WO2023243603A1 - 加湿エレメントおよび加湿器 - Google Patents

加湿エレメントおよび加湿器 Download PDF

Info

Publication number
WO2023243603A1
WO2023243603A1 PCT/JP2023/021739 JP2023021739W WO2023243603A1 WO 2023243603 A1 WO2023243603 A1 WO 2023243603A1 JP 2023021739 W JP2023021739 W JP 2023021739W WO 2023243603 A1 WO2023243603 A1 WO 2023243603A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
humidifying element
frame
laminate
membrane
Prior art date
Application number
PCT/JP2023/021739
Other languages
English (en)
French (fr)
Inventor
武馬 中澤
勝哉 葛西
敬久 末岡
英作 大久保
秀和 田中
臣治 前谷
直高 西尾
隆広 榊原
智也 水田
祐未 坂田
Original Assignee
株式会社ダイセル
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2023090139A external-priority patent/JP2023183387A/ja
Application filed by 株式会社ダイセル, ダイキン工業株式会社 filed Critical 株式会社ダイセル
Publication of WO2023243603A1 publication Critical patent/WO2023243603A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • B32B3/06Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions for securing layers together; for attaching the product to another member, e.g. to a support, or to another product, e.g. groove/tongue, interlocking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/02Air-humidification, e.g. cooling by humidification by evaporation of water in the air
    • F24F6/04Air-humidification, e.g. cooling by humidification by evaporation of water in the air using stationary unheated wet elements

