WO2018163904A1 - ガラス樹脂複合体 - Google Patents

ガラス樹脂複合体 Download PDF

Info

Publication number
WO2018163904A1
WO2018163904A1 PCT/JP2018/007167 JP2018007167W WO2018163904A1 WO 2018163904 A1 WO2018163904 A1 WO 2018163904A1 JP 2018007167 W JP2018007167 W JP 2018007167W WO 2018163904 A1 WO2018163904 A1 WO 2018163904A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
plate
glass plate
resin composite
resin
Prior art date
Application number
PCT/JP2018/007167
Other languages
English (en)
French (fr)
Inventor
洋平 細田
慎護 中根
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017081146A external-priority patent/JP2018145082A/ja
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to US16/490,758 priority Critical patent/US20200023617A1/en
Publication of WO2018163904A1 publication Critical patent/WO2018163904A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal

Definitions

  • the present invention relates to a glass resin composite, and more particularly to a glass resin composite suitable for an automobile windshield or door glass.
  • laminated glass made by combining and integrating multiple soda lime glass plates with an organic resin intermediate layer is used for window glass for vehicles, etc.
  • multiple soda lime glass plates are used.
  • a glass resin composite is used in which a resin plate and a resin plate are combined and integrated with an organic resin intermediate layer (see Patent Documents 1 to 4).
  • the soda-lime glass plate used in window glass of vehicles, etc. attenuates the collision energy of the flying pieces by deforming the shape of the tip of the flying pieces, such as stepping stones, and increasing the impact resistance. It has a function to do.
  • soda lime glass has an effect of increasing the impact resistance of the scattered pieces.
  • the thickness of soda-lime glass plates is increased or the number of composites is increased to increase the impact resistance of the scattered pieces.
  • this increases the thickness and weight of the window glass.
  • a crystallized glass plate instead of a soda-lime glass plate is examined.
  • a crystal formed by precipitating a Li 2 O—Al 2 O 3 —SiO 2 based crystal such as ⁇ -quartz solid solution (Li 2 O.Al 2 O 3 .nSiO 2 [n ⁇ 2]) as the main crystal Glass plate is being studied.
  • increasing the thickness of the crystallized glass can attenuate the collision energy of the scattered pieces, but in this case, the weight of the window glass increases and the transparency may be impaired.
  • the present invention has been made in view of the above circumstances, and its technical problem is that it is excellent in bending workability and can effectively attenuate the collision energy of scattered pieces even if the thickness and crystallinity are small.
  • the idea is to create a window glass.
  • the present inventors for a glass resin composite (laminated body) comprising a plurality of glass plates and a resin plate, set the Young's modulus of the outside (outside air side) glass plate adjacent to the inside (indoor side).
  • the present inventors have found that the above technical problem can be solved by increasing the Young's modulus to be proposed as the present invention. That is, the glass resin composite of the present invention is composite-integrated by an organic resin intermediate layer, and at least one of the outer glass plates has a crystallinity of 30% or less and on the inner side. It is characterized by being 5 GPa or more higher than the Young's modulus of the adjacent glass plate.
  • the “crystallinity” is calculated by measuring the XRD by a powder method to calculate the area of the halo corresponding to the mass of the amorphous and the area of the peak corresponding to the mass of the crystal, respectively. Peak area] ⁇ 100 / [peak area + halo area] (%) is a value determined by the formula.
  • the “outer layer glass plate” refers to a glass plate other than the innermost layer glass plate.
  • the “glass plate adjacent to the inside” refers to a glass plate adjacent to the indoor side through the organic resin intermediate layer.
  • the glass resin composite of the present invention is a composite comprising at least a plurality of glass plates and resin plates.
  • the glass plate is a material having transparency and increasing impact resistance.
  • the resin plate is a material that alleviates the impact caused by the collision of the scattered pieces and prevents the glass pieces from being scattered by the impact of the scattered pieces. By providing both, it becomes easy to ensure impact resistance performance.
  • At least one of the outer glass plates has a crystallinity of 30% or less. Thereby, the bending workability of a glass plate can be improved.
  • the glass resin composite of the present invention has a Young's modulus of at least one of the outer glass plates that is 5 GPa or more higher than the Young's modulus of the glass plate adjacent to the inner side. .
  • the speed of the shock wave generated by the collision of the scattering pieces is increased by the glass plate having a high Young's modulus, and the shock wave easily proceeds in the direction perpendicular to the collision direction of the flying object.
  • the velocity of the shock wave is slow, and the shock wave is difficult to travel in a direction perpendicular to the collision direction of the flying object.
  • the shock wave spreads in the outer glass plate, so that the destruction area by the shock wave becomes large, and it becomes easy to absorb the collision energy of the flying object as the destruction energy.
  • the organic resin intermediate layer was peeled off by impact when the glass plate was first impacted and bent, and as the peeling energy at the time of peeling. It has also been found to absorb collision energy. It was also found that when the amount of bending of the glass plate is regulated within a predetermined range, the peeling energy (peeling amount) of the organic resin intermediate layer increases, and the collision energy of the scattered pieces can be effectively attenuated. Therefore, in the glass resin composite of the present invention, based on the above findings, the Young's modulus of at least one of the outer glass plates is 5 GPa or more higher than the Young's modulus of the adjacent glass plate. Yes.
  • the scattering piece collides with the outermost glass plate, the glass plate located outside becomes difficult to bend, but the glass plate adjacent to the inside via the organic resin intermediate layer is easily bent. Therefore, the energy for peeling off the organic resin intermediate layer is increased, and the collision energy of the scattering pieces is converted into the peeling energy of the organic resin intermediate layer, which is easily attenuated. As a result, it becomes difficult for the scattering pieces to penetrate the glass resin composite. If the Young's modulus of the glass plate located on the outer side is not sufficiently higher than the Young's modulus of the glass plate adjacent to the inner side, the above action does not work, and the collision energy of the scattering pieces cannot be attenuated efficiently.
  • the glass transition temperature of at least one of the glass plates of the outer layer is 850 ° C. or less. Thereby, it becomes easy to bend the glass plate located outside, and it becomes easy to give a curved surface shape to the glass resin composite.
  • glass transition temperature refers to a value measured using a dilatometer.
  • the glass resin composite of the present invention at least one of the outer glass plates is amorphous, and the glass composition is mol%, SiO 2 45-80%, Al 2 It is preferable to contain 5 to 30% of O 3, 0 to 20% of Li 2 O + Na 2 O + K 2 O, and 3 to 35% of MgO + CaO + SrO + BaO.
  • amorphous refers to a case where the crystallinity is less than 1%.
  • Li 2 O + Na 2 O + K 2 O refers to the total amount of Li 2 O, Na 2 O and K 2 O.
  • MgO + CaO + SrO + BaO refers to the total amount of MgO, CaO, SrO and BaO.
  • the innermost glass plate is preferably soda lime glass.
  • the resin plate is disposed on the inner side of the innermost glass plate.
  • the resin plate is preferably a polycarbonate plate.
  • the glass resin composite of the present invention preferably has a total thickness of 45 mm or less.
  • the glass resin composite of the present invention preferably has a curved surface shape that is three-dimensionally curved.
  • FIG. 1 is a schematic view for explaining an example of the glass resin composite of the present invention.
  • the glass resin composite 10 includes a composite of an outer glass plate 11, an inner glass plate 12, and a resin plate 13.
  • the Young's modulus of the outer glass plate 11 is amorphous and the Young's modulus of the inner glass plate 12 adjacent to the inner side is 5 GPa or more.
  • the outer glass plate 11, the inner glass plate 12, and the resin plate 13 are combined and integrated with an organic resin intermediate layer (not shown).
  • the glass resin composite 10 has a curved surface shape that is curved three-dimensionally, specifically, the outer layer glass plate 11 side is convex, and the entire plate width direction is curved in an arc shape, And the whole of the length direction is curving in circular arc shape.
  • the glass resin composite of the present invention includes a plurality of glass plates, preferably 2 to 7, more preferably 2 to 3, particularly 2 glass plates.
