TWI267703B - Radiation-curing resin composition and preservation method thereof, forming method of curing film, forming method and operating method of pattern, electronic device and optical wave guide - Google Patents

Radiation-curing resin composition and preservation method thereof, forming method of curing film, forming method and operating method of pattern, electronic device and optical wave guide Download PDF

Info

Publication number
TWI267703B
TWI267703B TW093130322A TW93130322A TWI267703B TW I267703 B TWI267703 B TW I267703B TW 093130322 A TW093130322 A TW 093130322A TW 93130322 A TW93130322 A TW 93130322A TW I267703 B TWI267703 B TW I267703B
Authority
TW
Taiwan
Prior art keywords
film
component
coating film
curable composition
radiation curable
Prior art date
Application number
TW093130322A
Other languages
Chinese (zh)
Other versions
TW200513802A (en
Inventor
Haruaki Sakurai
Kouichi Abe
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Publication of TW200513802A publication Critical patent/TW200513802A/en
Application granted granted Critical
Publication of TWI267703B publication Critical patent/TWI267703B/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/38Treatment before imagewise removal, e.g. prebaking
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0757Macromolecular compounds containing Si-O, Si-C or Si-N bonds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S430/00Radiation imagery chemistry: process, composition, or product thereof
    • Y10S430/1053Imaging affecting physical property or radiation sensitive material, or producing nonplanar or printing surface - process, composition, or product: radiation sensitive composition or product or process of making binder containing
    • Y10S430/1055Radiation sensitive composition or product or process of making
    • Y10S430/106Binder containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S430/00Radiation imagery chemistry: process, composition, or product thereof
    • Y10S430/1053Imaging affecting physical property or radiation sensitive material, or producing nonplanar or printing surface - process, composition, or product: radiation sensitive composition or product or process of making binder containing
    • Y10S430/1055Radiation sensitive composition or product or process of making
    • Y10S430/114Initiator containing
    • Y10S430/115Cationic or anionic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S430/00Radiation imagery chemistry: process, composition, or product thereof
    • Y10S430/1053Imaging affecting physical property or radiation sensitive material, or producing nonplanar or printing surface - process, composition, or product: radiation sensitive composition or product or process of making binder containing
    • Y10S430/1055Radiation sensitive composition or product or process of making
    • Y10S430/114Initiator containing
    • Y10S430/12Nitrogen compound containing

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials For Photolithography (AREA)
  • Paints Or Removers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A radiation-curing resin composition is provided, containing the following components (a): a siloxane resin, (b): a photo acid generator or a photo base generator, (c): a solvent to solve the component (a) and, (d): curing-accelerating catalyst.