Definitions

  • the present disclosure relates to a humidifying element and a humidifier. Additionally, this application claims priority based on Japanese Patent Application No. 2022-096880 filed in Japan on June 15, 2022 and Japanese Patent Application No. 2023-090139 filed in Japan on May 31, 2023, and the contents thereof are cited. It is something to do.
  • Moisture-permeable membrane humidifiers have higher humidification performance than conventional humidifiers that use evaporation plates, and are capable of clean humidification by suppressing the scattering of impurities.
  • moisture permeability it is necessary to use a special shape and material, and cost has become an issue.
  • deformation and damage of the moisture permeable membrane, as well as the adhesion and accumulation of scale components can cause deterioration of its function, leading to problems with long-term reliability. has been repeatedly improved.
  • Patent Document 1 by using a humidifying element in which a thin plate structure is attached to the outside of a thin bag-shaped moisture permeable membrane, the moisture permeable membrane is prevented from blistering, and a separate member is not required. Further, since the humidifying elements can be easily stacked and used, a humidifying element that can reduce costs and stably exhibit moisture permeability over a long period of time has been disclosed.
  • Patent Document 1 a bag-shaped moisture permeable membrane is used by adhering to the inside of a member on a thin plate, and the adhesive surface of the member on a thin plate is an area where water vapor is emitted because the outlet of water vapor is blocked.
  • the moisture permeability was limited to the hole portion of the member on the thin plate, and the moisture permeability could not be sufficiently exhibited.
  • the moisture permeable membrane cannot fully demonstrate moisture permeability, so in order to exhibit sufficient humidification performance, it is necessary to use a humidifying element with an area larger than the area of the moisture permeable membrane. The disadvantage was that it required a larger size. Furthermore, there is also the problem that as the humidifier becomes larger, the cost increases.
  • an object of the present disclosure is to provide a humidifying element with excellent humidifying performance.
  • the present disclosure discloses a laminate having a porous reinforcing material and a moisture permeable membrane laminated on at least one surface of the porous reinforcing material, and a frame. It has been found that the problems of the present disclosure can be solved if the laminate is a humidifying element disposed on the air path side with respect to the frame. The present disclosure relates to what has been completed based on these findings.
  • the present disclosure includes a laminate having a porous reinforcing material and a moisture permeable membrane laminated on at least one surface of the porous reinforcing material, and a frame, and the laminate has an air path with respect to the frame.
  • a humidifying element placed on the side is provided.
  • the laminate is arranged on the air path side of the frame, so that even if only a part of the laminate is capable of absorbing liquid water in the laminate as water vapor, the laminate is placed on the air path side of the frame.
  • Water vapor diffuses throughout the body, and a wide area of the surface of the air path side of the laminate can act as a water vapor volatilization surface, improving the effective area of the moisture permeable membrane of the laminate, resulting in high moisture permeability. can demonstrate.
  • the laminate forms a bag-shaped water retaining container that covers the air path side of the frame.
  • the moisture permeable membrane is arranged on the frame side with respect to the porous reinforcing material.
  • the moisture permeable membrane is a non-porous membrane. Since the moisture permeable membrane is a non-porous membrane, it becomes easy to suppress scattering of impurities.
  • the nonporous membrane preferably contains a thermoplastic resin having a cationic moiety, and the cationic moiety preferably contains a group containing an ammonium ion or a group capable of forming an ammonium ion.
  • the nonporous membrane can exhibit a bactericidal effect, thereby suppressing the adhesion and accumulation of germs and the like.
  • the non-porous membrane contains a thermoplastic resin having a hydrophilic part, and the hydrophilic part contains a structural unit represented by the following formula (1).
  • the nonporous membrane has the hydrophilic portion of the structural unit, a water conduction path can be formed in the moisture permeable membrane, and moisture permeability can be easily exhibited.
  • R 1 and R 2 each independently represent a hydrogen atom or a methyl group
  • the non-porous membrane contains a thermoplastic resin having a hydrophobic part, and the hydrophobic part contains a structural unit represented by the following formula (2) and/or the following formula (3). Since the nonporous membrane has the hydrophobic portion of the above structural unit, the surface of the nonporous membrane can exhibit water repellency.
  • R 1 represents a hydrogen atom or a methyl group
  • R 3 represents a hydrogen atom or an alkyl group having 1 to 2 carbon atoms
  • R 1 represents a hydrogen atom or a methyl group
  • R 4 represents a branched alkyl group having 3 or more carbon atoms
  • the moisture permeable membrane is a hydrophilic porous membrane.
  • the thicknesses of the porous membrane and the porous reinforcing material are different.
  • the laminate and the frame are attached by adhesive or fusion.
  • the laminate and the frame are bonded together with an adhesive.
  • the moisture permeable membrane is coated to cover at least one surface of the porous reinforcing material.
  • the present disclosure also provides a humidifier equipped with the humidifying element described above.
  • the present disclosure also provides an air conditioner equipped with the humidifier described above.
  • the present disclosure provides a ventilation device equipped with the above humidifier.
  • the present disclosure provides an air purifier equipped with the above humidifier.
  • the humidifying element of the present disclosure can improve humidifying performance. Therefore, the humidifying element of the present disclosure can be downsized when used as a humidifier, and is preferably used as a moisture-permeable membrane type humidifier.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of a humidifying element of the present disclosure.
  • a humidifying element includes at least a frame and a laminate having a porous reinforcing material and a moisture permeable membrane provided on at least one surface of the porous reinforcing material. Further, the laminate is arranged on the air path side of the frame.
  • the side of the humidifying element through which water flows is referred to as the "water path side”
  • the side through which air flows is referred to as the "air path side”.
  • the moisture permeable membrane may be provided on one side or both sides of the porous reinforcing material.
  • a humidifying element includes at least a laminate having a porous reinforcing material and a moisture permeable membrane provided on at least one surface of the porous reinforcing material, and a frame.
  • the laminate forms a bag-like water retaining container so as to cover the frame.
  • the humidifying element is provided with a water supply port and a drain port.
  • the water supply port and the drain port may be provided in advance when manufacturing the frame.
  • FIG. 1 is a schematic cross-sectional view showing one embodiment of the humidifying element of the present disclosure.
  • the humidifying element 1 includes a frame 30 and a laminate 10 bonded to the air path side of the frame 30.
  • the frame 30 has a hole 31 that communicates with the outside.
  • the laminate 10 includes a porous reinforcing material 11 and a moisture permeable membrane 12 provided on one surface 11a of the porous reinforcing material 11.
  • the laminate 10 is bonded together with an adhesive 20 so as to cover the hole 31 of the frame 30.
  • the laminate is arranged on the air path side of the frame, so that liquid water can be absorbed as water vapor from the area where the moisture permeable membrane contacts the water path side, that is, the hole in the frame. Even if the area is only a part of the moisture permeable membrane, water vapor can diffuse into the laminate. Therefore, a wide area of the air path side surface of the laminate can act as a water vapor volatilization surface, increasing the effective area of the moisture permeable membrane and exhibiting high moisture permeability.
  • the moisture permeable membrane is arranged on the frame side with respect to the porous reinforcing material.
  • the moisture permeable membrane 12 is placed on the frame 30 side with respect to the porous reinforcing material 11, that is, on the opposite side of the porous reinforcing material 11, so as to close the hole portions 31. It is attached to 30.
  • the humidifying element includes the frame.
  • the frame is preferably disposed on the water path side of the laminate, and more preferably can form a bag-like shape by bonding the laminate together.
  • the above-mentioned frame may be, for example, one plate-shaped, one frame may be curved to form a bag-like structure, or two or more frames may be pasted together to form a bag-like structure. It may form a structure like this. That is, the laminate may be arranged on both sides of the plate-shaped frame, or the laminate may be arranged so as to cover the air path side of the bag-shaped frame.
  • the outer shape of the frame is not particularly limited, but from the viewpoint of efficiently arranging the humidifying elements, it is preferably a substantially rectangular parallelepiped shape.
  • the frame is preferably made of a rigid material, such as resin such as ABS, polyethylene, polypropylene, nylon, POM, PPS, polyvinyl chloride, acrylic, polycarbonate, metal such as aluminum, stainless steel, titanium, etc. Alloy materials etc. can be used.
  • resin such as ABS, polyethylene, polypropylene, nylon, POM, PPS, polyvinyl chloride, acrylic, polycarbonate, metal such as aluminum, stainless steel, titanium, etc. Alloy materials etc. can be used.
  • the method for manufacturing the frame is not particularly limited, but when the frame is made of resin, it is preferably manufactured by extrusion molding or injection molding. Further, the hole may be formed by punching out a prepared frame, the hole may be formed using two or more frames, or a mold for forming the hole may be formed in advance. It may be produced using.
  • the humidifying element includes a laminate including a porous reinforcing material and a moisture permeable membrane formed on at least one surface of the porous reinforcing material.
  • the moisture permeable membrane is a membrane that does not allow liquid water to pass through it, but only allows water vapor to pass through it.
  • the moisture permeable membrane may be a nonporous membrane or a porous membrane.
  • a moisture permeable membrane in which only pores of 50 nm or less formed in the moisture permeable membrane are confirmed by observation using SEM is defined as a nonporous membrane.
  • a plurality of terms exceeding 50 nm can be confirmed, it is defined as a porous film.
  • the nonporous membrane preferably contains a thermoplastic resin because it absorbs moisture. It is preferable that the thermoplastic resin has a hydrophilic portion. Further, it is preferable that the thermoplastic resin has a hydrophobic portion in order to provide water repellency to the surface of the nonporous membrane and form a water conduction path in the nonporous membrane. Therefore, it is preferable that the thermoplastic resin has both a hydrophilic part and a hydrophobic part.
  • the above-mentioned hydrophilic part and the above-mentioned hydrophobic part form a phase-separated structure, so that the above-mentioned hydrophilic part functions as a water conduction path and allows more water vapor to permeate, thereby improving moisture permeability. It is presumed to be excellent.
  • thermoplastic resin examples include acrylic resins, cellulose resins, polyester resins such as polybutylene terephthalate, polyether resins, polyurethane resins, polyvinyl chloride resins, polyethylene, polystyrene resins, and polyamide resins.
  • examples include resin, polyacetal resin, polycarbonate resin, polyphenylene sulfide resin, polyether ether ketone, polyimide resin, polytetrafluoroethylene resin, polycaprolactone, and polylactic acid.
  • thermoplastic resin preferably has a hydrophilic part and a hydrophobic part as described above, it is preferably a thermoplastic copolymer containing different monomer components.
  • the hydrophilic portion is preferably one constituted by a monomer (a) unit (hereinafter referred to as monomer (a)) containing a hydrophilic functional group in its side chain.
  • the hydrophobic portion is preferably constituted by a monomer (b) unit (hereinafter referred to as monomer (b)) containing a hydrophobic functional group in its side chain.
  • the above-mentioned hydrophilic part and the above-mentioned hydrophobic part are formed within the above-mentioned copolymer.
  • the copolymer may maintain a core-shell structure in which a hydrophobic part is formed on the inside and a hydrophilic part is formed on the outside. It may be formed by a polymer core and shell. Further, the copolymer has a core-shell structure before forming the non-porous membrane, and does not need to maintain the core-shell structure when forming the non-porous membrane.
  • the copolymer preferably contains a structural unit derived from the monomer (a) as a portion constituting the hydrophilic portion.
  • the monomer (a) include glycidyl group-containing monomers, hydrolyzable silyl group-containing monomers, acetoacetyl group-containing monomers, hydroxyl group-containing monomers, carboxyl group-containing monomers, methyl (meth)acrylate, and the cationic monomers described below.
  • Examples include monomers having a functional group. Among these, carboxy group-containing monomers, methyl (meth)acrylate, and monomers having a cationic functional group described below are preferable.
  • the above monomer (a) may be used alone or in combination of two or more. Note that "(meth)acrylic” in this specification represents at least one of "acrylic" and "methacrylic".
  • Examples of the glycidyl group-containing monomer include glycidyl (meth)acrylate and glycidyl (meth)allyl ether.
  • hydrolyzable silyl group-containing monomer examples include vinyl-based silyl group-containing monomers such as vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris( ⁇ -methoxyethoxy)silane, and vinylmethyldimethoxysilane; ⁇ -(meth) (Meth)acryloxysilane such as acryloxypropyltrimethoxysilane, ⁇ -(meth)acryloxypropylmethyldimethoxysilane, ⁇ -(meth)acryloxypropyltriethoxysilane, and ⁇ -(meth)acryloxypropylmethyldiethoxysilane.
  • Examples include silyl group-containing monomers.
  • acetoacetyl group-containing monomers examples include allyl diacetoacetate, acetoacetoxyethyl (meth)acrylate, acetoacetoxyethyl crotonate, acetoacetoxypropyl (meth)acrylate, acetoacetoxypropyl crotonate, and 2-cyanoacetoacetoxy Examples include ethyl (meth)acrylate.
  • hydroxyl group-containing monomer examples include hydroxyl group-containing (meth)acrylates such as 2-hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, and 4-hydroxybutyl (meth)acrylate.
  • carboxy group-containing monomers examples include acid anhydride monomers such as crotonic acid, maleic acid, and maleic anhydride, fumaric acid, citraconic acid, glutaconic acid, itaconic acid, acrylamide N-glycolic acid, cinnamic acid, and ( Examples include meth)acrylic acid.
  • the hydrophilic part preferably contains a structural unit represented by the following formula (1).
  • R 1 and R 2 each independently represent a hydrogen atom or a methyl group
  • the content of the monomer (a) is preferably 20 mol% to 70 mol%, more preferably 30 mol% to 70 mol%, even more preferably It is 40 mol% to 60 mol%.
  • the copolymer preferably contains a structural unit derived from the monomer (b) as a portion constituting the hydrophobic portion.
  • the monomer (b) is not particularly limited, but preferably contains a hydrocarbon group having 2 or more carbon atoms, more preferably a (meth)acrylic ester having a hydrocarbon group having 2 or more carbon atoms. It will be done.
  • the above monomer (b) may be used alone or in combination of two or more.
  • hydrocarbon group having 2 or more carbon atoms examples include aliphatic hydrocarbon groups, alicyclic hydrocarbon groups, aromatic hydrocarbon groups, and groups in which two or more of these are bonded.
  • Examples of the aliphatic hydrocarbon group include an alkyl group, an alkenyl group, an alkynyl group, and the like.
  • Examples of the alkyl group include linear or branched alkyl groups such as ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, hexyl group, octyl group, isooctyl group, decyl group, dodecyl group, and stearyl group. Can be mentioned.
  • alkenyl group examples include vinyl group, aryl group, methallyl group, 1-propenyl group, isopropenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, 1-pentenyl group, 2-pentenyl group, Examples include straight-chain or branched alkenyl groups such as 3-pentenyl group, 4-pentenyl group, and 5-hexenyl group.
  • alkynyl group include linear or branched alkynyl groups such as an ethynyl group and a propynyl group.
  • Examples of the alicyclic hydrocarbon group include cycloalkyl groups having 3 to 12 carbon atoms such as cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, and cyclododecyl group; cycloalkyl groups having 3 to 12 carbon atoms such as cyclohexenyl group; a cycloalkenyl group; a bridged cyclic hydrocarbon group having 4 to 15 carbon atoms such as a bicycloheptanyl group and a bicycloheptenyl group;
  • aromatic hydrocarbon group examples include aryl groups having 6 to 14 carbon atoms (particularly aryl groups having 6 to 10 carbon atoms) such as phenyl and naphthyl groups.
  • the hydrocarbon group having 2 or more carbon atoms is preferably an aliphatic hydrocarbon group or an aromatic hydrocarbon group, more preferably a linear or branched alkyl group or an aromatic hydrocarbon group.
  • the monomer (b) is specifically preferably a monomer that can form a structural unit described in the following formula (2) and/or the following formula (3), for example. That is, the hydrophobic portion preferably includes a structural unit represented by the following formula (2) and/or the following formula (3).
  • R 1 represents a hydrogen atom or a methyl group
  • R 3 represents a hydrogen atom or an alkyl group having 1 to 2 carbon atoms
  • R 1 represents a hydrogen atom or a methyl group
  • R 4 represents a branched alkyl group having 3 or more carbon atoms
  • the bonding position of R 3 may be any of the hydrocarbons constituting the benzene ring, and monomers capable of forming the structural unit represented by the above formula (2) include, for example, Examples include styrene, ⁇ -methylstyrene, p-methylstyrene, and p-ethylstyrene.
  • Examples of monomers capable of forming the structural unit represented by the above formula (3) include isopropyl (meth)acrylate, isobutyl (meth)acrylate, tert-butyl (meth)acrylate, and 2-ethylhexyl (meth)acrylate. Can be mentioned.
  • the content of the monomer (b) is preferably 20 mol% to 70 mol%, more preferably 30 mol% to 70 mol%, even more preferably It is 40 mol% to 60 mol%.
  • the thermoplastic resin has a cationic moiety.
  • the above-mentioned hydrophilic part and/or the above-mentioned hydrophobic part may have a cation part, or may have a cation part in addition to these parts.
  • the thermoplastic resin has a cationic part in the hydrophilic part.
  • the cation moiety is preferably a cationic functional group or a group capable of generating a cationic functional group.
  • the group capable of producing a cationic functional group does not have a cationic functional group at the stage of the thermoplastic resin, and does not have a cationic functional group at the stage of forming the non-porous membrane or during use.
  • the above-mentioned cationic functional group may be an amphoteric ionic functional group in which both a cation and an anion exist. Therefore, the thermoplastic resin may have an anion portion. Further, it is preferable that the thermoplastic resin does not have an anion portion.
  • Examples of the cationic functional groups include nitrogen-containing groups.
  • the nitrogen-containing group include a group containing an ammonium ion or a group capable of forming an ammonium ion.
  • the group capable of forming an ammonium ion refers to a group that is not ionized at the stage of the thermoplastic resin, but forms an ionized body at the stage of forming the non-porous membrane or during use.
  • amphoteric functional group examples include a quaternary ammonium-containing group.
  • examples of the quaternary ammonium-containing group include a betaine group and a phosphocholine group.
  • thermoplastic resin from the viewpoint of exhibiting antibacterial properties and preventing the scattering of germs from the nonporous membrane, a group that can generate ammonium ions after forming the nonporous membrane is preferable, and a group that can generate a quaternary ammonium group is preferable.
