス板が第1ガラス板11と第2ガラス板12の2枚のみを有し、中間膜13を挟持する構成として説明する。
 本実施形態の合わせガラスにおいて、曲げ成形性の観点から、第2ガラス板12は、上記アルカリボロシリケートガラス、または上記の曲げガラスであることが好ましい。第1ガラス板11と第2ガラス板12が上記アルカリボロシリケートガラス、または上記の曲げガラスである場合、第1ガラス板11および第2ガラス板12は同一組成のガラス板を用いてもよいし、異なる組成のガラス板を用いてもよい。
 第2ガラス板12が上記アルカリボロシリケートガラスではない場合、当該ガラス板の種類は特に制限されず、車両用窓ガラス等に用いられる従来公知のガラス板が使用可能である。具体的には、アルカリアルミノシリケートガラス、アルカリアルミノボロシリケートガラス及びソーダライムガラス等が挙げられる。これらのガラス板は透明性が損なわれない程度に着色されてもよいし、着色されていなくてもよい。
 また、本実施形態の合わせガラスにおいて、第2ガラス板12は、Alを1.0%以上含有するアルカリアルミノシリケートガラス、またはAlを1.0%以上含有しBを1.0%以上含有するアルカリアルミノボロシリケートガラスでもよい。第2ガラス板12を上記アルカリアルミノシリケートガラスまたはアルカリアルミノボロシリケートガラスとすることで、後述する通り化学強化が可能となり、高強度化できる。
 上記アルカリアルミノシリケートガラスおよびアルカリアルミノボロシリケートガラスは、耐候性、耐ヤケ性および化学強化特性向上の観点から、Alの含有量は5.0%以上がより好ましく、8.0%以上がさらに好ましく、10%以上が特に好ましい。また、ガラスの粘性を下げ製造しやすくするために、Alの含有量は18%以下が好ましく、15%以下がより好ましい。
 上記アルカリアルミノシリケートガラスおよびアルカリアルミノボロシリケートガラスは、化学強化の観点から、ROの含有量は10%以上が好ましく、12%以上がより好ましく、13%以上がさらに好ましい。また、耐ヤケ性向上の観点から、ROの含有量は22%以下が好ましく、20%以下がより好ましく、18%以下がさらに好ましい。
 上記アルカリアルミノボロシリケートガラスは、飛び石、車両のカギなどがガラスに接触した際の強度を高めるために、Bの含有量は2.0%以上が好ましく、3.0%以上がより好ましく、4.0%以上がさらに好ましい。また、アルカリアルミノボロシリケートガラスにおいて、化学耐久性や耐候性向上の観点から、Bの含有量は9.0%以下が好ましく、8.0%以下がより好ましく、7.0%以下がさらに好ましい。
 上記アルカリアルミノシリケートガラスとしては、具体的には以下の組成のガラスが例示できる。各成分は酸化物基準のモル百分率表示で示される。
 61%≦SiO≦77%
 1.0%≦Al≦20%
 0.0%≦MgO≦15%
 0.0%≦CaO≦10%
 0.0%≦SrO≦1.0%
 0.0%≦BaO≦1.0%
 0.0%≦LiO≦15%
 2.0%≦NaO≦15%
 0.0%≦KO≦6.0%
 0.0%≦ZrO≦4.0%
 0.0%≦TiO≦1.0%
 0.0%≦Y≦2.0%
 10%≦RO≦25%
 0.0%≦RO≦20%
(ROはLiO、NaOおよびKOの含有量の合計、ROは、MgO、CaO、SrO、およびBaOの含有量の合計を表す。)
 上記アルカリアルミノボロシリケートガラスとしては、具体的には以下の組成のガラスが例示できる。各成分は酸化物基準のモル百分率表示で示される。
 61%≦SiO≦77%
 1.0%≦Al≦20%
 1.0%≦B≦10%
 0.0%≦MgO≦15%
 0.0%≦CaO≦10%
 0.0%≦SrO≦1.0%
 0.0%≦BaO≦1.0%
 0.0%≦LiO≦15%
 2.0%≦NaO≦15%
 0.0%≦KO≦6.0%
 0.0%≦ZrO≦4.0%
 0.0%≦TiO≦1.0%
 0.0%≦Y≦2.0%
 10%≦RO≦25%
 0.0%≦RO≦20%
(ROはLiO、NaOおよびKOの含有量の合計、ROは、MgO、CaO、SrO、およびBaOの含有量の合計を表す。)
 また、本実施形態の合わせガラスにおいて、第2ガラス板12はソーダライムガラスでもよい。ソーダライムガラスとしては、Alを1.0%未満含有するソーダライムガラスでもよい。具体的には以下の組成のガラスが例示できる。各成分は酸化物基準のモル百分率表示で示される。
 60%≦SiO≦75%
 0.0%≦Al<1.0%
 2.0%≦MgO≦11%
 2.0%≦CaO≦10%
 0.0%≦SrO≦3.0%