Description

I26770?493Opitd?c 七、 指定代表圖: (一) 本案指定代表圖爲:圖1。 (二) 本代表圖之元件符號簡單說明: 1 :玻璃基板 2 :上塗層 3 :傳導層 4 :源極 5 :汲極 6 :閘氧化膜 7 :閘電極 8:第一層間絕緣膜 9 :金屬導線 10 :第二層間絕緣膜 11:透明電極 八、 本案若有化學式時,請揭示最能顯示發明特徵 的化學式: R nSiX4_n ··· (1) (式中,R1爲表示氫原子或氟原子,或是含有硼原子、 氮原子、鋁原子、磷原子、矽原子、鍺原子或鈦原子的基, 或是碳原子數1〜20之有機基;X表示爲加水分解性基;η 表示〇〜2的整數,η爲2時,各個R1可以爲相同、也可以 爲不同,η爲〇〜2時,各個X可以爲相同、也可以爲不同。) 1267703侧 pitdoc 九、發明說明: 【發明所屬之技術領域】 本發明是關於一種放射線硬化性合成物、其保存方 法、硬化膜形成方法、圖案形成方法、圖案使用方法、電 子零配件和光導波管。 【先前技術】 習知,作爲LSI及PDP等所使用之絕緣膜,從耐熱性 及電性可靠度等優良的觀點來看,大多是採用以CVD法成 膜之二氧化矽膜、以塗佈法成膜的旋塗式玻璃(Spin 〇n glass,SOG)膜及無機SOG膜。然而,在習知的絕緣膜中要 直接形成導線溝渠或介層窗洞是不可能的,通常是在絕緣 膜上將光阻層圖案化後,利甩電漿進行乾蝕刻處理或利用 藥劑進行濕蝕刻處理,接著經過光阻除去製程及洗淨製程 以形成圖案。有鑑於此,若是在耐熱性、電的可靠度、透 明性等優良之絕緣膜材料中賦予感光特性的話,就不需要 上述製程中爲必要的光阻材料,而能夠省略以電漿進行乾 蝕刻處理或以藥劑進行濕蝕刻處理、光阻除去製程及洗淨 製程等。 近年來,耐熱性、電的可靠性、透明性等優良之放射 線硬化性聚矽氧烷材料等已被提出。舉例來說,專利文獻1 及專利文獻2中揭露一種由除去水及觸媒的鹼可溶性矽氧 烷聚合物與光酸產生劑所構成之感光性樹脂組成物。而 且,專利文獻3及專利文獻4中揭露含有聚矽氧烷及光酸 產生劑的感光性聚矽氧烷組成物。此外’專利文獻5揭露 I26770?4930pil.doc 由加水分解性矽烷化合物、光酸產生劑及酸擴散抑制劑所 構成之放射線硬化性組成物。 專利文獻1:日本專利特開平6-148895號公報 專利文獻2 :日本專利特開平10-246960號公報 專利文獻3 :日本專利特開平2000_181069號公報 專利文獻4:日本專利特開平2002-72502號公報 專利文獻5 :日本專利特開平2001-288364號公報 【發明內容】 然而,本發明者對於這樣習知的使用賦予感光特性之 絕緣膜材料的圖案進行詳細的檢討,使用專利文獻1及專 利文獻2所揭露的由除去水及勝媒的鹼可溶性矽氧烷聚合 物與光酸產生劑所構成之感光性樹脂組成物,任一個都需 要大量的曝光量,而證明其大量生產性不佳。而且,使用 專利文獻3及專利文獻4揭露之含有聚矽氧烷及光酸產生 劑的感光性聚矽氧烷組成物,證明曝光量是較少,但是曝 光後需要進行浸漬於純水中或加濕處理等,而使得製程變 得較爲繁雜,且難以得到高圖案準確度。另一方面,使用 專利文獻5揭露之由加水分解性矽烷化合物、光酸產生劑 及酸擴散抑制劑所構成之放射線硬化性組成物,藉由酸抑 制擴散劑抑制因放射線所生成之酸的擴散,可以提高矽烷 化合物的圖案準確度。但是,由於酸擴散抑制劑會因酸而 失去活性(被酸中和),因此在光酸產生劑的量少的情況下或 曝光量少的情況下,恐怕硬化性會降低,且會造成圖案準 確度降低。相反的,爲了追求圖案準確度的提升而使曝光 6 1267703— 量變大,而證明其大量生產性不佳。 本發明有鑑於上述事項,而提供一種即使曝光量較少 也可以得到圖案準確度優良之硬化物的放射線硬化性組成 物、其保存方法、硬化膜形成方法及圖案形成方法,同時 也提供使用其之圖案使用方法、電子零件以及光導波管。 利用放射線使酸產生以形成圖案時,在習知的技術 中,爲了提昇圖案準確度,以酸擴散抑制劑使產生的酸失 去活性。如此’失去活性的部分,爲了產生過剩的酸而需 要增加曝光量,於是要使圖案準確度提昇且曝光量降低兩 者並存是很困難的。 在抑制酸的擴散中,可以考慮藉由降低曝光量使產生 的酸的量降低、降低曝光後之曝光後烘烤製程(PEB)的溫度 或者不進行PEB等方法取代以酸擴散抑制劑使產生的酸失 去活性的方法。但是,過去以這些方法爲基礎的技術思想 未受到重視。而且,適用於這些方法的放射線硬化性組成 物也是不被重視的。適用於上述方法的放射線硬化性組成 物不使用酸擴散抑制劑可以形成精密度良好的圖案。然 而,使用習知的放射線硬化性組成物進行圖案化時,由於 產生的酸的量減少而無法充分的進行硬化。而且,降低曝 光後之曝光後烘烤製程(PEB)的溫度,或者不進行PEB,同 樣的無法進行曝光部分的硬化。結果,無法準確度良好的 形成圖案。 本發明者,經過特意硏究的結果,發現含有特定成分 之放射線硬化性組成物、硬化膜形成方法及圖案形成方法 I2677〇3930pi 可解決習知的種種問題,而完成本發明。 本發明提供一種放射線硬化性組成物,含有(a )矽氧烷 樹脂、⑻光酸產生劑或光鹼產生劑、⑷可溶解⑷成分的溶 劑以及(d)硬化促進觸媒。 而且,本發明提供一種上述放射線硬化性組成物,其 中矽氧烷樹脂含有由下述化學式(1)所表示的化合物經加水 分解聚縮合所得到之樹脂: R'nSiX^n - (1) (式中,R1爲表示氫原子或氟原子,或是含有硼原子、 氮原子、鋁原子、磷原子、矽原子、鍺原子或鈦原子的基, 或是碳原子數1〜20之有機基;X表示爲加水分解性基;η 表示0〜2的整數,η爲2時,各個R1可以爲相同、也可以 爲不同,η爲0〜2時,各個X可以爲相同、也可以爲不同。) 而且,本發明提供一種上述放射線硬化性組成物,其 中硬化促進觸媒包括鋤鹽。鍚鹽不但能提高硬化物的電特 性和機械強度,而且還能提高合成物的穩定性,因此是理 想的硬化促進觸媒。 本發明提供一種上述放射線硬化性組成物,其中硬化 促進觸媒還可爲四級銨鹽。藉由使用四級銨鹽作爲效果促 進觸媒更可以發揮提昇上述電特性及機械強度之效果及提 昇組成物的安定性之效果。 本發明提供一種硬化膜形成方法,包括於基板上塗佈 並乾燥上述放射線硬化性組成物以得到塗膜之製程及曝光 該塗膜的製程,且在曝光的製程之後不加熱塗膜。藉由此 126770?— 種方法,可以充分的抑制因加熱所造成之酸的擴散及生產 成本的增加,且所得到的硬化膜的圖案準確度也夠良好。 本發明提供一種硬化膜形成方法,包括於基板上塗佈 並乾燥上述放射線硬化性組成物以得到塗膜之製程、曝光 該塗膜的製程以及在曝光的製程之後進行加熱塗膜的製 程。 而且,本發明提供一種硬化膜形成方法,在上述加熱 製程中,把塗膜加熱到70〜110°C。採用這種方法更能抑制 加熱時酸的擴散。 而且,本發明提供一種硬化膜形成方法,在上述曝光 製程中,利用5〜100 mJ/cm2的光量的光照射以曝光該塗 膜。把光量控制在上述範圍內,曝光控制很容易,可提高 生產效率。 本發明提供一種圖案形成方法,包括於基板上塗佈並 乾燥上述放射線硬化性組成物以得到塗膜之製程、透過罩 幕曝光該塗膜的製程、在曝光的製程之後利用顯影移除塗 膜的未曝光部分的製程,且在曝光的製程之後不加熱塗 膜。藉由此種方法,可以充分的抑制因加熱所造成之酸的 擴散及生產成本的增加,且所得到的硬化膜的圖案準確度 也夠良好。而且,這裡的「加熱」由於是指在上述除去製 程之前的階段中的加熱,因此如果在上述除去製程之後的 話,也可以進行加熱。 本發明提供一種圖案形成方法,包括於基板上塗佈並 乾燥上述放射線硬化性組成物以得到塗膜之製程、透過罩 1267703琴doc 幕曝光該塗膜的製程、在曝光的製程之後加熱塗膜的製程 以及在加熱的製程之後利用顯影移除塗膜的未曝光部分的 製程。 而且,本發明提供一種硬化膜形成方法,在上述加熱 製程中,把塗膜加熱到70〜110它。採用這個方法更能^ 制加熱時酸的擴散。 而且,本發明提供一種硬化膜形成方法,在上述曝光 製程時,利用5〜100 mJ/cm2的光量的光照射以曝光該塗 膜。把光量控制在上述範圍內,曝光控制很容易,可提高 生產效率。 而且,本發明提供一種硬化膜形成方法,在上述除去 製程中,使用氫氧化四甲基銨水溶液作爲顯影液。如此, 就可以充分的抑制顯影時電子零件受到鹼金凰污染。 本發明提供一種圖案使用方法,使用由上述圖案形成 方法所形成之圖案作爲光阻罩幕。 本發明提供一種電子零件,具備有由上述圖案形成方 法所形成之圖案。 本發明提供一種光導波管,具備有由上述圖案形成方 法所形成之圖案。 本發明提供一種放射線硬化性組成物的保存方法,將 上述放射線硬化性組成物以〇°C以下的溫度保存。藉由使此 組成物以〇°C以下的溫度保存,其與以高於〇°C的溫度保存 的情況相比,保存安定性會變的較優良。 如果採用具有此種成分組成之放射線硬化性組成物、 I267M一 使用此放射線硬化性組成物之硬化膜形成方法及圖案形成 方法、以及放射線硬化性組成物的保存方法的話,即使曝 光量較少,也可以形成圖案準確度優良之硬化物,而能夠 解決習知無法達成使少曝光量與優良圖案準確度兩者並存 之問題。 在本發明中,能夠達成此種習知無法達成之效果的機 制之詳細解釋仍然是不清楚的。但是,本發明者們判斷本 發明可以達成不需要使用酸擴散抑制劑抑制所產生之酸的 擴散,而且因爲使用非質子性溶劑作爲促進硬化之溶劑而 降低硬化所需要的曝光量。 而且,更含有作爲添加劑的硬化促進觸媒,而可以更 有效的發揮上述的效果。這表示以較少的曝光量,而可以 充分的硬化放射線硬化性組成物的原因。 圖案準確度的提昇判斷是使用非質子性溶劑作爲促進 硬化之溶劑及在酸擴散之前引起放射線硬化性組成物的硬 化反應所導致的結果。藉由更含有作爲添加劑的硬化促進 觸媒,而可以更提昇圖案之準確度。這可以推斷爲在酸擴 散之前,以更早的時間引起硬化反應。此種機制與習知所 謂藉由酸擴散抑制劑使產生的酸失去活性(中和)而使圖案 準確度提昇的機制並不相同。在本發明中,根據與習知不 同的上述機制,而判斷能夠使提昇圖案準確度與減少曝光 量兩者並存。 本發明之放射線硬化性組成物、其保存方法、硬化膜 形成方法及圖案形成方法,即使曝光量較少也可以得到圖 11 I2677〇393〇Pif.d〇c 案準確度優良之硬化物。而且本發明之圖案使用方法、電 子零件以及光導波管也是有用的。 爲讓本發明之上述和其他目的、特徵和優點能更明顯 易懂,下文特舉較佳實施例,並配合所附圖式,作詳細說 明如下。 【實施方式】 以下,詳細的說明本發明之實施型態。 〈⑷成分〉 (a)成分爲矽氧烷樹脂,可以使用習知的樹脂,較佳的 是在樹脂的末端或側鏈等上具有0H基。這是因爲可更進 一步的進行爲了使放射線硬化性組成物硬化之加水分解聚 縮合反應。 而且,從對溶劑的溶解性、機械特性、成形性等的觀 點來看,矽氧烷樹脂的重量平均分子量(Mw)以500〜 1000000爲佳,以500〜500000爲較佳,以500〜100000 爲更佳,以500〜10000爲特隹,以500〜5000爲極佳。此 重量平均分子量未滿500,硬化物的成膜性會有變差的傾 向;此重量平均分子量稱過1000000,與溶劑的相溶性會有 變低的傾向。在本說明書中,重量平均分子量是由凝膠滲 透層析儀(以下稱爲「GPC」)測定,且使用標準聚苯乙烯的 檢量線換算而得到的。 重量平均分子量(Mw)例如是以下述之條件利用GPC 測定得到的。 試料:放射線硬化性組成物10微升 12 1267703— 標準聚苯乙烯:東售股份有限公司製標準聚苯乙烯(分 子量:190000、19700、9100、2890、578、474、370、266) 檢測器:股份有限公司日立製作所公司製RI-監測器, 商品名「L-3000」 稹分器:股份有限公司日立製作所公司製GPC積分 器,商品名「D-2200」 泵:股份有限公司日立製作所公司製,商品名「L-6000」 除氣裝置:昭和電工股份有限公司製,商品名「Shodex DEGAS」 層析柱:日立化成工業股份有限公司製,依照此順序 連結使用商品名「GL-R440」、「GL-R430」、「GL-R420」 溶離液:四氫呋喃(THF) 測定溫度:23°C 流速:1.75mL/分 測定時間:45分 作爲較佳的矽氧烷樹脂,例如是以下述化學式(1)所表 示的化合物經加水分解聚縮合所得到之樹脂: R'nSiX“…(1) 作爲較佳的矽氧烷樹脂,例如是以下述化學式(1)所表 示的化合物爲必要成分經加水分解聚縮合所得到之樹脂。 在此式中,R1爲表示氫原子或氟原子,或是含有硼原子、 氮原子、鋁原子、磷原子、矽原子、鍺原子或鈦原子的基, 或是碳原子數1〜20之有機基;X表示爲加水分解性基;η 表示0〜2的整數,η爲2時,各個R1可以爲枏同、也可以 13 I26770?— 爲不同,n爲0〜2時,各個X可以爲相同、也可以爲不同。 就加水分解性基X而言,例如是烷氧基、鹵素原子、 乙醯氧基、異氰酸酯基、羥基等。其中,從組成物本身的 液體狀安定性及塗佈特性等觀點來看,較佳是烷氧基。 加水分解性基X爲烷氧基時,作爲化學式(1)的化合物 (烷氧基矽烷),例如是四烷氧基矽院、三烷氧基砂烷、二有 機基一院氧基砂院等。 作爲四烷氧基矽烷,例如是四甲氧基矽烷、四乙氧基 矽烷、四正丙氧基矽烷、四異丙氧基矽烷、四正丁氧基矽 烷、四另丁氧基矽烷、四特丁氧基矽烷、四苯氧基矽烷等。 作爲三烷氧基矽烷,例如是三甲氧基矽烷、三乙氧基 矽烷、三丙氧基矽烷、氟代三甲氧基矽烷、氟代三乙氧基 矽烷、甲基三甲氧基矽烷、甲基三乙氧基矽烷、甲基三正 丙氧基矽烷、甲基三異丙氧基矽烷、甲基三正丁氧基矽烷、 甲基三異丁氧基矽烷、甲基三特丁氧基矽烷、甲基三苯氧 基矽烷、乙基三甲氧基矽烷、乙基三乙氧基矽烷、乙基三 正丙氧基矽烷、乙基三異丙氧基矽烷、乙基三正丁氧基矽 烷、乙基三異丁氧基矽烷、乙基三特丁氧基矽烷、乙基三 苯氧基矽烷、正丙基三甲氧基矽烷、正丙基三乙氧基矽烷、 正丙基三正丙氧基矽烷、正丙基三異丙氧基矽烷' 正丙基 三正丁氧基矽烷、正丙基三異丁氧基矽烷、正丙基三特丁 氧基矽烷、正丙基三苯氧基矽烷、異丙基三甲氧基矽烷、 異丙基三乙氧基矽烷、異丙基三正丙氧基矽烷、異丙基三 異丙氧基矽烷、異丙基三正丁氧基矽烷、異丙基三異丁氧 1267703— 基矽烷、異丙基三特丁氧基矽烷、異丙基三苯氧基矽烷、 正丁基三甲氧基矽烷、正丁基三乙氧基矽烷、正丁基三正 丙氧基矽烷、正丁基三異丙氧基矽烷、正丁基三正丁氧基 矽烷、正丁基三異丁氧基矽烷、正丁基三特丁氧基矽烷、 正丁基三苯氧基矽烷、另丁基三甲氧基矽烷、另丁基三乙 氧基矽烷、另丁基三正丙氧基矽烷、另丁基三異丙氧基砂 烷、另丁基三正丁氧基矽烷、另丁基三異丁氧基矽烷、另 丁基三特丁氧基矽烷 '另丁基三苯氧基矽烷、特丁基三甲 氧基矽烷、特丁基三乙氧基矽烷、特丁基三正丙氧基矽烷、 特丁基三異丙氧基矽烷、特丁基三正丁氧基矽烷、特丁基 二異丁氧基砂院、特丁基三特丁氧基砂院、特丁基三苯氧 基矽烷、苯基三甲氧基矽烷、苯基三乙氧基矽烷、苯基三 正丙氧基矽烷、苯基三異丙氧基矽烷、苯基三正丁氧基矽 烷、苯基三異丁氧基矽烷、苯基三特丁氧基矽烷、苯基三 苯氧基矽烷、三氟甲基三甲氧基矽烷、五氟乙基三甲氧基 砍丈兀、3,3,3-二氣丙基二甲氧基砂院、3,3,3_二氣丙基三 乙氧基矽烷等。 作爲二有機基二烷氧基矽烷,例如是二甲基二甲氧基 矽烷、二甲基二乙氧基矽烷、二甲基二正丙氧基矽烷、二 甲基二異丙氧基矽烷、二甲基二正丁氧基矽烷、二甲基二 另丁氧基矽烷、二甲基二特丁氧基矽烷、二甲基二苯氧基 矽烷、二乙基二甲氧基矽烷、二乙基二乙氧基矽烷、二乙 基二正丙氧基矽烷、二乙基二異丙氧基矽烷、二乙基二正 甲氧基砍院、二乙基Π另丁氧基矽院、二乙基二特丁氣基 15 12677(^碑doc 矽烷、二乙基二苯氧基矽烷、二正丙基二甲氧基矽烷、二 正丙基二乙氧基矽烷、二正丙基二正丙氧基矽烷、二正丙 基二異丙氧基矽烷、二正丙基二正丁氧基矽烷、二正丙基 二另丁氧基矽烷、二正丙基二特丁氧基矽烷、二正丙基二 苯氧基矽烷、二異丙基二甲氧基矽烷、二異丙基二乙氧基 i 矽烷、二異丙基二正丙氧基矽烷、二異丙基二異丙氧基矽 烷、二異丙基二正丁氧基矽烷、二異丙基二另丁氧基矽烷、 二異丙基二特丁氧基矽烷、二異丙基二苯氧基矽烷、二正 φ 丁基二甲氧基矽烷、二正丁基二乙氧基矽烷、二正丁基二 正丙氧基矽烷、二正丁基二異丙氧基矽烷、二正丁基二正 丁氧基矽烷、二正丁基二另丁氧基矽烷、二正丁基二特丁 氧基矽烷、二正丁基二苯氧基矽烷、二另丁基二甲氧基矽 烷、二另丁基二乙氧基矽烷、二另丁基二正丙氧基矽烷、 二另丁基二異丙氧基矽烷、二另丁基二正丁氧基矽烷、二 另丁基二另丁氧基矽烷、二另丁基二特丁氧基矽烷、二另 丁基一*苯氧基砍院、一*特丁基一►甲氧基砂院、—*特丁基—^ 乙氧基矽烷、二特丁基二正丙氧基矽烷、二特丁基二異丙 I 氧基矽烷、二特丁基二正丁氧基矽烷、二特丁基二另丁氧 基矽烷、二特丁基二特丁氧基矽烷、二特丁基二苯氧基矽 烷、二苯基二甲氧基矽烷、二苯基二乙氧基矽烷、二苯基 二正丙氧基矽烷、二苯基二異丙氧基矽烷、二苯基二正丁 氧基矽烷、二苯基二另丁氧基矽烷、二苯基二特丁氧基矽 烷、二苯基二苯氧基矽烷、雙(3, 3, 3-三氟丙基)二甲氧基矽 烷、甲基(3, 3, 3-三氟丙基)二甲氧基矽烷等。 16 I2677Q2— R1爲碳原子數1〜20之有機基的化學式(1)的化合物, 作爲除了上述之外的化合物,例如是雙(三甲氧基甲矽烷基) 甲烷、雙(三乙氧基甲矽烷基)甲烷、雙(三正丙氧基甲矽烷 基)甲烷、雙(三異丙氧基甲矽烷基)甲烷、雙(三甲氧基甲矽 烷基)乙烷、雙(三乙氧基甲矽烷基)乙烷、雙(三正丙氧基甲 矽烷基)乙烷、雙(三異丙氧基甲矽烷基)乙烷、雙(三甲氧基 甲矽烷基)丙烷、雙(三乙氧基甲矽烷基)丙烷、雙(三正丙氧 基甲矽烷基)丙烷、雙(三異丙氧基甲矽烷基)丙烷、雙(三甲 氧基甲矽烷基)苯、雙(三乙氧基甲矽烷基)苯、雙(三正丙氧 基甲矽烷基)苯、雙(三異丙氧基甲矽烷基)苯等之雙甲矽烷 基院類、雙甲砍院基苯等。 而且,作爲R1爲含有矽原子之基的化學式(1)的化合 物,例如是六甲氧基乙矽烷、六乙氧基乙矽烷、六正丙氧 基乙矽烷、六異丙氧基乙矽烷等六烷氧基乙矽烷類,1,2-二甲基四甲氧基乙矽烷、1,2_二甲基四乙氧基乙矽烷、1,2-二甲基四丙氧基乙矽烷等之二烷基四烷氧基乙矽烷類等。 加水分解性基X爲鹵素原子(鹵素基)時,作爲化學式(1) 的化合物(鹵化矽烷),例如是上述各烷氧基矽烷分子中的烷 氧基被鹵素原子取代的化合物等。而且,加水分解性基X 爲乙醯氧基時,作爲化學式(1)的化合物(乙醯氧基矽烷), 例如是上述各烷氧基矽烷分子中的烷氧基被乙醯氧基取代 的化合物等。此外,加水分解性基X爲異氰酸酯基時,作 爲化學式(1)的化合物(異氰酸酯基矽烷),例如是上述各烷 氧基矽烷分子中的烷氧基被異氰酸酯基取代的化合物等。 17 126770》· 另外,加水分解性基X爲羥基時,作爲化學式(1)的化合物 (羥基矽烷),例如是上述各烷氧基矽烷分子中的烷氧基被羥 基取代的化合物等。 在此,化學式(1)所表示的化合物,可以單獨的使用一 種,也可以組合使用兩種以上。 本發明也可以使用由化學式(1)所表示的化合物之聚合 物等的部分縮合物經加水分解聚縮合而得到之樹脂、由化 學式(1)所表示的化合物之聚合物等的部分縮合物與化學式 (1)所表示的化合物經加水分解聚縮合而得到之樹脂、由化 學式(1)所表示的化合物與其他的化合物經加水分解聚縮合 而得到之樹脂、由化學式(1)所表示的化合物之聚合物等的 部分縮合物、化學式(1)所表示的化合物與其他的化合物經 加水分解聚縮合而得到之樹脂等。 作爲化學式(1)所表示的化合物之聚合物等的部分縮合 物’例如是六甲氧基二矽氧烷、六乙氧基二矽氧烷、六一 正丙氧基二砂氧烷、六異丙氧基二矽氧烷等的六烷氧基二 砂氧纟兀、進行部分聚合的三政氧院、四砂氧院 '低聚砂氧 烷等等。 作爲上述「其他化合物」,例如是具有聚合性的雙鍵或 三鍵的化合物。作爲具有聚合性雙鍵的化合物,例如是乙 烯、丙烯、異丁烯、丁二烯、戊烯、氯化乙烯乙酸乙烯 酯、丙酸乙烯酯、己酸乙烯酯、硬脂酸乙烯酯、甲基乙烯 基醚、乙基乙烯基醚'丙基乙烯基醚、丙烯腈、苯乙烯、 甲基丙烯酸、甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙 18 126770^,. 烯酸正丙酯、甲基丙烯酸異丙酯、甲基丙烯酸正丁酯、丙 烯酸、丙嫌酸甲酯、丙烯酸乙酯、丙烯酸苯酯、乙烯吡啶、 乙烯咪唑、丙烯醯胺、烯丙基苯、二烯丙基苯等或由這些 化合物經部分聚縮合得到之化合物等。作爲具有三鍵的化 合物,例如是乙炔、乙炔基苯等。 在此,由上述方式得到的樹脂,可以單獨的使用一種, 也可以組合使用兩種以上。 化學式(1)所表示的化合物在加水分解聚縮合時所使用 水的量對於每1莫耳化學式(1)所表示的化合物,較佳爲0.1 〜1000莫耳,更加爲0.5〜100莫耳。水的量未滿0.1莫耳, 就會有無法充分的進行加水分解聚縮合反應的傾向,水的 量超過1000莫耳,就會有在加水分解中或聚縮合中產生膠 化物的傾向。 而且,在化學式(1)所表示的化合物的加水分解聚縮合 反應中,也可以使用觸媒。作爲這樣的觸媒之種類,例如 是酸觸媒、鹼觸媒、金屬鉗合物等。 作爲酸觸媒,例如是有機酸及無機酸等。作爲有機酸’ 例如是乙酸、馬來酸、富馬酸、苯二甲酸、丙二酸、丁二 酸、酒石酸、蘋果酸、乳酸、檸檬酸、乙酸、丙酸、丁酸、 戊酸、己酸、庚酸、辛酸、壬酸、癸酸、草酸、己二酸、 癸二酸、酪酸(丁酸)、油酸、硬脂酸、亞麻油酸、次亞麻油 酸、柳酸、苯磺酸、安息香酸、對-胺基安息香酸、對-甲苯 磺酸、甲磺酸、三氟甲磺酸、三氟乙磺酸等。作爲無機酸, 例如是鹽酸、磷酸、硝酸 ' 硼酸、硫酸、氟酸等。在此可 19 I26770?—doc 以單獨的使用一種,也可以組合使用兩種以上之這些化合 作爲鹼觸媒,例如是無機鹼及有機鹼等。作爲無機鹼, 例如是氫氧化鈉、氫氧化鉀、氫氧化鉚、氫氧化鉋等。作 爲有機鹼,例如是吡啶、單乙醇胺、二乙醇胺、三乙醇胺、 二甲基二乙醇胺、單甲基二乙醇胺、氨水、氫氧化四甲基 銨、氫氧化四乙基銨、氫氧化四丙基銨、甲胺、乙胺、丙 胺、丁胺、戊胺、己胺、庚胺、辛胺、壬胺、癸胺、十一 碳胺、十二碳胺、環戊胺、環己胺、N,N-二甲胺、N,N-二乙胺、N,N_二丙胺、N,N-二丁胺、N,N_二戊胺、N,N-二己胺、N,N·二環戊胺、N,N-二環己胺、三甲胺、三乙胺、 三丙胺、三丁胺、三戊胺、三己胺、三環戊胺、三環己胺 等。在此可以單獨的使用一種,也可以組合使用兩種以上 之這些化合物。 作爲金屬鉗合化合物,例如是三甲氧基•單(乙醯丙酮) 鈦、三乙氧基•單(乙醯丙酮)鈦、三正丙氧基•單(乙醯丙 酮)鈦、三異丙氧基•單(乙醯丙酮)鈦、三正丁氧基•單(乙 醯丙酮)鈦、三另丁氧基•單(乙醯丙酮)鈦、三特丁氧基· 單(乙醯丙酹)鈦、二甲氧基•單(乙醯丙酮)鈦、二乙氧基· 二(乙醯丙酮)鈦、二正丙氧基•二(乙醯丙酮)鈦、二異丙氧 基•二(乙醯丙酮)鈦、二正丁氧基•二(乙醯丙酮)鈦、二另 丁氧基•二(乙醯丙酮)鈦、二特丁氧基•二(乙醯丙酮)鈦、 單甲氧基•三(乙醯丙酮)鈦、單乙氧基•三(乙醯丙酮)鈦、 單正丙氧基•三(乙醯丙酮)鈦、單異丙氧基•三(乙醯丙酮) 20 126770?— 鈦、單正丁氧基•三(乙醯丙酮)鈦、單另丁氧基•三(乙醯 丙酮)欽、單特丁氧基•三(乙醯丙酮)駄、四(乙醯丙酮)鈦、 三甲氧基•單(乙基乙醯丙酮)鈦、三乙氧基•單(乙基乙醯 丙酮)鈦、三正丙氧基•單(乙基乙醯丙酮)鈦、三異丙氧基· 單(乙基乙醯丙酮)鈦、三正丁氧基•單(乙基乙醯丙酮)鈦、 三另丁氧基•單(乙基乙醯丙酮)鈦、三特丁氧基•單(乙基 乙醯丙酮)鈦、二甲氧基•單(乙基乙醯丙酮)鈦、二乙氧基· 二(乙基乙醯丙酮)鈦、二正丙氧基•二(乙基乙醯丙酮)鈦、 二異丙氧基•二(乙基乙醯丙酮)鈦、二正丁氧基•二(乙基 乙醯丙酮)鈦、二另丁氧基•二(乙基乙醯丙酮)鈦、二特丁 氧基•一(乙基乙醯丙酮)欽、單甲氧基•三(乙基乙醯丙酮) 鈦、單乙氧基•三(乙基乙醯丙酮)鈦、單正丙氧基•三(乙 基乙醯丙酮)鈦、單異丙氧基•三(乙基乙醯丙酮)鈦、單正 丁氧基•二(乙基乙醢丙酮)欽、單另丁氧基•三(乙基乙醯 丙酮)鈦、單特丁氧基•三(乙基乙醯丙酮)鈦、四(乙基乙醯 丙酮)鈦等含有鈦之金屬鉗合物、及上述含有鈦之金屬鉗合 物中的鈦由銷、鋁等取代之化合物等。在此可以單獨的使 用一種,也可以組合使用兩種以上之這些化合物。 在化學式(1)所表示的化合物之加水分解聚縮合反應 中’較佳是使用這樣的觸媒進行加水分解,但是也會有組 成物J的安定性變差或因爲含有觸媒而恐怕會造成對其他材 料之腐蝕的影響等情況。在這樣的情況下,例如是在加水 分解後’從組成物中移除上述觸媒,也可以與其他化合物 反應而使觸媒的機能失去活性。移除方法及反應方法並沒 21 12677^ 有特別限制,也可以採用蒸飽或離子層析柱等進行移除。 而且,從化學式(1)所表示的化合物所製備出的加水分解物 也可以藉由再沈澱等方式從組成物中取出。而且,作爲藉 由反應而使觸媒的機能失去活性的方法,例如觸媒爲鹼觸 媒的情況下,添加酸觸媒,利用酸鹼反應而中和之,使pH 値位於酸性側的方法。 此觸媒的使用量,對於化學式(1)所表示的化合物1莫 耳,較佳是在0.001〜1莫耳的範圍內。此使用量未滿0.0001 莫耳,實質上或有無法進行反應的傾向,超過1莫耳的話, 在加水分解聚縮合時會有促進膠化的傾向。 而取,經過加水分解而附加產生的醇類,由於是質子 性溶劑,較佳是使用蒸發器將其移除。 由此而得到之樹脂,從對溶劑的溶解性、機械特性、 成形性等的觀點來看,其重量平均分子量(Mw)以500〜 1000000爲佳,以500〜500000爲較佳,以500〜100000 爲更佳,以500〜10000爲特佳,以500〜5000爲極佳。此 重量平均分子量未滿500,硬化物的成膜性會有變差的傾 向;此重量平均分子量稱過1000000,與溶劑的相溶性會有 變低的傾向。 在對基底的接著性及機械強度爲必要的情況下,對於 化學式(1)中的矽原子1莫耳,從氫原子、氟原子、硼原子、 氮原子、銘原子、磷原子、矽原子、鍺原子與鈦原子所組 之族群所選出的至少一種原子的總含有比例(此作爲特定 結合原子(化學式(1)中的R1)的總數(M))較佳是1.3〜0.2莫 22 126770530^°° 耳,更佳是1·〇〜〇·2莫耳’特佳是〇·9〜0·2莫耳’極佳是 0.8〜0.2莫耳。這樣的話,就可以抑制對硬化物之外的膜(層) 的接著性及機械強度的降低。 此特定的結合原子的總數(Μ)未滿〇·20的話’硬化物 作爲絕緣膜使用時的介電特性會有變差的傾向’超過^ 的話,最終所得到之硬化物對其他的膜(層)之接著性及機械 強度會有降低的傾向。而且,即使在上述之特定結合原子 之中,從硬化物之成膜性的觀點來看,較佳是含有從氫原 子、氟原子、氮原子、矽原子、鈦原子及碳原子所組之族 群所選出的至少一種原子;即使這些特定結合原子之中, 從介電特性及機械特性的觀點來看,較佳是含有從氫原 子、氟原子、氮原子、矽原子與碳原子所組之族群所選出 的至少一種原子。 而且,特定結合原子的總數(Μ),可以從矽氧烷樹脂的 裝入量來求出,例如可以使用下述式(Α)所表示的關係求 出0 M=(Ml+(M2/2)+(M3/3))/Msi ...(A) 式中,Ml表示特定的結合原子中與單一(只有一個)的 矽原子結合之原子的總數;M2表示特定的結合原子中與兩 個矽原子結合之原子的總數;M3表示特定的結合原子中與 三個矽原子結合之原子的總數;Msi表示矽原子的總數。 在此可以單獨的使用一種,也可以組合使用兩種以上 的這樣的矽氧烷樹脂。作爲組合兩種以上之矽氧烷樹脂的 方法,例如是組合具有不同重量平均分子量的兩種以上之 23 12677(^30^ 矽氧烷樹脂的方法、組合以不同化合物爲必要成分經加水 分解聚縮合反應而得到之兩種類以上之矽氧烷樹脂的方 法。 〈(b)成分〉 (b)成分爲光酸產生劑或光鹼產生劑,其定義爲藉由照 射放射線而放出能夠使(a)成分光硬化(加水分解聚縮合)之 酸性活性物質或鹼性活性物質的化合物。 作爲光酸產生劑,例如是二芳基銃鹽、三芳基锍鹽、 二烷基苯甲醯甲基銃鹽、二芳基錤鹽、芳基重氮鏺、芳香 族四羧酸酯、芳香族磺酸酯、硝基苄基酯、肟磺酸酯、芳 香族N-氧代醯亞胺磺酸酯、芳香族磺醯胺、含有鹵烷基之 烴化合物、含有鹵化烷基的灘環化合物、萘醌二疊氮-4-磺 酸酯等。在此可以單獨的使用一種,也可以組合使用兩種 以上之這些化合物。而且,在此也可以與其他的敏化劑等 合倂使用之。 作爲光鹼產生劑,例如是下述化學式(2)〜(5)所表示的 化合物群組、硝苯吡啶類等非離子性光鹼產生劑、鈷胺基 錯合物、下述化學式(6)及下述化學式(7)所表示的四級銨鹽 等離子性的光鹼產生劑等。在此可以單獨的使用一種,也 可以組合使用兩種以上之這些化合物。而且,在此也可以 與其他的敏化劑等合倂使用之。 (R2_OCO-NH)m_R3 …⑺ 在此式中,R2表示碳原子數1〜30之1價的有機基,在 側鏈也可以含有具有甲氧基或硝基的芳香族環;R3表示碳 24 1267703^ 原子數1〜20之1〜4、m爲1〜4的整數。 (R4R5C=N-OCO)m-R3 ...(3) 在此式中,R3及m之定義與上述化學式(2)中的相同; R4及R5各自分別表示碳原子數1〜3〇之1價的有機基,且彼 此也可以結合而形成環狀結構。 R2-OCO-NR6R7 …⑷ 在此式中,R2之定義與上述化學式(2)中的相词;R6及 R7各自分別表示碳原子數1〜30之1價的有機基,且彼此也 可以結合而形成環狀結構,任何一個也可以爲氫原子。 R8_CO-R9_NR6R7 .&quot;(5) 在此式中,R6及R7之定義與上述化學式(4)中的相同; R8表示碳原子數1〜30之1價的有機基,在側鏈也可以含有 具有烷氧基、硝基、胺基、烷基取代胺基或烷硫基的芳香 族環;R9表示碳原子數1〜3〇之2價的有機基。 A 一 11I26770?493Opitd?c VII. Designated representative map: (1) The representative representative of the case is as shown in Figure 1. (2) The symbol of the symbol of the representative figure is briefly described: 1 : glass substrate 2 : upper coating 3 : conductive layer 4 : source 5 : drain 6 : gate oxide film 7 : gate electrode 8 : first interlayer insulating film 9: metal wire 10: second interlayer insulating film 11: transparent electrode 8. In the case of the chemical formula, please disclose the chemical formula which best shows the characteristics of the invention: R nSiX4_n · (1) (wherein R1 represents a hydrogen atom Or a fluorine atom, or a group containing a boron atom, a nitrogen atom, an aluminum atom, a phosphorus atom, a ruthenium atom, a ruthenium atom or a titanium atom, or an organic group having 1 to 20 carbon atoms; X is a hydrolyzable group; η represents an integer of 〇~2, and when η is 2, each R1 may be the same or different, and when η is 〇~2, each X may be the same or different.) 1267703 side pitdoc IX. Description of the invention [Technical Field] The present invention relates to a radiation curable composition, a method for storing the same, a method for forming a cured film, a method for forming a pattern, a method for using a pattern, an electronic component, and an optical waveguide. [Prior Art] As an insulating film used for LSI, PDP, etc., from the viewpoint of excellent heat resistance and electrical reliability, a ruthenium dioxide film formed by a CVD method is often used for coating. A film-formed spin-on glass (SOG) film and an inorganic SOG film. However, it is impossible to form a wire trench or a via hole directly in a conventional insulating film. Usually, after the photoresist layer is patterned on the insulating film, the plasma is dry-etched or wetted by a chemical. The etching process is followed by a photoresist removal process and a cleaning process to form a pattern. In view of the above, if a photosensitive property is imparted to an insulating film material excellent in heat resistance, electrical reliability, transparency, and the like, a photoresist material which is necessary in the above process is not required, and dry etching by plasma can be omitted. The treatment or the wet etching treatment, the photoresist removal process, the cleaning process, and the like are performed. In recent years, radiation curable polysiloxane materials having excellent heat resistance, electrical reliability, transparency, and the like have been proposed. For example, Patent Document 1 and Patent Document 2 disclose a photosensitive resin composition comprising an alkali-soluble rhodium oxide polymer and a photoacid generator which remove water and a catalyst. Further, Patent Document 3 and Patent Document 4 disclose a photosensitive polyoxyalkylene composition containing a polyoxyalkylene oxide and a photoacid generator. Further, Patent Document 5 discloses I26770?4930pil. Doc A radiation curable composition composed of a hydrolyzable decane compound, a photoacid generator, and an acid diffusion inhibitor. Patent Document 1: Japanese Laid-Open Patent Publication No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. In the inventors of the present invention, a detailed review of the pattern of the insulating film material to which the photosensitive property is applied is disclosed in the prior art, and Patent Document 1 and Patent Document 2 are used. Any of the photosensitive resin compositions composed of the alkali-soluble siloxane polymer and the photoacid generator from which water and a solvent are removed require a large amount of exposure, which proves that the mass productivity is poor. Further, the photosensitive polyoxyalkylene composition containing polyoxyalkylene oxide and photoacid generator disclosed in Patent Document 3 and Patent Document 4 proves that the amount of exposure is small, but it is necessary to perform immersion in pure water after exposure or The humidification treatment or the like makes the process more complicated and it is difficult to obtain high pattern accuracy. On the other hand, a radiation curable composition composed of a hydrolyzable decane compound, a photoacid generator, and an acid diffusion inhibitor disclosed in Patent Document 5 is used to suppress the diffusion of acid generated by radiation by an acid suppression diffusing agent. It can improve the pattern accuracy of the decane compound. However, since the acid diffusion inhibitor loses its activity due to acid (is neutralized by acid), when the amount of the photoacid generator is small or the amount of exposure is small, the curability is lowered and the pattern is caused. The accuracy is reduced. On the contrary, in order to improve the accuracy of the pattern, the exposure 6 1267703 becomes large, which proves that the mass productivity is poor. In view of the above, the present invention provides a radiation curable composition capable of obtaining a cured product having excellent pattern accuracy even when the amount of exposure is small, a method for storing the cured product, a method for forming a cured film, and a method for forming a pattern, and also provides a method for forming the same. Patterns, electronic components, and optical waveguides. When the acid is generated by radiation to form a pattern, in the prior art, in order to improve the pattern accuracy, the acid generated by the acid diffusion inhibitor is deactivated. Such an 'inactive part' needs to increase the amount of exposure in order to generate excess acid, so it is difficult to make the pattern accuracy increase and the exposure amount decrease. In suppressing the diffusion of acid, it is conceivable to reduce the amount of acid generated by lowering the exposure amount, lower the temperature of the post-exposure post-baking process (PEB) after exposure, or replace the acid diffusion inhibitor with a method such as PEB. The method of acid loss of activity. However, the technical ideas based on these methods in the past have not received much attention. Moreover, radiation curable compositions suitable for these methods are also not valued. The radiation curable composition suitable for the above method can form a pattern with good precision without using an acid diffusion inhibitor. However, when patterning is carried out using a conventional radiation curable composition, the amount of acid generated is reduced and the curing cannot be sufficiently performed. Further, the temperature of the post-exposure baking process (PEB) after exposure is lowered, or PEB is not performed, and the hardening of the exposed portion cannot be performed in the same manner. As a result, the pattern cannot be formed with good accuracy. The inventors of the present invention have found that the radiation curable composition containing a specific component, the method for forming a cured film, and the pattern forming method I2677〇3930pi can solve various conventional problems, and the present invention has been completed. The present invention provides a radiation curable composition comprising (a) a decyl alkane resin, (8) a photoacid generator or a photobase generator, (4) a solvent capable of dissolving the component (4), and (d) a curing-promoting catalyst. Furthermore, the present invention provides the above radiation curable composition, wherein the siloxane resin contains a resin obtained by hydrolyzing polycondensation of a compound represented by the following chemical formula (1): R'nSiX^n - (1) ( In the formula, R1 is a hydrogen atom or a fluorine atom, or a group containing a boron atom, a nitrogen atom, an aluminum atom, a phosphorus atom, a ruthenium atom, a ruthenium atom or a titanium atom, or an organic group having 1 to 20 carbon atoms; X represents a hydrolyzable group; η represents an integer of 0 to 2, and when η is 2, each R1 may be the same or different, and when n is 0 to 2, each X may be the same or different. Moreover, the present invention provides the above radiation curable composition, wherein the hardening promoting catalyst comprises a phosphonium salt. The barium salt not only improves the electrical properties and mechanical strength of the cured product, but also enhances the stability of the composition, and is therefore an ideal hardening promoting catalyst. The present invention provides the above radiation curable composition, wherein the hardening promoting catalyst may also be a quaternary ammonium salt. By using the quaternary ammonium salt as an effect promoting catalyst, the effect of improving the above electrical characteristics and mechanical strength and the effect of improving the stability of the composition can be exhibited. The present invention provides a method for forming a cured film comprising coating and drying the above-mentioned radiation curable composition on a substrate to obtain a process for coating a film and a process for exposing the film, and the film is not heated after the exposure process. By this method, the diffusion of acid due to heating and the increase in production cost can be sufficiently suppressed, and the pattern accuracy of the obtained cured film is also good enough. The present invention provides a method for forming a cured film comprising the steps of coating and drying the above-mentioned radiation curable composition on a substrate to obtain a coating film, a process of exposing the coating film, and a heating coating film after the exposure process. Further, the present invention provides a method of forming a cured film in which the coating film is heated to 70 to 110 °C. This method is more effective in suppressing the diffusion of acid during heating. Moreover, the present invention provides a method of forming a cured film in which light is irradiated with light of a light amount of 5 to 100 mJ/cm 2 to expose the coating film. By controlling the amount of light within the above range, exposure control is easy and productivity can be improved. The present invention provides a pattern forming method comprising the steps of: coating and drying the radiation curable composition on a substrate to obtain a coating film, and exposing the coating film through a mask, and removing the coating film by development after the exposure process The process of the unexposed portion is not heated after the exposure process. By such a method, the diffusion of acid due to heating and the increase in production cost can be sufficiently suppressed, and the pattern accuracy of the obtained cured film is also good enough. Further, since "heating" herein refers to heating in the stage before the above-described removal process, heating may be carried out after the above-described removal process. The present invention provides a pattern forming method comprising the steps of: coating and drying the radiation curable composition on a substrate to obtain a coating film, and exposing the coating film through a cover 1267703, and heating the coating film after the exposure process The process and the process of removing the unexposed portions of the coating film by development after the heating process. Moreover, the present invention provides a method of forming a cured film in which the coating film is heated to 70 to 110 in the above heating process. This method can better control the diffusion of acid during heating. Further, the present invention provides a method of forming a cured film which is irradiated with light of a light amount of 5 to 100 mJ/cm 2 to expose the coating film during the above exposure process. By controlling the amount of light within the above range, exposure control is easy and productivity can be improved. Further, the present invention provides a method for forming a cured film in which an aqueous solution of tetramethylammonium hydroxide is used as a developing solution. In this way, it is possible to sufficiently suppress the contamination of the electronic components by the alkali phoenix during development. The present invention provides a pattern use method using a pattern formed by the above pattern forming method as a photoresist mask. The present invention provides an electronic component comprising a pattern formed by the above-described pattern forming method. The present invention provides an optical waveguide comprising a pattern formed by the above pattern forming method. The present invention provides a method for preserving a radiation curable composition, wherein the radiation curable composition is stored at a temperature of not more than 〇C. By keeping the composition at a temperature lower than 〇 ° C, the storage stability is improved as compared with the case of storing at a temperature higher than 〇 ° C. When a radiation curable composition having such a composition, I267M, a cured film forming method using the radiation curable composition, a pattern forming method, and a method of storing a radiation curable composition are used, even if the exposure amount is small, It is also possible to form a cured product having excellent pattern accuracy, and it is possible to solve the problem that it is impossible to achieve both the small exposure amount and the excellent pattern accuracy. In the present invention, a detailed explanation of the mechanism by which such an effect that cannot be achieved by conventional means can be achieved is still unclear. However, the present inventors have judged that the present invention can achieve the diffusion of an acid which does not require the use of an acid diffusion inhibitor, and the use of an aprotic solvent as a solvent for promoting hardening reduces the amount of exposure required for hardening. Further, it further contains a curing-promoting catalyst as an additive, and the above-described effects can be more effectively exhibited. This indicates that the radiation curable composition can be sufficiently cured with a small amount of exposure. The improvement of the pattern accuracy is judged by the use of an aprotic solvent as a solvent for promoting hardening and a hardening reaction of the radiation curable composition before the acid is diffused. The accuracy of the pattern can be further improved by further containing a hardening promoting catalyst as an additive. This can be inferred to cause the hardening reaction at an earlier time before the acid is diffused. This mechanism differs from the conventional mechanism in which the acid produced by the acid diffusion inhibitor is inactivated (neutralized) and the pattern accuracy is improved. In the present invention, it is judged that the lifting pattern accuracy and the reduced exposure amount can coexist according to the above-described mechanism different from the conventional one. The radiation curable composition of the present invention, the method for preserving the same, the method for forming a cured film, and the method for forming a pattern can be obtained in Fig. 11 I2677〇393〇Pif even if the exposure amount is small. D〇c The hardened material with good accuracy. Further, the pattern use method, the electronic component, and the optical waveguide of the present invention are also useful. The above and other objects, features and advantages of the present invention will become more <RTIgt; [Embodiment] Hereinafter, embodiments of the present invention will be described in detail. <Component (4)> The component (a) is a decane resin, and a conventional resin can be used. It is preferred to have a 0H group at the terminal or side chain of the resin. This is because the hydrolyzation polycondensation reaction for hardening the radiation curable composition can be further carried out. Further, from the viewpoints of solubility in a solvent, mechanical properties, formability, and the like, the weight average molecular weight (Mw) of the decane resin is preferably 500 to 1,000,000, more preferably 500 to 500,000, and 500 to 100,000. For better, 500~10000 is especially good, and 500~5000 is excellent. When the weight average molecular weight is less than 500, the film formability of the cured product tends to be deteriorated; the weight average molecular weight is more than 1,000,000, and the compatibility with the solvent tends to be low. In the present specification, the weight average molecular weight is measured by a gel permeation chromatography (hereinafter referred to as "GPC") and converted from a calibration curve of standard polystyrene. The weight average molecular weight (Mw) is, for example, determined by GPC under the following conditions. Sample: Radiation hardening composition 10 μl 12 1267703 - Standard polystyrene: Standard polystyrene manufactured by Dongsei Co., Ltd. (molecular weight: 190000, 19700, 9100, 2890, 578, 474, 370, 266) Detector: RI-Monitor, manufactured by Hitachi, Ltd., under the trade name "L-3000". Splitter: GPC integrator manufactured by Hitachi, Ltd., trade name "D-2200" Pump: Hitachi, Ltd. Product name "L-6000" Degassing device: manufactured by Showa Denko Co., Ltd., trade name "Shodex DEGAS" Column: manufactured by Hitachi Chemical Co., Ltd., and the product name "GL-R440" is used in this order. "GL-R430", "GL-R420" Dissolution: Tetrahydrofuran (THF) Measurement temperature: 23 ° C Flow rate: 1. 