  • a group capable of (a quaternary ammonium group, an imide group) is more preferable.
  • the copolymer preferably contains a structural unit derived from a monomer having a cationic functional group in its side chain.
  • the monomer having a cationic functional group include monomers having the above-mentioned nitrogen-containing group as a functional group.
  • the monomer having the nitrogen-containing group as a functional group include amide group-containing monomers, amino group-containing monomers, and imide group-containing monomers.
  • amino group-containing monomers include substituted or unsubstituted amino group-containing (meth)acrylates such as aminoethyl (meth)acrylate, N,N-dimethylaminoethyl (meth)acrylate, and t-butylaminoethyl (meth)acrylate. can be mentioned.
  • the above monomers having a cationic functional group may be used alone or in combination of two or more.
  • the content of the monomer having a cationic functional group is preferably 0.5 mol% to 10 mol%, more preferably 1 mol% to 7 mol%, based on the total monomer components constituting the copolymer.
  • the mol% is more preferably 2 mol% to 5 mol%.
  • the above copolymer may contain a structural part derived from a crosslinking agent.
  • the crosslinking agent is not particularly limited as long as it is a compound that can crosslink with the side chains of the monomers constituting the copolymer, but for example, a difunctional compound having two reactive functional groups is preferable, and crosslinking within the polymer A trifunctional or higher functional crosslinking agent may be used from the viewpoint of widening the range of density and adjusting mechanical properties.
  • the crosslinking agent include compounds containing bifunctional or more epoxy groups, compounds containing bifunctional or more isocyanate groups, and the like.
  • Examples of the above-mentioned epoxy group-containing compounds include bisphenol A and epichlorohydrin type epoxy compounds, polyethylene glycol diglycidyl ether, glycerin diglycidyl ether, glycerin triglycidyl ether, 1,6-hexanediol diglycidyl ether, and trimethylolpropane triglycidyl ether.
  • the amount of the crosslinking agent used is preferably 1 to 60 moles, more preferably 2 to 30 moles, based on the total amount (100 moles) of the reactable side chains of the copolymer. More preferably, the amount is 4 to 15 moles.
  • the weight average molecular weight of the thermoplastic resin is not particularly limited, but is preferably from 20,000 to 2,000,000, more preferably from 30,000 to 1,500,000, even more preferably from 50,000 to 1,000,000, particularly preferably from 70,000 to 500,000. be.
  • the above weight average molecular weight is a value measured by gel permeation chromatography (GPC) and calculated in terms of polystyrene.
  • the thickness of the non-porous membrane is preferably 0.5 ⁇ m to 5 ⁇ m, more preferably 1 ⁇ m to 4 ⁇ m.
  • the thickness is 0.5 ⁇ m or more, film formability becomes good, and moisture permeability can be further improved while gas barrier properties are improved.
  • the thickness is 5 ⁇ m or less, it is easy to form a thin film, and it is possible to downsize the humidifier while maintaining sufficient moisture permeability, which is also excellent in economical efficiency.
  • the nonporous membrane may contain other components other than the thermoplastic resin within a range that does not impair the effects of the laminate.
  • the non-porous membrane may contain other components such as an anti-blocking agent, a mold release agent, a preservative, and a leveling agent.
  • the content of the other components is preferably 0.1 parts by mass to 10 parts by mass, more preferably 0.15 parts by mass to 3 parts by mass, based on the total amount (100 parts by mass) of the thermoplastic resin. Parts by weight, particularly preferably 0.2 parts by weight to 2 parts by weight.
  • the nonporous membrane has a structure in which the hydrophilic part and the hydrophobic part are phase-separated on the surface.
  • the maximum diameter of the hydrophilic portion on the surface of the non-porous membrane is preferably 50 nm or less, more preferably 20 nm or less.
  • the non-porous membrane can be used as a barrier film that does not allow substances with a size of 50 nm or larger (such as viruses) to pass through. can be used.
  • the diameter of the hydrophilic part is evaluated by the following method. By using the adhesion force measurement mode of a scanning probe microscope (SPM) to quantify areas with high adsorption force (hydrophilic areas) and areas with low adsorption force (hydrophobic areas), the results are processed using image analysis software.
  • the diameter of the hydrophilic portion can be calculated as a circular equivalent diameter.
  • the maximum diameter is the largest diameter among the diameters (circular equivalent diameters) of the hydrophilic portion calculated as described above.
  • the moisture permeable membrane may be a porous membrane.
  • the porous membrane is a hydrophilic porous membrane. Since the porous membrane is a hydrophilic porous membrane, it becomes easily compatible with water and exhibits moisture permeability.
  • the material forming the hydrophilic porous membrane examples include organic materials such as cellulose resins, polyamide resins, polyimide resins, and polyamideimide resins, and inorganic materials such as metals, glass, and ceramics.
  • organic materials such as cellulose resins, polyamide resins, polyimide resins, and polyamideimide resins
  • inorganic materials such as metals, glass, and ceramics.
  • the moisture-permeable membrane is made of an organic substance, since it can be formed on the porous reinforcing material at a relatively low temperature and has excellent moisture permeability.
  • the above-mentioned material may be in the form of a metal fiber, an inorganic fiber, or the like.
  • the number of materials forming the hydrophilic porous membrane may be one, or two or more.
  • hydrophilic porous membrane examples include a resin porous membrane, an inorganic porous membrane, a metal porous membrane, and a fibrous base material.
  • the average pore diameter of the porous membrane is preferably 0.1 ⁇ m to 10 ⁇ m. Further, the porosity of the porous membrane is preferably 40% to 90% by volume. When the average pore diameter and/or porosity is within the above range, it becomes easy to efficiently transmit only water vapor while forming a stable membrane structure.
  • the thickness of the porous membrane is preferably different from the thickness of the porous reinforcing material. Further, the thickness of the porous membrane is preferably thinner than the porous reinforcing material. With such a configuration, it becomes easy to improve moisture permeability. Further, the thickness of the porous membrane is preferably 0.5 ⁇ m to 15 ⁇ m, more preferably 1 ⁇ m to 12 ⁇ m.
  • the moisture permeable membrane is preferably a layer formed by coating. It can be easily produced by being formed by coating.
  • porous reinforcing material is an element that serves as a support for the moisture permeable membrane, and preferably has excellent moisture permeability.
  • the material forming the porous reinforcing material may be either a hydrophilic material or a hydrophobic material, but a hydrophobic material is preferable.
  • a hydrophobic material is preferable.
  • the composition for forming a moisture-permeable film is applied, the composition does not penetrate into the porous reinforcing material. There is no need for a lead base material to prevent it from flowing down from the side surface.
  • Examples of materials forming the porous reinforcing material include organic materials such as polyolefin resins, cellulose resins, polycarbonate resins, polyamide resins, polyimide resins, polyamide-imide resins, and fluorine resins, metals, glass, and ceramics.
  • Examples include inorganic substances.
  • the moisture-permeable membrane is made of an organic material, since it can be formed on the porous reinforcing material at a relatively low temperature, and from the viewpoint of having excellent moisture permeability and water resistance. type resins are preferred.
  • the above-mentioned material may be in the form of a metal fiber, an inorganic fiber, or the like.
  • the number of materials forming the porous reinforcing material may be one, or two or more.
  • porous reinforcing material examples include a resin porous membrane, an inorganic porous membrane, a metal porous membrane, and a fibrous base material.
  • the above-mentioned polyolefin resin is a polymer (including an olefin elastomer) composed of an olefin as an essential monomer component, that is, a polymer containing at least a structural unit derived from an olefin in the molecule (in one molecule). It is a combination.
  • the above-mentioned olefins include, but are not particularly limited to, ⁇ -olefins such as ethylene, propylene, 1-butene, and 4-methyl-1-pentene.
  • polystyrene resin examples include a polymer composed of ethylene as an essential monomer component (polyethylene resin), a polymer composed of propylene as an essential monomer component (polypropylene resin), and an ionomer. , amorphous cyclic olefin polymers, and the like.
  • the porosity of the porous reinforcing material is not particularly limited, but is preferably 30% to 90% by volume, more preferably 40% to 70% by volume. When the porosity is 30% by volume or more, moisture permeability becomes better. When the porosity is 90% by volume or less, the supporting performance of the moisture permeable membrane becomes better.
  • the thickness of the porous reinforcing material is not particularly limited, but from the viewpoint of being able to sufficiently support the moisture permeable membrane, it is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more. Further, the thickness of the porous reinforcing material is preferably 50 ⁇ m or less, more preferably 30 ⁇ m or less, considering excellent moisture permeability and economical efficiency.
  • the surface of the porous reinforcing material on the side where the moisture permeable membrane is provided may be subjected to a hydrophilic treatment in order to easily form the moisture permeable membrane.
  • a hydrophilic treatment in order to easily form the moisture permeable membrane.
  • the material be subjected to the hydrophilic treatment.
  • the hydrophilic treatment include corona discharge treatment and plasma treatment. These hydrophilic treatments can generate carboxyl groups, hydroxyl groups, or carbonyl groups on the surface of the porous reinforcing material, and the composition for forming the moisture permeable membrane can easily wet and spread on the surface of the porous reinforcing material.
  • the surface tension of the surface of the porous reinforcing material on the side where the moisture permeable membrane is formed is preferably 35 dyn/cm to 55 dyn/cm, more preferably 37 dyn/cm to 50 dyn/cm.
  • the surface tension is 35 dyn/cm or more, it becomes easy to apply the composition for forming the moisture permeable film, and the formation of the moisture permeable film becomes easy.
  • the surface tension is 55 dyn/cm or less, the composition for forming the moisture permeable membrane does not spread too much, and the moisture permeable membrane can be easily formed on the surface of the porous reinforcing material.
  • the surface of the porous reinforcing material is subjected to a hydrophilic treatment
  • the surface on which the moisture permeable membrane is formed is the surface subjected to the hydrophilic treatment.
  • the surface tension inside the porous reinforcing material is preferably less than 35 dyn/cm, more preferably 33 dyn/cm or less.
  • the composition for forming the moisture permeable membrane is inhibited from penetrating into the interior of the porous reinforcing material, and the permeable material easily penetrates onto the surface of the porous reinforcing material.
  • a wet film can be formed. Note that when the surface of the porous reinforcing material has been subjected to a hydrophilic treatment, the interior of the porous reinforcing material is an area that has not been subjected to a hydrophilic treatment. Further, the internal surface tension can be obtained by measuring a cross section of the porous reinforcing material.
  • the frame and the laminate are preferably bonded together with an adhesive. Further, the frame and the laminate may be directly fused together by a known or commonly used method. By bonding the frame and the laminate together, the laminate can be prevented from being damaged, bulged, etc., and can easily exhibit moisture permeability for a long period of time.
  • the moisture permeable membrane 12 side of the laminate 10 is adhered to the frame 30 via the adhesive 20.
  • the adhesive is preferably an adhesive containing a modified polyolefin resin from the viewpoint of bonding the moisture permeable membrane and the frame, and more preferably an adhesive containing an acid-modified polyolefin resin.
  • the number of the adhesives may be one, or two or more.
  • the laminate can be produced by forming the moisture permeable membrane on at least one surface of the porous reinforcing material by a known or commonly used method.
  • the moisture permeable membrane may be directly formed on one surface of the porous reinforcing material, or the moisture permeable membrane may be formed on another support and then formed on one surface of the porous reinforcing material.
  • the moisture-permeable membrane may be formed on the porous reinforcing material by transferring (bonding) onto the porous reinforcing material.
  • the former method is preferred from the viewpoint of excellent adhesion between the moisture permeable membrane and the porous reinforcing material.
  • the surface of the porous reinforcing material on the side where the moisture permeable membrane is provided may be subjected to a hydrophilic treatment.
  • a hydrophilic treatment examples include those described above.
  • the moisture-permeable membrane is produced by applying (coating) the composition for forming the moisture-permeable membrane onto the porous reinforcing material or other support, and removing the solvent by heating the resulting coating. It can be formed by
  • the above porous reinforcing material is subjected to the above hydrophilic treatment to suppress blocking, so after forming a moisture permeable membrane on the above porous reinforcing material that has been prepared in advance as a rolled body, the rolled body is re-stated. It can be manufactured using a roll-to-roll method.
  • the above composition can be produced by any known or commonly used method. For example, it can be produced by dissolving or dispersing the above copolymer in a solvent, and mixing additives such as preservatives as necessary.
  • the above solvent is preferably water and/or a water-soluble solvent. It is presumed that when water or a water-soluble solvent is used, the above-mentioned copolymer is dispersed in the composition in a core-shell shape with a hydrophobic part on the inside and a hydrophilic part on the outside.
  • water-soluble solvent examples include aliphatic water-soluble alcohols such as methanol, ethanol, n-propanol, and i-propanol; ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, and propylene glycol monoethyl ether.
  • examples include glycol ethers such as The above-mentioned water-soluble solvents may be used alone or in combination of two or more.
  • the proportion (concentration) of the copolymer in the composition in which the copolymer is dissolved or dispersed is not particularly limited, but is preferably 0.5 to 5% by mass, more preferably 1 to 4% by mass, and more preferably Preferably it is 1.5 to 3% by mass.
  • concentration is 5% by mass or less, the thickness of the coating layer becomes thicker, so that the thickness of the moisture permeable membrane after drying becomes more uniform. Thereby, it is possible to form a thinner moisture permeable film with excellent gas barrier properties, and as a result, the moisture permeability is further improved. Further, when the concentration is within the above range, it is easy to form a moisture permeable film that has excellent coating properties and excellent moisture permeability and gas barrier properties.
  • a known coating method may be used to apply (coating) the above composition.
  • coaters such as a gravure roll coater, a reverse roll coater, a kiss roll coater, a dip roll coater, a bar coater, a knife coater, a spray coater, a comma coater, and a direct coater may be used. Forming with such a coating makes it easy to form a moisture permeable film.
  • the heating temperature when desolventizing the coating film is preferably 35°C to 90°C, more preferably 40°C to 85°C, and even more preferably 45°C to 80°C.
  • the heating time may be any suitable time, for example from 5 seconds to 20 minutes, preferably from 5 seconds to 10 minutes, more preferably from 10 seconds to 5 minutes. Since a moisture permeable membrane can be formed using the above composition at a low temperature of 90°C or lower (particularly 80°C or lower), the membrane can be easily formed, and the polyolefin resin has excellent moisture permeability as a porous reinforcing material. can be used.
  • a laminate in which the moisture permeable membrane is formed on at least one surface of the porous reinforcing material by the above method has excellent moisture permeability.
  • the above-mentioned laminate has a structure in which a hydrophilic part and a hydrophobic part are phase-separated, it can also be used as a barrier film having moisture permeability.
  • the moisture permeable barrier film allows small hydrophilic substances (e.g. water vapor) to pass through the hydrophilic part, while large substances (e.g. viruses) are allowed to pass through the hydrophilic part. The two can be separated without passing through.
  • a humidifying element can be produced by placing the laminate on the air path side of the frame. Further, it is preferable that a bag-shaped water retention container is formed by covering the frame with the laminate.
  • the above-mentioned frame may be a plate-shaped or bag-shaped frame made by extrusion molding, a plate-shaped frame made by injection molding, or two or more plate-shaped frames pasted together.
  • a bag-like structure may be created by combining them.
  • holes may be provided after the bag-shaped frame is produced, or a frame with holes provided in advance may be produced.
  • part or all of the contact portion between the laminate and the frame be pasted.
  • the method of attaching it to the frame is not particularly limited, but it can be attached by bonding with the adhesive described above, or by fusion bonding using methods such as ultrasonic fusion, high frequency fusion, and heat fusion.
  • a humidifying element in which the laminate is placed on the air path side of the frame can be produced by the method described above.
  • the humidifying element has a laminate arranged on the air path side of the frame structure, and liquid water that passes through the water path side of the humidifying element is absorbed by the laminate as water vapor and diffused within the laminate. , water vapor can be released from the entire laminate to the air path side.
  • a humidifier can be manufactured by mounting a plurality of humidifying elements in which the laminate is arranged on the air path side of the frame. Since such a humidifier can use a humidifying element with improved humidifying performance compared to conventional humidifiers, the humidifier can be made smaller and still exhibit the same performance, and is also superior in terms of cost.
  • the humidifier described above can therefore be suitably used for applications such as air conditioners, ventilation devices, and air cleaners.
  • the laminate is formed on the water path side of the frame, and water vapor cannot be released to the outside from the part where the frame and laminate meet, so all sides of the laminate are used effectively. humidification performance was insufficient.
  • the humidifying element of the present disclosure since a laminate including a moisture permeable membrane is formed on the air path side of the frame, absorbed water vapor can diffuse through the laminate and be released from the entire surface of the laminate. This makes it possible to further improve humidification performance.
  • a laminate comprising a porous reinforcing material and a moisture permeable membrane laminated on at least one surface of the porous reinforcing material, and a frame,
  • the laminate is a humidifying element arranged on the air path side with respect to the frame.
  • the humidifying element according to appendix 1 wherein the laminate forms a bag-like water retaining container so as to cover the air path side of the frame.
  • the humidifying element according to appendix 1 or 2 wherein in the laminate, the moisture permeable membrane is arranged on the frame side with respect to the porous reinforcing material.
  • the nonporous membrane contains a thermoplastic resin having a hydrophobic part, and the hydrophobic part is any one of Supplementary Notes 4 to 6 containing a structural unit represented by the following formula (2) and/or the following formula (3). Humidifying element described in.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