 0.0%≦BaO≦3.0%
 10%≦NaO≦18%
 0.0%≦KO≦8.0%
 0.0%≦ZrO≦4.0%
 0.0010%≦Fe≦5.0%
 また、本実施形態の合わせガラスにおいて、第2ガラス板12は下記組成のソーダライムガラスであってもよい。各成分は酸化物基準のモル百分率表示で示される。
 60%≦SiO≦75%
 0.0%≦Al≦3.5%
 2.0%≦MgO≦11%
 2.0%≦CaO≦10%
 0.0%≦SrO≦3.0%
 0.0%≦BaO≦3.0%
 10%≦NaO≦18%
 0.0%≦KO≦8.0%
 0.0%≦ZrO≦4.0%
 0.0010%≦Fe≦5.0%
 第1ガラス板11と第2ガラス板12は厚みが等しいことが好ましい。第1ガラス板11と第2ガラス板12の厚みが同じであることにより、曲げ成形時の寸法精度が向上する。また、本実施形態においては、第1ガラス板11の厚みが第2ガラス板12の厚みよりも大きいことがより好ましい。なお、第1ガラス板11の厚みと、第2ガラス板12の厚みは異なっていてもよい。
 第1ガラス板11の厚みは、2.00mm以上であることが好ましい。第1ガラス板11の厚みが2.00mm以上であることにより、遮音性と飛び石耐性が向上する。第1ガラス板11の厚みは、2.25mm以上がより好ましく、2.50mm以上がさらに好ましく、2.75mm以上が特に好ましく、3.00mm以上が最も好ましい。また、第1ガラス板11の厚みは、5.00mm以下が好ましい。第1ガラス板11の厚みが5.00mm以下であると、合わせガラス10の重量が大きくなり過ぎず、車両に用いた場合の電費・燃費向上の点で好ましい。第1ガラス板11の厚みは、4.75mm以下がより好ましく、4.50mm以下がさらに好ましく、4.25mm以下が特に好ましく、4.00mm以下が最も好ましい。すなわち、第1ガラス板11の厚みは、2.00mm以上、5.00mm以下が好ましい。
 第2ガラス板12の厚みは、2.00mm未満であることが好ましい。第2ガラス板12の厚みが2.00mm未満であることにより、第1ガラス板11の厚みが厚くなっても合わせガラス10の重量が大きくなり過ぎず、車両に用いた場合の電費・燃費向上の点で好ましい。第2ガラス板12の厚みは、1.80mm以下がより好ましく、1.50mm以下がさらに好ましく、1.30mm以下が特に好ましく、1.10mm以下が最も好ましい。また、第2ガラス板12の厚みは、0.500mm以上が好ましい。また、第2ガラス板12の厚みが0.500mm以上であると、車内でガラスに車両のカギなどが接触した際の強度が高められる。第2ガラス板12の厚みは、0.700mm以上がより好ましく、0.800mm以上がさらに好ましく、0.900mm以上が特に好ましい。すなわち、第2ガラス板12の厚みは、0.500mm以上、2.00mm未満が好ましい。
 本実施形態の合わせガラス10において、第1ガラス板11、第2ガラス板12および中間膜13の総厚は2.80mm以上が好ましい。該総厚が2.80mm以上であることにより十分な強度が得られる。該総厚は、3.00mm以上がより好ましく、3.50mm以上がさらに好ましく、4.00mm以上がより一層好ましく、4.50mm以上が特に好ましく、4.70mm以上が最も好ましい。また、軽量化の観点から、該総厚は6.00mm以下であればよく、5.80mm以下が好ましく、5.60mm以下がより好ましく、5.40mm以下がさらに好ましい。すなわち、該総厚は、2.80mmm以上、6.00mm以下が好ましい。
 なお、本実施形態の合わせガラス10において、第1ガラス板11と第2ガラス板12の厚さは全面にわたって一定でもよく、第1ガラス板11と第2ガラス板12の一方または両方の厚さが漸減する楔形を構成する等、必要に応じて場所毎に変わってもよい。
 第1ガラス板11および第2ガラス板12の一方は、強度を向上させるため、ガラス強化を行った化学強化ガラスでもよい。化学強化処理の方法は、上述したアルカリボロシリケートガラスの化学強化処理と同様である。化学強化ガラスは、例えば、上記アルカリアルミノシリケートガラスおよび上記アルカリアルミノボロシリケートガラスを化学強化処理したものが挙げられる。