75 mL/min. Measurement time: 45 minutes as a preferred decane resin, for example, a resin obtained by hydrolyzing polycondensation of a compound represented by the following chemical formula (1): R'nSiX "(1) is preferable. The rhodium oxide resin is, for example, a resin obtained by subjecting a compound represented by the following chemical formula (1) to an essential component by hydrolysis and polycondensation. In the formula, R1 represents a hydrogen atom or a fluorine atom, or contains a boron atom. a nitrogen atom, an aluminum atom, a phosphorus atom, a ruthenium atom, a ruthenium atom or a titanium atom, or an organic group having 1 to 20 carbon atoms; X is a hydrolyzable group; η is an integer of 0 to 2, η When it is 2, each R1 may be the same or 13 I26770? - When n is 0 to 2, each X may be the same or different. For the hydrolyzable group X, for example, an alkane An oxy group, a halogen atom, an ethoxy group, an isocyanate group, a hydroxyl group, etc. Among them, an alkoxy group is preferable from the viewpoints of liquid stability and coating properties of the composition itself. a compound of the formula (1) in the case of an alkoxy group (Alkoxydecane), for example, a tetraalkoxy fluorene, a trialkoxy sulphate, a diorgano-one-oxyl oxalate, etc. As a tetraalkoxy decane, for example, tetramethoxynonane, four Ethoxy decane, tetra-n-propoxy decane, tetraisopropoxy decane, tetra-n-butoxy decane, tetra-butoxy decane, tetra-butoxy decane, tetraphenoxy decane, etc. as a trioxane Oxydecane, for example, trimethoxydecane, triethoxydecane, tripropoxydecane, fluorotrimethoxydecane, fluorotriethoxydecane, methyltrimethoxydecane, methyltriethoxy Base decane, methyl tri-n-propoxy decane, methyl triisopropoxy decane, methyl tri-n-butoxy decane, methyl triisobutoxy decane, methyl triptobutoxy decane, methyl Triphenyloxydecane, ethyltrimethoxydecane, ethyltriethoxydecane, ethyltri-n-propoxydecane, ethyltriisopropoxydecane, ethyltri-n-butoxydecane, ethyl Triisobutoxy decane, ethyl triptobutane, ethyltriphenyloxydecane, n-propyltrimethoxydecane, n-propyl Ethoxy decane, n-propyl tri-n-propoxy decane, n-propyl triisopropoxy decane 'n-propyl tri-n-butoxy decane, n-propyl triisobutoxy decane, n-propyl triter Butoxy decane, n-propyltriphenoxydecane, isopropyl trimethoxy decane, isopropyl triethoxy decane, isopropyl tri-n-propoxy decane, isopropyl triisopropoxy decane , isopropyl tri-n-butoxy decane, isopropyl triisobutoxy 2687703 - decane, isopropyl trit-butoxy decane, isopropyl triphenoxy decane, n-butyl trimethoxy decane, n-Butyl triethoxy decane, n-butyl tri-n-propoxy decane, n-butyl triisopropoxy decane, n-butyl tri-n-butoxy decane, n-butyl triisobutoxy decane, positive Butyl tributoxybutane, n-butyltriphenoxydecane, butyltrimethoxydecane, butyltriethoxydecane, butyltri-n-propoxy decane, and butyl tributary Propoxy sulphate, butyl tri-n-butoxy decane, butyl butyl triisobutoxy decane, butyl butyl tert-butoxy decane, butyl butyl triphenoxy decane Tert-butyl trimethoxy decane, tert-butyl triethoxy decane, tert-butyl tri-n-propoxy decane, tert-butyl triisopropoxy decane, tert-butyl tri-n-butoxy decane, tert-butyl Diisobutoxylate sand, tert-butyl tributoxylate, tert-butyltriphenoxydecane, phenyltrimethoxydecane, phenyltriethoxydecane, phenyltri-n-propoxy Decane, phenyl triisopropoxy decane, phenyl tri-n-butoxy decane, phenyl triisobutoxy decane, phenyl tri-butoxy decane, phenyl triphenyloxy decane, trifluoromethyl Trimethoxy decane, pentafluoroethyl trimethoxy chopped sputum, 3,3,3-di-propyl propyl dimethoxy sand, 3,3,3_di-propyl propyl triethoxy decane, and the like. As the diorganodialkoxydecane, for example, dimethyldimethoxydecane, dimethyldiethoxydecane, dimethyldi-n-propoxydecane, dimethyldiisopropoxydecane, Dimethyldi-n-butoxydecane, dimethylbisbutoxy decane, dimethyldi-butoxy decane, dimethyldiphenoxydecane, diethyldimethoxydecane, diethyl Diethoxy decane, diethyl di-n-propoxy decane, diethyl diisopropoxy decane, diethyl di-n-methoxy sulfoxide, diethyl hydrazine, butoxy fluorene, two Ethyl dibutane gas group 15 12677 (^ monument doc decane, diethyl diphenoxy decane, di-n-propyl dimethoxy decane, di-n-propyl diethoxy decane, di-n-propyl di-n-butyl Propoxy decane, di-n-propyl diisopropoxy decane, di-n-propyl di-n-butoxy decane, di-n-propyldibutoxy decane, di-n-propyldi-butoxy decane, two N-propyldiphenoxydecane, diisopropyldimethoxydecane, diisopropyldiethoxyi-decane, diisopropyldi-n-propoxyoxydecane, diisopropyldiisopropoxy矽Alkane, diisopropyldi-n-butoxydecane, diisopropylbisbutoxybutane, diisopropyldi-butoxydecane, diisopropyldiphenoxydecane, di-n-φ-butyl Dimethoxy decane, di-n-butyl diethoxy decane, di-n-butyl di-n-propoxy decane, di-n-butyl diisopropoxy decane, di-n-butyl di-n-butoxy decane, two n-Butylbutoxybutane, di-n-butyldi-butoxyoxydecane, di-n-butyldiphenoxydecane, dibutylbutyl dimethoxydecane, dibutyl butyl diethoxy decane , butyl butyl di-n-propoxy oxane, dibutyl butyl diisopropoxy decane, dibutyl butyl di-n-butoxy decane, dibutyl butyl dibutoxy decane, dibutyl butyl Tebutoxy decane, dibutyl butyl-*phenoxy cleavage, mono-butyl butyl methoxy sand, -t-butyl-^ ethoxy decane, di-tert-butyl di-n-propyl Oxy decane, di-tert-butyl diisopropyl oxy decane, di-tert-butyl di-n-butoxy decane, di-tert-butyl dibutoxy decane, di-tert-butyl di-butoxy decane, two Tert-butyldiphenoxy Alkane, diphenyldimethoxydecane, diphenyldiethoxydecane, diphenyldi-n-propoxydecane, diphenyldiisopropoxydecane, diphenyldi-n-butoxydecane, Diphenyldibutoxyoxydecane, diphenyldi-butoxydecane, diphenyldiphenoxydecane, bis(3,3,3-trifluoropropyl)dimethoxydecane, methyl (3,3,3-trifluoropropyl)dimethoxydecane, etc. 16 I2677Q2—A compound of the formula (1) wherein R1 is an organic group having 1 to 20 carbon atoms, as a compound other than the above, for example Is bis(trimethoxycarbamido)methane, bis(triethoxymethylidenealkyl)methane, bis(tri-n-propoxymethyl decyl)methane, bis(triisopropoxymethyl decyl)methane, Bis(trimethoxycarbamido)ethane, bis(triethoxycarbenyl)ethane, bis(tri-n-propoxymethyl-alkyl)ethane, bis(triisopropoxymethyl decyl) Ethane, bis(trimethoxyformanyl)propane, bis(triethoxymethyl decyl)propane, bis(tri-n-propoxymethyl decyl)propane, bis(triisopropoxy methoxyalkyl) Propane, bis(trimethoxymethyl decyl) benzene, bis(triethoxymethyl decyl) benzene, bis(tri-n-propoxymethyl decyl) benzene, bis(triisopropoxy methoxyalkyl) benzene Wait for the bis-methacrylic acid hospital, double squash, and benzene. Further, the compound of the formula (1) wherein R1 is a group containing a ruthenium atom is, for example, hexamethoxyethane, hexaethoxyethane, hexa-n-propyloxyethane or hexaisopropoxy ethane. Alkoxyethanes, 1,2-dimethyltetramethoxyethane, 1,2-dimethyltetraethoxyethane, 1,2-dimethyltetrapropoxyethane, etc. Dialkyltetraalkoxyethanes and the like. When the hydrolyzable group X is a halogen atom (halogen group), the compound of the formula (1) (halogenated decane) is, for example, a compound in which the alkoxy group in each alkoxydecane molecule is substituted with a halogen atom. Further, when the hydrolyzable group X is an ethoxylated group, the compound of the formula (1) (ethoxylated decane), for example, the alkoxy group in each of the alkoxydecane molecules described above is substituted with an ethoxy group. Compounds, etc. Further, when the hydrolyzable group X is an isocyanate group, the compound (isocyanate decane) of the formula (1) is, for example, a compound in which an alkoxy group in each alkoxydecane molecule is substituted with an isocyanate group. When the hydrolyzable group X is a hydroxyl group, the compound (hydroxy sterane) of the formula (1) is, for example, a compound in which an alkoxy group in each alkoxydecane molecule is substituted with a hydroxyl group. Here, the compounds represented by the chemical formula (1) may be used singly or in combination of two or more. In the present invention, a partial condensate of a resin obtained by hydrolyzing and polycondensing a partial condensate such as a polymer represented by the chemical formula (1), a polymer obtained by the chemical formula (1), and the like may be used. A resin obtained by hydrolyzing polycondensation of a compound represented by the chemical formula (1), a resin obtained by hydrolyzing and condensing a compound represented by the chemical formula (1) and another compound, and a compound represented by the chemical formula (1) A partial condensate of a polymer or the like, a resin represented by the chemical formula (1), and a resin obtained by subjecting another compound to hydrolysis and condensation. A partial condensate of a polymer or the like of the compound represented by the chemical formula (1) is, for example, hexamethoxydioxane, hexaethoxydioxane, hexa-n-propoxy oxalate, or a hexa a hexadecanyloxyxanthene such as propoxy dioxane, a tri-oxygen hospital which is partially polymerized, a tetrasole-oxyl oxalate or the like. The "other compound" is, for example, a compound having a polymerizable double bond or triple bond. Examples of the compound having a polymerizable double bond include ethylene, propylene, isobutylene, butadiene, pentene, vinyl chloride vinyl acetate, vinyl propionate, vinyl hexanoate, vinyl stearate, and methyl ethylene. Ether, ethyl vinyl ether 'propyl vinyl ether, acrylonitrile, styrene, methacrylic acid, methyl methacrylate, ethyl methacrylate, methyl propyl 18 126770 ^,.  N-propyl acrylate, isopropyl methacrylate, n-butyl methacrylate, acrylic acid, methyl acrylate, ethyl acrylate, phenyl acrylate, vinyl pyridine, vinyl imidazole, acrylamide, allyl benzene And a diallyl benzene or the like or a compound obtained by partial polycondensation of these compounds. As the compound having a triple bond, for example, acetylene, ethynylbenzene or the like can be mentioned. Here, the resins obtained in the above manner may be used alone or in combination of two or more. The amount of water used in the hydrolysis of the compound represented by the chemical formula (1) is preferably 0. 1 ~ 1000 m, more 0. 5 to 100 moles. The amount of water is less than 0. In the case of 1 mole, there is a tendency that the hydrolysis and polycondensation reaction cannot be sufficiently carried out, and if the amount of water exceeds 1,000 moles, there is a tendency for gelation to occur during hydrolysis or polycondensation. Further, a catalyst may be used in the hydrolysis-decomposition polycondensation reaction of the compound represented by the chemical formula (1). The type of such a catalyst is, for example, an acid catalyst, a base catalyst, a metal clamp, or the like. Examples of the acid catalyst include organic acids, inorganic acids, and the like. As the organic acid', for example, acetic acid, maleic acid, fumaric acid, phthalic acid, malonic acid, succinic acid, tartaric acid, malic acid, lactic acid, citric acid, acetic acid, propionic acid, butyric acid, valeric acid, Acid, heptanoic acid, octanoic acid, citric acid, citric acid, oxalic acid, adipic acid, azelaic acid, butyric acid (butyric acid), oleic acid, stearic acid, linoleic acid, linoleic acid, salicylic acid, benzenesulfonate Acid, benzoic acid, p-amino benzoic acid, p-toluenesulfonic acid, methanesulfonic acid, trifluoromethanesulfonic acid, trifluoroethanesulfonic acid, and the like. The inorganic acid is, for example, hydrochloric acid, phosphoric acid, nitric acid, boric acid, sulfuric acid, hydrofluoric acid or the like. Here, 19 I26770?-doc may be used singly or in combination of two or more of them as an alkali catalyst, for example, an inorganic base or an organic base. The inorganic base is, for example, sodium hydroxide, potassium hydroxide, hydrazine hydroxide, oxyhydrin or the like. As the organic base, for example, pyridine, monoethanolamine, diethanolamine, triethanolamine, dimethyldiethanolamine, monomethyldiethanolamine, aqueous ammonia, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropyl hydroxide Ammonium, methylamine, ethylamine, propylamine, butylamine, pentylamine, hexylamine, heptylamine, octylamine, decylamine, decylamine, undecylamine, dodecylamine, cyclopentylamine, cyclohexylamine, N , N-dimethylamine, N,N-diethylamine, N,N-dipropylamine, N,N-dibutylamine, N,N-dipentylamine, N,N-dihexylamine, N,N· Dicyclopentylamine, N,N-dicyclohexylamine, trimethylamine, triethylamine, tripropylamine, tributylamine, triamylamine, trihexylamine, tricyclopentylamine, tricyclohexylamine, and the like. These may be used alone or in combination of two or more. As the metal-clamping compound, for example, trimethoxy-mono(acetonitrile) titanium, triethoxy-mono(acetonitrile) titanium, tri-n-propoxy-mono(acetonitrile) titanium, triisopropyl Oxygen mono(acetonitrile) titanium, tri-n-butoxy-mono(acetonitrile) titanium, tris-butoxy-single (acetylacetone) titanium, tri-butoxy-single酹) Titanium, dimethoxy, mono (acetonitrile) titanium, diethoxy bis(acetonitrile) titanium, di-n-propoxy bis(acetonitrile) titanium, diisopropoxy Bis(acetonitrile) titanium, di-n-butoxy bis(acetonitrile) titanium, dibutoxy bis (acetoxime) titanium, di-butoxy bis(acetonitrile) titanium, Monomethoxy 3 (acetyl acetonide) titanium, monoethoxy 3 (acetyl acetonide) titanium, mono-n-propoxy ethoxy (triacetone) titanium, monoisopropoxy oxy- 3 Acetone) 20 126770?—Titanium, mono-n-butoxy-tris(acetonitrile) titanium, monobutoxy-tris(acetonitrile), mono-butoxy-tris(acetonitrile) Tetrakis(acetonitrile) titanium, trimethoxy•single (ethyl ethyl Acetone) Titanium, Triethoxy, Mono (ethylacetamidine) Titanium, Tri-n-propoxy-Phenyl (Ethylacetonitrile) Titanium, Triisopropoxy-Single (Ethyl Ethylacetone) Titanium , tri-n-butoxy-mono (ethyl acetoacetone) titanium, tri-butoxy-single (ethyl acetoacetone) titanium, tri-tert-oxyl-single (ethyl acetonide) titanium, two Methoxy•mono(ethylacetamidineacetone)titanium, diethoxybis(ethylacetamidineacetone)titanium, di-n-propoxy-2-bis(ethylacetamidineacetone)titanium, diisopropoxy • bis(ethyl acetoacetone) titanium, di-n-butoxy bis (ethyl acetoacetone) titanium, dibutoxy bis (ethyl acetoacetone) titanium, di-tert-oxyl (ethyl ethyl acetonide), monomethoxy 3, ethyl ethyl acetonide, titanium, monoethoxy 3, ethyl (ethyl acetonide) titanium, mono-n-propoxy, three (ethyl ethyl醯Acetone)Titanium, monoisopropoxy-tris(ethylacetamidineacetone)Titanium, mono-n-butoxy-bis(ethylacetamidineacetone), monobutoxybutane, tris(ethylacetamidineacetone) Titanium, monot-butoxy-tris(ethylacetamidine) titanium, A metal tong containing titanium such as titanium (ethyl acetoacetate) or a compound in which the titanium in the metal ferrule containing titanium is replaced by a pin, aluminum or the like. These may be used alone or in combination of two or more. In the hydrocracking polycondensation reaction of the compound represented by the chemical formula (1), it is preferred to use such a catalyst for hydrolysis, but the stability of the composition J may be deteriorated or may be caused by the presence of a catalyst. The effect on the corrosion of other materials. In such a case, for example, after the water is decomposed, the above catalyst is removed from the composition, and it is also possible to react with other compounds to deactivate the function of the catalyst. The removal method and the reaction method are not particularly limited. It can also be removed by steaming or ion chromatography column. Further, the hydrolyzed product prepared from the compound represented by the chemical formula (1) can also be taken out from the composition by reprecipitation or the like. Further, as a method of deactivating the function of the catalyst by the reaction, for example, when the catalyst is an alkali catalyst, the acid catalyst is added and neutralized by an acid-base reaction to adjust the pH to the acidic side. . The amount of the catalyst used is, for example, the compound 1 represented by the formula (1), preferably at 0. 001 to 1 within the range of Moore. This usage is less than 0. 0001 Moore has a tendency to be incapable of reacting, and if it exceeds 1 mol, it tends to promote gelation upon hydrolysis and polycondensation. Further, the alcohol which is additionally produced by the hydrolysis reaction is preferably a proton solvent, and is preferably removed using an evaporator. The resin thus obtained has a weight average molecular weight (Mw) of preferably 500 to 1,000,000, preferably 500 to 50000, and preferably 500 to 500, from the viewpoints of solubility in a solvent, mechanical properties, moldability, and the like. 100000 is better, 500~10000 is especially good, and 500~5000 is excellent. When the weight average molecular weight is less than 500, the film formability of the cured product tends to be deteriorated; the weight average molecular weight is more than 1,000,000, and the compatibility with the solvent tends to be low. In the case where the adhesion to the substrate and the mechanical strength are necessary, for the halogen atom in the chemical formula (1), 1 mole, from a hydrogen atom, a fluorine atom, a boron atom, a nitrogen atom, a Ming atom, a phosphorus atom, a germanium atom, The total content ratio of at least one atom selected by the group of the ruthenium atom and the titanium atom (the total number (M) of the specific binding atom (R1 in the chemical formula (1)) is preferably 1. 3~0. 2 Mo 22 126770530 ^ ° ° ear, more preferably 1 · 〇 ~ 〇 · 2 Moer 'Special is 〇 · 9 ~ 0 · 2 Moer 'Excellent is 0. 8~0. 2 Mo Er. In this case, it is possible to suppress the decrease in the adhesion and mechanical strength of the film (layer) other than the cured product. When the total number of the specific bonded atoms (Μ) is less than 〇20, the dielectric properties when the cured product is used as an insulating film may be deteriorated. If the hardness exceeds ^, the cured product finally obtained may be used for other films ( The adhesion and mechanical strength of the layer) tend to decrease. Further, even among the specific bonding atoms described above, it is preferred to contain a group of hydrogen atoms, fluorine atoms, nitrogen atoms, germanium atoms, titanium atoms, and carbon atoms from the viewpoint of film formability of the cured product. At least one atom selected; even among these specific bonding atoms, from the viewpoint of dielectric properties and mechanical properties, it is preferred to contain a group consisting of a hydrogen atom, a fluorine atom, a nitrogen atom, a helium atom and a carbon atom. At least one atom selected. Further, the total number of specific binding atoms (Μ) can be obtained from the amount of the siloxane oxide charged, and for example, the relationship represented by the following formula (Α) can be used to obtain 0 M = (Ml + (M2 / 2) +(M3/3))/Msi . . . (A) where M1 represents the total number of atoms in a particular bonded atom bound to a single (only one) germanium atom; M2 represents the total number of atoms in a particular bonded atom bound to two germanium atoms; M3 represents a specific The total number of atoms in an atom that bind to three deuterium atoms; Msi represents the total number of deuterium atoms. Here, one type may be used alone or two or more such rhodium oxide resins may be used in combination. As a method of combining two or more kinds of decyl alkane resins, for example, a method of combining two or more kinds of 23 12677 (^30^ decyl alkane resins) having different weight average molecular weights, and combining different compounds as essential components to be hydrolyzed and polymerized A method of obtaining two or more types of oxoxane resins by a condensation reaction. <(b) Component> The component (b) is a photoacid generator or a photobase generator, which is defined as being capable of causing (a) by irradiating radiation. a compound which is an optically active substance or a basic active substance which is photohardened (hydrolyzed by polycondensation). As a photoacid generator, for example, a diarylsulfonium salt, a triarylsulfonium salt, a dialkyl benzamidine methylhydrazine Salt, diarylsulfonium salt, aryldiazonium, aromatic tetracarboxylic acid ester, aromatic sulfonate, nitrobenzyl ester, sulfonate, aromatic N-oxo quinone sulfonate An aromatic sulfonamide, a hydrocarbon compound containing a halogenated alkyl group, a beach ring compound containing a halogenated alkyl group, a naphthoquinonediazide-4-sulfonate, etc., which may be used singly or in combination of two. Kind of these compounds. Moreover, This may be used in combination with other sensitizers, etc. The photobase generator is, for example, a group of compounds represented by the following chemical formulas (2) to (5), and a nonionic photobase such as a nifedipine. a generator, a cobalt amine-based complex, a quaternary ammonium salt, an ionic photobase generator represented by the following chemical formula (6) and the following chemical formula (7), etc., which may be used alone or in combination. Two or more of these compounds are used. Further, it may be used in combination with other sensitizers or the like. (R2_OCO-NH) m_R3 (7) In the formula, R2 represents a valence of 1 to 30 carbon atoms. The organic group may also contain an aromatic ring having a methoxy group or a nitro group in the side chain; R3 represents a carbon 24 1267703^ an atomic number of 1 to 20, 1 to 4, and m is an integer of 1 to 4. (R4R5C=N -OCO)m-R3. . . (3) In the formula, R3 and m are as defined in the above formula (2); R4 and R5 each represent a monovalent organic group having 1 to 3 carbon atoms, and may be bonded to each other to form Ring structure. R2-OCO-NR6R7 (4) In the formula, R2 is defined as a phase in the above chemical formula (2); R6 and R7 each independently represent a monovalent organic group having 1 to 30 carbon atoms, and may be bonded to each other. And forming a cyclic structure, any one may also be a hydrogen atom. R8_CO-R9_NR6R7. &lt;(5) In the formula, R6 and R7 have the same definitions as in the above formula (4); R8 represents a monovalent organic group having 1 to 30 carbon atoms, and may have an alkoxy group in the side chain. An aromatic ring of a nitro group, an amine group, an alkyl group-substituted amino group or an alkylthio group; and R9 represents a divalent organic group having 1 to 3 carbon atoms. A-11