加湿性能を向上させた加湿エレメントを提供する。 本開示は多孔の補強材11および多孔の補強材11の少なくとも一方の面11aに積層される透湿膜12を有する積層体10と、フレーム30と、を備え、積層体10はフレーム30に対し空気経路側に配置される加湿エレメント1を提供する。また、積層体10はフレーム30の空気経路側を覆うように袋状の保水容器を形成していることが好ましく、積層体10において、透湿膜12が多孔の補強材11に対してフレーム30側に配置されていることが好ましい。

Description

加湿エレメントおよび加湿器
 本開示は、加湿エレメント、および加湿器に関する。また、本願は、2022年6月15日に日本に出願した特願2022-096880および2023年5月31日に日本に出願した特願2023-090139に基づく優先権を主張し、その内容を援用するものである。
 透湿膜式の加湿器は従来の蒸発板を使用した加湿器と比較して、高い加湿性能を有し、不純物の飛散を抑制することでクリーンな加湿が可能であった。一方で、透湿性を発揮するために特殊な形状、材料を使用することが必要であり、コストが問題となってきた。また、透湿膜の変形や破損、スケール成分の付着・堆積によって機能が低下してしまい、長期の信頼性に問題があることから、長期的な加湿性能を維持しつつ、コストを低減するための改良が繰り返されてきた。
 例えば、特許文献1では薄い袋状の透湿膜の外側に薄板上の構造物を貼り付けた加湿エレメントを使用することにより、透湿膜の膨れを予防しつつ、別の部材が不要であり、さらに加湿エレメントは重ねて使用することが容易であるため、コストを削減することができ、長期的に安定して透湿性能を発揮することができる加湿エレメントが開示されている。
特開2003-97831号公報
 しかしながら、特許文献1では袋状の透湿膜は薄板上の部材の内側に接着して使用されおり、薄板上の部材の接着面では水蒸気の出口が塞がれてしまうことで水蒸気を発する領域が薄板上の部材の孔部に限定されてしまい、透湿性能を十分に発揮することができない問題があった。
 また、上述のように透湿膜が透湿性能を十分に発揮することができないため、十分な加湿性能を発揮するために透湿膜の面積以上に加湿エレメントを使用する必要があり、加湿器を大型化する必要があるという欠点を有していた。さらに、加湿器が大型化するとコストが嵩むという問題もあった。
 したがって、本開示の目的は、加湿性能に優れる加湿エレメントを提供することにある。
 本開示者らは、上記課題を解決するために鋭意努力した結果、多孔の補強材および上記多孔の補強材の少なくとも一方の面に積層される透湿膜を有する積層体と、フレームと、を備え、上記積層体が上記フレームに対し空気経路側に配置される加湿エレメントであれば、本開示の課題を解決可能であることを見出した。本開示はこれらの知見に基づいて完成させたものに関する。
 すなわち、本開示は、多孔の補強材および上記多孔の補強材の少なくとも一方の面に積層される透湿膜を有する積層体と、フレームと、を備え、上記積層体は上記フレームに対し空気経路側に配置される加湿エレメントを提供するものである。
 上記加湿エレメントは上記積層体を上記フレームの空気経路側に配置されることで、上記積層体の液体の水を水蒸気として吸収可能な領域が上記積層体の一部のみであったとしても上記積層体全体に水蒸気が拡散し、上記積層体の空気経路側の面の広範な領域を水蒸気揮発面として作用することができ、上記積層体の透湿膜の有効面積を向上させ、高い透湿性能を発揮することができる。
 上記加湿エレメントは上記積層体が上記フレームの空気経路側を覆う袋状の保水容器を形成していることが好ましい。
 上記積層体において、上記透湿膜が上記多孔の補強材に対して上記フレーム側に配置されていることが好ましい。上記構成を有することで、スケール成分の付着・堆積を抑制することが可能となるため、透湿性能を長期に渡って発揮することが容易となる。
 また、上記透湿膜は無孔膜であることが好ましい。上記透湿膜が無孔膜であることで不純物の飛散を抑制することが容易となる。
 上記無孔膜はカチオン部を有する熱可塑性樹脂を含有し、上記カチオン部はアンモニウムイオンを含む基またはアンモニウムイオンを形成可能な基を含有することが好ましい。アンモニウムイオンを含む基またはアンモニウムイオンを形成可能な基を含有することにより、上記無孔膜が殺菌作用を発揮することが可能となるため、雑菌などの付着・堆積を抑制することができる。
 上記無孔膜は親水部を有する熱可塑性樹脂を含有し、上記親水部は下記式(1)で表される構成単位を含有することが好ましい。上記無孔膜が上記構成単位の親水部を有することにより、透湿膜中に導水パスを形成することができ、透湿性を発揮することが容易となる。
Figure JPOXMLDOC01-appb-C000004

(R1,R2はそれぞれ独立して水素原子またはメチル基を示す)
 また、上記無孔膜は疎水部を有する熱可塑性樹脂を含有し、上記疎水部は下記式(2)および/または下記式(3)で表される構成単位を含有することが好ましい。上記無孔膜が上記構成単位の疎水部を有することにより、無孔膜表面が撥水性を発揮することができる。
Figure JPOXMLDOC01-appb-C000005

