WO2023243586A1 - 電子デバイス製造方法および積層体 - Google Patents

電子デバイス製造方法および積層体 Download PDF

Info

Publication number
WO2023243586A1
WO2023243586A1 PCT/JP2023/021691 JP2023021691W WO2023243586A1 WO 2023243586 A1 WO2023243586 A1 WO 2023243586A1 JP 2023021691 W JP2023021691 W JP 2023021691W WO 2023243586 A1 WO2023243586 A1 WO 2023243586A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
sensitizing
film
top coat
resin
Prior art date
Application number
PCT/JP2023/021691
Other languages
English (en)
French (fr)
Inventor
毅 増渕
貴志 青木
史尋 雨宮
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Publication of WO2023243586A1 publication Critical patent/WO2023243586A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Definitions

  • the present invention relates to an electronic device manufacturing method and a laminate. More specifically, the present invention relates to an electronic device manufacturing method using EUV lithography technology and a laminate preferably applied to the electronic device manufacturing method.
  • EUV lithography In the field of semiconductor lithography, development regarding EUV lithography using EUV light (extreme ultraviolet light) as an exposure light source continues.
  • EUV light extreme ultraviolet light
  • a fundamental challenge in EUV lithography is improving sensitivity. This is because the output of EUV light sources is still small as of 2022. In order to compensate for the low output of the EUV light source, it is possible to improve the sensitivity by improving the photoresist and the materials surrounding the photoresist.
  • Patent Document 1 discloses the idea of forming a metal-containing top coat on a resist layer in order to improve sensitivity in EUV lithography.
  • the idea described in Patent Document 1 is not accompanied by specific examples (such as preparation of an actual top coat composition).
  • the present invention is as follows.
  • An electronic device manufacturing method comprising: At least a portion of the resist underlayer film contains one or more sensitizing elements selected from the group consisting of metal elements, metalloid elements, and iodine, When the concentration of the sensitizing element on the substrate side surface of the resist underlayer film is C S and the concentration of the sensitizing element on the resist film side surface of the resist underlayer film is C R , C R > An electronic device manufacturing method that is CS . 2.
  • the electronic device manufacturing method according to The electronic device manufacturing method, wherein the sensitizing element includes one or more selected from the group consisting of Ge, Mo, Hf, Zr, Ta, W, Cr, Co, Fe, Pt, Sn, and Sb. 3. 1. or 2.
  • the electronic device manufacturing method according to any one of A method for manufacturing an electronic device, wherein C s is 0 to 10 at%. 6. 1. ⁇ 5.
  • the electronic device manufacturing method according to any one of The method for manufacturing an electronic device, wherein the resist underlayer film includes a resin having the sensitizing element. 7. 1. ⁇ 5.
  • the electronic device manufacturing method according to any one of The resist underlayer film includes a resin and an additive component having the sensitizing element as a separate component from the resin. 8. 1. ⁇ 7.
  • the electronic device manufacturing method according to any one of An electronic device manufacturing method, wherein the actinic light is EUV light. 9.
  • An electronic device manufacturing method comprising: At least a portion of the top coat film contains one or more sensitizing elements selected from the group consisting of metal elements, metalloid elements, and iodine, The concentration of the sensitizing element on the surface of the top coat film on the resist film side is defined as C R ′, and the concentration of the sensitizing element on the surface of the top coat film on the opposite side from the resist film is defined as CO An electronic device manufacturing method, wherein: C R ′>C O.
  • the electronic device manufacturing method according to any one of The method for manufacturing an electronic device, wherein the top coat film includes a resin having the sensitizing element. 15. 9. ⁇ 13.
  • the electronic device manufacturing method according to any one of The top coat film includes a resin and an additive component having the sensitizing element as a separate component from the resin. 16. 9. ⁇ 15.
  • the electronic device manufacturing method according to any one of An electronic device manufacturing method, wherein the actinic light is EUV light. 17.
  • a laminate comprising a substrate, a resist lower layer film, and a resist film in this order, At least a portion of the resist underlayer film contains one or more sensitizing elements selected from the group consisting of metal elements, metalloid elements, and iodine,
  • the concentration of the sensitizing element on the substrate side surface of the resist underlayer film is C S
  • the concentration of the sensitizing element on the resist film side surface of the resist underlayer film is C R
  • the laminate according to A laminate in which the sensitizing element includes one or more selected from the group consisting of Ge, Mo, Hf, Zr, Ta, W, Cr, Co, Fe, Pt, Sn, and Sb. 19. 17. or 18.
  • the laminate according to any one of The resist underlayer film is a laminate including a resin having the sensitizing element. 23. 17. ⁇ 21.
  • the laminate according to any one of The resist underlayer film is a laminate including a resin and an additive component having the sensitizing element as a separate component from the resin. 24.
  • a laminate comprising a substrate, a resist film, and a top coat film in this order, At least a portion of the top coat film contains one or more sensitizing elements selected from the group consisting of metal elements, metalloid elements, and iodine,
  • the concentration of the sensitizing element on the surface of the top coat film on the resist film side is defined as C R ′, and the concentration of the sensitizing element on the surface of the top coat film on the opposite side from the resist film is defined as CO When, C R '>C O , the laminate. 25. 24.
  • the laminate according to A laminate in which the sensitizing element includes one or more selected from the group consisting of Ge, Mo, Hf, Zr, Ta, W, Cr, Co, Fe, Pt, Sn, and Sb.
  • the laminate according to any one of The top coat film is a laminate including a resin having the sensitizing element. 30. 24. ⁇ 28.
  • the laminate according to any one of The top coat film is a laminate including a resin and an additive component having the sensitizing element as a separate component from the resin.
  • FIG. 3 is a diagram for explaining an exposure process in the first embodiment.
  • FIG. 3 is a diagram for explaining a developing process in the first embodiment. It is a figure for demonstrating the lamination process in 2nd Embodiment.
  • FIG. 7 is a diagram for explaining an exposure process in a second embodiment.
  • FIG. 7 is a diagram for explaining a developing process in a second embodiment. It is a figure for explaining a 3rd embodiment.
  • At% represents atomic%, that is, a percentage based on the number of atoms.
  • the notation “X to Y” in the description of numerical ranges refers to not less than X and not more than Y, unless otherwise specified.
  • “1 to 5% by mass” means “1 to 5% by mass”.
  • a description that does not indicate whether it is substituted or unsubstituted includes both those without a substituent and those with a substituent.
  • alkyl group includes not only an alkyl group without a substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
  • (meth)acrylic represents a concept that includes both acrylic and methacrylic. The same applies to similar expressions such as “(meth)acrylate”.
  • organic group as used herein means an atomic group obtained by removing one or more hydrogen atoms from an organic compound, unless otherwise specified.
  • a "monovalent organic group” refers to an atomic group obtained by removing one hydrogen atom from an arbitrary organic compound.
  • solid content and “nonvolatile components” have basically the same meaning unless otherwise specified. Together, these terms refer to the components that remain after volatile components (typically solvents) are evaporated from a composition or solution.
  • electronic device refers to an element to which electronic engineering technology is applied, such as a semiconductor chip, semiconductor element, printed wiring board, electric circuit display device, information communication terminal, light emitting diode, physical battery, or chemical battery. , devices, final products, etc.
  • the electronic device manufacturing method of the first embodiment includes: a laminating step of providing a resist underlayer film and a resist film in this order on the substrate to obtain a laminate; an exposure step of irradiating active light from the side of the resist film in the laminate; a developing step of removing at least a portion of the resist film using a developer; including.
  • At least a portion of the resist underlayer film contains one or more sensitizing elements selected from the group consisting of metal elements, metalloid elements, and iodine.
  • the distance that secondary electrons travel in a resist underlayer film or a resist film is thought to be about 20 nm at most. Therefore, for example, when the resist underlayer film is thick, even if the resist underlayer film contains a sensitizing element, the secondary electrons generated from the sensitizing element cannot sufficiently move to the resist film, and a sufficient sensitivity improvement effect cannot be achieved. There is a possibility that you will not get it.
  • the present inventors decided to "unevenly distribute the sensitizing element in the portion of the resist underlayer film close to the resist film.” By doing so, more secondary electrons generated from the sensitizing element in the resist underlayer film can move to the resist film without being deactivated in the resist underlayer film. As a result, sensitivity in EUV lithography can be further improved.
  • the resist underlayer film By the way, by designing the resist underlayer film so that the sensitizing element is unevenly distributed in the portion of the resist underlayer film close to the resist film, the total amount of sensitizing elements in the resist underlayer film can be suppressed. In other words, the "amount used" of the sensitizing element can be reduced. Since many of the sensitizing elements are foreign substances that may contaminate semiconductor wafers, it is desirable to be able to reduce the amount of sensitizing elements used. Furthermore, the sensitizing element is often a "foreign substance" that deteriorates the stability over time of a typical resin composition for forming a resist underlayer film. In this respect as well, it is preferable that the amount of the sensitizing element used can be reduced.
  • C R is preferably 1 to 20 at%, more preferably 3 to 17 at%, and still more preferably 5 to 15 at%.
  • C s is preferably 0 to 10 at%, more preferably 0 to 9 at%, and even more preferably 0 to 8 at%.
  • the index C s /C R can be considered. The value of this index is preferably 0 to 10, more preferably 0 to 3, and even more preferably 0 to 1.6.
  • the magnitude relationship between C R and C s , the value of C R , the value of C s , etc. can be known, for example, by any of the following methods.
  • (1) Estimate from the amount of the sensitizing element contained in the material constituting the composition for forming the resist underlayer film (resin composition for forming the resist underlayer film).
  • (2) Utilizes the "depth analysis" technique known in X-ray photoelectron spectroscopy.
  • (3) First, by forming only a resist underlayer film on the surface of a resin film (preferably one that has been subjected to easy-peel processing), and measuring the amount of sensitizing element on the exposed surface of the formed resist underlayer film. Find CR .
  • Cs is determined by measuring the amount of sensitizing element on this "opposite side".
  • C R and C s can be quantified by analyzing the energy of photoelectrons generated using X-ray photoelectron spectroscopy. (4) Measure the density at the top and bottom of the film based on X-ray reflectance measurements.
  • the density at the top of the film and the density at the bottom of the film will be measured as different values (germanium is relatively (because it is a heavy element).
  • the magnitude relationship between C R and C s can be determined from the density difference between the upper and lower parts of the film.
  • the density difference between the upper and lower parts of the film is preferably 0.1 to 1.0 g/cm 3 , more preferably 0.2 to 1.0 g/cm 3 . It is 0.9 g/cm 3 , more preferably 0.3 to 0.8 g/cm 3 . When there is a density difference of this degree, it can be considered that the sensitizing element is sufficiently unevenly distributed in the film.
  • a resist lower layer film 10 and a resist film 20 are provided in this order on the substrate 1 (on one surface of the substrate 1).
  • At least a portion of the resist underlayer film 10 contains one or more sensitizing elements selected from the group consisting of metal elements, metalloid elements, and iodine.
  • the concentration of the sensitizing element on the surface of the resist underlayer film 10 on the substrate 1 side is CS
  • the concentration of the sensitizing element on the surface of the resist underlayer film 10 on the resist film 20 side is CR
  • C R > CS when the concentration of the sensitizing element on the surface of the resist underlayer film 10 on the substrate 1 side is CS , and the concentration of the sensitizing element on the surface of the resist underlayer film 10 on the resist film 20 side is CR .
  • Examples of methods for providing the resist underlayer film 10 where C R >C S include (i) and (ii) below.
  • a resist underlayer film forming resin composition containing a relatively small amount of a sensitizing element or containing no sensitizing element is coated on the substrate 1 (at least one side of the substrate 1), A first resist underlayer film is formed. Thereafter, a resist underlayer film forming resin composition containing a relatively large amount of sensitizing element is applied onto the first resist underlayer film to form a second resist underlayer film.
  • a resist underlayer film forming resin composition containing a relatively large amount of sensitizing element is applied onto the first resist underlayer film to form a second resist underlayer film.
  • the resist underlayer film 10 is formed using a resin composition for forming a resist underlayer film that has a sensitizing element and includes a substance that has the property of being unevenly distributed on the surface of the film during film formation. do.
  • a technique in which a water-repellent polymer is added to a photoresist composition in order to make the upper surface of a resist film water-repellent.
  • the water-repellent polymer can be unevenly distributed on the film surface during resist film formation.
  • JP-A-2006-309245 discloses that a substance containing silicon and/or fluorine is substantially immiscible with a resin in a photoresist, and that a photoresist composition containing such a substance is coated on a substrate. It is described that this results in the formation of a photoresist film in which the substance is unevenly distributed on the surface.
  • the resist underlayer film 10 where C R > C S without performing two or more coatings as in (i) above.
  • (B) contains a relatively large amount of silicon and/or fluorine, for example.
  • (B) has a lower surface energy and/or a smaller hydrodynamic volume than (A).
  • the sensitizing element is selected from the group consisting of Ge, Mo, W, Hf, Zr, Ta, Cr, Co, Fe, Pt, Sn and Sb. It is preferable to include one or more. In particular, considering the sensitivity improvement effect, ease of obtaining the material, ease of removal from the substrate (removability by dry etching), etc., the sensitizing element should be one or more selected from the group consisting of Ge, Mo, and W. It is more preferable to include.
  • the resist film 20 may contain or substantially not contain one or more sensitizing elements selected from the group consisting of metal elements, metalloid elements, and iodine. "Substantially not containing” means that the amount of the sensitizing element in the resist film 20 is, for example, 0 to 0.9 at%, specifically 0 to 0.5 at%, more specifically 0 to 0.2 at%. %. In the first embodiment, an improvement in sensitivity can be expected due to the movement of secondary electrons from the resist underlayer film 10 to the resist film 20. Therefore, it is considered that a sufficient sensitivity improvement effect can be obtained even if the resist film 20 does not contain a sensitizing element.
  • the resist film 20 includes one or more sensitizing elements selected from the group consisting of metal elements, metalloid elements, and iodine.
  • Formation of each film is usually performed by sequentially applying a liquid composition (containing a solvent) for forming each film onto a substrate using a spin coating method. Specifically, an appropriate amount of a liquid composition (containing a solvent) is provided on the substrate 1, and then the substrate 1 is rotated to spread the liquid composition thinly on the substrate 1. Thereafter, heating (baking) may be performed to dry the remaining solvent, if necessary.
  • heating may be performed to thermoset the resist underlayer film.
  • the heating temperature is preferably 50 to 250°C, more preferably 100 to 230°C.
  • each layer is preferably as follows.
  • Resist underlayer film 10 preferably 1 to 50 nm, more preferably 5 to 20 nm
  • Resist film 20 preferably 20 nm or less, more preferably 1 to 20 nm, even more preferably 10 to 20 nm, particularly preferably 15 to 20 nm
  • the travel distance of secondary electrons generated by EUV light irradiation is thought to be about 20 nm. Therefore, it is considered that because the resist film 20 is not too thick, the secondary electrons generated in the resist lower layer film 10 can sufficiently reach the inside of the resist film 20. As a result, it can be expected that a sufficient sensitivity improvement effect will be obtained and that the shape of the pattern obtained in the development process will be improved.
  • composition for forming the resist underlayer film 10 resin composition for forming a resist underlayer film
  • resist film 20 the substrate 1, etc.
  • the resin composition for forming a resist underlayer film can contain a resin containing a sensitizing element.
  • the resist underlayer film 10 includes a resin having a sensitizing element. It is considered that the presence of the sensitizing element in the resin makes it easier for the sensitizing element to be distributed relatively uniformly in the resist underlayer film 10. By uniformly distributing the sensitizing element in the resist underlayer film 10, it is possible to generate secondary electrons in an amount corresponding to the amount of EUV light irradiation at any location in the resist underlayer film 10. This is preferable because "unevenness" can be suppressed.
  • the resin containing the sensitizing element is preferably included in the composition for forming the second resist underlayer film. Furthermore, when forming the resist underlayer film 10 by using the unevenly distributed substance described above, it is preferable to use a resin containing a sensitizing element as the unevenly distributed substance. By doing so, the amount of the sensitizing element in the upper part of the resist underlayer film 10 becomes relatively large, and the amount of the sensitizing element in the lower part of the resist underlayer film 10 becomes relatively small.
  • the composition for forming the first resist underlayer film may, for example, contain no sensitizing element or contain a sensitizing element but in a small amount.
  • the same resin as the resin containing the sensitizing element described here can be included (specifically, in the polysiloxane resin described below, the resin represented by the general formula (1-A) resin, etc., in which the content of the constituent units is 0 to 5 mol% of the total constituent units).
  • the resin used in combination with the ubiquitous substance does not contain a sensitizing element or is explained here in a small amount.
  • a resin similar to the resin containing a sensitizing element can be used (for example, in the polysiloxane resin described below, the content of the structural unit represented by the general formula (1-A) is lower than the total structural unit 0 to 5 mol% resin, etc.).
  • the resin having a sensitizing element may or may not have an alkali-soluble group.
  • alkali-soluble group include a carboxy group, a phenolic hydroxy group, and a hexafluoroisopropanol group (-C(CF 3 ) 2 -OH).
  • the resin having a sensitizing element preferably contains a polysiloxane resin having a sensitizing element. More specifically, the resin having a sensitizing element preferably includes a polysiloxane-based resin in which some of the Si atoms of polysiloxane are replaced with a sensitizing element.
  • Preferred examples of the polysiloxane resin include resins having a structural unit represented by the following general formula (1) and a structural unit represented by the following general formula (1-A). [(R 2 ) d (R 3 ) e (OR 4 ) f SiO g/2 ] (1) [(R 1 ) b MO c/2 ] (1-A)
  • R 2 is each independently a hydrogen atom, a hydroxy group, a halogen atom, an alkyl group, an alicyclic group, an aryl group, or an alkoxy group, when there is a plurality of R 2 s;
  • R 3 is each independently a hydrogen atom, an alkyl group, an alicyclic group, or an aryl group when there is a plurality of them;
  • R 4 is each independently a hydrogen atom, an alkyl group, an alicyclic group, or an aryl group when there is a plurality of R 4 s;
  • d is a number from 1 to 3
  • e is a number from 0 to 2
  • f is a number from 0 to 3
  • g is a number from 0 to 3
  • d+e+f+g 4.
  • M is at least one of the sensitizing elements, preferably one or more selected from the group consisting of Ge, Mo, W, Hf, Zr, Ta, Cr, Co, Fe, Pt, Sn and Sb, more preferably Ge, Mo and one or more selected from the group consisting of W,
  • R 1s each independently represents a hydrogen atom, a hydroxy group, a halogen atom, an alkyl group, an alicyclic group, an alkoxy group, or an aryl group
  • b is a number greater than or equal to 0 and less than 6
  • c is a number greater than 0 and less than or equal to 6
  • b+c is from 3 to 6.
  • the notation O g/2 in general formula (1) is generally used as a notation of a compound having a siloxane bond.
  • the following formula (1-1) represents the case where g is 1, the formula (1-2) represents the case where g is 2, and the formula (1-3) represents the case where g is 3. When g is 1, it is located at the end of the siloxane chain in a compound having a siloxane bond.
  • R x has the same meaning as R 2 in general formula (1), and R a and R b each independently represent R in general formula (1). It has the same meaning as 2 , R3 , OR4 .
  • the broken lines represent bonds with other Si atoms.
  • Examples of the alkyl groups for R 2 , R 3 and R 4 in general formula (1) include methyl group, ethyl group, n-propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, n-pentyl group, Examples include isopentyl group, neopentyl group, hexyl group, and octyl group. Among them, methyl group and ethyl group are preferred.
  • the alkyl group has, for example, 1 to 12 carbon atoms, preferably 1 to 10 carbon atoms, and more preferably 1 to 6 carbon atoms.
  • Examples of the alicyclic groups for R 2 , R 3 and R 4 in general formula (1) include cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, norbornyl, and adamantyl groups.
  • the alicyclic group may have a monocyclic structure or a polycyclic structure.
  • the alicyclic group has, for example, 5 to 20 carbon atoms, preferably 5 to 16 carbon atoms, and more preferably 5 to 10 carbon atoms.
  • Examples of the aryl group for R 2 , R 3 and R 4 in general formula (1) include a phenyl group and a naphthyl group.
  • the aryl group has, for example, 5 to 20 carbon atoms, preferably 5 to 16 carbon atoms, and more preferably 5 to 10 carbon atoms.
  • Examples of the alkoxy group for R 2 in the general formula (1) include embodiments in which R 2 ' is the above-mentioned alkyl group in the general formula -O-R 2 '.
  • the halogen atom for R 2 in general formula (1) is preferably a fluorine atom.
  • the alkyl group, alkoxy group, alicyclic group, or aryl group of R 2 may or may not further have a substituent.
  • the alkyl group, alicyclic group, or aryl group of R 3 may or may not further have a substituent.
  • the alkyl group, alicyclic group, or aryl group of R 4 may or may not further have a substituent.
  • Substituents are not particularly limited, and examples thereof include alkyl groups, alicyclic groups, aryl groups, and halogen atoms. Of course, substituents other than these may also be used. Further, the substituent may be an alkali-soluble group described below.
  • a preferred substituent is a halogen atom, and a more preferred substituent is a fluorine atom.
  • the alkyl groups mentioned above may be fluorinated alkyl groups.
  • R 2 , R 3 and R 4 in general formula (1) are carbon-containing groups
  • the total number of carbon atoms in each atomic group is, for example, 1 to 20, preferably 1 to 16, more preferably 1. ⁇ 12.
  • the resin having a sensitizing element preferably has an alkali-soluble group.
  • at least one of R 1 to R 4 has an alkali-soluble group. It is preferable to include.
  • at least one of R 1 to R 4 is preferably substituted with an alkali-soluble group.
  • at least R 2 contains an alkali-soluble group.
  • the alkali-soluble group include a carboxy group, a phenolic hydroxy group, and a hexafluoroisopropanol group (-C(CF 3 ) 2 -OH).
  • R 2 preferably includes a group represented by the following general formula (1a).
  • a is a number from 1 to 5
  • Dashed lines represent bonds.
  • the group represented by the general formula (1a) is preferably any of the groups represented by the following general formulas (1aa) to (1ad).
  • the definitions of X and the broken line are the same as those in the general formula (1a).
  • halogen atom, alkyl group, alicyclic group, alkoxy group, and aryl group in general formula (1-A) include the groups listed as specific examples of R 2 in general formula (1).
  • M in the general formula (1-A) is preferably Ge, Sn, and Pb, which are homologous to Si.
  • M contains Ge from the viewpoint that unintentionally remaining sensitizing elements can be easily removed in the subsequent fluorine-based etching step.
  • one or more elements selected from the group consisting of Ge, Mo, and W are included.
  • the monomer (raw material) corresponding to the structural unit represented by the general formula (1-A) is preferably germanium tetramethoxide, germanium tetraethoxide, germanium tetrapropoxide, germanium tetrabutoxide, germanium tetraamyloxide, Germanium tetrahexyloxide, germanium tetracyclopentoxide, germanium tetracyclohexyloxide, germanium tetraallyloxide, germanium tetraphenoxide, germanium (mono, di, or tri) methoxy (mono, di, or tri) ethoxide, germanium ( Mono, di, or tri)ethoxy(mono, di, or tri)propoxide, molybdenum tetraethoxide, tungsten tetraethoxide, tungsten tetraphenoxide, tetrachlorogermanium, tetrabromogermanium,
  • the resin having the structural unit represented by the general formula (1) and the structural unit represented by the general formula (1-A) may further contain another structural unit.
  • the "another structural unit” includes a structural unit represented by the following general formula (2) and a structural unit represented by the following general formula (3).
  • k is a number from 0 to 3. It is preferable that l is a number of 1 or more and 4 or less.
  • the halogen atom for R 5 is preferably a fluorine atom.
  • R 5 ' is a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n Examples include embodiments in which the alkyl group is an alkyl group such as -pentyl group, isopentyl group, neopentyl group, hexyl group, or octyl group.
  • the alkoxy group has, for example, 1 to 12 carbon atoms, preferably 1 to 10 carbon atoms, and more preferably 1 to 6 carbon atoms.
  • the broken line represents a bond with another Si atom.
  • O 4/2 in the general formula (2) is generally called a Q4 unit, and indicates a structure in which all four bonds of the Si atom form siloxane bonds.
  • Q4 is described above, general formula (2) may contain a group capable of hydrolysis and condensation as a bond, like the Q0, Q1, Q2, and Q3 units shown below. Further, general formula (2) only needs to have at least one unit selected from the group consisting of Q1 to Q4 units.
  • Q0 unit A structure in which all four bonds of the Si atom are groups capable of hydrolysis and polycondensation (groups capable of forming siloxane bonds, such as halogen groups, alkoxy groups, or hydroxy groups).