  • the number of glass plates is one, a difference in deflection between the glass plates does not occur, so that it is difficult to attenuate the collision energy of the scattering pieces.
  • there are too many glass plates transparency will fall and visibility will fall easily.
  • FIG. 2 is a schematic cross-sectional view showing an example of the glass resin composite of the present invention.
  • the glass resin composite 20 is an outermost layer glass plate 21, a glass plate 22, a glass plate 23, a glass plate 24, an innermost layer glass plate 25, and a resin plate 26 in order, as viewed from the outside. I have.
  • the Young's modulus of the outermost glass plate 21 is 86 GPa
  • the Young's modulus of the glass plate 22 is 90 GPa
  • the Young's modulus of the glass plate 23 is 84 GPa
  • the Young's modulus of the glass plate 24 is 85 GPa
  • the Young's modulus of the innermost glass plate 25 is 85 GPa
  • the Young's modulus of the glass plate 22 is 6 GPa higher than the Young's modulus of the adjacent glass plate 23.
  • An organic resin intermediate layer exists between the glass plates 22-25.
  • the outermost glass plate 21, the glass plate 22, the glass plate 23, the glass plate 24, and the innermost glass plate 25 are all amorphous.
  • the Young's modulus of at least one glass plate is 5 GPa or more higher than the Young's modulus of the adjacent glass plate, Preferably it is 10 GPa or more, particularly preferably 15 to 50 GPa.
  • the Young's modulus of the glass plate located outside becomes lower than the Young's modulus of the glass plate adjacent to the inside, it is difficult to attenuate the collision energy of the scattering pieces.
  • the glass transition temperature of the glass plate is preferably 850 ° C. or lower, more preferably 820 ° C. or lower. Particularly preferred is 500 to 800 ° C. If the glass transition temperature is too high, it becomes difficult to bend the glass plate.
  • the crystallinity of the glass plate is preferably 30% or less, more preferably 10% or less, and particularly preferably less than 1%. Amorphous glass. If the crystallinity is too high, it becomes difficult to bend the glass plate.
  • the glass plate does not have a compressive stress layer by ion exchange. Thereby, an ion exchange process becomes unnecessary and the manufacturing cost of a glass plate can be reduced.
  • the thickness of the glass plate other than the innermost layer is preferably 15 mm or less, 12 mm or less, 10 mm or less, particularly 8 mm or less, preferably 3 mm or more. 4 mm or more, 5 mm or more, 6 mm or more, particularly 7 mm or more.
  • the thickness of the innermost glass plate is preferably 15 mm or less, 12 mm or less, 10 mm or less, particularly 8 mm or less, preferably 3 mm or more, 4 mm or more, 5 mm or more, 6 mm or more, particularly 7 mm or more. If the thickness of the glass plate is too small, it will be difficult to ensure impact resistance. On the other hand, if the plate thickness of the glass plate is too large, it is difficult to make the glass resin composite thin, and the visibility tends to be lowered. In addition, the weight of the glass resin composite increases, and the fuel efficiency of automobiles and the like increases.
  • the long side dimension of the innermost layer glass plate is preferably smaller than the long side dimension of the outermost layer glass plate. And it is preferable that the long side dimension difference of both is adjusted according to both thermal expansion coefficient difference. In this way, when the composite is integrated after bending so that the outer side is convex, the dimensional difference between the two becomes small and the end faces of both become easy to align. As a result, the end surface strength of the glass resin composite is improved.
  • the outer glass plate (preferably the outermost glass plate) is preferably an aluminosilicate glass. Since aluminosilicate glass has a high Young's modulus, it is suitable for a glass plate located outside. Moreover, since devitrification resistance is good, it can be easily formed into a plate shape.
  • the outer glass plate (preferably the outermost glass plate) has a glass composition of mol%, SiO 2 45 to 80%, Al 2 O 3 5 to 30%, Li 2 O + Na 2 O + K 2 O 0 to 20%. MgO + CaO + SrO + BaO 3 to 35% is preferable.
  • the reason why the content range of each component is regulated as described above is shown below.
  • % display shall show mol%.
  • SiO 2 is a component that forms a network of glass.
  • the content of SiO 2 is preferably 45 to 80%, 50 to 75%, especially 57 to 72%.
  • the content of SiO 2 is too small, it becomes difficult to vitrify and weather resistance tends to decrease.
  • the content of SiO 2 is too large, the meltability and moldability tend to be lowered, and the thermal expansion coefficient becomes too low, making it difficult to match the thermal expansion coefficient of the resin plate or organic resin intermediate layer.
  • Al 2 O 3 is a component that enhances weather resistance and Young's modulus.
  • the content of Al 2 O 3 is preferably 5 to 30%, 9 to 25%, particularly 15 to 23%.
  • the weather resistance and the Young's modulus tends to decrease.
  • the content of Al 2 O 3 is too large, the melting properties, formability, and resistance to devitrification tends to drop.
  • Li 2 O, Na 2 O, and K 2 O are components that lower the high-temperature viscosity and improve the meltability, moldability, and thermal processability.
  • Li 2 O is a component that increases the Young's modulus.
  • the total amount of Li 2 O, Na 2 O and K 2 O is preferably 0-20%, 5-20%, in particular 10-20%.
  • the respective contents of Li 2 O, Na 2 O and K 2 O are preferably 0 to 20%, 3 to 15%, in particular 8 to 16%.
  • the content of Na 2 O and K 2 O is too large, devitrification resistance and weather resistance tends to decrease.
  • the Young's modulus tends to decrease.
  • MgO, CaO, SrO, and BaO are components that lower the high-temperature viscosity and increase the meltability, moldability, and thermal processability.
  • MgO is a component that significantly increases the Young's modulus.
  • the total amount of MgO, CaO, SrO and BaO is preferably 3 to 35%, 10 to 30%, in particular 12 to 25%.
  • the content of MgO is preferably 0 to 35%, 5 to 25%, in particular 10 to 20%.
  • the respective contents of CaO, SrO and BaO are preferably 0 to 20%, 0 to 10%, in particular 0 to 5%.
  • the molar ratio MgO / (MgO + CaO + SrO + BaO) is preferably 0.5 or more, 0.7 or more, 0.8 or more, particularly 0.9 or more from the viewpoint of effectively increasing the Young's modulus.
  • MgO / (MgO + CaO + SrO + BaO) is a value obtained by dividing the content of MgO by the total amount of MgO, CaO, SrO and BaO.
  • B 2 O 3 is a component that forms a glass network, but is a component that lowers the Young's modulus and weather resistance. Therefore, the content of B 2 O 3 is preferably 0 to 20%, 0 to 10%, particularly 0 to 5%.
  • TiO 2 is a component that enhances the weather resistance, but is a component that colors the glass. Therefore, the content of TiO 2 is preferably 0 to 0.5%, particularly 0 to less than 0.1%.
  • ZrO 2 is a component that increases Young's modulus and weather resistance, but it is a component that decreases devitrification resistance. Therefore, the content of ZrO 2 is preferably 0 to 0.5%, particularly 0 to less than 0.1%.
  • 0.05 to 0.5% of one or more selected from the group of SnO 2 , Cl, SO 3 and CeO 2 may be added.
  • Fe 2 O 3 is a component that is inevitably mixed as an impurity in the glass raw material, and is a coloring component. Therefore, the content of Fe 2 O 3 is preferably 0.5% or less, particularly 0.01 to 0.07%.
  • V 2 O 5 , Cr 2 O 3 , CoO 3 and NiO are coloring components. Therefore, the respective contents of V 2 O 5 , Cr 2 O 3 , CoO 3 and NiO are preferably 0.1% or less, particularly less than 0.01%.
  • Rare earth oxides such as Nd 2 O 3 and La 2 O 3 are components that increase the Young's modulus.
  • the cost of the raw material itself is high, and when it is added in a large amount, the devitrification resistance tends to be lowered. Therefore, the total amount of the rare earth oxide is preferably 3% or less, 1% or less, 0.5% or less, particularly 0.1% or less.
  • the glass composition does not substantially contain As 2 O 3 , Sb 2 O 3 , PbO, Bi 2 O 3 and F.
  • substantially does not contain means that the glass component does not positively add an explicit component but allows it to be mixed as an impurity. Specifically, It indicates that the content is less than 0.05%.
  • the glass compositions of these glass plates are not necessarily the same, but are preferably within the above glass composition range.
  • the aluminosilicate glass may be used as the innermost glass plate, but it is preferable to use soda lime glass from the viewpoint of manufacturing cost and low Young's modulus.
  • Soda lime glass generally has a glass composition of mol%, SiO 2 68-78%, Al 2 O 3 0-2%, CaO 6-15%, MgO 0-10%, Na 2 O 10- 20%, K 2 O 0 to 3%, Fe 2 O 3 0 to 1%.
  • the glass resin composite of the present invention includes a resin plate in order to relieve the impact force when the scattered pieces collide.