在此式中,R1()表示碳原子數1〜30之1價的有機基;R11 及R12各自分別表示碳原子數1〜30之1價的有機基或氫原 子;X1 表示下述化學式(6A)、(6B)、(6C)、(6D)、(6E)及(6F)( 以下表示爲「(6A)〜(6F)」)中任一個所表示的1價的基,Z ~表示銨鹽的對離子;t爲1〜3的整數,p及q爲0〜2的整數, 且 t+p+q=3 〇 25 126770“In the formula, R1() represents a monovalent organic group having 1 to 30 carbon atoms; and R11 and R12 each represent a monovalent organic group or a hydrogen atom having 1 to 30 carbon atoms; and X1 represents the following chemical formula ( 6A), (6B), (6C), (6D), (6E), and (6F) (hereinafter referred to as "1 (6A) to (6F)")) The counter ion of the ammonium salt; t is an integer from 1 to 3, p and q are integers from 0 to 2, and t+p+q=3 〇25 126770"

R 13 -N—R1 I R15R 13 -N-R1 I R15

R13 ••_(6A) —N—R17—N R1R13 ••_(6A) —N—R17—N R1

R 15 •(6B) R16R 15 •(6B) R16

R 17R 17

R 17 ㊉R 17 ten

_N R18—N …(6C) R13 R1_N R18-N ...(6C) R13 R1

…(6F) R21 R21 此處,式中Ru、R14、R15以及R16個別獨立表示碳數 1〜30的1價有機基,R17、R18以及R19個別獨立表示碳數 1〜30的2價有機基或是單鍵,R2()以及R21個別獨立表示 碳數1〜30的3價有機基。(6F) R21 R21 Here, in the formula, Ru, R14, R15 and R16 each independently represent a monovalent organic group having 1 to 30 carbon atoms, and R17, R18 and R19 each independently represent a divalent organic group having 1 to 30 carbon atoms. Or a single bond, R2() and R21 each independently represent a trivalent organic group having 1 to 30 carbon atoms.

C—X2—CC—X2—C

2Z· (7) 此處,式中R1G、R11以及R12 ' Z-、t、p以及q與上述 一般式(6)中的相同,X2表示下述一般式(7A)〜(7D)的其中 之一所示的2價基。 26 I2677083〇pif.d〇c2Z· (7) Here, in the formula, R1G, R11 and R12 'Z-, t, p and q are the same as those in the above general formula (6), and X2 represents the following general formulas (7A) to (7D). A divalent group as shown in one of them. 26 I2677083〇pif.d〇c

此處,式中 R13、R14、R15、R16、R17、R18、R19、R20、 R21以及R21,與上述一般式(6A)〜(6F)中的相同意義。 雖然(b)成分的使用量並沒有特別的限制,但是由於相 依於所使用的光酸產生劑或是光鹼產生劑的靈敏度、效 率、使用的光源所希望的硬化物的厚度,延伸至廣範圍。 具體而言,對放射線硬化性組成物中的(a)成分的總量,(b) 成分的使用量較佳爲0.0001〜50重量%,特佳爲0.01〜1〇 重量%。此使用量未滿〇·〇〇〇1重量%的話光硬化性降低, 而且具有爲了使之硬化必須大量曝光的傾向,超過50重量 %的話組成物的安定性、成膜性有劣化的傾向的同時,硬化 物的電特性以及製程配合性降低的傾向。 而且,上述光酸產生劑或是光鹼產生劑亦可以與光敏 化劑。藉由使用光敏化劑,能夠有效率吸收放射線能量線, 能夠提升光酸產生劑或是光鹼產生劑的靈敏度。作爲光敏 化劑例如是所舉的蔥衍生物、二萘嵌苯衍生物、蔥醌衍生 物、噻噸酮衍生物、香豆素等。 尙且,爲了提昇保存安定性而將放射線硬化性組成物 分爲二液保存的場合,較佳爲將(b)成分與(a)成分個別保 27 12677(^- 存。 而且,放射線硬化性組成物中以一液保存的場合,例 如是較佳爲保存於0°c以下。此溫度的下限較佳爲放射線硬 化性組成物中之溶劑的凝固點以上,較佳爲-5(TC。 〈(c)成分〉 (c)成分是可溶解(a)成分的溶劑,例如有非質子性溶 劑、質子性溶劑等等,較佳是非質子性溶劑。本發明人認 爲採用非質子性溶劑,對曝光量的減少和圖案準確度的提 高很有效。 代表醇的質子性溶液,具有與負電性大的氧原子鍵結 的氫原子。因此,質子性溶劑爲親核試劑與做出氫鍵結的 溶劑合。亦即是,由於質子性溶劑爲一般式(1)所表示的化 合物加水分解所得的矽氧烷樹脂與溶劑合,爲了使矽氧烷 樹脂縮合而必須除去溶劑分子,並考慮到具有妨礙在低溫 之硬化的傾向。 另一方面非質子性溶劑係爲在負電度大的元素上未持 有氫原子的溶劑,而被認爲較之於質子性溶劑其妨礙反應 的要素小。因此,在曝光部產生酸性活性物質或鹼性活性 物質的同時進行硬化反應,而不容易產生因酸或鹼的擴散 引起的圖案準確度,被認爲具有提升圖案準確度的傾向。 此處,與習知藉由酸擴散劑以使產生的酸失活(中和)以使圖 案準確度提昇的機制相異。這樣一來,如果使(c)成分中含 有非質子性溶劑的話,就能更加有效地提高圖案準確度和 減少曝光量。 28 12677(?丄_ 作爲含(C)成分的非質子性溶劑,例如是所舉的丙酮、 甲基乙酮、甲基正丙酮、甲基異丙酮、甲基正丁酮、甲基 異丁酮、甲基正戊酮、甲基正己酮、二乙酮、二丙酮、二 - 異丁酮、三甲基壬酮、環己酮、環庚酮、甲基環己酮、2,4- 嗔. 庚烷二酮、丙酮基丙酮、γ-丁內酯、γ-戊內酯等酮系溶劑; 二乙醚、甲基乙醚、甲基正二正丙醚、二異丙醚、四氫肤 喃、甲基四氫呋喃、二氧陸圜、二甲基二氧陸圜、乙二醇 二甲醚、乙二醇二乙醚、乙二醇二正丙醚、乙二醇二丁醚、 二乙二醇二甲醚、二乙二醇甲基甲醚、二乙二醇甲基單正 丙醚、二乙二醇甲基單正丁醚、二乙二醇二正丙醚、二乙 二醇二正丁醚、二乙二醇甲基單正己醚、三乙二醇二甲醚、 三乙二醇二乙醚、三乙二醇甲基乙醚、三乙二醇甲基單正 丁醚、三乙二醇二正丁醚、三乙二醇甲基單正己醚、四乙 二醇二甲醚、四乙二醇二乙醚、四二乙二醇甲基乙醚' 四 乙二醇甲基單正丁醚、二乙二醇二正丁醚、四乙二醇甲基 單正己醚、四乙二醇二正丁醚、丙二醇二甲醚、丙二醇二 _ 乙醚、丙二醇二正丙醚、丙二醇二丁醚、二丙二醇二甲醚、 二丙二醇二乙醚、二丙二醇甲基乙醚、二丙二醇甲基單正 丁醚、二丙二醇二正丙醚、二丙二醇二正丁醚、二丙二醇 甲基單己醚、三丙二醇二甲醚、三丙二醇二乙醚、二丙二 醇甲基乙醚、三丙二醇甲基單正丁醚、三丙二醇二正丁醚、 三丙二醇甲基單己醚、四丙二醇二甲醚、四丙二醇二乙醚、 四丙二醇甲基乙醚、四丙二醇甲基單正丁醚、二丙二醇二 正丁醚、四丙二醇甲基單己醚、四乙二醇二正丁醚等醚系 29 12677()^ 溶劑;乙酸甲酯、乙酸乙酯、乙酸正丙酯、乙酸異丙酯、 乙酸正丁酯、乙酸異丁酯、乙酸次丁酯、乙酸正戊酯、乙 酸次戊酯、乙酸3-甲氧基丁酯、乙酸甲基戊酯、乙酸2-乙 基丁酯、乙酸2-乙基己酯、乙酸苯酯、乙酸環己酯、乙酸 甲基環己酯、乙酸壬酯、乙醯乙酸甲酯、乙醯乙酸乙酯、 乙酸二乙二醇單甲醚、乙酸二乙二醇單乙醚、乙酸二乙二 醇單正丁醚、乙酸二丙二醇單甲醚、乙酸二丙二醇單乙醚、 二乙酸乙二醇、乙酸甲氧基三乙二醇、丙酸乙酯、丙酸正 丁酯、丙酸異戊酯、草酸二乙酯、草酸二正丁酯等酯系溶 劑;乙二醇甲醚丙酸酯、乙二醇乙醚丙酸酯、乙二醇甲醚 乙酸酯、乙二醇乙醚乙酸酯、二乙二醇甲基乙醚乙酸酯、 二乙二醇乙基乙醚乙酸酯、二乙二醇正丁醚乙酸酯、丙二 醇甲醚乙酸酯、丙二醇乙醚乙酸酯、丙二醇丙醚乙酸酯、 二丙二醇甲醚乙酸酯、二丙二醇乙醚丙酸酯等的醚乙酸酯 系溶劑;乙腈、N-甲基吡略烷酮、N-乙基吡咯垸酮、N-丙 基吡咯烷酮、N-丁基吡咯烷酮、N-己基吡咯烷酮、N-環己 基吡略烷酮、Ν,Ν·二甲基甲醯胺、N,N-二乙基甲醯胺、N,N-二甲基亞楓等,由圖案形成時的靈敏度、圖案準確度以及 硬化物的機械強度的觀點來看,較佳爲醚系溶劑、酯系溶 劑、醚乙酸酯系溶劑以及酮系溶劑。較佳爲沒有氮原子的 溶劑。此些之中發明者們認爲第1佳爲醚乙酸酯系溶劑、 第2佳爲醚系溶劑、第3佳爲酮系溶劑。此些可1種類單 獨使用或是2種類以上混合使用。 考慮到放射線硬化性組成物的安定性的話,(c)成分具 30 有對於水的溶解性或水的溶解性,較佳爲同時具有對於水 的溶解性與水的溶解性。因此,在非質子性溶劑不具有對 於水的溶解性或水的溶解性的場合,較佳爲添加質子性溶 劑。在非質子性溶劑不具有對於水的溶解性或水的溶解 性’且未含有質子性溶劑的場合,具有(a)成分的對溶劑的 相溶性降低,且安定性降低的傾向。因此,在即使要犧牲 一些安定性亦要追求靈敏度的場合,較佳爲減少質子性溶 劑。 作爲此種的質子性溶劑,例如是所舉的甲醇、乙醇、 正丙醇、異丙醇、正丁醇、異丁醇、次丁醇、特丁醇、正 戊醇、異戊醇、2-甲基丁醇、次戊醇、特戊醇、3-甲氧基戊 醇、正己醇、2-甲基戊醇、次己醇、2-乙基丁醇、次庚醇、 正辛醇2-乙基己醇、次辛醇、正壬醇' 正癸醇、次十一醇、 三甲基壬醇、次-四癸醇、次十七醇、苯酚、環己醇、甲基 環己醇、苄基醇、乙二醇、1,2-丙二醇、1,3-丁二醇、二乙 二醇、二丙二醇、三乙二醇、三丙二醇等醇系溶劑;乙二 醇甲醚、乙二醇乙醚、乙二醇單苯醚、二乙二醇單甲醚、 二乙二醇單乙醚、二乙二醇單正丁醚、二乙二醇單正己醚、 乙氧基三乙二醇、四乙二醇單正丁醚、丙二醇單甲醚、二 丙二醇單甲醚、二丙二醇單乙醚、三丙二醇單甲醚等醚系 溶劑;乳酸甲酯、乳酸乙酯、乳酸正丁酯、乳酸正戊酯等 酯系溶劑等。此些可1種類單獨使用或是2種類以上混合 使用。 非質子性溶劑的使用比例,較佳爲全溶劑中50重量% 31 1267703 14930pif.doc 以上,更佳爲70重量%以上,特佳爲90重量%以上,最佳爲 95重量%以上。如果使用比例小,在曝光量少的時候,曝光 部可能會產生沒充分硬化的問題。或者,如果使用比例小 _ 就必須用更高溫度爲充分硬化進行熱處理,而造成使產生 的酸和鹼容易擴散,圖案準確度惡化等等問題。 (c)成分的使用方法並沒有特別的限制,例如是作爲調 製(a)成分時的溶劑使用的方法,調製(a)成分之後添加的方 法,進行溶劑交換的方法,以蒸餾去除溶劑等取出⑷成分 善 並加入(c)溶劑的方法等。 而且,進一步的,本發明的放射線硬化性組成物因應 需要亦可以含水,然而較佳爲在不損及達成目的之特性的 範圍內。水的使用量對放射線硬化性組成物的總量較隹爲 10重量%以下,更佳爲5重量%以下,特佳爲2重量%以下。 此水的使用量超過10重量%以上的話具有塗佈性以及塗佈 液的安定性劣化的傾向。而且,雖然未詳細的定量’但是 藉由加入若干的水能夠降低曝光量。 | 此溶劑(非質子性溶劑與質子性溶劑的合計)的使用 量,較佳爲使(a)成分(矽氧烷樹脂)的濃度成爲3〜60重量% 的量。當溶劑的量過多使(a)成分的濃度未滿3重量%的話’ 而有難以形成具有希望膜厚的硬化物的傾向,當溶劑的量 過少使(a)成分的濃度超過60重量%的話,具有硬化物成膜 性等惡化的同時,組成物本身的安定性降低的傾向。 〈(d)成分〉 32Here, R13, R14, R15, R16, R17, R18, R19, R20, R21 and R21 have the same meanings as in the above general formulas (6A) to (6F). Although the amount of the component (b) used is not particularly limited, it extends to a wide range depending on the sensitivity and efficiency of the photoacid generator or the photobase generator used, and the thickness of the hardened material desired for the light source to be used. range. Specifically, the amount of the component (a) to be used in the total amount of the component (a) in the radiation curable composition is preferably 0.0001 to 50% by weight, particularly preferably 0.01 to 1% by weight. When the amount of use is less than 1% by weight, the photocurability is lowered, and a large amount of exposure is required in order to cure it. When the amount is more than 50% by weight, the stability and film formability of the composition tend to be deteriorated. At the same time, the electrical properties of the cured product and the tendency of the process compatibility are lowered. Further, the above photoacid generator or photobase generator may be combined with a photosensitizer. By using a photosensitizer, it is possible to efficiently absorb radiation energy rays, and it is possible to enhance the sensitivity of a photoacid generator or a photobase generator. The photosensitizer is, for example, an onion derivative, a perylene derivative, a lycopene derivative, a thioxanthone derivative, coumarin or the like. In addition, when the radiation curable composition is stored in two liquids in order to improve the storage stability, it is preferable to separately protect the component (b) and the component (a) from 27 to 12677. Further, the radiation curability is further improved. When the composition is stored in a single liquid, for example, it is preferably stored at 0 ° C or lower. The lower limit of the temperature is preferably at least the freezing point of the solvent in the radiation curable composition, preferably -5 (TC. (c) Component> The component (c) is a solvent which can dissolve the component (a), and is, for example, an aprotic solvent, a protic solvent or the like, preferably an aprotic solvent. The inventors believe that an aprotic solvent is used. It is effective for reducing the exposure amount and improving the pattern accuracy. A proton solution representing an alcohol has a hydrogen atom bonded to a negatively charged oxygen atom. Therefore, the protic solvent is a nucleophile and hydrogen bonding is performed. That is, since the proton solvent is a sulfonated resin obtained by hydrolyzing a compound represented by the general formula (1) and a solvent, it is necessary to remove the solvent molecule in order to condense the fluorene oxide resin, and it is considered. Have an obstacle in On the other hand, the aprotic solvent is a solvent that does not have a hydrogen atom on an element having a large negative electric energy, and is considered to be a factor that hinders the reaction compared to a protic solvent. The exposure portion generates an acidic active material or a basic active material while performing a hardening reaction, and is less likely to cause pattern accuracy due to diffusion of an acid or a base, and is considered to have a tendency to enhance pattern accuracy. Here, The mechanism by which the acid diffusion agent is inactivated (neutralized) to increase the accuracy of the pattern is different. Thus, if the (c) component contains an aprotic solvent, it can be more effective. Improve pattern accuracy and reduce exposure. 28 12677(?丄_ as an aprotic solvent containing (C), such as acetone, methyl ethyl ketone, methyl n-acetone, methyl isopropanone, N-butanone, methyl isobutyl ketone, methyl n-pentanone, methyl n-hexanone, diethyl ketone, diacetone, di-isobutyl ketone, trimethyl fluorenone, cyclohexanone, cycloheptanone, Cyclohexanone, 2,4-decane, heptanedione, acetonyl a ketone solvent such as ketone, γ-butyrolactone or γ-valerolactone; diethyl ether, methyl ether, methyl n-dipropyl ether, diisopropyl ether, tetrahydrofuran, methyltetrahydrofuran, dioxane , dimethyldioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol di-n-propyl ether, ethylene glycol dibutyl ether, diethylene glycol dimethyl ether, diethylene glycol Methyl ether, diethylene glycol methyl mono-n-propyl ether, diethylene glycol methyl mono-n-butyl ether, diethylene glycol di-n-propyl ether, diethylene glycol di-n-butyl ether, diethylene glycol methyl Mono-n-hexyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, triethylene glycol methyl ether, triethylene glycol methyl mono-n-butyl ether, triethylene glycol di-n-butyl ether, triethylene glycol Alcohol methyl mono-n-hexyl ether, tetraethylene glycol dimethyl ether, tetraethylene glycol diethyl ether, tetraethylene glycol methyl ether' tetraethylene glycol methyl mono-n-butyl ether, diethylene glycol di-n-butyl ether , tetraethylene glycol methyl mono-n-hexyl ether, tetraethylene glycol di-n-butyl ether, propylene glycol dimethyl ether, propylene glycol di-ethyl ether, propylene glycol di-n-propyl ether, propylene glycol dibutyl ether, dipropylene glycol dimethyl ether, dipropylene glycol Ether, Propylene glycol methyl ether, dipropylene glycol methyl mono-n-butyl ether, dipropylene glycol di-n-propyl ether, dipropylene glycol di-n-butyl ether, dipropylene glycol methyl monohexyl ether, tripropylene glycol dimethyl ether, tripropylene glycol diethyl ether, dipropylene glycol Ethyl ether, tripropylene glycol methyl mono-n-butyl ether, tripropylene glycol di-n-butyl ether, tripropylene glycol methyl monohexyl ether, tetrapropylene glycol dimethyl ether, tetrapropylene glycol diethyl ether, tetrapropylene glycol methyl ether, tetrapropylene glycol methyl single positive Ethers such as dibutyl ether, dipropylene glycol di-n-butyl ether, tetrapropylene glycol methyl monohexyl ether, tetraethylene glycol di-n-butyl ether, 29 12677 () solvent; methyl acetate, ethyl acetate, n-propyl acetate, acetic acid Isopropyl ester, n-butyl acetate, isobutyl acetate, n-butyl acetate, n-amyl acetate, pentaerythritol acetate, 3-methoxybutyl acetate, methyl amyl acetate, 2-ethylbutyl acetate Ester, 2-ethylhexyl acetate, phenyl acetate, cyclohexyl acetate, methylcyclohexyl acetate, decyl acetate, methyl acetate, ethyl acetate, diethylene glycol monomethyl ether , diethylene glycol monoethyl ether, diethylene glycol mono-n-butyl ether, B Dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, ethylene glycol diacetate, methoxytriethylene glycol acetate, ethyl propionate, n-butyl propionate, isoamyl propionate, diethyl oxalate, oxalic acid Ester solvent such as di-n-butyl ester; ethylene glycol methyl ether propionate, ethylene glycol ethyl ether propionate, ethylene glycol methyl ether acetate, ethylene glycol ethyl ether acetate, diethylene glycol methyl ether Acetate, diethylene glycol ethyl ether acetate, diethylene glycol n-butyl ether acetate, propylene glycol methyl ether acetate, propylene glycol diethyl ether acetate, propylene glycol propyl ether acetate, dipropylene glycol methyl ether Ether acetate solvent such as acid ester or dipropylene glycol diethyl ether propionate; acetonitrile, N-methylpyrrolidone, N-ethylpyrrolidone, N-propylpyrrolidone, N-butylpyrrolidone, N -hexyl pyrrolidone, N-cyclohexyl pyrrolidone, hydrazine, hydrazine dimethylformamide, N,N-diethylformamide, N,N-dimethyl sulfoxide, etc., when formed by a pattern From the viewpoints of sensitivity, pattern accuracy, and mechanical strength of the cured product, an ether solvent, an ester solvent, and an ether acetate solvent are preferred. Ketone solvents. A solvent having no nitrogen atom is preferred. Among the above, the inventors thought that the first preferred is an ether acetate solvent, the second preferred ether solvent, and the third preferred ketone solvent. These can be used alone or in combination of two or more types. In view of the stability of the radiation curable composition, the component (c) has a solubility in water or a solubility in water, and preferably has solubility in water and solubility in water. Therefore, when the aprotic solvent does not have solubility in water or solubility in water, it is preferred to add a protic solvent. When the aprotic solvent does not have solubility in water or solubility in water and does not contain a protic solvent, the compatibility with the solvent of the component (a) is lowered, and the stability tends to be lowered. Therefore, in the case where sensitivity is sought even if some stability is to be sacrificed, it is preferred to reduce the protic solvent. As such a protic solvent, for example, methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, butanol, tert-butanol, n-pentanol, isoamyl alcohol, 2 are mentioned. -methylbutanol, pentaerythritol, pentanol, 3-methoxypentanol, n-hexanol, 2-methylpentanol, hexanol, 2-ethylbutanol, heptanol, n-octanol 2-ethylhexanol, hypo-octanol, n-nonanol, n-nonanol, dodecyl alcohol, trimethyl decyl alcohol, hypo-tetradecyl alcohol, heptadecyl alcohol, phenol, cyclohexanol, methyl ring An alcohol solvent such as hexanol, benzyl alcohol, ethylene glycol, 1,2-propylene glycol, 1,3-butylene glycol, diethylene glycol, dipropylene glycol, triethylene glycol or tripropylene glycol; ethylene glycol methyl ether , ethylene glycol ether, ethylene glycol monophenyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol mono-n-butyl ether, diethylene glycol mono-n-hexyl ether, ethoxy triethyl An ether solvent such as diol, tetraethylene glycol mono-n-butyl ether, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether or tripropylene glycol monomethyl ether; methyl lactate, ethyl lactate, n-butyl lactate Ester esters such as n-amyl lactate Agent. These may be used alone or in combination of two or more. The proportion of the aprotic solvent to be used is preferably 50% by weight in the total solvent, 31 1267703, 14930 pif. doc or more, more preferably 70% by weight or more, particularly preferably 90% by weight or more, and most preferably 95% by weight or more. If the use ratio is small, the exposure may cause insufficient hardening when the exposure amount is small. Alternatively, if the use ratio is small _, it is necessary to heat-treat with a higher temperature for sufficient hardening, which causes problems in that the generated acid and alkali are easily diffused, the pattern accuracy is deteriorated, and the like. The method of using the component (c) is not particularly limited. For example, it is a method of preparing a solvent for preparing the component (a), a method of adding the component (a), a method of solvent exchange, and a solvent for removing the solvent. (4) A method in which the composition is good and (c) a solvent is added. Further, the radiation curable composition of the present invention may contain water as needed, but it is preferably within a range that does not impair the purpose of achieving the object. The amount of water used is 10% by weight or less, more preferably 5% by weight or less, and particularly preferably 2% by weight or less, based on the total amount of the radiation curable composition. When the amount of use of the water is more than 10% by weight, the coating property and the stability of the coating liquid tend to deteriorate. Moreover, although not quantitatively detailed, the amount of exposure can be reduced by adding a small amount of water. The amount of the solvent (the total of the aprotic solvent and the protic solvent) is preferably such that the concentration of the component (a) (the decane resin) is from 3 to 60% by weight. When the amount of the solvent is too large, the concentration of the component (a) is less than 3% by weight, and it is difficult to form a cured product having a desired film thickness. When the amount of the solvent is too small, the concentration of the component (a) exceeds 60% by weight. The cured film forming property and the like are deteriorated, and the stability of the composition itself tends to be lowered. <(d) component> 32

