WO2023243198A1 - 感光性樹脂組成物、パターンを有する樹脂膜、パターンを有する樹脂膜の製造方法、および半導体回路基板 - Google Patents

感光性樹脂組成物、パターンを有する樹脂膜、パターンを有する樹脂膜の製造方法、および半導体回路基板 Download PDF

Info

Publication number
WO2023243198A1
WO2023243198A1 PCT/JP2023/014564 JP2023014564W WO2023243198A1 WO 2023243198 A1 WO2023243198 A1 WO 2023243198A1 JP 2023014564 W JP2023014564 W JP 2023014564W WO 2023243198 A1 WO2023243198 A1 WO 2023243198A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polymer
structural unit
formula
resin film
Prior art date
Application number
PCT/JP2023/014564
Other languages
English (en)
French (fr)
Inventor
隆一 奥田
貴史 土井
了嗣 多田羅
宏和 伊東
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Publication of WO2023243198A1 publication Critical patent/WO2023243198A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/023Macromolecular quinonediazides; Macromolecular additives, e.g. binders
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor

Definitions

  • One aspect of the present invention relates to a photosensitive resin composition, a patterned resin film, a method for producing a patterned resin film, and a semiconductor circuit board.
  • photosensitive resin compositions have been proposed as materials used in forming surface protective films, interlayer insulating films, etc. used in semiconductor circuit boards in electronic components.
  • photosensitive resin compositions containing a resin having a phenolic hydroxyl group as an alkali-soluble resin have been studied (Patent Documents 1 and 2).
  • a composition for forming a patterned resin film such as an insulating film (hereinafter also referred to as a "patterned resin film”) must have photolithographic properties that can be patterned by exposure and development. .
  • the present invention solves the above problems, and provides a photosensitive resin composition that can form a resin film having excellent elongation and high PCT resistance, and has excellent photolithography properties. It is an object of the present invention to provide a patterned resin film having excellent stretchability and high PCT resistance and a method for manufacturing the same, and to provide a semiconductor circuit board including a patterned resin film having excellent elongation and high PCT resistance.
  • the present inventors conducted extensive studies to solve the above problems. As a result, it was discovered that the above problems could be solved by a photosensitive resin composition containing a polymer having a specific structural unit, a specific photoacid generator, and a specific crosslinking agent, and the present invention was completed. Examples of embodiments of the present invention are shown below.
  • the polymer (A) contains a structural unit (a) derived from an acid anhydride and a structural unit (b) derived from a diamine,
  • a photosensitive resin composition wherein the structural unit (a) includes a structural unit (a1) derived from an acid anhydride represented by the following formula (1).
  • L independently represents a single bond, an ester bond, or an amide bond
  • R 1 , R 2 and R 3 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, or R 1 and R 2 or R 1 and R 3 in the same ring are bonded to each other.
  • Y 1 represents a structure represented by the following formula (Y1) or (Y2).
  • Ar 1 and Ar 2 each independently represent an unsubstituted aromatic ring, or a group obtained by removing two hydrogen atoms on the aromatic ring from an aromatic ring substituted with an alkyl group or alkoxy group having 1 to 6 carbon atoms;
  • Y2 in the formula (Y2) is at least one selected from the group consisting of a single bond, an oxygen atom, a sulfur atom, a sulfonyl group, a carbonyl group, a methylene group, a dimethylmethylene group, and a bis(trifluoromethyl)methylene group. It is a kind of base.
  • a semiconductor circuit board comprising a resin film having the pattern according to [6].
  • a photosensitive resin composition that can form a resin film having excellent elongation and high PCT resistance, and has excellent photolithography properties, and also has excellent elongation and high PCT resistance. It is possible to provide a patterned resin film having PCT resistance, a method for manufacturing the same, and a semiconductor circuit board including a patterned resin film having excellent elongation and high PCT resistance.
  • the photosensitive resin composition (hereinafter also simply referred to as “the present composition”) according to one embodiment of the present invention is (A) at least one polymer selected from the group consisting of polyimide and polyimide precursors (hereinafter also referred to as “polymer (A)”); (B) naphthoquinone diazide compound (hereinafter also referred to as “compound (B)”), (C1) A crosslinkable compound having a methylol group or an alkoxymethyl group (hereinafter also referred to as “crosslinkable compound (C1)”), and (D) a solvent.
  • the polymer (A) contained in the present composition is a polymer (resin) that is at least one type selected from the group consisting of polyimide and polyimide precursor, and the structural unit (a) derived from an acid anhydride and a structural unit (b) derived from diamine. Since it contains such a structure, the polymer (A) contained in the present composition can have both high i-ray transmittance and high elongation. Moreover, the polymer (A) has excellent solvent solubility, and can also be imparted with alkali solubility by introducing an alkali-soluble group.
  • the structural unit (a) is a structural unit derived from an acid anhydride, and includes a structural unit (a1) derived from an acid anhydride represented by the following formula (1). It is thought that the acid anhydride group having an alicyclic structure in the structural unit (a1) contributes to improving the i-line transmittance, solvent solubility, and PCT resistance, and the aromatic group contributes to improving the elongation rate. . Since the polymer (A) contains the structural unit (a1), the present composition has both high i-ray transmittance and high elongation. One type or two or more types of the structural unit (a1) may be contained.
  • Y 1 represents a structure represented by the following formula (Y1) or (Y2), and preferably has a structure represented by the following formula (Y1).
  • * represents a bond to L in the above formula (1).
  • Ar 1 and Ar 2 are each independently an unsubstituted aromatic ring, or an aromatic ring substituted with an alkyl group or an alkoxy group having 1 to 6 carbon atoms on the aromatic ring. represents a group from which two hydrogen atoms have been removed.
  • aromatic ring examples include aromatic hydrocarbon compounds such as a benzene ring and a naphthalene ring, and heteroaromatic compounds such as a furan ring and a pyrrole ring. Hydrogen compounds are preferred.
  • Examples of the alkyl group having 1 to 6 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, n-pentyl group, n-hexyl group, and the like.
  • Examples of the alkoxy group having 1 to 6 carbon atoms include a methoxy group and an ethoxy group. Among these, an alkyl group having 1 or 2 carbon atoms such as a methyl group or an ethyl group, or an alkoxy group having 1 or 2 carbon atoms such as a methoxy group or an ethoxy group is preferable.
  • Y2 is at least one selected from the group consisting of a single bond, an oxygen atom, a sulfur atom, a sulfonyl group, a carbonyl group, a methylene group, a dimethylmethylene group, and a bis(trifluoromethyl)methylene group. It is a kind of base.
  • L independently represents a single bond, an ester bond, or an amide bond
  • the ester bond is represented by -O-C(O)- or -C(O)-O-.
  • the amide bond includes any of the bonds represented by -NH-C(O)- or -C(O)-NH-.
  • R 1 , R 2 and R 3 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, or R 1 and R 2 or R in the same group 1 and R 3 represent an alkylene group having 1 to 4 carbon atoms formed by bonding with each other.