 第1ガラス板11および第2ガラス板12の形状は、平板形状でもよいし、全面または一部に曲率を有する湾曲形状でもよい。第1ガラス板11および第2ガラス板12が湾曲している場合は、上下方向または左右方向のいずれか一方向にのみ湾曲する単曲曲げ形状でもよいし、上下方向または左右方向の両方向に湾曲する複曲曲げ形状でもよい。第1ガラス板11および第2ガラス板12が複曲曲げ形状である場合は、上下方向と左右方向とで曲率半径が同じでもよいし、異なってもよい。第1ガラス板11および第2ガラス板12が湾曲している場合は、上下方向および/または左右方向の曲率半径は1000mm以上が好ましい。第1ガラス板11および第2ガラス板12の主面の形状は、搭載される車両の窓開口部に適合する形状とされる。
 本実施形態に係る中間膜13は、上記第1ガラス板11と第2ガラス板12の間に挟持される。本実施形態の合わせガラス10は、中間膜13を備えることにより、第1ガラス板11と第2ガラス板12とを強固に接着させるとともに、飛散片がガラス板に衝突した際にその衝撃力を緩和できる。
 中間膜13としては、従来車両用の合わせガラスとして用いられている合わせガラスに一般的に採用されている種々の有機樹脂を使用できる。有機樹脂としては、例えば、ポリエチレン(PE)、エチレン酢酸ビニル共重合体(EVA)、ポリプロピレン(PP)、ポリスチレン(PS)、メタクリル樹脂(PMA)、ポリ塩化ビニル(PVC)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、セルロースアセテート(CA)、ジアリルフタレート樹脂(DAP)、ユリア樹脂(UP)、メラミン樹脂(MF)、不飽和ポリエステル(UP)、ポリビニルブチラール(PVB)、ポリビニルホルマール(PVF)、ポリビニルアルコール(PVAL)、酢酸ビニル樹脂(PVAc)、アイオノマー(IO)、ポリメチルペンテン(TPX)、塩化ビニリデン(PVDC)、ポリスルフォン(PSF)、ポリフッ化ビニリデン(PVDF)、メタクリル-スチレン共重合樹脂(MS)、ポリアレート(PAR)、ポリアリルスルフォン(PASF)、ポリブタジエン(BR)、ポリエーテルスルフォン(PESF)、又はポリエーテルエーテルケトン(PEEK)等が使用可能である。その中でも、透明性と固着性の観点から、EVA、PVBが好適であり、特にPVBは遮音性を付与し得るためより好ましい。
 中間膜13の厚さは、衝撃力緩和や遮音性の観点から、0.300mm以上が好ましく、0.500mm以上がより好ましく、0.700mm以上がさらに好ましい。また、中間膜13の厚さは、可視光透過率の低下抑制の観点から、1.00mm以下が好ましく、0.900mm以下がより好ましく、0.800mm以下がさらに好ましい。また、中間膜13の厚さは、0.300mm~1.00mmの範囲が好ましく、0.700mm~0.800mmの範囲がより好ましい。
 中間膜13は、厚さが全面にわたって一定でもよいし、必要に応じて場所毎に変わってもよい。
 なお、中間膜13と、第1ガラス板11または第2ガラス板12との線膨張係数の差が大きいと、後述する加熱の工程を経て合わせガラス10を作製する場合に、合わせガラス10に割れや反りが生じ、外観不良を引き起こすおそれがある。したがって、中間膜13と、第1ガラス板11または第2ガラス板12との線膨張係数との差は、できるだけ小さい方が好ましい。中間膜13と、第1ガラス板11または第2ガラス板12との線膨張係数との差は、各々、所定の温度範囲における平均線膨張係数同士の差で示してもよい。
 特に、中間膜13を構成する樹脂は、ガラス転移点が低いため、樹脂材料のガラス転移点以下の温度範囲で、所定の平均線膨張係数差を設定してもよい。なお、第1ガラス板11または第2ガラス板12と樹脂材料との線膨張係数の差は、樹脂材料のガラス転移点以下の、所定の温度により、設定してもよい。
 また、中間膜13は、粘着剤を含む粘着剤層を用いてもよく、粘着剤としては特に限定されないが、例えばアクリル系粘着剤やシリコーン系粘着剤等を使用できる。
 中間膜13が粘着剤層である場合、第1ガラス板11と、第2ガラス板12との接合のプロセスにおいて加熱工程を経る必要がないため、上記の割れや反りが生じるおそれが少ない。
[その他の層]
 本実施形態の合わせガラス10は、第1ガラス板11、第2ガラス板12、及び中間膜13以外の層(以下「その他の層」ともいう)を本発明の効果を損なわない範囲で備えてもよい。例えば、撥水機能、親水機能、防曇機能等を付与するコーティング層や、赤外線反射膜等を備えてもよい。
 その他の層が設けられる位置は特に限定されず、合わせガラス10の表面に設けられてもよく、第1ガラス板11、第2ガラス板12、または中間膜13に挟持されるように設けられてもよい。また、本実施形態の合わせガラス10は、枠体等への取り付け部分や配線導体等を隠蔽する目的で、周縁部の一部または全部に帯状に配設される黒色セラミックス層等を備えてもよい。