(R1は水素原子またはメチル基を示し、R3は水素原子または炭素数1~2のアルキル基を示す)
Figure JPOXMLDOC01-appb-C000006

(R1は水素原子またはメチル基を示し、R4は炭素数3以上の分岐鎖状アルキル基を示す)
 また、上記透湿膜が親水性多孔膜であることが好ましい。
 上記多孔膜と上記多孔の補強材の厚みの異なることが好ましい。
 上記加湿エレメントは上記積層体と上記フレームとが接着または融着で貼り付けられていることが好ましい。
 また、上記加湿エレメントは上記積層体と上記フレームとが接着剤により接着されていることが好ましい。
 上記透湿膜は上記多孔の補強材の少なくとも一方の表面を覆うようにコーティングされていることが好ましい。
 また、本開示は上記加湿エレメントを搭載した加湿器を提供する。
 また、本開示は上記加湿器を搭載した空調機を提供する。
 また、本開示は上記加湿器を搭載した換気装置を提供する。
 また、本開示は上記加湿器を搭載した空気清浄機を提供する。
 本開示の加湿エレメントは加湿性能を向上することができる。このため、本開示の加湿エレメントは、加湿器として使用した際に、小型化することが可能となり、透湿膜式の加湿器として好ましく用いられる。
本開示の加湿エレメントの一実施形態を示す断面模式図である。
[加湿エレメント]
 本開示の一実施形態に係る加湿エレメントは、多孔の補強材および上記多孔の補強材の少なくとも一方の面に設けられた透湿膜を有する積層体と、フレームと、を少なくとも備える。また、上記積層体が上記フレームの空気経路側に配置される。なお、本開示において、上記加湿エレメントの水が流れる側を「水経路側」と、空気が流れる側を「空気経路側」と称するものとする。また、上記透湿膜は、上記多孔の補強材の片面に設けられていてもよいし、両面に設けられていてもよい。
 また、本開示の別の一実施形態に係る加湿エレメントは、多孔の補強材および上記多孔の補強材の少なくとも一方の面に設けられた透湿膜を有する積層体と、フレームと、を少なくとも備え、上記積層体は上記フレームを覆うように袋状の保水容器を形成していることが好ましい。
 また、上記加湿エレメントには給水口および排水口が設けられていることが好ましい。上記給水口および上記排水口は上記フレームを作製する際にあらかじめ設けられていてもよい。
 図1は、本開示の加湿エレメントの一実施形態を表す断面模式図である。加湿エレメント1はフレーム30と、フレーム30の空気経路側に貼り合わせられた積層体10とを備える。フレーム30は外部に連通する孔部31を有する。積層体10は、多孔の補強材11と、多孔の補強材11の一方の面11aに設けられた透湿膜12とを有する。積層体10は、フレーム30の孔部31を覆うように、接着剤20を介して貼り合わされている。
 上記加湿エレメントは上記積層体が上記フレームの空気経路側に配置されることで、上記透湿膜が水経路側と接する領域、すなわち、上記フレームの孔部から液体の水を水蒸気として吸収可能な領域が上記透湿膜の一部のみであったとしても、上記積層体内に水蒸気が拡散することができる。したがって、上記積層体の空気経路側の面の広範な領域を水蒸気揮発面として作用することができ、透湿膜の有効面積を向上させ、高い透湿性能を発揮することができる。
 また、上記積層体は、上記透湿膜が、上記多孔の補強材に対して、上記フレーム側に配置されていることが好ましい。図1に示す加湿エレメント1では、透湿膜12は、多孔の補強材11に対してフレーム30側、すなわち多孔の補強材11とは反対側となるように、孔部31を塞ぐようにフレーム30に貼り合わせられている。上記構成を有することで液体の水が上記透湿膜と接することとなり、スケール成分の付着・堆積を抑制することが可能となるため、透湿性能を長期に渡って発揮することが容易となる。
<フレーム>
 上記加湿エレメントは上記フレームを備える。上記フレームは上記積層体の水経路側に配置されるものであることが好ましく、上記積層体を貼り合わせて袋状の形状を形成可能であることがより好ましい。上記フレームとしては、例えば、1枚の板状であってもよいし、1枚のフレームを湾曲させて袋状の構造を形成してもよいし、2枚以上のフレームを貼り合わせることで袋状の構造を形成していてもよい。すなわち、板状のフレームの両側に上記積層体が配置されていてもよく、袋状のフレームの空気経路側を覆うように上記積層体を配置するものであってもよい。
 また、上記フレームの外形に関しては、特に限定されないが、効率よく加湿エレメントを配置する観点から、略直方体形状であることが好ましい。
 上記フレームは剛性を有している材料であると好ましく、例えばABS、ポリエチレン、ポリプロピレン、ナイロン、POM、PPS、ポリ塩化ビニル、アクリル、ポリカーボネートなどの樹脂や、アルミニウム、ステンレススチール、チタンなどの金属・合金材料などを使用することができる。
 また、上記フレームの製造方法は特に限定されないが、上記フレームが樹脂であるときは押出成型や射出成型により作製されたものであることが好ましい。また、上記孔部は作製したフレームを打ち抜いて形成してもよいし、2以上のフレームを使用して孔部を形成するものであってもよいし、あらかじめ、孔部を形成するような型を使用して作製したものであってもよい。
<積層体>
 上記加湿エレメントは、多孔の補強材と、上記多孔の補強材の少なくともの一方の面に形成された透湿膜とからなる積層体を備える。
(透湿膜)
 上記透湿膜は液体の水は透過せず、水蒸気のみを透過する膜である。上記透湿膜は無孔膜であっても、多孔膜であってもよい。なお、本開示において、SEMによる観察で上記透湿膜に形成される50nm以下の孔しか確認されないものを無孔膜であると定義する。また、50nm超の項を複数個確認できる場合、多孔膜であると定義する。
 上記無孔膜は水分を吸収するため、熱可塑性樹脂を含むことが好ましい。上記熱可塑性樹脂は親水部を有することが好ましい。また、上記無孔膜表面に撥水性を付与しつつ、上記無孔膜中に導水パスを形成するために上記熱可塑性樹脂に疎水部を有することが好ましい。したがって、上記熱可塑性樹脂は親水部と疎水部との両方を有することが好ましい。上記無孔膜において、上記親水部と上記疎水部が相分離した構造を形成することで上記親水部が導水パスとして機能し、水蒸気をより多く透過させることが可能となるため、より透湿性が優れると推測される。
 上記熱可塑性樹脂としては、例えば、アクリル系樹脂、セルロース系樹脂、およびポリブチレンテレフタレートなどのポリエステル系樹脂、ポリエーテル系樹脂、ポリウレタン系樹脂、ポリ塩化ビニル系樹脂、ポリエチレン、ポリスチレン系樹脂、ポリアミド系樹脂、ポリアセタール系樹脂、ポリカーボネート系樹脂、ポリフェニレンサルファイド系樹脂、ポリエーテルエーテルケトン、ポリイミド系樹脂、ポリテトラフルオロエチレン系樹脂、ポリカプロラクトン、およびポリ乳酸などが挙げられる。
 上記熱可塑性樹脂は上述のように親水部と疎水部とを有することが好ましいことから、異なるモノマー成分を含む熱可塑性の共重合体であることが好ましい。
 上記親水部とは上記共重合体の構成単位のうち、側鎖に親水性の官能基を含有するモノマー(a)(以後、モノマー(a)とする)単位によって構成されるものが好ましい。また、上記疎水部とは側鎖に疎水性の官能基を含有するモノマー(b)(以後、モノマー(b)とする)単位によって構成されるものが好ましい。また、上記親水部および上記疎水部は上記共重合体内に形成されていることが好ましい。上記無孔膜において上記共重合体が内側に疎水部、外側に親水部を形成するコアシェル構造を維持していてもよく、その場合は、上記親水部および疎水部は隣り合う2以上の上記共重合体のコア部およびシェル部によって形成されていてもよい。また、上記共重合体は、無孔膜形成前においてコアシェル構造であり、上記無孔膜形成時においてはコアシェル構造を維持していなくてもよい。
 上記共重合体は、上記親水部を構成する部分として上記モノマー(a)由来の構造単位を含有することが好ましい。上記モノマー(a)としては、例えば、グリシジル基含有モノマー、加水分解性シリル基含有モノマー、アセトアセチル基含有モノマー、ヒドロキシル基含有モノマー、カルボキシ基含有モノマー、メチル(メタ)アクリレート、および後述のカチオン性の官能基を有するモノマーなどが挙げられる。中でも、カルボキシ基含有モノマー、メチル(メタ)アクリレート、および後述のカチオン性の官能基を有するモノマーであることが好ましい。上記モノマー(a)は単独で使用してもよく、2種以上を組み合わせて使用してもよい。なお、本明細書における「(メタ)アクリル」は、「アクリル」および「メタクリル」の少なくとも一方を表す。
 上記グリシジル基含有モノマーとしては、例えば、グリシジル(メタ)アクリレート、およびグリシジル(メタ)アリルエーテルなどが挙げられる。
 上記加水分解性シリル基含有モノマーとしては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(β-メトキシエトキシ)シランおよびビニルメチルジメトキシシランなどのビニル系シリル基含有モノマー;γ-(メタ)アクリロキシプロピルトリメトキシシラン、γ-(メタ)アクリロキシプロピルメチルジメトキシシラン、γ-(メタ)アクリロキシプロピルトリエトキシシラン、およびγ-(メタ)アクリロキシプロピルメチルジエトキシシランなどの(メタ)アクリロキシ系シリル基含有モノマーが挙げられる。
 上記アセトアセチル基含有モノマーとしては、例えば、ジアセト酢酸アリルエステル、アセトアセトキシエチル(メタ)アクリレート、アセトアセトキシエチルクロトナート、アセトアセトキシプロピル(メタ)アクリレート、アセトアセトキシプロピルクロトナート、および2-シアノアセトアセトキシエチル(メタ)アクリレートなどが挙げられる。
 上記ヒドロキシル基含有モノマーとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、および4-ヒドロキシブチル(メタ)アクリレートなどのヒドロキシル基含有(メタ)アクリレートが挙げられる。
 上記カルボキシ基含有モノマーとしては、例えば、クロトン酸、マレイン酸、無水マレイン酸などの酸無水物モノマー、フマル酸、シトラコン酸、グルタコン酸、イタコン酸、アクリルアミドN-グリコール酸、ケイ皮酸、および(メタ)アクリル酸などが挙げられる。
 また、上記モノマー(a)としては、特にメチル(メタ)アクリレートおよび/または(メタ)アクリル酸が好ましく、すなわち、上記親水部は下記式(1)で表される構成単位を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000007

(R1、R2はそれぞれ独立して水素原子またはメチル基を示す)
 上記モノマー(a)の含有割合は、上記共重合体を構成する単量体成分全体に対して、好ましくは20モル%~70モル%、より好ましくは30モル%~70モル%、さらに好ましくは40モル%~60モル%である。上記モノマー(a)の含有割合をこの範囲内に調製することにより、無孔膜に親水部を形成して導水パスを容易に形成できるようになり、透湿性により優れる。
 上記共重合体は、上記疎水部を構成する部分として上記モノマー(b)由来の構造単位を含有することが好ましい。上記モノマー(b)としては、特に限定されないが、好ましくは炭素数2以上の炭化水素基を含むものであり、より好ましくは炭素数2以上の炭化水素基を有する(メタ)アクリル酸エステルが挙げられる。上記モノマー(b)は単独で使用してもよく、2種以上を組み合わせて使用していてもよい。
 上記炭素数2以上の炭化水素基としては、例えば、脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基、およびこれらが2以上結合した基などが挙げられる。
 上記脂肪族炭化水素基としては、例えば、アルキル基、アルケニル基、アルキニル基などが挙げられる。アルキル基としては、例えば、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、ヘキシル基、オクチル基、イソオクチル基、デシル基、ドデシル基、ステアリル基などの直鎖または分岐鎖状アルキル基が挙げられる。アルケニル基としては、例えば、ビニル基、アリール基、メタリル基、1-プロペニル基、イソプロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、1-ペンテニル基、2-ペンテニル基、3-ペンテニル基、4-ペンテニル基、5-ヘキセニル基などの直鎖状または分岐鎖状アルケニル基が挙げられる。アルキニル基としては、例えば、エチニル基、プロピニル基などの直鎖状または分岐鎖状アルキニル基が挙げられる。
 上記脂環式炭化水素基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロドデシル基などの炭素数3~12のシクロアルキル基;シクロヘキセニル基などの炭素数3~12のシクロアルケニル基;ビシクロヘプタニル基、ビシクロヘプテニル基などの炭素数4~15の架橋環式炭化水素基などが挙げられる。
 上記芳香族炭化水素基としては、例えば、フェニル基、ナフチル基などの炭素数6~14のアリール基(特に、炭素数の6~10アリール基)などが挙げられる。
 上記炭素数2以上の炭化水素基としては、脂肪族炭化水素基および芳香族炭化水素基が好ましく、より好ましくは直鎖または分岐鎖状アルキル基および芳香族炭化水素基である。
 中でも、上記モノマー(b)としては、具体的には、例えば下記式(2)、および/または下記式(3)に記載される構成単位を形成可能なモノマーが好ましい。すなわち、上記疎水部は下記式(2)および/または下記式(3)で表される構成単位を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000008