  • Examples of the alkyl group having 1 to 6 carbon atoms include the same alkyl groups described above, with methyl and ethyl groups being preferred.
  • n 1 and n 2 each independently represent an integer of 0 to 3, preferably 0 or 1. However, within the same part, at least one of n 1 and n 2 is an integer of 1 or more.
  • R 1 to R 3 in the formula (1) are all hydrogen atoms, or R 1 of 1 and R of 1 in the same ring are 2 or an alkylene group having 1 or 2 carbon atoms formed by bonding R 1 of 1 and R 3 of 1 to each other.
  • Preferred specific examples of the acid anhydride represented by the formula (1) include acid anhydrides represented by the following formulas (1-1) to (1-3), and more preferably, the acid anhydrides represented by the following formula (1-1) to (1-3). 1-1) or (1-2).
  • the structural unit (a) may contain a structural unit (a2) derived from an acid anhydride other than the acid anhydride represented by the formula (1), as long as the effects of the present invention are not impaired.
  • a2 derived from an acid anhydride other than the acid anhydride represented by the formula (1), as long as the effects of the present invention are not impaired.
  • One or more types of units (a2) may be included.
  • an acid anhydride represented by the following formula (2) is preferable.
  • examples of X include groups represented by the following formulas.
  • * represents a bond to the carbon atom to which X in formula (2) is bonded.
  • the hydrogen atom (omitted in the formula) in the group represented by the above formula is an alkyl group or alkoxy group having 1 to 6 carbon atoms, or a group in which the hydrogen atom in the alkyl group or alkoxy group is substituted with a halogen atom. (for example, a trifluoromethyl group).
  • the molar ratio of the structural unit (a1) to the structural unit (a2) is 99/ The ratio is preferably 1 to 50/50, more preferably 95/5 to 60/40.
  • the content ratio of each structural unit can be measured by 13 C-NMR. If the molar ratio of the structural unit (a1) to the structural unit (a2) is within the above range, the effects described above by using the structural unit (a1) can be easily obtained.
  • the molar ratio of each monomer (acid anhydride, diamine described below, terminal modifier described below, etc.) in the monomer mixture is within the above range
  • the molar ratio of structural units derived from each monomer is It can be said that the polymer falls within the above range.
  • the structural unit (b) is a structural unit derived from diamine.
  • the structural unit (b) is not particularly limited as long as it is a structural unit derived from a diamine, but preferably includes a structural unit derived from a diamine having a hydroxyl group, and the structural unit (b1) is preferably derived from a diamine having a phenolic hydroxyl group. ) is more preferably included.
  • One type or two or more types of the structural unit (b1) may be contained.
  • a diamine represented by the following formula (3) is preferable.
  • Z 1 represents a divalent group having a hydroxyl group, and is preferably a divalent group represented by the following formula (Z1) or (Z2).
  • * indicates a bond to the nitrogen atom to which Z 1 in formula (3) is bonded.
  • R 5 and R 6 in the formulas (Z1) and (Z2) each independently represent a hydrogen atom, an acyl group, or an alkyl group.
  • Preferred acyl groups include formyl group, acetyl group, propionyl group, butyroyl group, isobutyroyl group, etc.
  • preferred alkyl groups include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group.
  • Z 2 in the formula (Z2) is at least one selected from the group consisting of a single bond, an oxygen atom, a sulfur atom, a sulfonyl group, a carbonyl group, a methylene group, a dimethylmethylene group, and a bis(trifluoromethyl)methylene group. It is a kind of base.
  • n 5 is an integer of 1 or 2.
  • each n 6 is independently an integer of 0 to 2, and at least one of the two n 6 is an integer of 1 or more.
  • R 5 (or R 6 ) when there is one OR 5 group (or OR 6 group) in one molecule of the diamine represented by the above formula (3), R 5 (or R 6 ) is a hydrogen atom, and OR 5 is present in one molecule. When there are multiple groups (or OR 6 groups), at least one of R 5 (or R 6 ) is a hydrogen atom.
  • the diamine represented by the formula (3) having the group represented by the formula (Z1) or (Z2) is a diamine having a phenolic hydroxyl group, and provides the structural unit (b1).
  • Z 1 in the formula (3) is specifically a divalent group shown below. is preferred.
  • * indicates a bond to the nitrogen atom to which Z 1 in formula (3) is bonded.
  • Z 1 in the formula (3) is specifically a divalent group shown below. is preferred.
  • * indicates a bond to the nitrogen atom to which Z 1 in formula (3) is bonded.
  • Z 1 in the formula (3) is a divalent group shown below.
  • * indicates a bond to the nitrogen atom to which Z 1 in formula (3) is bonded.
  • the structural unit (b) can include a structural unit (b2) derived from a diamine other than the diamine having a phenolic hydroxyl group.
  • a structural unit (b2) derived from a diamine other than the diamine having a phenolic hydroxyl group.
  • One type or two or more types of the structural unit (b2) may be contained.
  • diamines other than diamines having a phenolic hydroxyl group include diamines having no phenolic hydroxyl group among the diamines represented by formula (3); p-phenylenediamine, m-phenylenediamine, 4,4'-diaminodiphenylmethane; , 4,4'-diaminodiphenylethane, 4,4'-diaminodiphenylsulfide, 4,4'-diaminodiphenylsulfone, 3,3'-dimethyl-4,4'-diaminobiphenyl, 4,4'-diaminobenz Anilide, 4,4'-diaminodiphenyl ether, 1,5-diaminonaphthalene, 2,2'-dimethyl-4,4'-diaminobiphenyl, 5-amino-1-(4'-aminophenyl)-1,3, 3-trimethylindane, 6-amino-1-(4'-d
  • the molar ratio of the structural unit (b1) to the structural unit (b2) is 99/ The ratio is preferably 1 to 50/50, more preferably 90/10 to 50/50.
  • the content ratio of each structural unit can be measured by 13 C-NMR.
  • the molar ratio of the structural unit (b1) to the structural unit (b2) is within the above range, the effects described above by using the structural unit (b1) can be easily obtained.
  • a polymer in which the molar ratio of each monomer in the monomer mixture is within the above range can be said to be a polymer in which the molar ratio of structural units derived from each monomer is within the above range.
  • the polymer (A) used in the present composition preferably has a phenolic hydroxyl group at the polymer terminal.
  • the method for introducing phenol into the terminals of a polymer is achieved by using a terminal modifying agent having a phenolic hydroxyl group as the terminal modifying agent.
  • the terminal modifying agent include 2-aminophenol, 3-aminophenol, and 4-aminophenol.
  • the acid anhydride terminal in the polymer (A) reacts with the amine in the terminal modifying agent to modify the polymer terminal from the acid anhydride.
  • the molar ratio of the terminal modifier (mol% ) (terminal modifier x 100/(acid anhydride + diamine + terminal modifier)) is preferably 1 to 20 mol%, more preferably 5 to 15 mol%.
  • the molar ratio of the structural unit (a) to the structural unit (b) in the polymer (A) is preferably 60/40 to 40/60. , 55/45 to 45/55 are more preferred.