 本実施形態の合わせガラス10の製造方法は、従来公知の合わせガラスと同様の方法で製造できる。例えば、第1ガラス板11、中間膜13、及び第2ガラス板12をこの順で積層し、加熱及び加圧する工程を経ることで、第1ガラス板11と第2ガラス板12とが中間膜13を介して接合された構成の合わせガラス10が得られる。
 本実施形態に係る合わせガラス10の製造方法は、例えば、第1ガラス板11及び第2ガラス板12をそれぞれ加熱・成形する工程を経た後に、中間膜13を第1ガラス板11及び第2ガラス板12の間に挿入し、加熱及び加圧する工程を経てもよい。このような工程を経ることで、第1ガラス板11と第2ガラス板12とが中間膜13を介して接合された構成の合わせガラス10としてもよい。
 本実施形態の合わせガラス10は、D65光源を用いてISO-9050:2003で定義される可視光透過率Tvは70%以上が好ましい。Tvは71%以上がより好ましく、72%以上がさらに好ましい。また、Tvは、例えば90%以下である。すなわち、Tvは、例えば70%以上、90%以下である。
 本実施形態に係る合わせガラス10は、ISO-13837:2008 convention Aで定義され、風速4m/sで測定される全日射透過率Ttsは70%以下が好ましい。本実施形態に係る合わせガラス10の全日射透過率Ttsが70%以下であることで、十分な遮熱性が得られる。Ttsは68%以下がより好ましく、66%以下がさらに好ましい。また、Ttsは、例えば55%以上である。すなわち、Ttsは、例えば55%以上、70%以下である。
 本実施形態に係る合わせガラス10は、D65光源を用いてJIS Z 8781-4:2013で定義される色度aは-5.0以上が好ましく、-4.0以上がより好ましく、-3.0以上がさらに好ましく、-2.0以上が特に好ましい。また、aは2.0以下が好ましく、1.0以下がより好ましく、0以下がさらに好ましい。すなわち、aは-5.0以上、2.0以下が好ましい。
 さらに、本実施形態に係る合わせガラス10は、D65光源を用いてJIS Z 8781-4:2013で定義される色度bは-5.0以上が好ましく、-3.0以上がより好ましく、-1.0以上がさらに好ましい。また、bは5.0以下が好ましく、4.0以下がより好ましく、3.0以下がさらに好ましく、2.5以下が特に好ましい。すなわち、bは-5.0以上、5.0以下が好ましい。
 本実施形態のガラス板は、aおよびbが上記範囲であることにより、建築用窓ガラスおよび車両用窓ガラスとして意匠性に優れる。
 さらに、本実施形態に係る合わせガラス10は、c={(a+(b1/2で求められるcが4.0以下であることが好ましく、3.5以下がより好ましく、3.0以下がさらに好ましく、2.5以下が特に好ましい。また、cの下限は特に限定されないが、通常0.0以上である。すなわち、cは0.0以上、4.0以下が好ましい。
 本実施形態のガラス板は、a、bおよびcが上記範囲であることにより、建築用窓ガラスおよび車両用窓ガラスとして意匠性に優れる。
[建築用窓ガラス、車両用窓ガラス]
 本実施形態の建築用窓ガラスおよび車両用窓ガラスは、上記アルカリボロシリケートガラスを有する。また、本実施形態の建築用窓ガラスおよび車両用窓ガラスは、上記合わせガラスからなってもよい。
 以下、図面を参照して、本実施形態の合わせガラス10を車両用窓ガラスとして用いる場合の一例について説明する。
 図5は、本実施形態の合わせガラス10が自動車100の前方に形成された開口部110に装着され、自動車の窓ガラスとして用いられた状態を表す概念図である。自動車の窓ガラスとして用いられる合わせガラス10には、車両の走行安全を確保するための、情報デバイス等が収納されたハウジング(ケース)120が、車両内部側の表面に取り付けられてもよい。
 また、ハウジング内に収納される情報デバイスは、カメラやレーダ等を用いて車両の前方に存在する前方車、歩行者、障害物等への追突、衝突防止やドライバーに危険を知らせるためのデバイスである。例えば情報受信デバイスおよび/又は情報送信デバイス等であり、ミリ波レーダ、ステレオカメラ、赤外線レーザー等が含まれ、信号の送受信を行う。当該「信号」とは、ミリ波、可視光、赤外光等を含む電磁波のことである。
 図6は、図5におけるS部分の拡大図であり、本実施形態の合わせガラス10にハウジング120が取り付けられている部分を示す斜視図である。ハウジング120には、情報デバイスとしてミリ波レーダ201およびステレオカメラ202が格納されている。情報デバイスを格納したハウジング120は、通常バックミラー150よりも車外側、合わせガラス10よりも車内側に取り付けられるが、他の部分に取り付けられてもよい。