  • Q1 unit A structure in which one of the four bonds of the Si atom forms a siloxane bond, and the remaining three are all the above hydrolyzable/polycondensable groups.
  • Q2 unit A structure in which two of the four bonds of the Si atom form a siloxane bond, and the remaining two are all the above hydrolyzable/polycondensable groups.
  • Q3 unit A structure in which three of the four bonds of the Si atom form a siloxane bond, and the remaining one is the above-mentioned group capable of hydrolysis and polycondensation.
  • the monomer (raw material) corresponding to the structural unit represented by general formula (2) is preferably tetraalkoxysilane, tetrahalosilane (for example, tetrachlorosilane, tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane). , tetraisopropoxysilane, etc.), oligomers of these silane compounds, and the like.
  • R 7 is an organic group substituted with at least one substituent selected from the group consisting of an epoxy group, an oxetane group, an acryloyl group, a methacryloyl group, and a lactone group, if multiple R 7s exist;
  • R 8 is each independently a hydrogen atom, a hydroxy group, a halogen atom, an alkyl group, an alicyclic group, an aryl group or an alkoxy group;
  • h is a number from 1 to 3
  • i is a number from 0 to 3
  • i is preferably an integer of 0 or more and 2 or less, more preferably an integer of 0 or 1.
  • j is preferably an integer of 1 or more and 3 or less, more preferably an integer of 2 or 3.
  • the value of h is 1.
  • a structural unit in which h is 1, i is 0, and j is 3 is a particularly preferable example of the structural unit of general formula (3).
  • h is preferably a number of 1 or more and 2 or less, and more preferably 1.
  • i is preferably a number from 0 to 2, more preferably from 0 to 1.
  • j is preferably a number of 1 or more and 3 or less, more preferably a number of 2 or more and 3 or less.
  • R 7 contains an epoxy group, an oxetane group, or a lactone group
  • the adhesion between the substrate 1 and the resist underlayer film 10 tends to be further enhanced.
  • R 7 contains an acryloyl group or a methacryloyl group
  • the resist underlayer film 10 tends to be sufficiently cured, and the solvent resistance of the resist underlayer film 10 tends to be particularly good.
  • R 7 is preferably any group represented by the following general formulas (3a), (3b), (3c), (3d) and (3e).
  • R g , R h , R i , R j and R k each independently represent a divalent linking group, Dashed lines represent bonds.
  • R g , R h and R i are divalent linking groups
  • specific examples include alkylene groups having 1 to 20 carbon atoms.
  • the alkylene group may contain one or more sites forming an ether bond. When the number of carbon atoms is 3 or more, the alkylene group may be branched, or separate carbon atoms may be connected to form a ring. When the alkylene group has two or more carbon atoms, it may contain one or more sites in which oxygen is inserted between carbons to form an ether bond.
  • Preferred examples of the case where R j and R k are divalent linking groups include those listed as preferred groups for R g , R h and R i .
  • R 7 contains a lactone group
  • R 7 -Si A specific example of the case where R 7 contains a lactone group will be described below as a structure of R 7 -Si.
  • R 8 can be the same as R 2 in general formula (1).
  • Preferred examples of R 8 include a hydrogen atom, a hydroxy group, a methyl group, an ethyl group, a phenyl group, a methoxy group, an ethoxy group, and a propoxy group, and particularly preferably a hydroxy group, a methoxy group, an ethoxy group, and a propoxy group. Examples include groups.
  • j is 1 in the following general formula (3-1), j is 2 in general formula (3-2), and j is 3 in general formula (3-3). This represents the case of When j is 1, it is located at the end of the siloxane chain in a compound having a siloxane bond.
  • R y has the same meaning as R 7 in general formula (3)
  • R a and R b are each independently synonymous with R 7 and R 8 in general formula (3)
  • the broken lines represent bonds with other Si atoms.
  • 3-methacryloxypropyltrimethoxysilane manufactured by Shin-Etsu Chemical Co., Ltd., product name: KBM-503
  • 3-methacryloxypropyltriethoxysilane manufactured by Shin-Etsu Chemical Co., Ltd., product name: KBE-503
  • 3-methacryloxypropyl Methyldimethoxysilane product name: KBM-502
  • 3-methacryloxypropylmethyldiethoxysilane product name: KBE-502
  • 3-acryloxypropyltrimethoxysilane product name: KBM-) 5103
  • 8-methacryloxyoctyltrimethoxysilane product name: KBM-5803
  • Preferred ratios (copolymerization ratios) of each structural unit in the resin having a sensitizing element are shown below.
  • its content ratio (copolymerization ratio) is preferably 10 ⁇ 60 mol%, more preferably 20-50 mol%
  • its content ratio (copolymerization ratio) preferably 10 to 60 mol%, more preferably 20 to 50 mol%
  • the weight average molecular weight of the resin having a sensitizing element is not particularly limited, but is, for example, 500 to 50,000, preferably 800 to 40,000, and more preferably 1,000 to 30,000.
  • the resin having a sensitizing element includes, for example, (i) at least one member selected from the group consisting of halosilanes and alkoxysilanes, and (ii) Ge, Mo, Hf, Zr, Ta, It can be synthesized by hydrolytic polycondensation with at least one selected from the group consisting of alkoxides and halides of one or more elements selected from the group consisting of W, Cr, Co, Fe, Pt, Sn and Sb. can. Incidentally, these (i) and (ii) may be hereinafter referred to as "raw material compounds corresponding to each structural unit.”
  • the raw material compounds corresponding to each structural unit are placed in a reaction vessel at room temperature (this refers to the atmospheric temperature without heating or cooling, which is usually about 15 to 30°C. The same applies hereinafter). Collect. Thereafter, water for hydrolyzing the raw material compounds corresponding to each structural unit, a catalyst for advancing the polycondensation reaction, and, if desired, a reaction solvent are added to the reaction vessel to form a reaction solution. The order of addition at this time is not particularly limited. Next, while stirring this reaction solution, hydrolysis and condensation reactions are allowed to proceed for a predetermined time and at a predetermined temperature. A resin can be obtained in this way.
  • the time required for the reaction depends on the type of catalyst, but is usually 3 to 24 hours, and the reaction temperature is at least room temperature (for example, 25°C) and at most 200°C.
  • the reaction temperature is at least room temperature (for example, 25°C) and at most 200°C.
  • a reflux device to prevent unreacted raw materials, water, reaction solvent, and/or catalyst from being distilled out of the reaction system. It is preferable to reflux the reaction system.
  • the amount of water used in the hydrolysis and condensation reactions is not particularly limited. From the viewpoint of reaction efficiency, 0 to the total number of moles of hydrolyzable groups (alkoxy groups and halogen atom groups, or alkoxy groups and halogen atom groups if both are included) contained in the raw material compound corresponding to each structural unit. It is preferably .01 to 15 times.
  • acid catalysts and base catalysts are preferably used.
  • acid catalysts include hydrochloric acid, nitric acid, sulfuric acid, hydrofluoric acid, phosphoric acid, acetic acid, oxalic acid, trifluoroacetic acid, methanesulfonic acid, trifluoromethanesulfonic acid, camphorsulfonic acid, benzenesulfonic acid, tosylic acid, formic acid
  • acid catalysts include hydrochloric acid, nitric acid, sulfuric acid, hydrofluoric acid, phosphoric acid, acetic acid, oxalic acid, trifluoroacetic acid, methanesulfonic acid, trifluoromethanesulfonic acid, camphorsulfonic acid, benzenesulfonic acid, tosylic acid, formic acid
  • polyhydric carboxylic acids such as maleic acid, malonic acid, and succinic acid, or their anhydrides.
  • base catalysts include triethylamine, tripropylamine, tributylamine, tripentylamine, trihexylamine, triheptylamine, trioctylamine, diethylamine, triethanolamine, diethanolamine, sodium hydroxide, potassium hydroxide, and carbonic acid. Examples include sodium, tetramethylammonium hydroxide, and the like.
  • the amount of the catalyst to be used is 0.000000 with respect to the total number of moles of hydrolyzable groups (alkoxy groups and halogen atom groups, or if both are included, an alkoxy group and a halogen atom group) contained in the raw material compound corresponding to each structural unit. It is preferably 0.001 to 0.5 times.
  • reaction solvent In the hydrolysis and condensation reactions, it is not necessarily necessary to use a reaction solvent, and the raw material compound, water, and catalyst can be mixed and hydrolyzed and condensed.
  • a reaction solvent when a reaction solvent is used, its type is not particularly limited. Among these, from the viewpoint of solubility in the raw material compound, water, and catalyst, polar solvents are preferred, and alcoholic solvents are more preferred. Specifically, one or more of methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, diacetone alcohol, propylene glycol monomethyl ether, etc. can be mentioned.
  • any amount necessary for the hydrolysis condensation reaction to proceed in a homogeneous system can be used.
  • the synthesized resin it is preferable to reduce unreacted monomers and impurities by methods commonly known in the field of polymer chemistry, such as dilution with a solvent, concentration, extraction, washing with water, purification with an ion exchange resin, and filtration. .
  • a resin having a sensitizing element is used to form the resist underlayer film 10
  • a method for forming a resist underlayer film that includes a resin and an additive component having a sensitizing element as a separate component from the resin.
  • An embodiment using a resin composition can also be mentioned.
  • the resin may or may not have a sensitizing element as described above.
  • the specific embodiments of the resin are as described above.
  • a resin similar to the polysiloxane resin listed above except that it does not have a structural unit having a sensitizing element specifically, It does not have a structural unit represented by general formula (1-A), but it has a structural unit represented by general formula (1), and it also has a structural unit represented by general formula (2) or (3).
  • polysiloxane resins are also used in conventional resin compositions for forming resist underlayer films, and are preferable from the viewpoints of solvent solubility, uniform coating properties, and various other performances.
  • the resin composition for forming a resist underlayer film contains a component having a sensitizing element in addition to the resin. Additional components are not limited as long as they include a sensitizing element.
  • the additive component may be an organic compound containing a sensitizing element, an inorganic compound containing a sensitizing element, or the like.
  • the additive components may be selected as appropriate, taking into account not only sensitivity improvement but also solvent solubility and compatibility with the resin.
  • the organic compound containing the sensitizing element is easily dissolved or dispersed in the organic solvent, and as a result, the sensitizing element is easily distributed uniformly in the resist underlayer film 10. This is preferable, for example, when the resist underlayer film 10 is formed by multilayer coating as described above.
  • organic germanium compounds, organic molybdenum compounds, organic tungsten compounds, inorganic germanium compounds, inorganic molybdenum compounds, inorganic tungsten compounds, etc. are preferred from the viewpoint of ease of availability, compatibility with resins, and further improvement in sensitivity.
  • organic germanium compounds and inorganic tungsten compounds are preferred.
  • the additive component preferably contains one or more selected from the group consisting of tetraethoxygermanium, tungstic acid, and bis[2-carboxyethylgermanium (IV)] sesquioxide.
  • the additive component may be an oxide (metal oxide, etc.) of a sensitizing element.
  • metal oxides are usually insoluble in organic solvents, and are not preferred in that they require the use of a dispersant or the application of ultrasonic waves in order to be uniformly dispersed.
  • the resin composition for forming a resist underlayer film usually contains a solvent.
  • the resin composition for forming a resist underlayer film is usually one in which a resin having a sensitizing element, a resin not having a sensitizing element, an additive component having a sensitizing element, etc. are dissolved or dispersed in a solvent. .
  • the solvent is typically an organic solvent.
  • a solvent capable of dissolving or dispersing the above-mentioned resin having a sensitizing element, resin not having a sensitizing element, additive component having a sensitizing element, etc. can be preferably used.
  • the boiling point of the solvent is preferably 100 to 200°C.
  • Preferred solvents include propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, cyclohexanone, ethyl lactate, ⁇ -butyrolactone, diacetone alcohol, diglyme, methyl isobutyl ketone, 3-methoxybutyl acetate, 2-heptanone, N,N-dimethyl Examples include formamide, N,N-dimethylacetamide, N-methylpyrrolidone, glycols, glycol ethers, and glycol ether esters.
  • glycol, glycol ether, and glycol ether ester include Seltol (registered trademark) manufactured by Daicel Corporation, Hysolve (registered trademark) manufactured by Toho Chemical Industry Co., Ltd., and the like. More specifically, cyclohexanol acetate, dipropylene glycol dimethyl ether, propylene glycol diacetate, dipropylene glycol methyl-n-propyl ether, dipropylene glycol methyl ether acetate, 1,4-butanediol diacetate, 1,3- Butylene glycol diacetate, 1,6-hexanediol diacetate, 3-methoxybutyl acetate, ethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, triacetin, 1,3-butylene glycol, propylene glycol-n -Propyl ether, propylene
  • solvents are not limited to these. Furthermore, only one kind of solvent may be used, or two or more kinds of solvents may be used in combination.
  • the resin composition for forming a resist underlayer film may or may not contain one or more optional components for performance adjustment.
  • optional components include surfactants, antioxidants, antifoaming agents, and the like.
  • the resin composition for forming a resist underlayer film is usually non-photosensitive.
  • the resin composition for forming a resist underlayer film usually does not substantially contain a photoacid generator, and a fine pattern cannot be formed by exposure using only the resin composition for forming a resist underlayer film.
  • the resist composition may be a positive resist composition whose solubility in a developer increases upon irradiation with EUV light, or a negative resist composition whose solubility in a developer decreases upon irradiation with EUV light. good.
  • the resist composition may be a non-chemically amplified resist composition or a chemically amplified resist composition, but a chemically amplified resist composition is preferably used in terms of good sensitivity.
  • a chemically amplified positive resist composition is usually a composition in which at least an acid-decomposable resin and an acid generator are dissolved or dispersed in a solvent.
  • an acid generator In EUV lithography, secondary electrons generated by irradiation with EUV light decompose an acid generator to generate acid. This acid removes the protective group in the acid-decomposable resin, increasing its solubility in an alkaline developer.
  • a chemically amplified negative resist composition usually has at least a resin, a crosslinking agent, and a compound (acid generator, radical generator, etc.) that generates active chemical species upon external stimulation dissolved or dispersed in a solvent.
  • the composition is In EUV lithography, secondary electrons generated by irradiation with EUV light act on a compound that generates active chemical species due to external stimulation, thereby generating active chemical species. The action of this active chemical species forms a covalent bond between the resin and the crosslinking agent or between the crosslinking agent and the crosslinking agent. As a result, it becomes insoluble or poorly soluble in the developer (that is, becomes negative).
  • the resist composition may be of a non-chemically amplified type.
  • known non-chemically amplified electron beam resist compositions are designed so that their solubility in developing solutions changes when irradiated with electron beams. The solubility in
  • any resist composition can be used as long as its solubility in a developer changes upon irradiation with EUV light.
  • the substrate can be any arbitrary substrate.
  • a circuit may or may not be formed on the substrate 1.
  • Exposure process As shown in FIG. 2, in the exposure step, active light is irradiated from the resist film 20 side of the stack.
  • the exposure process is usually performed by irradiating actinic light 60 through a photomask 50.
  • the exposure amount may be appropriately set depending on the sensitivity of the resist film 20.
  • the wavelength of the actinic light is, for example, 1 to 600 nm, preferably 6 to 27 nm.
  • the actinic light is preferably EUV light (extreme ultraviolet light). That is, the exposure step is preferably performed using EUV light.
  • the generally applied wavelength of EUV is 13.5 nm.
  • the pulse width of EUV light is usually 0.1 to 40 nm, and the intensity of EUV light is usually 100 to 1000 kW. In the exposure process, electron beams can also be used, although mass productivity is inferior.
  • alkaline developers include inorganic alkalis such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, ammonia water, primary amines such as ethylamine and n-propylamine, diethylamine, di- Secondary amines such as n-butylamine, tertiary amines such as triethylamine and methyldiethylamine, alcohol amines such as dimethylethanolamine and triethanolamine, and quaternary ammoniums such as tetramethylammonium hydroxide and tetraethylammonium hydroxide.
  • inorganic alkalis such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, ammonia water
  • primary amines such as ethylamine and n-propylamine, diethylamine, di- Secondary amines such as n-butylamine, tertiary amines
  • Alkaline aqueous solutions of salts, pyrrole, cyclic amines such as piperidine, etc. can be used. Appropriate amounts of alcohols and surfactants can also be added to the alkaline aqueous solution.
  • an aqueous solution of tetramethylammonium hydroxide is preferred.
  • an organic solvent-based developer that is, a developer containing an organic solvent as a main component (for example, containing 90% by mass or more of an organic solvent) can also be used.
  • an organic solvent see, for example, the description in JP-A No. 2008-292975.
  • organic solvent-based developers include those containing ketone-based solvents, ester-based solvents, alcohol-based solvents, and the like as main components. Specifically, acetophenone, methylacetophenone, diisobutylketone, 2-hexanone, 3-hexanone, 2-heptanone, 3-heptanone, 4-heptanone, 2-octanone, 2-nonanone, methylcyclohexanone, propyl formate, butyl formate, Isobutyl formate, pentyl formate, isopentyl formate, propyl acetate, butyl acetate, isobutyl acetate, pentyl acetate, isopentyl acetate, 2-methylbutyl acetate, hexyl acetate, butenyl acetate, methyl propionate, ethyl propionate, methyl lactate, ethyl lactate, lactic acid Propyl, butyl
  • the organic solvents may be used alone or in combination of two or more.
  • the organic solvent-based developer may contain only these organic solvents, or may contain other components in addition to the organic solvent as long as the performance as a developer is not impaired.
  • examples of other components include surfactants.
  • examples of the surfactant include fluorine-based surfactants and silicone-based surfactants.
  • the substrate 1 can be selectively processed. Furthermore, electronic devices can be manufactured by applying various known processes for manufacturing electronic devices to the substrate processed in this manner.
  • the first embodiment has been described in detail from the viewpoint of the electronic device manufacturing method.
  • the first embodiment can also be regarded as a new technology related to "laminated bodies”. That is, the first embodiment can also be expressed as follows.
  • a laminate comprising a substrate, a resist lower layer film, and a resist film in this order, At least a part of the resist underlayer film contains one or more sensitizing elements selected from the group consisting of metal elements, metalloid elements, and iodine,
  • the concentration of the sensitizing element on the surface of the resist underlayer film on the substrate side is CS
  • the concentration of the sensitizing element on the surface of the resist underlayer film on the resist film side is CR
  • C R > CS . body When the concentration of the sensitizing element on the surface of the resist underlayer film on the substrate side is CS , and the concentration of the sensitizing element on the surface of the resist underlayer film on the resist film side is CR , then C R > CS . body.
  • the electronic device manufacturing method of the second embodiment includes: a laminating step of providing a resist film and a top coat film in this order on the substrate to obtain a laminate; an exposure step of irradiating active light from the top coat film side of the laminate; a developing step of removing at least a portion of the resist film using a developer; including. At least a portion of the top coat film contains one or more sensitizing elements selected from the group consisting of metal elements, metalloid elements, and iodine.
  • the concept of the second embodiment is similar to the first embodiment.
  • the sensitizing element in the part of the top coat film close to the resist film'' by ⁇ unevenly distributing the sensitizing element in the part of the top coat film close to the resist film'', the secondary electrons generated from the sensitizing element in the top coat film are prevented from being deactivated in the top coat film. It becomes possible to move more to the resist film. As a result, it is possible to further improve the sensitivity in EUV lithography.
  • the top coat film so that the sensitizing element is unevenly distributed in the portion of the top coat film close to the resist film, the total amount of the sensitizing element in the top coat film can be suppressed. In other words, the "amount used" of the sensitizing element can be reduced.
  • the sensitizing elements are foreign substances that may contaminate semiconductor wafers, it is desirable to be able to reduce the amount of sensitizing elements used. Furthermore, the sensitizing element is often a "foreign substance" that deteriorates the stability over time of a typical resin composition for forming a top coat film. In this respect as well, it is preferable that the amount of the sensitizing element used can be reduced.
  • C R ' is preferably 1 to 20 at%, more preferably 3 to 17 at%, and still more preferably 5 to 15 at%.
  • C 2 O is preferably 0 to 10 at%, more preferably 0 to 9 at%, and even more preferably 0 to 8 at%.
  • the index C O /C R ' can be considered. The value of this index is preferably 0 to 10, more preferably 0 to 3, and even more preferably 0 to 1.6.
  • C R ′ and C O The magnitude relationship between C R ′ and C O , the value of C R ′, the value of C O , etc. can be known by the methods (1), (2), or (3) described in the first embodiment.
  • a resist film 20 and a top coat film 30 are provided in this order on the substrate 1 (on one surface of the substrate 1).
  • At least a portion of the top coat film 30 contains one or more sensitizing elements selected from the group consisting of metal elements, metalloid elements, and iodine.
  • C R ' concentration of the sensitizing element on the surface of the top coat film 30 on the resist film 20 side
  • C O concentration of the sensitizing element on the surface of the top coat film 30 on the opposite side from the resist film 20
  • a top coat film forming resin composition containing a relatively large amount of sensitizing element is coated on the resist film 20 to form a first top coat film. Thereafter, a top coat film forming resin composition containing a relatively small amount of sensitizing element or no sensitizing element is applied onto the first top coat film to form a second top coat film. do. These two layers, the first top coat film and the second top coat film, are combined to form a top coat film 30.
  • a top coat film 30 is formed using the following.
  • a top coat film 30 can be provided. Specifically, (A) a polymer with a relatively large amount of sensitizing element, and (B) a ubiquitous component that has a small amount of sensitizing element or does not contain a sensitizing element (even if it is a low molecular weight polymer) A top coat film 30 in which C R ′>C O is provided by preparing a resin composition for forming a top coat film containing the following: Can be done.
  • (B) contains a relatively large amount of silicon and/or fluorine, for example.
  • (B) has a lower surface energy and/or a smaller hydrodynamic volume than (A).
  • the sensitizing element is selected from the group consisting of Ge, Mo, W, Hf, Zr, Ta, Cr, Co, Fe, Pt, Sn and Sb. It is preferable to include one or more. In particular, considering the sensitivity improvement effect, ease of obtaining the material, ease of removal from the substrate (removability by dry etching), etc., the sensitizing element should be one or more selected from the group consisting of Ge, Mo, and W. It is more preferable to include.
  • the resist film 20 may contain or substantially not contain one or more sensitizing elements selected from the group consisting of metal elements, metalloid elements, and iodine. "Substantially not containing” means that the amount of the sensitizing element in the resist film 20 is, for example, 0 to 0.9 at%, specifically 0 to 0.5 at%, more specifically 0 to 0.2 at%. %.
  • an improvement in sensitivity can be expected due to secondary electrons moving from the top coat film 30 to the resist film 20. Therefore, it is considered that a sufficient sensitivity improvement effect can be obtained even if the resist film 20 does not contain a sensitizing element.
  • the resist film 20 includes one or more sensitizing elements selected from the group consisting of metal elements, metalloid elements, and iodine.
  • Formation of each film is usually performed by sequentially applying a liquid composition (containing a solvent) for forming each film onto a substrate using a spin coating method. Specifically, an appropriate amount of a liquid composition (containing a solvent) is provided on the substrate 1, and then the substrate 1 is rotated to spread the liquid composition thinly on the substrate 1. Thereafter, heating (baking) may be performed to dry the remaining solvent, if necessary. When heating is performed, the heating temperature is preferably 50 to 250°C, more preferably 100 to 230°C.
  • each layer is preferably as follows.
  • Top coat film 30 preferably 1 to 20 nm, more preferably 5 to 10 nm
  • Resist film 20 preferably 20 nm or less, more preferably 1 to 20 nm, even more preferably 10 to 20 nm, particularly preferably 15 to 20 nm
  • the travel distance of secondary electrons generated by EUV light irradiation is thought to be about 20 nm. Therefore, it is considered that because the resist film 20 is not too thick, the secondary electrons generated in the top coat film 30 can sufficiently reach the inside of the resist film 20. As a result, it can be expected that a sufficient sensitivity improvement effect will be obtained and that the shape of the pattern obtained in the development process will be improved.
  • the resist film 20 and the substrate 1 can be the same as those in the first embodiment. Therefore, these will not be explained again.
  • the resin composition for forming a top coat film can include a resin containing a sensitizing element.
  • the top coat film 30 includes a resin having a sensitizing element.
  • the resin having a sensitizing element examples include the polysiloxane resin described in the first embodiment. Specifically, resins having a structural unit represented by the above-mentioned general formula (1) and a structural unit represented by general formula (1-A) can be mentioned.
  • the polysiloxane resin may further have a structural unit represented by the above-mentioned general formula (2), or may have a structural unit other than these.
  • the polysiloxane resin does not contain a structural unit having a reactive group as represented by the general formula (3).