  • the content ratio of each structural unit can be measured by 13 C-NMR.
  • a polymer in which the molar ratio of each monomer in the monomer mixture is within the above range can be said to be a polymer in which the molar ratio of structural units derived from each monomer is within the above range.
  • the polystyrene equivalent weight average molecular weight (hereinafter also referred to as "Mw") of the polymer (A) measured by gel permeation chromatography (GPC) is preferably about 2,000 to 800,000.
  • Mw polystyrene equivalent weight average molecular weight
  • GPC gel permeation chromatography
  • the resin film obtained from the polymer (A) has excellent extensibility, PCT resistance, and i-ray transparency. Therefore, the patterned resin film obtained by curing the present composition using the polymer (A) is considered to have excellent elongation, PCT resistance, and photolithography properties.
  • the polymer (A) can be used alone or in combination of two or more.
  • the lower limit of the content of the polymer (A) in 100% by mass of the solid content of the present composition is usually 20% by mass, preferably 40% by mass, and more preferably 60% by mass; the upper limit is usually 99% by mass. % by weight, preferably 95% by weight.
  • the solid content refers to all components other than the solvent (D) described below that may be included in the present composition.
  • the polymer (A) has at least one type of structure selected from the group consisting of polyimide and polyimide precursor.
  • the polyimide precursor includes polyamic acid and polyamic acid ester.
  • the structure of the polymer (A) can be confirmed by 1 H-NMR or the like.
  • the polymer (A) includes, for example, an acid anhydride represented by the above formula (1), a diamine (e.g., a diamine having a phenolic hydroxyl group), and, if necessary, an acid anhydride other than the above, a diamine, and a terminal. It can be obtained by synthesizing polyamic acid by reacting it in a polymerization solvent using a modifier, and then synthesizing polyimide by performing an imidization reaction. The terminal modifier can be reacted before polyamic acid synthesis, during polyamic acid synthesis, or after imidization reaction depending on the introduction site (main chain end or side chain end).
  • the polyamic acid synthesized midway can be the polymer (A) having the polyimide precursor structure described above.
  • a polyamic acid ester obtained by esterifying a polyamic acid according to a known method can also be used as the polymer (A) having the above-mentioned polyimide precursor structure.
  • the procedure for synthesizing polyamic acid to obtain polyimide can be, for example, the following two methods, and either method may be used. That is, (i) a method in which an acid anhydride is dissolved in a polymerization solvent and then reacted with a diamine; and (ii) a method in which a diamine is dissolved in a polymerization solvent and then an acid anhydride is reacted.
  • the polymerization solvent one is selected that can dissolve the raw materials and products during the synthesis of the polymer (A).
  • the polymerization solvent it is preferable to use at least one member selected from the group consisting of N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, and ⁇ -butyrolactone. These compounds can be used alone as a polymerization solvent, or two or more kinds can be used in combination.
  • solvents include, for example, diethylene glycol dialkyl ethers such as diethylene glycol dimethyl ether and diethylene glycol diethyl ether; ethylene glycol monoalkyl ether acetates such as ethylene glycol monomethyl ether acetate; diethylene glycol monoalkyl ether acetates such as diethylene glycol monomethyl ether acetate; propylene glycol monomethyl ether Propylene glycol monoalkyl ether acetate such as acetate; ketones such as methyl ethyl ketone and cyclohexanone; alcohols such as methanol, ethanol and propanol; ether solvents such as diglyme and triglyme; aromatic hydrocarbons such as toluene and xylene. can.
  • diethylene glycol dialkyl ethers such as diethylene glycol dimethyl ether and diethylene glycol diethyl ether
  • ethylene glycol monoalkyl ether acetates such as ethylene glycol mono
  • the imidization reaction to obtain the polymer (A) having a polyimide structure
  • known methods such as thermal imidization reaction and chemical imidization reaction can be applied.
  • the polymer (A) is synthesized by a heated imidization reaction, it is preferably carried out by heating a synthetic solution of polyamic acid at 120 to 210° C. for 1 to 16 hours. Note that, if necessary, the reaction may be carried out while removing water in the system using an azeotropic solvent such as toluene or xylene.
  • the present composition contains (B) a naphthoquinone diazide compound.
  • Compound (B) is a compound that acts as a photoacid generator and generates acid through treatment including light irradiation. When a resin film formed from the present composition is exposed to light, an acid is generated in the exposed area based on the compound (B), and the solubility of the exposed area in an alkaline developer changes based on the action of this acid.
  • Compound (B) generates carboxylic acid through treatment including light irradiation and development using an alkaline developer.
  • the resin film obtained from the composition containing the compound (B) is a film that is poorly soluble in alkaline developers. Therefore, by using compound (B), a positive pattern can be formed.
  • Compound (B) is, for example, an ester compound of a compound having one or more phenolic hydroxyl groups and 1,2-naphthoquinonediazide-4-sulfonic acid or 1,2-naphthoquinonediazide-5-sulfonic acid.
  • Specific examples of compounds having one or more phenolic hydroxyl groups include, for example, the compounds described in paragraphs [0065] to [0070] of JP-A No. 2014-186300, which are described in this specification. It is assumed that
  • Compound (B) can be used alone or in combination of two or more.
  • the content of compound (B) is usually 5 to 50 parts by weight, preferably 10 to 40 parts by weight, and more preferably 15 to 35 parts by weight, based on 100 parts by weight of polymer (A). It is.
  • the content of the compound (B) is equal to or higher than the lower limit, the residual film rate in the unexposed area is improved, and an image faithful to the pattern mask is easily obtained.
  • the content of compound (B) is below the above upper limit, a resin film with excellent pattern shape is likely to be obtained, and foaming during film formation tends to be prevented.
  • the present composition contains a crosslinking agent (C) in order to improve the curability of the resin film and to achieve both chemical resistance and crack resistance of the cured film.
  • the crosslinking agent (C) acts as a crosslinking component (curing component) that reacts with the polymer (A) or reacts with each other.
  • the crosslinking agent (C) can be used alone or in combination of two or more.
  • the present composition contains (C1) a crosslinkable compound having a methylol group or an alkoxymethyl group as the crosslinking agent (C).
  • the crosslinkable compound (C1) used in the present composition has a crosslinkable group composed only of a methylol group or an alkoxymethyl group, and contains other crosslinkable groups such as an epoxy group (oxirane ring). Contains no compounds.
  • the crosslinking agent (C1) can be used alone or in combination of two or more.
  • the methylol group or alkoxymethyl group is a group represented by -CH 2 OR.
  • R is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an acyl group having 2 to 10 carbon atoms, preferably a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, and the like.
  • the acyl group include an acetyl group.
  • the methylene group of the group represented by -CH 2 OR is activated by acid, and it has high reactivity with the phenolic hydroxyl group of the polymer (A) and its ortho position, and the crosslinking reaction easily progresses. Conceivable.
  • crosslinkable compound (C1) examples include methylol group-containing phenol compounds, alkylmethylol group-containing phenol compounds, and acyloxymethyl group-containing phenol compounds, and specifically, the compounds shown below are preferred.