(R1は水素原子またはメチル基を示し、R3は水素原子または炭素数1~2のアルキル基を示す)
Figure JPOXMLDOC01-appb-C000009

(R1は水素原子またはメチル基を示し、R4は炭素数3以上の分岐鎖状アルキル基を示す)
 上記式(2)のうち、R3の結合位置はベンゼン環を構成する炭化水素のどれであってもよく、上記式(2)で表される構成単位を形成可能なモノマーとしては、例えば、スチレン、α-メチルスチレン、p-メチルスチレン、p-エチルスチレンなどが挙げられる。
 上記式(3)で表される構成単位を形成可能なモノマーとしては、例えば、イソプロピル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレートなどが挙げられる。
 上記モノマー(b)の含有割合は、上記共重合体を構成する単量体成分全体に対して、好ましくは20モル%~70モル%、より好ましくは30モル%~70モル%、さらに好ましくは40モル%~60モル%である。上記モノマー(b)の含有割合をこの範囲内に調製することにより、撥水性を発揮しつつ、無孔膜に疎水部を形成して導水パスを容易に形成できるようになり、透湿性により優れる。
 上記熱可塑性樹脂はカチオン部を有することが好ましい。この場合、上記親水部および/または上記疎水部にカチオン部を有していてもよいし、これら以外にカチオン部を有していてもよい。また、上記熱可塑性樹脂は親水部にカチオン部を有することが好ましい。上記カチオン部はカチオン性の官能基またはカチオン性の官能基を生成可能な基であることが好ましい。上記カチオン性の官能基を生成可能な基とは上記熱可塑性樹脂の段階ではカチオン性の官能基を有しておらず、上記無孔膜を形成した段階や使用時においてカチオン性の官能基を生成するような基を指す。また、上記カチオン性の官能基はカチオンとアニオンの両方が存在する両性イオン性の官能基であってもよい。したがって、上記熱可塑性樹脂はアニオン部を有していてもよい。また、上記熱可塑性樹脂はアニオン部を有さないことが好ましい。
 上記カチオン性の官能基としては、例えば窒素含有基が挙げられる。上記窒素含有基としては、アンモニウムイオンを含む基またはアンモニウムイオンを形成可能な基が挙げられる。ここで上記アンモニウムイオンを形成可能な基とは上記熱可塑性樹脂の段階ではイオン化しておらず、上記無孔膜を形成した段階や使用時においてイオン化体を形成するような基を指す。上記アンモニウムイオンを含む基および上記アンモニウムイオンを生成可能な基としては、例えば1級アミノ基、2級アミノ基、3級アミノ基、4級アンモニウム基、イミノ基(-NH-基および=NH基)、アミジノ基、イミジノ基、ヒドラジノ基、アミド基、イミド基、ピリジル基などの窒素原子を含む環状基などが挙げられる。また、上記両性イオン性の官能基としては例えば、4級アンモニウム含有基が挙げられる。上記4級アンモニウム含有基としては例えば、ベタイン基、ホスホコリン基などが挙げられる。中でも上記熱可塑性樹脂においては、抗菌性を発揮させて無孔膜からの雑菌の飛散を防ぐ観点から、無孔膜形成後にアンモニウムイオンを生成可能な基が好ましく、4級アンモニウム基を生成することが可能な基(4級アンモニウム基、イミド基)がより好ましい。
 上記熱可塑性樹脂が上記共重合体である場合、上記共重合体は側鎖にカチオン性の官能基を有するモノマー由来の構造単位を含有することが好ましい。上記カチオン性の官能基を有するモノマーとしては、上述の窒素含有基を官能基として有するモノマーが挙げられる。上記窒素含有基を官能基として有するモノマーとしては、たとえばアミド基含有モノマー、アミノ基含有モノマー、およびイミド基含有モノマーなどが挙げられる。アミド基含有モノマーとしてN,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N,N-ジプロピル(メタ)アクリルアミド、N,N-ジイソプロピル(メタ)アクリルアミド、N,N-ジ(n-ブチル)(メタ)アクリルアミド、N,N-ジ(t-ブチル)(メタ)アクリルアミドなどのN,N-ジアルキル(メタ)アクリルアミド;N-エチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N-ブチル(メタ)アクリルアミド、N-n-ブチル(メタ)アクリルアミドなどのN-アルキル(メタ)アクリルアミド;N-ビニルアセトアミド、N-(2-ヒドロキシエチル)(メタ)アクリルアミド、N-(2-ヒドロキシプロピル)(メタ)アクリルアミド、N-(1-ヒドロキシプロピル)(メタ)アクリルアミド、N-(3-ヒドロキシプロピル)(メタ)アクリルアミド、N-(2-ヒドロキシブチル)(メタ)アクリルアミド、N-(3-ヒドロキシブチル)(メタ)アクリルアミド、N-(4-ヒドロキシブチル)(メタ)アクリルアミドなどのN-ヒドロキシアルキル(メタ)アクリルアミド;N-メトキシメチル(メタ)アクリルアミド、N-メトキシエチル(メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミドなどのN-アルコキシアルキル(メタ)アクリルアミド;その他、N,N-ジメチルアミノプロピル(メタ)アクリルアミド、およびN-(メタ)アクリロイルモルホリンなどが挙げられる。また、アミノ基含有モノマーとしてアミノエチル(メタ)アクリレート、N,N-ジメチルアミノエチル(メタ)アクリレート、およびt-ブチルアミノエチル(メタ)アクリレートなどの置換または無置換アミノ基含有(メタ)アクリレートなどが挙げられる。また、イミド基含有モノマーとしてN-(メタ)アクリロイルオキシメチレンスクシンイミド、N-(メタ)アクリロイル-6-オキシヘキサメチレンスクシンイミド、N-(メタ)アクリロイル-8-オキシヘキサメチレンスクシンイミド、N-シクロヘキシルマレイミド、N-イソプロピルマレイミド 、N-ラウリルマレイミド、N-フェニルマレイミド、N-メチルイタコンイミド、N-エチルイタコンイミド、N-ブチルイタコンイミド、N-オクチルイタコンイミド、N-2-エチルへキシルイタコンイミド、N-シクロへキシルイタコンイミド、およびN-ラウリルイタコンイミドなどが挙げられる。上記カチオン性の官能基を有するモノマーは単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 上記カチオン性の官能基を有するモノマーの含有割合は、上記共重合体を構成する単量体成分全体に対して、好ましくは0.5モル%~10モル%、より好ましくは1モル%~7モル%、さらに好ましくは2モル%~5モル%である。上記カチオン性の官能基を有するモノマーの含有割合をこの範囲内に調製することにより、スケール成分との斥力を発揮することが可能となり、スケール成分の無孔膜への付着・堆積を抑制することができる。
 また、上記共重合体は架橋剤に由来する構造部を含有していてもよい。上記架橋剤としては、上記共重合体を構成するモノマーの側鎖と架橋可能な化合物であれば特に限定されないが、例えば、反応性官能基を2つ有する2官能体が好ましく、重合体内の架橋密度の粗密の幅を大きくし、力学物性などを調整する観点から3官能以上の架橋剤を使用してもよい。上記架橋剤としては、例えば2官能以上のエポキシ基含有化合物、2官能以上のイソシアネート基含有化合物などが挙げられる。上記共重合体においては側鎖に形成される官能基との架橋反応後に4級アンモニウムイオンを生成可能になることから、特に2官能以上のエポキシ基含有化合物を含有するものが好ましい。
 上記エポキシ基含有化合物としては例えば、ビスフェノールAおよびエピクロルヒドリン型のエポキシ化合物、ポリエチレングリコールジグリシジルエーテル、グリセリンジグリシジルエーテル、グリセリントリグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ジグリシジルアニリン、N,N,N′,N′-テトラグリシジル-m-キシレンジアミン(例えば、商品名「TETRAD-X」、三菱ガス化学社製)、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロへキサン(例えば、商品名「TETRAD-C」、三菱ガス化学社製)などが挙げられる。
 上記架橋剤の使用量は、上記共重合体の反応可能な側鎖の総量(100モル部)に対して、好ましくは1モル部~60モル部、より好ましくは2モル部~30モル部、さらに好ましくは4モル部~15モル部である。上記架橋剤の使用量をこの範囲内に調製することにより、無孔膜に導水パスを容易に形成できるようになり、透湿性に優れることが容易となる。
 上記熱可塑性樹脂の重量平均分子量は、特に限定されないが、2万~200万が好ましく、より好ましくは3万~150万、さらに好ましくは5万~100万、特に好ましくは7万~50万である。上記重量平均分子量は、ゲルパーミエーション・クロマトグラフィー(GPC)により測定し、ポリスチレン換算により算出された値をいうものとする。
 上記無孔膜の厚さは、0.5μm~5μmが好ましく、より好ましくは1μm~4μmである。上記厚さが0.5μm以上であると、製膜性が良好となり、ガスバリア性向上しつつ透湿性をより向上することができる。上記厚さが5μm以下であると薄膜形成が容易であり、十分な透湿性を維持しつつ、加湿器を小型化することが可能となり、経済性にも優れる。
 上記無孔膜は、上記積層体における効果を損なわない範囲内で、上記熱可塑性樹脂以外のその他の成分を含んでいてもよい。
 上記無孔膜は、その他の成分として、例えば、アンチブロッキング剤、離型剤、防腐剤、レベリング剤などを含んでいてもよい。上記その他の成分の含有量としては、上記熱可塑性樹脂の総量(100質量部)に対して、0.1質量部~10質量部であることが好ましく、より好ましくは0.15質量部~3質量部であり、特に好ましくは0.2質量部~2質量部である。
 上記共重合体が親水部および疎水部を有することに起因して、上記無孔膜は表面に親水部および疎水部が相分離した構造を有する。上記無孔膜表面における親水部の最大径は50nm以下であることが好ましく、より好ましくは20nm以下である。上記親水部の最大径が50nm以下であると、サイズが50nmを超える物質が上記無孔膜を透過しにくく、上記無孔膜を、50nm以上の物質(例えばウイルスなど)を透過させないバリアフィルムとして使用することができる。上記親水部の径は次の方法によって評価される。走査型プローブ顕微鏡(SPM)の凝着力測定モードを用いて吸着力の高い部位(親水部)と吸着力の低い部位(疎水部)を凝着力によって数値化し、画像解析ソフトで処理することで、円相当径として親水部の径を算出することができる。そして、上記最大径は、上述のようにして算出された親水部の径(円相当径)のうち、最も径が大きい径である。
 また、上記透湿膜は多孔膜であってもよい。また、上記多孔膜は親水性多孔膜であることが好ましい。上記多孔膜が親水性多孔膜であることで水となじみやすくなり、透湿性を発揮することが容易となる。
 上記親水性多孔膜を形成する材料としては、例えば、セルロース系樹脂、ポリアミド樹脂、ポリイミド樹脂、およびポリアミドイミド樹脂などの有機物、金属、ガラス、およびセラミックなどの無機物などが挙げられる。中でも、上記透湿膜は上記多孔の補強材上に比較的低温で製膜可能であり、また、透湿性に優れる観点から、有機物であることが好ましい。上記材料は、金属繊維、無機繊維などの繊維状であってもよい。上記親水性多孔膜を形成する材料は、1種のみであってもよいし、2種以上であってもよい。
 上記親水性多孔膜としては、例えば、樹脂多孔膜、無機多孔膜、金属多孔膜、繊維状基材などが挙げられる。
 上記多孔膜の平均孔径は0.1μm~10μmであることが好ましい。また、上記多孔膜の空隙率は40体積%~90体積%であることが好ましい。平均孔径および/または空隙率が上記範囲内であることにより、安定した膜構造を形成しながら、水蒸気のみを効率よく透過することが容易となる。
 上記多孔膜の厚さは、上記多孔の補強材の厚さと異なることが好ましい。また、上記多孔膜の厚さは上記多孔の補強材よりも薄いことが好ましい。このような構成を有すると、透湿性を向上させることが容易となる。また、上記多孔膜の厚さとしては0.5μm~15μmが好ましく、より好ましくは1μm~12μmである。
 上記透湿膜はコーティングにより形成された層であることが好ましい。コーティングにより形成されることで容易に作製することができる。
(多孔の補強材)
 上記多孔の補強材は、上記透湿膜の支持体となる要素であり、透湿性に優れるものであることが好ましい。
 上記多孔の補強材を形成する材料としては、親水性材料および疎水性材料のいずれであってもよいが、疎水性材料であることが好ましい。上記疎水性材料を用いると、透湿膜を形成するための組成物を塗布した際、組成物が多孔の補強材に染み込まないため、多孔の補強材において組成物が塗膜形成面とは反対側の面から流れ落ちるのを防ぐためのリード基材が不要となる。