I2677QX 月的(d)成分爲硬化促進觸媒,藉由添加放射線硬 化^1生1且$物’而能夠進一步期待光酸產生劑量或是光鹼產 生劑量的降低效果、曝光量的降低效果或是 PEB的溫度的 #低效果°此硬化促進觸媒與(b)成分的藉由光產生活性物 胃@通常的光酸產生劑或是光鹼產生劑相異。因此,與通 常^乍胃%酸產生劑或是光鹼產生劑使用的鑰鹽有所區分。 {旦胃’ $卩果有一倂持有光酸產生能或是光鹼產生能與硬化 促進觸媒能的材料的話亦可以使用。 該觸媒被認爲是在溶劑中未顯示觸媒作用,而在塗佈 後的被覆膜中顯示活性的特異觸媒。由於曝光部是酸性活 性物質或鹼性活性物質發生的同時藉由硬化促進觸媒進行 硬化反應’因此更不易引起由於酸或是鹼的擴散等圖案準 確度的降低,亦即是推測能進一步提昇僵案準確度。 調查硬化促進觸媒的硬化促進觸媒能的手段如以下1 〜4所示。 1. 準備(a)成分以及(c)成分所構成的組成物。 2. 使烘烤後的膜厚成爲1.0±0.1μιη的在上述矽晶圓上 塗佈上述1準備的組成物,以所定的溫度烘烤30秒,測量 被覆膜的膜厚。 3. 形成被覆膜的矽晶圓在23±2°C的2.38重量%的氫氧 化四甲基銨(TMAH)水溶液浸泡30秒,並觀察水洗、乾燥 後的被覆膜的膜減少。此畤,TMAH水溶液浸泡前後的被 覆膜的膜厚變化爲20%以內的烘烤時的最低溫度爲不溶解 溫度。 4. 在上述1所準備的組成物中想要確認硬化促進觸媒 33 12677(^释 能的化合物,係爲對(a)成分的總量添加0·01重量%以得到 組成物,與上述2.以及3相同的求取不溶解溫度。藉由添 加想要確認硬化促進觸媒能的化合物,如果不溶解溫度降 低的話,此化合物具有硬化促進觸媒能。 作爲(d)成分的硬化促進觸媒,例如是所舉的氫氧化 鈉、氯化鈉、氫氧化鉀、氯化鉀等鹼金屬類、鑰鹽等。此 些可1種類單獨使用或是2種類以上混合使用。 此些之中由能夠提昇所得硬化物的電特性以及機械強 度,進一步能夠提高組成物的安定性的觀點來看較佳爲鑰 鹽,更佳爲四級銨鹽。 作爲銨鹽的一種,例如是所舉的由(d-Ι)含氮化合物、 (d-2)含陰離子性基化合物以及鹵素原子選擇至少一種與由 此些所形成的鹽。與上述(d-Ι)含氮化合物的氮結合的原 子,較佳爲由Η原子、F原子、B原子、N原子、A1原子、 Ρ原子、Si原子、Ge原子、Ti原子以及C原子所組之族群 選擇至少一種。而且,作爲上述陰離子性基例如是氫氧基、 硝酸基、硫酸基、鑛基、竣基、苯氧基。 作爲此些的鐵鹽化合物,例如是所舉的銨氫氧化物、 銨氟化物、銨氯化物、銨溴化物、碘化銨、磷酸銨鹽、硝 酸銨鹽、硼酸銨鹽、硫酸銨鹽、甲酸銨鹽、順丁烯二酸銨 鹽、反丁烯二酸銨鹽、苯二甲酸銨鹽、丙二酸銨鹽、琥珀 酸銨鹽、酒石酸銨鹽、蘋果酸銨鹽、乳酸銨鹽、檸檬酸銨 鹽、乙酸銨鹽、丙酸銨鹽、丁酸銨鹽、戊酸銥鹽、己酸銨 鹽、庚酸銨鹽、辛酸銨鹽、壬酸銨鹽、癸酸銨鹽、草酸銨 34 12677嫩郎論 鹽、己二酸銨鹽、癸二酸銨鹽、酪酸銨鹽、油酸銨鹽、硬 脂酸銨鹽、亞麻油酸銨鹽、次亞麻油酸銨鹽、水楊酸銨鹽、 苯磺酸銨鹽、安息香酸銨鹽、對氨基安息香酸銨鹽、對甲 苯磺酸銨鹽、甲基磺酸銨鹽、三氟甲基磺酸銨鹽、三氟乙 基磺酸銨鹽等銨鹽化合物。 而且,亦可以舉出上述銨鹽化合物的銨位置被甲基 銨、二甲基銨、三甲基銨、四甲基銨、乙基銨、二乙基銨、 三乙基銨、四乙基銨、丙基銨、二丙基銨、三丙基銨、四 丙基銨、丁基銨、二丁基銨、三丁基銨、四丁基銨、乙醇 銨、二乙醇銨、三乙醇銨等取代的銨鹽化合物。 此些的鑰鹽化合物由促進硬化的觀點,較佳爲四甲基 銨硝酸鹽、四甲基銨乙酸鹽、四甲基銨丙酸鹽、四甲基銨 順丁烯二酸鹽、四甲基銨硫酸鹽等的銨鹽。 此些可1種類單獨使用或是2種類以上混合使用。 而且,考慮到靈敏度以及安定性,(d)成分的硬化促進 觸媒的使用量對放射線硬化性組成物中的(a)成分的總量較 佳爲0.0001〜(U重量%,更佳爲〇·〇〇〇1〜〇·〇5重量%,特 佳爲0.0005〜0.01重量%。 尙且,此些的鐵鹽能夠因應需要以水或溶劑溶解或是 稀釋,以使之成爲所希望的濃度。而且,添加時期並沒有 特別的限定,例如是在進行(a)成分的加水分解時,加水分 解中、反應結束時,溶劑蒸餾除去前後,添加酸產生劑時。 〈其他成分〉 而且,本發明的放射線硬化性組成物中亦可以添加色 35 126770》— 素。藉由添加色素而得到例如是調整靈敏度的效果、抑制 駐波的效果。 而且,在不損及本發明目的或效果的範圍,亦可以進 一步添加界面活性劑、矽烷耦合劑、增黏劑、無機塡充劑、 聚丙二醇等的熱分解性化合物、揮發性化合物等。上述熱 分解性化合物以及揮發性化合物較佳爲能夠藉由熱(較佳 爲250〜500°C)分解或揮發以形成空隙。而且,亦可以對(a) 成分的矽氧烷樹脂賦予空隙形成能。 尙且,本發明的放射線硬化性組成物使用於電子零件 的場合,希望不含有鹼金屬或鹼土金屬,即使含有的場合 在組成物中此些金屬離子濃度較佳爲lOOOppm,更佳爲 lppm以下。此些金屬離子濃度超過l〇〇〇ppm的話,具有金 屬離子容易流入具有由組成物得到的硬化物的半導體元件 等的電子零件,而給予元件性能不良影響的疑慮。因此, 因應需要例如是使用離子交換過濾器等而由組成物中除去 鹼金屬或鹼土金屬是有效的。但是,用於光導波管或其他 用途之際,如果不會損及其目的的話並沒有限制。 使用此種本發明的放射線硬化性組成物,在基板上形 成圖案化硬化物的方法,係以一般的成膜性以及膜均勻優 良的旋轉塗佈法進行說明。但是,硬化物形成方法並不限 定爲旋轉塗佈法。而且,基板的表面可以是平坦的,亦可 以是形成有電極等而爲凹凸不平的。 首先,將放射線硬化性組成物較佳爲以500〜5000回 轉/分,更佳爲以500〜3000回轉/分塗佈在矽晶圓或是玻璃 36 Ι2677(^30Ρ— 基板上以形成被覆膜。此回轉數未滿500回轉/分的話膜均 勻具有惡化的傾向,超過5000回轉/分的話具有成膜性惡 化的疑慮。 硬化物的膜厚依使用用途而不同,例如是使用在LSI 等的層間絕緣層時的膜厚較佳爲0.01〜2μιη,使用在鈍化 (passivation)層時的膜厚較佳爲2〜40μιη。使用在液晶用途 時的膜厚較佳爲〇·1〜2〇μηι,使用在光阻用途時的膜厚較佳 爲0.1〜2μπι,使用在光導波管時的膜厚較佳爲1〜50μπι。 通常,此膜厚大略較佳爲0.01〜ΙΟμπχ,更佳爲0.01〜5μιη, 更較佳爲〇·〇1〜3μιη,特佳爲0.01〜2μιη,極佳爲0.1〜 2μπι。爲了調整硬化物的膜厚,例如是亦可以調整組成物中 的(a)成分的濃度。而且,使用旋轉塗佈法的場合,亦可以 藉由調整回轉數以調整膜厚。藉由調整(a)成分的濃度以控 制膜厚的場合,例如是能夠在使膜厚增厚的場合提高(a)成 分的濃度,而在使膜厚減薄的場合降低(a)成分的濃度以進 行控制。而且,在使用旋轉塗佈法調整膜厚的場合,例如 是能夠在使膜厚增厚的場合條低回轉數,增加塗佈次數, 在使膜厚減薄的場合提高回轉數,降低塗佈次數以進行調 整。 其次,較佳爲藉由50〜200°C,更佳爲70〜150°C的熱 板以使被覆膜中的溶劑乾燥,但是,有必要調整乾燥溫度 以藉由後續進行顯影時的各種條件溶解被覆膜。此乾燥溫 度未滿50°C的話具有溶劑無法充分乾燥的傾向,超過200t: 的話顯影時不會溶解,而可能不會形成圖案。 37 I2677Qi3〇pi£d〇c 其次,藉由具有所希望圖案的罩幕以放射線曝光。此 曝光量較佳爲5〜5000mJ/cm2,更佳爲5〜1000mJ/cm2,特 佳爲5〜500mJ/cm2,極佳爲5〜100mJ/cm2。此曝光量未滿 5mJ/cm2的話具有光源的控制變得困難的疑慮,超過 5000mJ/cm2的話具有曝光時間變長,生產性降低的傾向。 尙且’習知一般的矽氧烷系放射線硬化性組成物的曝光量 爲500〜5000mJ/cm2的程度。 作爲此特的放射線,例如是可以使用所舉的可見光、 紫外線、紅外線、X線、α線、β線、γ線,特別是紫外線 較佳。作爲紫外線的產生源例如是超高壓水銀燈、高壓水 銀燈、低壓水銀燈、金屬鹵素燈、準分子燈。 未曝光部對於顯影液具有充分的溶解性,而在曝光部 產生酸性活性物質或鹼性活性物質,並產生加水分解縮合 反應,而對領影液的溶解性降低。依此,形成圖案。 而且,亦可以在曝光後因應需要追加加熱(p〇st exposure bake : PEB)工程。此加熱可以在熱板等對被覆膜 加熱’較佳爲在不會使未曝光部的顯影液溶解性降低的溫 度範圍內加熱。此溫度較佳爲50〜200°C,更佳爲70〜 l5〇°C,特佳爲7〇〜11〇。(:,極佳爲7〇〜i〇(rc。一般而言由 於溫度高的話所產生的酸容易擴散,因此此溫度低的話較 佳。尙且,習知的一般矽氧烷系放射線硬化性組成物的ΡΕβ 工程的加熱溫度爲115〜120°C的程度。 放射線硬化性組成物之未曝光部分的除去,亦即是相 關於顯影,例如是可以使用鹼性水溶液等的顯影液。作爲 38 I267W— 此鹼性水溶液,例如是所舉的氫氧化鈉、氫氧化鉀、碳酸 鈉、矽酸鈉、甲基矽酸鈉、氨水等的無機鹼類;乙胺、正 丙胺等的一級胺類;二乙胺、二正丙胺等的二級胺類;三 乙胺、甲基二乙胺等的三級胺類;二甲基乙醇胺、三甲基 乙酉#胺等的醇胺類;氫氧化四甲基銨(TMAH)、氫氧化四乙 基銨等的四級銨鹽等。而且,亦可以適當的使用在此些的 鹼性水溶液中添加適量水溶性有機溶劑或界面活性劑的水 溶液。由於電子零件不希望鹼金屬的污染,作爲鹼金屬較 馨 佳爲氫氧化四甲基銨水溶液。 適當的顯影時間是取決於膜厚或溶劑,較佳爲5秒〜5 分,更佳爲30秒〜3分,特佳爲30秒〜1分。此顯影時間 未滿5秒的話,會有對晶圓或是基板全面的時間控制困難 的情形,超過5分的話具有生產性惡化的傾向。顯影時的 處理溫度一般爲20〜30°C。作爲顯影方法例如是可以使用 噴灑、攪拌、浸泡、超音波的方式。亦可以因應需要對顯 影形成的圖案接著以蒸餾水等進行洗淨。 | 依本發明圖案化的硬化物亦可以就此作爲光阻罩幕使 用。 依本發明圖案化的硬化物作爲層間絕緣膜、包覆層而 殘存的場合,較佳爲以100〜500°C的加熱溫度燒結被覆膜 以進行最後硬化。此最後硬化較佳爲在N2、Ar、He等惰性 氣體環境下,在大氣中或減壓化進行,只要能滿足使用用 途所要求的特性的話並沒有特別的限制。此加熱溫度未滿 100°C的話具有無法充分達成硬化的傾向的同時,亦具有電 39 1267703^ 絕緣性劣化的傾向,超過5〇〇°C的話具有使下層使用的材料 劣化的疑慮。 而且,最終硬化的加熱時間較佳爲2〜240分,更佳胃 2〜120分。此加熱時間超過240分的話具有不利於量產性 的可能性。作爲加熱裝置例如是所舉的石英管爐等的爐、 熱板、快速熱回火(RTA)等的加熱處理裝置。 作爲具有相關硬化物之使用例的電子零件,例如是具 有半導體元件、多層配線板等的絕緣膜的元件。具體而言, 於半導體元件中可作爲表面保護膜(鈍化膜),緩衝塗佈膜, 層間絕緣膜使用。另一方面,於多層配線板,可以適於作 爲層間絕緣膜使用。 做爲半導體元件,例如是所舉的二極體、電晶體、化 合物半導體、熱阻器、變阻器、閘流體等的個別半導體、 動態隨機存取記憶體(DRAM)、靜態隨機存取記憶體 (SRAM)、可抹除可程式唯讀記憶體(EPROM)、罩幕式唯讀 記憶體、電可抹除可程式唯讀記憶體(EEPROM)、快閃記憶 體、微處理器、DSP、ASIC等的邏輯電路元件、代表單石 微波積體電路(MMIC)的化合物半導體等的積體電路元 件,混成積體電路(Hybrid 1C)、發光二極體、電耦合元件 等的光電變換元件等。而且,作爲多層配線板例如是所舉 的MCM等的高密度配線板等。 而且,亦可以使用液晶用部件、光導波管、光阻等用 途,但是使用用途並不限定於此。 圖1所示爲具備TFT液晶顯示器的電子零件,本發明 126770^ 的TFT(薄膜電晶體)的一實施例的模式斷面圖。此TFT係 在形成在玻璃基板1上的底塗佈膜2之上,設置由多晶矽 所構成傳導層3,並設置於面內方向包挾傳導層3的源極4 以及汲極5。在傳導層3上設置閘電極7,且傳導層3與閘 電極7之間設置有以Si02作爲構成材料的閘氧化膜6。閘 氧化膜6設置爲使傳導層3與閘電極7不直接接觸。在底 塗佈膜2、傳導層3、源極4、汲極5、閘氧化膜6以及閘 電極7上覆蓋有防止短路用的第1層間絕緣膜8,但是第1 層間絕緣膜8的一部分在形成TFT時除去,並由此些部分 個別與源極4、汲極5呈連接狀態導出的金屬配線。金屬配 線9之中,與汲極5呈連接狀態導出的金屬配線9與透明 電極11電連接,其他以外的部分覆蓋第2層間絕緣膜10 以防止短路。I2677QX The component (d) of the month is a hardening-promoting catalyst, and by adding radiation hardening, it is possible to further expect a photoacid production dose or a photobase growth dose reduction effect, an exposure amount reduction effect, or It is the #low effect of the temperature of the PEB. This hardening promotes the catalyst and the component (b) by the light-generating active stomach@normal photoacid generator or photobase generator. Therefore, it is distinguished from the key salt used in the conventional gastric acid generator or photobase generator. {Dangshen' can be used if it has a material that produces photoacids or photobase energy and hardenability to promote catalyst energy. This catalyst is considered to be a specific catalyst which does not exhibit a catalytic action in a solvent and exhibits activity in a coated coating film. Since the exposed portion is an acidic active material or an alkaline active material which is hardened by the hardening promoting catalyst, it is less likely to cause a decrease in pattern accuracy due to diffusion of an acid or a base, that is, it is speculated that it can be further improved. The accuracy of the deadlock. The means for investigating the hardening to promote the hardening of the catalyst to promote the catalyst can be as shown in the following 1 to 4. 1. Prepare the composition of component (a) and component (c). 2. The composition prepared in the above 1 was applied onto the tantalum wafer with a film thickness after baking of 1.0 ± 0.1 μm, baked at a predetermined temperature for 30 seconds, and the film thickness of the coating film was measured. 3. The tantalum wafer on which the coating film was formed was immersed in a 2.38 wt% aqueous solution of tetramethylammonium hydroxide (TMAH) at 23 ± 2 ° C for 30 seconds, and the film of the coating film after washing with water was observed to decrease. In this case, the minimum temperature at the time of baking in which the film thickness of the coating film before and after the immersion of the TMAH aqueous solution is 20% or less is the insoluble temperature. 4. In the composition prepared as described above, it is desired to confirm the compound of the hardening-promoting catalyst 33 12677, and add 0. 01% by weight to the total amount of the component (a) to obtain a composition. 2. The same as the insoluble temperature is obtained by adding the compound which is desired to confirm the hardening-promoting catalyst energy, and if the insoluble temperature is lowered, the compound has a hardening-promoting catalyst energy. The catalyst is, for example, an alkali metal such as sodium hydroxide, sodium chloride, potassium hydroxide or potassium chloride, a key salt, etc. These may be used alone or in combination of two or more. From the viewpoint of further improving the electrical properties and mechanical strength of the obtained cured product, and further improving the stability of the composition, it is preferably a key salt, more preferably a quaternary ammonium salt. As one of the ammonium salts, for example, Selecting at least one of the (d-Ι) nitrogen-containing compound, (d-2) an anionic group-containing compound, and a halogen atom, and a salt formed therefrom, in combination with the nitrogen of the above (d-Ι) nitrogen-containing compound Atom, preferably by ruthenium atom, F original At least one selected from the group consisting of a B atom, an N atom, an A1 atom, a helium atom, a Si atom, a Ge atom, a Ti atom, and a C atom. Further, as the above anionic group, for example, a hydroxyl group, a nitrate group, or a sulfate group , ore, sulfhydryl, phenoxy. Examples of such iron salt compounds include ammonium hydroxide, ammonium fluoride, ammonium chloride, ammonium bromide, ammonium iodide, ammonium phosphate, and nitric acid. Ammonium salt, ammonium borate, ammonium sulfate, ammonium formate, ammonium maleate, ammonium fumarate, ammonium phthalate, ammonium malonate, ammonium succinate, ammonium tartrate Salt, ammonium malate, ammonium lactate, ammonium citrate, ammonium acetate, ammonium propionate, ammonium butyrate, phosphonium valerate, ammonium hexanoate, ammonium heptanoate, ammonium octoate, hydrazine Ammonium ammonium salt, ammonium citrate salt, ammonium oxalate 34 12677 yanlang salt, ammonium adipate salt, ammonium sebacate, ammonium tyrosinate, ammonium oleate, ammonium stearate, ammonium linoleate , linolenic acid ammonium salt, salicylic acid ammonium salt, ammonium benzenesulfonate, ammonium benzoate, p-aminobenzoic acid An ammonium salt compound such as a salt, an ammonium salt of p-toluenesulfonate, an ammonium salt of methanesulfonate, an ammonium salt of trifluoromethanesulfonate or an ammonium salt of trifluoroethylsulfonate. Further, ammonium of the above ammonium salt compound is also mentioned. Position is methyl ammonium, dimethyl ammonium, trimethyl ammonium, tetramethyl ammonium, ethyl ammonium, diethyl ammonium, triethyl ammonium, tetraethyl ammonium, propyl ammonium, dipropyl ammonium, three Substituted ammonium salt compounds such as propyl ammonium, tetrapropyl ammonium, butyl ammonium, dibutyl ammonium, tributyl ammonium, tetrabutyl ammonium, ethanol ammonium, diethanol ammonium, triethanol ammonium, etc. The compound is preferably tetramethylammonium nitrate, tetramethylammonium acetate, tetramethylammonium propionate, tetramethylammonium maleate, tetramethylammonium sulfate, etc. from the viewpoint of promoting hardening. In addition, in consideration of sensitivity and stability, the curing of the component (d) promotes the amount of the catalyst to be used in the radiation curable composition (a). The total amount of the component is preferably 0.0001 to (U% by weight, more preferably 〇·〇〇〇1 to 〇·〇5 wt%, particularly preferably 0.0005) 0.01 wt%. Moreover, such iron salts can be dissolved or diluted in water or solvent as needed to achieve the desired concentration. Further, the addition period is not particularly limited. For example, when the hydrolysis of the component (a) is carried out, the hydrolysis is added, and when the reaction is completed, the acid generator is added before and after the solvent is distilled off. <Other components> Further, the radiation curable composition of the present invention may be added with a color 35 126770. By adding a coloring matter, for example, an effect of adjusting sensitivity and an effect of suppressing standing waves can be obtained. Further, a thermally decomposable compound such as a surfactant, a decane coupling agent, a thickener, an inorganic chelating agent, or a polypropylene glycol, a volatile compound or the like may be further added in a range not impairing the object or effect of the present invention. The above thermally decomposable compound and volatile compound are preferably capable of being decomposed or volatilized by heat (preferably 250 to 500 ° C) to form voids. Further, it is also possible to impart void formation energy to the siloxane resin of the component (a). Further, when the radiation curable composition of the present invention is used for an electronic component, it is desirable not to contain an alkali metal or an alkaline earth metal, and even if it is contained, the concentration of the metal ion in the composition is preferably 1000 ppm, more preferably 1 ppm or less. . When the concentration of the metal ions exceeds 1 〇〇〇 ppm, electronic components such as semiconductor elements having metal ions easily flowed into the cured product obtained from the composition are provided, and the performance of the device is adversely affected. Therefore, it is effective to remove an alkali metal or an alkaline earth metal from the composition by, for example, using an ion exchange filter or the like. However, there is no limit to the use of optical waveguides or other applications if they do not impair their purpose. The method of forming a patterned cured product on a substrate by using the radiation curable composition of the present invention will be described by a spin coating method which is generally excellent in film formability and film uniformity. However, the method of forming the cured product is not limited to the spin coating method. Further, the surface of the substrate may be flat, or may be irregularly formed by forming an electrode or the like. First, the radiation curable composition is preferably applied at 500 to 5,000 revolutions per minute, more preferably at 500 to 3,000 revolutions per minute, on a silicon wafer or glass 36 Ι 2677 (^30 Ρ - substrate to form a coating. When the number of revolutions is less than 500 revolutions/min, the film tends to be deteriorated uniformly. When the number of revolutions exceeds 5,000 turns/min, the film formation property is deteriorated. The film thickness of the cured product varies depending on the intended use, and is used, for example, in LSI. The film thickness of the interlayer insulating layer is preferably 0.01 to 2 μm, and the film thickness when used in the passivation layer is preferably 2 to 40 μm. The film thickness for use in liquid crystal use is preferably 〇·1 to 2 〇. The thickness of the film used for the resist is preferably 0.1 to 2 μm, and the film thickness when used in the optical waveguide is preferably 1 to 50 μm. Generally, the film thickness is preferably 0.01 to ΙΟμπχ, more preferably 0.01~5μιη, more preferably 〇·〇1~3μιη, particularly preferably 0.01~2μηη, and preferably 0.1~2μπι. In order to adjust the film thickness of the cured product, for example, the component (a) in the composition can also be adjusted. Concentration. Moreover, when using the spin coating method, The film thickness can be adjusted by adjusting the number of revolutions. When the film thickness is controlled by adjusting the concentration of the component (a), for example, when the film thickness is increased, the concentration of the component (a) can be increased, and the film can be made. When the thickness is reduced, the concentration of the component (a) is lowered to control the thickness. When the film thickness is adjusted by the spin coating method, for example, when the film thickness is increased, the number of revolutions can be reduced, and the number of coatings can be increased. When the film thickness is reduced, the number of revolutions is increased, and the number of coatings is reduced to adjust. Next, a hot plate of 50 to 200 ° C, more preferably 70 to 150 ° C, is preferably used to coat the film. The solvent is dried, but it is necessary to adjust the drying temperature to dissolve the coating film under various conditions during subsequent development. When the drying temperature is less than 50 ° C, the solvent tends to be insufficiently dried, and when it exceeds 200 t: It does not dissolve, and may not form a pattern. 37 I2677Qi3〇pi£d〇c Next, it is exposed to radiation by a mask having a desired pattern. The exposure amount is preferably 5 to 5000 mJ/cm 2 , more preferably 5 ~1000mJ/cm2, especially good for 5~500mJ In the case where the amount of exposure is less than 5 mJ/cm 2 , the control of the light source becomes difficult, and when the amount exceeds 5000 mJ/cm 2 , the exposure time becomes long and the productivity tends to be lowered. The exposure amount of the conventional siloxane-based radiation curable composition is about 500 to 5,000 mJ/cm 2 . As the specific radiation, for example, visible light, ultraviolet ray, infrared ray, X-ray, and α-ray can be used. The β-ray, the γ-ray, and especially the ultraviolet ray are preferable. The source of the ultraviolet ray is, for example, an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a metal halide lamp, or an excimer lamp. The unexposed portion has sufficient solubility to the developer, and an acidic active material or an alkaline active material is generated in the exposed portion to cause a hydrolysis decomposition reaction, and the solubility in the ink solution is lowered. Accordingly, a pattern is formed. Moreover, it is also possible to add a heating (p〇st exposure bake: PEB) project after exposure. This heating can be performed by heating the coating film on a hot plate or the like, preferably in a temperature range in which the solubility of the developer in the unexposed portion is not lowered. The temperature is preferably from 50 to 200 ° C, more preferably from 70 to 15 ° C, and particularly preferably from 7 to 11 °. (:, preferably 7 〇 to i 〇 (rc. Generally, since the acid generated by the high temperature is easily diffused, it is preferable if the temperature is low. Moreover, the conventional general siloxane scavenging radiation hardening property. The heating temperature of the ΡΕβ project of the composition is about 115 to 120° C. The removal of the unexposed portion of the radiation-curable composition, that is, the development, for example, a developer solution using an alkaline aqueous solution or the like can be used. I267W - the alkaline aqueous solution is, for example, an inorganic base such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium citrate, sodium methyl citrate or ammonia; and a primary amine such as ethylamine or n-propylamine. a secondary amine such as diethylamine or di-n-propylamine; a tertiary amine such as triethylamine or methyldiethylamine; an alcohol amine such as dimethylethanolamine or trimethylacetamidine; A quaternary ammonium salt such as tetramethylammonium (TMAH) or tetraethylammonium hydroxide, etc., and an aqueous solution containing an appropriate amount of a water-soluble organic solvent or a surfactant in such an alkaline aqueous solution may be suitably used. Since electronic parts do not require alkali metal contamination, The alkali metal is preferably a tetramethylammonium hydroxide aqueous solution. The appropriate development time depends on the film thickness or the solvent, preferably 5 seconds to 5 minutes, more preferably 30 seconds to 3 minutes, and particularly preferably 30 seconds. If the development time is less than 5 seconds, it may be difficult to control the entire time of the wafer or the substrate. If it exceeds 5 minutes, the productivity tends to deteriorate. The processing temperature during development is generally 20 to 30. As the developing method, for example, spraying, stirring, immersing, or ultrasonication may be used. The pattern formed by development may be washed with distilled water or the like as needed. | The cured product patterned according to the present invention may also be used. When the cured product patterned according to the present invention remains as an interlayer insulating film or a coating layer, it is preferable to sinter the coating film at a heating temperature of 100 to 500 ° C to perform final hardening. The final hardening is preferably carried out in the atmosphere or under reduced pressure in an inert gas atmosphere such as N2, Ar or He, and is not particularly limited as long as it satisfies the characteristics required for use. When the temperature is 100 ° C, the curing tends to be insufficient, and the electrical properties of the lower layer tend to deteriorate. If the temperature exceeds 5 〇〇 ° C, the material used for the lower layer may be deteriorated. Preferably, it is 2 to 240 minutes, and more preferably 2 to 120 minutes of stomach. If the heating time exceeds 240 minutes, there is a possibility of being disadvantageous for mass productivity. For example, the heating device is a furnace or a hot plate of a quartz tube furnace. A heat treatment device such as a rapid thermal tempering (RTA). The electronic component having an example of use of a cured product is, for example, an element having an insulating film such as a semiconductor element or a multilayer wiring board. Specifically, in the semiconductor element. It can be used as a surface protective film (passivation film), a buffer coating film, or an interlayer insulating film. On the other hand, it can be suitably used as an interlayer insulating film in a multilayer wiring board. As a semiconductor element, for example, an individual semiconductor such as a diode, a transistor, a compound semiconductor, a thermistor, a varistor, a thyristor, a dynamic random access memory (DRAM), or a static random access memory ( SRAM), erasable programmable read only memory (EPROM), masked read-only memory, electrically erasable programmable read-only memory (EEPROM), flash memory, microprocessor, DSP, ASIC An integrated circuit element such as a logic circuit element or a compound semiconductor that represents a monolithic microwave integrated circuit (MMIC) is mixed with a photoelectric conversion element such as an integrated circuit (Hybrid 1C), a light-emitting diode, or an electrical coupling element. Further, the multilayer wiring board is, for example, a high-density wiring board such as MCM. Further, a liquid crystal member, an optical waveguide, a photoresist, or the like may be used, but the use is not limited thereto. Fig. 1 is a schematic cross-sectional view showing an embodiment of a TFT (thin film transistor) of the invention of 126770^, which is an electronic component including a TFT liquid crystal display. This TFT is provided with a conductive layer 3 composed of polycrystalline silicon on the undercoat film 2 formed on the glass substrate 1, and is provided in the in-plane direction of the source 4 and the drain 5 of the conductive layer 3. A gate electrode 7 is provided on the conductive layer 3, and a gate oxide film 6 made of SiO 2 as a constituent material is disposed between the conductive layer 3 and the gate electrode 7. The gate oxide film 6 is disposed such that the conductive layer 3 and the gate electrode 7 are not in direct contact. The bottom coating film 2, the conductive layer 3, the source 4, the drain 5, the gate oxide film 6, and the gate electrode 7 are covered with a first interlayer insulating film 8 for preventing short-circuiting, but a part of the first interlayer insulating film 8 The metal wiring which is removed when the TFT is formed and which is partially connected to the source 4 and the drain 5 is formed. Among the metal wirings 9, the metal wiring 9 which is connected to the drain 5 is electrically connected to the transparent electrode 11, and the other portions are covered with the second interlayer insulating film 10 to prevent short-circuiting.