  • examples of the crosslinkable compound (C1) other than the above-mentioned compounds include nitrogen compounds such as polymethylolated melamine, polymethylolated glycoluril, polymethylolated guanamine, and polymethylolated urea; active methylol groups in the nitrogen compound; Examples include compounds in which all or part of (CH 2 OH group bonded to N atom) is alkyl etherified or acyloxylated.
  • examples of the alkyl group constituting the alkyl ether include a methyl group, an ethyl group, a propyl group, and a butyl group, and these may be the same or different.
  • active methylol groups that are not alkyl etherified or acyloxylated can self-condense within one molecule or can condense between two molecules, thus forming an oligomeric component.
  • crosslinkable compound (C1) examples include crosslinking agents described in JP-A-6-180501, JP-A-2006-178059, and JP-A-2012-226297.
  • melamine crosslinking agents such as polymethylolated melamine, hexamethoxymethylmelamine, hexaethoxymethylmelamine, hexapropoxymethylmelamine, hexabutoxymethylmelamine; polymethylolated glycoluril, tetramethoxymethylglycoluril, tetrabutoxy Glycoluril crosslinking agents such as methyl glycoluril; 3,9-bis[2-(3,5-diamino-2,4,6-triazaphenyl)ethyl]2,4,8,10-tetraoxospiro[ 5.5] undecane, 3,9-bis[2-(3,5-diamino-2,4,6-triazaphenyl)propyl]2,4,8,10-tetraoxospiro[
  • the present composition may further contain an epoxy compound (C2) as a crosslinking agent (C) in addition to the crosslinkable compound (C1).
  • the epoxy compound (C2) is a compound containing an epoxy group (oxirane ring) as a crosslinkable group, and even if it is a compound containing a methylol group or an alkoxymethyl group, it does not contain an epoxy group. If so, it corresponds to an epoxy compound (C2). That is, the epoxy compound (C2) is different from the crosslinkable compound (C1).
  • the crosslinking agent (C2) may be used alone or in combination of two or more.
  • Examples of the epoxy compound (C2) include phenol novolac type epoxy resin, cresol novolac type epoxy resin, naphthol novolac type epoxy resin, naphthol-phenol cocondensed novolak type epoxy resin, naphthol-cresol cocondensed novolac type epoxy resin, bisphenol.
  • biphenyl type epoxy resin trisphenol type epoxy resin, tetraphenol type epoxy resin, phenol-xylylene type epoxy resin, naphthol-xylylene type epoxy resin, phenol-dicyclopentadiene type epoxy resin, phenol aralkyl type epoxy resin
  • naphthol aralkyl epoxy resins biphenylaralkyl epoxy resins, resorcinol epoxy resins, hydroquinone epoxy resins, catechol epoxy resins, dihydroxynaphthalene epoxy resins, alicyclic epoxy resins, and aliphatic epoxy resins.
  • epoxy compound (C2) alicyclic epoxy resins and aliphatic epoxy resins are preferable in terms of solvent solubility.
  • epoxy compounds (C2) pentaerythritol glycidyl ether ( Examples of commercial products: Nagase ChemteX Co., Ltd., trade name: Denacol EX411), trimethylolpropane polyglycidyl ether (commercial product examples: Nagase ChemteX Co., Ltd., trade name: Denacol EX321, 321L), glycerol polyglycidyl Ether (commercial product example; Nagase ChemteX Co., Ltd., product name: Denacol EX313, EX314), neopentyl glycol diglycidyl ether (commercial product example; Nagase ChemteX Co., Ltd., product name: Denacol EX211), ethylene / polyethylene glycol diglycidyl ether (commercial product example
  • crosslinking agent (C) a crosslinking agent (C3) other than the crosslinkable compound (C1) and the epoxy compound (C2) may be used within a range that does not impair the purpose and characteristics of the present invention.
  • Other crosslinking agents (C3) include, for example, oxetane ring-containing compounds, oxazoline ring-containing compounds, isocyanate group-containing compounds (including blocked ones), maleimide group-containing compounds, and cyanate ester group-containing compounds. .
  • the crosslinking agent (C3) may be used alone or in combination of two or more.
  • the content of the crosslinking agent (C) is usually 1 to 60 parts by weight, preferably 3 to 50 parts by weight, and more preferably 5 to 40 parts by weight based on 100 parts by weight of the polymer (A). Department.
  • the content of the crosslinking agent (C) is within the above range, a cured film with excellent tensile elongation and PCT resistance is formed.
  • the composition has excellent curability.
  • an epoxy compound (C2) is used as the crosslinking agent (C) in addition to the crosslinkable compound (C1), it is preferably less than 50% by mass based on 100% by mass of the crosslinking agent (C). Use of the epoxy compound (C2) tends to improve chemical resistance.
  • This composition contains a solvent (D).
  • the handleability of the present composition can be improved, and the viscosity and storage stability can be adjusted.
  • the solvent (D) is not particularly limited as long as it is an organic solvent that can dissolve or disperse each component such as the polymer (A), the compound (B), and the crosslinking agent (C).
  • Examples of the solvent (D) include ketone solvents, alcohol solvents, ether solvents, ester solvents, amide solvents, hydrocarbon solvents, and lactone solvents.
  • the solvent (D) preferably contains at least one selected from the group consisting of amide solvents and lactone solvents because of excellent solubility.
  • amide solvents include cyclic amide solvents such as N-methyl-2-pyrrolidone (NMP) and dimethylimidazolidinone (DMI), and examples of lactone solvents include cyclic amide solvents such as ⁇ -butyrolactone (GBL). Examples include lactone solvents.
  • the solvent (D) can be used alone or in combination of two or more.
  • the content of the solvent (D) in the present composition is such that the solid content concentration in the composition is usually 10 to 50% by mass.
  • the composition may contain other components as long as the objects and characteristics of the present invention are not impaired.
  • Other components include polymers other than polymer (A), low-molecular phenol compounds, silane coupling agents, rust preventive agents, adhesion aids, crosslinked fine particles, leveling agents, sensitizers, inorganic fillers, and quenchers. etc.
  • the present composition can be manufactured by uniformly mixing the components constituting the present composition using a known method. Further, in order to remove foreign substances, after uniformly mixing the above-mentioned components, the resulting mixture can be filtered using a filter or the like.
  • a patterned resin film obtained by curing this composition has excellent tensile elongation and PCT resistance.
  • the polymer used has excellent i-ray transmittance, tensile elongation, and PCT resistance, and polymer (A) is suitable from this viewpoint.
  • a highly polar hydrophilic functional group such as a phenolic hydroxyl group
  • an alkaline compound can be added as a developer.
  • a resin film having a pattern (patterned resin film) according to one embodiment of the present invention is obtained by curing the present composition described above.
  • the patterned resin film obtained by the manufacturing method described below can be suitably used as an insulating film (eg, a surface protection film, an interlayer insulating film, a planarization film) included in a semiconductor circuit board.