  • the presence of the sensitizing element in the resin makes it easier for the sensitizing element to be distributed relatively uniformly in the top coat film 30.
  • uniformly distributing the sensitizing element in the top coat film 30 it is possible to generate secondary electrons in an amount corresponding to the amount of EUV light irradiated at any location on the top coat film 30, and the sensitizing element is This is preferable because "unevenness" can be suppressed.
  • the resin containing the sensitizing element is preferably included in the composition for forming the first top coat film when the top coat film 30 is formed by the above-mentioned multilayer coating. Further, when the top coat film 30 is formed by using the unevenly distributed substance described above, it is preferable to use a resin that does not contain a sensitizing element or contains a small amount of the sensitizing element as the unevenly distributed substance. By doing so, the amount of the sensitizing element in the upper part of the top coat film 30 becomes relatively small, and the amount of the sensitizing element in the lower part of the top coat film 30 becomes relatively large.
  • the composition for forming the second top coat film may, for example, not contain a sensitizing element or contain a sensitizing element but only in a small amount.
  • the same resin as the resin containing the sensitizing element can be included (specifically, in polysiloxane resin, a sensitizing element-containing structural unit as represented by the general formula (1-A) resin, etc. whose content is 0 to 5 mol% of all structural units).
  • the ubiquitous substance does not contain a sensitizing element, or it contains a sensitizing element but only in a small amount.
  • a resin similar to the resin containing a sensitive element can be used (specifically, in a polysiloxane resin, the content of the structural unit represented by the general formula (1-A) is 0 to 10% of the total structural units). 5 mol% resin).
  • Examples of using a ubiquitous substance include, as described below, at least (i) an oligomer that does not contain a sensitizing element or contains a sensitizing element but in a small amount; and (ii) an oligomer that contains a sensitizing element.
  • a monomer containing the sensitizing element is dissolved in a solvent and used as a resin composition for forming a top coat film.
  • a top coat film-forming resin composition in which at least (I) and (II) described below are dissolved in a solvent can be mentioned.
  • a siloxane oligomer having a structural unit represented by general formula (4) (which may contain one or more sensitizing elements selected from the group consisting of metal elements, metalloid elements, and iodine in the oxide network) (The ratio is less than 1/2 of Si element in molar ratio)
  • R 10s each independently represents a hydrogen atom, a hydroxy group, a halogen atom, an alkyl group, an alicyclic group, an aryl group, or an alkoxy group
  • R 11s each independently represents a hydrogen atom, an alkyl group, an alicyclic group, or an aryl group
  • R 12s each independently represents a hydrogen atom, an alkyl group, an alicyclic group, or an aryl group
  • t is a number from 1 to 3
  • u is a number from 0 to 2
  • v is a number from 0 to 3
  • w is a number from 0 to 3
  • t+u+v+w 4.
  • M is one or more sensitizing elements selected from the group consisting of metal elements, metalloid elements and iodine, preferably Ge, Mo, W, Hf, Zr, Ta, Cr, Co, Fe, Pt, Sn and One or more selected from the group consisting of Sb, more preferably one or more selected from the group consisting of Ge, Mo and W
  • R 9 is each independently a hydrogen atom, a hydroxy group, a halogen atom, an alkyl group, an alicyclic group, an alkoxy group, or an aryl group, when there is a plurality of R 9 s; p is a number from 0 to less than 6, q is a number from more than 0 to 6, and p+q is from 3 to 6.
  • t, u, v, and w in general formula (4) have the same meanings as d, e, f, and g in general formula (1) above.
  • the notation O w/2 in general formula (4) is synonymous with the notation O g/2 in the above-mentioned general formula (1).
  • R 10 , R 11 , and R 12 in general formula (4) have the same meanings as R 2 , R 3 , and R 4 in general formula (1) described above.
  • the siloxane oligomer having the structural unit represented by general formula (4) may contain one or more sensitizing elements selected from the group consisting of metal elements, metalloid elements, and iodine in its oxide network.
  • the molar ratio thereof is 1/2 or less of the Si element, more preferably 1/4 or less, still more preferably 1/8 or less, and most preferably substantially free of the sensitizing element.
  • a monomer containing one or more sensitizing elements selected from the group consisting of a metal element, a metalloid element, and iodine, and an oligomer having a structural unit represented by the general formula (4-A) are sensitizing elements
  • Si element may be included, but its proportion is at most the same amount of the sensitizing element in terms of molar ratio, more preferably at most 1/2, even more preferably at most 1/4, and most preferably, the Si element is substantially It is not included in
  • the preferred ratio (copolymerization ratio) of each structural unit in the resin containing a sensitizing element obtained from the above-mentioned resin composition for forming a top coat film is as follows.
  • the oligomer contained in the above-mentioned top coat film-forming resin composition may be a mixture of raw material compounds corresponding to each structural unit subjected to separate hydrolysis and/or polycondensation reactions.
  • the first oligomer may be obtained, and a raw material compound corresponding to the constitutional unit of the second oligomer may be added thereto to cause a hydrolysis and/or polycondensation reaction.
  • the reaction conditions for hydrolysis/polycondensation and post-processes described in the first embodiment may be applied to the synthesis of the oligomer.
  • (meth)acrylic resin can be preferably used.
  • (Meth)acrylic resins are also used in conventional resin compositions for forming top coat films, and are preferable from the viewpoints of solvent solubility, uniform coating properties, and various other performances.
  • the above-mentioned resin composition for forming a top coat film may contain a (meth)acrylic resin or a structural unit corresponding thereto.
  • Suitable (meth)acrylic resins include (meth)acrylic resins having a structural unit represented by the following general formula (X).
  • R A is a hydrogen atom or a methyl group
  • L is an n+1 valent atomic group
  • n is an integer of 1 or more.
  • L is preferably an n+1-valent organic group.
  • L is more preferably a group obtained by removing n hydrogen atoms from an alkyl group, a monovalent alicyclic group, or an aryl group.
  • Specific examples of the alkyl group, monovalent alicyclic group, and aryl group include the groups listed as examples of R 2 in general formula (1).
  • the carbon number of L is, for example, 1 to 12, specifically 1 to 10.
  • n is preferably 1-3, more preferably 1-2.
  • the (meth)acrylic resin may have structural units other than those listed above.
  • At least a portion of the resin (resin having a sensitizing element and/or resin not having a sensitizing element) contained in the resin composition for forming a top coat film. preferably has an alkali-soluble group.
  • the alkali-soluble group include a carboxy group, a phenolic hydroxy group, and a hexafluoroisopropanol group (-C(CF 3 ) 2 -OH).
  • a method for forming a top coat film that includes a resin and an additive component having a sensitizing element as a separate component from the resin.
  • An embodiment using a resin composition can also be mentioned.
  • the resin may or may not have a sensitizing element.
  • the specific embodiments of the resin are as described above.
  • a resin similar to the polysiloxane resin listed above except that it does not have a structural unit having a sensitizing element that is, a resin having the general formula (although it does not have a sensitizing element-containing structural unit as represented by 1-A), it has a structural unit represented by general formula (1), and a structural unit represented by general formula (2), etc. (resins that can have the following properties).
  • Polysiloxane resins are preferable from the viewpoints of solvent solubility, uniform coating properties, and various other performances.
  • (meth)acrylic resins, specifically (meth)acrylic resins having a structural unit represented by the aforementioned general formula (X) can also be cited as specific examples of resins that do not have a sensitizing element. can.
  • the resin composition for forming a top coat film contains a component having a sensitizing element in addition to the resin. Specific details regarding the component containing the sensitizing element are as described in the first embodiment.
  • the resin composition for forming a top coat film usually contains a solvent.
  • a resin having a sensitizing element a resin not having a sensitizing element, an additive component having a sensitizing element, etc. is usually dissolved in a solvent. or dispersed.
  • the solvent is typically an organic solvent.
  • the solvent is a solvent that can dissolve or disperse the above-mentioned resin having a sensitizing element, resin not having a sensitizing element, additive component having a sensitizing element, etc., and does not substantially dissolve the resist film 20. can be preferably used.
  • the boiling point of the solvent is preferably 100 to 200°C.
  • Suitable examples of the solvent include alcoholic solvents, that is, compounds having an alcoholic hydroxyl group in the molecule.
  • alcohol solvents include n-amyl alcohol, isoamyl alcohol, 1-butanol, 1-octanol, 2-octanol, 4-methyl-2-pentanol, 1-hexanol, 3-heptanol, and i-butyl alcohol.
  • solvents include (i) nonpolar solvents such as hydrocarbon solvents, halogenated hydrocarbon solvents, and fluorine-containing nonpolar solvents, (ii) ether solvents, nitrogen-containing solvents, carboxylic acid solvents, and acid anhydrides.
  • nonpolar solvents such as hydrocarbon solvents, halogenated hydrocarbon solvents, and fluorine-containing nonpolar solvents
  • ether solvents such as ether solvents, nitrogen-containing solvents, carboxylic acid solvents, and acid anhydrides.
  • polar solvents such as chemical solvents, ester solvents, and ketone solvents.
  • the resin composition for forming a top coat film may contain only one solvent, or may contain two or more solvents.
  • the type and mixing ratio of the solvent are not particularly limited as long as the contained components are appropriately dissolved or dispersed and the top coat film 30 can be formed without substantially corroding the resist film 20.
  • the nonvolatile component concentration of the top coat film-forming resin composition is, for example, 0.001 to 10% by weight, preferably 0.01 to 7% by weight, and more preferably 0.1 to 5% by weight. It is preferable to adjust the amount of the solvent used so that the nonvolatile component concentration of the resin composition for forming a top coat film falls within this range.
  • the concentration of non-volatile components may be adjusted as appropriate based on the thickness of the top coat film 30 to be formed and the film formation conditions (rotation speed in the case of spin coating, etc.).
  • the resin composition for forming a top coat film may or may not contain one or more optional components for performance adjustment.
  • optional components include surfactants, antioxidants, antifoaming agents, and the like.
  • the resin composition for forming the top coat film is usually non-photosensitive.
  • the top coat film-forming resin composition usually does not substantially contain a photoacid generator, and a fine pattern cannot be formed by exposure using only the top coat film resin composition.
  • active light preferably EUV light
  • the exposure process is usually performed by irradiating actinic light 60 through a photomask 50.
  • the exposure amount may be appropriately set depending on the sensitivity of the resist film 20. Other details regarding the exposure process may be the same as those described in the first embodiment.
  • the usable developer is as described in the first embodiment.
  • the top coat film 30 may be removed together with a part of the resist film 20 in the development process, or by performing an additional process of removing the top coat film 30 between the exposure process and the development process. It's okay.
  • the resin included in the top coat film 30 has an alkali-soluble group
  • the top coat film 30 can be removed together with a portion of the resist film 20 in the development step.
  • a specific method is to remove the top coat film using a solvent that dissolves the top coat film 30 but does not substantially dissolve the resist film 20.
  • a method of dissolving and removing 30 is mentioned. Examples of the solvent used in such a method include the above-mentioned solvents (preferably alcoholic solvents) that can be contained in the top coat film-forming resin composition.
  • the substrate 1 can be selectively processed. Furthermore, electronic devices can be manufactured by applying various known processes for manufacturing electronic devices to the substrate processed in this manner.
  • the second embodiment has been described in detail from the viewpoint of the electronic device manufacturing method.
  • the second embodiment can also be viewed as a new technology regarding "laminates.” That is, the second embodiment can also be expressed as follows.
  • a laminate comprising a substrate, a resist film, and a top coat film in this order, At least a portion of the top coat film contains one or more sensitizing elements selected from the group consisting of metal elements, metalloid elements, and iodine,
  • C R ' concentration of the sensitizing element on the surface of the top coat film on the resist film side
  • C O concentration of the sensitizing element on the surface of the top coat film opposite to the resist film
  • ⁇ Third embodiment> In the above, as the first embodiment, a mode in which the sensitizing element is unevenly distributed on the resist film side of the resist underlayer film has been described. Furthermore, as the second embodiment, an aspect has been described in which the sensitizing element is unevenly distributed on the resist film side of the top coat film. In order to further enhance the sensitizing effect, as shown in FIG. It is preferable to form a laminate "sandwiched" with the top coat film 30. Then, it is preferable to subject this laminate to exposure and development using EUV light (third embodiment).
  • the resist underlayer film in the third embodiment can be the same as those in the first embodiment.
  • Specific aspects regarding the top coat film in the third embodiment can be the same as those in the second embodiment.
  • Specific aspects regarding the resist film in the third embodiment can be the same as those in the first and second embodiments.
  • the thickness of the resist film may be 50 nm or less, preferably 1 to 40 nm, more preferably 10 to 30 nm, particularly preferably 15 to 30 nm.
  • the film thickness of each resin film is a value measured using an ellipsometer manufactured by HORIBA, unless otherwise specified.
  • the reaction solution finally obtained was a homogeneous solution.
  • 20 g of propylene glycol monomethyl ether acetate (PGMEA) was added to the reaction vessel, and the mixture was treated with an evaporator at 50°C.
  • 20 g of a homogeneous solution (resin solution 1) was obtained.
  • the weight average molecular weight Mw of the resin in the resin solution obtained by GPC measurement was 6,500.
  • the solid content concentration of this resin solution was 22% by mass.
  • HFA-Si is a compound represented by the following chemical formula. This compound itself is known. This time, HFA-Si was prepared with reference to the description in International Publication No. 2019/167770.
  • Preparation of resin composition for forming resist underlayer film> (Preparation of resin composition for resist underlayer film formation Part 1) PGMEA was added to each of the resin solutions 1, 2, and 3, and the solid content concentration was adjusted to 1% by mass. The obtained resin solutions were designated as Resin Compositions 1 to 3 for forming a resist underlayer film, respectively. Further, PGMEA was added to each of the resin solutions 1, 2, and 3 to adjust the solid content concentration to 2% by mass. The obtained resin solutions were designated as resist underlayer film forming resin compositions 4 to 6, respectively.
  • the above resin composition 3 for forming a lower layer film was filtered through a filter with a pore size of 0.22 ⁇ m, and spin coated at a rotation speed of 4000 rpm onto a silicon wafer having a diameter of 4 inches and a thickness of 525 ⁇ m manufactured by SUMCO Co., Ltd., respectively. Thereafter, the silicon wafer was heated on a hot plate at 230° C. for 3 minutes. In this way, a pre-underlayer film 3 with a thickness of 10 nm was formed on the silicon wafer.
  • the resin composition 1 for forming a lower layer film was filtered through a filter with a pore size of 0.22 ⁇ m, and spin coated on the pre-lower film 3 at a rotation speed of 4000 rpm. Thereafter, it was heated on a hot plate at 230°C for 3 minutes. In this way, the lower layer film 1 with a thickness of 10 nm was laminated on the pre-lower layer film 3.
  • the pre-lower layer film 3 and the lower layer film 1 will be collectively referred to as the sensitizing element unevenly distributed lower layer film 1.
  • the lower layer film 2 with a thickness of 10 nm was laminated on the pre-lower layer film 3 in the same manner as described above except that the lower layer film forming resin composition 2 was used instead of the lower layer film forming resin composition 1.
  • the pre-lower layer film 3 and the lower layer film 2 will be collectively referred to as the sensitizing element unevenly distributed lower layer film 2.
  • the resin composition 7 for forming a lower layer film was filtered through a filter with a pore size of 0.22 ⁇ m, and spin-coated at a rotation speed of 3000 rpm onto a silicon wafer having a diameter of 4 inches and a thickness of 525 ⁇ m manufactured by SUMCO Corporation. Thereafter, the silicon wafer was heated at 230° C. for 3 minutes using a hot plate. In this way, a lower layer film 7 with a thickness of 20 nm was formed on the silicon wafer. Further, a lower layer film 8 having a thickness of 20 nm was formed on a silicon wafer in the same manner as above except that the lower layer film forming resin composition 8 was used instead of the lower layer film forming resin composition 7.
  • a positive electron beam resist composition ZEP-520A manufactured by Nippon Zeon Co., Ltd. was filtered through a filter with a pore size of 0.22 ⁇ m, and applied by rotation onto the unevenly distributed metal lower films 1 and 2 and the lower films 7 and 8 formed above, respectively.
  • Spin coating was performed at several 2000 rpm. Thereafter, it was heated on a hot plate at 150° C. for 1 minute. In this way, resist layers each having a thickness of 20 nm were laminated on the unevenly distributed metal lower films 1 and 2 and the lower films 7 and 8.
  • laminated films (lower layer film+resist) 1 to 4 were formed.
  • the compositions of laminated films (lower layer film + resist) 1 to 4 are summarized in the table below.
  • the sensitizing element is unevenly distributed on the side of the resist lower layer film that is in contact with the resist film. As a result, more secondary electrons generated from the sensitizing elements in the resist underlayer film during EUV exposure can move to the resist film without being deactivated in the resist underlayer film. As a result, sensitivity in EUV lithography can be further improved. Further, by adopting the configurations as in Examples 1 and 2, the total amount of sensitizing elements in the resist underlayer film can be suppressed.
  • sensitizing elements are foreign substances that may contaminate semiconductor wafers, it is desirable to be able to reduce the amount of sensitizing elements used. Furthermore, since the sensitizing element is a "foreign substance" that deteriorates the stability over time in a typical resin composition for forming a resist underlayer film, Examples 1 and 2, which can use a smaller amount of the sensitizing element, are preferable examples. I can say it.
  • a positive electron beam resist composition ZEP-520A manufactured by Nippon Zeon Co., Ltd. was filtered through a filter with a pore size of 0.22 ⁇ m, and each was placed on a silicon wafer manufactured by SUMCO Co., Ltd. with a diameter of 4 inches and a thickness of 525 ⁇ m at a rotation speed of 2000 rpm. Spin coated. Thereafter, the silicon wafer was placed on a hot plate and heated at 150° C. for 1 minute. In this way, a resist layer with a thickness of 20 nm was formed on the silicon wafer.
  • Topcoat film-forming resin composition 9 was filtered through a filter with a pore size of 0.22 ⁇ m, and spin coated at a rotation speed of 4000 rpm onto the resist layer provided above. Thereafter, the silicon wafer was placed on a hot plate and heated at 100° C. for 3 minutes. In this way, a pre-top coat film 9 with a thickness of 10 nm was formed on the resist film. Subsequently, the top coat film-forming resin composition 10 was filtered through a filter with a pore size of 0.22 ⁇ m, and spin coated on the pre-top coat film 9 at a rotation speed of 4000 rpm.
  • a top coat film 10 having a thickness of 10 nm was further laminated on the pre-top coat film 9.
  • the laminated film obtained as described above is referred to as a laminated film (resist+top coat film) 1.
  • Topcoat film-forming resin composition 13 was filtered through a filter with a pore size of 0.22 ⁇ m, and spin coated on the resist layer at a rotation speed of 4000 rpm. Thereafter, the silicon wafer was placed on a hot plate and heated at 100° C. for 3 minutes. In this way, a top coat film 13 with a thickness of 20 nm was laminated on the resist film.
  • the laminated film obtained as described above is referred to as a laminated film (resist+top coat film) 2.
  • compositions of laminated films (resist + top coat film) 1 and 2 are summarized in the table below.
  • the sensitizing element is unevenly distributed on the side of the top coat film that is in contact with the resist film. As a result, more secondary electrons generated from the sensitizing elements in the top coat film during EUV exposure can move to the resist film without being deactivated in the top coat film. As a result, sensitivity in EUV lithography can be further improved. Further, by employing the configuration as in Example 3, the total amount of sensitizing elements in the top coat film can be suppressed. Since many of the sensitizing elements are foreign substances that may contaminate semiconductor wafers, it is desirable to be able to reduce the amount of sensitizing elements used.
  • Example 3 can be said to be a preferable example since the amount of the sensitizing element used can be reduced.
  • the above resin composition 10 for forming a top coat film was filtered through a filter with a pore size of 0.22 ⁇ m, and spin coated onto the pre-top coat film 9 at a rotation speed of 4000 rpm. Thereafter, the silicon wafer was placed on a hot plate and heated at 100° C. for 3 minutes. In this way, a top coat film 10 having a thickness of 10 nm was further laminated on the pre-top coat film 9. As described above, a laminated film (lower layer film+resist+top coat film) 1 was formed (Example 4).
  • Example 4 the sensitizing element is unevenly distributed on both the surface of the resist underlayer film that is in contact with the resist film and the surface of the top coat film that is in contact with the resist film. As a result, secondary electrons generated from the sensitizing element during EUV exposure move to the resist film from "both the upper side and the lower side" of the resist film. As a result, sensitivity in EUV lithography can be further improved.
  • sensitizing elements are unevenly distributed when formed into a resin film.
  • the sensitizing element was unevenly distributed in the film formed using the above resin composition for forming a simulated top coat film. Specifically, a film of a resin composition for forming a simulated top coat film was formed on a Si substrate, and the density of the film was measured by X-ray reflectance measurement.
  • Resin compositions 1B to 4B for forming a simulated topcoat film were filtered through a filter with a pore size of 0.22 ⁇ m, and spun at a rotation speed of 1000 rpm onto a silicon wafer (silicon wafer manufactured by SUMCO Corporation with a diameter of 4 inches and a thickness of 525 ⁇ m). I coated it. Thereafter, the silicon wafer was placed on a hot plate and heated at 100° C. for 3 minutes. In this way, resin films 1b to 4b with a thickness of 50 nm, which were likened to top coat films, were formed on the silicon wafer. Then, the density of the resin films 1b to 4b was measured using an X-ray reflectance measuring device Smartlab manufactured by Rigaku Corporation.
  • the results of the X-ray reflectance measurements are shown in the table below. As shown in the table below, it was confirmed that in the resin films 1b to 3b, the density in the upper layer part of the film was relatively low, and the density in the lower layer part of the film was relatively high. A relatively high density indicates that a large amount of germanium, which is a sensitizing element, is present. In other words, in the resin films 1b to 3b, a large amount of sensitizing elements are distributed under the top coat film adjacent to the resist film, and it is thought that secondary electrons can be efficiently delivered to the resist film. .
  • germanium was unevenly distributed in the resin films 1b to 3b is that when preparing the resin solutions 1B to 3B, first only HFA-Si was heated in the reaction container, and then TEOG was added to the container and heated. This is presumably because a resin solution in which the above-mentioned (I) and (II) were dissolved in a solvent was obtained ((I) was unevenly distributed in the upper part of the membrane, and (II) was unevenly distributed in the lower part of the membrane).
  • a positive electron beam resist composition ZEP-520A manufactured by Nippon Zeon Co., Ltd. was filtered through a filter with a pore size of 0.22 ⁇ m. This composition was spin-coated at a rotation speed of 2000 rpm onto a silicon wafer having a diameter of 4 inches and a thickness of 525 ⁇ m manufactured by SUMCO Corporation. Thereafter, the silicon wafer was heated at 150° C. for 1 minute on a hot plate. In this way, resist film 1 was produced.
  • top coat films 1b', 2b' and 3b' germanium, which is a sensitizing element, is relatively abundant in the lower part of the film. It can be said that
  • Electron beam (EB) exposure test The laminated film was irradiated with an electron beam using Elionix ELS-G100-SP (100 keV). Specifically, exposure was performed while changing the electron beam irradiation amount from 5 ⁇ C/cm 2 to 250 ⁇ C/cm 2 in steps of 5 ⁇ C/cm 2 and changing the electron beam irradiation position.
  • the laminated film irradiated with the electron beam was immersed in butyl acetate for 30 seconds and developed. After development, the thickness of the laminated film at the portion corresponding to the electron beam irradiation location was measured using Dektak-XT-A manufactured by Bruker. Then, the electron beam irradiation amount at which the film thickness became zero was defined as the required irradiation amount E th . It can be said that the smaller E th is, the higher the sensitivity is.
  • a sensitizing element is included in the top coat film 4b', so the sensitivity is higher than that in the comparative example.
  • the sensitizing element is not unevenly distributed under the top coat film, the degree of sensitivity enhancement is small compared to the example.
  • the distribution of sensitizing elements in the entire top coat film differs between the top coat film 2b' and the top coat film 3b'. It can be said that the methods are different. This may be reflected in the sensitivity shown in Table 4. In other words, although the uneven distribution of the sensitizing element below the top coat film is a dominant factor in increasing the sensitivity, other factors may also be related to the sensitivity.
  • the absolute amount of Ge in the top coat film 1b' was large in the first place, and the effect of Ge being unevenly distributed in the lower part combined to achieve the highest sensitivity. It is thought that he did. To be clear, the above discussion is not meant to limit the present invention.
  • Substrate 10 Resist underlayer film 20 Resist film 30 Top coat film 50 Photomask 60 Actinic light (preferably EUV light) 20B pattern