  • the number of resin plates is not particularly limited, but is preferably one from the viewpoint of improving visibility. When the number of resin plates is too large, the transparency is lowered and the visibility of the glass resin composite is easily lowered.
  • the resin plate is disposed inside the innermost glass plate. If it does in this way, it will become easy to relieve the impact by the collision of a scattering piece, and when a glass plate is damaged by the collision of a scattering piece, the situation where a glass piece will fly inward can be prevented.
  • Various resin plates such as an acrylic plate and a polycarbonate plate can be used as the resin plate.
  • a polycarbonate plate is particularly preferable from the viewpoints of transparency, impact relaxation, and weight reduction.
  • the thickness of the resin plate is preferably 10 mm or less, 8 mm or less, 7 mm or less, 6 mm or less, particularly 5 mm or less, preferably 0.5 mm or more, 0.7 mm or more, 1 mm or more, 2 mm or more, particularly 3 mm or more. . If the thickness of the resin plate is too small, it will be difficult to mitigate the impact when the scattered pieces collide. On the other hand, if the thickness of the resin plate is too large, it is difficult to reduce the thickness of the glass resin composite, and the visibility is likely to decrease.
  • the total thickness of the glass resin composite is preferably 45 mm or less, 35 mm or less, 30 mm or less, 25 mm or less, particularly 22 mm or less, preferably 7 mm or more, 11 mm or more, 12 mm or more, particularly 15 mm or more. If the total plate thickness of the glass resin composite is too small, the impact resistance performance tends to be lowered. On the other hand, if the plate thickness of the glass resin composite is too large, the weight of the glass resin composite becomes heavy and the visibility tends to decrease.
  • an organic resin organic resin intermediate layer
  • the thickness of the organic resin intermediate layer is preferably 0.1 to 2 mm, 0.3 to 1.5 mm, 0.5 to 1.2 mm, particularly 0.6 to 0.9 mm.
  • the thickness of the organic resin intermediate layer is too small, the peeling energy of the organic resin intermediate layer is lowered, and it becomes difficult to attenuate the impact energy of the scattering pieces.
  • the thickness of the organic resin intermediate layer is too large, the visibility of the glass resin composite tends to be lowered.
  • the thermal expansion coefficient of the organic resin intermediate layer is preferably not less than the thermal expansion coefficient of the glass plate and not more than the thermal expansion coefficient of the resin plate. If it does in this way, when a glass resin composite is heated by direct sunlight, a glass plate and a resin plate will become difficult to isolate
  • the “thermal expansion coefficient” refers to an average linear thermal expansion coefficient in a temperature range of 0 to 300 ° C.
  • organic resins can be used as the organic resin intermediate layer.
  • PE polyethylene
  • EVA ethylene vinyl acetate copolymer
  • PP polypropylene
  • PS polystyrene
  • PMA methacrylic resin
  • PVC poly Vinyl chloride
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • CA diallyl phthalate resin
  • UP urea resin
  • MF melamine resin
  • unsaturated polyester UP
  • Polyvinyl butyral (PVB) polyvinyl formal (PVF), polyvinyl alcohol (PVAL), vinyl acetate resin (PVAc), ionomer (IO), polymethylpentene (TPX), vinylidene chloride (PVDC), polysulfone (PSF), Po Vinylidene fluoride (PVDF), methacryl-styrene copolymer resin (MS), polyarate (PAR), polyallyl sulfonomer
  • IO polymethyl
  • a colorant may be added to the organic resin intermediate layer, or an absorber that absorbs light of a specific wavelength such as infrared rays or ultraviolet rays may be added.
  • the organic resin intermediate layer a combination of a plurality of the above organic resins may be used.
  • the glass plate and the resin plate are fixed with different organic resins, so that the warpage of the glass resin composite can be easily reduced.
  • the glass resin composite of the present invention can be produced as follows.
  • a glass raw material prepared so as to have a predetermined glass composition is put into a continuous melting furnace, heated and melted at 1500 to 1700 ° C., clarified and stirred, and then fed to a molding apparatus to be formed into a plate shape.
  • a glass plate can be produced by cooling.
  • the overflow downdraw method is a method in which a high-quality glass plate can be produced in a large amount and a large glass plate can be easily produced while the surface is unpolished. If the surface is unpolished, the manufacturing cost of the glass plate can be reduced.
  • the float method is a method capable of producing a large glass plate at low cost.
  • the glass plate is preferably chamfered as necessary. In that case, it is preferable to perform C chamfering with a # 800 metal bond grindstone or the like. If it does in this way, end face strength can be raised. It is also preferable to reduce the crack source existing on the end face by etching the end face of the glass plate as necessary.
  • the obtained glass plate is subjected to curved surface processing as necessary.
  • Various methods can be employed as a method of processing the curved surface.
  • a method of press-molding a glass plate with a mold is preferable, and it is preferable to pass through a heat treatment furnace with the glass plate sandwiched between molds having a predetermined shape. In this way, the dimensional accuracy of the curved surface shape can be increased.
  • a plurality of glass plates and resin plates are combined and integrated with an organic resin intermediate layer to form a glass resin composite.
  • a method of composite integration a method of curing an organic resin after injecting an organic resin between glass plates or between a glass plate and a resin plate, pressurizing and heating after placing an organic resin sheet between glass plates or between a glass plate and a resin plate.
  • the method of processing (thermocompression bonding) etc. are mentioned.
  • the former method can suppress deformation of the resin plate due to expansion mismatch between the glass plate and the resin plate.
  • the latter method is easier to combine and integrate.
  • a functional film such as a hard coat film, an infrared reflection film, or a heat ray reflection film may be formed on the outer surface of the outermost glass plate.
  • a functional film such as a hard coat film, an infrared reflection film, or a heat ray reflection film may be formed on the inner surface of the outermost glass plate.
  • a glass plate was produced as follows.
  • the glass raw material was prepared so that the glass plate of Table 1 was obtained.
  • the prepared glass batch is put into a continuous melting furnace, melted at 1600 ° C. for 20 hours, clarified and stirred to obtain a homogeneous molten glass, and then formed into a plate having a plate thickness of 8.0 mm. Molded.
  • the obtained glass plate was evaluated for Young's modulus, glass transition temperature, and crystallinity.
  • Sample No. In the glass plates according to 1 to 10 the impurity content of Fe 2 O 3 is 0.05 mol%, and the amounts of impurity impurities of V 2 O 5 , Cr 2 O 3 , CoO 3 and NiO are each 0.01 mol. %.
  • the Young's modulus is a value measured by a well-known resonance method.
  • the glass transition temperature is a value measured using a dilatometer.
  • the degree of crystallinity was calculated by measuring the XRD by a powder method to calculate the area of the halo corresponding to the amorphous mass and the area of the peak corresponding to the mass of the crystal, respectively, 100 / [Area of peak + Area of halo] (%) indicates a value obtained by the formula.
  • the entire plate width direction is curved in an arc shape, and the entire length direction is curved in an arc shape.
  • the curved surface was processed into a curved surface shape. Thereafter, the end face of the glass plate after the curved surface processing was C-chamfered and polished with a # 800 metal bond grindstone.
  • a polycarbonate plate (plate thickness: 4.0 mm) and a soda glass plate (plate thickness: 8.0 mm) having the same curved shape as the glass plate were prepared.
  • the glass composition, glass transition temperature, Young's modulus, and crystallinity of the soda glass plate are as shown in Table 1.
  • the glass plate (outermost layer glass plate), soda glass plate (innermost layer glass plate) and polycarbonate plate shown in Table 1 are arranged.
  • the sample No. 1 was combined and integrated by autoclaving. Glass resin composites according to 1 to 10 were obtained.
  • sample No. 8 to 10 the Young's modulus of the outermost glass plate is not sufficiently higher than the Young's modulus of the innermost glass plate, or the Young's modulus of the outermost glass plate is lower than the Young's modulus of the innermost glass plate. Since it is low, it is considered that it is difficult to attenuate the impact energy of the scattering pieces.
  • Sample No. Nos. 1 to 10 are lightweight because the glass resin composite has a plate thickness of 21.6 mm and a polycarbonate plate having a thickness of 4.0 mm.
  • the glass resin composite of the present invention is suitable for window glass of automobiles, railways, aircrafts, and the like, and is also suitable for window glass of buildings such as high-rise buildings.