由本發明的放射線硬化性組成物所得的硬化膜,主要 作爲第2層間絕緣膜10而具備於此TFT上,亦可以用於第 1層間絕緣膜8。此些層間絕緣膜8、10例如是如下所述的 形成。首先,在基底上將本發明的放射線硬化性組成物以 旋轉塗佈法塗佈並乾燥以得到塗膜。其次,經由預定圖案 的罩幕對塗膜曝光以將預定部分(第1層間絕緣膜8的場合 係爲必須形成金屬配線9部分以外的部分,第2層間絕緣 膜1〇的場合係爲必須形成透明電極11部分以外的部分)硬 化’進一步因應需要進行加熱處理。然後藉由顯影處理去 除未曝光部,以得到層間絕緣膜8、10。其後,亦可以因應 需要藉由加熱處理進行最終硬化。尙且,層間絕緣膜8、iO 12677〇3^ 亦可以具有相同組成亦可以有相異的組成。 (實驗例) 以下說明本發明的具體的實驗例,然而本發明並不限 定於此。 於本實驗例中,放射線硬化性組成物是在不使光酸產 生劑或是光鹼產生劑激發,至放射線硬化組成物的顯影工 程結束爲止,是在不含有所使用的光酸產生劑或光鹼產生 劑與敏化劑的感光波長的環境下作業。 (實驗例1 ) 在四乙氧基矽烷317.9g與甲基三乙氧基矽烷247.9g溶 解在二乙二醇二甲醚1116.7g所得的溶液中,在攪拌下將調 製成0.644重量%的硝酸以30分鐘滴下167.5g。在滴下結束 後反應3小時之後,在減壓下、溫浴中蒸餾去除生成乙醇以 及二乙二醇二甲醚的一部分,得到聚矽氧烷溶液1077.0g。 在此聚矽氧烷溶液525.1g中添加二乙二醇二甲醚53.0g、製 備好的2.38重量%的四甲基銨硝酸鹽水溶液(ρΗ3·6)及水 3.〇g,在室溫(25°C)中,經30分鐘攪拌溶解,得到放射線硬 化性合成物用聚矽氧烷溶液。藉由GPC法測定聚矽氧烷溶 液的重量平均分子量爲830。在此放射線硬化性組成物用聚 矽氧烷溶液l〇.〇g中調配光酸產生劑(PAI-lOOl,MIDORI化 學社製)〇.193g,調製成放射線硬化性組成物。尙且,(a)成 分的使用量對放射線硬化性組成物總量爲15重量%,(b)成 分的使用量對放射線硬化性姐成物總量爲1.9重量%,(d)成 分的使用量對放射線硬化性組成物總量爲〇.〇75重量%。 42 126771 將上述放射線硬化性組成物在5吋矽晶圓的中心滴下 2ml,以旋轉塗佈法(7〇〇回轉/分回轉30秒)塗佈在晶圓上以 製成塗膜,將此晶圓在70°C的熱板上乾燥30秒。其後,對 乾燥的塗膜經由具有最小線寬ΙΟμηι的線狀调案的負型用罩 幕,使用曝光機(PLA-600F,Canon公司製)照射200mJ/cm2 的紫外光。具有曝光後之薄膜的晶圓浸泡在2.38重量%的氫 氧化四甲基銨(TMAH)水溶液所構成的顯影液中30秒,以使 未曝光部溶解。其後,將晶圓水洗、旋轉乾燥。然後,使 用爐體將旋轉乾燥後的晶圓在氮環境氣體下以350°C加熱 30分鐘,在晶圓上得到放射線硬化物。用光學顕微鏡從上 部観察放射線硬化物的圖案形狀,以及觀察由SEM所得的 斷面形狀,可以瞭解到線準確度良好的形成,且圖案準確 度爲ΙΟμιη。 (實驗例2) 在把四乙氧基矽烷96.13g與甲基三乙氧基矽烷165.44g 溶解於丙二醇甲基醚醋酸酯562.99g的溶液中,在攪拌的同 時在5分鐘內滴下調製成0.644重量%的硝酸75.47g及調製成 2.38重量%的四甲基銨硝酸鹽水溶液(pH3.6)18.9g。在滴下結 束後反應3小時之後,在減壓下、溫浴中蒸餾去除生成乙醇 以及丙二醇甲基醚醋酸酯的一部分,得到聚矽氧烷溶液 359.94g。再向該溶液添加丙二醇甲基醚醋酸酯,得到放射 線硬化性合成物用聚矽氧烷溶液450.02g。藉由GPC法測定 聚矽氧烷溶液的重量平均分子量爲1110。在此放射線硬化 性組成物用聚矽氧烷溶液20.0g中調配光酸產生劑(PAI-1001 43 1267703^ ,MIDORI化學社製)0.080g,調製成放射線硬化性組成物。 尙且,(a)成分的使用量對放射線硬化性組成物總量爲20重 量%,(b)成分的使用量對放射線硬化性組成物總量爲0.4重 量%,(d)成分的使用量對放射線硬化性組成物總量爲0.1重 量% 〇 將上述放射線硬化性組成物在6吋矽晶圓的中心滴下 2ml,以旋轉塗佈法(700回轉/分回轉30秒)塗佈在晶圚上 以製成塗膜,將此晶圓在l〇〇°C的熱板上乾燥30秒。其後, 對乾燥的塗膜經由具有最小線寬2μπι的線狀圖案的負型用 罩幕,使用曝光機(FPA-3000iW,Canon公司製)照射 75mJ/cm2的紫外光。具有曝光後之薄膜的晶圓在100°C的 熱板上加熱30秒,並將晶圓在室溫下自然冷卻後,以塗佈 機·顯影機(Mark 7,東京ELECTRON)將此晶圓浸泡在2.38 重量%的氫氧化四甲基銨(TMAH)水溶液所構成的顯影液中 3〇秒,以進行攪拌顯影而將未曝光部溶解。其後,將晶圓 水洗、旋轉乾燥。然後,使用爐體將旋轉乾燥後的晶圓在 氮環境氣體下以350°C加熱30分鐘,在晶圓上得到放射線 硬化物。以光學顯微鏡由上部觀察放射線硬化物的圖案形 狀,以及觀察由SEM所得的斷面形狀,可以瞭解到線準確 度良好的形成,且圖案準確度爲2μπι。斷面形狀的SEM照 片如圖2所示。 (實驗例3) 在實驗例2中所得的放射線硬化性組成物用聚矽氧烷 溶液lO.Og中調配光鹼產生劑(NBC-101,MIDORI化學社 44 I2677Q33〇pitdoc 製)0.040g,調製成放射線硬化性組成物。尙且,(a)成分的 使用量對放射線硬化性組成物總量爲20重量%,(b)成分的 使用量對放射線硬化性組成物總量爲0·4重量%,((1)成分的 使用量對放射線硬化性組成物總量爲0.1重量%。 將上述放射線硬化性組成物在6吋矽晶圓的中心滴下 2ml,以旋轉塗佈法(700回轉/分回轉30秒)塗佈在晶圓上 以製成塗膜,將此晶圓在l〇〇t的熱板上乾燥30秒。其後, 對乾燥的塗膜經由具有最小線寬2μπι的線狀圓案的負型用 罩幕,使甩曝光機(FPA-3000iW,Canon公司製)照射 100mJ/cm2的紫外光。具有曝光後之薄膜的晶圓在i〇〇°C的 熱板上加熱30秒,並將晶圓在室溫下自然冷卻後,以塗佈 機·顯影機(Mark 7,東京ELECTRON)將此晶圓浸泡在2.38 重量%的氫氧化四甲基銨(TMAH)水溶液所構成的顯影液中 30秒,以進行攪拌顯影而將未曝光部溶解。其後,將晶圓 水洗、旋轉乾燥。然後,使用爐體將旋轉乾燥後的晶圓在 氮環境氣體下以350°C加熱30分鐘,在晶圚上得到放射線 硬化物。以光學顯微鏡由上部觀察放射線硬化物的圖案形 狀,以及觀察由SEM所得的斷面形狀,可以瞭解到線準確 度良好的形成,且圖案準確度爲2μιη。 (實驗例4) 在實驗例2中所得的放射線硬化性組成物用聚矽氧烷 溶液l〇.〇g中調配光酸產生劑(ΡΑΙ-101,MIDORI化學社 製)0.040g以及作爲熱分解性化合物的聚丙二醇(Aldrich公 司製,PPG725)0.5g,調製成放射線硬化性組成物。尙且, 45 1267703 14930piltdoc (a) 成分的使用量對放射線硬化性組成物總量爲20重量%, (b) 成分的使用量對放射線硬化性組成物總量爲0.4重量 %,(d)成分的使用量對放射線硬化性組成物總量爲0.1重量 % 〇 將上述放射線硬化性組成物在6吋矽晶圓的中心滴下 2ml,以旋轉塗佈法(700回轉/分回轉30秒)塗佈在晶圓上以 製成塗膜,將此晶圓在l〇〇°C的熱板上乾燥30秒。其後,對 乾燥的塗膜經由具有最小線寬2μπι的線狀圖案的負型用罩 幕,使用曝光機(FPA-3000iW,Canon公司製)照射100mJ/cm2 的紫外光。具有曝光後之薄膜的晶圓在100°C的熱板上加熱 3〇秒,並將晶圓在室溫下自然冷卻後,以塗佈機·顯影機 (Mark 7,東京ELECTRON)將此晶圓浸泡在2.38重量%的氫 氧化四甲基銨(TMAH)水溶液所構成的顯影液中30秒,以進 行攪拌顯影而將未曝光部溶解。其後,將晶圓水洗、旋轉 乾燥。然後,使用爐體將旋轉乾燥後的晶圓在氮環境氣體 下以350°C加熱30分鐘,在晶圓上得到放射線硬化物。放射 線硬化物的膜厚爲3·0μπι並認定爲沒有破裂等不良情況產 生。以光學顯微鏡由上部觀察放射線硬化物的圖案形狀, 以及觀察由SEM所得的斷面形狀,可以瞭解到線準確度良 好的形成,且圖案準確度爲2μπι。 (比較例1) 在四乙氧基矽烷128.87g與甲基三乙氧基矽烷1〇〇 51g 溶解在丙三醇單甲醚229.97g所得的溶液中,在攪拌下將調 製成0.644重量%的硝酸以10分鐘滴下67.9lg。在滴下結 1267703 14930pif.doc 束後反應3小時得到放射線硬化性組成物用聚矽氧烷溶液 527.26。藉由GPC法測定聚矽氧烷溶液的重量平均分子量 爲980。在此放射線硬化性組成物用聚矽氧烷溶液10.0g中 · 調配光酸產生劑(PAM001,MIDORI化學社製)0.150g,調 製成放射線硬化性組成物。尙且,(a)成分的使用量對放射 線硬化性組成物總量爲15重量%,(b)成分的使用量對放射 線硬化性組成物總量爲1.5重量%。 將上述放射線硬化性組成物在5吋矽晶圓的中心滴下 φ 2ml,以旋轉塗佈法(700回轉/分回轉30秒)塗佈在晶圓上 以製成塗膜,將此晶圓在l〇〇°C的熱板上乾燥30秒。其後, 對乾燥的塗膜經由具有最小線寬ΙΟμιη的線狀圖案的負型 用罩幕,使用曝光機(PLA-600F,Canon公司製)照射 200mJ/cm2的紫外光。具有曝光後之薄膜的晶谓在l〇(TC的 熱板上加熱30秒,並將晶圓在室溫下自然冷卻後,將此晶 圓浸泡在2·38重量%的氫氧化四甲基銨(TMAH)水溶液所 構成的顯影液中30秒,以使未曝光部溶解。其後,將晶圓 _ 水洗、旋轉乾燥時塗膜全部溶解,認定爲圖案無法形成。 (比較例2) 除了將紫外光200mJ/cm2的曝光變更爲紫外光 1000mJ/Cm2以外,其餘與比較例1進行相同的顯影。顯影 後,將晶圓水洗、旋轉乾燥。然後,使用爐體將旋轉乾燥 後的晶圓在氮環境氣體下以350°C加熱30分鐘,在晶圓上 得到放射線硬化物。以光學顯微鏡由上部觀察放射線硬化 47 12677(^ 物的圖案形狀,以及觀察由SEM所得的斷面形狀,形成 ΙΟμπι寬度的線,然而其形狀不佳。斷面形狀的SEM照片 如圖5所示。 (比較例3) 在四乙氧基矽烷44.90g與甲基三乙氧基矽烷77.20g溶 解在乙醇122.72g所得的溶液中,在攪拌下將調製成0.644 重量%的硝酸以10分鐘滴下35.24g。在滴下結束後反應3 小時之後,在減壓下、溫浴中蒸餾去除生成乙醇的一部分, 得到放射線硬化性組成物用聚矽氧烷溶液210.05g。藉由 GPC法測定聚矽氧烷溶液的重量平均分子量爲91〇。在此 放射線硬化性組成物用聚矽氧烷溶液10.〇g中調配光酸產 生劑(PAI-1001,MIDORI化學社製)0.l5〇g,調製成放射線 硬化性組成物。尙且,(a)成分的使用量對放射線硬化性組 成物總量爲20重量%,(b)成分的使用量對放射線硬化性組 成物總量爲1.5重量%。 表1爲以上實驗例1〜4及比較例1〜3的結果比較表。 48The cured film obtained by the radiation curable composition of the present invention is mainly provided as the second interlayer insulating film 10 on the TFT, and may be used for the first interlayer insulating film 8. These interlayer insulating films 8, 10 are formed, for example, as described below. First, the radiation curable composition of the present invention is applied by spin coating on a substrate and dried to obtain a coating film. Then, the coating film is exposed through a mask of a predetermined pattern to form a predetermined portion (the first interlayer insulating film 8 is a portion other than the portion where the metal wiring 9 must be formed, and the second interlayer insulating film 1 is required to be formed). The portion other than the portion of the transparent electrode 11 is hardened' further heat treatment as needed. Then, the unexposed portions are removed by development processing to obtain interlayer insulating films 8, 10. Thereafter, final hardening may be carried out by heat treatment as needed. Further, the interlayer insulating film 8, iO 12677〇3^ may have the same composition or may have a different composition. (Experimental Example) Specific experimental examples of the present invention will be described below, but the present invention is not limited thereto. In the present experimental example, the radiation curable composition is not excited by the photoacid generator or the photobase generator until the development of the radiation hardening composition is completed, and the photoacid generator or the used photoacid generator is not contained. The photobase generator works with the sensitizer at a photosensitive wavelength. (Experimental Example 1) In a solution obtained by dissolving 317.9 g of tetraethoxynonane and 247.9 g of methyltriethoxydecane in 1116.7 g of diethylene glycol dimethyl ether, it was adjusted to 0.644% by weight of nitric acid under stirring. 167.5 g was dropped in 30 minutes. After reacting for 3 hours after completion of the dropwise addition, a part of ethanol and diethylene glycol dimethyl ether were distilled off under reduced pressure in a warm bath to obtain 1077.0 g of a polyoxymethane solution. 55.2 g of diethylene glycol dimethyl ether, a prepared 2.38 wt% aqueous solution of tetramethylammonium nitrate (ρΗ3·6) and water 3.〇g were added to 525.1 g of the polyoxyalkylene solution at room temperature. (25 ° C), the solution was dissolved by stirring for 30 minutes to obtain a polysiloxane solution for a radiation curable composition. The weight average molecular weight of the polyoxyalkylene solution was determined by the GPC method to be 830. In the radiation curable composition, a photoacid generator (PAI-100, manufactured by MIDORI Chemical Co., Ltd.) 193 193 g was prepared by using a polysiloxane solution, 放射g, to prepare a radiation curable composition. Further, the amount of the component (a) used was 15% by weight based on the total amount of the radiation curable composition, and the amount of the component (b) used was 1.9% by weight based on the total amount of the radiation curable compound, and the component (d) was used. The amount of the radiation-hardening composition was 〇.〇75 wt%. 42 126771 The radiation curable composition was dropped by 2 ml at the center of a 5 吋矽 wafer, and coated on a wafer by spin coating (7 rpm/minute rotation for 30 seconds) to prepare a coating film. The wafer was dried on a hot plate at 70 ° C for 30 seconds. Thereafter, the dried coating film was irradiated with ultraviolet light of 200 mJ/cm 2 using an exposure machine (PLA-600F, manufactured by Canon Inc.) through a negative mask having a linear line width of the minimum line width ΙΟμηι. The wafer having the exposed film was immersed in a developer of a 2.38 wt% aqueous solution of tetramethylammonium hydroxide (TMAH) for 30 seconds to dissolve the unexposed portion. Thereafter, the wafer is washed with water and spin dried. Then, the spin-dried wafer was heated at 350 ° C for 30 minutes under a nitrogen atmosphere using a furnace body to obtain a radiation-cured material on the wafer. The shape of the pattern of the radiation hardened material was observed from the upper side by an optical 顕 micromirror, and the shape of the cross section obtained by the SEM was observed, and the formation of the line accuracy was well understood, and the pattern accuracy was ΙΟμιη. (Experimental Example 2) A solution of 96.13 g of tetraethoxynonane and 165.44 g of methyltriethoxydecane dissolved in 562.99 g of propylene glycol methyl ether acetate was added dropwise to a solution of 0.644 in 5 minutes while stirring. 75.47 g of a wt% nitric acid and 18.9 g of a tetramethylammonium nitrate aqueous solution (pH 3.6) prepared to be 2.38 wt%. After reacting for 3 hours after the completion of the dropwise addition, a part of ethanol and propylene glycol methyl ether acetate were distilled off under reduced pressure in a warm bath to obtain 359.94 g of a polyoxymethane solution. Further, propylene glycol methyl ether acetate was added to the solution to obtain 450.02 g of a polysiloxane solution for a radiation curable composition. The weight average molecular weight of the polyoxyalkylene solution was determined by the GPC method to be 1110. In the radiation curable composition, 0.080 g of a photoacid generator (PAI-1001 43 1267703^, manufactured by MIDORI Chemical Co., Ltd.) was added to 20.0 g of a polysiloxane solution to prepare a radiation curable composition. In addition, the amount of the component (a) used is 20% by weight based on the total amount of the radiation curable composition, and the amount of the component (b) is 0.4% by weight based on the total amount of the radiation curable composition, and the amount of the component (d) is used. The total amount of the radiation curable composition was 0.1% by weight. The radiation curable composition was dropped by 2 ml at the center of the 6-inch wafer, and coated on the wafer by a spin coating method (700 revolutions/minute rotation for 30 seconds). The film was formed into a coating film, and the wafer was dried on a hot plate at 10 ° C for 30 seconds. Thereafter, the dried coating film was irradiated with ultraviolet light of 75 mJ/cm 2 using an exposure machine (FPA-3000iW, manufactured by Canon) through a negative mask having a line pattern of a minimum line width of 2 μm. The wafer with the exposed film was heated on a hot plate at 100 ° C for 30 seconds, and the wafer was naturally cooled at room temperature, and then the wafer was coated with a coater/developer (Mark 7, Tokyo ELECTRON). The solution was immersed in a developing solution of a 2.38 wt% aqueous solution of tetramethylammonium hydroxide (TMAH) for 3 seconds to perform agitation and development to dissolve the unexposed portion. Thereafter, the wafer is washed with water and spin dried. Then, the spin-dried wafer was heated at 350 ° C for 30 minutes under a nitrogen atmosphere using a furnace body to obtain a radiation-cured material on the wafer. The pattern shape of the radiation cured product was observed from the upper portion by an optical microscope, and the cross-sectional shape obtained by the SEM was observed, and the formation of the line accuracy was well understood, and the pattern accuracy was 2 μm. The SEM photograph of the cross-sectional shape is shown in Fig. 2. (Experimental Example 3) The radiation curable composition obtained in Experimental Example 2 was prepared by dissolving 0.040 g of a photobase generator (manufactured by NBC-101, MIDORI Chemical Co., Ltd., 44 I2677Q33 〇pitdoc) in a polyoxane solution of 10%. A radiation curable composition. In addition, the amount of the component (a) used is 20% by weight based on the total amount of the radiation curable composition, and the amount of the component (b) is 0.4% by weight based on the total amount of the radiation curable composition, ((1) component The amount of use of the radiation curable composition was 0.1% by weight. The radiation curable composition was dropped by 2 ml at the center of a 6-inch wafer, and was applied by spin coating (700 revolutions/minute rotation for 30 seconds). The wafer was coated on a wafer, and the wafer was dried on a hot plate of l〇〇t for 30 seconds. Thereafter, the dried coating film was passed through a negative type having a linear line having a minimum line width of 2 μm. The mask was used to irradiate a 100 mJ/cm2 ultraviolet light to a 甩 exposure machine (FPA-3000iW, manufactured by Canon Inc.). The wafer having the exposed film was heated on a hot plate of i〇〇°C for 30 seconds, and the wafer was heated. After naturally cooling at room temperature, the wafer was immersed in a developing solution of a 2.38 wt% aqueous solution of tetramethylammonium hydroxide (TMAH) in a coater/developer (Mark 7, Tokyo ELECTRON) for 30 seconds. The unexposed portion is dissolved by stirring and developing. Thereafter, the wafer is washed with water, spin-dried, and then, the furnace is used. After the spin-dried wafer was heated at 350 ° C for 30 minutes under a nitrogen atmosphere, a radiation-cured material was obtained on the wafer, and the pattern shape of the radiation-cured material was observed from the upper portion by an optical microscope, and the cut by the SEM was observed. The surface shape can be understood to have a good line accuracy, and the pattern accuracy is 2 μm. (Experimental Example 4) The radiation curable composition obtained in Experimental Example 2 was prepared by using a polyoxane solution l〇.〇g. 0.040 g of a photoacid generator (manufactured by MIDORI Chemical Co., Ltd.) and 0.5 g of polypropylene glycol (PPG725, manufactured by Aldrich Co., Ltd.) as a thermally decomposable compound were prepared to prepare a radiation curable composition. Moreover, 45 1267703 14930piltdoc ( a) The amount of the component used is 20% by weight based on the total amount of the radiation curable composition, and the amount of the component (b) is 0.4% by weight based on the total amount of the radiation curable composition, and the amount of the component (d) is radiation curable. The total amount of the composition was 0.1% by weight. The above radiation curable composition was dropped by 2 ml at the center of a 6-inch wafer, and coated on a wafer by a spin coating method (700 revolutions/minute rotation for 30 seconds). The film was dried on a hot plate at 10 ° C for 30 seconds. Thereafter, the dried coating film was passed through a mask with a negative pattern having a line pattern of a minimum line width of 2 μm, using an exposure machine (FPA). -3000iW, manufactured by Canon Inc.) irradiates 100 mJ/cm2 of ultraviolet light. The wafer with the exposed film is heated on a hot plate at 100 ° C for 3 sec seconds, and the wafer is naturally cooled at room temperature to be coated. The machine and the developing machine (Mark 7, Tokyo ELECTRON) immersed the wafer in a developing solution composed of a 2.38 wt% aqueous solution of tetramethylammonium hydroxide (TMAH) for 30 seconds to perform agitation and development to remove the unexposed portion. Dissolved. Thereafter, the wafer is washed with water and spin dried. Then, the spin-dried wafer was heated at 350 ° C for 30 minutes under a nitrogen atmosphere using a furnace body to obtain a radiation-cured material on the wafer. The film thickness of the radiopaque cured product was 3·0 μm and was confirmed to be in the absence of cracking or the like. The pattern shape of the radiation-cured material was observed from the upper portion by an optical microscope, and the cross-sectional shape obtained by the SEM was observed, and it was found that the line accuracy was well formed, and the pattern accuracy was 2 μm. (Comparative Example 1) A solution obtained by dissolving 128.87 g of tetraethoxynonane and 51 g of methyltriethoxydecane in 229.97 g of glycerol monomethyl ether was adjusted to 0.644% by weight with stirring. Nitric acid was dropped 67.9 lg over 10 minutes. The mixture was reacted for 3 hours after dropping the knot 1267703 14930 pif.doc to obtain a polysiloxane solution 527.26 for the radiation curable composition. The weight average molecular weight of the polyoxyalkylene solution was determined by the GPC method to be 980. In the radioactive composition, 10.0 g of a polysiloxane solution, 0.150 g of a photoacid generator (PAM001, manufactured by MIDORI Chemical Co., Ltd.) was prepared to prepare a radiation curable composition. Further, the amount of the component (a) used was 15% by weight based on the total amount of the radiation curable composition, and the amount of the component (b) used was 1.5% by weight based on the total amount of the radiation curable composition. The radiation curable composition was dropped by φ 2 ml at the center of the 5 吋矽 wafer, and coated on a wafer by a spin coating method (700 rpm/minute rotation for 30 seconds) to form a coating film. Dry on a hot plate at 〇〇 °C for 30 seconds. Thereafter, the dried coating film was irradiated with ultraviolet light of 200 mJ/cm 2 using an exposure machine (PLA-600F, manufactured by Canon) through a negative mask having a line pattern of a minimum line width ΙΟ μη. The film with the exposed film was heated on a hot plate of TC for 30 seconds, and the wafer was naturally cooled at room temperature, and the wafer was immersed in 3.88% by weight of tetramethyl hydroxide. In a developing solution composed of an aqueous solution of ammonium (TMAH) for 30 seconds, the unexposed portion was dissolved. Thereafter, the coating film was completely dissolved when the wafer was washed with water or dried, and it was confirmed that the pattern could not be formed. (Comparative Example 2) The exposure of ultraviolet light of 200 mJ/cm 2 was changed to ultraviolet light of 1000 mJ/cm 2 , and the same development as in Comparative Example 1 was carried out. After development, the wafer was washed with water and spin-dried. Then, the wafer was spin-dried using a furnace body. The film was heated at 350 ° C for 30 minutes under a nitrogen atmosphere gas to obtain a radiation-cured material on the wafer, and the radiation hardening 47 12677 (the pattern shape of the object was observed from the upper part by an optical microscope, and the cross-sectional shape obtained by SEM was observed to form ΙΟμπι width line, however, its shape is not good. The SEM photograph of the cross-sectional shape is shown in Figure 5. (Comparative Example 3) 44.90g of tetraethoxy decane and 77.20g of methyl triethoxy decane dissolved in ethanol 122.72 g in the solution, stir The mixture was mixed with 0.644% by weight of nitric acid to drip 35.24 g for 10 minutes. After the completion of the dropwise addition for 3 hours, a part of the ethanol was distilled off under reduced pressure in a warm bath to obtain a radioactive composition. 210.05 g of oxyalkylene solution. The weight average molecular weight of the polyoxymethane solution was determined by the GPC method to be 91 Å. The radiation curable composition was formulated with a photoacid generator (PAI-) in a polyxane solution 10. 1001, manufactured by MIDORI Chemical Co., Ltd., 0.15 〇g, and prepared into a radiation curable composition. The amount of the component (a) used is 20% by weight based on the total amount of the radiation curable composition, and the component (b) is used. The total amount of the radiation-hardening composition was 1.5% by weight. Table 1 shows a comparison table of the results of the above Experimental Examples 1 to 4 and Comparative Examples 1 to 3.