Abstract

基板上に、レジスト膜およびトップコート膜をこの順に設けて積層体を得る積層工程と、積層体におけるトップコート膜の側から活性光線を照射する露光工程と、現像液を用いて少なくともレジスト膜の一部を除去する現像工程と、を含む電子デバイス製造方法。ここで、トップコート膜の少なくとも一部は、金属元素、半金属元素およびヨウ素からなる群より選ばれる1以上の増感元素を含み、トップコート膜のレジスト膜側の面における増感元素の濃度をC'とし、トップコート膜のレジスト膜とは反対側の面における増感元素の濃度をCとしたとき、C'>Cである。

Description

電子デバイス製造方法および積層体
 本発明は、電子デバイス製造方法および積層体に関する。より具体的には、EUVリソグラフィー技術を利用した電子デバイス製造方法、および、その電子デバイス製造方法に好ましく適用される積層体に関する。
 半導体リソグラフィーの分野においては、EUV光(極紫外線)を露光光源として用いるEUVリソグラフィーに関する開発が継続されている。
 EUVリソグラフィーにおける基本的課題として、感度の向上が挙げられる。これは、2022年時点においてEUV光源の出力がいまだ小さいことに起因する。
 EUV光源の出力の小ささを補うために、フォトレジストやフォトレジスト周辺材料を改良することで感度を向上させることが考えられる。
 例えば、特許文献1は、EUVリソグラフィーにおける感度向上のため、レジスト層の上に金属含有トップコートを形成するアイデアを開示している。ただし、特許文献1に記載されたアイデアは具体的な実施例(実際のトップコート組成物の調製など)を伴っていない。
特表2021-508071号公報
 上述のEUVリソグラフィーにおける基本的課題を踏まえ、EUVリソグラフィーにおける感度の向上を目的として、本発明者らは検討を行った。
 本発明者らは、検討の結果、以下に提供される発明を完成させた。
 本発明は、以下である。
1.
 基板上に、レジスト下層膜およびレジスト膜をこの順に設けて積層体を得る積層工程と、
 前記積層体における前記レジスト膜の側から活性光線を照射する露光工程と、
 現像液を用いて少なくとも前記レジスト膜の一部を除去する現像工程と、
を含む電子デバイス製造方法であって、
 前記レジスト下層膜の少なくとも一部は、金属元素、半金属元素およびヨウ素からなる群より選ばれる1以上の増感元素を含み、
 前記レジスト下層膜の前記基板側の面における前記増感元素の濃度をCとし、前記レジスト下層膜の前記レジスト膜側の面における前記増感元素の濃度をCとしたとき、C>Cである、電子デバイス製造方法。
2.
 1.に記載の電子デバイス製造方法であって、
 前記増感元素は、Ge、Mo、Hf、Zr、Ta、W、Cr、Co、Fe、Pt、SnおよびSbからなる群より選ばれる1以上を含む、電子デバイス製造方法。
3.
 1.または2.に記載の電子デバイス製造方法であって、
 前記増感元素は、Ge、Mo、およびWからなる群より選ばれる1以上を含む、電子デバイス製造方法。
4.
 1.~3.のいずれか1つに記載の電子デバイス製造方法であって、
 Cは1~20at%である、電子デバイス製造方法。
5.
 1.~4.のいずれか1つに記載の電子デバイス製造方法であって、
 Cは0~10at%である、電子デバイス製造方法。
6.
 1.~5.のいずれか1つに記載の電子デバイス製造方法であって、
 前記レジスト下層膜は、前記増感元素を有する樹脂を含む、電子デバイス製造方法。
7.
 1.~5.のいずれか1つに記載の電子デバイス製造方法であって、
 前記レジスト下層膜は、樹脂と、前記樹脂とは別成分として前記増感元素を有する添加成分と、を含む、電子デバイス製造方法。
8.
 1.~7.のいずれか1つに記載の電子デバイス製造方法であって、
 前記活性光線がEUV光である、電子デバイス製造方法。
9.
 基板上に、レジスト膜およびトップコート膜をこの順に設けて積層体を得る積層工程と、
 前記積層体における前記トップコート膜の側から活性光線を照射する露光工程と、
 現像液を用いて少なくとも前記レジスト膜の一部を除去する現像工程と、
を含む電子デバイス製造方法であって、
 前記トップコート膜の少なくとも一部は、金属元素、半金属元素およびヨウ素からなる群より選ばれる1以上の増感元素を含み、
 前記トップコート膜の前記レジスト膜側の面における前記増感元素の濃度をC'とし、前記トップコート膜の前記レジスト膜とは反対側の面における前記増感元素の濃度をCとしたとき、C'>Cである、電子デバイス製造方法。
10.
 9.に記載の電子デバイス製造方法であって、
 前記増感元素は、Ge、Mo、Hf、Zr、Ta、W、Cr、Co、Fe、Pt、SnおよびSbからなる群より選ばれる1以上を含む、電子デバイス製造方法。
11.
 9.または10.に記載の電子デバイス製造方法であって、
 前記増感元素は、Ge、MoおよびWからなる群より選ばれる1以上を含む、電子デバイス製造方法。
12.
 9.~11.のいずれか1つに記載の電子デバイス製造方法であって、
 C'は1~20at%である、電子デバイス製造方法。
13.
 9.~12.のいずれか1つに記載の電子デバイス製造方法であって、
 Cは0~10at%である、電子デバイス製造方法。
14.
 9.~13.のいずれか1つに記載の電子デバイス製造方法であって、
 前記トップコート膜は、前記増感元素を有する樹脂を含む、電子デバイス製造方法。
15.
 9.~13.のいずれか1つに記載の電子デバイス製造方法であって、
 前記トップコート膜は、樹脂と、前記樹脂とは別成分として前記増感元素を有する添加成分と、を含む、電子デバイス製造方法。
16.
 9.~15.のいずれか1つに記載の電子デバイス製造方法であって、
 前記活性光線がEUV光である、電子デバイス製造方法。
17.
 基板と、レジスト下層膜と、レジスト膜と、をこの順に備える積層体であって、
 前記レジスト下層膜の少なくとも一部は、金属元素、半金属元素およびヨウ素からなる群より選ばれる1以上の増感元素を含み、
 前記レジスト下層膜の前記基板側の面における前記増感元素の濃度をCとし、前記レジスト下層膜の前記レジスト膜側の面における前記増感元素の濃度をCとしたとき、C>Cである、積層体。
18.
 17.に記載の積層体であって、
 前記増感元素は、Ge、Mo、Hf、Zr、Ta、W、Cr、Co、Fe、Pt、SnおよびSbからなる群より選ばれる1以上を含む、積層体。
19.
 17.または18.に記載の積層体であって、
 前記増感元素は、Ge、Mo、およびWからなる群より選ばれる1以上を含む、積層体。
20.
 17.~19.のいずれか1つに記載の積層体であって、
 Cは1~20at%である、積層体。
21.
 17.~20.のいずれか1つに記載の積層体であって、
 Cは0~10at%である、積層体。
22.
 17.~21.のいずれか1つに記載の積層体であって、
 前記レジスト下層膜は、前記増感元素を有する樹脂を含む、積層体。
23.
 17.~21.のいずれか1つに記載の積層体であって、
 前記レジスト下層膜は、樹脂と、前記樹脂とは別成分として前記増感元素を有する添加成分と、を含む、積層体。
24.
 基板と、レジスト膜と、トップコート膜と、をこの順に備える積層体であって、
 前記トップコート膜の少なくとも一部は、金属元素、半金属元素およびヨウ素からなる群より選ばれる1以上の増感元素を含み、
 前記トップコート膜の前記レジスト膜側の面における前記増感元素の濃度をC'とし、前記トップコート膜の前記レジスト膜とは反対側の面における前記増感元素の濃度をCとしたとき、C'>Cである、積層体。
25.
 24.に記載の積層体であって、
 前記増感元素は、Ge、Mo、Hf、Zr、Ta、W、Cr、Co、Fe、Pt、SnおよびSbからなる群より選ばれる1以上を含む、積層体。
26.
 24.または25.に記載の積層体であって、
 前記増感元素は、Ge、MoおよびWからなる群より選ばれる1以上を含む、積層体。
27.
 24.~26.のいずれか1つに記載の積層体であって、
 C'は1~20at%である、積層体。
28.
 24.~27.のいずれか1つに記載の積層体であって、
 Cは0~10at%である、積層体。
29.
 24.~28.のいずれか1つに記載の積層体であって、
 前記トップコート膜は、前記増感元素を有する樹脂を含む、積層体。
30.
 24.~28.のいずれか1つに記載の積層体であって、
 前記トップコート膜は、樹脂と、前記樹脂とは別成分として前記増感元素を有する添加成分と、を含む、積層体。
 本発明によれば、EUVリソグラフィーにおける感度の向上を図ることができる。
第1実施形態における積層工程について説明するための図である。 第1実施形態における露光工程について説明するための図である。 第1実施形態における現像工程について説明するための図である。 第2実施形態における積層工程について説明するための図である。 第2実施形態における露光工程について説明するための図である。 第2実施形態における現像工程について説明するための図である。 第3実施形態について説明するための図である。
 以下、本発明の実施形態について、図面を参照しつつ、詳細に説明する。
 すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
 煩雑さを避けるため、(i)同一図面内に同一の構成要素が複数ある場合には、その1つのみに符号を付し、全てには符号を付さない場合や、(ii)特に図2以降において、図1と同様の構成要素に改めては符号を付さない場合がある。
 すべての図面はあくまで説明用のものである。図面中の各部材の形状や寸法比などは、必ずしも現実の物品と対応しない。
 本明細書において、「at%」は、原子%、すなわち原子の個数基準での百分率を表す。
 本明細書中、数値範囲の説明における「X~Y」との表記は、特に断らない限り、X以上Y以下のことを表す。例えば、「1~5質量%」とは「1質量%以上5質量%以下」を意味する。
 本明細書における基(原子団)の表記において、置換か無置換かを記していない表記は、置換基を有しないものと置換基を有するものの両方を包含するものである。例えば「アルキル基」とは、置換基を有しないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含するものである。
 本明細書における「(メタ)アクリル」との表記は、アクリルとメタクリルの両方を包含する概念を表す。「(メタ)アクリレート」等の類似の表記についても同様である。
 本明細書における「有機基」の語は、特に断りが無い限り、有機化合物から1つ以上の水素原子を除いた原子団のことを意味する。例えば、「1価の有機基」とは、任意の有機化合物から1つの水素原子を除いた原子団のことを表す。
 本明細書において、「固形分」と「不揮発成分」は、特に断らない限り、基本的に同義である。これらの語句は、ともに、組成物または溶液から揮発性成分(典型的には溶剤)を揮発させた後に残る成分のことを表す。
 本明細書における「電子デバイス」の語は、半導体チップ、半導体素子、プリント配線基板、電気回路ディスプレイ装置、情報通信端末、発光ダイオード、物理電池、化学電池など、電子工学の技術が適用された素子、デバイス、最終製品等を包含する意味で用いられる。
<電子デバイス製造方法(第1実施形態)>
 第1実施形態の電子デバイス製造方法は、
 基板上に、レジスト下層膜およびレジスト膜をこの順に設けて積層体を得る積層工程と、
 積層体におけるレジスト膜の側から活性光線を照射する露光工程と、
 現像液を用いて少なくともレジスト膜の一部を除去する現像工程と、
を含む。
 レジスト下層膜の少なくとも一部は、金属元素、半金属元素およびヨウ素からなる群より選ばれる1以上の増感元素を含む。
 レジスト下層膜の、基板側の面における増感元素の濃度をCとし、レジスト下層膜のレジスト膜側の面における増感元素の濃度をCとしたとき、C>Cである。
 EUVリソグラフィーにおいて一般的に受け入れられているメカニズムによれば、EUVリソグラフィーでは、EUV光そのものではなく、EUV光が元素に当たることにより発生する二次電子が、レジスト膜中の光活性成分(光酸発生剤など)を活性化する。
 積層工程で得られた積層体に、レジスト膜の側から活性光線(好ましくはEUV光)を照射することで、レジスト膜自体から二次電子が発生するだけでなく、レジスト下層膜からも二次電子が発生する。特に、レジスト下層膜は増感元素を含むため、レジスト下層膜からは多くの二次電子が発生すると考えられる。レジスト下層膜で発生した二次電子がレジスト膜に移動することで、レジスト膜中の光活性成分が一層活性化され、EUVリソグラフィーにおける感度の向上が図られうる。
 しかし、過去の知見によれば、レジスト下層膜やレジスト膜中での二次電子の移動距離は、最大で20nm程度と考えられている。よって、例えばレジスト下層膜が厚いときには、レジスト下層膜が増感元素を含んでいたとしても、その増感元素から発生した二次電子がレジスト膜まで十分に移動できず、十分な感度向上効果が得られない可能性がある。
 そこで、本発明者らは、「レジスト下層膜のレジスト膜に近い部分に、増感元素を偏在させる」ことにした。このようにすることで、レジスト下層膜中の増感元素から発生した二次電子が、レジスト下層膜中で失活せずにレジスト膜により多く移動できるようになる。この結果、EUVリソグラフィーにおける感度の一層の向上が図られうる。
 ちなみに、「レジスト下層膜のレジスト膜に近い部分に、増感元素を偏在させる」ようにレジスト下層膜を設計することで、レジスト下層膜中のトータルの増感元素の量を抑えることができる。つまり、増感元素の「使用量」を少なくすることができる。増感元素の多くは、半導体ウェハーを汚染する可能性がある異物であるため、増感元素の使用量を少なくできることは好ましい。
 また、増感元素は通常のレジスト下層膜形成用樹脂組成物にとっては、経時安定性を悪化させる「異物」である場合も多い。この点でも、増感元素の使用量を少なくできることは好ましい。
 増感効果を確実に得る観点、および、他の性能とのバランスの観点から、Cは好ましくは1~20at%、より好ましくは3~17at%、さらに好ましくは5~15at%である。
 増感元素を用いることによるデメリットを低減する観点から、Cは好ましくは0~10at%、より好ましくは0~9at%、さらに好ましくは0~8at%である。
 また、偏在の程度の定量的な尺度として、C/Cという指標を考えることができる。この指標の値は、好ましくは0~10、より好ましくは0~3、さらに好ましくは0~1.6である。
 ちなみに、CとCの大小関係、Cの値、Cの値などは、例えば以下のいずれかの方法により知ることができる。
(1)レジスト下層膜を設けるための組成物(レジスト下層膜形成用樹脂組成物)を構成する素材に含まれる増感元素の量から見積もる。
(2)X線光電子分光法において知られている「深さ方向分析」の技術を利用する。
(3)まず、樹脂フィルム(好ましくは易剥離加工が施されたもの)の表面にレジスト下層膜のみを形成し、形成されたレジスト下層膜の露出面の増感元素の量を測定することでCを求める。その後、レジスト下層膜の露出面に、レジスト下層膜と接着可能な基材を密着させ、そして樹脂フィルムを剥がすことで、レジスト下層膜の「反対側の面」を露出させる。この「反対側の面」の増感元素の量を測定することでCを求める。CおよびCについては、X線光電子分光分析法により、発生する光電子のエネルギーを分析することを通じて定量することができる。
(4)X線反射率測定に基づき、膜の上部の密度および下部の密度を測定する。例えば、膜が増感元素としてゲルマニウムを含み、そのゲルマニウムが膜の上部または下部に偏在する場合には、膜の上部の密度と膜の下部の密度が異なる値として測定される(ゲルマニウムは比較的重い元素であるため)。つまり、膜の上部と下部の密度差から、CとCの大小関係を知ることができる。
 上記(4)について補足しておくと、X線反射率測定により求められる、膜の上部と下部の密度差は、好ましくは0.1~1.0g/cm、より好ましくは0.2~0.9g/cm、さらに好ましくは0.3~0.8g/cmである。この程度の密度差があると、増感元素が膜中で十分に偏在していると考えることができる。
 以下、第1実施形態の各工程について、図面を参照しつつより具体的に説明する。
(積層工程(図1))
 積層工程では、図1に示すように、基板1の上(基板1の一方の面上)に、レジスト下層膜10およびレジスト膜20をこの順に設ける。
 レジスト下層膜10の少なくとも一部は、金属元素、半金属元素およびヨウ素からなる群より選ばれる1以上の増感元素を含む。ここで、レジスト下層膜10の基板1側の面における増感元素の濃度をCとし、レジスト下層膜10のレジスト膜20側の面における増感元素の濃度をCとしたとき、C>Cである。
 C>Cであるレジスト下層膜10を設ける方法としては、例えば以下(i)および(ii)を挙げることができる。
(i)多層塗布
 まず、増感元素の量が比較的少ないか、または増感元素を含まないレジスト下層膜形成用樹脂組成物を、基板1上(基板1の少なくとも片面)に塗布して、第1レジスト下層膜を形成する。その後、その第1レジスト下層膜の上に、増感元素を比較的多く含むレジスト下層膜形成用樹脂組成物を塗布して、第2レジスト下層膜を形成する。これら、第1レジスト下層膜と第2レジスト下層膜の2層をあわせて、レジスト下層膜10とする。
(ii)偏在性物質の使用
 増感元素を有し、かつ、膜形成時に膜の表面に偏在する性質を有する物質を含むレジスト下層膜形成用樹脂組成物を用いて、レジスト下層膜10を形成する。
 例えばArF液浸リソグラフィーにおいては、レジスト膜の上面を撥水的とするために、フォトレジスト組成物中に撥水性のポリマーを添加する技術が知られている。撥水性のポリマーの構造や物性を適切に選択することで、レジスト膜形成時に撥水性のポリマーを膜表面に偏在させることができる。
 例えば特開2006-309245号公報には、ケイ素および/またはフッ素を含む物質は、フォトレジスト中の樹脂と実質的に非混和であり、このような物質を含むフォトレジスト組成物を基板上に塗布すると、その物質が表面に偏在したフォトレジスト膜が形成される旨が記載されている。また、同文献には、フォトレジスト組成物中の樹脂よりも、低い表面エネルギーおよび/または小さな流体力学的体積を有する物質は、フォトレジスト膜を形成する際に膜表面に偏在する傾向がある旨が記載されている。ちなみに、特開2006-309245号の対応米国公報の番号はUS2006/0246373Aである。
 また、ArF液浸リソグラフィー以外の分野においても、樹脂組成物を基板上に塗布して膜形成する際に、特定の成分が膜表面に偏在する材料は、「傾斜機能材料」として知られている。傾斜機能材料については、例えば文献「塗料の研究 No.143」(関西ペイント株式会社発行、2005年4月)で言及されている。
 これら、EUVリソグラフィーとは異なる技術分野における知見を利用することにより、上記(i)のように2回以上の塗布を行わずとも、C>Cであるレジスト下層膜10を形成することができる。具体的には、(A)増感元素の量が比較的少ないか、または増感元素を含まないポリマーと、(B)比較的多量の増感元素を含む偏在性成分(低分子であってもポリマーであってもよい)とを含むレジスト下層膜形成用樹脂組成物を調製し、この組成物を基板1上に塗布することで、C>Cであるレジスト下層膜10を設けることができる。ここで、(B)は、一例としてケイ素および/またはフッ素を比較的多く含む。また、別の例として、(B)は、(A)よりも低い表面エネルギーおよび/または小さな流体力学的体積を有する。
 EUV光の吸収効率および二次電子の放出効率の点で、増感元素は、Ge、Mo、W、Hf、Zr、Ta、Cr、Co、Fe、Pt、SnおよびSbからなる群より選ばれる1以上を含むことが好ましい。特に、感度向上効果、素材の入手容易性、基板からの除去のしやすさ(ドライエッチングによる除去性)などを考慮すると、増感元素は、Ge、MoおよびWからなる群より選ばれる1以上を含むことがより好ましい。
 レジスト膜20は、金属元素、半金属元素およびヨウ素からなる群より選ばれる1以上の増感元素を、含んでもよいし、実質上含まなくてもよい。「実質上含まない」とは、レジスト膜20中の増感元素の量が、例えば0~0.9at%、具体的には0~0.5at%、より具体的には0~0.2at%であることを意味する。
 第1実施形態においては、二次電子がレジスト下層膜10からレジスト膜20に移動することによる感度向上が期待できる。よって、レジスト膜20が増感元素を含まなくても、十分な感度向上効果が得られると考えられる。別の言い方として、第1実施形態においては、レジスト組成物そのものを改良せずに既存のレジスト組成物を用いたとしても、感度向上を期待できる。
 念のため述べておくと、第1実施形態において、レジスト膜20が、金属元素、半金属元素およびヨウ素からなる群より選ばれる1以上の増感元素を含むことは、排除されない。
 各膜の形成は、通常、スピンコート法により、各膜を形成するための液状の組成物(溶剤含有)を逐次的に基板上に塗布することで行う。具体的には、基板1の上に適量の液状の組成物(溶剤含有)を提供し、次に基板1を回転させて液状の組成物を基板1上に薄く広げる。その後、必要に応じて残存溶剤を乾燥させるための加熱(ベーク)を行ってもよい。ちなみに、レジスト下層膜を形成するための組成物が熱硬化性である場合には、レジスト下層膜を熱硬化させるための加熱を行ってもよい。
 加熱を行う場合は、加熱温度は50~250℃が好ましく、100℃~230℃がより好ましい。
 各層の厚みは、好ましくは以下のとおりである。
 レジスト下層膜10:好ましくは1~50nm、さらに好ましくは5~20nm
 レジスト膜20:好ましくは20nm以下、より好ましくは1~20nm、さらに好ましくは10~20nm、特に好ましくは15~20nm
 過去の知見によると、EUV光の照射により発生する二次電子の移動距離は、20nm程度と考えられている。よって、レジスト膜20の厚みが厚すぎないことにより、レジスト下層膜10で発生した二次電子が、レジスト膜20の内部にまで十分に到達できると考えられる。そしてその結果として、十二分な感度向上効果が得られたり、現像工程で得られるパターンの形状が良化したりすることが期待できる。
 以下、レジスト下層膜10を設けるための組成物(レジスト下層膜形成用樹脂組成物)が含むことができる成分、レジスト膜20、基板1などについてより具体的に説明する。
・レジスト下層膜10を設けるための組成物(レジスト下層膜形成用樹脂組成物)について
 レジスト下層膜形成用樹脂組成物は、増感元素を含む樹脂を含むことができる。これにより、レジスト下層膜10は、増感元素を有する樹脂を含むこととなる。
 樹脂が増感元素を有することで、レジスト下層膜10中で増感元素が比較的均一に分布しやすくなると考えられる。レジスト下層膜10中で増感元素が均一に分布することで、レジスト下層膜10のどの場所でも、EUV光の照射量に応じた量の二次電子を発生させることができ、増感の「ムラ」が抑えられるため、好ましい。
 増感元素を含む樹脂は、前述の多層塗布によりレジスト下層膜10を形成する場合には、第2レジスト下層膜を形成するための組成物に含まれていることが好ましい。
 また、前述の偏在性物質の使用によりレジスト下層膜10を形成する場合には、偏在性物質として増感元素を含む樹脂を用いることが好ましい。こうすることで、レジスト下層膜10における上部の増感元素の量が比較的多くなり、相対的に、レジスト下層膜10における下部の増感元素の量が比較的少なくなる。
 ちなみに、多層塗布によりレジスト下層膜10を形成する場合、第1レジスト下層膜を形成するための組成物は、例えば、増感元素を含まないかまたは増感元素を含むもののその量が少量であること以外は、ここで説明される増感元素を含む樹脂と同様の樹脂を含むことができる(具体的には、以下で説明されるポリシロキサン系樹脂において、一般式(1-A)で表される構成単位の含有率が、全構成単位中0~5mol%である樹脂など)。
 同様に、偏在性物質の使用によりレジスト下層膜10を形成する場合には、偏在性物質と併用して用いる樹脂として、増感元素を含まないかまたは少量であること以外はここで説明される増感元素を含む樹脂と同様の樹脂を用いることができる(例えば、以下で説明されるポリシロキサン系樹脂において、一般式(1-A)で表される構成単位の含有率が、全構成単位中0~5mol%である樹脂など)。
 増感元素を有する樹脂は、アルカリ可溶性基を有していてもよいし、有していなくてもよい。アルカリ可溶性基としては、例えば、カルボキシ基、フェノール性ヒドロキシ基、ヘキサフルオロイソプロパノール基(-C(CF-OH)を挙げることができる。
 合成容易性、溶剤溶解性、レジスト下層膜形成用樹脂組成物としての使いやすさなどから、増感元素を有する樹脂は、増感元素を有するポリシロキサン系樹脂を含むことが好ましい。より具体的には、増感元素を有する樹脂は、ポリシロキサンのSi原子の一部が増感元素に置き換わったポリシロキサン系樹脂を含むことが好ましい。
 ポリシロキサン系樹脂として好ましくは、以下一般式(1)で表される構成単位と、以下一般式(1-A)で表される構成単位と、を有する樹脂を挙げることができる。
   [(R(R(ORSiOg/2] (1)
   [(RMOc/2] (1-A)
 一般式(1)中、
 Rは、複数存在する場合はそれぞれ独立に、水素原子、ヒドロキシ基、ハロゲン原子、アルキル基、脂環式基、アリール基またはアルコキシ基、であり、
 Rは、複数存在する場合はそれぞれ独立に、水素原子、アルキル基、脂環式基またはアリール基であり、
 Rは、複数存在する場合はそれぞれ独立に、水素原子、アルキル基、脂環式基またはアリール基であり、
 dは1以上3以下の数であり、eは0以上2以下の数であり、fは0以上3未満の数であり、gは0超3以下の数であり、d+e+f+g=4である。
 一般式(1-A)中、
 Mは増感元素の少なくともいずれか、好ましくはGe、Mo、W、Hf、Zr、Ta、Cr、Co、Fe、Pt、SnおよびSbからなる群より選ばれる1以上、より好ましくはGe、MoおよびWからなる群より選ばれる1以上であり、
 Rは、複数存在する場合はそれぞれ独立に、水素原子、ヒドロキシ基、ハロゲン原子、アルキル基、脂環式基、アルコキシ基またはアリール基であり、
 bは0以上6未満の数であり、cは0超6以下の数であり、b+cは3~6である。
 以下、一般式(1)および一般式(1-A)についてより具体的に説明する。
 一般式(1)において、d、e、fおよびgは、理論値としては、dは1~3の整数、eは0~2の整数、fは0~3の整数、gは0~3の整数である。また、d+e+f+g=4は、理論値の合計が4であることを指すものとする。しかし、例えば、29Si NMR測定によって得られる値は、dは四捨五入して1以上3以下になる小数、eは四捨五入して0以上2以下になる小数、fは四捨五入して0以上2以下になる小数(ただし、f<3.0)、gは四捨五入して0以上3以下になる小数(ただし、g≠0)であってもよい。
 また、一般式(1)中のOg/2との表記は、シロキサン結合を有する化合物の表記として一般的に使用されるものである。以下の式(1-1)はgが1、式(1-2)はgが2、式(1-3)はgが3の場合を表すものである。gが1の場合は、シロキサン結合を有する化合物においてシロキサン鎖の末端に位置する。