Abstract

本発明のガラス樹脂複合体は、有機樹脂中間層により複合一体化されており、外層のガラス板の内、少なくとも一層のガラス板が、結晶化度が30%以下であり、且つ内側に近接するガラス板のヤング率よりも5GPa以上高いことを特徴とする。

Description

ガラス樹脂複合体
 本発明は、ガラス樹脂複合体に関し、特に自動車のフロントガラスやドアガラスに好適なガラス樹脂複合体に関する。
 車両等の窓ガラスには、一般的に、複数枚のソーダライムガラス板を有機樹脂中間層で複合一体化した合わせガラスが使用されており、軽量化を目的として、複数枚のソーダライムガラス板と樹脂板とを有機樹脂中間層で複合一体化したガラス樹脂複合体が用いられることもある(特許文献1~4参照)。
 車両等の窓ガラスに使用されるソーダライムガラス板は、走行中の飛び石等の飛散片の先端部分の板形状を変形させて、その衝撃抵抗を増大させることで、飛散片の衝突エネルギーを減衰する機能を有している。
 しかし、ソーダライムガラスは、飛散片の衝撃抵抗を増大させる効果が十分であるとは言えない。現状、ソーダライムガラス板の板厚を大きくするか、複合枚数を多くして、飛散片の衝撃抵抗を高めているが、これに伴い、窓ガラスの厚みや重量の増大を招いている。
 そこで、飛散片の衝撃抵抗を高めるために、ソーダライムガラス板の代わりに結晶化ガラス板を用いることが検討されている。例えば、主結晶としてβ-石英固溶体(LiO・Al・nSiO[但し、n≧2])等のLiO-Al-SiO系結晶を析出してなる結晶化ガラス板が検討されている。
特開2012-144217号公報 特開2004-196184号公報 特開2001-151539号公報 実開平1-8821号公報
 ところで、結晶化ガラスの結晶化度を高めると、結晶化ガラスの硬度が上昇し、飛散片の衝突エネルギーを減衰し得るが、析出結晶が軟化変形を阻害するため、曲げ加工が困難になり、自動車のフロントガラス等に適用できなくなる。
 また、結晶化ガラスの厚みを大きくすることでも、飛散片の衝突エネルギーを減衰し得るが、この場合、窓ガラスの重量が増大してしまい、透明性も損なう虞がある。
 そこで、本発明は、上記事情に鑑みなされたものであり、その技術的課題は、曲げ加工性に優れると共に、厚みや結晶化度が小さくても、飛散片の衝突エネルギーを有効に減衰し得る窓ガラスを創案することである。
 本発明者等は、複数枚のガラス板と樹脂板とを備えるガラス樹脂複合体(積層体)について、外側(外気側)のガラス板のヤング率をその内側(室内側)に隣接するガラス板のヤング率よりも高くすることにより、上記技術的課題を解決し得ることを見出し、本発明として提案するものである。すなわち、本発明のガラス樹脂複合体は、有機樹脂中間層により複合一体化されており、外層のガラス板の内、少なくとも一層のガラス板が、結晶化度が30%以下であり、且つ内側に隣接するガラス板のヤング率よりも5GPa以上高いことを特徴とする。ここで、「結晶化度」は、粉末法によりXRDを測定することにより、非晶質の質量に相当するハローの面積と、結晶の質量に相当するピークの面積とをそれぞれ算出した後、[ピークの面積]×100/[ピークの面積+ハローの面積](%)の式により求めた値を指す。「外層のガラス板」とは、最内層のガラス板以外のガラス板を指す。「内側に隣接するガラス板」とは、有機樹脂中間層を介して、室内側に隣り合うガラス板を指す。
 本発明のガラス樹脂複合体は、少なくとも複数枚のガラス板と樹脂板とを備える複合体である。ガラス板は、透明性を有し、衝撃抵抗を高める材料である。樹脂板は、飛散片の衝突による衝撃を緩和し、また飛散片の衝撃によるガラス片の飛散を防止する材料である。両者を備えることにより、耐衝撃性能を確保し易くなる。
 また、本発明のガラス樹脂複合体において、外層のガラス板の内、少なくとも一層のガラス板が、結晶化度が30%以下である。これにより、ガラス板の曲げ加工性を高めることができる。
 また、本発明者等が、飛散片の衝突エネルギーの減衰を解析したところ、最初にガラス板が衝撃を受けた際に発生した衝撃波を飛散体の衝突方向に対してだけでなく、垂直方向へも進行させると、つまり衝撃波を広範囲に進行させると、衝撃波による破壊領域が大きくなり、衝突エネルギーを効率良く吸収し得ることが分かった。そこで、本発明のガラス樹脂複合体は、上記知見に基づき、外層のガラス板の内、少なくとも一層のガラス板のヤング率が、内側に隣接するガラス板のヤング率よりも5GPa以上高くなっている。このようにすれば、飛散片の衝突によって発生した衝撃波の速度が、高ヤング率のガラス板により速くなり、衝撃波が、飛散体の衝突方向に対して垂直方向にも進行し易くなる。その後、高ヤング率のガラス板に対して、内側に隣接する低ヤング率のガラス板の存在により、衝撃波の速度が遅くなり、衝撃波が、飛散体の衝突方向に対して垂直方向に進行し難くなる。これらの効果により、外側のガラス板内で衝撃波が広がるため、衝撃波による破壊領域が大きくなり、飛散体の衝突エネルギーを破壊エネルギーとして吸収し易くなる。その結果、飛散体がガラス樹脂複合体を貫通し難くなる。なお、外側に位置するガラス板のヤング率が、そのガラス板と内側に隣接するガラス板のヤング率よりも十分に高くないと、上記作用は働かず、飛散片の衝突エネルギーを効率良く減衰できない。
 更に、本発明者等が、飛散片の衝突エネルギーの減衰を解析したところ、最初にガラス板が衝撃を受けて撓むことにより、有機樹脂中間層が衝撃で剥がれ、この剥がれる際の剥離エネルギーとして衝突エネルギーを吸収することも分かった。そして、ガラス板の撓み量を所定範囲に規制すると、有機樹脂中間層の剥離エネルギー(剥離量)が大きくなり、飛散片の衝突エネルギーを有効に減衰し得ることも分かった。そこで、本発明のガラス樹脂複合体は、上記知見に基づき、外層のガラス板の内、少なくとも一層のガラス板のヤング率が、その内側に隣接するガラス板のヤング率よりも5GPa以上高くなっている。このようにすれば、飛散片が最外側のガラス板に衝突した時に、外側に位置するガラス板は撓み難くなるが、有機樹脂中間層を介して、その内側に隣接するガラス板は撓み易くなるため、有機樹脂中間層を引き剥がそうとするエネルギーが大きくなり、飛散片の衝突エネルギーが、有機樹脂中間層の剥離エネルギーに転換して、減衰し易くなる。結果として、飛散片がガラス樹脂複合体を貫通し難くなる。なお、外側に位置するガラス板のヤング率が、その内側に隣接するガラス板のヤング率よりも十分に高くないと、上記作用は働かず、飛散片の衝突エネルギーを効率良く減衰できない。
 第二に、本発明のガラス樹脂複合体は、外層のガラス板の内、少なくとも一層のガラス板のガラス転移温度が850℃以下であることが好ましい。これにより、外側に位置するガラス板を曲げ加工し易くなり、ガラス樹脂複合体に曲面形状を付与し易くなる。ここで、「ガラス転移温度」は、ディラトメーターを用いて測定した値を指す。