 図7は、図6のY-Y線を含み水平線と直交する方向における断面図である。合わせガラス10は、第1ガラス板11が車外側に配置されることが好ましい。上記構成とすることにより、飛び石耐性および剛性が高く、軽量でグレー色の意匠性が高いウィンドシールドを実現できる。
 以下に、実施例を挙げて本発明を具体的に説明するが、本発明はこれに限定されない。
<例1~例35のガラス板の作製>
 表1、表2に示すガラス組成(単位:mol%)となるように、白金坩堝に原料を投入して1600℃~1650℃の温度で3時間溶融し溶融ガラスとした。溶融ガラスをカーボン板上に流し出し、徐冷した。得られた板状ガラスの両面を研磨し、厚さ2.00mmのガラス板を得た。例1~例10は比較例であり、例11~例35は実施例である。
 表1、表2において、組成の他に、原料として投入した3配位ホウ素の割合(B[%])、4配位ホウ素の割合(B[%])、B換算した3配位ホウ素の含有量(B as B[mol%])および、B換算した4配位ホウ素の含有量(B as B[mol%])、Fe-Redox、可視光透過率Tv、日射透過率Te、紫外線透過率Tuv、色度、主波長Dw、刺激純度Pe、粘度、比重、ヤング率、平均線膨張係数を測定した。
 表1~表2に示された数値の決定方法を以下に示す。
(1)ホウ素の配位数:
 ガラス中のホウ素原子の配位数の割合をNMRで解析した。NMR測定条件を以下に示す。測定装置:日本電子社製核磁気共鳴装置ECZ700共鳴周波数:156.38MHz回転数:15kHzプローブ:3.2mm固体用フリップ角:90°パルス繰り返しの待ち時間:16sec
 Single pulse法での測定を行い、アダマンタンを外部標準(13C 28.46ppmと37.85ppm)として測定した。測定結果は、日本電子社製NMRソフトウェアDeltaを用いて位相補正、ベースライン補正を実施後、ガウス関数を用いてfittingを実施する方法で、3配位、4配位の割合を算出し、平均配位数を求めた。
 位相補正、ベースライン補正については、試料を含まない空セルのスペクトルを差し引くことで適切に処理した。ピークフィッティングについては、3配位は20~8ppmにピークトップ、4配位は5~-5ppmにピークトップを設定し、ピーク幅を適切に設定(各配位数間で最大でも1.5倍以下の比率になるように)することで良好なfittingを得た。
(2)Fe-Redox:
 Fe-Redoxは、以下の方法で求めた。
 粉砕したガラスをフッ化水素酸と塩酸の混酸により室温で分解した後、分解液のうち、一定量をプラスチック容器に分取し、塩化ヒドロキシルアンモニウム溶液を加え、サンプル溶液中のFe3+をFe2+に還元させた。その後、2,2’-ジピリジル溶液および酢酸アンモニウム緩衝液を添加してFe2+を発色させた。発色液はイオン交換水で一定量にして、吸光光度計で波長522nmでの吸光度を測定した。そして標準液を用いて作製された検量線より濃度を計算しFe2+量を求めた。サンプル溶液中のFe3+をFe2+に還元させているので、このFe2+量は、サンプル中の「[Fe2+]+[Fe3+]」を意味する。
 次に、粉砕したガラスをフッ化水素酸と塩酸の混酸により室温で分解した後、分解液のうち、一定量をプラスチック容器に分取し、速やかに2,2’-ジピリジル溶液および酢酸アンモニウム緩衝液を添加してFe2+のみを発色させた。発色液はイオン交換水で一定量にして、分光光度計(日立製作所社製U-4100)により波長522nmでの吸光度を測定した。そして標準液を用いて作製される検量線より濃度を計算しFe2+量を算出した。このFe2+量は、サンプル中の[Fe2+]を意味する。
 そして、上記求めた[Fe2+]、および[Fe2+]+[Fe3+]から、Fe-Redox:[Fe2+]/([Fe2+]+[Fe3+])を算出した。
(3)可視光透過率(Tv):
 厚さを2.0mmに換算したときのTvを、D65光源を用いてISO-9050:2003で定める方法により測定した。なお、Tvは、Perkinelmer社製分光光度計LAMBDA950を用いて測定した。
(4)日射透過率(Te):
 日射透過率Teは、ISO-9050:2003の規定にしたがって分光光度計Perkinelmer社製分光光度計LAMBDA950により透過率を測定し算出した日射透過率である。
(5)紫外線透過率(Tuv):