 一般式(1-1)~(1-3)中、Rは一般式(1)中のRと同義であり、RおよびRはそれぞれ独立に、一般式(1)中のR、R、ORと同義である。破線は他のSi原子との結合手を表す。
Figure JPOXMLDOC01-appb-C000001
 一般式(1)のR、RおよびRのアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、ヘキシル基、オクチル基などが挙げられる。なかでも、メチル基およびエチル基が好ましい。
 アルキル基の炭素数は、例えば1~12、好ましくは1~10、より好ましくは1~6である。
 一般式(1)のR、RおよびRの脂環式基としては、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、ノルボルニル基、アダマンチル基などを挙げることができる。脂環式基は単環構造であっても多環構造であってもよい。
 脂環式基の炭素数は、例えば5~20、好ましくは5~16、より好ましくは5~10である。
 一般式(1)のR、RおよびRのアリール基としては、フェニル基、ナフチル基などを挙げることができる。アリール基の炭素数は、例えば5~20、好ましくは5~16、より好ましくは5~10である。
 一般式(1)のRのアルコキシ基としては、一般式-O-R'において、R'が上述のアルキル基である態様が挙げられる。
 一般式(1)のRのハロゲン原子としては、フッ素原子が好ましい。
 Rのアルキル基、アルコキシ基、脂環式基またはアリール基は、さらに置換基を有していてもよいし、有していなくてもよい。同様に、Rのアルキル基、脂環式基またはアリール基は、さらに置換基を有していてもよいし、有していなくてもよい。同様に、Rのアルキル基、脂環式基またはアリール基は、さらに置換基を有していてもよいし、有していなくてもよい。
 置換基は特に限定されないが、例えば、アルキル基、脂環式基、アリール基、ハロゲン原子が挙げられる。もちろんこれら以外の置換基であってもよい。また、置換基は以下で説明するアルカリ可溶性基であってもよい。
 好ましい置換基としてはハロゲン原子を挙げることができ、より好ましい置換基としてはフッ素原子を挙げることができる。例えば、上述のアルキル基はフッ化アルキル基であってもよい。
 一般式(1)のR、RおよびRが炭素含有基である場合、各原子団の総炭素数は、例えば1~20であり、好ましくは1~16であり、より好ましくは1~12である。
 リソグラフィープロセスへの適用性の観点から、増感元素を有する樹脂は、アルカリ可溶性基を有することが好ましい。
 上述の、一般式(1)で表される構成単位と一般式(1-A)で表される構成単位とを有する樹脂においては、R~Rの少なくともいずれかは、アルカリ可溶性基を含むことが好ましい。別の言い方として、R~Rの少なくともいずれかは、アルカリ可溶性基で置換されていることが好ましい。
 具体的には、少なくともRが、アルカリ可溶性基を含むことが好ましい。
 アルカリ可溶性基としては、例えば、カルボキシ基、フェノール性ヒドロキシ基、ヘキサフルオロイソプロパノール基(-C(CF-OH)を挙げることができる
 特に、Rは下記一般式(1a)で表される基を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000002
 一般式(1a)中、
 aは1~5の数であり、
 破線は結合手を表す。
 とりわけ、一般式(1a)で表される基は、下記一般式(1aa)~(1ad)で表される基の何れかであることが好ましい。一般式(1aa)~(1ad)中、Xおよび破線の定義は一般式(1a)におけるこれらの定義と同じである。
Figure JPOXMLDOC01-appb-C000003
 一般式(1-A)において、bおよびcは、理論値としては、bは0~6の整数、cは0~6の整数である。また、b+c=3~6とは、理論値の合計が3~6であることを指すものとする。しかし、例えば多核NMR測定によって得られる値は、b及びcはそれぞれ平均値として得られるため、平均値としてのbは四捨五入して0以上6以下になる小数(ただし、b<6.0)であってもよく、平均値としてのcは四捨五入して0以上6以下になる小数(ただし、c≠0)であってもよい。ちなみに、理論値c=0は構成単位がモノマーであることを示し、平均値c≠0は、化合物の全部がモノマーでないことを示す。
 一般式(1-A)のハロゲン原子、アルキル基、脂環式基、アルコキシ基およびアリール基の具体例としては、一般式(1)のRの具体例として挙げた基を挙げることができる。
 一般式(1-A)のMは、Siと同族であるGe、SnおよびPbが好ましいと考えられる。これらの中では特に、意図せず残ってしまった増感元素を、その後のフッ素系のエッチング工程で除去し易いという観点から、MはGeを含むことが好ましい。また、同様の観点から、Ge、MoおよびWからなる群より選ばれる1以上を含むことが特に好ましい。
 一般式(1-A)で表される構成単位に対応するモノマー(原料)としては、好ましくは、ゲルマニウムテトラメトキシド、ゲルマニウムテトラエトキシド、ゲルマニウムテトラプロポキシド、ゲルマニウムテトラブトキシド、ゲルマニウムテトラアミロキシド、ゲルマニウムテトラヘキシロキシド、ゲルマニウムテトラシクロペントキシド、ゲルマニウムテトラシクロヘキシロキシド、ゲルマニウムテトラアリロキシド、ゲルマニウムテトラフェノキシド、ゲルマニウム(モノ,ジ,又はトリ)メトキシ(モノ,ジ,又はトリ)エトキシド、ゲルマニウム(モノ,ジ,又はトリ)エトキシ(モノ,ジ,又はトリ)プロポキシド、モリブデンテトラエトキシド、タングステンテトラエトキシド、タングステンテトラフェノキシド、テトラクロロゲルマニウム、テトラブロモゲルマニウム、メチルトリクロロゲルマニウム、フェニルトリクロロゲルマニウムなどを挙げることができる。
 一般式(1)で表される構成単位と一般式(1-A)で表される構成単位とを有する樹脂は、さらに別の構成単位を含んでもよい。
 「別の構成単位」として、好ましくは、以下一般式(2)で表される構成単位や、以下一般式(3)で表される構成単位を挙げることができる。
   [(RSiOl/2] (2)
 一般式(2)中、
 Rは、複数存在する場合はそれぞれ独立に、ハロゲン原子、アルコキシ基またはヒドロキシ基であり、
 kは0以上4未満の数、lは0超4以下の数であり、k+l=4である。
 kは0以上3以下の数であることが好ましい。lは1以上4以下の数であることが好ましい。
 Rのハロゲン原子としては、フッ素原子が好ましい。
 Rのアルコキシ基としては、一般式-O-R'において、R'がメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、ヘキシル基、オクチル基などのアルキル基である態様が挙げられる。アルコキシ基の炭素数は、例えば1~12、好ましくは1~10、より好ましくは1~6である。
 一般式(2)で表される構成単位において、kおよびlは、理論値としては、kは0~4の整数、lは0~4の整数である。また、k+l=4は、理論値の合計が4であることを指すものとする。しかし、例えば、29Si NMR測定によって得られる値は、k及びlはそれぞれ平均値として得られる。よって、その平均値としてのkは四捨五入して0以上4以下になる小数(ただし、k<4.0)、lは四捨五入して0以上4以下になる小数(ただし、l≠0)であってもよい。
 一般式(2)中のOl/2について、l=4のときのOl/2は、以下の一般式(2-1)を表すものである。一般式(2-1)中、破線は他のSi原子との結合手を表す。
Figure JPOXMLDOC01-appb-C000004
 一般式(2)中のO4/2は、一般的にQ4ユニットと呼ばれ、Si原子の4つの結合手すべてがシロキサン結合を形成した構造を示す。上記ではQ4を記載したが、一般式(2)は、以下に示すQ0、Q1、Q2、Q3ユニットのように、加水分解・縮合可能な基を結合手に含んでいてもよい。また、一般式(2)は、Q1~Q4ユニットからなる群から選ばれる少なくとも1つを有していればよい。
 Q0ユニット:Si原子の4つの結合手がすべて加水分解・重縮合可能な基(ハロゲン基、アルコキシ基、又はヒドロキシ基等、シロキサン結合を形成しうる基)である構造。
 Q1ユニット:Si原子の4つの結合手のうち、1つがシロキサン結合を形成し、残りの3つがすべて上記加水分解・重縮合可能な基である構造。
 Q2ユニット:Si原子の4つの結合手のうち、2つがシロキサン結合を形成し、残りの2つがすべて上記加水分解・重縮合可能な基である構造。
 Q3ユニット:Si原子の4つの結合手のうち、3つがシロキサン結合を形成し、残りの1つが上記加水分解・重縮合可能な基である構造。
 一般式(2)で表される構成単位に対応するモノマー(原料)としては、好ましくは、テトラアルコキシシラン、テトラハロシラン(例えばテトラクロロシラン、テトラメトキシシラン、テトラエトキシシラン、テトラ-n-プロポキシシラン、テトライソプロポキシシランなど)、これらシラン化合物のオリゴマー、などを挙げることができる。
 [(R(RSiOj/2] (3)
 一般式(3)中、
 Rは、複数存在する場合はそれぞれ独立に、エポキシ基、オキセタン基、アクリロイル基、メタクリロイル基およびラクトン基からなる群より選択される少なくともいずれかの置換基で置換された有機基であり、
 Rは、複数存在する場合はそれぞれ独立に、水素原子、ヒドロキシ基、ハロゲン原子、アルキル基、脂環式基、アリール基またはアルコキシ基であり、
 hは1以上3以下の数、iは0以上3未満の数、jは0超3以下の数であり、h+i+j=4である。
 一般式(3)において、h、iおよびjは、理論値としては、hは1~3の整数、iは0~3の整数、jは0~3の整数である。また、h+i+j=4は、理論値の合計が4であることを指すものとする。しかし、例えば、29Si NMR測定において、h、iおよびjはそれぞれ平均値として得られるため、平均値としてのhは四捨五入して1以上3以下になる小数、iは四捨五入して0以上3以下になる小数(ただし、i<3.0)、jは四捨五入して0以上3以下になる小数(ただし、j≠0)であってもよい。
 h、i、jの理論値において、iは好ましくは0以上2以下の整数、より好ましくは0または1の整数である。jは好ましくは1以上3以下の整数、より好ましくは2または3の整数である。また、入手容易性の観点から、hの値は1であることが特に好ましい。これらの中でも、hが1であり、かつiが0で、なおかつjが3である構成単位は、一般式(3)の構成単位として、特に好ましいものの例である。
 また、hは1以上2以下の数であることが好ましく、より好ましくは1である。iは0以上2以下の数であることが好ましく、より好ましくは0以上1以下の数である。jは1以上3以下の数であることが好ましく、より好ましくは2以上3以下の数である。
 Rが、エポキシ基、オキセタン基またはラクトン基を含む場合は、基板1とレジスト下層膜10との間の密着性が一層高まる傾向がある。
 Rが、アクリロイル基またはメタクリロイル基を含む場合は、レジスト下層膜10が十二分に硬化し、レジスト下層膜10の耐溶剤性が特に良好となる傾向がある。
 Rは、下記一般式(3a)、(3b)、(3c)、(3d)および(3e)で表される基のいずれかであることが好ましい。
Figure JPOXMLDOC01-appb-C000005
 上記一般式中、
 R、R、R、RおよびRは、それぞれ独立に二価の連結基を表し、
 破線は結合手を表す。
 R、RおよびRが二価の連結基である場合、その具体例としては、例えば炭素数が1~20のアルキレン基が挙げられる。アルキレン基は、エーテル結合を形成している部位を1つまたはそれ以上含んでいてもよい。炭素数が3以上の場合、アルキレン基は枝分かれしていてもよく、離れた炭素同士がつながって環を形成していてもよい。アルキレン基の炭素数が2以上である場合、炭素-炭素の間に酸素が挿入されて、エーテル結合を形成している部位を1またはそれ以上含んでいてもよい。
 RおよびRが二価の連結基である場合の好ましい例としては、R、RおよびRで好ましい基として挙げたものを再び挙げることができる。
 Rがラクトン基を含む場合の具体例を、以下、R-Siの構造で表記する。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
 Rの具体的態様は、一般式(1)におけるRと同様であることができる。Rとして好ましくは、水素原子、ヒドロキシ基、メチル基、エチル基、フェニル基、メトキシ基、エトキシ基およびプロポキシ基を例示することができ、特に好ましくは、ヒドロキシ基、メトキシ基、エトキシ基およびプロポキシ基を例示することができる。
 一般式(3)中のOj/2について、以下の一般式(3-1)はjが1、一般式(3-2)はjが2、一般式(3-3)はjが3の場合を表すものである。jが1の場合は、シロキサン結合を有する化合物においてシロキサン鎖の末端に位置する。
Figure JPOXMLDOC01-appb-C000010
 一般式(3-1)~(3-3)中、
 Rは一般式(3)中のRと同義であり、
 R、Rはそれぞれ独立に、一般式(3)中のR、Rと同義であり、
 破線は他のSi原子との結合手を表す。
 一般式(3)で表される構成単位のうち、特に好ましいものを、原料であるアルコキシシランで挙げると、例えば以下である。
 3-グリシドキシプロピルトリメトキシシラン(信越化学工業株式会社製、製品名:KBM-403)、3-グリシドキシプロピルトリエトキシシラン(同、製品名:KBE-403)、3-グリシドキシプロピルメチルジエトキシシラン(同、製品名:KBE-402)、3-グリシドキシプロピルメチルジメトキシシラン(同、製品名:KBM-402)、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン(同、製品名:KBM-303)、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、8-グリシドキシオクチルトリメトキシシラン(同、製品名:KBM-4803)、[(3-エチル-3-オキセタニル)メトキシ]プロピルトリメトキシシラン、[(3-エチル-3-オキセタニル)メトキシ]プロピルトリエトキシシラン、など。
 また、3-メタクリロキシプロピルトリメトキシシラン(信越化学工業株式会社製、製品名:KBM-503)、3-メタクリロキシプロピルトリエトキシシラン(同、製品名:KBE-503)、3-メタクリロキシプロピルメチルジメトキシシラン(同、製品名:KBM-502)、3-メタクリロキシプロピルメチルジエトキシシラン(同、製品名:KBE-502)、3-アクリロキシプロピルトリメトキシシラン(同、製品名:KBM-5103)、8-メタクリロキシオクチルトリメトキシシラン(同、製品名:KBM-5803)、なども挙げられる。
 増感元素を有する樹脂中の各構成単位の好ましい比率(共重合比率)を以下に示しておく。
 一般式(1)で表される構成単位の含有比率(共重合比率):好ましくは10~60mol%、より好ましくは20~50mol%
 一般式(1-A)で表される構成単位の含有比率(共重合比率):好ましくは10~60mol%、より好ましくは20~50mol%
 樹脂が一般式(2)で表される構成単位を有する場合、その含有比率(共重合比率):膜中により多くの増感元素を存在させてさらなる感度向上を図る観点からは、好ましくは10~60mol%、より好ましくは20~50mol%
 樹脂が一般式(3)で表される構成単位を有する場合、その含有比率(共重合比率):好ましくは10~60mol%,より好ましくは20~50mol%
 増感元素を有する樹脂の重量平均分子量は特に限定されないが、例えば500~50000、好ましくは800~40000、さらに好ましくは1000~30000である。
 増感元素を有する樹脂は、例えば、上掲の各構成単位に対応する、(i)ハロシランおよびアルコキシシランからなる群から選ばれる少なくとも1つと、(ii)Ge、Mo、Hf、Zr、Ta、W、Cr、Co、Fe、Pt、SnおよびSbからなる群より選ばれる1以上の元素のアルコキシドおよびハロゲン化物からなる群から選ばれる少なくとも1つと、を加水分解重縮合することにより合成することができる。
 ちなみに、これら(i)および(ii)を、以下では「各構成単位に対応する原料化合物」と記載することがある。
 合成の具体的手順として、まず、各構成単位に対応する原料化合物を室温(特に加熱又は冷却しない雰囲気温度を言い、通常、15~30℃程度である。以下同じ。)にて反応容器内に採取する。その後、各構成単位に対応する原料化合物を加水分解するための水と、重縮合反応を進行させるための触媒、所望により反応溶媒を反応容器内に加えて反応溶液とする。このときの投入順序は特に限定されない。
 次いで、この反応溶液を撹拌しながら、所定時間、所定温度で加水分解および縮合反応を進行させる。これにより樹脂を得ることができる。反応に必要な時間は、触媒の種類にもよるが、通常3~24時間、反応温度は室温(例えば25℃)以上200℃以下である。
 加熱を行う場合は、反応系中の未反応原料、水、反応溶媒および/または触媒が、反応系外へ留去されることを防ぐため、反応容器を閉鎖系にするか、還流装置を取り付けて反応系を還流させることが好ましい。反応後は、樹脂組成物のハンドリングの観点から、反応系内に残存する水、生成するアルコール、および触媒を低減することが好ましい。具体的方法としては、(i)抽出作業や、(ii)トルエンなどの反応に悪影響を与えない溶媒を反応系内に加え、ディーンスターク管で共沸除去する方法などが挙げられる。
 加水分解および縮合反応において使用する水の量は、特に限定されない。反応効率の観点から、各構成単位に対応する原料化合物に含有される加水分解性基(アルコキシ基やハロゲン原子基、両方含む場合はアルコキシ基及びハロゲン原子基)の全モル数に対して、0.01~15倍であることが好ましい。
 重縮合反応を進行させるための触媒に特に制限はなく、酸触媒および塩基触媒が好ましく用いられる。
 酸触媒の具体例としては塩酸、硝酸、硫酸、フッ酸、リン酸、酢酸、しゅう酸、トリフルオロ酢酸、メタンスルホン酸、トリフルオロメタンスルホン酸、カンファースルホン酸、ベンゼンスルホン酸、トシル酸、ギ酸、マレイン酸、マロン酸、又はコハク酸などの多価カルボン酸あるいはその無水物等が挙げられる。
 塩基触媒の具体例としては、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリペンチルアミン、トリヘキシルアミン、トリヘプチルアミン、トリオクチルアミン、ジエチルアミン、トリエタノールアミン、ジエタノールアミン、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、水酸化テトラメチルアンモニウム等が挙げられる。触媒の使用量としては、各構成単位に対応する原料化合物が含む加水分解性基(アルコキシ基やハロゲン原子基、両方含む場合はアルコキシ基及びハロゲン原子基)の全モル数に対して、0.001~0.5倍であることが好ましい。
 加水分解及び縮合反応では、必ずしも反応溶媒を用いる必要はなく、原料化合物、水および触媒を混合し、加水分解縮合することができる。一方、反応溶媒を用いる場合、その種類は特に限定されない。中でも、原料化合物、水、触媒に対する溶解性の観点から、極性溶媒が好ましく、さらに好ましくはアルコール系溶媒である。具体的には、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、ジアセトンアルコール、プロピレングリコールモノメチルエーテル等のうち1または2以上が挙げられる。反応溶媒を用いる場合の使用量としては、加水分解縮合反応を均一系で進行させるのに必要な任意量を使用することができる。
 合成された樹脂については、溶剤による希釈、濃縮、抽出、水洗、イオン交換樹脂精製、濾過などの、高分子化学分野で通常知られている手法により、未反応モノマーや不純物を低減することが好ましい。
 レジスト下層膜10の形成のために増感元素を有する樹脂を用いる態様とは別の態様として、樹脂と、樹脂とは別成分として増感元素を有する添加成分と、を含むレジスト下層膜形成用樹脂組成物を用いる態様も挙げることができる。この場合、樹脂は、上述のように増感元素を有してもよいし、増感元素を有しなくてもよい。
 樹脂が増感元素を有する場合、樹脂の具体的態様については上述のとおりである。
 樹脂が増感元素を有しない場合の樹脂の具体的態様としては、例えば、増感元素を有する構成単位を有しない以外は、上掲のポリシロキサン系樹脂と同様の樹脂(具体的には、一般式(1-A)で表される構成単位は有しないが、一般式(1)で表される構成単位を有し、また、一般式(2)や(3)で表される構成単位を有することができる樹脂)を挙げることができる。ポリシロキサン系樹脂は、従来のレジスト下層膜形成用樹脂組成物においても使用されており、溶剤溶解性、均一塗布性、その他種々の性能の観点で好ましい。
 樹脂が増感元素を有しない場合、レジスト下層膜形成用樹脂組成物は、樹脂とは別に増感元素を有する成分を含む。
 添加成分は、増感元素を含む限り限定されない。添加成分は、増感元素を含む有機化合物、増感元素を含む無機化合物などであることができる。添加成分は、感度向上の観点に加え、溶剤溶解性や樹脂との相溶性などの観点も踏まえて適宜選択すればよい。増感元素を含む有機化合物は、有機溶剤中に良好に溶解または分散しやすく、その結果としてレジスト下層膜10中に増感元素を均一に分布させやすい。このことは、例えば前述の多層塗布によりレジスト下層膜10を形成する場合において好ましい。
 中でも、入手容易性、樹脂との相溶性、感度の一層の向上などの観点では、有機ゲルマニウム化合物、有機モリブデン化合物、有機タングステン化合物、無機ゲルマニウム化合物、無機モリブデン化合物、無機タングステン化合物などが好ましい。これらの中でも、有機ゲルマニウム化合物および無機タングステン化合物が好ましい。
 とりわけ、入手容易性の点で、添加成分は、テトラエトキシゲルマニウム、ケイタングステン酸およびビス[2-カルボキシエチルゲルマニウム(IV)]セスキオキシドからなる群より選ばれる1以上を含むことが好ましい。
 ちなみに、添加成分は、増感元素の酸化物(金属酸化物等)であってもよい。ただし、金属酸化物は、通常、有機溶剤に不溶であり、均一に分散させるためには分散剤の使用や超音波の印加などが必要という点では好ましくない。
 レジスト下層膜形成用樹脂組成物は、通常、溶剤を含む。換言すると、レジスト下層膜形成用樹脂組成物は、通常、増感元素を有する樹脂、増感元素を有しない樹脂、増感元素を有する添加成分などが、溶剤中に溶解または分散したものである。
 溶剤は、典型的には有機溶剤である。溶剤としては、上述の増感元素を有する樹脂、増感元素を有しない樹脂、増感元素を有する添加成分などを溶解または分散させることができる溶剤を好ましく用いることができる。溶剤を揮発させて膜形成するというプロセスを考慮すると、溶剤の沸点は100~200℃であることが好ましい。
 好ましい溶剤としては、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、シクロヘキサノン、乳酸エチル、γ-ブチロラクトン、ジアセトンアルコール、ジグライム、メチルイソブチルケトン、酢酸3-メトキシブチル、2-ヘプタノン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、グリコール類、グリコールエーテル類、グリコールエーテルエステル類などを挙げることができる。
 グリコール、グリコールエーテル、グリコールエーテルエステルの具体例としては、株式会社ダイセル製のセルトール(登録商標)、東邦化学工業株式会社製のハイソルブ(登録商標)、などが挙げられる。より具体的には、シクロヘキサノールアセテート、ジプロピレングリコールジメチルエーテル、プロピレングリコールジアセテート、ジプロピレングリコールメチル-n-プロピルエーテル、ジプロピレングリコールメチルエーテルアセテート、1,4-ブタンジオールジアセテート、1,3-ブチレングリコールジアセテート、1,6-ヘキサンジオールジアセテート、3-メトキシブチルアセテート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、トリアセチン、1,3-ブチレングリコール、プロピレングリコール-n-プロピルエーテル、プロピレングリコール-n-ブチルエーテル、ジプロピレングリコールメチルエーテル、ジプロピレングリコールエチルエーテル、ジプロピレングリコール-n-プロピルエーテル、ジプロピレングリコール-n-ブチルエーテル、トリプロピレングリコールメチルエーテル、トリプロピレングリコール-n-ブチルエーテル、トリエチレングリコールジメチルエーテル、ジエチレングリコールブチルメチルエーテル、トリプロピレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテルが挙げられる。
 使用可能な溶剤はもちろんこれらのみに限定されない。また、溶剤については1種のみを用いてもよいし、2種以上の溶剤を併用してもよい。
 レジスト下層膜形成用樹脂組成物は、上記成分ほか、性能調整のための任意成分を1または2以上含んでもよいし、含まなくてもよい。任意成分としては、例えば界面活性剤、酸化防止剤、消泡剤などを挙げることができる。
 レジスト下層膜形成用樹脂組成物は、通常、非感光性である。換言すると、レジスト下層膜形成用樹脂組成物は、通常、光酸発生剤を実質上含まず、レジスト下層膜形成用脂組成物のみを用いて露光により微細パターンを形成することはできない。
・レジスト膜20を形成するための材料(レジスト組成物)について
 レジスト膜20を形成するための材料(レジスト組成物)に特に制限はない。レジスト組成物は、EUV光の照射により現像液に対する溶解度が大きくなるポジ型レジスト組成物であってもよいし、EUV光の照射により現像液に対する溶解度が小さくなるネガ型レジスト組成物であってもよい。レジスト組成物は非化学増幅型であっても化学増幅型であってもよいが、良好な感度の点では好ましくは化学増幅型レジスト組成物が用いられる。
 化学増幅型のポジ型レジスト組成物は、通常、少なくとも酸分解性樹脂と酸発生剤とが溶剤に溶解または分散した組成物である。EUVリソグラフィーにおいては、EUV光が照射されて発生した二次電子が酸発生剤を分解して酸を発生する。この酸が酸分解性樹脂中の保護基を脱離させて、アルカリ現像液に対する溶解性が高まる。
 化学増幅型のネガ型レジスト組成物は、通常、少なくとも、樹脂と、架橋剤と、外部刺激により活性化学種を発生する化合物(酸発生剤、ラジカル発生剤など)と、が溶剤に溶解または分散した組成物である。EUVリソグラフィーにおいては、EUV光が照射されて発生した二次電子が、外部刺激により活性化学種を発生する化合物に作用して活性化学種が発生する。この活性化学種の作用により、樹脂-架橋剤または架橋剤-架橋剤間に共有結合が形成される。その結果、現像液に不溶または難溶となる(つまりネガ化する)。
 レジスト組成物は非化学増幅型であってもよい。例えば、公知の非化学増幅型の電子線レジスト組成物は、電子線の照射により現像液への溶解性が変化する設計がされているため、EUV光の照射により生じる二次電子によっても現像液への溶解性が変化する。