I2677QU 表1 非質子性 溶劑 硬化促進 觸媒 曝光量 (mJ/cm2) PEB離 CC) 圖案準確 度(μη〇 圖案形狀 實驗例1 含有 含有 100 無PEB 10 良好 實驗例2 含有 含有 75 100 2 良好 實驗例3 含有 含有 100 100 2 良好 實驗例4 含有 含有 100 100 2 良好 比較例1 不含有 不含有 200 100 不能形成圖案 比較例2 不含有 不含有 1000 100 10 一般 比較例3 不含有 不含有 光酸產生劑不溶解 (實驗例5) 將實驗例2所得的放射線硬化性組成物在-20°C的氣體 環境下保管30天,與同樣放射線硬化性組成物在常溫的氣 體環境下保管30天者相較之下,具有優良的保存安定性。 在-20°C的氣體環境下保管的放射線硬化性組成物,在保管 30天後亦可以用於形成圖案,然而在常溫的氣體環境下保 管30天的放射線硬化性組成物,在保管7天之後就無法用 於形成圖案。這是被認爲常溫的氣體環境下保管7天的放 射線硬化性組成物的矽氧烷樹脂會進行縮合,並伴隨此縮 合產生水所造成的。 【產業上的可利用性】 藉由本發明的放射線硬化性組成物,其保存方法、硬 化膜形成方法以及圖案形成方法,即使曝光量較少亦可以 得到圖案準確度優良的硬化物。因此,本發明能夠有效的 49 I26H〇c 應用於谓案使用方法、電子零件以及光導波管。 雖然本發明已以較佳實施例揭露如上,然其並非用以 限定本發明,任何熟習此技藝者,在不脫離本發明之精神 和範圍內,當可作些許之更動與潤飾,因此本發明之保護 範圍當視後附之申請專利範圍所界定者爲準。 【圖式簡單說明】 圖1繪示爲本發明之電子零件之一較佳實施型態的模 式斷面圖。 圖2繪示爲本發明實施例之圖案形狀的SEM照片圖。 圖3繪示爲本發明比較例之圖案形狀的SEM照片圖。 【主要元件符號說明】 1 :玻璃基板 2 :上塗層 3 :傳導層 4 :源極 5 :汲極 6:閘氧化膜 7 :閘電極 8:第一層間絕緣膜 9:金屬導線 10 :第二層間絕緣膜 11:透明電極 50I2677QU Table 1 Aprotic Solvent Hardening Promotes Catalyst Exposure (mJ/cm2) PEB from CC) Pattern Accuracy (μη〇 Pattern Shape Experimental Example 1 Contains 100 Without PEB 10 Good Experimental Example 2 Contains 75 100 2 Good Experiment Example 3 Contains 100 100 2 Good Experimental Example 4 Contains 100 100 2 Good Comparative Example 1 Contains no contains 200 100 Cannot form a pattern Comparative Example 2 Does not contain no 1000 100 10 General Comparative Example 3 Does not contain no photoacid generation (Inventive Example 5) The radiation curable composition obtained in Experimental Example 2 was stored in a gas atmosphere at -20 ° C for 30 days, and stored in a gas atmosphere at room temperature for 30 days in the same manner as the radiation curable composition. In addition, it has excellent storage stability. The radiation curable composition stored in a gas atmosphere of -20 ° C can be used for patterning after 30 days of storage, but it is stored for 30 days in a normal temperature atmosphere. The radiation-curable composition cannot be used for patterning after being stored for 7 days. This is a radiation that is stored for 7 days in a gas atmosphere considered to be normal temperature. The oxime resin of the chemical composition is condensed and is caused by the condensation to produce water. [Industrial Applicability] The radiation curable composition of the present invention, the storage method, the cured film formation method, and In the pattern forming method, a cured product having excellent pattern accuracy can be obtained even if the amount of exposure is small. Therefore, the present invention can effectively apply the method of using the method, the electronic component, and the optical waveguide. The preferred embodiments are disclosed above, but are not intended to limit the present invention. Any one skilled in the art can make some modifications and refinements without departing from the spirit and scope of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic cross-sectional view showing a preferred embodiment of an electronic component of the present invention. FIG. 2 is a view showing an embodiment of the present invention. SEM photograph of the pattern shape. Fig. 3 is a SEM photograph of the pattern shape of the comparative example of the present invention. [Description of main components] 1 : Glass substrate 2: Coating 3: Conductive layer 4: Source 5: Dip pole 6: Gate oxide film 7: Gate electrode 8: First interlayer insulating film 9: Metal wire 10: Second interlayer insulating film 11: Transparent electrode 50