  • the patterned resin film is formed by a step (1) of forming a coating film of the present composition on a substrate, a step (2) of selectively exposing the coating film, and a coating process after the exposure using an alkaline developer. It can be manufactured by a method comprising a step (3) of developing the film.
  • step (1) the composition is usually applied onto a substrate so that the thickness of the patterned resin film finally obtained is, for example, 0.1 to 100 ⁇ m.
  • the substrate coated with the composition is usually heated at 50 to 140° C. for 10 to 360 seconds using an oven or a hot plate. In this way, a coating film made of the present composition is formed on the substrate.
  • Examples of the substrate include silicon wafers, compound semiconductor wafers, wafers with metal thin films, glass substrates, quartz substrates, ceramic substrates, aluminum substrates, and substrates having semiconductor chips on the surfaces of these substrates.
  • Examples of the coating method include a dipping method, a spray method, a bar coating method, a roll coating method, a spin coating method, a curtain coating method, a gravure printing method, a silk screen method, and an inkjet method.
  • step (2) the coating film is selectively exposed to light using, for example, a contact aligner, a stepper, or a scanner.
  • “selectively” means through a photomask on which a predetermined mask pattern is formed.
  • the exposure light examples include ultraviolet rays and visible light, and light with a wavelength of 200 to 500 nm (eg, i-line (365 nm)) is usually used.
  • the amount of irradiation due to exposure varies depending on the type and proportion of each component in the composition, the thickness of the coating film, etc., but is usually 100 to 1500 mJ/cm 2 .
  • step (3) the resin film is developed with an alkaline developer to dissolve and remove the exposed areas, thereby forming a desired pattern on the substrate.
  • the developing method include a shower developing method, a spray developing method, an immersion developing method, a paddle developing method, and the like.
  • the developing conditions are, for example, 5 to 40° C. for about 1 to 10 minutes. Note that after developing the resin film with an alkaline developer, it can be washed with water and dried.
  • the alkaline developer examples include an alkaline aqueous solution in which an alkaline compound such as sodium hydroxide, potassium hydroxide, aqueous ammonia, tetramethylammonium hydroxide, choline, etc. is dissolved in water to a concentration of 1 to 10% by mass. Can be mentioned.
  • a suitable amount of a water-soluble organic solvent such as methanol or ethanol, a surfactant, etc. can be added to the alkaline aqueous solution.
  • the shape of the pattern in the patterned resin film is not particularly limited as long as it has an uneven structure, and examples include a line and space pattern, a dot pattern, a hole pattern, and a lattice pattern.
  • Step (4)> In the method for manufacturing a patterned resin film according to one aspect of the present invention, after step (3), in order to fully develop the characteristics as an insulating film, the patterned resin film is heated as necessary (post-baking).
  • the method may include a step (4) of sufficiently curing the film. Curing conditions are not particularly limited, but depending on the intended use of the patterned resin film, heating is performed, for example, at a temperature of 100 to 350° C. for about 30 minutes to 10 hours.
  • the semiconductor circuit board By using this composition, a semiconductor circuit board including the patterned resin film can be manufactured.
  • the semiconductor circuit board has a patterned resin film formed from the present composition described above, preferably a patterned insulating film such as a surface protection film, an interlayer insulating film, and a planarization film, so it is a highly reliable circuit board. It is useful as
  • the reaction solution was poured into 500 mL of distilled water to obtain a white solid. This solid substance was filtered, washed three times with distilled water, and then vacuum dried at 70°C for 48 hours to obtain a polymer (A7).
  • Mw weight average molecular weight
  • the obtained polymer was evaluated as follows. ⁇ Tensile elongation ⁇ A 20% by mass NMP solution of the polymer obtained in the synthesis example or comparative synthesis example was applied onto the substrate with a mold release material, and then heated in an oven at 200°C for 1 hour (however, polymer (A7) , heating at 300° C. for 1 hour) to produce a coating film with a thickness of 20 ⁇ m.
  • the coated film after heating in post-baking was peeled off from the substrate with a mold release material to obtain a resin film with a thickness of 20 ⁇ m.
  • the obtained resin film was cut into strips measuring 5 cm in length x 0.5 cm in width to prepare tensile test pieces.
  • the tensile elongation at break (%) of the tensile test piece was measured using a tensile compression tester (product name "AGS-500NX", manufactured by Shimadzu Corporation).
  • the average value of the five measurements was taken as "elongation (polymer)" and evaluated according to the following criteria.
  • Elongation is 50% or more
  • Elongation is less than 50% or cannot be measured
  • the transmittance of the produced coating film at a wavelength of 365 nm was measured using a spectrophotometer (manufactured by Shimadzu Corporation, model "SolidSpec3700"), and evaluated according to the following criteria.
  • Transmittance is 80% or more
  • Transmittance is less than 80% or cannot be measured
  • the photosensitive resin composition was spin-coated onto a 6-inch silicon wafer, and then dried by heating at 110° C. for 5 minutes using a hot plate to produce a coating film with a thickness of 10 ⁇ m.
  • an aligner manufactured by Suss Microtec Co., Ltd., model "MA-150"
  • ultraviolet rays from a high-pressure mercury lamp are exposed through a photomask using exposure wavelengths of g-line, h-line, and i-line.
  • the coating film was exposed to light at an amount of 1000 mJ/cm 2 .
  • the photosensitive resin composition was applied onto a substrate with a mold release material, and then heated in an oven at 110° C. for 5 minutes to form a coating film.
  • an aligner manufactured by Suss Microtec Co., Ltd., model "MA-150"
  • the entire surface of the coating film was irradiated with ultraviolet rays from a high-pressure mercury lamp so that the exposure amount at a wavelength of 365 nm was 500 mJ/cm 2 .
  • heating was performed using an oven under the heating conditions (curing temperature and curing time) shown in Table 2 under a nitrogen atmosphere.
  • the coating film after heating in post-baking was peeled off from the substrate with mold release material to obtain a resin film with a thickness of 10 ⁇ m.
  • the obtained resin film was cut into strips measuring 5 cm in length and 0.5 cm in width to prepare tensile test pieces.
  • the average value of the five measurements was taken as "elongation (composition)" and evaluated according to the following criteria.