 ちなみに、文献「放射線化学 第107号(2019)pp.3-8」(タイトル:電子線を用いたEUVレジスト感度予測法の研究)には、公知の非化学増幅型ポジ型電子線レジスト組成物や化学増幅型ポジ型電子線レジスト組成物を用いて、電子線露光の際の感度とEUV露光の際の感度とを比較したことが記載されている。この文献の記載によれば、非化学増幅型・化学増幅型のどちらのポジ型電子線レジスト組成物も、電子線露光の際の感度とEUV露光の際の感度との間に相関関係が認められた。このことから、レジスト組成物が化学増幅型であっても非化学増幅型であっても、本明細書に記載の技術により発生する二次電子の量が増加すれば、感度上昇を期待することができる。
 第1実施形態においては、EUV光の照射により現像液に対する溶解性が変化する限り、任意のレジスト組成物を用いることができる。
・基板1について
 基板1としてはシリコン基板がしばしば用いられるが、基板は任意の基板であることができる。基板1には回路が形成されていてもよいし、回路が形成されていなくてもよい。
(露光工程(図2))
 図2に示されるように、露光工程においては、積層体におけるレジスト膜20の側から活性光線を照射する。
 露光工程は、通常、フォトマスク50を介して活性光線60を照射することにより行われる。露光量は、レジスト膜20の感度に応じて適宜設定すればよい。
 活性光線の波長は、例えば1~600nm、好ましくは6~27nmである。活性光線は好ましくはEUV光(極紫外光)である。つまり、露光工程は、好ましくはEUV光を用いて行われる。一般的に適用されているEUVの波長は13.5nmである。また、EUV光のパルス幅は通常0.1~40nm、EUV光の強度は通常100~1000kWである。
 露光工程においては、量産性は劣るが、電子線も使用可能である。
(現像工程(図3))
 現像工程においては、現像液を用いて、レジスト膜20の少なくとも一部を除去する。これによりパターン20Bが形成される。レジスト組成物としてポジ型レジスト組成物を用い、現像液としてアルカリ現像液を用いた場合には、通常、露光工程で露光された部分が現像液により除去される。一方、レジスト組成物としてネガ型レジスト組成物を用いた場合には、通常、露光工程で露光されなかった部分が現像液により除去される。
 アルカリ現像液としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム、アンモニア水等の無機アルカリ類、エチルアミン、n-プロピルアミン等の第一アミン類、ジエチルアミン、ジ-n-ブチルアミン等の第二アミン類、トリエチルアミン、メチルジエチルアミン等の第三アミン類、ジメチルエタノールアミン、トリエタノールアミン等のアルコールアミン類、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド等の第四級アンモニウム塩、ピロール、ピペリジン等の環状アミン類等のアルカリ性水溶液を使用することができる。アルカリ性水溶液にアルコール類、界面活性剤を適当量添加して使用することもできる。
 アルカリ現像液としては、テトラメチルアンモニウムヒドロキシドの水溶液が好ましい。
 現像液としては、アルカリ現像液のほか、有機溶剤系現像液すなわち有機溶剤を主成分とする(例えば有機溶剤を90質量%以上含む)現像液も使用可能である。有機溶剤による現像については、例えば特開2008-292975号公報などの記載を参照されたい。ちなみに、酸分解性樹脂と酸発生剤とが溶剤に溶解または分散したフォトレジスト(アルカリ現像液で現像したときにはポジ型パターンが形成される)をフォトレジストとして用い、有機溶剤による現像を行った場合、通常、ネガ型のパターンが形成される。
 有機溶剤系現像液としては、ケトン系溶剤、エステル系溶剤、アルコール系溶剤等を主成分とする現像液が挙げられる。
 具体的には、アセトフェノン、メチルアセトフェノン、ジイソブチルケトン、2-ヘキサノン、3-ヘキサノン、2-ヘプタノン、3-ヘプタノン、4-ヘプタノン、2-オクタノン、2-ノナノン、メチルシクロヘキサノン、ギ酸プロピル、ギ酸ブチル、ギ酸イソブチル、ギ酸ペンチル、ギ酸イソペンチル、酢酸プロピル、酢酸ブチル、酢酸イソブチル、酢酸ペンチル、酢酸イソペンチル、酢酸2-メチルブチル、酢酸ヘキシル、酢酸ブテニル、プロピオン酸メチル、プロピオン酸エチル、乳酸メチル、乳酸エチル、乳酸プロピル、乳酸ブチル、乳酸イソブチル、乳酸ペンチル、乳酸イソペンチル、3-エトキシプロピオン酸エチル、2-ヒドロキシイソ酪酸メチル、2-ヒドロキシイソ酪酸エチル、クロトン酸メチル、クロトン酸エチル、吉草酸メチル、ペンテン酸メチル、安息香酸メチル、ギ酸ベンジル、酢酸フェニル、安息香酸エチル、ギ酸フェニルエチル、酢酸ベンジル、フェニル酢酸メチル、フェニル酢酸エチル、酢酸2-フェニルエチル、3-フェニルプロピオン酸メチル、プロピオン酸ベンジル、エタノール、1-プロパノール、2-プロパノール等を主成分とする現像液が挙げられる。この中でも入手容易性や作業性の観点から酢酸ブチルが好ましい。
 有機溶剤は、単独で使用してもよく、2種以上を混合してもよい。有機溶剤系現像液は、これらの有機溶剤のみを含んでもよく、現像液としての性能を損なわない限り、有機溶剤の他にその他の成分を含んでもよい。その他の成分は、例えば、界面活性剤等が挙げられる。界面活性剤としてはフッ素系界面活性剤、シリコーン系界面活性剤などが挙げられる。
(電子デバイスの製造)
 図3のように得られたパターン20Bを、ドライエッチングにおけるマスクとして用いることで、基板1を選択的に加工することができる。また、そのようにして加工された基板に、電子デバイス製造における公知のプロセスを種々適用することで、電子デバイスを製造することができる。
<積層体(第1実施形態)>
 上記では、第1実施形態について、電子デバイス製造方法の観点から詳述した。
 一方、第1実施形態は「積層体」に関する新規技術として捉えることもできる。つまり、第1実施形態は、以下のように表現することもできる。
 基板と、レジスト下層膜と、レジスト膜と、をこの順に備える積層体であって、
 レジスト下層膜の少なくとも一部は、金属元素、半金属元素およびヨウ素からなる群より選ばれる1以上の増感元素を含み、
 レジスト下層膜の基板側の面における増感元素の濃度をCとし、レジスト下層膜のレジスト膜側の面における増感元素の濃度をCとしたとき、C>Cである、積層体。
 このような積層体の具体的態様については、上記<電子デバイス製造方法(第1実施形態)>における積層工程の項や、図1において十分に説明している。よって、改めての説明は省略する。
<電子デバイス製造方法(第2実施形態)>
 第2実施形態の電子デバイス製造方法は、
 基板上に、レジスト膜およびトップコート膜をこの順に設けて積層体を得る積層工程と、
 積層体におけるトップコート膜の側から活性光線を照射する露光工程と、
 現像液を用いて少なくともレジスト膜の一部を除去する現像工程と、
を含む。
 トップコート膜の少なくとも一部は、金属元素、半金属元素およびヨウ素からなる群より選ばれる1以上の増感元素を含む。
 トップコート膜のレジスト膜側の面における増感元素の濃度をC'とし、トップコート膜のレジスト膜とは反対側の面における増感元素の濃度をCとしたとき、C'>Cである。
 第2実施形態のコンセプトは、第1実施形態と類似する。つまり、「トップコート膜のレジスト膜に近い部分に、増感元素を偏在させる」ことで、トップコート膜中の増感元素から発生した二次電子が、トップコート膜中で失活せずにレジスト膜により多く移動できるようになる。この結果、EUVリソグラフィーにおける感度の一層の向上を図ることができる。
 また、「トップコート膜のレジスト膜に近い部分に、増感元素を偏在させる」ようにトップコート膜を設計することで、トップコート膜中のトータルの増感元素の量を抑えることができる。つまり、増感元素の「使用量」を少なくすることができる。増感元素の多くは、半導体ウェハーを汚染する可能性がある異物であるため、増感元素の使用量を少なくできることは好ましい。
 さらに、増感元素は通常のトップコート膜形成用樹脂組成物にとっては、経時安定性を悪化させる「異物」である場合も多い。この点でも、増感元素の使用量を少なくできることは好ましい。
 増感効果を確実に得る観点、および、他の性能とのバランスの観点から、C'は好ましくは1~20at%、より好ましくは3~17at%、さらに好ましくは5~15at%である。
 増感元素を用いることによるデメリットを低減する観点から、Cは好ましくは0~10at%、より好ましくは0~9at%、さらに好ましくは0~8at%である。
 また、偏在の程度の定量的な尺度として、C/C'という指標を考えることができる。この指標の値は、好ましくは0~10、より好ましくは0~3、さらに好ましくは0~1.6である。
 C'とCの大小関係、C'の値、Cの値などは、第1実施形態で説明した(1)(2)または(3)の方法により知ることができる。
 以下、第2実施形態の各工程について、図面を参照しつつより具体的に説明する。
(積層工程(図4))
 積層工程では、図4に示すように、基板1の上(基板1の一方の面上)に、レジスト膜20およびトップコート膜30をこの順に設ける。
 トップコート膜30の少なくとも一部は、金属元素、半金属元素およびヨウ素からなる群より選ばれる1以上の増感元素を含む。ここで、トップコート膜30のレジスト膜20側の面における増感元素の濃度をC'とし、トップコート膜30のレジスト膜20とは反対側の面における増感元素の濃度をCとしたとき、C'>Cである。
 C'>Cであるトップコート膜30を設ける方法としては、第1実施形態と類似した、以下(i)および(ii)を挙げることができる。
(i)多層塗布
 レジスト膜20の上に、増感元素を比較的多く含むトップコート膜形成用樹脂組成物を塗布して、第1トップコート膜を形成する。その後、その第1トップコート膜の上に、増感元素の量が比較的少ないか、または増感元素を含まないトップコート膜形成用樹脂組成物を塗布して、第2トップコート膜を形成する。これら、第1トップコート膜と第2トップコート膜の2層をあわせて、トップコート膜30とする。
(ii)偏在性物質の使用
 増感元素の量が少ないか、または増感元素を含まないで、かつ膜形成時に膜の表面に偏在する性質を有する物質を含むトップコート膜形成用樹脂組成物を用いて、トップコート膜30を形成する。
 第1実施形態で説明したように、EUVリソグラフィーとは異なる技術分野における知見を利用することにより、上記(i)のように2回以上の塗布を行わずとも、C'>Cであるトップコート膜30を設けることができる。
 具体的には、(A)増感元素の量が比較的多いポリマーと、(B)増感元素の量が少ないか、または増感元素を含まない偏在性成分(低分子であってもポリマーであってもよい)とを含むトップコート膜形成用樹脂組成物を調製し、この組成物をレジスト膜20上に塗布することで、C'>Cであるトップコート膜30を設けることができる。ここで、(B)は、一例としてケイ素および/またはフッ素を比較的多く含む。また、別の例として、(B)は、(A)よりも低い表面エネルギーおよび/または小さな流体力学的体積を有する。
 EUV光の吸収効率および二次電子の放出効率の点で、増感元素は、Ge、Mo、W、Hf、Zr、Ta、Cr、Co、Fe、Pt、SnおよびSbからなる群より選ばれる1以上を含むことが好ましい。特に、感度向上効果、素材の入手容易性、基板からの除去のしやすさ(ドライエッチングによる除去性)などを考慮すると、増感元素は、Ge、MoおよびWからなる群より選ばれる1以上を含むことがより好ましい。
 レジスト膜20は、金属元素、半金属元素およびヨウ素からなる群より選ばれる1以上の増感元素を、含んでもよいし、実質上含まなくてもよい。「実質上含まない」とは、レジスト膜20中の増感元素の量が、例えば0~0.9at%、具体的には0~0.5at%、より具体的には0~0.2at%であることを意味する。
 第2実施形態においては、二次電子がトップコート膜30からレジスト膜20に移動することによる感度向上が期待できる。よって、レジスト膜20が増感元素を含まなくても、十分な感度向上効果が得られると考えられる。別の言い方として、第2実施形態においては、レジスト組成物そのものを改良せずに既存のレジスト組成物を用いたとしても、感度向上を期待できる。
 念のため述べておくと、第2実施形態において、レジスト膜20が、金属元素、半金属元素およびヨウ素からなる群より選ばれる1以上の増感元素を含むことは、排除されない。
 各膜の形成は、通常、スピンコート法により、各膜を形成するための液状の組成物(溶剤含有)を逐次的に基板上に塗布することで行う。具体的には、基板1の上に適量の液状の組成物(溶剤含有)を提供し、次に基板1を回転させて液状の組成物を基板1上に薄く広げる。その後、必要に応じて残存溶剤を乾燥させるための加熱(ベーク)を行ってもよい。
 加熱を行う場合は、加熱温度は50~250℃が好ましく、100~230℃がより好ましい。
 各層の厚みは、好ましくは以下のとおりである。
 トップコート膜30:好ましくは1~20nm、さらに好ましくは5~10nm
 レジスト膜20:好ましくは20nm以下、より好ましくは1~20nm、さらに好ましくは10~20nm、特に好ましくは15~20nm
 過去の知見によると、EUV光の照射により発生する二次電子の移動距離は、20nm程度と考えられている。よって、レジスト膜20の厚みが厚すぎないことによりトップコート膜30で発生した二次電子が、レジスト膜20の内部にまで十分に到達できると考えられる。そしてその結果として、十二分な感度向上効果が得られたり、現像工程で得られるパターンの形状が良化したりすることが期待できる。
 以下、トップコート膜30を設けるための組成物(トップコート膜形成用樹脂組成物)が含むことができる成分についてより具体的に説明する。
 ちなみに、レジスト膜20および基板1については、第1実施形態と同様であることができる。よって、これらについて改めては説明しない。
・トップコート膜30を設けるための組成物(トップコート膜形成用樹脂組成物)について
 一態様として、トップコート膜形成用樹脂組成物は、増感元素を含む樹脂を含むことができる。これにより、トップコート膜30は、増感元素を有する樹脂を含むこととなる。
 増感元素を有する樹脂としては、例えば第1実施形態で説明したポリシロキサン系樹脂を挙げることができる。具体的には、前掲の一般式(1)で表される構成単位と、一般式(1-A)で表される構成単位と、を有する樹脂を挙げることができる。ポリシロキサン系樹脂は、さらに前掲の一般式(2)で表される構成単位を有していてもよいし、これら以外の構成単位を有していてもよい。ただし、露光工程後のトップコート膜30の除去容易性の観点では、ポリシロキサン系樹脂は、一般式(3)で表されるような、反応性基を有する構成単位を含まないことが好ましい。
 樹脂が増感元素を有することで、トップコート膜30中で増感元素が比較的均一に分布しやすくなると考えられる。トップコート膜30中で増感元素が均一に分布することで、トップコート膜30のどの場所でも、EUV光の照射量に応じた量の二次電子を発生させることができ、増感の「ムラ」が抑えられるため、好ましい。
 増感元素を含む樹脂は、前述の多層塗布によりトップコート膜30を形成する場合には、第1トップコート膜を形成するための組成物に含まれていることが好ましい。
 また、前述の偏在性物質の使用によりトップコート膜30を形成する場合には、偏在性物質として、増感元素を含まないか、含むとしても少量である樹脂を用いることが好ましい。こうすることで、トップコート膜30における上部の増感元素の量が比較的少なくなり、相対的に、トップコート膜30における下部の増感元素の量が比較的多くなる。
 ちなみに、多層塗布によりトップコート膜30を形成する場合、第2トップコート膜を形成するための組成物は、例えば、増感元素を含まないかまたは増感元素を含むもののその量が少量であること以外は、増感元素を含む樹脂と同様の樹脂を含むことができる(具体的には、ポリシロキサン系樹脂において、一般式(1-A)で表されるような増感元素含有構成単位の含有率が、全構成単位中0~5mol%である樹脂など)。
 同様に、偏在性物質の使用によりトップコート膜30を形成する場合には、偏在性物質として、増感元素を含まないかまたは増感元素を含むもののその量が少量であること以外は、増感元素を含む樹脂と同様の樹脂を用いることができる(具体的には、ポリシロキサン系樹脂において、一般式(1-A)で表される構成単位の含有率が、全構成単位中0~5mol%である樹脂)。
 偏在性物質を使用する例としては、後述のように、少なくとも、(i)増感元素を含まないかまたは増感元素を含むもののその量が少量であるオリゴマーと、(ii)増感元素を含むモノマー、および、Si元素がモル比で増感元素の同量以下であるオリゴマーからなる群より選ばれる少なくとも1つと、を溶媒に溶解してトップコート膜形成用樹脂組成物として使用する例も挙げることができる。
 具体的には、少なくとも、後述の(I)と(II)とを溶媒に溶解したトップコート膜形成用樹脂組成物を挙げることができる。詳細は不明だが、トップコート膜形成用樹脂組成物を塗布して樹脂膜を形成する際に、表面自由エネルギーが小さい(I)が樹脂膜の表層(上側)に偏在し易く、その結果(II)が樹脂膜の下側すなわちレジスト膜に近い側に偏在し易いことが推定される。
(I)一般式(4)で表される構成単位を有するシロキサンオリゴマー(酸化物ネットワーク中に金属元素、半金属元素およびヨウ素からなる群より選ばれる1以上の増感元素を含んでもよいがその割合はモル比でSi元素の1/2以下)
(II)金属元素、半金属元素およびヨウ素からなる群より選ばれる1以上の増感元素を含むモノマー、および、一般式(4-A)で表される構成単位を有するオリゴマー(前記増感元素以外にSi元素を含んでもよいがその割合はモル比で増感元素の同量以下)、からなる群より選ばれる少なくとも1つ
 [(R10(R11(OR12SiOw/2]  (4) 
 [(RMOq/2]  (4-A)
 一般式(4)中、
 R10は、複数存在する場合はそれぞれ独立に、水素原子、ヒドロキシ基、ハロゲン原子、アルキル基、脂環式基、アリール基またはアルコキシ基、であり、
 R11は、複数存在する場合はそれぞれ独立に、水素原子、アルキル基、脂環式基またはアリール基であり、
 R12は、複数存在する場合はそれぞれ独立に、水素原子、アルキル基、脂環式基またはアリール基であり、
 tは1以上3以下の数であり、uは0以上2以下の数であり、vは0以上3未満の数であり、wは0超3以下の数であり、t+u+v+w=4である。
 一般式(4-A)中、
 Mは、金属元素、半金属元素およびヨウ素からなる群より選ばれる1以上の増感元素であり、好ましくはGe、Mo、W、Hf、Zr、Ta、Cr、Co、Fe、Pt、SnおよびSbからなる群より選ばれる1以上、より好ましくはGe、MoおよびWからなる群より選ばれる1以上であり、
 Rは、複数存在する場合はそれぞれ独立に、水素原子、ヒドロキシ基、ハロゲン原子、アルキル基、脂環式基、アルコキシ基またはアリール基であり、
 pは0以上6未満の数であり、qは0超6以下の数であり、p+qは3~6である。
 一般式(4)中のt、u、v、wは、前述の一般式(1)のd、e、fおよびgと同義である。一般式(4)中のOw/2との表記は、前述の一般式(1)中のOg/2との表記と同義である。また、一般式(4)中のR10、R11、R12は前述の一般式(1)中のR、R、Rと同義である。
 一般式(4-A)中のp、qは前述の一般式(1-A)のb、cと同義である。また、一般式(4-A)中のR、Mは前述の一般式(1-A)のR、Mと同義である。
(I)一般式(4)で表される構成単位を有するシロキサンオリゴマーは、その酸化物ネットワーク中に金属元素、半金属元素およびヨウ素からなる群より選ばれる1以上の増感元素を含んでもよいがその割合はモル比でSi元素の1/2以下であり、より好ましくは1/4以下、さらに好ましくは1/8以下、最も好ましくは前記増感元素を実質的に含まないことである。
(II)金属元素、半金属元素およびヨウ素からなる群より選ばれる1以上の増感元素を含むモノマー、および、一般式(4-A)で表される構成単位を有するオリゴマーは、増感元素以外にSi元素を含んでもよいが、その割合はモル比で増感元素の同量以下であり、より好ましくは1/2以下、さらに好ましくは1/4以下、最も好ましくはSi元素を実質的に含まないことである。
 上述のトップコート膜形成用樹脂組成物より得られる増感元素を有する樹脂中の各構成単位の好ましい比率(共重合比率)は以下のとおりである。
 一般式(4)で表される構成単位の含有比率(共重合比率):好ましくは5~90mol%、より好ましくは10~60mol%
 一般式(4-A)で表される構成単位の含有比率(共重合比率):好ましくは10~95mol%、より好ましくは40~90mol%
 上述のトップコート膜形成用樹脂組成物に含まれるオリゴマーは、それぞれの構成単位に対応する原料化合物を別個に加水分解及び/又は重縮合反応させたものを混合したものであってもよい。あるいは、第1のオリゴマーを得て、そこに第2のオリゴマーの構成単位に対応する原料化合物を加えて加水分解及び/又は重縮合反応させたものであってもよい。
 第1実施形態で説明した加水分解・重縮合の反応条件や、後工程を、上記オリゴマーの合成に適用してもよい。
 また、トップコート膜30の形成においては、(メタ)アクリル系樹脂を好ましく用いることができる。(メタ)アクリル系樹脂は、従来のトップコート膜形成用樹脂組成物においても使用されており、溶剤溶解性、均一塗布性、その他種々の性能の観点で好ましい。また、上述のトップコート膜形成用樹脂組成物に、(メタ)アクリル系樹脂あるいはそれに対応する構成単位を含めてもよい。
 好適な(メタ)アクリル系樹脂としては、例えば、以下一般式(X)で表される構成単位を有する(メタ)アクリル系樹脂を挙げることができる。
Figure JPOXMLDOC01-appb-C000011
 一般式(X)中、
 Rは、水素原子またはメチル基であり、
 Lは、n+1価の原子団であり、
 nは、1以上の整数である。
 Lは、好ましくはn+1価の有機基である。Lは、より好ましくは、アルキル基、1価の脂環式基またはアリール基からn個の水素原子を除いた基である。ここでのアルキル基、1価の脂環式基およびアリール基の具体例としては、一般式(1)のRの例として挙げた各基を挙げることができる。Lの炭素数は、例えば1~12、具体的には1~10である。
 nは、好ましくは1~3、より好ましくは1~2である。
 (メタ)アクリル系樹脂は、上記以外の構成単位を有していてもよい。
 後述の現像工程でトップコート膜30を除去しやすくする観点から、トップコート膜形成用樹脂組成物が含む樹脂(増感元素を有する樹脂および/または増感元素を有しない樹脂)の少なくとも一部は、アルカリ可溶性基を有していることが好ましい。アルカリ可溶性基としては、例えば、カルボキシ基、フェノール性ヒドロキシ基、ヘキサフルオロイソプロパノール基(-C(CF-OH)を挙げることができる。
 トップコート膜30の形成のために増感元素を有する樹脂を用いる態様とは別の態様として、樹脂と、樹脂とは別成分として増感元素を有する添加成分と、を含むトップコート膜形成用樹脂組成物を用いる態様も挙げることができる。この場合、樹脂は、増感元素を有してもよいし、増感元素を有しなくてもよい。
 樹脂が増感元素を有する場合、樹脂の具体的態様については前述のとおりである。
 樹脂が増感元素を有しない場合の樹脂の具体的態様としては、例えば、増感元素を有する構成単位を有しない以外は、上掲のポリシロキサン系樹脂と同様の樹脂(つまり、一般式(1-A)で表されるような増感元素含有構成単位は有しないが、一般式(1)で表される構成単位を有し、また、一般式(2)で表される構成単位等を有することができる樹脂)を挙げることができる。ポリシロキサン系樹脂は、溶剤溶解性、均一塗布性、その他種々の性能の観点で好ましい。また、(メタ)アクリル系樹脂、具体的には前述の一般式(X)で表される構成単位を有する(メタ)アクリル系樹脂も、増感元素を有しない樹脂の具体例として挙げることができる。
 樹脂が増感元素を有しない場合、トップコート膜形成用樹脂組成物は、樹脂とは別に増感元素を有する成分を含む。増感元素を有する成分に関する具体的事項は、第1実施形態において説明した通りである。
 トップコート膜形成用樹脂組成物は、通常、溶剤を含む。換言すると、トップコート膜形成用樹脂組成物は、通常、増感元素を有する樹脂、増感元素を有しない樹脂、増感元素を有する添加成分などのうち1または2以上が、溶剤中に溶解または分散したものである。
 溶剤は、典型的には有機溶剤である。溶剤としては、上述の増感元素を有する樹脂、増感元素を有しない樹脂、増感元素を有する添加成分などを溶解または分散させることができ、かつ、レジスト膜20を実質的に溶解しない溶剤を好ましく用いることができる。溶剤を揮発させて膜形成するというプロセスを考慮すると、溶剤の沸点は100~200℃であることが好ましい。
 溶剤の好適な例としてはアルコール系溶剤、すなわち、分子中にアルコール系ヒドロキシ基を有する化合物が挙げられる。アルコール系溶剤の具体例としては、n-アミルアルコール、イソアミルアルコール、1-ブタノール、1-オクタノール、2-オクタノール、4-メチル-2-ペンタノール、1-ヘキサノール、3-ヘプタノール、i-ブチルアルコール、2-エチル-1-ブタノール、2-エチル-1-ヘキサノール、1-ノナノール、ネオペンチルアルコール、シクロヘキサノール、テトラヒドロフルフリルアルコール、これらの構造異性体、などを挙げることができる。
 その他、溶剤としては、(i)炭化水素系溶剤、ハロゲン化炭化水素溶剤、含フッ素無極性溶剤のような無極性溶剤、(ii)エーテル系溶剤、含窒素溶剤、カルボン酸系溶剤、酸無水物系溶剤、エステル系溶剤、ケトン系溶剤のような極性溶剤、などを挙げることができる。
 トップコート膜形成用樹脂組成物は、1のみの溶剤を含んでもよいし、2以上の溶剤を含んでもよい。含有成分が適切に溶解または分散し、レジスト膜20を実質的に侵さずにトップコート膜30を形成できる限り、溶剤の種類や混合比は特に限定されない。
 トップコート膜形成用樹脂組成物の不揮発成分濃度は、例えば0.001~10質量%、好ましくは0.01~7質量%、より好ましくは0.1~5質量%である。トップコート膜形成用樹脂組成物の不揮発成分濃度がこのような範囲内になるように、溶剤の使用量を調整することが好ましい。
 不揮発成分濃度は、形成しようとするトップコート膜30の厚みや、膜形成の条件(スピンコートであれば回転数など)を踏まえて適宜調整すればよい。
 トップコート膜形成用樹脂組成物は、上述の成分のほか、性能調整のための任意成分を1または2以上含んでもよいし、含まなくてもよい。
 任意成分としては、例えば界面活性剤、酸化防止剤、消泡剤などを挙げることができる。
 トップコート膜形成用樹脂組成物は、通常、非感光性である。換言すると、トップコート膜形成用樹脂組成物は、通常、光酸発生剤を実質上含まず、トップコート膜樹脂組成物のみを用いて露光により微細パターンを形成することはできない。
(露光工程(図5))
 図5に示されるように、露光工程においては、積層体におけるトップコート膜30の側から活性光線(好ましくはEUV光)を照射する。露光工程は、通常、フォトマスク50を介して活性光線60を照射することにより行われる。露光量は、レジスト膜20の感度に応じて適宜設定すればよい。その他、露光工程に関する詳細は第1実施形態における説明と同様であることができる。
(現像工程(図6))