 第三に、本発明のガラス樹脂複合体は、外層のガラス板の内、少なくとも一層のガラス板が、非晶質であり、ガラス組成として、モル%で、SiO 45~80%、Al 5~30%、LiO+NaO+KO 0~20%、MgO+CaO+SrO+BaO 3~35%を含有することが好ましい。ここで、「非晶質」は、結晶化度が1%未満である場合を指す。「LiO+NaO+KO」は、LiO、NaO及びKOの合量を指す。「MgO+CaO+SrO+BaO」は、MgO、CaO、SrO及びBaOの合量を指す。
 第四に、本発明のガラス樹脂複合体は、最内層のガラス板がソーダライムガラスであることが好ましい。
 第五に、本発明のガラス樹脂複合体は、樹脂板が、最内層のガラス板よりも内側に配置されることが好ましい。
 第六に、本発明のガラス樹脂複合体は、樹脂板がポリカーボネート板であることが好ましい。
 第七に、本発明のガラス樹脂複合体は、総板厚が45mm以下であることが好ましい。
 第八に、本発明のガラス樹脂複合体は、3次元的に湾曲した曲面形状を有することが好ましい。図1は、本発明のガラス樹脂複合体の一例を説明するための概略図である。ガラス樹脂複合体10は、外層のガラス板11と、内層のガラス板12と、樹脂板13との複合体を備えている。そして、外層のガラス板11の非晶質であり、且つ外層のガラス板11のヤング率は、内側に隣接する内層のガラス板12のヤング率よりも5GPa以上高くなっている。また、外層のガラス板11と、内層のガラス板12と、樹脂板13とは、図示しない有機樹脂中間層で複合一体化されている。そして、ガラス樹脂複合体10は、3次元的に湾曲した曲面形状を有しており、具体的には、外層のガラス板11側を凸として、板幅方向の全体が円弧状に湾曲し、且つ長さ方向の全体が円弧状に湾曲している。
本発明のガラス樹脂複合体の一例を示す概略図である。 本発明のガラス樹脂複合体の一例を示す概略断面図である。
 本発明のガラス樹脂複合体は、複数枚のガラス板を備えており、好ましくは2~7枚、より好ましくは2~3枚、特に2枚のガラス板を備えている。ガラス板の枚数が1枚であると、ガラス板間の撓み差が生じないため、飛散片の衝突エネルギーを減衰し難くなる。ガラス板の枚数が多過ぎると、透明性が低下して、視認性が低下し易くなる。また重量が増加して、自動車の燃費等が低下し易くなる。
 図2は、本発明のガラス樹脂複合体の一例を示す概略断面図である。ガラス樹脂複合体20は、外側から見て、最外層のガラス板21、ガラス板22、ガラス板23、ガラス板24、最内層のガラス板25、樹脂板26の順に複合化された複合体を備えている。そして、最外層のガラス板21のヤング率は86GPa、ガラス板22のヤング率は90GPa、ガラス板23のヤング率は84GPa、ガラス板24のヤング率は85GPa、最内層のガラス板25のヤング率は85GPaになっており、ガラス板22のヤング率は、その内側に隣接するガラス板23のヤング率よりも6GPa高くなっている。なお、各ガラス板22~25の間には、図示しない有機樹脂中間層が存在している。なお、最外層のガラス板21、ガラス板22、ガラス板23、ガラス板24、最内層のガラス板25は、何れも非晶質である。
 本発明のガラス樹脂複合体において、外層のガラス板の内、少なくとも一層のガラス板(好ましくは最外層のガラス板)のヤング率は、内側に隣接するガラス板のヤング率よりも5GPa以上高く、好ましくは10GPa以上高く、特に好ましくは15~50GPa高い。外側に位置するガラス板のヤング率が、内側に隣接するガラス板のヤング率よりも低くなると、飛散片の衝突エネルギーを減衰し難くなる。
 本発明のガラス樹脂複合体において、ガラス板(好ましくは最内層以外のガラス板、特に好ましくは最外層のガラス板)のガラス転移温度は、好ましくは850℃以下、より好ましくは820℃以下であり、特に好ましくは500~800℃である。ガラス転移温度が高過ぎると、ガラス板を曲げ加工し難くなる。
 ガラス板(好ましくは最内層以外のガラス板、特に好ましくは最外層のガラス板)の結晶化度は、好ましくは30%以下、より好ましくは10%以下であり、特に好ましくは1%未満、つまり非晶質ガラスである。結晶化度が高過ぎると、ガラス板を曲げ加工し難くなる。
 ガラス板は、イオン交換による圧縮応力層を有していないことが好ましい。これにより、イオン交換処理が不要になり、ガラス板の製造コストを低廉化することができる。
 本発明のガラス樹脂複合体において、最内層以外のガラス板(好ましくは最外層のガラス板)の板厚は、好ましくは15mm以下、12mm以下、10mm以下、特に8mm以下であり、好ましくは3mm以上、4mm以上、5mm以上、6mm以上、特に7mm以上である。最内層のガラス板の板厚は、好ましくは15mm以下、12mm以下、10mm以下、特に8mm以下であり、好ましくは3mm以上、4mm以上、5mm以上、6mm以上、特に7mm以上である。ガラス板の板厚が小さ過ぎると、耐衝撃性能を確保し難くなる。一方、ガラス板の板厚が大き過ぎると、ガラス樹脂複合体を薄型化し難くなり、視認性が低下し易くなる。またガラス樹脂複合体の重量が増大して、自動車等の燃費が高騰してしまう。
 本発明のガラス樹脂複合体において、最内層のガラス板の長辺寸法は、最外層のガラス板の長辺寸法よりも小さいことが好ましい。そして、両者の長辺寸法差は、両者の熱膨張係数差に応じて、調整されていることが好ましい。このようにすれば、外側が凸になるように曲げ加工した後に複合一体化した場合に、両者の寸法差が小さくなり、両者の端面が揃い易くなる。その結果、ガラス樹脂複合体の端面強度が向上する。
 外層のガラス板(好ましくは最外層のガラス板)は、アルミノシリケートガラスが好ましい。アルミノシリケートガラスは、ヤング率が高いため、外側に位置するガラス板に好適である。また耐失透性が良好であるため、板状に成形が容易である。
 外層のガラス板(好ましくは最外層のガラス板)は、ガラス組成として、モル%で、SiO 45~80%、Al 5~30%、LiO+NaO+KO 0~20%、MgO+CaO+SrO+BaO 3~35%を含有することが好ましい。上記のように各成分の含有範囲を規制した理由を下記に示す。なお、各成分の含有範囲の説明において、%表示はモル%を指すものとする。
 SiOは、ガラスのネットワークを形成する成分である。SiOの含有量は、好ましくは45~80%、50~75%、特に57~72%である。SiOの含有量が少な過ぎると、ガラス化し難くなり、また耐候性が低下し易くなる。一方、SiOの含有量が多過ぎると、溶融性や成形性が低下し易くなり、また熱膨張係数が低くなり過ぎて、樹脂板や有機樹脂中間層の熱膨張係数に整合させ難くなる。
 Alは、耐候性やヤング率を高める成分である。Alの含有量は、好ましくは5~30%、9~25%、特に15~23%である。Alの含有量が少な過ぎると、耐候性やヤング率が低下し易くなる。一方、Alの含有量が多過ぎると、溶融性、成形性及び耐失透性が低下し易くなる。