 厚さを2.0mmに換算したときのTuvを、ISO-9050:2003で定める方法により測定した。なお、Tuvは、Perkinelmer製分光光度計LAMBDA950を用いて測定した。
(6)色度(L,a,b,c):
 D65光源を用いてJIS Z 8781-4:2013で定義される色度L,a,bを測定した。得られたa,bの値を以下の式に代入し、c求めた。
={(a+(b1/2
(7)主波長(Dw):
 透過光の主波長Dwは、JIS Z 8701:1999にしたがって算出した透過光の主波長である。
(8)刺激純度(Pe):
 刺激純度Peは、JIS Z 8701:1999にしたがって算出した刺激純度である。
(9)粘度:
 曲げ加工性の基準となる粘度ηが1011dPa・sとなるときの温度T11と粘度ηが1012dPa・sとなるときの温度T12を、ビームベンディング法を用いて測定した。
(10)比重:
 ガラス板から切り出した、泡を含まない約20gのガラス塊をアルキメデス法によって測定した。
(11)ヤング率:
 JIS R1602:1995「ファインセラミックスの弾性率試験方法」に基づき、超音波パルス法(オリンパス、DL35)により25℃で測定した。
(12)50℃~350℃の平均線膨張係数(CTE50-350):
 示差熱膨張計(TMA)を用いて測定し、JIS R3102:1995の規格より求めた。
 測定結果を表1、表2に示す。なお、表1、表2中、「-」はBが非含有のため計算不可であることを示し、空欄は未測定を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 実施例である例11~例35のガラスは、日射透過率Teが90%以下であり、主波長Dwが520nm以上574nm以下であり、かつ刺激純度Peが4.0%以下であり、優れた遮熱性を有しつつ、意匠性を示した。
 一方、比較例である例1のガラスはBを含有してないため、主波長Dwが500nmであり、実施例と比して意匠性が劣った。
 また、比較例である例2のガラスは、Feの含有量が0.03%未満であり、3配位ホウ素の割合が61%超であったため、日射透過率Teが93%であり、実施例と比して遮熱性に劣った。
 また、比較例である例3、7~9は、3配位ホウ素の割合が61%超であったため、主波長Dwが574nm超であり、実施例と比して意匠性に劣った。
 また、比較例である例4~6は、3配位ホウ素の割合が61%超であったため、主波長Dwが574nm超、かつ刺激純度Peが4.0%超であり、実施例と比して意匠性に劣った。
 また、比較例である例10のガラスは、Feの含有量が0.03%未満であったため、日射透過率Teが91%であり、実施例と比して遮熱性に劣った。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2022年6月20日出願の日本特許出願(特願2022-099058)に基づくものであり、その内容はここに参照として取り込まれる。
 10 合わせガラス
 11 第1ガラス板
 12 第2ガラス板
 13 中間膜
 100 自動車
 110 開口部
 120 ハウジング
 150 バックミラー
 201 ミリ波レーダ
 202 ステレオカメラ
 300 電波

Claims (20)

  1.  酸化物基準のモル%表示でFeに換算した全鉄の含有量が0.03%以上であり、
     3配位ホウ素と4配位ホウ素の合計量に対して3配位ホウ素の割合が61%以下であり、
     Se及びCoOを実質的に含有せず、
     厚さを2.0mmに換算したときの、ISO-9050:2003規定の日射透過率Teが90%以下であり、JIS Z 8701:1999規定の標準C光源を用いて測定される主波長Dwが520nm以上574nm以下であり、かつJIS Z 8701:1999規定の標準C光源を用いて測定される刺激純度Peが4.0%以下であるアルカリボロシリケートガラス。
  2.  厚さを2.0mmに換算したときの、D65光源を用いてISO-9050:2003で定義される可視光透過率TvとISO-9050:2003で定義される日射透過率Teとの比(Tv/Te)が1.05以上である、請求項1に記載のアルカリボロシリケートガラス。
  3.  厚さを2.0mmに換算したときの、D65光源を用いてISO-9050:2003で定義される可視光透過率Tvが75%以上である、請求項1に記載のアルカリボロシリケートガラス。
  4.  厚さを2.0mmに換算したときの、D65光源を用いてISO-9050:2003で定義される可視光透過率Tvが75%未満である、請求項1に記載のアルカリボロシリケートガラス。