  • Elongation is 30% or more and less than 50%

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

本発明の一態様は、感光性樹脂組成物、パターンを有する樹脂膜、パターンを有する樹脂膜の製造方法、および半導体回路基板に関し、該感光性樹脂組成物は、(A)ポリイミドおよびポリイミド前駆体からなる群より選ばれる少なくとも1種であり、下記式(1)で表される酸無水物由来の構造単位を含む構造単位(a)とジアミン由来の構造単位(b)とを含む重合体、(B)ナフトキノンジアジド化合物、(C1)メチロール基またはアルコキシメチル基を有する架橋性化合物、および(D)溶媒を含有する。 〔式(1)中、Lは単結合等を表し、R1~R3は水素原子等を表すか、あるいは同一環内のR1とR2(またはR3)が互いに結合して形成されるアルキレン基を表し、n1~n2は0~3の整数を表し、Y1は式(Y1)(-Ar1-)等で示される構造を表す。〕

Description

感光性樹脂組成物、パターンを有する樹脂膜、パターンを有する樹脂膜の製造方法、および半導体回路基板
 本発明の一態様は、感光性樹脂組成物、パターンを有する樹脂膜、パターンを有する樹脂膜の製造方法、および半導体回路基板に関する。
 従来、電子部品中の半導体回路基板に用いられる表面保護膜および層間絶縁膜等を形成する際に使用される材料として、様々な感光性樹脂組成物が提案されている。例えば、アルカリ可溶性樹脂としてフェノール性水酸基を有する樹脂を含有する感光性樹脂組成物が検討されている(特許文献1および2)。
特開2014-186300号公報 特開2013-210606号公報
 半導体回路基板の高密度化や高性能化のために、シリコンインターポーザを用いたパッケージ技術、モールド基板を用いたファンアウト型のパッケージ技術等が提案されている。しかしながら、このような基板材料と絶縁膜とではその熱線膨張係数が異なるため、半導体回路基板の製造工程や情報端末機器の使用環境における温度変化等により、反り変形を生じ易い場合がある。絶縁膜の伸び性が小さい場合、反り変形に耐えられずに絶縁膜の破損が生じるという問題がある。また、情報端末機器の使用環境を想定した環境負荷試験(例えば、PCT試験)においても、伸び性を維持できる高信頼性が求められる。
 さらに、半導体回路基板に用いられる絶縁膜は、ファインピッチの電極パッド間や配線間に用いられる。このため、パターンを有する絶縁膜等の樹脂膜(以下「パターン化樹脂膜」ともいう。)を形成するための組成物には、露光および現像によるパターン化が可能なフォトリソグラフィー性が必要である。
 本発明は、前記問題を解決するものであり、伸び性に優れるとともに、高いPCT耐性を有する樹脂膜を形成可能であり、且つフォトリソグラフィー性に優れる感光性樹脂組成物を提供すること、伸び性に優れるとともに高いPCT耐性を有するパターン化樹脂膜およびその製造方法を提供すること、ならびに伸び性に優れるとともに高いPCT耐性を有するパターン化樹脂膜を含む半導体回路基板を提供することを目的とする。
 本発明者らは前記課題を解決するため鋭意検討を行った。その結果、特定の構造単位を有する重合体、および特定の光酸発生剤、および特定の架橋剤を含む感光性樹脂組成物により前記課題を解決できることを見出し、本発明を完成するに至った。本発明の態様例を以下に示す。
 [1]
(A)ポリイミドおよびポリイミド前駆体からなる群より選ばれる少なくとも1種である重合体、
(B)ナフトキノンジアジド化合物、
(C1)メチロール基またはアルコキシメチル基を有する架橋性化合物、および
(D)溶媒
を含有し、
 前記重合体(A)が、酸無水物に由来する構造単位(a)と、ジアミンに由来する構造単位(b)とを含み、
 前記構造単位(a)が、下記式(1)で表される酸無水物に由来する構造単位(a1)を含む、感光性樹脂組成物。
Figure JPOXMLDOC01-appb-C000002
〔前記式(1)中、
 Lは、独立して、単結合、エステル結合、またはアミド結合を表し、
 R1、R2およびR3は、それぞれ独立に、水素原子、または炭素数1~6のアルキル基を表すか、あるいは、同一環内のR1とR2またはR1とR3が互いに結合して形成される炭素数1~4のアルキレン基を表し、
 n1およびn2は、それぞれ独立に、0~3の整数を表し(ただし、同一環内において、n1とn2の少なくとも一方は1以上の整数である。)、
 Y1は、下記式(Y1)または(Y2)で示される構造を表す。
   *-Ar1-*  ・・・(Y1)
   *-Ar2-Y2-Ar2-*  ・・・(Y2)
 前記式(Y1)および(Y2)中、*は前記式(1)中のLへの結合を示し、
 Ar1およびAr2は、それぞれ独立に、無置換の芳香環、または炭素数1~6のアルキル基もしくはアルコキシ基で置換された芳香環から芳香環上の水素原子を2つ除いた基を表し、
 前記式(Y2)中のY2は、単結合、酸素原子、硫黄原子、スルホニル基、カルボニル基、メチレン基、ジメチルメチレン基、およびビス(トリフルオロメチル)メチレン基からなる群より選択される少なくとも一種の基である。〕
 [2]
 前記重合体(A)が重合体末端にフェノール性水酸基を有する、[1]に記載の感光性樹脂組成物。
 [3]
 前記ジアミンに由来する構造単位(b)が、フェノール性水酸基を有するジアミンに由来する構造単位(b1)を含む、[1]または[2]に記載の感光性樹脂組成物。
 [4]
 さらに(C2)エポキシ系化合物(ただし、前記架橋性化合物(C1)とは異なる。)を含有する、[1]~[3]のいずれかに記載の感光性樹脂組成物。
 [5]
 基板上に、[1]~[4]のいずれかに記載の感光性樹脂組成物の塗膜を形成する工程(1)と、前記塗膜を選択的に露光する工程(2)と、アルカリ現像液により前記露光後の塗膜を現像する工程(3)とを有する、パターンを有する樹脂膜の製造方法。
 [6]
 [1]~[4]のいずれかに記載の感光性樹脂組成物を硬化させてなる、パターンを有する樹脂膜。
 [7]
 [6]に記載のパターンを有する樹脂膜を含む、半導体回路基板。
 本発明の一態様によれば、伸び性に優れるとともに高いPCT耐性を有する樹脂膜を形成可能であり、且つフォトリソグラフィー性に優れる感光性樹脂組成物を提供でき、また、伸び性に優れるとともに高いPCT耐性を有するパターン化樹脂膜およびその製造方法、ならびに伸び性に優れるとともに高いPCT耐性を有するパターン化樹脂膜を含む半導体回路基板を提供することができる。
 以下、本発明を実施するための形態について好適態様も含めて詳細に説明する。
 [感光性樹脂組成物]
 本発明の一態様に係る感光性樹脂組成物(以下、単に「本組成物」ともいう。)は、
(A)ポリイミドおよびポリイミド前駆体からなる群より選ばれる少なくとも1種である重合体(以下「重合体(A)」ともいう。)、
(B)ナフトキノンジアジド化合物(以下「化合物(B)」ともいう。)、
(C1)メチロール基またはアルコキシメチル基を有する架橋性化合物(以下「架橋性化合物(C1)」ともいう。)、および
(D)溶媒を含有する。
 <重合体(A)>