 LiO、NaO及びKOは、高温粘度を低下させて、溶融性、成形性及び熱加工性を高める成分である。特にLiOは、ヤング率を高める成分である。LiO、NaO及びKOの合量は、好ましくは0~20%、5~20%、特に10~20%である。LiO、NaO及びKOのそれぞれの含有量は、好ましくは0~20%、3~15%、特に8~16%である。LiO、NaO及びKOの含有量が多過ぎると、耐失透性と耐候性が低下し易くなる。またNaO及びKOの含有量が多過ぎると、ヤング率が低下し易くなる。
 MgO、CaO、SrO及びBaOは、高温粘度を低下させて、溶融性、成形性及び熱加工性を高める成分である。特にMgOは、ヤング率を顕著に高める成分である。MgO、CaO、SrO及びBaOの合量は、好ましくは3~35%、10~30%、特に12~25%である。MgOの含有量は、好ましくは0~35%、5~25%、特に10~20%である。CaO、SrO及びBaOのそれぞれの含有量は、好ましくは0~20%、0~10%、特に0~5%である。MgO、CaO、SrO及びBaOの含有量が多過ぎると、耐失透性が低下し易くなる。またCaO、SrO及びBaOの含有量が多過ぎると、ヤング率が低下し易くなる。
 モル比MgO/(MgO+CaO+SrO+BaO)は、ヤング率を有効に高める観点から、好ましくは0.5以上、0.7以上、0.8以上、特に0.9以上である。なお、「MgO/(MgO+CaO+SrO+BaO)」は、MgOの含有量をMgO、CaO、SrO及びBaOの合量で割った値である。
 上記成分以外にも、例えば以下の成分を添加してもよい。
 Bは、ガラスのネットワークを形成する成分であるが、ヤング率や耐候性を低下させる成分である。よって、Bの含有量は、好ましくは0~20%、0~10%、特に0~5%である。
 TiOは、耐候性を高める成分であるが、ガラスを着色させる成分である。よって、TiOの含有量は、好ましくは0~0.5%、特に0~0.1%未満である。
 ZrOは、ヤング率や耐候性を高める成分であるが、耐失透性を低下させる成分である。よって、ZrOの含有量は、好ましくは0~0.5%、特に0~0.1%未満である。
 清澄剤として、SnO、Cl、SO、CeOの群(好ましくはSnO、SOの群)から選択された一種又は二種以上を0.05~0.5%添加してもよい。
 Feは、ガラス原料に不純物として不可避的に混入する成分であり、着色成分である。よって、Feの含有量は、好ましくは0.5%以下、特に0.01~0.07%である。
 V、Cr、CoO及びNiOは、着色成分である。よって、V、Cr、CoO及びNiOのそれぞれの含有量は、好ましくは0.1%以下、特に0.01%未満である。
 Nd、La等の希土類酸化物は、ヤング率を高める成分である。しかし、原料自体のコストが高く、また多量に添加すると、耐失透性が低下し易くなる。よって、希土類酸化物の合量は、好ましくは3%以下、1%以下、0.5%以下、特に0.1%以下である。
 環境的配慮から、ガラス組成として、実質的にAs、Sb、PbO、Bi及びFを含有しないことが好ましい。ここで、「実質的に~を含有しない」とは、ガラス成分として積極的に明示の成分を添加しないものの、不純物として混入する場合を許容する趣旨であり、具体的には、明示の成分の含有量が0.05%未満であることを指す。
 外層のガラス板が複数ある場合、それらのガラス板のガラス組成は、必ずしも同一である必要はないが、上記ガラス組成範囲内であることが好ましい。
 最内層のガラス板として、上記アルミノシリケートガラスを用いてもよいが、製造コストと低ヤング率の観点から、ソーダライムガラスを用いることが好ましい。ソーダライムガラスは、一般的に、ガラス組成として、モル%で、SiO 68~78%、Al 0~2%、CaO 6~15%、MgO 0~10%、NaO 10~20%、KO 0~3%、Fe 0~1%を含有している。
 本発明のガラス樹脂複合体は、飛散片が衝突した時にその衝撃力を緩和するために、樹脂板を備える。樹脂板の枚数は特に制限されないが、視認性を高める観点から、1枚であることが好ましい。樹脂板の枚数が多過ぎると、透明性が低下して、ガラス樹脂複合体の視認性が低下し易くなる。
 樹脂板は、最内層のガラス板よりも内側に配置されることが好ましい。このようにすれば、飛散片の衝突による衝撃を緩和し易くなり、また万が一、飛散片の衝突によりガラス板が破損した時に、内側に向かってガラス片が飛散する事態を防止することができる。
 樹脂板として、アクリル板、ポリカーボネート板等の種々の樹脂板が使用可能である。特に、その中でも、ポリカーボネート板は、透明性、衝撃緩和性、軽量化の観点から特に好ましい。
 樹脂板の板厚は、好ましくは10mm以下、8mmm以下、7mm以下、6mm以下、特に5mm以下であり、好ましくは0.5mm以上、0.7mm以上、1mm以上、2mm以上、特に3mm以上である。樹脂板の板厚が小さ過ぎると、飛散片が衝突した時にその衝撃を緩和し難くなる。一方、樹脂板の板厚が大き過ぎると、ガラス樹脂複合体を薄型化し難くなり、視認性が低下し易くなる。
 ガラス樹脂複合体の総板厚は、好ましくは45mm以下、35mm以下、30mm以下、25mm以下、特に22mm以下であり、好ましくは7mm以上、11mm以上、12mm以上、特に15mm以上である。ガラス樹脂複合体の総板厚が小さ過ぎると、耐衝撃性能が低下し易くなる。一方、ガラス樹脂複合体の板厚が大き過ぎると、ガラス樹脂複合体の重量が重くなり、また視認性が低下し易くなる。
 本発明のガラス樹脂複合体において、複数のガラス板と樹脂板とを複合一体化するために有機樹脂(有機樹脂中間層)を用いることが好ましい。有機樹脂中間層の厚みは、好ましくは0.1~2mm、0.3~1.5mm、0.5~1.2mm、特に0.6~0.9mmである。有機樹脂中間層の厚みが小さ過ぎると、有機樹脂中間層の剥離エネルギーが低下して、飛散片の衝撃エネルギーを減衰し難くなる。一方、有機樹脂中間層の厚みが大き過ぎると、ガラス樹脂複合体の視認性が低下し易くなる。
 有機樹脂中間層の熱膨張係数は、ガラス板の熱膨張係数以上、且つ樹脂板の熱膨張係数以下であることが好ましい。このようにすれば、ガラス樹脂複合体が直射日光で加熱された時に、ガラス板と樹脂板が分離、変形し難くなる。なお、「熱膨張係数」は、0~300℃の温度範囲における平均線熱膨張係数を指す。