  5.  酸化物基準のモル%表示でFeに換算した全鉄の含有量が0.040%以上0.60%以下である、請求項1に記載のアルカリボロシリケートガラス。
  6.  ヤング率が65GPa以上である、請求項1に記載のアルカリボロシリケートガラス。
  7.  ガラス粘度が1011[dPa・s]となる温度T11が640℃以下である、請求項1に記載のアルカリボロシリケートガラス。
  8.  酸化物基準のモル%表示で、
     70%≦SiO≦80%
     8.0%≦B≦20%
     1.0%≦Al≦5.0%
     0.0%≦LiO≦5.0%
     2.0%≦NaO≦10%
     0.0%≦KO≦5.0%
     0.0%≦MgO≦5.0%
     0.0%≦CaO≦5.0%
     0.0%≦SrO≦5.0%
     0.0%≦BaO≦5.0%
     SiO+B+Al≧89%
     LiO+NaO+KO≧5.0%
    を含む、請求項1に記載のアルカリボロシリケートガラス。
  9.  酸化物基準のモル%表示でFeに換算した全鉄の含有量が0.040%以上0.60%以下であり、Feに換算した全鉄中のFeに換算した2価の鉄の質量割合が10%以上である、請求項8に記載のアルカリボロシリケートガラス。
  10.  LiOを含有する、請求項8に記載のアルカリボロシリケートガラス。
  11.  請求項1に記載のアルカリボロシリケートガラスからなる、曲げガラス。
  12.  第1ガラス板と、第2ガラス板と、前記第1ガラス板と前記第2ガラス板の間に挟持される中間膜とを有し、
     前記第1ガラス板が、請求項1~10のいずれか1項に記載のアルカリボロシリケートガラス、または請求項11に記載の曲げガラスである、合わせガラス。
  13.  前記第2ガラス板は請求項1~10のいずれか1項に記載のアルカリボロシリケートガラス、または請求項11に記載の曲げガラスである、請求項12に記載の合わせガラス。
  14.  前記第2ガラス板は酸化物基準のモル百分率表示でAlを1.0%以上含有するアルカリアルミノシリケートガラスである請求項12に記載の合わせガラス。
  15.  前記第2ガラス板は酸化物基準のモル百分率表示でAlを1.0%以上含有し、Bを1.0%以上含有するアルカリアルミノボロシリケートガラスである請求項12に記載の合わせガラス。
  16.  前記第2ガラス板は化学強化ガラスである請求項12に記載の合わせガラス。
  17.  前記第2ガラス板はソーダライムガラスである請求項12に記載の合わせガラス。
  18.  請求項1~10のいずれか1項に記載のアルカリボロシリケートガラス、または請求項11に記載の曲げガラスを有する車両用窓ガラス。
  19.  請求項12に記載の合わせガラスを有する車両用窓ガラス。
  20.  請求項1~10のいずれか1項に記載のアルカリボロシリケートガラス、または請求項11に記載の曲げガラスを有する建築用窓ガラス。
PCT/JP2023/021633 2022-06-20 2023-06-09 アルカリボロシリケートガラス、曲げガラス、合わせガラス、建築用窓ガラス及び車両用窓ガラス WO2023248843A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-099058 2022-06-20
JP2022099058 2022-06-20

Publications (1)

Publication Number Publication Date
WO2023248843A1 true WO2023248843A1 (ja) 2023-12-28

Family

ID=89379711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/021633 WO2023248843A1 (ja) 2022-06-20 2023-06-09 アルカリボロシリケートガラス、曲げガラス、合わせガラス、建築用窓ガラス及び車両用窓ガラス

Country Status (1)

Country Link
WO (1) WO2023248843A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0692678A (ja) * 1992-04-22 1994-04-05 Nippon Sheet Glass Co Ltd 紫外線赤外線吸収ガラス