Claims (1)

267703 ^第93130322號中文專利範圍無劃線修正本 β4:^ 口267703 ^ No. 93130322 Chinese patent scope without scribe correction β4: ^ mouth 修正日期:2006.7.27 十、申請專利範圍 月Amendment date: 2006.7.27 X. Patent application scope Month 1.一種放射線硬化性組成物,包括: 〇)成分:5夕氧院樹脂; (b)成分:光酸產生劑或光鹼產生劑; (C)成分:可溶解(a)成分的溶劑;以及 (d)成分:硬化促進觸媒。 2·如申請專利範圍第1項所述之放射線硬化性組成物, 其中矽氧烷樹脂包括由下述化學式(1)所表示的化合物經加 水分解聚縮合所得到之樹脂: R1nSiX4-n (1) (式中’ R1爲表示氫原子或氟原子,或是含有硼原子、 氮原子、鋁原子、磷原子、矽原子、鍺原子或鈦原子的基, 或是碳原子數1〜20之有機基;X表示爲加水分解性基;^ 表示0〜2的整數,η爲2時,各個Ri可以爲相同、也可以 爲不同,η爲0〜2時,各個X可以爲相同、也可以爲不同。) 3·如申請專利範圍第1項或第2項所述之放射線硬化性 組成物’其中硬化促進觸媒包括鑰鹽。 4·如申請專利範圍第1項或第2項所述之放射線硬化性 組成物’其中硬化促進觸媒包括四級錢鹽。 5·—種硬化膜形成方法,包括·· 進行一成膜製程’於〜基板上塗佈並乾燥申請專利範 圍第1項至第4類中贿—項職之腿線硬化性組成 物以得到一塗膜;以及 進行一曝光製程’曝光該塗膜,且在該曝光製程之後 14930pifl.doc 51 1267703 不加熱該塗膜。 6. —種硬化膜形成方法,包括: 進行一成膜製程,於一基板上塗佈並乾燥申請專利範 圍第1項至第4項其中任何一項所述之放射線硬化性組成 物以得到一塗膜; 進行一曝光製程,曝光該塗膜;以及 進行一加熱製程,在該曝光製程之後加熱該塗膜。 7. 如申請專利範圍第6項所述之硬化膜形成方法,其中 在該加熱製程中,於70〜110°C之溫度加熱該塗膜。 8. 如申請專利範圍第5項至第7項其中任一項所述之硬 化膜形成方法,其中在該曝光製程中,利用5〜100 mJ/cm2 的光量的光照射以曝光該塗膜。 9. 一種圖案形成方法,包括: 進行一成膜製程,於一基板上塗佈並乾燥申請專利範 圍第1項至第4項其中任何一項所述之放射線硬化性組成 物以得到一塗膜; 進行一曝光製程,透過罩幕曝光該塗膜;以及 進行一移除製程,在該曝光製程之後利用顯影移除該 塗膜的未曝光部分的製程,且在該曝光製程之後不加熱該 塗膜。 10. —種圖案形成方法,包括: 進行一成膜製程,於一基板上塗佈並乾燥申請專利範 圍第1項至第4項其中任何一項所述之放射線硬化性組成 物以得到一塗膜; 14930pifl.doc 52 1267703 進行一曝光製程,透過罩幕曝光該塗膜; 進行一加熱製程,在該曝光製程之後加熱該塗膜;以 及 進行一移除製程,在該加熱製程之後利用顯影移除該 塗膜的未曝光部分。 11. 如申請專利範圍第10項所述之圖案形成方法,其中 在該加熱製程中,於70〜11(TC之溫度加熱該塗膜。 12. 如申請專利範圍第9項至第11項其中任一項所述之 圖案形成方法,其中在該曝光製程中,利用5〜100 mJ/cm2 的光量的光照射以曝光該塗膜。 13. 如申請專利範圍第9項至第11項其中任一項所述之 圖案形成方法,其中在該移除製程中,使用氫氧化四甲基 銨水溶液作爲顯影液。 14. 如申請專利範圍第9項至第11項其中任一項所述之 圖案形成方法,其中在該曝光製程中,利用5〜100 mJ/cm2 的光量的光照射以曝光該塗膜;在該移除製程中,使用氫 氧化四甲基銨水溶液作爲顯影液。 15. —種圖案使用方法,使用由申請專利範圍第9項至 第14項其中任一項所述之圖案形成方法所形成之圖案作爲 光阻罩幕。 16. —種電子零件,具備有由申請專利範圍第9項至第 14項其中任一項所述之圖案形成方法所形成之圖案。 17. —種光導波管,具備有由申請專利範圍第9項至第 14項其中任一項所述之圖案形成方法所形成之圖案。 14930pifl.doc 53 1267703 18. —種放射線硬化性組成物的保存方法,將申請專利 範圍第1項至第4項其中任一項所述之放射線硬化性組成 物以〇°C以下的溫度保存。 19. 一種放射線硬化性組成物,包括: (a) 成分:砍氧院樹脂; (b) 成分:光酸產生劑或光鹼產生劑; (c) 成分:可溶解(a)成分的溶劑;以及 (d) 成分:鹼金屬類以及由(d-Ι)含氮化合物與選自(d-2) 含陰離子性基化合物與鹵素原子中至少一種所形成的鹽所 組成的族群中選擇一種以上的硬化促進觸媒。 20. —種放射線硬化性組成物,包括: (a) 成分:矽氧烷樹脂; (b) 成分:藉由照射在曝光製程中使用的一特定波長的 放射線而放出酸性活性物質的光酸產生劑或會放出鹼性活 性物質的光鹼產生劑; (c) 成分:可溶解⑷成分的溶劑;以及 (d) 成分:使用該特定波長的放射線也不會放出酸性活 性物質及鹼性活性物質的硬化促進觸媒。 14930pifl.doc 54A radiation curable composition comprising: 〇) a component: a cerium oxide resin; (b) a component: a photoacid generator or a photobase generator; (C) component: a solvent capable of dissolving the component (a); And (d) component: hardening promoting catalyst. 2. The radiation curable composition according to claim 1, wherein the siloxane resin comprises a resin obtained by hydrolyzing polycondensation of a compound represented by the following chemical formula (1): R1nSiX4-n (1) (wherein R1 represents a hydrogen atom or a fluorine atom, or a group containing a boron atom, a nitrogen atom, an aluminum atom, a phosphorus atom, a ruthenium atom, a ruthenium atom or a titanium atom, or an organic group having 1 to 20 carbon atoms) X represents a hydrolyzable group; ^ represents an integer of 0 to 2, and when η is 2, each Ri may be the same or different, and when n is 0 to 2, each X may be the same or may be The radiation hardening composition as described in claim 1 or 2, wherein the hardening promoting catalyst includes a key salt. 4. The radiation curable composition as described in claim 1 or 2 wherein the hardening promoting catalyst comprises a quaternary salt. 5. A method for forming a cured film, comprising: performing a film forming process on a substrate to coat and drying the leg line hardening composition in the first to fourth categories of the patent application scope to obtain a leg line hardening composition a coating film; and performing an exposure process to expose the coating film, and after the exposure process, 14930 pifl.doc 51 1267703 does not heat the coating film. A method for forming a cured film, comprising: performing a film forming process, coating and drying a radiation curable composition according to any one of claims 1 to 4 on a substrate to obtain a film forming process Coating a film; performing an exposure process to expose the coating film; and performing a heating process to heat the coating film after the exposure process. 7. The method for forming a cured film according to claim 6, wherein the coating film is heated at a temperature of 70 to 110 ° C in the heating process. The method of forming a hardened film according to any one of the items 5 to 7, wherein the coating film is irradiated with light of a light amount of 5 to 100 mJ/cm 2 in the exposure process. A pattern forming method comprising: performing a film forming process of coating and drying a radiation curable composition according to any one of claims 1 to 4 on a substrate to obtain a coating film. Performing an exposure process, exposing the coating film through a mask; and performing a removal process, after which the process of removing the unexposed portion of the coating film is removed by development, and the coating is not heated after the exposure process membrane. 10. A method of forming a pattern, comprising: performing a film forming process, coating and drying a radiation curable composition according to any one of claims 1 to 4 on a substrate to obtain a coating Film; 14930pifl.doc 52 1267703 performing an exposure process, exposing the coating film through a mask; performing a heating process to heat the coating film after the exposure process; and performing a removal process, using the development process after the heating process Except for the unexposed portion of the coating film. 11. The pattern forming method according to claim 10, wherein in the heating process, the coating film is heated at a temperature of 70 to 11 (TC). 12. The scope of claim 9 to 11 The pattern forming method according to any one of the preceding claims, wherein, in the exposing process, light is irradiated with light of a light amount of 5 to 100 mJ/cm 2 to expose the coating film. A pattern forming method according to any one of the preceding claims, wherein the aqueous solution of tetramethylammonium hydroxide is used as a developing solution. 14. The pattern according to any one of claims 9 to 11 A forming method in which light is irradiated with light of a light amount of 5 to 100 mJ/cm 2 to expose the coating film; in the removing process, an aqueous solution of tetramethylammonium hydroxide is used as a developing solution. A pattern formed by using the pattern formed by the pattern forming method according to any one of claims 9 to 14 as a resist mask. 16. An electronic component having a patent application scope Items 9 to 14 A pattern formed by the pattern forming method according to any one of the preceding claims, wherein the light guide tube is provided with a pattern formed by the pattern forming method according to any one of claims 9 to 14. A method for preserving a radiation curable composition, wherein the radiation curable composition according to any one of claims 1 to 4 is stored at a temperature of not more than 〇C. 19. A radiation curable composition comprising: (a) a component: a chopper resin; (b) a component: a photoacid generator or a photobase generator; (c) a component: a solvent capable of dissolving the component (a); And (d) component: one or more selected from the group consisting of alkali metals and a group consisting of a (d-Ι) nitrogen-containing compound and a salt selected from at least one of (d-2) an anionic group-containing compound and a halogen atom; The hardening promotes the catalyst. 20. A radiation hardening composition comprising: (a) a component: a decane resin; (b) a component: releasing acidity by irradiating a specific wavelength of radiation used in the exposure process Active substance a photoacid generator or a photobase generator which emits a basic active material; (c) a component: a solvent capable of dissolving the component (4); and (d) a component: the use of radiation of the specific wavelength does not emit an acidic active substance or a base Hardening of sexually active substances promotes the catalyst. 14930pifl.doc 54
TW093130322A 2003-10-07 2004-10-07 Radiation-curing resin composition and preservation method thereof, forming method of curing film, forming method and operating method of pattern, electronic device and optical wave guide TWI267703B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003348160 2003-10-07
JP2004245106 2004-08-25

Publications (2)

Publication Number Publication Date
TW200513802A TW200513802A (en) 2005-04-16
TWI267703B true TWI267703B (en) 2006-12-01

Family

ID=34436894

Family Applications (1)

Application Number Title Priority Date Filing Date
TW093130322A TWI267703B (en) 2003-10-07 2004-10-07 Radiation-curing resin composition and preservation method thereof, forming method of curing film, forming method and operating method of pattern, electronic device and optical wave guide

Country Status (6)

Country Link
US (1) US7297464B2 (en)
EP (1) EP1672427A4 (en)
JP (1) JP3758669B2 (en)
KR (1) KR100698391B1 (en)
TW (1) TWI267703B (en)
WO (1) WO2005036270A1 (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100924621B1 (en) * 2003-10-07 2009-11-02 히다치 가세고교 가부시끼가이샤 Radiation curable composition, storing method thereof, forming method of cured film, patterning method, use of pattern, electronic components and optical waveguide
US8901268B2 (en) 2004-08-03 2014-12-02 Ahila Krishnamoorthy Compositions, layers and films for optoelectronic devices, methods of production and uses thereof
JP2007031697A (en) * 2005-06-10 2007-02-08 Hitachi Chem Co Ltd Composition for forming coating film for alkali treatment, coating film for alkali treatment, method for producing the same, layered product, antireflection film and electronic part
JP2007031696A (en) * 2005-06-10 2007-02-08 Hitachi Chem Co Ltd Resin composition, silica-based coating film, method for producing the same, layered product and electronic part
JP4655914B2 (en) * 2005-12-13 2011-03-23 東レ株式会社 Photosensitive siloxane composition, cured film formed therefrom, and device having cured film
CN101517487B (en) 2006-09-25 2012-08-08 日立化成工业株式会社 Radiation-sensitive composition, method of forming silica-based coating film, silica-based coating film, apparatus and member having silica-based coating film and photosensitizing agent for insulating
WO2009122664A1 (en) * 2008-03-31 2009-10-08 サンアプロ株式会社 Photobase generator
US8158338B2 (en) * 2008-07-08 2012-04-17 Massachusetts Institute Of Technology Resist sensitizer
US8323866B2 (en) * 2008-07-08 2012-12-04 Massachusetts Institute Of Technology Inorganic resist sensitizer
JP2010117439A (en) * 2008-11-11 2010-05-27 Jsr Corp Positive radiation-sensitive composition, method of forming hardening pattern, and hardening pattern
TW201030469A (en) * 2008-12-25 2010-08-16 Jsr Corp Negative-tone radiation-sensitive composition, cured pattern forming method, and cured pattern
JP5399116B2 (en) * 2009-04-06 2014-01-29 三洋化成工業株式会社 Photosensitive composition containing photobase generator
US20100255412A1 (en) * 2009-04-06 2010-10-07 Sam Xunyun Sun Photo-imaging Hardmask with Negative Tone for Microphotolithography
JP5568892B2 (en) * 2009-05-01 2014-08-13 Jsr株式会社 Negative radiation sensitive composition, cured pattern forming method, and cured pattern
KR101736237B1 (en) 2009-06-08 2017-05-16 제이에스알 가부시끼가이샤 Radiation-sensitive composition, protective film and inter layer insulating film, and process for forming the same
US8557877B2 (en) 2009-06-10 2013-10-15 Honeywell International Inc. Anti-reflective coatings for optically transparent substrates
JP2011026495A (en) * 2009-07-28 2011-02-10 Asahi Kasei E-Materials Corp Method for preserving polyorganosiloxane
JP5381508B2 (en) * 2009-08-27 2014-01-08 Jsr株式会社 Negative radiation sensitive composition, cured pattern forming method, and cured pattern
KR101948028B1 (en) * 2011-03-29 2019-02-14 가부시키가이샤 가네카 Actinic-radiation curable coating resin composition
US8864898B2 (en) 2011-05-31 2014-10-21 Honeywell International Inc. Coating formulations for optical elements
CN103034048B (en) * 2011-09-29 2015-04-22 中芯国际集成电路制造(北京)有限公司 Photoetching method
US9411231B2 (en) 2011-10-12 2016-08-09 Central Glass Company, Limited Silane composition and cured film thereof, and method for forming negative resist pattern using same
JP6163770B2 (en) * 2012-03-07 2017-07-19 Jsr株式会社 Resist underlayer film forming composition and pattern forming method
JP5997041B2 (en) * 2012-12-26 2016-09-21 東京応化工業株式会社 Photosensitive resin composition
KR101402355B1 (en) 2014-01-16 2014-06-02 (주)휴넷플러스 Organic electronic device and fabricating method thereof
TWI551951B (en) * 2014-05-07 2016-10-01 奇美實業股份有限公司 Photosensitive composition, protecting film, and element having the protecting film
EP3194502A4 (en) 2015-04-13 2018-05-16 Honeywell International Inc. Polysiloxane formulations and coatings for optoelectronic applications
WO2017099365A1 (en) * 2015-12-11 2017-06-15 삼성에스디아이 주식회사 Photosensitive resin composition, cured film produced from same, and device having cured film
WO2019177689A1 (en) 2018-03-16 2019-09-19 Dow Silicones Corporation Curable polysiloxane composition

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04107561A (en) * 1990-08-29 1992-04-09 Fujitsu Ltd Resist composition
JPH06148887A (en) * 1991-01-28 1994-05-27 Oki Electric Ind Co Ltd Photosensitive resin composition
JPH04366958A (en) * 1991-06-14 1992-12-18 Oki Electric Ind Co Ltd Radiation sensitive resin composition
JPH06148895A (en) * 1992-11-06 1994-05-27 Toray Ind Inc Photosensitive resin composition and pattern forming method using that
JP3376629B2 (en) 1993-03-19 2003-02-10 東レ株式会社 Photosensitive resin composition and pattern forming method using the same
JP3321548B2 (en) * 1996-06-17 2002-09-03 株式会社日立製作所 Photosensitive polyimide precursor composition and pattern forming method using the same
JP3505990B2 (en) 1997-01-31 2004-03-15 信越化学工業株式会社 High molecular silicone compound, chemically amplified positive resist material and pattern forming method
JP3870471B2 (en) * 1997-03-05 2007-01-17 東レ株式会社 Photosensitive resin composition and pattern forming method using the same
WO1998040439A1 (en) * 1997-03-14 1998-09-17 Minnesota Mining And Manufacturing Company Cure-on-demand, moisture-curable compositions having reactive silane functionality
TW495494B (en) 1998-10-05 2002-07-21 Tonengeneral Sekiyu Kk Photosensitive polysilazane composition and method of forming patterned polysilazane film
US6210856B1 (en) * 1999-01-27 2001-04-03 International Business Machines Corporation Resist composition and process of forming a patterned resist layer on a substrate
US6187505B1 (en) 1999-02-02 2001-02-13 International Business Machines Corporation Radiation sensitive silicon-containing resists
JP2001215714A (en) 2000-02-02 2001-08-10 Fuji Photo Film Co Ltd Radiation sensitive resin composition
JP2001288364A (en) 2000-04-05 2001-10-16 Jsr Corp Radiation-curable composition and optical wave guide using the same and method for producing the optical wave guide
JP3414708B2 (en) 2000-08-31 2003-06-09 クラリアント ジャパン 株式会社 Method of forming patterned polysilazane film
JP2002107932A (en) 2000-10-03 2002-04-10 Toray Ind Inc Radiation sensitive composition
US6653045B2 (en) * 2001-02-16 2003-11-25 International Business Machines Corporation Radiation sensitive silicon-containing negative resists and use thereof
JP3832572B2 (en) * 2001-10-09 2006-10-11 信越化学工業株式会社 Photocurable resin composition, pattern forming method, and film for protecting substrate

Also Published As

Publication number Publication date
EP1672427A4 (en) 2010-01-13
JP3758669B2 (en) 2006-03-22
US7297464B2 (en) 2007-11-20
KR100698391B1 (en) 2007-03-23
US20050266344A1 (en) 2005-12-01
WO2005036270A1 (en) 2005-04-21
JPWO2005036270A1 (en) 2006-12-21
EP1672427A1 (en) 2006-06-21
TW200513802A (en) 2005-04-16
KR20060026839A (en) 2006-03-24

Similar Documents

Publication Publication Date Title
TWI267703B (en) Radiation-curing resin composition and preservation method thereof, forming method of curing film, forming method and operating method of pattern, electronic device and optical wave guide
TWI337616B (en)
WO2005036269A1 (en) Radiation-curing composition, method for storing same, method for forming cured film, method for forming pattern, method for using pattern, electronic component, and optical waveguide
KR20210042959A (en) Silanol-containing organic-inorganic hybrid coating for high resolution patterning
JP6173918B2 (en) Negative photosensitive siloxane composition
JP2009211033A (en) Photosensitive resin composition, method for forming silica-based film, device and member with silica-based film, and method for preparing photosensitive resin composition
CN100510961C (en) Radiation-curing composition, method for storing same, method for forming cured film, method for forming pattern, method for using pattern, electronic component, and optical waveguide
JP2007031696A (en) Resin composition, silica-based coating film, method for producing the same, layered product and electronic part
JP3788475B2 (en) Radiation curable composition, storage method thereof, cured film forming method, pattern forming method, pattern using method, electronic component and optical waveguide
JP4655633B2 (en) Radiation curable composition, storage method thereof, cured film forming method, pattern forming method, pattern using method, electronic component and optical waveguide
JP3818307B2 (en) Radiation curable composition, storage method thereof, cured film forming method, pattern forming method, pattern using method, electronic component and optical waveguide
JP4600090B2 (en) Radiation curable composition, storage method thereof, cured film forming method, pattern forming method, pattern using method, electronic component and optical waveguide
JP3801192B2 (en) Radiation curable composition, storage method thereof, cured film forming method, pattern forming method, pattern using method, electronic component and optical waveguide
JP3781049B2 (en) Radiation curable composition, storage method thereof, cured film forming method, pattern forming method, pattern using method, electronic component and optical waveguide
JP2006091806A (en) Radiation curable composition, its storing method, cured film forming method, pattern forming method, pattern usage, electronic component, and optical waveguide
JP4604710B2 (en) Radiation curable composition, storage method thereof, cured film forming method, pattern forming method, pattern using method, electronic component and optical waveguide
JP2006195175A (en) Radiation-curing composition, method for storing the same, method for forming cured film, pattern forming method, pattern using method, electronic component, and optical waveguide
JP2006257437A (en) Radiation-curable composition and its cured film, and electronic part and optical wave guide
JP2012222104A (en) Method for forming silica-based coating film, and electronic component
JP2012242483A (en) Silica-based photosensitive resin composition, method for forming silica-based insulating coating film having pattern, and electronic component having the coating film
JP2012098453A (en) Photosensitive resin composition, method for forming silica-based insulating film having pattern, and electronic component having silica-based insulating film having pattern formed by the method
JP2006091827A (en) Radiation curable composition, its storing method, cured film forming method, pattern forming method, pattern usage, electronic component, and optical waveguide
JP2012159739A (en) Photosensitive resin composition, method for forming silica-based coating film, and electronic component
JP2006091818A (en) Cured film forming method, pattern forming method, pattern usage, electronic component, and optical waveguide
JP2006091805A (en) Radiation curable composition, its storing method, cured film forming method, pattern forming method, pattern usage, electronic component, and optical waveguide

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees