JP2009186677A - 感光性樹脂組成物、シリカ系被膜の形成方法、及びシリカ系被膜を備える装置及び部材 - Google Patents

感光性樹脂組成物、シリカ系被膜の形成方法、及びシリカ系被膜を備える装置及び部材 Download PDF

Info

Publication number
JP2009186677A
JP2009186677A JP2008025501A JP2008025501A JP2009186677A JP 2009186677 A JP2009186677 A JP 2009186677A JP 2008025501 A JP2008025501 A JP 2008025501A JP 2008025501 A JP2008025501 A JP 2008025501A JP 2009186677 A JP2009186677 A JP 2009186677A
Authority
JP
Japan
Prior art keywords
component
photosensitive resin
resin composition
coating film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008025501A
Other languages
English (en)
Inventor
Koichi Abe
浩一 阿部
Yosuke Aoki
陽介 青木
Koji Maruyama
鋼志 丸山
Kei Kasuya
圭 粕谷
Kyoko Kojima
恭子 小島
Daisuke Ryuzaki
大介 龍崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2008025501A priority Critical patent/JP2009186677A/ja
Publication of JP2009186677A publication Critical patent/JP2009186677A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Materials For Photolithography (AREA)
  • Silicon Polymers (AREA)

Abstract

【課題】 層間絶縁膜として用いることのできるシリカ系被膜の形成が比較的容易であり、かつ形成されるシリカ系被膜がクラック耐性、耐熱性及び解像性に優れる感光性樹脂組成物を提供すること。
【解決手段】 (a)成分:下記一般式(1)で表される化合物を含むシラン化合物を加水分解縮合して得られるシロキサン樹脂と、(b)成分:上記(a)成分が溶解する溶媒と、(c)成分:ナフトキノンジアジドスルホン酸エステルと、(d)成分:微粒子と、を含有し、上記(a)成分の配合割合が、組成物の固形分全体を基準として5〜80質量%であり、上記(d)成分の配合割合が、組成物の固形分全体を基準として5〜50質量%である、感光性樹脂組成物。
Figure 2009186677


[式(1)中、Rは有機基を示し、Aは2価の有機基を示し、Xは加水分解性基を示し、同一分子内の複数のXは同一でも異なっていてもよい。]
【選択図】 なし

Description

本発明は、感光性樹脂組成物、シリカ系被膜の形成方法、並びに当該方法により形成されるシリカ系被膜を備える半導体装置、平面表示装置及び電子デバイス用部材に関する。
液晶表示装置等の平面表示装置や半導体装置の製作においては、層間絶縁膜が用いられている。一般に層間絶縁膜は、気相からの堆積又は塗布により形成した膜に対し、フォトレジストを介してエッチングすることによりパターン形成されている。そして、微細なパターンを形成する場合には、通常気相エッチングが用いられている。しかしながら、気相エッチングは装置コストが高く、かつ処理速度が遅いという問題がある。
そこで、コスト低減を目的として、層間絶縁膜用感光性材料の開発が行われるようになった。特に、液晶表示装置においては、画素電極とゲート/ドレイン配線との間の絶縁及びデバイス平坦化のために用いられる層間絶縁膜に、コンタクトホールを形成する必要があるため、ポジ型の感光特性を有する層間絶縁膜用感光性材料が求められている。さらに、液晶表示装置における層間絶縁膜には、透明性が求められる。また、パターン化された膜を層間絶縁膜として残留させて使用する場合には、誘電率の小さい膜であることが望まれる。
これらの要請に応えるために、例えば、特許文献1及び2に開示の層間絶縁膜の形成方法が提案されている。特許文献1には、ポリシラザンと光酸発生剤とを含む感光性ポリシラザン組成物の塗膜を形成する工程と、上記塗膜に光をパターン状に照射する工程と、上記塗膜の照射された部分を溶解除去する工程とを含んでなる、層間絶縁膜の形成方法が開示されている。また、特許文献2には、シロキサン樹脂と、放射線の照射を受けて酸又は塩基を発生する化合物とを含む組成物から形成された層間絶縁膜が開示されている。
特開2000−181069号公報 特開2004−107562号公報
しかしながら、上記特許文献1に記載の膜を層間絶縁膜として用いる場合には、ポリシラザンを加水分解して、ポリシラザン構造をポリシロキサン構造に転化させる必要がある。この際、膜中の水分が不足すると加水分解が十分に進行しないという問題がある。さらに、ポリシラザンの加水分解においては、揮発性が高いアンモニアが発生することから、製造装置の腐食等が問題となる。
また、特許文献2記載のシロキサン樹脂と、放射線の照射を受けて酸又は塩基を発生する化合物とを含む組成物から形成された層間絶縁膜は、クラック耐性、耐熱性及び解像性が十分でないという問題がある。
そこで本発明は、層間絶縁膜として用いることのできるシリカ系被膜の形成が比較的容易であり、かつ形成されるシリカ系被膜がクラック耐性、耐熱性及び解像性に優れる感光性樹脂組成物及びそれを用いたシリカ系被膜の形成方法を提供することを目的とする。さらに、本発明は、当該方法により形成されたシリカ系被膜を備える半導体装置、平面表示装置及び電子デバイス用部材を提供することを目的とする。
上記目的を達成するために、本発明は、(a)成分:下記一般式(1)で表される化合物を含むシラン化合物を加水分解縮合して得られるシロキサン樹脂と、(b)成分:上記(a)成分が溶解する溶媒と、(c)成分:ナフトキノンジアジドスルホン酸エステルと、(d)成分:微粒子と、を含有し、上記(a)成分の配合割合が、組成物の固形分全体を基準として5〜80質量%であり、上記(d)成分の配合割合が、組成物の固形分全体を基準として5〜50質量%である感光性樹脂組成物を提供する。
Figure 2009186677


[式(1)中、Rは有機基を示し、Aは2価の有機基を示し、Xは加水分解性基を示し、同一分子内の複数のXは同一でも異なっていてもよい。]
かかる感光性樹脂組成物によれば、シロキサン樹脂を用いているため、特許文献1に記載の方法では必須のポリシラザン構造をポリシロキサン構造に転化させる工程を省略することができることから、比較的容易にシリカ系被膜を形成することができる。
さらに、かかる感光性樹脂組成物から形成されるシリカ系被膜は、クラック耐性、耐熱性及び解像性に優れる。本発明の感光性樹脂組成物から形成されるシリカ系被膜によりこのような効果を得ることができる理由は必ずしも明らかでないが、本発明者らは次のように考えている。
すなわち、本発明の感光性樹脂組成物においては、(a)成分が柔軟性に優れるため、形成されるシリカ系被膜を加熱処理する際のクラックの発生が防止されることから、クラック耐性に優れる。また、本発明の感光性樹脂組成物においては、耐熱性に優れるシロキサン樹脂を用いているため、形成されるシリカ系被膜も耐熱性に優れると考えられる。さらに、上記一般式(1)で表される化合物は、アルカリ水溶液への溶解性が高いアシロキシ基を有していることから、それを加水分解することにより得られるシロキサン樹脂もアルカリ水溶液への溶解性が高い。よって、シリカ系被膜を形成する際の露光後の現像時に、露光部をアルカリ水溶液により溶解させることが容易となるため、未露光部と露光部とのアルカリ水溶液に対する溶解性の差が大きくなり解像性が向上すると考えられる。そして、本発明の感光性樹脂組成物によれば、(a)成分の配合割合が組成物の固形分全体を基準として5〜80質量%であることにより、上述した効果が有効に発現し、クラック耐性、耐熱性及び解像性に特に優れたシリカ系被膜を形成することができる。
また、本発明の感光性樹脂組成物は、(d)成分として微粒子を含有し、その配合割合が組成物の固形分全体を基準として5〜50質量%であることにより、クラック耐性、耐熱性がさらに向上したシリカ系被膜を形成することができる。
本発明の感光性樹脂組成物において、上記シラン化合物は、下記一般式(2)で表される化合物をさらに含むことが好ましい。これにより、かかる感光性樹脂組成物から形成されるシリカ系被膜の耐熱性がさらに向上する。
Figure 2009186677


[式(2)中、Rは有機基を示し、Xは加水分解性基を示し、同一分子内の複数のXは同一でも異なっていてもよい。]
本発明の感光性樹脂組成物は、(e)成分:下記一般式(3)で表される化合物を加水分解縮合して得られるシロキサン樹脂、をさらに含有することが好ましい。これにより、かかる感光性樹脂組成物から形成されるシリカ系被膜の強度が向上する。
Figure 2009186677


[式(3)中、Rは、H原子、F原子、炭素数1〜20の有機基、又は、B原子、N原子、Al原子、P原子、Si原子、Ge原子及びTi原子のうちの少なくとも1種の原子を含む基を示し、Xは加水分解性基を示し、nは0〜2の整数を示し、同一分子内の複数のXは同一でも異なっていてもよく、nが2であるとき、同一分子内の複数のRは同一でも異なっていてもよい。]
また、本発明の感光性樹脂組成物において、上記(b)成分は、エーテル系溶媒、アセテート系溶媒、アルコール系溶媒及びケトン系溶媒からなる群より選択される少なくとも1種の溶媒を含むことが好ましい。これにより、かかる感光性樹脂組成物を基板上に塗布する際の塗布ムラやはじきを抑えることができる。
また、本発明の感光性樹脂組成物において、上記(c)成分は、1価又は多価アルコールと、ナフトキノンジアジドスルホン酸とのエステルを含むことが好ましく、上記1価又は多価アルコールは、エチレングリコール、プロピレングリコール及びそれらの重合度が2〜10である重合体の中から選ばれた化合物であることがより好ましい。これにより、かかる感光性樹脂組成物から形成されるシリカ系被膜の透明性が向上する。
本発明はまた、上述した本発明の感光性樹脂組成物を基板上に塗布し乾燥して塗膜を得る塗布工程と、塗膜の所定部分を露光する第1露光工程と、塗膜の露光された所定部分を除去する除去工程と、所定部分が除去された塗膜を加熱する加熱工程と、を有する、シリカ系被膜の形成方法を提供する。かかる形成方法によれば、上述した本発明の感光性樹脂組成物を用いているため、クラック耐性、耐熱性及び解像性に優れるシリカ系被膜を得ることができる。
本発明はまた、上述した本発明の感光性樹脂組成物を基板上に塗布し乾燥して塗膜を得る塗布工程と、塗膜の所定部分を露光する第1露光工程と、塗膜の露光された所定部分を除去する除去工程と、所定部分が除去された塗膜を露光する第2露光工程と、所定部分が除去された塗膜を加熱する加熱工程と、を有する、シリカ系被膜の形成方法を提供する。かかる形成方法によれば、上述の感光性樹脂組成物を用いているため、クラック耐性、耐熱性及び解像性に優れるシリカ系被膜を得ることができる。さらに、可視光領域に光学吸収を有する(c)成分が第2露光工程で分解され、可視光領域における光学吸収が十分に小さい化合物が生成する。よって、得られるシリカ系被膜の透明性が向上する。
本発明はさらに、基板と、該基板上に上述した本発明の形成方法により形成されたシリカ系被膜とを備える、半導体装置、平面表示装置及び電子デバイス用部材を提供する。これらの半導体装置、平面表示装置及び電子デバイス用部材は、上述した本発明の感光性樹脂組成物から形成されるシリカ系被膜を層間絶縁膜として備えているため、優れた性能を発揮する。
本発明は、層間絶縁膜として用いることのできるシリカ系被膜の形成が比較的容易であり、かつ形成されるシリカ系被膜がクラック耐性、耐熱性及び解像性に優れる感光性樹脂組成物、及び、それを用いたシリカ系被膜の形成方法を提供することができる。また、本発明の感光性樹脂組成物から形成されるシリカ系被膜は、絶縁特性、低誘電性及び場合により透明性にも優れ、厚膜化も容易に可能である。さらに、本発明は、上記シリカ系被膜の形成方法により形成されるシリカ系被膜を備える半導体装置、平面表示装置及び電子デバイス用部材を提供することができる。
以下、場合により図面を参照しつつ、本発明の好適な実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。なお、図面中、同一又は相当部分には同一符号を付し、重複する説明は省略する。
また、本明細書において、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(以下、「GPC」という。)により測定され、かつ標準ポリスチレンの検量線を使用して換算されたものである。
ここで、重量平均分子量(Mw)は、例えば、以下の条件で、GPCを用いて測定することができる。
(条件)
試料: 10μL
標準ポリスチレン: 東ソー株式会社製標準ポリスチレン(分子量;190000、17900、9100、2980、578、474、370、266)
検出器: 株式会社日立製作所社製RI−モニター、商品名「L−3000」
インテグレーター: 株式会社日立製作所社製GPCインテグレーター、商品名「D−2200」
ポンプ: 株式会社日立製作所社製、商品名「L−6000」
デガス装置: 昭和電工株式会社製、商品名「Shodex DEGAS」
カラム: 日立化成工業株式会社製、商品名「GL−R440」、「GL−R430」、「GL−R420」をこの順番で連結して使用
溶離液: テトラヒドロフラン(THF)
測定温度: 23℃
流速: 1.75mL/分
測定時間: 45分
(感光性樹脂組成物)
本発明の感光性樹脂組成物は、(a)成分、(b)成分、(c)成分及び(d)成分を含有し、好ましくはさらに(e)成分を含有する。以下、各成分について説明する。
<(a)成分>
(a)成分は、下記一般式(1)で表される化合物を含むシラン化合物を加水分解縮合して得られるシロキサン樹脂である。
Figure 2009186677


[式(1)中、Rは有機基を示し、Aは2価の有機基を示し、Xは加水分解性基を示す。なお、各Xは同一でも異なっていてもよい。]
シロキサン樹脂中にアシロキシ基を含有することにより、感光特性と絶縁被膜特性の双方に優れた被膜を得ることができる。アシロキシ基はアルカリ水溶液に溶解しやすいため、露光後の現像時に使用されるアルカリ水溶液に対して溶解性が増加し、未露光部と露光部とのコントラストが大きくなり解像性が良くなる。また、上記(a)成分は柔軟な成分であるため、加熱処理後の被膜中にクラックが入りにくく、厚膜化が容易となる。
式(1)中、Rで示される有機基としては、例えば、脂肪族炭化水素基及び芳香族炭化水素基が挙げられる。これらの中で、炭素数1〜20の直鎖状、分枝状又は環状の脂肪族炭化水素基が好ましい。炭素数1〜20の直鎖状の脂肪族炭化水素基の具体例としては、メチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基等の基が挙げられる。分枝状の脂肪族炭化水素基の具体例としては、イソプロピル基、イソブチル基等の基が挙げられる。また、環状の脂肪族炭化水素基の具体例としては、シクロペンチル基、シクロヘキシル基、シクロヘプチレン基、ノルボルニル基、アダマンチル基等の基が挙げられる。これらの中で、メチル基、エチル基、プロピル基等の炭素数1〜5の直鎖状の炭化水素基がより好ましく、原料入手容易性の観点からメチル基が特に好ましい。
式(1)中、Aで示される2価の有機基としては、例えば、2価の芳香族炭化水素基及び2価の脂肪族炭化水素基が挙げられる。これらの中で、原料入手容易性等の観点から、炭素数1〜20の直鎖状、分枝状又は環状の2価の炭化水素基が好ましい。
炭素数1〜20の直鎖状の2価の炭化水素基の好ましい具体例としては、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基等の基が挙げられる。炭素数1〜20の分枝状の2価の炭化水素基の好ましい具体例としては、イソプロピレン基、イソブチレン基等の基が挙げられる。炭素数1〜20の環状の2価の炭化水素基の好ましい具体例としては、シクロペンチレン基、シクロへキシレン基、シクロヘプチレン基、ノルボルナン骨格を有する基、アダマンタン骨格を有する基等の基が挙げられる。これらの中で、メチレン基、エチレン基、プロピレン基のような炭素数1〜7の直鎖状の2価の炭化水素基、シクロペンチレン基、シクロヘキシレン基のような環状の2価の炭化水素基、ノルボルナン骨格を有する環状の2価の炭化水素基が特に好ましい。
式(1)中、Xで示される加水分解性基としては、例えば、アルコキシ基、ハロゲン原子、アセトキシ基、イソシアネート基及びヒドロキシル基が挙げられる。これらの中で、感光性樹脂組成物自体の液状安定性や塗布特性等の観点からアルコキシ基が好ましい。なお、後述する一般式(2)及び(3)でそれぞれ表される化合物についてもXで示される加水分解性基としては、一般式(1)で表される化合物におけるXと同様な基が具体例として挙げられる。
また、上記シラン化合物は、下記一般式(2)で表される化合物をさらに含むことが好ましい。これにより、得られるシリカ系被膜の耐熱性がさらに向上する。
Figure 2009186677


[式(2)中、Rは有機基を示し、Xは加水分解性基を示し、同一分子内の複数のXは同一でも異なっていてもよい。]
式(2)中、Rで示される有機基は、例えば、フェニル基、ナフチル基、アントラセニル基、フェナントレニル基、ピレニル基等の芳香族炭化水素基、また、シクロペンチル基、シクロヘキシル基、ノルボルニル基、アダマンチル基等の脂環式炭化水素基が挙げられる。これらの中でも、熱的安定性及び原料入手容易性の観点から、フェニル基、ナフチル基、ノルボルニル基、アダマンチル基がより好ましい。
さらに、メチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基等の直鎖状炭化水素基、iso−プロピル基、iso−ブチル基等の分枝状炭化水素基が挙げられる。これらの中でも、熱的安定性及び原料入手容易性の観点から、メチル基、エチル基、プロピル基等の直鎖状炭化水素基が好ましい。
なお、上記シラン化合物が上記一般式(2)で表される化合物を含む場合のその含有割合は、上記シラン化合物全体に対して、10〜90質量%であることが好ましく、20〜60質量%であることがより好ましい。
さらに、上記シラン化合物は、上述の一般式(1)及び(2)でそれぞれ表される化合物以外のシラン化合物を含んでいてもよい。このようなシラン化合物としては、例えば後述する一般式(3)で表され、nが0又は2である化合物が挙げられる。なお、上記シラン化合物において、一般式(1)及び(2)でそれぞれ表される化合物以外のシラン化合物の含有割合は、上記シラン化合物全体に対して、例えば0〜90質量%とすることができる。
上記シラン化合物を加水分解縮合する際には、一般式(1)で表される化合物について、1種を単独で用いても、2種以上を組み合わせて用いてもよい。同様に、一般式(2)で表される化合物について、1種を単独で用いても、2種以上を組み合わせて用いてもよい。同様に、一般式(1)及び(2)でそれぞれ表される化合物以外のシラン化合物について、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
上述の一般式(1)で表される化合物と一般式(2)で表される化合物とを含むシラン化合物を加水分解縮合して得られるシロキサン樹脂(シルセスキオキサン)の構造の具体例を下記一般式(4)に示す。なお、この具体例は、1種の一般式(1)で表される化合物(Rはメチル基)と、2種の一般式(2)で表される化合物(Rはそれぞれフェニル基とメチル基)とを加水分解縮合して得られるシロキサン樹脂の構造である。また、簡略化のため構造を平面的に示したが、当業者には理解されるように、実際のシロキサン樹脂は3次元網目構造を有する。さらに、添え字の”3/2”は、1個のSi原子に対して3/2個の割合でO原子が結合していることを示す。
Figure 2009186677

ここで、式(4)中、a、b、cは、それぞれ各部位に対応する原料のモル比(モル%)を示し、aは1〜98、bは1〜98、cは1〜98である。ただし、a、b及びcの合計は100である。また、式(4)中のAは、2価の有機基を示す。
上述のシラン化合物の加水分解縮合は、例えば、次のような条件で行うことができる。
まず、加水分解縮合の際に用いる水の量は、一般式(1)で表される化合物1モル当たり0.01〜1000モルであることが好ましく、0.05〜100モルであることがより好ましい。この水の量が0.01モル未満では加水分解縮合反応が十分に進行しない傾向にあり、水の量が1000モルを超えると加水分解中又は縮合中にゲル化物を生じる傾向にある。
また、加水分解縮合の際には、触媒を使用してもよい。触媒としては、例えば、酸触媒、アルカリ触媒、金属キレート化合物を用いることができる。これらの中で、一般式(1)で表される化合物におけるアシロキシ基の加水分解を防止する観点から、酸触媒が好ましい。
酸触媒としては、例えば、有機酸及び無機酸が挙げられる。有機酸としては、例えば、蟻酸、マレイン酸、フマル酸、フタル酸、マロン酸、コハク酸、酒石酸、リンゴ酸、乳酸、クエン酸、酢酸、プロピオン酸、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、シュウ酸、アジピン酸、セバシン酸、酪酸、オレイン酸、ステアリン酸、リノール酸、リノレイン酸、サリチル酸、ベンゼンスルホン酸、安息香酸、p−アミノ安息香酸、p−トルエンスルホン酸、メタンスルホン酸、トリフルオロメタンスルホン酸、トリフルオロエタンスルホン酸等が挙げられる。無機酸としては、例えば、塩酸、燐酸、硝酸、ホウ酸、硫酸、フッ酸等が挙げられる。これらは1種類を単独で又は2種類以上を組み合わせて使用される。
このような触媒の使用量は、一般式(1)で表される化合物1モルに対して0.0001〜1モルの範囲であることが好ましい。この使用量が0.0001モル未満では実質的に反応が進行しない傾向にあり、1モルを超えると加水分解縮合時にゲル化が促進される傾向にある。
なお、加水分解縮合において上述の触媒を用いたときには、得られる感光性樹脂組成物の安定性が悪化する可能性や、触媒を含むことにより他の材料への腐食等の影響が懸念される可能性がある。これらのような悪影響は、例えば、加水分解縮合後に、触媒を感光性樹脂組成物から取り除いたり、触媒を他の化合物と反応させて触媒としての機能を失活させたりすることにより解消することができる。これらの操作を実施するための方法としては、従来公知の方法を用いることができる。触媒を取り除く方法としては、例えば、蒸留法やイオンクロマトカラム法等が挙げられる。また、触媒を他の化合物と反応させて触媒としての機能を失活させる方法としては、例えば、触媒が酸触媒の場合、塩基を添加して酸塩基反応により中和する方法が挙げられる。
また、かかる加水分解縮合の際にはアルコールが副生する。このアルコールは、プロトン性溶媒であり、感光性樹脂組成物の物性に悪影響を与えるおそれがあることから、エバポレータ等を用いて除去することが好ましい。
このようにして得られるシロキサン樹脂は、溶媒への溶解性や、成形性等の観点から、重量平均分子量が、500〜1000000であることが好ましく、500〜500000であることがより好ましく、500〜100000であることが更に好ましく、500〜50000であることが特に好ましい。この重量平均分子量が500未満ではシリカ系被膜の成膜性が劣る傾向にあり、この重量平均分子量が1000000を超えると、溶媒との相溶性が低下する傾向にある。
また、感光性樹脂組成物中の(a)成分の配合割合は、溶媒への溶解性、膜厚、成形性、感光特性、溶液の安定性等の観点から、感光性樹脂組成物の固形分全体を基準として、5〜80質量%であることが必要であり、10〜75質量%であることがより好ましく、20〜70質量%であることが更に好ましく、30〜70質量%であることが特に好ましい。この配合割合が5質量%未満ではシリカ系被膜の成膜性、感光特性が劣る傾向にあり、80質量%を超えると、溶液の安定性が低下する傾向にある。
本発明の感光性樹脂組成物は、上述の(a)成分を上記配合割合で含有するため、形成されるシリカ系被膜が耐熱性及び解像性に優れる。さらに、かかる感光性樹脂組成物において、上述の(a)成分が柔軟性に優れるため、形成されるシリカ系被膜を加熱処理する際のクラックの発生が防止されることから、クラック耐性に優れる。さらにまた、形成されるシリカ系被膜がクラック耐性に優れることから、本発明の感光性樹脂組成物を用いることにより、シリカ系被膜の厚膜化が可能となる。
<(b)成分>
(b)成分は、(a)成分が溶解する溶媒である。その具体例としては、非プロトン性溶媒及びプロトン性溶媒が挙げられる。これらは1種を単独で用いても、2種以上を組み合わせて用いてもよい。
非プロトン性溶媒としては、例えば、アセトン、メチルエチルケトン、メチル−n−プロピルケトン、メチル−iso−プロピルケトン、メチル−n−ブチルケトン、メチル−iso−ブチルケトン、メチル−n−ペンチルケトン、メチル−n−ヘキシルケトン、ジエチルケトン、ジプロピルケトン、ジ−iso−ブチルケトン、トリメチルノナノン、シクロヘキサノン、シクロペンタノン、メチルシクロヘキサノン、2,4−ペンタンジオン、アセトニルアセトン、γ−ブチロラクトン、γ−バレロラクトン等のケトン系溶媒;ジエチルエーテル、メチルエチルエーテル、メチルジ−n−プロピルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、メチルテトラヒドロフラン、ジオキサン、ジメチルジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジ−n−プロピルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールメチルモノ−n−プロピルエーテル、ジエチレングリコールメチルモノ−n−ブチルエーテル、ジエチレングリコールジ−n−プロピルエーテル、ジエチレングリコールジ−n−ブチルエーテル、ジエチレングリコールメチルモノ−n−ヘキシルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、トリエチレングリコールメチルエチルエーテル、トリエチレングリコールメチルモノ−n−ブチルエーテル、トリエチレングリコールジ−n−ブチルエーテル、トリエチレングリコールメチルモノ−n−ヘキシルエーテル、テトラエチレングリコールジメチルエーテル、テトラエチレングリコールジエチルエーテル、テトラジエチレングリコールメチルエチルエーテル、テトラエチレングリコールメチルモノ−n−ブチルエーテル、ジエチレングリコールジ−n−ブチルエーテル、テトラエチレングリコールメチルモノ−n−ヘキシルエーテル、テトラエチレングリコールジ−n−ブチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジ−n−プロピルエーテル、プロピレングリコールジブチルエーテル、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールジエチルエーテル、ジプロピレングリコールメチルエチルエーテル、ジプロピレングリコールメチルモノ−n−ブチルエーテル、ジプロピレングリコールジ−n−プロピルエーテル、ジプロピレングリコールジ−n−ブチルエーテル、ジプロピレングリコールメチルモノ−n−ヘキシルエーテル、トリプロピレングリコールジメチルエーテル、トリプロピレングリコールジエチルエーテル、トリプロピレングリコールメチルエチルエーテル、トリプロピレングリコールメチルモノ−n−ブチルエーテル、トリプロピレングリコールジ−n−ブチルエーテル、トリプロピレングリコールメチルモノ−n−ヘキシルエーテル、テトラプロピレングリコールジメチルエーテル、テトラプロピレングリコールジエチルエーテル、テトラジプロピレングリコールメチルエチルエーテル、テトラプロピレングリコールメチルモノ−n−ブチルエーテル、ジプロピレングリコールジ−n−ブチルエーテル、テトラプロピレングリコールメチルモノ−n−ヘキシルエーテル、テトラプロピレングリコールジ−n−ブチルエーテル等のエーテル系溶媒;酢酸メチル、酢酸エチル、酢酸n−プロピル、酢酸イソプロピル、酢酸n−ブチル、酢酸イソブチル、酢酸sec−ブチル、酢酸n−ペンチル、酢酸sec−ペンチル、酢酸3−メトキシブチル、酢酸メチルペンチル、酢酸2−エチルブチル、酢酸2−エチルヘキシル、酢酸ベンジル、酢酸シクロヘキシル、酢酸メチルシクロヘキシル、酢酸ノニル、アセト酢酸メチル、アセト酢酸エチル、酢酸ジエチレングリコールモノメチルエーテル、酢酸ジエチレングリコールモノエチルエーテル、酢酸ジエチレングリコールモノ−n−ブチルエーテル、酢酸ジプロピレングリコールモノメチルエーテル、酢酸ジプロピレングリコールモノエチルエーテル、ジ酢酸グリコール、酢酸メトキシトリグリコール、プロピオン酸エチル、プロピオン酸n−ブチル、プロピオン酸イソアミル、シュウ酸ジエチル、シュウ酸ジ−n−ブチル等のエステル系溶媒;エチレングリコールメチルエーテルプロピオネート、エチレングリコールエチルエーテルプロピオネート、エチレングリコールメチルエーテルアセテート、エチレングリコールエチルエーテルアセテート、ジエチレングリコールメチルエーテルアセテート、ジエチレングリコールエチルエーテルアセテート、ジエチレングリコール−n−ブチルエーテルアセテート、プロピレングリコールメチルエーテルアセテート、プロピレングリコールエチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテート、ジプロピレングリコールメチルエーテルアセテート、ジプロピレングリコールエチルエーテルアセテート等のエーテルアセテート系溶媒;アセトニトリル、N−メチルピロリジノン、N−エチルピロリジノン、N−プロピルピロリジノン、N−ブチルピロリジノン、N−ヘキシルピロリジノン、N−シクロヘキシルピロリジノン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N,N−ジメチルスルホキシド、トルエン、キシレンが挙げられる。これらの中で、形成されるシリカ系被膜の厚膜化が可能となり、かつ感光性樹脂組成物の溶液安定性が向上する観点から、エーテル系溶媒、エーテルアセテート系溶媒及びケトン系溶媒が好ましい。これらの中でも塗布ムラやはじきを抑える観点から、エーテルアセテート系溶媒が最も好ましく、エーテル系溶媒が次に好ましく、ケトン系溶媒がその次に好ましい。これらは1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
プロトン性溶媒としては、例えば、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、イソブタノール、sec−ブタノール、tert−ブタノール、n−ペンタノール、イソペンタノール、2−メチルブタノール、sec−ペンタノール、tert−ペンタノール、3−メトキシブタノール、n−ヘキサノール、2−メチルペンタノール、sec−ヘキサノール、2−エチルブタノール、sec−ヘプタノール、n−オクタノール、2−エチルヘキサノール、sec−オクタノール、n−ノニルアルコール、n−デカノール、sec−ウンデシルアルコール、トリメチルノニルアルコール、sec−テトラデシルアルコール、sec−ヘプタデシルアルコール、フェノール、シクロヘキサノール、メチルシクロヘキサノール、ベンジルアルコール、エチレングリコール、1,2−プロピレングリコール、1,3−ブチレングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール等のアルコール系溶媒;エチレングリコールメチルエーテル、エチレングリコールエチルエーテル、エチレングリコールモノフェニルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノ−n−ブチルエーテル、ジエチレングリコールモノ−n−ヘキシルエーテル、エトキシトリグリコール、テトラエチレングリコールモノ−n−ブチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノメチルエーテル等のエーテル系溶媒;乳酸メチル、乳酸エチル、乳酸n−ブチル、乳酸n−アミル等のエステル系溶媒が挙げられる。これらの中で、保管安定性の観点から、アルコール系溶媒が好ましい。さらに、塗布ムラやはじきを抑える観点からは、エタノール、イソプロピルアルコール、プロピレングリコールプロピルエーテルが好ましい。これらは1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
上述の(b)成分の種類は、(a)成分、(c)成分、(d)成分及び(e)成分の種類等に応じて適宜選択することができる。例えば、後述する(c)成分がナフトキノンジアジドスルホン酸とフェノール類とのエステルであり、脂肪族炭化水素系溶媒への溶解性が低い場合には、トルエン等の芳香族炭化水素系溶媒等を適宜選択することができる。
このような(b)成分の配合量は、(a)成分、(c)成分、(d)成分及び(e)成分の種類等に応じて適宜調節することができるが、例えば、感光性樹脂組成物の固形分全体100質量部に対して、0.1〜90質量部用いることができる。
(b)成分を感光性樹脂組成物中に加える方法としては、従来公知の方法を用いることができる。その具体例としては、(a)成分を調製する際の溶媒として用いる方法、(a)成分を調製後、添加する方法、溶媒交換を行う方法、(a)成分を溶媒留去等で取り出した後に(b)成分を加える方法等が挙げられる。
<(c)成分>
(c)成分は、ナフトキノンジアジドスルホン酸エステルである。この成分は、感光性樹脂組成物にポジ型感光性を付与するためのものである。ポジ型感光性は、例えば次のようにして発現する。
すなわち、ナフトキノンジアジドスルホン酸エステルに含まれるナフトキノンジアジド基は、本来アルカリ現像液に対する溶解性を示さず、さらにシロキサン樹脂のアルカリ現像液への溶解を阻害する。しかし、紫外線又は可視光を照射することにより、ナフトキノンジアジド基は、インデンカルボン酸構造へと変化してアルカリ現像液に高い溶解性を示すようになる。よって、(c)成分を配合することにより、露光部がアルカリ現像液により除去されるポジ型感光性が発現する。
ナフトキノンジアジドスルホン酸エステルとしては、例えば、ナフトキノンジアジドスルホン酸とフェノール類又はアルコール類とのエステルが挙げられる。この中で、上記(a)成分との相溶性、形成されるシリカ系被膜の透明性の観点から、ナフトキノンジアジドスルホン酸と1価又は多価アルコール類とのエステルが好ましい。ナフトキノンジアジドスルホン酸としては、例えば、ナフトキノン−1,2−ジアジド−5−スルホン酸、ナフトキノン−1,2−ジアジド−4−スルホン酸及びそれらの誘導体等が挙げられる。
1価又は多価アルコール類としては、炭素数3〜20のものが好ましい。1価又は多価アルコール類の炭素数が1又は2である場合、対応するスルホン酸エステルにはナフトキノンジアジドスルホン酸メチルエステル、ナフトキノンジアジドスルホン酸エチルエステル等を挙げることができるが、これらの化合物は、アルキル基部分が小さく、結晶性が高いため、感光性樹脂組成物溶液中で析出しやすく、また、(a)成分との相溶性に劣り十分な濃度で混合できない傾向がある。また、1価又は多価アルコール類の炭素数が20を超える場合には、ナフトキノンジアジドスルホン酸エステル分子中のナフトキノンジアジド部位の占める割合が小さいため、感光特性が低下する傾向にある。
炭素数3〜20の1価アルコール類の具体例としては、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、1−ペンタノール、2−ペンタノール、1−ヘキサノール、2−ヘキサノール、1−ヘプタノール、1−オクタノール、1−デカノール、1−ドデカノール、ベンジルアルコール、シクロヘキシルアルコール、シクロヘキサンメタノール、シクロヘキサンエタノール、2−エチルブタノール、2−エチルヘキサノール、3,5,5−トリメチル−1−ヘキサノール、1−アダマンタノール、2−アダマンタノール、アダマンタンメタノール、ノルボルナン−2−メタノール、テトラフルフリルアルコール、2−メトキシエタノール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、重合度2〜10のポリエチレングリコールモノメチルエーテル、重合度2〜10のポリエチレングリコールモノエチルエーテル、重合度1〜10のポリプロレングリコールモノメチルエーテル、重合度1〜10のポリプロレングリコールモノエチルエーテル、さらにアルキル基がプロピル、イソプロピル、ブチル、イソブチル、tert−ブチル、イソアミル、ヘキシル、シクロヘキシル等である重合度1〜10のポリプロレングリコールモノアルキルエーテルが挙げられる。
炭素数3〜20の2価アルコール類の具体例としては、1,4−シクロヘキサンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,7−ヘプタンジオール、1,8−オクタンジオール、1,9−ノナンジオール、ネオペンチルグリコール、p−キシリレングリコール、2,2−ジメチル−1,3−プロパンジオール、2,2,4−トリメチル−1,3−ペンタンジオール、3,9−ビス(1,1−ジメチル−2−ヒドロキシエチル)−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、2,2−ジイソアミル−1,3−プロパンジオール、2,2−ジイソブチル−1,3−プロパンジオール、2,2−ジ−n−オクチル−1,3−プロパンジオール、2−エチル−2−メチル−1,3−プロパンジオール、2−メチル−2−プロピル−1,3−プロパンジオール等が挙げられる。
炭素数3〜20の価数が3以上のアルコール類の具体例としては、グリセロール、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、3−メチルペンタン−1,3,5−トリオール、糖類、これらの多価アルコールのエチレングリコール、プロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール付加体等が挙げられる。
これら1価又は多価アルコールの中でも、形成されるシリカ系被膜の透明性の観点から、エチレングリコール、プロピレングリコール及びそれらの重合度が2〜10である重合体の中から選ばれた化合物を用いることが好ましい。
上述のナフトキノンジアジドスルホン酸エステルは従来公知の方法により得ることが可能であり、例えば、ナフトキノンジアジドスルホン酸塩化物とアルコールとを塩基存在下で反応させることにより得ることができる。
この反応に用いる塩基としては、例えば、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリヘキシルアミン、トリオクチルアミン等の第三級アルキルアミン、ピリジン、2,6−ルチジン、水酸化ナトリウム、水酸化カリウム、水素化ナトリウム、カリウム−tert−ブトキシド、ナトリウムメトキシド、炭酸ナトリウム、炭酸カリウムが挙げられる。
また、反応溶媒としては、トルエン、キシレン等の芳香族系溶媒、クロロホルム、四塩化炭素等のハロゲン系溶媒、THF、1,4−ジオキサン、ジエチルエーテル等のエーテル溶媒、酢酸エチル、酢酸ブチル等のエステル系溶媒、プロピレングリコールモノメチルエーテルアセート等のエーテルアセテート系溶媒、アセトン、イソブチルケトン等のケトン系溶媒、ヘキサン、ジメチルスルホキシド等が挙げられる。
また、(c)成分のナフトキノンジアジドスルホン酸エステルは、(a)成分のシロキサン樹脂とともに、(b)成分の溶剤に溶解して用いる。
感光性樹脂組成物中の上記(c)成分の配合割合は、感光特性等の観点から、感光性樹脂組成物の固形分全体を基準として、3〜30質量%であることが好ましく、5〜25質量%であるとより好ましく、5〜20質量%であることが更に好ましい。(c)成分の配合割合が5質量%未満の場合には、アルカリ現像液への溶解阻害作用が低下し、感光性が低下する。また、(c)成分の配合割合が30質量%を超える場合には、塗膜を形成する際に(c)成分が析出し、塗膜が不均一となる傾向にある。さらに、このような場合には、感光剤としての(c)成分の濃度が高く、形成される塗膜の表面近傍でのみ光の吸収が起こり、塗膜の下部まで露光時の光が到達せずに感光特性が低下する傾向にある。
<(d)成分>
(d)成分は、微粒子である。この成分は、形成されるシリカ系被膜のクラック耐性、耐熱性をさらに向上させるためのものである。
微粒子としては、金属酸化物等からなる無機微粒子、及びポリマー等からなる有機微粒子が挙げられ、無機微粒子が好ましい。無機微粒子の具体例としては、シリカ微粒子、アルミナ微粒子、ジルコニア微粒子、チタニア微粒子等が挙げられる。これらの中で、形成されるシリカ系被膜の絶縁特性及び成膜性等の点から、シリカ微粒子が好ましい。これらの微粒子の形状は特に限定されず、例えば、球状及び不定形の微粒子を用いることができる。
このような微粒子の平均粒径は200nm未満であることが好ましく、1〜150nmであることがより好ましく、1〜100nmであることがさらに好ましく、1〜50nmであることが特に好ましい。微粒子の平均粒径が1nm未満の場合には、形成されるシリカ系被膜のクラック耐性、耐熱性が低下する傾向にあり、200nmを超える場合には、形成されるシリカ系被膜の成膜性が低下する傾向にある。
感光性樹脂組成物中の上記(d)成分の配合割合は、溶媒への分散性、膜厚、成形性、溶液の安定性等の観点から、感光性樹脂組成物の固形分全体を基準として、5〜50質量%であることが必要であり、5〜40質量%であることがより好ましく、5〜30質量%であることが更に好ましい。この配合割合が5質量%未満ではクラック耐性と耐熱性に変化はなく、50質量%を超えると、溶液の安定性及びシリカ系被膜の成膜性が劣る傾向にある。
<(e)成分>
(e)成分は、下記一般式(3)で表される化合物を加水分解縮合して得られるシロキサン樹脂である。この(e)成分は、上述の(a)成分と組み合わせて用いることが好ましい。これにより、かかる感光性樹脂組成物から形成されるシリカ系被膜の強度を向上させることができる。
Figure 2009186677


[式(3)中、Rは、H原子、F原子、炭素数1〜20の有機基、又は、B原子、N原子、Al原子、P原子、Si原子、Ge原子及びTi原子のうちの少なくとも1種の原子を含む基を示し、Xは加水分解性基を示し、nは0〜2の整数を示し、同一分子内の複数のXは同一でも異なっていてもよく、nが2であるとき、同一分子内の複数のRは同一でも異なっていてもよい。]
式(3)中、Rで表される炭素数1〜20の有機基としては、例えば、置換基を有していてもよい脂肪族炭化水素基、及び、置換基を有していてもよい芳香族炭化水素基が挙げられる。これらの中で、炭素数1〜6の直鎖状、分岐状の脂肪族炭化水素基及びその一部がF原子により置換された基、並びにフェニル基が好ましい。
式(3)中、Xで表される加水分解性基としては、例えば、アルコキシ基、ハロゲン原子、アセトキシ基、イソシアネート基、ヒドロキシル基等が挙げられる。これらの中では、組成物自体の液状安定性や塗布特性等の観点からアルコキシ基が好ましい。
加水分解性基Xがアルコキシ基である一般式(3)の化合物(アルコキシシラン)としては、例えば、テトラアルコキシシラン、トリアルコキシシラン、ジオルガノジアルコキシシラン等が挙げられる。
テトラアルコキシシランとしては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラ−n−プロポキシシラン、テトラ−iso−プロポキシシラン、テトラ−n−ブトキシシラン、テトラ−sec−ブトキシシラン、テトラ−tert−ブトキシシラン、テトラフェノキシシラン等が挙げられる。
トリアルコキシシランとしては、例えば、トリメトキシシラン、トリエトキシシラン、トリプロポキシシラン、フルオロトリメトキシシラン、フルオロトリエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリ−n−プロポキシシラン、メチルトリ−iso−プロポキシシラン、メチルトリ−n−ブトキシシラン、メチルトリ−iso−ブトキシシラン、メチルトリ−tert−ブトキシシラン、メチルトリフェノキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリ−n−プロポキシシラン、エチルトリ−iso−プロポキシシラン、エチルトリ−n−ブトキシシラン、エチルトリ−iso−ブトキシシラン、エチルトリ−tert−ブトキシシラン、エチルトリフェノキシシラン、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、n−プロピルトリ−n−プロポキシシラン、n−プロピルトリ−iso−プロポキシシラン、n−プロピルトリ−n−ブトキシシラン、n−プロピルトリ−iso−ブトキシシラン、n−プロピルトリ−tert−ブトキシシラン、n−プロピルトリフェノキシシラン、iso−プロピルトリメトキシシラン、iso−プロピルトリエトキシシラン、iso−プロピルトリ−n−プロポキシシラン、iso−プロピルトリ−iso−プロポキシシラン、iso−プロピルトリ−n−ブトキシシラン、iso−プロピルトリ−iso−ブトキシシラン、iso−プロピルトリ−tert−ブトキシシラン、iso−プロピルトリフェノキシシラン、n−ブチルトリメトキシシラン、n−ブチルトリエトキシシラン、n−ブチルトリ−n−プロポキシシラン、n−ブチルトリ−iso−プロポキシシラン、n−ブチルトリ−n−ブトキシシラン、n−ブチルトリ−iso−ブトキシシラン、n−ブチルトリ−tert−ブトキシシラン、n−ブチルトリフェノキシシラン、sec−ブチルトリメトキシシラン、sec−ブチルトリエトキシシラン、sec−ブチルトリ−n−プロポキシシラン、sec−ブチルトリ−iso−プロポキシシラン、sec−ブチルトリ−n−ブトキシシラン、sec−ブチルトリ−iso−ブトキシシラン、sec−ブチルトリ−tert−ブトキシシラン、sec−ブチルトリフェノキシシラン、t−ブチルトリメトキシシラン、t−ブチルトリエトキシシラン、t−ブチルトリ−n−プロポキシシラン、t−ブチルトリ−iso−プロポキシシラン、t−ブチルトリ−n−ブトキシシラン、t−ブチルトリ−iso−ブトキシシラン、t−ブチルトリ−tert−ブトキシシラン、t−ブチルトリフェノキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリ−n−プロポキシシラン、フェニルトリ−iso−プロポキシシラン、フェニルトリ−n−ブトキシシラン、フェニルトリ−iso−ブトキシシラン、フェニルトリ−tert−ブトキシシラン、フェニルトリフェノキシシラン、トリフルオロメチルトリメトキシシラン、ペンタフルオロエチルトリメトキシシラン、3,3,3−トリフルオロプロピルトリメトキシシラン、3,3,3−トリフルオロプロピルトリエトキシシラン等が挙げられる。
ジオルガノジアルコキシシランとしては、例えば、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルジ−n−プロポキシシラン、ジメチルジ−iso−プロポキシシラン、ジメチルジ−n−ブトキシシラン、ジメチルジ−sec−ブトキシシラン、ジメチルジ−tert−ブトキシシラン、ジメチルジフェノキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、ジエチルジ−n−プロポキシシラン、ジエチルジ−iso−プロポキシシラン、ジエチルジ−n−ブトキシシラン、ジエチルジ−sec−ブトキシシラン、ジエチルジ−tert−ブトキシシラン、ジエチルジフェノキシシラン、ジ−n−プロピルジメトキシシラン、ジ−n−プロピルジエトキシシラン、ジ−n−プロピルジ−n−プロポキシシラン、ジ−n−プロピルジ−iso−プロポキシシラン、ジ−n−プロピルジ−n−ブトキシシラン、ジ−n−プロピルジ−sec−ブトキシシラン、ジ−n−プロピルジ−tert−ブトキシシラン、ジ−n−プロピルジフェノキシシラン、ジ−iso−プロピルジメトキシシラン、ジ−iso−プロピルジエトキシシラン、ジ−iso−プロピルジ−n−プロポキシシラン、ジ−iso−プロピルジ−iso−プロポキシシラン、ジ−iso−プロピルジ−n−ブトキシシラン、ジ−iso−プロピルジ−sec−ブトキシシラン、ジ−iso−プロピルジ−tert−ブトキシシラン、ジ−iso−プロピルジフェノキシシラン、ジ−n−ブチルジメトキシシラン、ジ−n−ブチルジエトキシシラン、ジ−n−ブチルジ−n−プロポキシシラン、ジ−n−ブチルジ−iso−プロポキシシラン、ジ−n−ブチルジ−n−ブトキシシラン、ジ−n−ブチルジ−sec−ブトキシシラン、ジ−n−ブチルジ−tert−ブトキシシラン、ジ−n−ブチルジフェノキシシラン、ジ−sec−ブチルジメトキシシラン、ジ−sec−ブチルジエトキシシラン、ジ−sec−ブチルジ−n−プロポキシシラン、ジ−sec−ブチルジ−iso−プロポキシシラン、ジ−sec−ブチルジ−n−ブトキシシラン、ジ−sec−ブチルジ−sec−ブトキシシラン、ジ−sec−ブチルジ−tert−ブトキシシラン、ジ−sec−ブチルジフェノキシシラン、ジ−tert−ブチルジメトキシシラン、ジ−tert−ブチルジエトキシシラン、ジ−tert−ブチルジ−n−プロポキシシラン、ジ−tert−ブチルジ−iso−プロポキシシラン、ジ−tert−ブチルジ−n−ブトキシシラン、ジ−tert−ブチルジ−sec−ブトキシシラン、ジ−tert−ブチルジ−tert−ブトキシシラン、ジ−tert−ブチルジフェノキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、ジフェニルジ−n−プロポキシシラン、ジフェニルジ−iso−プロポキシシラン、ジフェニルジ−n−ブトキシシラン、ジフェニルジ−sec−ブトキシシラン、ジフェニルジ−tert−ブトキシシラン、ジフェニルジフェノキシシラン、ビス(3,3,3−トリフルオロプロピル)ジメトキシシラン、メチル(3,3,3−トリフルオロプロピル)ジメトキシシラン等が挙げられる。
また、Xがアルコキシ基であり、Rが炭素数1〜20の有機基である上記一般式(3)で表される化合物としては、例えば、上記のものの他、ビス(トリメトキシシリル)メタン、ビス(トリエトキシシリル)メタン、ビス(トリ−n−プロポキシシリル)メタン、ビス(トリ−iso−プロポキシシリル)メタン、ビス(トリメトキシシリル)エタン、ビス(トリエトキシシリル)エタン、ビス(トリ−n−プロポキシシリル)エタン、ビス(トリ−iso−プロポキシシリル)エタン、ビス(トリメトキシシリル)プロパン、ビス(トリエトキシシリル)プロパン、ビス(トリ−n−プロポキシシリル)プロパン、ビス(トリ−iso−プロポキシシリル)プロパン、ビス(トリメトキシシリル)ベンゼン、ビス(トリエトキシシリル)ベンゼン、ビス(トリ−n−プロポキシシリル)ベンゼン、ビス(トリ−iso−プロポキシシリル)ベンゼン等のビスシリルアルカン、ビスシリルベンゼン等が挙げられる。
また、Xがアルコキシ基であり、RがSi原子を含む基である上記一般式(3)で表される化合物としては、例えば、ヘキサメトキシジシラン、ヘキサエトキシジシラン、ヘキサ−n−プロポキシジシラン、ヘキサ−iso−プロポキシジシラン等のヘキサアルコキシジシラン類、1,2−ジメチルテトラメトキシジシラン、1,2−ジメチルテトラエトキシジシラン、1,2−ジメチルテトラプロポキシジシラン等のジアルキルテトラアルコキシジシラン類等が挙げられる。
これら一般式(3)で表される化合物は、1種類を単独で又は2種類以上を組み合わせて使用される。
上述の一般式(3)で表される化合物の加水分解縮合は、例えば、次のような条件で行うことができる。
まず、加水分解縮合の際に用いる水の量は、一般式(3)で表される化合物1モル当たり0.1〜1000モルであることが好ましく、さらに好ましくは0.5〜100モルである。この水の量が0.1モル未満では加水分解縮合反応が十分に進行しない傾向にあり、水の量が1000モルを超えると加水分解中又は縮合中にゲル化物を生じる傾向にある。
また、加水分解縮合の際には、触媒を使用してもよい。触媒としては、上述のシラン化合物の加水分解縮合の際に使用されるものと同様なものを用いることができる。さらに、加水分解縮合後の触媒は、上述の場合と同様に取り除いたり失活させたりしてもよい。
このような触媒の使用量は、一般式(3)で表される化合物1モルに対して0.0001〜1モルの範囲であることが好ましい。この使用量が0.0001モル未満では実質的に反応が進行しない傾向にあり、1モルを超えると加水分解縮合時にゲル化が促進される傾向にある。
このようにして得られるシロキサン樹脂は、溶媒への溶解性、機械特性、成形性等の観点から、重量平均分子量が、500〜1000000であることが好ましく、500〜500000であることがより好ましく、500〜100000であることが更に好ましく、500〜10000であることが特に好ましく、500〜5000であることが極めて好ましい。この重量平均分子量が500未満ではシリカ系被膜の成膜性が劣る傾向にあり、この重量平均分子量が1000000を超えると、溶媒との相溶性が低下する傾向にある。
上述の(e)成分を感光性樹脂組成物に配合する際のその配合割合は、溶媒への溶解性、膜厚、成形性、溶液の安定性等の観点から、感光性樹脂組成物の固形分全体を基準として、20〜80質量%であることが好ましく、10〜90質量%であることがより好ましい。この配合割合が10質量%未満ではシリカ系被膜の強度向上効果が十分でない傾向にあり、90質量%を超えると、溶液の安定性が低下する傾向にある。
なお、上述の感光性樹脂組成物を電子部品等に使用する場合は、アルカリ金属やアルカリ土類金属を含有しないことが望ましく、含まれる場合でも組成物中のそれらの金属イオン濃度が1000ppm以下であることが好ましく、1ppm以下であることがより好ましい。これらの金属イオン濃度が1000ppmを超えると、組成物から得られるシリカ系被膜を有する電子部品に金属イオンが流入し易くなって、電気性能そのものに悪影響を与えるおそれがある。したがって、必要に応じて、例えば、イオン交換フィルター等を使用してアルカリ金属やアルカリ土類金属を組成物中から除去することが有効である。しかし、光導波路や他の用途等に用いる際は、その目的を損なわないのであれば、この限りではない。
また、上述の感光性樹脂組成物は、必要に応じて水を含んでいてもよいが、目的とする特性を損なわない範囲であることが好ましい。
(シリカ系被膜の形成方法)
本発明のシリカ系被膜の形成方法は、上述した本発明の感光性樹脂組成物を基板上に塗布し乾燥して塗膜を得る塗布工程と、塗膜の所定部分を露光する第1露光工程と、塗膜の露光された所定部分を除去する除去工程と、所定部分が除去された塗膜を加熱する加熱工程とを有する。また、本発明のシリカ系被膜の形成方法は、上述の感光性樹脂組成物を基板上に塗布し乾燥して塗膜を得る塗布工程と、塗膜の所定部分を露光する第1露光工程と、塗膜の露光された所定部分を除去する除去工程と、所定部分が除去された塗膜を露光する第2露光工程と、所定部分が除去された塗膜を加熱する加熱工程とを有していてもよい。以下、各工程について説明する。
<塗布工程>
まず、感光性樹脂組成物を塗布するための基板を用意する。基板としては、表面が平坦なものであっても、電極等が形成され凹凸を有しているものであってもよい。これらの基板の材料としては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアミド、ポリカーボネート、ポリアクリル、ナイロン、ポリエーテルサルフォン、ポリ塩化ビニル、ポリプロピレン、トリアセチルセルロース等の有機高分子等が挙げられる。また、この有機高分子等がフィルム状になっているものを基板として用いることもできる。
上述の感光性樹脂組成物は、このような基板上に従来公知の方法によって塗布することが可能である。塗布方法の具体例としては、スピンコート法、スプレー法、ロールコート法、回転法、スリット塗布法等が挙げられる。これらの中で、一般に成膜性及び膜均一性に優れるスピンコート法により感光性樹脂組成物を塗布することが好ましい。
スピンコート法を用いる場合には、好ましくは300〜3000回転/分、より好ましくは400〜2000回転/分で、基板上に上述の感光性樹脂組成物をスピンコートして塗膜を形成する。この回転数が300回転/分未満では膜均一性が悪化する傾向があり、3000回転/分を超えると成膜性が悪化するおそれがある。
このようにして形成される塗膜の膜厚は、例えば次のようにして調整することができる。まず、スピンコートの際に、回転数と塗布回数を調整することにより塗膜の膜厚を調整することができる。すなわち、スピンコートの回転数を下げたり塗布回数を減らしたりすることにより、塗膜の膜厚を厚くすることができる。また、スピンコートの回転数を上げたり塗布回数を減らしたりすることにより、塗膜の膜厚を薄くすることができる。
さらに、上述の感光性樹脂組成物において、(a)成分の濃度を調整することにより、塗膜の膜厚を調整することもできる。例えば、(a)成分の濃度を高くすることにより、塗膜の膜厚を厚くすることができる。また、(a)成分の濃度を低くすることにより、塗膜の膜厚を薄くすることができる。
以上のようにして塗膜の膜厚を調整することにより、最終生成物であるシリカ系被膜の膜厚を調整することができる。シリカ系被膜の好適な膜厚は使用用途により異なる。例えば、シリカ系被膜の膜厚は、LSI等の層間絶縁膜に使用する際には0.01〜2μm;パッシベーション層に使用する際には2〜40μm;液晶用途に使用する際には0.1〜20μm;フォトレジストに使用する際には0.1〜2μm;光導波路に使用する際の膜厚は1〜50μm、であることが好ましい。一般的に、このシリカ系被膜の膜厚は、0.01〜10μmであることが好ましく、0.01〜5μmであることがより好ましく、0.01〜3μmであることが更に好ましく、0.05〜3μmであることが特に好ましく、0.1〜3μmであることが極めて好ましい。本発明の感光性樹脂組成物は、0.5〜3.0μmの膜厚のシリカ系被膜に好適に用いることができ、0.5〜2.5μmの膜厚のシリカ系被膜により好適に用いることができ、1.0〜2.5μmの膜厚のシリカ系被膜に特に好適に用いることができる。
上述のようにして基板上に塗膜を形成した後に、塗膜を乾燥して、塗膜中の有機溶媒を除去する。乾燥には従来公知の方法を用いることができ、例えばホットプレートを用いて乾燥することができる。乾燥温度は、50〜200℃であることが好ましく、80〜180℃がより好ましい。この乾燥温度が50℃未満では、有機溶媒の除去が十分に行われない傾向がある。また、乾燥温度が200℃を越えると塗膜の硬化が進行し、現像液に対する溶解性が低下するため、露光感度低下、解像度低下を伴う傾向がある。
<第1露光工程>
次に、得られた塗膜の所定部分を露光する。塗膜の所定部分を露光する方法としては、従来公知の方法を用いることができ、例えば、所定のパターンのマスクを介して塗膜に放射線を照射することにより、所定部分を露光することができる。ここで用いられる放射線としては、例えばg線(波長436nm)、i線(波長365nm)等の紫外線、KrFエキシマレーザー等の遠紫外線、シンクロトロン放射線等のX線、電子線等の荷電粒子線が挙げられる。これらのうち、g線及びi線が好ましい。露光量としては、通常10〜2000mJ/cm、好ましくは20〜200mJ/cmである。
<除去工程>
続いて、塗膜の露光された所定部分(以下、「露光部」ともいう。)を除去して、所定のパターンを有する塗膜を得る。塗膜の露光部を除去する方法としては、従来公知の方法を用いることができ、例えば、現像液を用いて現像処理して露光部を除去することにより、所定のパターンを有する塗膜を得ることができる。ここで用いられる現像液としては、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、硅酸ナトリウム、アンモニア水等の無機アルカリ類、エチルアミン、n−プロピルアミン等の第一級アミン類、ジエチルアミン、ジ−n−プロピルアミン等の第二級アミン類、トリエチルアミン、メチルジエチルアミン等の第三級アミン類、ジメチルエタノ−ルアミン、トリエタノ−ルアミン等のアルコ−ルアミン類、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、コリン等の第四級アンモニウム塩又はピロ−ル、ピペリジン、1,8−ジアザビシクロ−(5.4.0)−7−ウンデセン、1,5−ジアザビシクロ−(4.3.0)−5−ノナン等の環状アミン類を水に溶解したアルカリ水溶液が好ましく使用される。また該現像液には、水溶性有機溶媒、例えばメタノ−ル、エタノ−ル等のアルコ−ル類や界面活性剤を適量添加して使用することもできる。さらに本発明の感光性樹脂組成物を溶解する各種有機溶媒も現像液として使用することができる。
現像方法としては、液盛り法、ディッピング法、揺動浸漬法等の適宜の方法を利用することができる。現像処理後に、パターニングされた膜に対し、例えば流水洗浄によるリンス処理を行ってもよい。
<第2露光工程>
さらに、必要な場合には、除去工程後に残った塗膜の全面を露光する。これにより、上述の可視光領域に光学吸収を有する(c)成分が分解して、可視光領域における光学吸収が十分に小さい化合物が生成する。よって、最終生成物であるシリカ系被膜の透明性が向上する。露光には、第1露光工程と同様の放射線を用いることができる。露光量としては、(c)成分を完全に分解する必要があるため、通常100〜3000mJ/cm、好ましくは200〜2000mJ/cmである。
<加熱工程>
最後に、除去工程後に残った塗膜を加熱して最終硬化を行う。この加熱工程により、最終生成物であるシリカ系被膜が得られる。加熱温度は、例えば、250〜500℃であることが好ましく、250〜400℃であることがより好ましい。この加熱温度が250℃未満では、十分に塗膜が硬化されない傾向にあり、500℃を超えると、金属配線層がある場合に、入熱量が増大して配線金属の劣化が生じるおそれがある。
なお、加熱工程は、窒素、アルゴン、ヘリウム等の不活性雰囲気下で行うのが好ましく、この場合、酸素濃度が1000ppm以下であると好ましい。また、加熱時間は2〜60分が好ましく、2〜30分であるとより好ましい。この加熱時間が2分未満では、十分に塗膜が硬化されない傾向にあり、60分を超えると、入熱量が過度に増大して配線金属の劣化が生じるおそれがある。
さらに、加熱のための装置としては、石英チューブ炉その他の炉、ホットプレート、ラピッドサーマルアニール(RTA)等の加熱処理装置又はEB、UVを併用した加熱処理装置を用いることが好ましい。
上述の工程を経て形成されたシリカ系被膜は、例えば350℃の加熱処理を行っても十分な高い耐熱性、高い透明性を有するとともに、耐溶剤性に優れる。なお、従来知られているノボラック樹脂等のフェノール系樹脂及びキノンジアジド系感光剤を含有する組成物、あるいはアクリル系樹脂及びキノンジアジド系感光剤材料を含有する組成物から形成される被膜は、一般的に230℃程度が耐熱温度の上限であり、この温度を超えて加熱処理を行うと黄色や褐色に着色し、透明性が著しく低下する。
上述の工程を経て形成されたシリカ系被膜は、液晶表示素子、プラズマディスプレイ、有機EL、フィールドエミッションディスプレイ等の平面表示装置の層間絶縁膜として好適に使用できる。また、かかるシリカ系被膜は、半導体素子などの層間絶縁膜としても好適に使用できる。さらに、かかるシリカ系被膜は、半導体素子のウエハコート材料(表面保護膜、バンプ保護膜、MCM(multi-chip module)層間保護膜、ジャンクションコート)、パッケージ材(封止材、ダイボンディング材)等の電子デバイス用部材としても好適に使用することができる。
上述のシリカ系被膜を備える本発明の電子部品の具体例としては、図1に示すメモリセルキャパシタが挙げられ、上述のシリカ系被膜を備える本発明の平面表示装置の具体例としては、図2及び3に示すアクティブマトリクス基板を有する平面表示装置が挙げられる。
図1は、本発明の電子部品の一実施形態としてのメモリセルキャパシタを示す模式断面図である。図1に示すメモリキャパシタ10は、その表面に拡散領域1A及び1Bが形成されたシリコンウェハ1(基板)と、シリコンウェハ1上の拡散領域1A及び1Bの間の位置に設けられたゲート絶縁膜2Bと、ゲート絶縁膜2B上に設けられたゲート電極3と、ゲート電極3の上方に設けられた対向電極8Cと、ゲート電極3と対向電極8Cとの間にシリコンウェハ1側から順に積層された層間絶縁膜5及び7(絶縁被膜)とを有する。
拡散領域1A上にはゲート絶縁膜2B及びゲート電極3の側壁と接する側壁酸化膜4Aが形成されている。拡散領域1B上にはゲート絶縁膜2B及びゲート電極3の側壁と接する側壁酸化膜4Bが形成されている。拡散領域1Bのゲート絶縁膜2Bとは反対側において、素子分離のためのフィールド酸化膜2Aがシリコンウェハ1と層間絶縁膜5の間に形成されている。
層間絶縁膜5は、ゲート電極3、シリコンウェハ1及びフィールド酸化膜2Aを覆って形成されている。層間絶縁膜5のシリコンウェハ1とは反対側の面は平坦化されている。層間絶縁膜5は拡散領域1A上に位置する側壁を有しており、この側壁と拡散領域1Aを覆うとともに、層間絶縁膜5のシリコンウェハ1とは反対側の面の一部を覆うように延在するビット線6が形成されている。層間絶縁膜5上に設けられた層間絶縁膜7はビット線6を覆うように延びて形成されている。層間絶縁膜5及び層間絶縁膜7によって、ビット線6が埋め込まれたコンタクトホール5Aが形成されている。
層間絶縁膜7のシリコンウェハ1とは反対側の面も平坦化されている。拡散領域1B上の位置において層間絶縁膜5及び層間絶縁膜7を貫通するコンタクトホール7Aが形成されている。コンタクトホール7A内には蓄積電極7Aが埋め込まれ、蓄積電極7Aはさらに、層間絶縁膜7のシリコンウェハ1とは反対側の面のうちコンタクトホール7A周囲の部分を覆うように延在している。対向電極8Cは蓄積電極8A及び層間絶縁膜7を覆って形成されており、対向電極8Cと蓄電電極8Aの間にはキャパシタ絶縁膜8Bが介在している。
層間絶縁膜5及び7は、上述の感光性樹脂組成物から形成されたシリカ系被膜である。層間絶縁膜5及び7は、例えば、感光性樹脂組成物をスピンコート法により塗布する工程を経て形成される。層間絶縁膜5及び7は同一の組成を有していても異なる組成を有していてもよい。
図2は、本発明の平面表示装置の一実施形態におけるアクティブマトリクス基板の1画素部分の構成を示す平面図である。図2において、アクティブマトリクス基板20には、複数の画素電極21がマトリクス状に設けられており、これらの画素電極21の周囲を通り、互いに直交するように、走査信号を供給するための各ゲート配線22と表示信号を供給するためのソース配線23が設けられている。これらのゲート配線22とソース配線23はその一部が画素電極21の外周部分とオーバーラップしている。また、これらのゲート配線22とソース配線23の交差部分において、画素電極21に接続されるスイッチング素子としてのTFT24が設けられている。このTFT24のゲート電極32にはゲート配線22が接続され、ゲート電極に入力される信号によってTFT24が駆動制御される。また、TFT24のソース電極にはソース配線23が接続され、TFT24のソース電極にデータ信号が入力される。さらに、TFT24のドレイン電極は、接続電極25さらにコンタクトホール26を介して画素電極21と接続されるとともに、接続電極25を介して付加容量の一方の電極である付加容量電極(図示せず)と接続されている。この付加容量の他方の電極である付加容量対向電極27は共通配線に接続されている。
図3は、図2のアクティブマトリクス基板におけるIII−III’断面図である。図3において、透明絶縁性基板31上に、ゲート配線22に接続されたゲート電極32が設けられ、その上を覆ってゲート絶縁膜33が設けられている。その上にはゲート電極32と重畳するように半導体層34が設けられ、その中央部上にチャネル保護層35が設けられている。このチャネル保護層35の両端部および半導体層34の一部を覆い、チャネル保護層35上で分断された状態で、ソース電極36aおよびドレイン電極36bとなるn+Si層が設けられている。一方のn+Si層であるソース電極36aの端部上には、透明導電膜37aと金属層38aとが設けられて2層構造のソース配線23となっている。また、他方のn+Si層であるドレイン電極36bの端部上には、透明導電膜37bと金属層38bとが設けられ、透明導電膜37bは延長されて、ドレイン電極36bと画素電極21とを接続するとともに付加容量の一方の電極である付加容量電極(図示せず)に接続される接続電極25となっている。さらに、TFT24、ゲート配線22およびソース配線23、接続電極25の上部を覆うように層間絶縁膜39が設けられている。この層間絶縁膜39上には、画素電極21となる透明導電膜が設けられ、層間絶縁膜39を貫くコンタクトホール26を介して、接続電極25によりTFT24のドレイン電極36bと接続されている。
本実施形態のアクティブマトリクス基板は以上のように構成され、このアクティブマトリクス基板は、例えば以下のようにして製造することができる。
まず、ガラス基板などの透明絶縁性基板31上に、ゲート電極32、ゲート絶縁膜33、半導体層34、チャネル保護層35、ソース電極36aおよびドレイン電極36bとなるn+Si層を順次成膜して形成する。ここまでの作製プロセスは、従来のアクティブマトリクス基板の製造方法と同様にして行うことができる。
次に、ソース配線23および接続電極25を構成する透明導電膜37a、37bおよび金属層38a、38bを、スパッタ法により順次成膜して所定形状にパターニングする。
さらに、その上に、層間絶縁膜39となる上述の感光性樹脂組成物をスピンコート法により例えば2μmの膜厚で形成する。形成された塗膜に対して、マスクを介して露光し、アルカリ性の溶液によって現像処理することにより、層間絶縁膜39が形成される。この際、露光された部分のみがアルカリ性の溶液によってエッチングされ、層間絶縁膜39を貫通するコンタクトホール26が形成されることになる。
その後、画素電極21となる透明導電膜をスパッタ法により形成し、パターニングする。これにより画素電極21は、層間絶縁膜39を貫くコンタクトホール26を介して、TFT24のドレイン電極36bと接続されている透明導電膜38bと接続されることになる。このようにして、上述のアクティブマトリクス基板を製造することができる。
したがって、このようにして得られたアクティブマトリクス基板は、ゲート配線22、ソース配線23およびTFT24と、画素電極21との間に厚い膜厚の層間絶縁膜39が形成されているので、各配線22、23およびTFT24に対して画素電極21をオーバーラップさせることができるとともにその表面を平坦化させることができる。このため、アクティブマトリクス基板と対向基板の間に液晶を介在させた平面表示装置の構成とした時に、開口率を向上させることができると共に、各配線22、23に起因する電界を画素電極21でシールドしてディスクリネーションを抑制することができる。
また、層間絶縁膜39となる、上述の感光性樹脂組成物は、比誘電率の値が3.0から3.8と無機膜(窒化シリコンの比誘電率8)の比誘電率に比べて低く、また、その透明度も高くスピン塗布法により容易に厚い膜厚にすることができる。このため、ゲート配線22と画素電極21との間の容量および、ソース配線23と画素電極21との間の容量を低くすることができて時定数が低くなり、各配線22、23と画素電極21との間の容量成分が表示に与えるクロストークなどの影響をより低減することができて良好で明るい表示を得ることができる。また、露光およびアルカリ現像によってパターニングを行うことにより、コンタクトホール26のテーパ形状を良好にすることができ、画素電極21と接続電極37bとの接続を良好にすることができる。さらに、上述の感光性樹脂組成物を用いることにより、スピンコート法を用いて薄膜が形成できるので、数μmという膜厚の薄膜を容易に形成でき、さらに、パターニングにフォトレジスト工程も不要であるので、生産性の点で有利である。ここで、層間絶縁膜39として用いた上述の感光性樹脂組成物は、塗布前に着色しているものであるが、パターニング後に全面露光処理を施してより透明化することができる。このように、樹脂の透明化処理は、光学的に行うことができるだけではなくて、化学的にも行うことが可能である。
本実施形態で層間絶縁膜39として用いた、上述の感光性樹脂組成物の露光には、i線(波長365nm)、h線(波長405nm)及びg線(波長436nm)の輝線を含む水銀灯の光線を用いるのが一般的である。感光性樹脂組成物としては、これらの輝線のなかで最もエネルギーの高い(波長の最も短い)i線に感放射線性(吸収ピーク)を有する感光性樹脂組成物を用いることが好ましい。コンタクトホールの加工精度を高くするとともに、感光剤に起因する着色を最小限に抑制することができる。また、エキシマレーザーからの短波長の紫外線を用いてもよい。
以下、本発明に係る具体的な実施例について説明するが、本発明はこれらに限定されるものではない。
(シロキサン樹脂の合成)
(1)シロキサン樹脂A:3−アセトキシプロピルシルセスキオキサン・フェニルシルセスキオキサン・メチルシルセスキオキサン共重合体(下記式(10)で表される化合物;上記(a)成分に相当)の合成;
Figure 2009186677


[式(10)中、20,50,30は、それぞれ各部位に対応する原料のモル比を示す。]
撹拌機、還流冷却器、滴下ロート及び温度計を備えた500mL4つ口フラスコに、トルエン55.8g及び水35.7gを仕込み、35%塩酸3.12g(0.03モル)を加えた。次に、3−アセトキシプロピルトリメトキシシラン13.5g(0.0605モル)、フェニルトリメトキシシラン30.0g(0.151モル)及びメチルトリメトキシシラン12.4g(0.0908モル)のトルエン27.9g溶液を20〜30℃で滴下した。滴下終了後、同温度で2時間熟成させた。このときの反応溶液をGC(ガスクロマトグラフ)で分析した結果、原料は残っていないことが確認された。次に、反応溶液にトルエンと水を加えて生成物を有機相に抽出し、炭酸水素ナトリウム水溶液で洗浄後に、水で溶液が中性になるまで洗浄した。その後、有機相を回収し、トルエンを除去して、粘性液体状の目的のシロキサン樹脂A34.6gを得た。さらに、得られたシロキサン樹脂Aをプロピレングリコールモノメチルエーテルアセテートに溶解させ、固形分濃度が50質量%になるように調整されたシロキサン樹脂Aの溶液を得た。また、GPC法によりシロキサン樹脂Aの重量平均分子量を測定すると1050であった。
(2)シロキサン樹脂B:3−アセトキシプロピルシルセスキオキサン・2−ノルボルニルシルセスキオキサン・メチルシルセスキオキサン共重合体(下記式(5)で表される化合物;上記(a)成分に相当)の合成;
Figure 2009186677


[式(5)中、20,50,30は、それぞれ各部位に対応する原料のモル比を示す。]
フェニルトリメトキシシラン30.0g(0.151モル)を2−ノルボルニルトリエトキシシラン39.0g(0.151モル)に変更した以外は、上記シロキサン樹脂Aの合成方法と同様の操作で目的のシロキサン樹脂B38.7gを得た。さらに、得られたシロキサン樹脂Bをプロピレングリコールモノメチルエーテルアセテートに溶解させ、固形分濃度が50質量%になるように調整されたシロキサン樹脂Bの溶液を得た。また、GPC法によりシロキサン樹脂Bの重量平均分子量を測定すると1020であった。
(3)シロキサン樹脂C:3−アセトキシプロピルシルセスキオキサン・フェニルシルセスキオキサン共重合体(下記式(6)で表される化合物;上記(a)成分に相当)の合成;
Figure 2009186677


[式(6)中、20,80は、それぞれ各部位に対応する原料のモル比を示す。]
撹拌機、還流冷却器、滴下ロート及び温度計を備えた500mL4つ口フラスコに、メタノール38.4gと水21.0gを仕込み、酢酸1.13g(0.0189モル)を加えた。次に、3−アセトキシプロピルトリメトキシシラン8.41g(0.0378モル)及びフェニルトリメトキシシラン30.0g(0.151モル)のメタノール19.2g溶液を20〜30℃で滴下した。滴下終了後、同温度で2時間熟成させた。このときの反応溶液をGCで分析した結果、原料は残っていないことが確認された。次に、トルエンを加えて生成物を有機相に抽出し、炭酸水素ナトリウム水溶液で洗浄後に、水で溶液が中性になるまで洗浄した。有機相を回収し、トルエンを除去して、粘性液体状の目的のシロキサン樹脂C24.6gを得た。さらに得られたシロキサン樹脂Cをプロピレングリコールモノメチルエーテルアセテートに溶解させ、固形分濃度が50質量%になるように調整されたシロキサン樹脂Cの溶液を得た。GPC法によりシロキサン樹脂Cの重量平均分子量を測定すると1100であった。
(4)比較シロキサン樹脂A:フェニルシルセスキオキサン(下記式(7)で表される化合物)の合成;
Figure 2009186677


[nは整数を示す。]
撹拌機、還流冷却器、滴下ロート及び温度計を備えた500mL4つ口フラスコに、トルエン55.8g及び水35.7gを仕込み、35%塩酸3.12g(0.03モル)を加えた。次にフェニルトリメトキシシラン48.0g(0.242モル)のトルエン27.9g溶液を20〜30℃で滴下した。滴下終了後、同温度で2時間熟成させた。このときの反応溶液をGCで分析した結果、原料は残っていないことが確認された。次に、トルエンと水とを加えて生成物を有機相に抽出し、炭酸水素ナトリウム水溶液で洗浄後に、水で溶液が中性になるまで洗浄した。有機層を回収し、トルエンを除去して、粘性液体状の目的の比較シロキサン樹脂A34.6gを得た。さらに、得られた比較シロキサン樹脂Aをプロピレングリコールモノメチルエーテルアセテートに溶解させ、固形分濃度が50質量%になるように調整した比較シロキサン樹脂Aの溶液を得た。また、GPC法により比較シロキサン樹脂Aの重量平均分子量を測定すると1000であった。
(5)シロキサン樹脂D(上記(e)成分に相当)の合成;
撹拌機、環流冷却器、滴下ロート及び温度計を備えた2000mL4つ口フラスコに、テトラエトキシシラン317.9gとメチルトリエトキシシラン247.9gとをジエチレングリコールジメチルエーテル1116.7gに溶解させた溶液を仕込み、0.644質量%に調整した硝酸167.5gを攪拌下で30分間かけて滴下した。滴下終了後3時間反応させた後、減圧下、温浴中で生成エタノール及びジエチレングリコールジメチルエーテルの一部を留去して、固形分濃度25質量%のシロキサン樹脂Dの溶液740.0gを得た。GPC法により比較シロキサン樹脂Dの重量平均分子量を測定すると870であった。
(ナフトキノンジアジドスルホン酸エステルの合成)
ナフトキノンジアジドスルホン酸エステルA(上記(c)成分に相当)の合成;
撹拌機、環流冷却器、滴下ロート及び温度計を備えた200mL4つ口フラスコに、ジプロピレングリコール2.68g及びテトラヒドロフラン50gを仕込み、さらに室温(25℃)条件で1,2−ジアゾナフトキノン−5−スルホニルクロリド10.75g、トリエチルアミン4.45g及びジメチルアミノピリジン0.5gを加え、50℃で4時間反応を行った。反応終了後、析出した固形分をろ別し、減圧下、温浴中で溶媒を除去した。その後、メチルイソブチルケトン50gを添加して溶解した後、イオン交換水50gで2回水洗を行い、減圧下、温浴中で溶媒を濃縮し、固形分濃度48質量%のナフトキノンジアジドスルホン酸エステルAの溶液16.4gを得た。
ナフトキノンジアジドスルホン酸エステルB(上記(c)成分に相当)の合成;
撹拌機、環流冷却器、滴下ロート及び温度計を備えた200mL4つ口フラスコに、ジプロピレングリコール2.68g及びテトラヒドロフラン50gを仕込み、さらに室温(25℃)条件で1,2−ジアゾナフトキノン−5−スルホニルクロリド10.75g、トリエチルアミン4.45g及びジメチルアミノピリジン0.5gを加え、50℃で4時間反応を行った。反応終了後、析出した固形分をろ別し、減圧下、温浴中で溶媒を除去した。その後、メチルイソブチルケトン50gを添加して溶解した後、イオン交換水50gで2回水洗を行い、減圧下、温浴中で溶媒を除去してオイル状のナフトキノンジアジドスルホン酸エステル10.2gを得た。このうち7.3gを撹拌機付の容器内に仕込み、さらに3,4−ジヒドロ−2H−ピラン7.7g、プロピレングリコールメチルエーテルアセテート50g及び5%HNO水溶液2.9gを加え、室温(25℃)で72時間反応を行った。反応終了後、メチルイソブチルケトン70gを添加し、さらに0.5%のテトラメチルアンモニウムヒドロキシド(TMAH)水溶液70gで洗浄し、次いで、イオン交換水70gで2回水洗した後に有機層を分取した。この溶液を減圧下、温浴中で濃縮し、固形分濃度48質量%のナフトキノンジアジドスルホン酸エステルBの溶液9.6gを得た。
(感光性樹脂組成物の調製)
[実施例1]
シロキサン樹脂Aの溶液4.2gに、シロキサン樹脂Dの溶液3.6g、ナフトキノンジアジドスルホン酸エステルAの溶液0.44g、濃度27%の10nm〜20nmのSiO微粒子溶液(商品名「PL−2L」、扶桑化学工業社製)3.57gをそれぞれ添加して、室温(25℃)で30分間攪拌溶解し、実施例1のシリカ系ポジ型感光性樹脂組成物を調製した。得られた感光性樹脂組成物中、(a)成分の配合割合(固形分)は50質量%であり、(d)成分の配合割合(固形分)は23質量%である。
[実施例2]
シロキサン樹脂Bの溶液4.2gに、シロキサン樹脂Dの溶液3.6g、ナフトキノンジアジドスルホン酸エステルAの溶液0.44g、濃度27%の10nm〜20nmのSiO微粒子溶液(商品名「PL−2L」、扶桑化学工業社製)3.57gをそれぞれ添加して、室温(25℃)で30分間攪拌溶解し、実施例2のシリカ系ポジ型感光性樹脂組成物を調製した。得られた感光性樹脂組成物中、(a)成分の配合割合(固形分)は50質量%であり、(d)成分の配合割合(固形分)は23質量%である。
[実施例3]
シロキサン樹脂Cの溶液4.2gに、シロキサン樹脂Dの溶液3.6g、ナフトキノンジアジドスルホン酸エステルAの溶液0.44g、濃度27%の10nm〜20nmのSiO微粒子溶液(商品名「PL−2L」、扶桑化学工業社製)3.57gをそれぞれ添加して、室温(25℃)で30分間攪拌溶解し、実施例3のシリカ系ポジ型感光性樹脂組成物を調製した。得られた感光性樹脂組成物中、(a)成分の配合割合(固形分)は50質量%であり、(d)成分の配合割合(固形分)は23質量%である。
[実施例4]
シロキサン樹脂Aの溶液4.2gに、シロキサン樹脂Dの溶液3.6g、ナフトキノンジアジドスルホン酸エステルBの溶液0.44g、濃度27%の10nm〜20nmのSiO微粒子溶液(商品名「PL−2L」、扶桑化学工業社製)3.57gをそれぞれ添加して、室温(25℃)で30分間攪拌溶解し、実施例4のシリカ系ポジ型感光性樹脂組成物を調製した。得られた感光性樹脂組成物中、(a)成分の配合割合(固形分)は50質量%であり、(d)成分の配合割合(固形分)は23質量%である。
[実施例5]
シロキサン樹脂Aの溶液2.0gに、シロキサン樹脂Dの溶液36.0g、ナフトキノンジアジドスルホン酸エステルAの溶液1.38g、濃度27%の10nm〜20nmのSiO微粒子溶液(商品名「PL−2L」、扶桑化学工業社製)9.0gをそれぞれ添加して、室温(25℃)で30分間攪拌溶解し、実施例5のシリカ系ポジ型感光性樹脂組成物を調製した。得られた感光性樹脂組成物中、(a)成分の配合割合(固形分)は7.6質量%であり、(d)成分の配合割合(固形分)は18.6質量%である。
[実施例6]
シロキサン樹脂Aの溶液10.0gに、シロキサン樹脂Dの溶液3.0g、ナフトキノンジアジドスルホン酸エステルAの溶液0.55g、濃度27%の10nm〜20nmのSiO微粒子溶液(商品名「PL−2L」、扶桑化学工業社製)2.8gをそれぞれ添加して、室温(25℃)で30分間攪拌溶解し、実施例6のシリカ系ポジ型感光性樹脂組成物を調製した。得られた感光性樹脂組成物中、(a)成分の配合割合(固形分)は74質量%であり、(d)成分の配合割合(固形分)は11.2質量%である。
[比較例1]
比較シロキサン樹脂Aの溶液4.2gに、シロキサン樹脂Dの溶液3.6g、ナフトキノンジアジドスルホン酸エステルAの溶液0.44gをそれぞれ添加して、室温(25℃)で30分間攪拌溶解し、比較例1のシリカ系ポジ型感光性樹脂組成物を調製した。
[比較例2]
シロキサン樹脂Aの溶液1.0gに、シロキサン樹脂Dの溶液36.0g、ナフトキノンジアジドスルホン酸エステルAの溶液1.38gをそれぞれ添加して、室温(25℃)で30分間攪拌溶解し、比較例2のシリカ系ポジ型感光性樹脂組成物を調製した。得られた感光性樹脂組成物中、(a)成分の配合割合(固形分)は4.9質量%である。
[比較例3]
シロキサン樹脂Aの溶液8.0gに、シロキサン樹脂Dの溶液1.5g、ナフトキノンジアジドスルホン酸エステルAの溶液0.64gをそれぞれ添加して、室温(25℃)で30分間攪拌溶解し、比較例3のシリカ系ポジ型感光性樹脂組成物を調製した。得られた感光性樹脂組成物中、(a)成分の配合割合(固形分)は85.5質量%である。
<シリカ系被膜の製造>
実施例1〜6及び比較例1〜3で得られた感光性樹脂組成物をPTFE製のフィルターでろ過した。これをシリコンウェハ又はガラス基板上に、溶媒除去した後の膜厚が3.0μmになるような回転数で30秒間スピンコートした。その後、150℃で2分間かけて溶媒を除去した。得られた塗膜に対し、所定のパターンマスクを介してCanon社製PLA−600F投影露光機を用い、露光量30mJ/cmにて露光を行った。続いて、2.38質量%のテトラメチルアンモニウムヒドロキシド水溶液を用いて、25℃で2分間揺動浸漬法にて現像処理を行った。これを純水で流水洗浄し、乾燥してパターンを形成した。次いで、パターン部分をCanon社製PLA−600F投影露光機を用い、露光量1000mJ/cmで全面露光した。次いで、O濃度が1000ppm未満にコントロールされている石英チューブ炉にて350℃で30分間かけてパターンを最終硬化し、シリカ系被膜を得た。
<被膜評価>
上述の方法により、実施例1〜6及び比較例1〜3の感光性樹脂組成物から形成されたシリカ系被膜に対して、以下の方法で膜評価を行った。
[解像性の評価]
解像性の評価は、シリコンウェハ上に形成されたシリカ系被膜について、5μm角のスルーホールパターンが抜けているかどうかで評価した。すなわち、電子顕微鏡S−4200((株)日立計測器サービス社製)を用いて観察し、5μm角のスルーホールパターンが抜けている場合はA、抜けていない場合をBと評価した。
[透過率の測定]
可視光領域に吸収がないガラス基板上に塗布されたシリカ系被膜について、日立社製UV3310装置によって波長300nm〜800nmの透過率を測定し、波長400nmの値を透過率とした。
[耐熱性の評価]
シリコンウェハ上に形成されたシリカ系被膜について、溶媒除去した後の膜厚に対する最終硬化後の膜厚の減少率が10%未満の場合をA、10%以上の場合をBとして評価した。なお、膜厚は、ガートナー社製のエリプソメータL116Bで測定された膜厚であり、具体的には被膜上にHe−Neレーザーを照射し、照射により生じた位相差から求められる膜厚である。
[クラック耐性の評価]
シリコンウェハ上に形成されたシリカ系被膜について、金属顕微鏡により10倍〜100倍の倍率で面内のクラックの有無を確認した。クラックの発生がない場合はA、クラックが見られた場合をBとして評価した。
<評価結果>
実施例1〜6及び比較例1〜3の感光性樹脂組成物から形成されたシリカ系被膜の評価結果を下記の表1に示した。
Figure 2009186677

表1に示した結果から、実施例1〜6の感光性樹脂組成物によれば、解像性、耐熱性、クラック耐性及び透明性に優れたシリカ系被膜を得ることができることが明らかである。なお、これらの実施例では、透過率の高いシリカ系被膜が得られる感光性樹脂組成物のみを示したが、用途に合わせて透過率の低いものを提供することも可能である。
図1は、本発明の電子部品の一実施形態を示す模式断面図である。 図2は、本発明の平面表示装置の一実施形態におけるアクティブマトリクス基板の1画素部分の構成を示す平面図である。 図3は、図2のアクティブマトリクス基板におけるIII−III’断面図である。
符号の説明
1…シリコンウェハ、1A,1B…拡散領域、2A…フィールド酸化膜、2B…ゲート絶縁膜、3…ゲート電極、4A,4B…側壁酸化膜、5,7…層間絶縁膜、5A、7A…コンタクトホール、6…ビット線、8A…蓄積電極、8B…キャパシタ絶縁膜、8C…対向電極、10…メモリセルキャパシタ、21…画素電極、22…ゲート配線、23…ソース配線、24…TFT、25…接続電極、26…コンタクトホール、31…透明絶縁性基板、32…ゲート電極、36a…ソース電極、36b…ドレイン電極、37a,37b…透明導電膜、38a、38b…金属層、39…層間絶縁膜。

Claims (11)

  1. (a)成分:下記一般式(1)で表される化合物を含むシラン化合物を加水分解縮合して得られるシロキサン樹脂と、
    (b)成分:前記(a)成分が溶解する溶媒と、
    (c)成分:ナフトキノンジアジドスルホン酸エステルと、
    (d)成分:微粒子と、
    を含有し、
    前記(a)成分の配合割合が、組成物の固形分全体を基準として5〜80質量%であり、前記(d)成分の配合割合が、組成物の固形分全体を基準として5〜50質量%である、感光性樹脂組成物。
    Figure 2009186677


    [式(1)中、Rは有機基を示し、Aは2価の有機基を示し、Xは加水分解性基を示し、同一分子内の複数のXは同一でも異なっていてもよい。]
  2. 前記シラン化合物が、下記一般式(2)で表される化合物をさらに含む、請求項1記載の感光性樹脂組成物。
    Figure 2009186677


    [式(2)中、Rは有機基を示し、Xは加水分解性基を示し、同一分子内の複数のXは同一でも異なっていてもよい。]
  3. (e)成分:下記一般式(3)で表される化合物を加水分解縮合して得られるシロキサン樹脂、をさらに含有する、請求項1又は2記載の感光性樹脂組成物。
    Figure 2009186677


    [式(3)中、Rは、H原子、F原子、炭素数1〜20の有機基、又は、B原子、N原子、Al原子、P原子、Si原子、Ge原子及びTi原子のうちの少なくとも1種の原子を含む基を示し、Xは加水分解性基を示し、nは0〜2の整数を示し、同一分子内の複数のXは同一でも異なっていてもよく、nが2であるとき、同一分子内の複数のRは同一でも異なっていてもよい。]
  4. 前記(b)成分が、エーテルアセテート系溶媒、エーテル系溶媒、アセテート系溶媒、アルコール系溶媒及びケトン系溶媒からなる群より選択される少なくとも1種の溶媒を含む、請求項1〜3のいずれか一項に記載の感光性樹脂組成物。
  5. 前記(c)成分が、1価又は多価アルコールと、ナフトキノンジアジドスルホン酸とのエステルを含む、請求項1〜4のいずれか一項に記載の感光性樹脂組成物。
  6. 前記1価又は多価アルコールが、エチレングリコール、プロピレングリコール及びそれらの重合度が2〜10である重合体の中から選ばれた化合物である、請求項5記載の感光性樹脂組成物。
  7. 請求項1〜6のいずれか一項に記載の感光性樹脂組成物を基板上に塗布し乾燥して塗膜を得る塗布工程と、
    前記塗膜の所定部分を露光する第1露光工程と、
    前記塗膜の露光された前記所定部分を除去する除去工程と、
    前記所定部分が除去された塗膜を加熱する加熱工程と、
    を有する、シリカ系被膜の形成方法。
  8. 請求項1〜6のいずれか一項に記載の感光性樹脂組成物を基板上に塗布し乾燥して塗膜を得る塗布工程と、
    前記塗膜の所定部分を露光する第1露光工程と、
    前記塗膜の露光された前記所定部分を除去する除去工程と、
    前記所定部分が除去された塗膜を露光する第2露光工程と、
    前記所定部分が除去された塗膜を加熱する加熱工程と、
    を有する、シリカ系被膜の形成方法。
  9. 基板と、該基板上に請求項7又は8記載の形成方法により形成されたシリカ系被膜と、を備える半導体装置。
  10. 基板と、該基板上に請求項7又は8記載の形成方法により形成されたシリカ系被膜と、を備える平面表示装置。
  11. 基板と、該基板上に請求項7又は8記載の形成方法により形成されたシリカ系被膜と、を備える電子デバイス用部材。
JP2008025501A 2008-02-05 2008-02-05 感光性樹脂組成物、シリカ系被膜の形成方法、及びシリカ系被膜を備える装置及び部材 Pending JP2009186677A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008025501A JP2009186677A (ja) 2008-02-05 2008-02-05 感光性樹脂組成物、シリカ系被膜の形成方法、及びシリカ系被膜を備える装置及び部材

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008025501A JP2009186677A (ja) 2008-02-05 2008-02-05 感光性樹脂組成物、シリカ系被膜の形成方法、及びシリカ系被膜を備える装置及び部材

Publications (1)

Publication Number Publication Date
JP2009186677A true JP2009186677A (ja) 2009-08-20

Family

ID=41069995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008025501A Pending JP2009186677A (ja) 2008-02-05 2008-02-05 感光性樹脂組成物、シリカ系被膜の形成方法、及びシリカ系被膜を備える装置及び部材

Country Status (1)

Country Link
JP (1) JP2009186677A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011028225A (ja) * 2009-06-29 2011-02-10 Jsr Corp ポジ型感放射線性組成物、硬化膜、層間絶縁膜、層間絶縁膜の形成方法、表示素子、及び層間絶縁膜形成用のシロキサンポリマー
WO2012026400A1 (ja) * 2010-08-24 2012-03-01 Azエレクトロニックマテリアルズ株式会社 ポジ型感光性シロキサン組成物
KR101270703B1 (ko) 2009-12-24 2013-06-03 주식회사 삼양사 절연막용 감광성 수지 조성물
JP6043716B2 (ja) * 2011-05-20 2016-12-14 メルク パテント ゲーエムベーハー ポジ型感光性シロキサン組成物
JPWO2016125836A1 (ja) * 2015-02-04 2018-01-18 堺ディスプレイプロダクト株式会社 ポジ型感光性シロキサン組成物、アクティブマトリクス基板、表示装置、及びアクティブマトリクス基板の製造方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011028225A (ja) * 2009-06-29 2011-02-10 Jsr Corp ポジ型感放射線性組成物、硬化膜、層間絶縁膜、層間絶縁膜の形成方法、表示素子、及び層間絶縁膜形成用のシロキサンポリマー
KR101270703B1 (ko) 2009-12-24 2013-06-03 주식회사 삼양사 절연막용 감광성 수지 조성물
WO2012026400A1 (ja) * 2010-08-24 2012-03-01 Azエレクトロニックマテリアルズ株式会社 ポジ型感光性シロキサン組成物
CN103069341A (zh) * 2010-08-24 2013-04-24 Az电子材料Ip(日本)株式会社 正型感光性硅氧烷组合物
JPWO2012026400A1 (ja) * 2010-08-24 2013-10-28 AzエレクトロニックマテリアルズIp株式会社 ポジ型感光性シロキサン組成物
US8883397B2 (en) 2010-08-24 2014-11-11 Az Electronic Materials Usa Corp. Positive photosensitive siloxane composition
JP5707407B2 (ja) * 2010-08-24 2015-04-30 メルクパフォーマンスマテリアルズIp合同会社 ポジ型感光性シロキサン組成物
KR101799260B1 (ko) 2010-08-24 2017-11-20 메르크 파텐트 게엠베하 포지티브형 감광성 실록산 조성물
JP6043716B2 (ja) * 2011-05-20 2016-12-14 メルク パテント ゲーエムベーハー ポジ型感光性シロキサン組成物
JPWO2016125836A1 (ja) * 2015-02-04 2018-01-18 堺ディスプレイプロダクト株式会社 ポジ型感光性シロキサン組成物、アクティブマトリクス基板、表示装置、及びアクティブマトリクス基板の製造方法

Similar Documents

Publication Publication Date Title
JP5077237B2 (ja) 感放射線性組成物、シリカ系被膜の形成方法、シリカ系被膜、シリカ系被膜を備える装置及び部材、並びに絶縁膜用感光剤
KR100924621B1 (ko) 방사선 경화성 조성물, 그 보존방법, 경화막 형성방법,패턴 형성방법, 패턴 사용방법, 전자부품 및 광도파로
US7297464B2 (en) Radiation curable composition, storing method thereof, forming method of cured film, patterning method, use of pattern, electronic components and optical waveguide
US20080260956A1 (en) Film, Silica Film and Method of Forming the Same, Composition for Forming Silica Film, and Electronic Part
JP2009211033A (ja) 感光性樹脂組成物、シリカ系被膜の形成方法、シリカ系被膜を備える装置及び部材、並びに感光性樹脂組成物の製造方法
JP5050684B2 (ja) 感光性樹脂組成物、シリカ系被膜の形成方法、及びシリカ系被膜を備える装置及び部材
WO2010047138A1 (ja) 感光性樹脂組成物、シリカ系被膜の形成方法、及びシリカ系被膜を備える装置及び部材
JP2009186677A (ja) 感光性樹脂組成物、シリカ系被膜の形成方法、及びシリカ系被膜を備える装置及び部材
JP2009276742A (ja) 感光性樹脂膜の形成方法、シリカ系被膜の形成方法並びにシリカ系被膜を備える装置及び部材
JP2010117696A (ja) 感光性樹脂組成物、シリカ系被膜の形成方法、及びシリカ系被膜を備える装置及び部材
JP2011227159A (ja) 感光性樹脂組成物、及びそれを用いたシリカ系被膜の形成方法、並びにシリカ系被膜を備えた装置及び部材
JP2008122916A (ja) 感光性樹脂組成物、シリカ系被膜の形成方法、及びシリカ系被膜を備える装置及び部材
JP2009237531A (ja) 感光性樹脂組成物の製造方法、シリカ系被膜の形成方法、並びにシリカ系被膜を備える装置及び部材
JP2010262133A (ja) 感光性樹脂組成物及びその製造方法、シリカ系被膜の形成方法、並びにシリカ系被膜を備える装置及び部材
JP2010262132A (ja) シリカ系被膜の形成方法、並びにシリカ系被膜を備える装置及び部材
JP4655633B2 (ja) 放射線硬化性組成物、その保存方法、硬化膜形成方法、パターン形成方法、パターン使用方法、電子部品及び光導波路
JP3818307B2 (ja) 放射線硬化性組成物、その保存方法、硬化膜形成方法、パターン形成方法、パターン使用方法、電子部品及び光導波路
JP3801192B2 (ja) 放射線硬化性組成物、その保存方法、硬化膜形成方法、パターン形成方法、パターン使用方法、電子部品及び光導波路
JP2010262131A (ja) 感光性樹脂組成物、シリカ系被膜の形成方法、並びにシリカ系被膜を備える装置及び部材
JP2011095469A (ja) 感光性樹脂組成物、この組成物を用いたシリカ系被膜の形成方法、シリカ系被膜を備える半導体装置、平面表示装置及び電子デバイス用部材
JP2012222104A (ja) シリカ系被膜の形成方法及び電子部品
JP2006195175A (ja) 放射線硬化性組成物、その保存方法、硬化膜形成方法、パターン形成方法、パターン使用方法、電子部品及び光導波路
JP2012098453A (ja) 感光性樹脂組成物、パターンを有するシリカ系絶縁被膜の形成方法及びその方法により形成されるパターンを有するシリカ系絶縁被膜を備える電子部品
JP2006091828A (ja) 放射線硬化性組成物、その保存方法、硬化膜形成方法、パターン形成方法、パターン使用方法、電子部品及び光導波路
JP2006091818A (ja) 硬化膜形成方法、パターン形成方法、パターン使用方法、電子部品及び光導波路