 本組成物に含有される重合体(A)は、ポリイミドおよびポリイミド前駆体からなる群より選ばれる少なくとも1種である重合体(樹脂)であって、酸無水物に由来する構造単位(a)と、ジアミンに由来する構造単位(b)とを含む。このような構造を含有するため、本組成物に含有される重合体(A)は、高いi線透過率と高い伸び率の両方を備えることができる。また、重合体(A)は、溶媒溶解性に優れており、さらにアルカリ可溶性基を導入することによりアルカリ可溶性を付与することも可能である。
 (構造単位(a))
 構造単位(a)は、酸無水物に由来する構造単位であり、下記式(1)で表される酸無水物に由来する構造単位(a1)を含む。前記構造単位(a1)中の脂環構造を有する酸無水物基がi線透過率、溶媒溶解性、PCT耐性の向上に、芳香族基が伸び率の向上に寄与しているものと考えられる。重合体(A)が、構造単位(a1)を含むことで、本組成物は高いi線透過率と高い伸び率の両方を備える。前記構造単位(a1)は、1種または2種以上含まれていてもよい。
Figure JPOXMLDOC01-appb-C000003
 前記式(1)中、Y1は、下記式(Y1)または(Y2)で示される構造を表し、下記式(Y1)で示される構造であることが好ましい。下記式中、*は前記式(1)中のLへの結合を示す。
   *-Ar1-*  ・・・(Y1)
   *-Ar2-Y2-Ar2-*  ・・・(Y2)
 前記式(Y1)および(Y2)中、Ar1およびAr2は、それぞれ独立に、無置換の芳香環、または炭素数1~6のアルキル基もしくはアルコキシ基で置換された芳香環から芳香環上の水素原子を2つ除いた基を表す。
 前記芳香環としては、ベンゼン環、ナフタレン環等の芳香族炭化水素化合物やフラン環、ピロール環等の複素芳香族化合物が挙げられ、ベンゼン環、ナフタレン環等の炭素数6~10の芳香族炭化水素化合物が好ましい。
 前記炭素数1~6のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基等が挙げられる。前記炭素数1~6のアルコキシ基としては、メトキシ基、エトキシ基等が挙げられる。これらの中でも、メチル基、エチル基等の炭素数1または2のアルキル基、もしくはメトキシ基、エトキシ基等の炭素数1または2のアルコキシ基が好ましい。
 前記式(Y2)中、Y2は、単結合、酸素原子、硫黄原子、スルホニル基、カルボニル基、メチレン基、ジメチルメチレン基、およびビス(トリフルオロメチル)メチレン基からなる群より選択される少なくとも一種の基である。
 前記式(1)中、Lは、独立して、単結合、エステル結合、またはアミド結合を表し、前記エステル結合は、-O-C(O)-または-C(O)-O-で表される結合のいずれも含み、前記アミド結合は、-NH-C(O)-または-C(O)-NH-で表される結合のいずれも含む。
 前記式(1)中、R1、R2およびR3は、それぞれ独立に、水素原子、または炭素数1~6のアルキル基を表すか、あるいは、同一環内のR1とR2またはR1とR3が互いに結合して形成される炭素数1~4のアルキレン基を表す。前記炭素数1~6のアルキル基としては、前述したアルキル基と同様のものが挙げられ、メチル基、エチル基が好ましい。
 前記式(1)中、n1およびn2は、それぞれ独立に、0~3の整数を表し、好ましくは0または1である。ただし、同一環内において、n1とn2の少なくとも一方は1以上の整数である。
 前記式(1)で表される酸無水物として、好ましくは、前記式(1)中のR1~R3が、全て水素原子であるか、同一環内の1のR1と1のR2、または1のR1と1のR3が互いに結合して形成される炭素数1または2のアルキレン基である。前記式(1)で表される酸無水物の好ましい具体例としては、下記式(1-1)~(1-3)で表される酸無水物が挙げられ、より好ましくは、下記式(1-1)または(1-2)で表される酸無水物である。
Figure JPOXMLDOC01-appb-C000004
 前記構造単位(a)は、本発明の効果を損なわない範囲で、前記式(1)で表される酸無水物以外の酸無水物に由来する構造単位(a2)を含んでもよく、前記構造単位(a2)は、1種または2種以上含まれていてもよい。
 前記式(1)で表される酸無水物以外の酸無水物(以下「その他の酸無水物」ともいう。)としては、下記式(2)で表される酸無水物が好ましい。
Figure JPOXMLDOC01-appb-C000005
 前記式(2)中、Xは、例えば、下記式で示される基が挙げられる。下記式中、*は前記式(2)中のXが結合する炭素原子への結合を示す。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
 前記式で示される基中の水素原子(式中においては省略)は、炭素数1~6のアルキル基またはアルコキシ基、もしくは該アルキル基またはアルコキシ基中の水素原子がハロゲン原子で置換された基(例えば、トリフルオロメチル基)等で置換されていてもよい。
 重合体(A)に前記構造単位(a2)が含まれる場合、構造単位(a1)と構造単位(a2)との含有モル比(構造単位(a1)/構造単位(a2))は、99/1~50/50が好ましく、95/5~60/40がより好ましい。各構造単位の含有割合は、13C-NMRにより測定することができる。構造単位(a1)と構造単位(a2)との含有モル比が前記範囲であれば、構造単位(a1)を用いることによる前述した効果を得られやすい。なお、モノマー混合物中の各モノマー(酸無水物、後述するジアミン、および後述する末端変性剤等)の含有モル比が前記範囲にある重合体は、該各モノマー由来の構造単位の含有モル比が前記範囲にある重合体であるといえる。
 (構造単位(b))
 構造単位(b)は、ジアミンに由来する構造単位である。前記構造単位(b)は、ジアミンに由来する構造単位であれば特に限定されないが、水酸基を有するジアミンに由来する構造単位を含むことが好ましく、フェノール性水酸基を有するジアミンに由来する構造単位(b1)を含むことがより好ましい。前記構造単位(b1)は、1種または2種以上含まれていてもよい。
 前記水酸基を有するジアミンとしては、下記式(3)で示されるジアミンが好ましい。
Figure JPOXMLDOC01-appb-C000008
 前記式(3)中、Z1は、水酸基を有する2価の基を表し、下記式(Z1)または(Z2)で示される2価の基であることが好ましい。下記式中、*は前記式(3)中のZ1が結合する窒素原子への結合を示す。
Figure JPOXMLDOC01-appb-C000009
 前記式(Z1)および(Z2)中のR5およびR6は、それぞれ独立に、水素原子、アシル基またはアルキル基を示す。好ましいアシル基としては、ホルミル基、アセチル基、プロピオニル基、ブチロイル基、イソブチロイル基等を挙げることができ、好ましいアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-オクチル基、n-デシル基、n-ドデシル基等を挙げることできる。
 前記式(Z2)中のZ2は、単結合、酸素原子、硫黄原子、スルホニル基、カルボニル基、メチレン基、ジメチルメチレン基、およびビス(トリフルオロメチル)メチレン基からなる群より選択される少なくとも一種の基である。
 前記式(Z1)中、n5は、1または2の整数である。
 前記式(Z2)中、n6、それぞれ独立に、0~2の整数であり、2つあるn6のうち少なくとも一方は1以上の整数である。