JPH09328332A (ja) * 1996-06-07 1997-12-22 Nippon Sheet Glass Co Ltd 赤外線吸収ガラス
US6235666B1 (en) * 1999-03-29 2001-05-22 Guardian Industries Corporation Grey glass composition and method of making same
JP2018527216A (ja) * 2015-07-10 2018-09-20 コーニング インコーポレイテッド 冷間形成積層体
WO2019017405A1 (ja) * 2017-07-18 2019-01-24 Agc株式会社 強化ガラス

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0692678A (ja) * 1992-04-22 1994-04-05 Nippon Sheet Glass Co Ltd 紫外線赤外線吸収ガラス
JPH09328332A (ja) * 1996-06-07 1997-12-22 Nippon Sheet Glass Co Ltd 赤外線吸収ガラス
US6235666B1 (en) * 1999-03-29 2001-05-22 Guardian Industries Corporation Grey glass composition and method of making same
JP2018527216A (ja) * 2015-07-10 2018-09-20 コーニング インコーポレイテッド 冷間形成積層体
WO2019017405A1 (ja) * 2017-07-18 2019-01-24 Agc株式会社 強化ガラス

Similar Documents

Publication Publication Date Title
EP3475234B1 (en) Chemically temperable glass sheet
US20180370843A1 (en) Automotive glass compositions, articles and hybrid laminates
WO2017183381A1 (ja) 車両用合わせガラス
JP7400881B2 (ja) ガラス板および窓
WO2018030093A1 (ja) 車両用合わせガラス
US20240116800A1 (en) Glass plate, laminated glass, window glass for vehicles, and window glass for buildings
WO2018030095A1 (ja) 車両用合わせガラス
JP2003119048A (ja) ガラス組成物
US20230331622A1 (en) Borosilicate glass, laminated glass, and window glass for vehicle
WO2017183382A1 (ja) 車両用合わせガラス
WO2023248843A1 (ja) アルカリボロシリケートガラス、曲げガラス、合わせガラス、建築用窓ガラス及び車両用窓ガラス
WO2018030094A1 (ja) 車両用合わせガラス
US20210039984A1 (en) Chemically-strengthenable glasses for laminates
CN110981190B (zh) 一种着色薄玻璃和夹层玻璃
WO2023074638A1 (ja) ボロシリケートガラス
CN110382228B (zh) 层压装配玻璃
WO2022131275A1 (ja) ガラス板、合わせガラス、建築用窓ガラス及び車両用窓ガラス
WO2021220996A1 (ja) 車両用合わせガラス
WO2022131276A1 (ja) ガラス板、合わせガラス、及び車両用窓ガラス
WO2018193721A1 (ja) ガラス板
CN101652332B (zh) 玻璃组合物
WO2018163903A1 (ja) ガラス樹脂複合体
WO2023074637A1 (ja) ガラス板、車両用窓ガラス、及び合わせガラス
TW202402698A (zh) 具有高熔合流動速率及有利的配對成形溫度的硼鋁矽酸鹽玻璃組成物
WO2018163904A1 (ja) ガラス樹脂複合体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23827029

Country of ref document: EP

Kind code of ref document: A1