 現像工程においては、現像液を用いて、レジスト膜20の少なくとも一部を除去する。これによりパターン20Bが形成される。レジスト組成物としてポジ型レジスト組成物を用い、現像液としてアルカリ現像液を用いた場合には、通常、露光工程で露光された部分が現像液により除去される。一方、レジスト組成物としてネガ型レジスト組成物を用いた場合には、通常、露光工程で露光されなかった部分が現像液により除去される。
 使用可能な現像液については、第1実施形態で説明した通りである。
 ちなみに、トップコート膜30は、現像工程においてレジスト膜20の一部とともに除去してもよいし、露光工程と現像工程との間にトップコート膜30を除去する追加の工程を行うことにより除去してもよい。
 トップコート膜30が含む樹脂がアルカリ可溶性基を有する場合、現像工程において、トップコート膜30をレジスト膜20の一部と一緒に除去することができる。
 露光工程と現像工程との間でトップコート膜30を除去する場合、その具体的方法としては、トップコート膜30は溶解するがレジスト膜20は実質的に溶解しない溶剤を用いて、トップコート膜30を溶解させて除去する方法が挙げられる。このような方法に用いられる溶剤としては、上述の、トップコート膜形成用樹脂組成物が含むことができる溶剤(好ましくはアルコール系溶剤)を挙げることができる。
(電子デバイスの製造)
 図6のように得られたパターン20Bを、ドライエッチングにおけるマスクとして用いることで、基板1を選択的に加工することができる。また、そのようにして加工された基板に、電子デバイス製造における公知のプロセスを種々適用することで、電子デバイスを製造することができる。
<積層体(第2実施形態)>
 上記では、第2実施形態について、電子デバイス製造方法の観点から詳述した。
 一方、第2実施形態は「積層体」に関する新規技術として捉えることもできる。つまり、第2実施形態は、以下のように表現することもできる。
 基板と、レジスト膜と、トップコート膜と、をこの順に備える積層体であって、
 トップコート膜の少なくとも一部は、金属元素、半金属元素およびヨウ素からなる群より選ばれる1以上の増感元素を含み、
 トップコート膜のレジスト膜側の面における増感元素の濃度をC'とし、トップコート膜のレジスト膜とは反対側の面における増感元素の濃度をCとしたとき、C'>Cである、積層体。
 このような積層体の具体的態様については、上記<電子デバイス製造方法(第2実施形態)>における積層工程の項や、図4において十分に説明している。よって、改めての説明は省略する。
<第3実施形態>
 上記では、第1実施形態として、レジスト下層膜におけるレジスト膜側に増感元素が偏在している態様について説明した。また、第2実施形態として、トップコート膜におけるレジスト膜側に増感元素が偏在している態様について説明した。
 増感効果をより高めるという点では、図7に示されるように、レジスト膜20を、レジスト膜側に増感元素が偏在しているレジスト下層膜10と、レジスト膜側に増感元素が偏在しているトップコート膜30と、で「挟んだ」積層体を構成することが好ましい。そして、この積層体をEUV光による露光や現像に供することが好ましい(第3実施形態)。
 第3実施形態におけるレジスト下層膜に関する具体的態様は、第1実施形態と同様であることができる。
 第3実施形態におけるトップコート膜に関する具体的態様は、第2実施形態と同様であることができる。
第3実施形態におけるレジスト膜に関する具体的態様は、第1実施形態および第2実施形態と同様であることができる。ただし、第3実施形態においては、レジスト膜の上下両方からの二次電子の流入により、レジスト膜の厚みをより大きくしても、十分な感度向上効果を得ることができる。具体的にはレジスト膜の厚さが50nm以下であってもよく、好ましくは1~40nm、より好ましくは10~30nm、特に好ましくは15~30nmとしてもよい。
 第3実施形態については、後掲の実施例4も参照されたい。
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することができる。また、本発明は上述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。
 本発明の実施態様を、実施例および比較例に基づき詳細に説明する。念のため述べておくと、本発明は実施例のみに限定されない。
 以下において、各樹脂膜の膜厚は、特に断らない限り、HORIBA社製のエリプソメータを用いて測定した値である。
<樹脂の合成>
(増感元素を含む樹脂溶液1の合成)
 反応容器中に、以下に説明するHFA-Si 1.92g(4.7mmol)、ゲルマニウムテトラエトキシド(以降、TEOGと記載する場合がある) 2.39g(9.45mmol)、テトラエトキシシラン1.97g(9.45mmol)およびエタノール6.0gを加え、70℃で攪拌した。
 その後、エタノール18g、純水0.48gおよびマレイン酸0.14g(1.2mmol、重縮合反応を進行させるための触媒)の混合溶液を反応溶液中にさらに滴下して更に3時間攪拌した。最終的に得られた反応溶液は均一溶液であった。攪拌終了後、反応容器中にプロピレングリコールモノメチルエーテルアセテート(PGMEA)20gを添加し、50℃でエバポレーター処理した。このようにして、20gの均一溶液(樹脂溶液1)を得た。
 GPC測定により得られた樹脂溶液中の樹脂の重量平均分子量Mwは6500であった。また、この樹脂溶液の固形分濃度は22質量%であった。
(増感元素を含む樹脂溶液2の合成)
 反応容器中に、HFA-Si 1.92g(4.7mmol)、TEOG 1.19g(4.7 mmol)およびエタノール3.0gを加え、70℃で攪拌した。
 その後、エタノール12g、純水0.24gおよびマレイン酸0.05g(0.5mmol、重縮合反応を進行させるための触媒)の混合溶液を反応容器中にさらに滴下して更に3時間攪拌した。最終的に得られた反応溶液は均一溶液であった。攪拌終了後、反応容器中にPGMEA 20gを添加し、50℃でエバポレーター処理した。このようにして、18gの均一溶液(樹脂溶液2)を得た。
 GPC測定により得られた樹脂溶液中の樹脂の重量平均分子量Mwは1660であった。また、この樹脂溶液の固形分濃度は22質量%であった。
 ちなみに、HFA-Siは、以下の化学式で表される化合物である。この化合物自体は公知である。今回は、国際公開第2019/167770号の記載を参考にしてHFA-Siを準備した。
Figure JPOXMLDOC01-appb-C000012
(増感元素を含まない樹脂溶液3の合成)
 反応容器中に、HFA-Si 3.82g(9.4mmol)、テトラエトキシシラン7.83g(37.6mmol)およびエタノール12.0gを加え、70℃で攪拌した。
 その後、反応容器中に、エタノール36g、純水0.96gおよびマレイン酸0.28g(2.4mmol、重縮合反応を進行させるための触媒)の混合溶液を滴下して、さらに3時間攪拌した。最終的に得られた反応溶液は均一溶液であった。
 攪拌終了後、反応容器中にPGMEA 40gを添加し、50℃でエバポレーター処理した。このようにして、40gの樹脂溶液3を得た。
 GPC測定により得られた樹脂溶液中の樹脂の重量平均分子量Mwは4300であった。また、この樹脂溶液の固形分濃度は22質量%であった。
<レジスト下層膜形成用樹脂組成物の調製>
(レジスト下層膜形成用樹脂組成物の調製 その1)
 上記樹脂溶液1、2および3に対し、それぞれPGMEAを添加し、固形分濃度を1質量%に調整した。得られた樹脂溶液を、それぞれレジスト下層膜形成用樹脂組成物1~3とした。
 また、上記樹脂溶液1、2および3に対し、それぞれPGMEAを添加し、固形分濃度を2質量%に調整した。得られた樹脂溶液を、それぞれレジスト下層膜形成用樹脂組成物4~6とした。
(レジスト下層膜形成用樹脂組成物の調製 その2)
 上記レジスト下層膜形成用樹脂組成物4と6を、質量比1:1で混合して、レジスト下層膜形成用樹脂組成物7を得た。また、上記レジスト下層膜形成用樹脂組成物5と6を、質量比1:1で混合して、レジスト下層膜形成用樹脂組成物8を得た。
<増感元素が偏在しているレジスト下層膜の形成>
 以下では、多層塗布により、C>Cであるレジスト下層膜を設けた。具体的な手順は以下の通りとした。
 上記下層膜形成用樹脂組成物3を、ポアサイズ0.22μmのフィルターで濾過し、それぞれ、株式会社SUMCO製の直径4インチ、厚み525μmのシリコンウエハー上に、回転数4000rpmでスピンコートした。その後、シリコンウエハーをホットプレート上で、230℃で3分間加熱した。このようにして、シリコンウエハー上に10nmの膜厚のプレ下層膜3を形成した。
 続いて、下層膜形成用樹脂組成物1を、ポアサイズ0.22μmのフィルターで濾過し、前述のプレ下層膜3上に、回転数4000rpmでスピンコートした。その後、ホットプレート上で、230℃で3分間加熱した。このようにして、プレ下層膜3上に10nmの膜厚の下層膜1を積層した。
 以下、プレ下層膜3と下層膜1とを合わせて、増感元素偏在下層膜1と称する。
 また、下層膜形成用樹脂組成物1のかわりに下層膜形成用樹脂組成物2を用いた以外は上記と同様にして、プレ下層膜3上に10nmの膜厚の下層膜2を積層した。
 以下、プレ下層膜3と下層膜2とを合わせて、増感元素偏在下層膜2と称する。
<増感元素が偏在していないレジスト下層膜の形成>
 下層膜形成用樹脂組成物7を、ポアサイズ0.22μmのフィルターで濾過し、株式会社SUMCO製の直径4インチ、厚み525μmのシリコンウエハー上に、回転数3000rpmでスピンコートした。その後、シリコンウエハーを、ホットプレートを用いて、230℃で3分間加熱した。このようにして、シリコンウエハー上に20nmの膜厚の下層膜7を形成した。
 また、下層膜形成用樹脂組成物7のかわりに下層膜形成用樹脂組成物8を用いた以外は上記と同様にして、シリコンウエハー上に20nmの膜厚の下層膜8を形成した。
<レジスト下層膜上へのレジスト膜の形成>
 日本ゼオン社製のポジ型電子線レジスト組成物ZEP-520Aを、ポアサイズ0.22μmのフィルターで濾過し、それぞれ、上記で形成した金属偏在下層膜1,2および下層膜7、8上に、回転数2000rpmでスピンコートした。その後、ホットプレート上で、150℃で1分間加熱した。このようにして、金属偏在下層膜1,2および下層膜7、8上に、それぞれ膜厚20nmのレジスト層を積層した。
 以上の工程により、積層膜(下層膜+レジスト)1~4を形成した。積層膜(下層膜+レジスト)1~4の構成を下表にまとめた。
Figure JPOXMLDOC01-appb-T000013
 実施例1および2の、積層膜(下層膜+レジスト)1および積層膜(下層膜+レジスト)2では、レジスト下層膜におけるレジスト膜と接する面側に増感元素が偏在している。このことにより、EUV露光時にレジスト下層膜中の増感元素から発生する二次電子が、レジスト下層膜中で失活せずにレジスト膜により多く移動できる。この結果、EUVリソグラフィーにおける感度の一層の向上が図られうる。
 また、実施例1および2のような構成を採用することにより、レジスト下層膜中のトータルの増感元素の量を抑えることができる。増感元素の多くは、半導体ウェハーを汚染する可能性がある異物であるため、増感元素の使用量を少なくできることは好ましい。
 さらに、増感元素は通常のレジスト下層膜形成用樹脂組成物にとっては、経時安定性を悪化させる「異物」であるため、増感元素の使用量を少なくできる実施例1および2は好ましい例と言える。
<トップコート膜形成用樹脂組成物の調製>
(増感元素を含む樹脂溶液9の合成)
 上記増感元素を含む樹脂溶液1の合成と同様の原料、手順で、均一溶液である反応溶液を得た。その後、反応容器中に、4-メチル-2-ペンタノール(以下、MIBCとも表記)20gを添加し、50℃でエバポレーター処理した。このようにして、20gの均一溶液(樹脂溶液9)を得た。
 GPC測定により得られた樹脂溶液中の樹脂の重量平均分子量Mwは6500であった。また、この樹脂溶液の固形分濃度は22質量%であった。
(増感元素を含まない樹脂溶液10の合成)
 上記増感元素を含まない樹脂溶液3の合成と同様の原料、手順で、均一溶液である反応溶液を得た。その後、反応容器中にMIBC40gを添加し、50℃でエバポレーター処理した。このようにして、40gの樹脂溶液10を得た。
 GPC測定により得られた樹脂溶液中の樹脂の重量平均分子量Mwは4300であった。また、この樹脂溶液の固形分濃度は22質量%であった。
(トップコート膜形成用樹脂組成物の調製 その1)
 上記樹脂溶液9および10に対し、それぞれMIBCを添加し、固形分濃度を1質量%に調整した。得られた樹脂溶液を、それぞれトップコート膜形成用樹脂組成物9、10とした。
 また、上記樹脂溶液9および10に対し、それぞれMIBCを添加し、固形分濃度を2質量%に調整した。得られた樹脂溶液を、それぞれトップコート膜形成用樹脂組成物11、12とした。
(トップコート膜形成用樹脂組成物の調製 その2)
 上記トップコート膜形成用樹脂組成物11と12を、質量比1:1で混合して、トップコート膜形成用樹脂組成物13を得た。
<レジスト膜の形成>
 日本ゼオン社製のポジ型電子線レジスト組成物ZEP-520Aを、ポアサイズ0.22μmのフィルターで濾過し、それぞれ、株式会社SUMCO製の直径4インチ、厚み525μmのシリコンウエハー上に、回転数2000rpmでスピンコートした。その後、シリコンウエハーをホットプレート上に置き、150℃で1分間加熱した。このようにして、シリコンウエハー上に20nmの膜厚のレジスト層を形成した。
<増感元素が偏在しているトップコート膜の形成>
 トップコート膜形成用樹脂組成物9を、ポアサイズ0.22μmのフィルターで濾過し、上記で設けたレジスト層上に、回転数4000rpmでスピンコートした。その後、シリコンウエハーをホットプレート上に置き、100℃で3分間加熱した。このようにして、レジスト膜上に10nmの膜厚のプレトップコート膜9を形成した。
 続いて、トップコート膜形成用樹脂組成物10を、ポアサイズ0.22μmのフィルターで濾過し、上記プレトップコート膜9上に、回転数4000rpmでスピンコートした。その後、シリコンウエハーをホットプレート上に置き、100℃で3分間加熱した。このようにして、プレトップコート膜9の上に、さらに、10nmの膜厚のトップコート膜10を積層した。
 以上のようにして得られた積層膜を、積層膜(レジスト+トップコート膜)1とする。
<増感元素が偏在していないトップコート膜の形成>
 トップコート膜形成用樹脂組成物13を、ポアサイズ0.22μmのフィルターで濾過し、上記レジスト層上に、回転数4000rpmでスピンコートした。その後、シリコンウエハーをホットプレート上に置き、100℃で3分間加熱した。このようにして、レジスト膜上に20nmの膜厚のトップコート膜13を積層した。
 以上のようにして得られた積層膜を、積層膜(レジスト+トップコート膜)2とする。
 積層膜(レジスト+トップコート膜)1および2の構成を下表にまとめた。
Figure JPOXMLDOC01-appb-T000014
 実施例3の、積層膜(レジスト+トップコート膜)1では、トップコート膜におけるレジスト膜と接する面側に増感元素が偏在している。このことにより、EUV露光時にトップコート膜中の増感元素から発生する二次電子が、トップコート膜中で失活せずにレジスト膜により多く移動できる。この結果、EUVリソグラフィーにおける感度の一層の向上が図られうる。
 また、実施例3のような構成を採用することにより、トップコート膜中のトータルの増感元素の量を抑えることができる。増感元素の多くは、半導体ウェハーを汚染する可能性がある異物であるため、増感元素の使用量を少なくできることは好ましい。
 さらに、増感元素は通常のトップコート膜形成用樹脂組成物にとっては、経時安定性を悪化させる「異物」であるため、増感元素の使用量を少なくできる実施例3は好ましい例と言える。
<積層膜(レジスト下層膜+レジスト膜+トップコート膜)の形成>
 上掲のトップコート膜形成用樹脂組成物9を、ポアサイズ0.22μmのフィルターで濾過し、上掲の積層膜(下層膜+レジスト)1のレジスト層上に、回転数4000rpmでスピンコートした。その後、シリコンウエハーをホットプレート上に置き、100℃で3分間加熱した。このようにして、レジスト層上に10nmの膜厚のプレトップコート膜9を形成した。
 続いて、上掲のトップコート膜形成用樹脂組成物10を、ポアサイズ0.22μmのフィルターで濾過し、上記プレトップコート膜9上に、回転数4000rpmでスピンコートした。その後、シリコンウエハーをホットプレート上に置き、100℃で3分間加熱した。このようにして、プレトップコート膜9上にさらに10nmの膜厚のトップコート膜10を積層した。
 以上のようにして、積層膜(下層膜+レジスト+トップコート膜)1を形成した(実施例4)。
 実施例4においては、レジスト下層膜におけるレジスト膜が接する面側と、トップコート膜におけるレジスト膜が接する面側と、の両方に増感元素が偏在している。このことにより、EUV露光時に増感元素から発生する二次電子が、レジスト膜の「上側と下側の両方」からレジスト膜に移動する。この結果、EUVリソグラフィーにおける感度のより一層の向上が図られうる。
<追加の樹脂合成、樹脂組成物の調製、評価など>
 以下では、積層体の形成に加え、実際の電子線照射による感度評価を行うことにより、増感元素が偏在することの効果を確認した。
(増感元素を含む樹脂溶液1Bの調製)
 反応容器中に、HFA-Si 5.73g(14.10mmol)、エタノール6.0g、水1.44g、マレイン酸0.30gを加え、50℃で3時間攪拌した。
 その後、70℃に昇温し、TEOG 14.34g(56.70mmol)とエタノール54.0gの混合液を滴下した。24時間70℃で攪拌し、均一溶液である反応溶液を得た。その後、反応容器中にMIBC40gを添加し、50℃でエバポレーター処理した。このようにして、40gの樹脂溶液1Bを得た。
 GPC測定により得られた樹脂溶液中の樹脂の重量平均分子量Mwは8300であった。また、この樹脂溶液の固形分濃度は23質量%であった。
(増感元素を含む樹脂溶液2Bの調製)
 反応容器中にHFA-Si 1.92g(4.7mmol)、エタノール6.0g、純水0.48gおよびマレイン酸0.14g(1.2mmol)を加え、50℃で3時間攪拌した。
 その後、70℃に昇温し、TEOG 2.39g(9.45mmol)、テトラエトキシシラン1.97g(9.45mmol)およびエタノール18.0gの混合液を滴下した。20時間70℃で攪拌し、均一溶液である反応溶液を得た。その後反応容器中にMIBC20gを添加し、50℃でエバポレーター処理した。このようにして、20gの均一溶液(樹脂溶液2B)を得た。
 GPC測定により得られた樹脂溶液中の樹脂の重量平均分子量Mwは5200であった。また、この樹脂溶液の固形分濃度は22質量%であった。
(増感元素を含む樹脂溶液3Bの調製)
 反応容器中にHFA-Si 15.28g(37.6mmol)、エタノール6.0g、純水0.96gおよびマレイン酸0.20g(1.7mmol)を加え、50℃で3時間攪拌した。
 その後、70℃に昇温し、TEOG 1.19g(4.7mmol)、テトラエトキシシラン0.98g(4.7mmol)およびエタノール36.0gの混合液を滴下した。20時間70℃で攪拌し、均一溶液である反応溶液を得た。その後反応容器中にMIBC40gを添加し、50℃でエバポレーター処理した。このようにして、40gの均一溶液(樹脂溶液3B)を得た。
 GPC測定により得られた樹脂溶液中の樹脂の重量平均分子量Mwは3200であった。また、この樹脂溶液の固形分濃度は19質量%であった。
(増感元素を含む樹脂溶液4Bの調製)
 反応容器中にHFA-Si 1.92g(4.7mmol)、TEOG 2.39g(9.45mmol)、テトラエトキシシラン1.97g(9.45mmol)およびエタノール6.0gを加え、70℃で攪拌した。
 その後、エタノール18g、純水0.48gおよびマレイン酸0.14g(1.2mmol、重縮合反応を進行させるための触媒)の混合溶液を反応溶液中にさらに滴下して更に3時間攪拌した。最終的に得られた反応溶液は均一溶液であった。攪拌終了後、反応容器中にMIBC20gを添加し、50℃でエバポレーター処理した。このようにして、20gの均一溶液(樹脂溶液4B)を得た。
 GPC測定により得られた樹脂溶液中の樹脂の重量平均分子量Mwは6500であった。また、この樹脂溶液の固形分濃度は22質量%であった。
(トップコート膜形成用樹脂組成物の調製 その3)
 上記樹脂溶液1B~4Bに対し、MIBCを添加し、固形分濃度を2質量%に調整した。得られた樹脂溶液を、模擬トップコート膜形成用樹脂組成物1B~4Bとした。
(樹脂膜としたときに増感元素が偏在することの確認)
 以下では、上記模擬トップコート膜形成用樹脂組成物を用いて形成した膜において、増感元素が偏在していることを確認した。具体的には、Si基板上に模擬トップコート膜形成用樹脂組成物を製膜して、X線反射率測定により膜の密度を測定した。
 模擬トップコート膜形成用樹脂組成物1B~4Bを、ポアサイズ0.22μmのフィルターで濾過し、シリコンウエハー(株式会社SUMCO製の直径4インチ、厚み525μmのシリコンウエハー)上に、回転数1000rpmでスピンコートした。その後、シリコンウエハーをホットプレート上に置き、100℃で3分間加熱した。このようにして、シリコンウエハー上にトップコート膜に見立てた50nmの膜厚の樹脂膜1b~4bを形成した。
 そして、リガク社製X線反射率測定装置Smartlabにて、樹脂膜1b~4bの密度を測定した。X線反射率測定の条件は以下の通りとした。
  入射X線波長:0.15406nm(CuKα1線)
  出力:45kV、200mA
  測定範囲:0.0~2.0°
  測定ステップ:0.002°
 得られた生データを、装置に付属のソフトウェア「SmartLab Studio II」でポリマー組成を参考に解析することにより、樹脂膜の上層部分の密度(上層密度)と、樹脂膜の下層部分の密度(下層密度)を求めた。
 X線反射率測定の結果を下表に示す。
 下表に示されるように、樹脂膜1b~3bでは、膜の上層部分の密度が相対的に小さく、膜の下層部分の密度が相対的に大きいことが確認された。密度が相対的に大きいことは、増感元素であるゲルマニウムが多量に存在していることを示している。つまり、樹脂膜1b~3bでは、レジスト膜と近接しているトップコート膜の下部に増感元素が多く分布することになり、効率的にレジスト膜へ二次電子を届けることができると考えられる。
 なお、樹脂膜1b~3bでゲルマニウムが偏在した理由は、樹脂溶液1B~3Bの調製にあたって、反応容器内でまずはHFA-Siのみを加熱し、その後にTEOGを容器内に加えて加熱、という操作により、前述の(I)および(II)が溶剤に溶解した樹脂溶液が得られたためと考えられる((I)が膜上部に、(II)が膜下部に偏在)。
Figure JPOXMLDOC01-appb-T000015
(積層膜の形成:レジスト膜の形成およびトップコート膜の形成)
 日本ゼオン社製のポジ型電子線レジスト組成物ZEP-520Aを、ポアサイズ0.22μmのフィルターで濾過した。この組成物を、株式会社SUMCO製の直径4インチ、厚み525μmのシリコンウエハー上に、回転数2000rpmでスピンコートした。その後、ホットプレート上で、シリコンウエハーを150℃で1分間加熱した。このようにしてレジスト膜1を作製した。
(トップコート膜の形成)
 樹脂溶液1B~4Bを、MIBCで1質量%に希釈して、ポアサイズ0.22μmのフィルターで濾過した。この溶液を、上記レジスト膜1と同様の手法で得たレジスト膜上に、回転数3000rpmでスピンコートした。そして、ホットプレート上で、シリコンウエハーを100℃で3分間加熱した。このようにして、レジスト膜上に5nmの膜厚のトップコート膜1b'~4b'を積層した。以上のようにして、積層膜を形成した。
 念のため述べておくと、上掲したX線反射率測定の結果から、トップコート膜1b'、2b'および3b'においては、増感元素であるゲルマニウムが膜の下部に相対的に多く存在しているといえる。
(感度向上の評価:電子線(EB)露光試験)
 積層膜に対し、エリオニクス製ELS-G100-SP(100keV)を用いて、電子線を照射した。具体的には、電子線照射量を5μC/cmから250μC/cmまで5μC/cm刻みで変えながら、電子線の照射位置も変えて露光した。電子線を照射した積層膜を酢酸ブチルに30秒浸漬し現像した。
 現像後に、電子線照射箇所に該当する部分の積層膜の膜厚を、ブルカー製Dektak-XT-Aで測定した。そして、膜厚がゼロになる電子線照射量を必要照射量Ethとした。Ethが小さいほど高感度と言える。
 結果を含む各種情報をまとめて下表に示す。
 なお、比較のため、トップコート膜を形成していないレジスト膜1についても上記評価を行った。
Figure JPOXMLDOC01-appb-T000016
 電子線照射試験の結果、レジスト膜と接するトップコート膜下部に増感元素(Ge)が多く存在しているほうが、高感度化することが理解される。これは、トップコート膜下部に増感元素が多く存在することにより、発生した二次電子がレジスト膜に届きやすくなるためと考えられる。
 ちなみに、上記参考例では、トップコート膜4b'内に増感元素が含まれるため、比較例に比べれば高感度化している。しかし、トップコート膜下部に増感元素が偏在しているわけではないので、実施例に比べると高感度化の程度は小さい。
 また、上記表4においては、トップコート膜3b'をレジスト膜上に形成したほうが、トップコート膜2b'をレジスト膜上に形成したものよりも高感度であった。このことは、表3において、樹脂膜2bの下層密度>樹脂膜3bの下層密度、となっていることと対応していないようにも思われる。
 しかし、実際の感度向上の程度は、トップコート膜の下層部に存在する増感元素の量のみで決まるのではなく、トップコート膜全体における増感元素の分布なども関係してくると考えるのが自然である。事実、上層密度と下層密度の「差」は、樹脂膜3bのほうが樹脂膜2bよりも大きいことから、トップコート膜2b'とトップコート膜3b'では、トップコート膜全体における増感元素の分布の仕方が異なっていると言える。そして、このことが表4に記載の感度として表れている可能性がある。
 つまり、トップコート膜下部に増感元素が偏在することは、感度上昇の支配的因子ではあるが、それ以外の要素も感度に関係しうる。
 ちなみに、トップコート膜1b'をレジスト膜上に形成した実施例では、そもそもトップコート膜1b'内のGeの絶対量が多く、さらにGeが下部に偏在している効果が相まって、最も高感度化したと考えられる。
 念のため述べておくと、上記考察は、本発明を限定的に解釈することを意味しない。
 上記は電子線照射による評価であるが、電子線照射におけるレジストの感度とEUV光照射におけるレジストの感度には相関関係があることが報告されている(例えば放射線化学第107号(2019))。よって、上記のような感度向上効果は、EUV光による露光においても得られると考えられる。
 この出願は、2022年6月14日に出願された日本出願特願2022-095987号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
1   基板
10  レジスト下層膜
20  レジスト膜
30  トップコート膜
50  フォトマスク
60  活性光線(好ましくはEUV光)
20B パターン

Claims (20)

  1.  基板上に、レジスト膜およびトップコート膜をこの順に設けて積層体を得る積層工程と、
     前記積層体における前記トップコート膜の側から活性光線を照射する露光工程と、
     現像液を用いて少なくとも前記レジスト膜の一部を除去する現像工程と、
    を含む電子デバイス製造方法であって、
     前記トップコート膜の少なくとも一部は、金属元素、半金属元素およびヨウ素からなる群より選ばれる1以上の増感元素を含み、
     前記トップコート膜の前記レジスト膜側の面における前記増感元素の濃度をC'とし、前記トップコート膜の前記レジスト膜とは反対側の面における前記増感元素の濃度をCとしたとき、C'>Cである、電子デバイス製造方法。
  2.  請求項1に記載の電子デバイス製造方法であって、
     前記増感元素は、Ge、Mo、Hf、Zr、Ta、W、Cr、Co、Fe、Pt、SnおよびSbからなる群より選ばれる1以上を含む、電子デバイス製造方法。
  3.  請求項1または2に記載の電子デバイス製造方法であって、
     前記増感元素は、Ge、MoおよびWからなる群より選ばれる1以上を含む、電子デバイス製造方法。
  4.  請求項1または2に記載の電子デバイス製造方法であって、
     C'は1~20at%である、電子デバイス製造方法。
  5.  請求項1または2に記載の電子デバイス製造方法であって、
     Cは0~10at%である、電子デバイス製造方法。
  6.  請求項1または2に記載の電子デバイス製造方法であって、
     前記トップコート膜は、前記増感元素を有する樹脂を含む、電子デバイス製造方法。
  7.  請求項1または2に記載の電子デバイス製造方法であって、
     前記トップコート膜は、樹脂と、前記樹脂とは別成分として前記増感元素を有する添加成分と、を含む、電子デバイス製造方法。
  8.  請求項1または2に記載の電子デバイス製造方法であって、
     前記活性光線がEUV光である、電子デバイス製造方法。
  9.  請求項1または2に記載の電子デバイス製造方法であって、
     前記トップコート膜の厚みが1~20nmである、電子デバイス製造方法。
  10.  請求項1または2に記載の電子デバイス製造方法であって、
     前記現像液が有機溶剤系現像液である、電子デバイス製造方法。
  11.  請求項1または2に記載の電子デバイス製造方法であって、
     前記トップコート膜は、少なくとも、
      (I)以下一般式(4)で表される構成単位を有するシロキサンオリゴマー(酸化物ネットワーク中に金属元素、半金属元素およびヨウ素からなる群より選ばれる1以上の増感元素を含んでもよいがその割合はモル比でSi元素の1/2以下)と、
      (II)金属元素、半金属元素およびヨウ素からなる群より選ばれる1以上の増感元素を含むモノマー、および、以下一般式(4-A)で表される構成単位を有するオリゴマー(前記増感元素以外にSi元素を含んでもよいがその割合はモル比で増感元素の同量以下)、からなる群より選ばれる少なくとも1つと
    が溶剤に溶解したトップコート膜形成用樹脂組成物を用いて設けられる、電子デバイス製造方法。
       [(R10(R11(OR12SiOw/2] (4)
       [(RMOq/2] (4-A)
     一般式(4)中、
     R10は、複数存在する場合はそれぞれ独立に、水素原子、ヒドロキシ基、ハロゲン原子、アルキル基、脂環式基、アリール基またはアルコキシ基、であり、
     R11は、複数存在する場合はそれぞれ独立に、水素原子、アルキル基、脂環式基またはアリール基であり、
     R12は、複数存在する場合はそれぞれ独立に、水素原子、アルキル基、脂環式基またはアリール基であり、
     tは1以上3以下の数であり、uは0以上2以下の数であり、vは0以上3未満の数であり、wは0超3以下の数であり、t+u+v+w=4である。
     一般式(4-A)中、
     Mは、金属元素、半金属元素およびヨウ素からなる群より選ばれる1以上の増感元素であり、
     Rは、複数存在する場合はそれぞれ独立に、水素原子、ヒドロキシ基、ハロゲン原子、アルキル基、脂環式基、アルコキシ基またはアリール基であり、
     pは0以上6未満の数であり、qは0超6以下の数であり、p+qは3~6である。
  12.  基板と、レジスト膜と、トップコート膜と、をこの順に備える積層体であって、
     前記トップコート膜の少なくとも一部は、金属元素、半金属元素およびヨウ素からなる群より選ばれる1以上の増感元素を含み、
     前記トップコート膜の前記レジスト膜側の面における前記増感元素の濃度をC'とし、前記トップコート膜の前記レジスト膜とは反対側の面における前記増感元素の濃度をCとしたとき、C'>Cである、積層体。
  13.  請求項12に記載の積層体であって、
     前記増感元素は、Ge、Mo、Hf、Zr、Ta、W、Cr、Co、Fe、Pt、SnおよびSbからなる群より選ばれる1以上を含む、積層体。
  14.  請求項12または13に記載の積層体であって、
     前記増感元素は、Ge、MoおよびWからなる群より選ばれる1以上を含む、積層体。
  15.  請求項12または13に記載の積層体であって、
     C'は1~20at%である、積層体。
  16.  請求項12または13に記載の積層体であって、
     Cは0~10at%である、積層体。
  17.  請求項12または13に記載の積層体であって、
     前記トップコート膜は、前記増感元素を有する樹脂を含む、積層体。
  18.  請求項12または13に記載の積層体であって、
     前記トップコート膜は、樹脂と、前記樹脂とは別成分として前記増感元素を有する添加成分と、を含む、積層体。
  19.  請求項12または13に記載の積層体であって、
     前記トップコート膜の厚みが1~20nmである、積層体。
  20.  請求項12または13に記載の積層体であって、
     前記トップコート膜は、少なくとも、
      (I)以下一般式(4)で表される構成単位を有するシロキサンオリゴマー(酸化物ネットワーク中に金属元素、半金属元素およびヨウ素からなる群より選ばれる1以上の増感元素を含んでもよいがその割合はモル比でSi元素の1/2以下)と、
      (II)金属元素、半金属元素およびヨウ素からなる群より選ばれる1以上の増感元素を含むモノマー、および、以下一般式(4-A)で表される構成単位を有するオリゴマー(前記増感元素以外にSi元素を含んでもよいがその割合はモル比で増感元素の同量以下)、からなる群より選ばれる少なくとも1つと
    を含む、積層体。
       [(R10(R11(OR12SiOw/2] (4)
       [(RMOq/2] (4-A)
     一般式(4)中、
     R10は、複数存在する場合はそれぞれ独立に、水素原子、ヒドロキシ基、ハロゲン原子、アルキル基、脂環式基、アリール基またはアルコキシ基、であり、
     R11は、複数存在する場合はそれぞれ独立に、水素原子、アルキル基、脂環式基またはアリール基であり、
     R12は、複数存在する場合はそれぞれ独立に、水素原子、アルキル基、脂環式基またはアリール基であり、
     tは1以上3以下の数であり、uは0以上2以下の数であり、vは0以上3未満の数であり、wは0超3以下の数であり、t+u+v+w=4である。
     一般式(4-A)中、
     Mは、金属元素、半金属元素およびヨウ素からなる群より選ばれる1以上の増感元素であり、
     Rは、複数存在する場合はそれぞれ独立に、水素原子、ヒドロキシ基、ハロゲン原子、アルキル基、脂環式基、アルコキシ基またはアリール基であり、
     pは0以上6未満の数であり、qは0超6以下の数であり、p+qは3~6である。
PCT/JP2023/021691 2022-06-14 2023-06-12 電子デバイス製造方法および積層体 WO2023243586A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022095987 2022-06-14
JP2022-095987 2022-06-14

Publications (1)

Publication Number Publication Date
WO2023243586A1 true WO2023243586A1 (ja) 2023-12-21

Family

ID=89191250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/021691 WO2023243586A1 (ja) 2022-06-14 2023-06-12 電子デバイス製造方法および積層体

Country Status (1)

Country Link
WO (1) WO2023243586A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004348133A (ja) * 2003-05-21 2004-12-09 Asml Netherlands Bv Euvリソグラフィ用基板塗被方法およびフォトレジスト層を有する基板
JP2021508071A (ja) * 2017-12-19 2021-02-25 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation 極紫外線(euv)リソグラフィにおいて感度を向上させるための金属含有トップ・コートを用いるパターニング材料積層膜

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004348133A (ja) * 2003-05-21 2004-12-09 Asml Netherlands Bv Euvリソグラフィ用基板塗被方法およびフォトレジスト層を有する基板
JP2021508071A (ja) * 2017-12-19 2021-02-25 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation 極紫外線(euv)リソグラフィにおいて感度を向上させるための金属含有トップ・コートを用いるパターニング材料積層膜

Similar Documents

Publication Publication Date Title
JP5505726B2 (ja) 複合樹脂組成物
JP6786391B2 (ja) ハードマスクおよび充填材料として安定な金属化合物、その組成物、およびその使用方法
JP4913129B2 (ja) 低屈折率膜形成用コーティング組成物及びこれから製造された膜
EP2657240A1 (en) Silicon compound, silicon-containing compound, composition for forming resits underlayer film containing the same and patterning process
TWI267703B (en) Radiation-curing resin composition and preservation method thereof, forming method of curing film, forming method and operating method of pattern, electronic device and optical wave guide
JP5886420B2 (ja) ラジカル架橋性基を有するポリシロキサン組成物
FI129480B (en) Silanol-containing organic-inorganic hybrid coatings for high-resolution patterning
WO2011040248A1 (ja) ポジ型感光性樹脂組成物、それを用いた硬化膜および光学デバイス
TW201245889A (en) Multilayer resist process pattern forming method and inorganic film forming composition for multilayer resist process
WO2017188047A1 (ja) 樹脂組成物、その硬化膜およびその製造方法ならびに固体撮像素子
TWI588610B (zh) 用於裝置製造的可光圖案化及可顯影之倍半矽氧烷樹脂
KR102257408B1 (ko) 복합 수지 조성물 및 그 수지 조성물의 제조 방법
JP6569211B2 (ja) 感光性樹脂組成物、それを硬化させてなる硬化膜ならびにそれを具備する発光素子および固体撮像素子
JP6172150B2 (ja) ポジ型感光性樹脂組成物、それを硬化させてなる硬化膜およびそれを具備する光学デバイス
WO2023243586A1 (ja) 電子デバイス製造方法および積層体
JP2009186677A (ja) 感光性樹脂組成物、シリカ系被膜の形成方法、及びシリカ系被膜を備える装置及び部材
WO2023243579A1 (ja) 電子デバイス製造方法および積層体
JP6022870B2 (ja) 感光性樹脂組成物
JP2008122916A (ja) 感光性樹脂組成物、シリカ系被膜の形成方法、及びシリカ系被膜を備える装置及び部材
WO2023243585A1 (ja) レジスト上層膜形成用樹脂組成物、パターン形成方法および電子デバイス製造方法
TW202414094A (zh) 電子器件製造方法及堆疊體
US20220162391A1 (en) Functional hydrogen silsesquioxane resins and the use thereof
WO2023243593A1 (ja) 樹脂組成物、硬化膜の製造方法、多層膜付き基板、パターン付き基板の製造方法、パターン硬化膜の製造方法および樹脂組成物の製造方法
TW202414093A (zh) 電子器件製造方法及堆疊體
TW202409733A (zh) 光阻上層膜形成用樹脂組成物、圖案形成方法及電子設備製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23823876

Country of ref document: EP

Kind code of ref document: A1