 上記多孔の補強材を形成する材料としては、例えば、ポリオレフィン系樹脂、セルロース系樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、およびフッ素系樹脂などの有機物、金属、ガラス、およびセラミックなどの無機物などが挙げられる。中でも、上記透湿膜は上記多孔の補強材上に比較的低温で製膜可能であるため、また、透湿性および耐水性に優れる観点から、有機物であることが好ましく、上記有機物としては特にポリオレフィン系樹脂が好ましい。上記材料は、金属繊維、無機繊維などの繊維状であってもよい。上記多孔の補強材を形成する材料は、1種のみであってもよいし、2種以上であってもよい。
 上記多孔の補強材としては、例えば、樹脂多孔膜、無機多孔膜、金属多孔膜、繊維状基材などが挙げられる。
 上記ポリオレフィン系樹脂は、オレフィンを必須の単量体成分として構成される重合体(オレフィン系エラストマーを含む)であり、即ち、分子中(1分子中)にオレフィンに由来する構成単位を少なくとも含む重合体である。上記オレフィンとしては、特に限定されないが、例えば、エチレン、プロピレン、1-ブテン、4-メチル-1-ペンテンなどのα-オレフィンが挙げられる。
 上記ポリオレフィン系樹脂としては、例えば、エチレンを必須の単量体成分として構成される重合体(ポリエチレン系樹脂)、プロピレンを必須の単量体成分として構成される重合体(ポリプロピレン系樹脂)、アイオノマー、非晶性環状オレフィン系重合体などが挙げられる。
 上記多孔の補強材の空隙率は、特に限定されないが、30体積%~90体積%が好ましく、より好ましくは40体積%~70体積%である。上記空隙率が30体積%以上であると、透湿性がより良好となる。上記空隙率が90体積%以下であると、透湿膜の支持性能がより良好となる。
 上記多孔の補強材の厚さは、特に限定されないが、上記透湿膜を充分に支持可能である観点から、5μm以上が好ましく、より好ましくは10μm以上である。また、上記多孔の補強材の厚さは、透湿性に優れる観点や経済性を考慮して、50μm以下が好ましく、より好ましくは30μm以下である。
 上記多孔の補強材の上記透湿膜を備える側の表面(例えば図1に示す面11a)は、上記透湿膜を容易に形成可能とする観点から、親水化処理が施されていることが好ましい。特に、上記多孔の補強材を形成する材料として疎水性材料を用いた場合、上記親水化処理が施されていることが好ましい。上記親水化処理としては、コロナ放電処理、プラズマ処理などが挙げられる。これらの親水化処理により、多孔の補強材表面にカルボキシ基、ヒドロキシル基、或いはカルボニル基を生じさせることができ、上記透湿膜を形成するための組成物が多孔の補強材表面に濡れ広がりやすくなり、上記透湿膜の形成が容易となる。また、これにより、上記多孔の補強材と上記透湿膜の密着性が向上する。また、疎水性基材から形成された上記多孔の補強材を巻回体として保管する際、巻回体において上記多孔の補強材の一方の面と他方の面とが接触する形態となるが、親水性の一方の面と疎水性の他方の面とが接触することとなるため、ブロッキングを抑制することができる。
 上記多孔の補強材の上記透湿膜を形成する側の面の表面張力は、35dyn/cm~55dyn/cmが好ましく、より好ましくは37dyn/cm~50dyn/cmである。上記表面張力が35dyn/cm以上であると、上記透湿膜を形成するための組成物を塗布することが容易となり、上記透湿膜の形成が容易となる。上記表面張力が55dyn/cm以下であると、上記透湿膜を形成するための組成物が濡れ広がりすぎず、上記多孔の補強材表面に容易に上記透湿膜を形成することができる。なお、上記多孔の補強材の表面が親水化処理されている場合、上記透湿膜を形成する側の面は、上記親水化処理が施された面である。
 上記多孔の補強材の内部(すなわち、上記透湿膜が形成されていない領域である内部)の表面張力は、35dyn/cm未満が好ましく、より好ましくは33dyn/cm以下である。上記表面張力が35dyn/cm未満であると、上記透湿膜を形成するための組成物が上記多孔の補強材の内部まで浸透するのを抑制され、上記多孔の補強材表面に容易に上記透湿膜を形成することができる。なお、上記多孔の補強材の表面が親水化処理されている場合、上記多孔の補強材の内部は、親水化処理が施されていない領域である内部である。また、上記内部の表面張力は、上記多孔の補強材を切断した断面について測定して得ることができる。
<接着剤>
 上記加湿エレメントにおいて、上記フレームと上記積層体とは接着剤により接着されていることが好ましい。また、上記フレームと上記積層体とが公知乃至慣用の方法で直接融着されていてもよい。上記フレームと上記積層体とが貼り合わされていることにより、上記積層体の破損、ふくらみなどを抑制することができ、透湿性能を長期間発揮することが容易となる。なお、図1に示す加湿エレメント1では、積層体10は接着剤20を介して、透湿膜12側がフレーム30と接着している。
 上記接着剤としては上記透湿膜と上記フレームとを接着する観点から変性ポリオレフィン系の樹脂を含有した接着剤であることが好ましく、より好ましくは酸変性ポリオレフィン系樹脂を含有した接着剤である。上記接着剤は、1種のみであってもよいし、2種以上であってもよい。
(積層体の製造法)
 上記積層体は、上記多孔の補強材の少なくとも一方の表面上に、公知乃至慣用の方法により上記透湿膜を形成することで作製することができる。例えば、上記透湿膜を上記多孔の補強材の一方の表面に直接形成してもよいし、いったん他の支持体上に上記透湿膜を形成した後、上記多孔の補強材の一方の表面に転写する(貼り合わせる)ことにより、多孔の補強材上に上記透湿膜を形成してもよい。中でも、上記透湿膜と上記多孔の補強材の密着性に優れる観点から、前者の方法が好ましい。
 上記多孔の補強材の上記透湿膜を設ける側の表面に親水化処理を施してもよい。上記親水化処理としては、上述のものが挙げられる。
 上記透湿膜は、上記多孔の補強材または上記他の支持体上に、上記透湿膜を形成するための組成物を塗布(塗工)し、得られた塗膜を加熱などにより脱溶媒することで形成することができる。
 上記多孔の補強材は上記親水化処理を施されることでブロッキングが抑制されているため、あらかじめ巻回体として作製した上記多孔の補強材に透湿膜を形成後、再度巻回体の状態とするロールtoロール方式で製造することができる。
 上記組成物は、公知乃至慣用の方法で作製することができる。例えば、上記共重合体を溶媒に溶解または分散させ、必要に応じて防腐剤などの添加剤を混合することにより、作製することができる。上記溶媒としては、水および/または水溶性溶媒が好ましい。水や水溶性溶媒を用いると、上記共重合体は、内側を疎水部、外側を親水部とするコアシェル形状で組成物中に分散するものと推測される。このような組成物を用いることで、塗膜を乾燥した際に親水部と疎水部が相分離し導水パスを有する状態で透湿膜が形成され、また、疎水部同士が強固に結合した状態となるものと推測され、耐水性がより良好となる。
 上記水溶性溶媒としては、例えば、メタノール、エタノール、n-プロパノール、i-プロパノールなどの脂肪族系の水溶性アルコール;エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテルなどのグリコールエーテルなどが挙げられる。上記水溶性溶媒は、1種のみを用いてもよいし、2種以上を用いてもよい。
 上記共重合体が溶解または分散した上記組成物中の上記共重合体の割合(濃度)は、特に限定されないが、0.5~5質量%が好ましく、より好ましくは1~4質量%、さらに好ましくは1.5~3質量%である。上記濃度が5質量%以下であると、塗工層の厚みが厚くなるため、乾燥後の透湿膜の膜厚がより均一化される。これにより、ガスバリア性に優れつつ、より薄膜化された透湿膜を形成することができ、結果として透湿性がより向上する。また、上記濃度が上記範囲内であると、塗工性に優れ、また、透湿性およびガスバリア性に優れる透湿膜の形成が容易である。
 なお、上記組成物の塗布(塗工)には、公知のコーティング法を利用してもよい。例えば、グラビヤロールコーター、リバースロールコーター、キスロールコーター、ディップロールコーター、バーコーター、ナイフコーター、スプレーコーター、コンマコーター、ダイレクトコーターなどのコーターが用いられてもよい。このようなコーティングにより形成することで透湿膜を形成することが容易となる。
 上記塗膜を脱溶媒する際の加熱温度は、35℃~90℃が好ましく、より好ましくは40℃~85℃、さらに好ましくは45℃~80℃である。加熱時間は、適宜、適切な時間が採用され得るが、例えば5秒~20分であり、好ましくは5秒~10分、より好ましくは10秒~5分である。上記組成物を用いて90℃以下(特に、80℃以下)の低温で透湿膜を形成可能であるため、製膜が容易であり、また、多孔の補強材として透湿性に優れるポリオレフィン系樹脂を使用することができる。
 上記多孔の補強材の少なくとも一方の面に上述の方法で上記透湿膜を形成した積層体は、透湿性に優れる。また、上記積層体は、親水部と疎水部が相分離した構造を有するため、透湿性を有するバリアフィルムとして用いることもできる。上記親水部の径が小さい場合、上記透湿性を有するバリアフィルムであることにより、親水性を有する小サイズの物質(例えば水蒸気)については親水部を通過させ、サイズの大きい物質(例えばウイルス)を通過させないで、両者を分離することができる。
[加湿エレメントの製造法]
 上記積層体が上記フレームの空気経路側に配置されることで加湿エレメントを作製することができる。また、上記積層体で上記フレームを覆うことで袋状の保水容器を形成するものであることが好ましい。
 上記フレームは押出成型により作製した板状もしくは袋状のフレームであってもよいし、射出成型にて板状に作製したフレームであってもよいし、板状に作製したフレームを2枚以上貼り合わせることで袋状の構造を作製してもよい。また、袋状のフレームを作製後に孔部を設けてもよいし、あらかじめ孔部を設けたフレームを作製してもよい。
 また、上記積層体と上記フレームとの接触部分のうち、一部または全体を貼り付けられていることが好ましい。上記フレームに貼り付ける方法は特に限定されないが、上記接着剤により接着する方法や、超音波融着、高周波融着、熱融着などの方法により、融着する方法で貼り付けることができる。
 上述の方法で上記フレームの空気経路側に上記積層体が配置された加湿エレメントを作製することができる。上記加湿エレメントはフレーム構造の空気経路側に積層体が配置されており、上記加湿エレメントの水経路側に通液した液体の水が、上記積層体に水蒸気として吸水され、上記積層体内を拡散し、積層体全体から上記空気経路側に水蒸気を放出することができる。
 また、上記フレームの空気経路側に上記積層体が配置された加湿エレメントを複数個搭載して加湿器を作製することができる。このような加湿器は従来よりも加湿性能が向上した加湿エレメントを使用することができるため、加湿器を小型化したうえで同等の性能を発揮することができ、コスト面にも優れる。
 上記加湿器は、したがって、空調機、換気装置、空気清浄機などの用途に好適に使用することができる。
 本明細書に開示された各々の態様は、本明細書に開示された他のいかなる特徴とも組み合わせることができる。各実施形態における各構成およびそれらの組み合わせなどは、一例であって、本開示の趣旨から逸脱しない範囲内で、適宜、構成の付加、省略、置換、およびその他の変更が可能である。また、本開示に係る各発明は、実施形態によって限定されることはなく、特許請求の範囲によってのみ限定される。
 従来の加湿エレメントでは積層体はフレームの水経路側に形成されており、フレームと積層体とが接している部分からは水蒸気を外部に放出することができないため、積層体の全ての面を有効に利用することができず加湿性能が十分でなかった。一方で、本開示の加湿エレメントは、フレームの空気経路側に透湿膜を含む積層体が形成されているため、吸収した水蒸気が積層体中を拡散し、積層体の全面から放出することができ、より加湿性能を向上することが可能となった。
 以下本開示に係る発明のバリエーションを記載する。
[付記1]
 多孔の補強材および前記多孔の補強材の少なくとも一方の面に積層される透湿膜を有する積層体と、フレームと、を備え、
 前記積層体は前記フレームに対し空気経路側に配置される加湿エレメント。
[付記2]
 前記積層体は前記フレームの空気経路側を覆うように袋状の保水容器を形成している付記1に記載の加湿エレメント。
[付記3]
 前記積層体において、前記透湿膜が前記多孔の補強材に対して前記フレーム側に配置されている付記1または2に記載の加湿エレメント。
[付記4]
 前記透湿膜が無孔膜である付記1~3のいずれか1つに記載の加湿エレメント。
[付記5]
 前記無孔膜はカチオン部を有する熱可塑性樹脂を含有し、前記カチオン部はアンモニウムイオンを含む基またはアンモニウムイオンを形成可能な基を含有する付記4に記載の加湿エレメント。
[付記6]
 前記無孔膜は親水部を有する熱可塑性樹脂を含有し、前記親水部は下記式(1)で表される構成単位を含有する付記4または5に記載の加湿エレメント。
Figure JPOXMLDOC01-appb-C000010