 有機樹脂中間層として、種々の有機樹脂が使用可能であり、例えば、ポリエチレン(PE)、エチレン酢酸ビニル共重合体(EVA)、ポリプロピレン(PP)、ポリスチレン(PS)、メタクリル樹脂(PMA)、ポリ塩化ビニル(PVC)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、セルロースアセテート(CA)、ジアリルフタレート樹脂(DAP)、ユリア樹脂(UP)、メラミン樹脂(MF)、不飽和ポリエステル(UP)、ポリビニルブチラール(PVB)、ポリビニルホルマール(PVF)、ポリビニルアルコール(PVAL)、酢酸ビニル樹脂(PVAc)、アイオノマー(IO)、ポリメチルペンテン(TPX)、塩化ビニリデン(PVDC)、ポリスルフォン(PSF)、ポリフッ化ビニリデン(PVDF)、メタクリル-スチレン共重合樹脂(MS)、ポリアレート(PAR)、ポリアリルスルフォン(PASF)、ポリブタジエン(BR)、ポリエーテルスルフォン(PESF)、又はポリエーテルエーテルケトン(PEEK)等が使用可能である。その中でも、透明性と固着性の観点から、EVA、PVBが好適であり、特にPVBは遮音性を付与し得るため好ましい。
 有機樹脂中間層中に着色剤を添加してもよく、赤外線、紫外線等の特定波長光線を吸収する吸収剤を添加してもよい。
 有機樹脂中間層には、上記有機樹脂を複数種類組み合わせたものを用いてもよい。例えば、ガラス板と樹脂板の複合一体化に二層の有機樹脂中間層を用いると、ガラス板と樹脂板が異なる有機樹脂で固着されるため、ガラス樹脂複合体の反りを低減し易くなる。
 以下のようにして、本発明のガラス樹脂複合体を作製することができる。
 まず所定のガラス組成になるように調合したガラス原料を連続溶融炉に投入して、1500~1700℃で加熱溶融し、清澄、攪拌した後、成形装置に供給して板状に成形し、徐冷することにより、ガラス板を作製することができる。
 平板形状に成形する方法として、オーバーフローダウンドロー法を採用することが好ましい。オーバーフローダウンドロー法は、表面が未研磨の状態で、高品位なガラス板を大量に作製し得ると共に、大型のガラス板も容易に作製し得る方法である。なお、表面が未研磨であると、ガラス板の製造コストを低廉化することができる。
 オーバーフローダウンドロー法以外にも、フロート法でガラス板を成形することも好ましい。フロート法は、大型のガラス板を安価に作製し得る方法である。
 ガラス板は、必要に応じて、面取り加工されていることが好ましい。その場合、#800のメタルボンド砥石等により、C面取り加工を行うことが好ましい。このようにすれば、端面強度を高めることができる。必要に応じて、ガラス板の端面をエッチングして、端面に存在するクラックソースを低減することも好ましい。
 次に、得られたガラス板について、必要に応じて、曲面加工を行う。曲面加工の方法として、種々の方法を採用することができる。特に、金型によりガラス板をプレス成形する方法が好ましく、所定の形状の金型でガラス板を挟み込んだ状態で熱処理炉を通過させることが好ましい。このようにすれば、曲面形状の寸法精度を高めることができる。また、所定形状の金型上にガラス板を配置した後、ガラス板の一部又は全体を熱処理することにより、金型の形状に沿って、ガラス板を自重で軟化変形させる方法も好ましい。このようにすれば、曲面加工の効率を高めることができる。
 更に、複数のガラス板と樹脂板とを有機樹脂中間層で複合一体化して、ガラス樹脂複合体とする。複合一体化の方法として、ガラス板同士又はガラス板と樹脂板の間に有機樹脂を注入した後に有機樹脂を硬化させる方法、ガラス板同士又はガラス板と樹脂板の間に有機樹脂シートを配置した後に加圧加熱処理(熱圧着)する方法等が挙げられる。前者の方法は、ガラス板と樹脂板の膨張不整合による樹脂板の変形を抑制することができる。後者の方法の方は、複合一体化が容易である。
 また、複合一体化した後に、最外層のガラス板の外表面に、ハードコート膜、赤外線反射膜、熱線反射膜等の機能膜を形成してもよい。また複合一体化する前に、最外層のガラス板の内表面に、ハードコート膜、赤外線反射膜、熱線反射膜等の機能膜を形成してもよい。
 以下、実施例に基づいて、本発明を詳細に説明する。なお、以下の実施例は単なる例示である。本発明は以下の実施例に何ら限定されない。
 次のようにしてガラス板を作製した。表1に記載のガラス板が得られるように、ガラス原料を調合した。次に、調合済みのガラスバッチを連続溶融炉に投入し、1600℃で20時間溶融した後、清澄、攪拌して、均質な溶融ガラスを得た上で、板厚8.0mmの板状に成形した。得られたガラス板について、ヤング率、ガラス転移温度及び結晶化度を評価した。なお、試料No.1~10に係るガラス板は、Feの混入不純量が0.05モル%であり、V、Cr、CoO及びNiOの混入不純物量がそれぞれ0.01モル%未満であった。
Figure JPOXMLDOC01-appb-T000001
 ヤング率は、周知の共振法で測定した値である。
 ガラス転移温度は、ディラトメーターを用いて測定した値である。
 結晶化度は、粉末法によりXRDを測定することにより、非晶質の質量に相当するハローの面積と、結晶の質量に相当するピークの面積とをそれぞれ算出した後、[ピークの面積]×100/[ピークの面積+ハローの面積](%)の式により求めた値を指す。
 また、ガラス板を所定の形状の金型で各試料を挟み込んだ状態で熱処理炉を通過させることにより、板幅方向の全体が円弧状に湾曲し、且つ長さ方向の全体が円弧状に湾曲した曲面形状に曲面加工した。その後、曲面加工後のガラス板の端面について#800のメタルボンド砥石によりC面取り加工及び研磨加工を行った。
 次に、ガラス板と同様の曲面形状を有するポリカーボネート板(板厚4.0mm)とソーダガラス板(板厚8.0mm)を用意した。なお、ソーダガラス板のガラス組成、ガラス転移温度、ヤング率及び結晶化度は、表1に記載の通りである。
 最後に、厚み0.8mmのポリビニルブチラール(PVB)を用いて、表1に記載のガラス板(最外層のガラス板)、ソーダガラス板(最内層のガラス板)、ポリカーボネート板の配置になるように、オートクレーブ処理により複合一体化して、試料No.1~10に係るガラス樹脂複合体をそれぞれ得た。
 表1から分かるように、試料No.1~7は、最外層のガラス板のヤング率が最内層のガラス板のヤング率よりも5GPa以上高いため、飛散片の衝撃エネルギーを有効に減衰し得ると考えられる。一方、試料No.8~10は、最外層のガラス板のヤング率が最内層のガラス板のヤング率に比べて十分に高くない、或いは最外層のガラス板のヤング率が最内層のガラス板のヤング率よりも低いため、飛散片の衝撃エネルギーを減衰し難いものと考えられる。なお、試料No.1~10は、ガラス樹脂複合体の板厚が21.6mmであり、4.0mm厚のポリカーボネート板を備えるため、軽量である。
 本発明のガラス樹脂複合体は、自動車、鉄道、航空機等の窓ガラスに好適であり、それ以外にも、高層ビル等の建築物の窓ガラスにも好適である。
10、20 ガラス樹脂複合体
11、21 ガラス板(最外層のガラス板)
12、25 ガラス板(最内層のガラス板)
13、26 樹脂板
22~24 ガラス板

Claims (8)

  1.  窓ガラスに用いるガラス樹脂複合体において、
     少なくとも複数枚のガラス板と樹脂板とを備えるガラス樹脂複合体であって、
     有機樹脂中間層により複合一体化されており、
     外層のガラス板の内、少なくとも一層のガラス板が、結晶化度が30%以下であり、且つ内側に隣接するガラス板のヤング率よりも5GPa以上高いことを特徴とするガラス樹脂複合体。
  2.  外層のガラス板の内、少なくとも一層のガラス転移温度が850℃以下であることを特徴とする請求項1に記載のガラス樹脂複合体。
  3.  外層のガラス板の内、少なくとも一層のガラス板が、非晶質であり、ガラス組成として、モル%で、SiO 45~80%、Al 5~30%、LiO+NaO+KO 0~20%、MgO+CaO+SrO+BaO 3~35%を含有することを特徴とする請求項1又は2に記載のガラス樹脂複合体。
  4.  最内層のガラス板がソーダライムガラスであることを特徴とする請求項1~3の何れかに記載のガラス樹脂複合体。
  5.  樹脂板が、最内層のガラス板よりも内側に配置されることを特徴とする請求項1~4の何れかに記載のガラス樹脂複合体。
  6.  樹脂板がポリカーボネート板であることを特徴とする請求項1~5の何れかに記載のガラス樹脂複合体。
  7.  総板厚が45mm以下であることを特徴とする請求項1~6の何れかに記載のガラス樹脂複合体。
  8.  3次元的に湾曲した曲面形状を有することを特徴とする請求項1~7の何れかに記載のガラス樹脂複合体。
PCT/JP2018/007167 2017-03-06 2018-02-27 ガラス樹脂複合体 WO2018163904A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/490,758 US20200023617A1 (en) 2017-03-06 2018-02-27 Glass-resin composite

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017041664 2017-03-06
JP2017-041664 2017-03-06
JP2017081146A JP2018145082A (ja) 2017-03-06 2017-04-17 ガラス樹脂複合体
JP2017-081146 2017-04-17

Publications (1)

Publication Number Publication Date
WO2018163904A1 true WO2018163904A1 (ja) 2018-09-13

Family

ID=63447507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007167 WO2018163904A1 (ja) 2017-03-06 2018-02-27 ガラス樹脂複合体

Country Status (1)

Country Link
WO (1) WO2018163904A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009215166A (ja) * 2001-09-14 2009-09-24 Saint-Gobain Glass France 機能的安全グレージングユニット
JP4590487B2 (ja) * 2008-12-22 2010-12-01 積水化学工業株式会社 合わせガラス用積層体
JP2015143182A (ja) * 2013-12-25 2015-08-06 旭硝子株式会社 可動ホーム柵用のガラス基板および合わせガラス
US20150314571A1 (en) * 2014-05-02 2015-11-05 Corning Incorporated Strengthened glass and compositions therefor
JP2016008161A (ja) * 2014-06-26 2016-01-18 日本電気硝子株式会社 合わせガラス
JP2016052990A (ja) * 2012-05-11 2016-04-14 旭硝子株式会社 積層体用の前面ガラス板および積層体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009215166A (ja) * 2001-09-14 2009-09-24 Saint-Gobain Glass France 機能的安全グレージングユニット
JP4590487B2 (ja) * 2008-12-22 2010-12-01 積水化学工業株式会社 合わせガラス用積層体
JP2016052990A (ja) * 2012-05-11 2016-04-14 旭硝子株式会社 積層体用の前面ガラス板および積層体
JP2015143182A (ja) * 2013-12-25 2015-08-06 旭硝子株式会社 可動ホーム柵用のガラス基板および合わせガラス
US20150314571A1 (en) * 2014-05-02 2015-11-05 Corning Incorporated Strengthened glass and compositions therefor
JP2016008161A (ja) * 2014-06-26 2016-01-18 日本電気硝子株式会社 合わせガラス

Similar Documents

Publication Publication Date Title
JP6256763B2 (ja) 合わせガラス
WO2017183381A1 (ja) 車両用合わせガラス
JP2017508693A (ja) 積層ガラス
JP2019517976A (ja) 接合ガラスおよび接合ガラスの製造方法
WO2018030093A1 (ja) 車両用合わせガラス
JP2019182692A (ja) ガラス板及びそれを用いたガラス樹脂複合体
JP2019505466A (ja) 薄い内側ペイン及び薄い外側ペインを有している加熱可能な積層ガラス
WO2018030095A1 (ja) 車両用合わせガラス
WO2017183382A1 (ja) 車両用合わせガラス
JP2018145082A (ja) ガラス樹脂複合体
WO2018193788A1 (ja) ガラス樹脂複合体
JP7011227B2 (ja) 車両用合わせガラス
US11401199B2 (en) Glass plate
WO2018163903A1 (ja) ガラス樹脂複合体
WO2019151000A1 (ja) ガラス樹脂複合体
WO2018163904A1 (ja) ガラス樹脂複合体
JP2019131430A (ja) ガラス板
JP6959566B2 (ja) ガラス板
WO2018163902A1 (ja) ガラス樹脂複合体
WO2020080162A1 (ja) ガラス板
JP2019199370A (ja) ガラス樹脂複合体
JP2019198980A (ja) ガラス樹脂複合体
JP2019172566A (ja) ガラス樹脂複合体
JP2019151516A (ja) ガラス板及びそれを用いたガラス樹脂複合体
JP2019182706A (ja) ガラス板及びそれを用いたガラス樹脂複合体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18763410

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18763410

Country of ref document: EP

Kind code of ref document: A1