(R1,R2はそれぞれ独立して水素原子またはメチル基を示す)
[付記7]
 前記無孔膜は疎水部を有する熱可塑性樹脂を含有し、前記疎水部は下記式(2)および/または下記式(3)で表される構成単位を含有する付記4~6のいずれか1つに記載の加湿エレメント。
Figure JPOXMLDOC01-appb-C000011

(R1は水素原子またはメチル基を示し、R3は炭素数1~2のアルキル基を示す)
Figure JPOXMLDOC01-appb-C000012

(R1は水素原子またはメチル基を示し、R4は炭素数3以上の分岐型アルキル基を示す)
[付記8]
 前記透湿膜が親水性多孔膜である付記1~3のいずれか1つに記載の加湿エレメント。
[付記9]
 前記親水性多孔膜と多孔の補強材の厚みが異なる付記8に記載の加湿エレメント。
[付記10]
 前記積層体と前記フレームとが接着または融着で貼り付けられている付記1~9のいずれか1つに記載の加湿エレメント。
[付記11]
 前記積層体が前記フレームに接着剤により貼り付けられている付記1~9のいずれか1つに記載の加湿エレメント。
[付記12]
 前記透湿膜は前記多孔の補強材の少なくとも一方の表面を覆うようにコーティングされている付記1~11のいずれか1つに記載の加湿エレメント。
[付記13]
 付記1~12のいずれか1つに記載の加湿エレメントを搭載した加湿器。
[付記14]
 付記13に記載の加湿器を搭載した空調機。
[付記15]
 付記13に記載の加湿器を搭載した加湿器。
[付記16]
 付記13に記載の加湿器を搭載した空気清浄機。
 1   加湿エレメント
 10  積層体
 11  多孔の補強材
 11a 多孔の補強材の一方の面
 12  透湿膜
 20  接着剤
 30  フレーム
 31  孔部

Claims (16)

  1.  多孔の補強材および前記多孔の補強材の少なくとも一方の面に積層される透湿膜を有する積層体と、フレームと、を備え、
     前記積層体は前記フレームに対し空気経路側に配置される加湿エレメント。
  2.  前記積層体は前記フレームの空気経路側を覆うように袋状の保水容器を形成している請求項1に記載の加湿エレメント。
  3.  前記積層体において、前記透湿膜が前記多孔の補強材に対して前記フレーム側に配置されている請求項1または2に記載の加湿エレメント。
  4.  前記透湿膜が無孔膜である請求項1または2に記載の加湿エレメント。
  5.  前記無孔膜はカチオン部を有する熱可塑性樹脂を含有し、前記カチオン部はアンモニウムイオンを含む基またはアンモニウムイオンを形成可能な基を含有する請求項4に記載の加湿エレメント。
  6.  前記無孔膜は親水部を有する熱可塑性樹脂を含有し、前記親水部は下記式(1)で表される構成単位を含有する請求項4に記載の加湿エレメント。
    Figure JPOXMLDOC01-appb-C000001

    (R1,R2はそれぞれ独立して水素原子またはメチル基を示す)
  7.  前記無孔膜は疎水部を有する熱可塑性樹脂を含有し、前記疎水部は下記式(2)および/または下記式(3)で表される構成単位を含有する請求項4に記載の加湿エレメント。
    Figure JPOXMLDOC01-appb-C000002

    (R1は水素原子またはメチル基を示し、R3は炭素数1~2のアルキル基を示す)
    Figure JPOXMLDOC01-appb-C000003

    (R1は水素原子またはメチル基を示し、R4は炭素数3以上の分岐型アルキル基を示す)
  8.  前記透湿膜が親水性多孔膜である請求項1または2に記載の加湿エレメント。
  9.  前記親水性多孔膜と前記多孔の補強材の厚みが異なる請求項8に記載の加湿エレメント。
  10.  前記積層体と前記フレームとが接着または融着で貼り付けられている請求項1または2に加湿エレメント。
  11.  前記積層体が前記フレームに接着剤により貼り付けられている請求項1または2に記載の加湿エレメント。
  12.  前記透湿膜は前記多孔の補強材の少なくとも一方の表面を覆うようにコーティングされている請求項1または2に記載の加湿エレメント。
  13.  請求項1または2に記載の加湿エレメントを搭載した加湿器。
  14.  請求項13に記載の加湿器を搭載した空調機。
  15.  請求項13に記載の加湿器を搭載した換気装置。
  16.  請求項13に記載の加湿器を搭載した空気清浄機。
PCT/JP2023/021739 2022-06-15 2023-06-12 加湿エレメントおよび加湿器 WO2023243603A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-096880 2022-06-15
JP2022096880 2022-06-15
JP2023090139A JP2023183387A (ja) 2022-06-15 2023-05-31 加湿エレメントおよび加湿器
JP2023-090139 2023-05-31

Publications (1)

Publication Number Publication Date
WO2023243603A1 true WO2023243603A1 (ja) 2023-12-21

Family

ID=89191261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/021739 WO2023243603A1 (ja) 2022-06-15 2023-06-12 加湿エレメントおよび加湿器

Country Status (1)

Country Link
WO (1) WO2023243603A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61250429A (ja) * 1985-04-25 1986-11-07 Mitsubishi Electric Corp 加湿器
JPH08128682A (ja) * 1994-09-08 1996-05-21 Japan Gore Tex Inc 加湿ユニット
JPH08266631A (ja) * 1995-03-31 1996-10-15 Asahi Glass Co Ltd 呼吸用気体の加湿装置
JP2001174008A (ja) * 1999-12-15 2001-06-29 Japan Gore Tex Inc 加湿シート
JP2019027706A (ja) * 2017-07-31 2019-02-21 株式会社コア電子 加湿エレメント及び該加湿エレメントを用いた加湿機装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61250429A (ja) * 1985-04-25 1986-11-07 Mitsubishi Electric Corp 加湿器
JPH08128682A (ja) * 1994-09-08 1996-05-21 Japan Gore Tex Inc 加湿ユニット
JPH08266631A (ja) * 1995-03-31 1996-10-15 Asahi Glass Co Ltd 呼吸用気体の加湿装置
JP2001174008A (ja) * 1999-12-15 2001-06-29 Japan Gore Tex Inc 加湿シート
JP2019027706A (ja) * 2017-07-31 2019-02-21 株式会社コア電子 加湿エレメント及び該加湿エレメントを用いた加湿機装置

Similar Documents

Publication Publication Date Title
JP5670803B2 (ja) 電池用外装体及びその製造方法並びに電池
WO2021200382A1 (ja) 積層体
JP2017530002A (ja) 分離モジュール、システム、及び方法
WO2015174492A1 (ja) ガスバリア性包装材料
WO2008050546A1 (fr) Matériau d'emballage
EP3178647A1 (en) Laminate having moisture barrier properties
JP6690393B2 (ja) 蓄電装置用外装材及びその製造方法
WO2021131865A1 (ja) 蓄電装置用外装材及びこれを用いた蓄電装置、蓄電装置用外装材の製造方法、並びに蓄電装置用外装材におけるシーラント層として使用されるシーラントフィルムの選定方法
CN106133943A (zh) 锂电池用封装材料
JP2010005802A (ja) 包装材料
JPWO2018168820A1 (ja) ガス分離膜エレメント、ガス分離膜モジュール、及びガス分離装置
WO2023243603A1 (ja) 加湿エレメントおよび加湿器
WO2015025812A1 (ja) 酸性ガス分離用スパイラル型モジュール
JP2023183387A (ja) 加湿エレメントおよび加湿器
WO2023243599A1 (ja) 加湿用積層体、および加湿器
JP5270570B2 (ja) 加湿用気化フィルター、加湿用気化フィルター積層体及びそれらを用いた加湿方法
WO2023243600A1 (ja) 加湿用積層体、および加湿器
JP2015067302A (ja) 放射線滅菌処理用包装材料及びそれよりなる包装体
JP2023183331A (ja) 加湿用積層体、および加湿器
WO2023243596A1 (ja) 加湿用積層体、および加湿器
US11390055B2 (en) Housing material for electricity storage device
JP7142065B2 (ja) 全熱交換素子用仕切部材、全熱交換素子、および換気装置
JP2016207564A (ja) 蓄電装置用外装材
JP7146867B2 (ja) 積層体
WO2021079598A1 (ja) 粒子測定モジュール及びそれの使用方法、並びに粒子測定モジュールの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23823893

Country of ref document: EP

Kind code of ref document: A1