 なお、前記式(3)で示されるジアミン1分子中にOR5基(またはOR6基)が一つである場合、R5(またはR6)は水素原子であり、1分子中にOR5基(またはOR6基)が複数ある場合、R5(またはR6)の少なくとも一つは水素原子である。このことから、前記式(Z1)または(Z2)で示される基を有する前記式(3)で表されるジアミンは、フェノール性水酸基を有するジアミンであり、構造単位(b1)を与える。
 前記式(Z1)で示される基を有する前記式(3)で表されるジアミンのうち、前記式(3)中のZ1が、具体的には、下記に示す2価の基であることが好ましい。下記式中、*は前記式(3)中のZ1が結合する窒素原子への結合を示す。
Figure JPOXMLDOC01-appb-C000010
 前記式(Z2)で示される基を有する前記式(3)で表されるジアミンのうち、前記式(3)中のZ1が、具体的には、下記に示す2価の基であることが好ましい。下記式中、*は前記式(3)中のZ1が結合する窒素原子への結合を示す。
Figure JPOXMLDOC01-appb-C000011
 また、前記式(Z1)または(Z2)で示される基を有する前記式(3)で表されるジアミン以外で、前記式(3)で表されるジアミンのうち、フェノール性水酸基を有するものとしては、例えば、前記式(3)中のZ1が、下記に示す2価の基であるものが挙げられる。下記式中、*は前記式(3)中のZ1が結合する窒素原子への結合を示す。
Figure JPOXMLDOC01-appb-C000012
 また、構造単位(b)は、フェノール性水酸基を有するジアミン以外のジアミンに由来する構造単位(b2)を含むことができる。前記構造単位(b2)は、1種または2種以上含まれていてもよい。
 フェノール性水酸基を有するジアミン以外のジアミンとしては、前記式(3)で示されるジアミンのうちフェノール性の水酸基を有さないジアミン;p-フェニレンジアミン、m-フェニレンジアミン、4,4'-ジアミノジフェニルメタン、4,4'-ジアミノジフェニルエタン、4,4'-ジアミノジフェニルスルフィド、4,4'-ジアミノジフェニルスルホン、3,3'-ジメチル-4,4'-ジアミノビフェニル、4,4'-ジアミノベンズアニリド、4,4'-ジアミノジフェニルエーテル、1,5-ジアミノナフタレン、2,2'-ジメチル-4,4'-ジアミノビフェニル、5-アミノ-1-(4'-アミノフェニル)-1,3,3-トリメチルインダン、6-アミノ-1-(4'-アミノフェニル)-1,3,3-トリメチルインダン、3,4'-ジアミノジフェニルエーテル、3,3'-ジアミノベンゾフェノン、3,4'-ジアミノベンゾフェノン、4,4'-ジアミノベンゾフェノン、1,3-ビス(4-アミノフェノキシ)プロパン、1,4-ビス(4-アミノフェノキシ)ブタン、1,5-ビス(4-アミノフェノキシ)ペンタン、1,6-ビス(4-アミノフェノキシ)ヘキサン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、9,9-ビス(4-アミノフェニル)-10-ヒドロアントラセン、2,7-ジアミノフルオレン、9,9-ビス(4-アミノフェニル)フルオレン、4,4'-メチレン-ビス(2-クロロアニリン)、2,2',5,5'-テトラクロロ-4,4'-ジアミノビフェニル、2,2'-ジクロロ-4,4'-ジアミノ-5,5'-ジメトキシビフェニル、3,3'-ジメトキシ-4,4'-ジアミノビフェニル、1,4,4'-(p-フェニレンイソプロピリデン)ビスアニリン、4,4'-(m-フェニレンイソプロピリデン)ビスアニリン、2,2'-ビス[4-(4-アミノ-2-トリフルオロメチルフェノキシ)フェニル]ヘキサフルオロプロパン、4,4'-ビス(4-アミノフェノキシ)ビフェニル、4,4'-ジアミノ-2,2'-ビス(トリフルオロメチル)ビフェニル、4,4'-ビス[(4-アミノ-2-トリフルオロメチル)フェノキシ]-オクタフルオロビフェニル等の芳香族ジアミン;メタキシリレンジアミン、パラキシリレンジアミン、1,3-プロパンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ドデカメチレンジアミン、4,4'-ジアミノヘプタメチレンジアミン、1,4-ジアミノシクロヘキサン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、イソホロンジアミン、テトラヒドロジシクロペンタジエニレンジアミン、ヘキサヒドロ-4,7-メタノインダニレンジメチレンジアミン、トリシクロ[6.2.1.02,7]-ウンデシレンジメチルジアミン、4,4'-メチレンビス(シクロヘキシルアミン)等の脂肪族または脂環式ジアミン;1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン等のシロキサン含有ジアミン;ポリエーテルジアミン;ポリオキシアルキレンジアミンを挙げることができる。
 重合体(A)に前記構造単位(b2)が含まれる場合、構造単位(b1)と構造単位(b2)との含有モル比(構造単位(b1)/構造単位(b2))は、99/1~50/50が好ましく、90/10~50/50がより好ましい。各構造単位の含有割合は、13C-NMRにより測定することができる。構造単位(b1)と構造単位(b2)との含有モル比が前記範囲であれば、構造単位(b1)を用いることによる前述した効果が得られやすい。なお、モノマー混合物中の各モノマーの含有モル比が前記範囲にある重合体は、該各モノマー由来の構造単位の含有モル比が前記範囲にある重合体であるといえる。
 (末端構造)
 本組成物に用いる重合体(A)は、重合体末端にフェノール性水酸基を有することが好ましい。通常、重合体末端にフェノールを導入する方法としては、末端変性剤として、フェノール性水酸基を有する末端変性剤を用いることで達成される。前記末端変性剤として、例えば、2-アミノフェノール、3-アミノフェノール、4-アミノフェノールが挙げられる。これらは、重合体(A)中の酸無水物末端と、末端変性剤中のアミンとが反応して、該重合体末端を酸無水物から変性する。
 本発明においては、モノマーとして前述したようなフェノール性水酸基を有するジアミンを用いる場合、末端変性剤を用いずに、重合体末端にフェノール性水酸基を有する重合体を合成することもできる。
 末端変性剤を用いる場合、構造単位(a)を与える酸無水物、構造単位(b)を与えるジアミン、および末端変性剤の総モル量を100とした場合の末端変性剤のモル比率(モル%)(末端変性剤×100/(酸無水物+ジアミン+末端変性剤))は、好ましくは1~20モル%、より好ましくは5~15モル%である。
 (重合体(A)の特性)
 重合体(A)中の、構造単位(a)と構造単位(b)との含有モル比(構造単位(a)/構造単位(b))に対して、60/40~40/60が好ましく、55/45~45/55がより好ましい。各構造単位の含有割合は、13C-NMRにより測定することができる。なお、モノマー混合物中の各モノマーの含有モル比が前記範囲にある重合体は、該各モノマー由来の構造単位の含有モル比が前記範囲にある重合体であるといえる。
 重合体(A)について、ゲルパーミエーションクロマトグラフィ(GPC)により測定したポリスチレン換算重量平均分子量(以下「Mw」とも言う。)は、好ましくは、2,000~800,000程度である。この重合体(A)を感光性樹脂組成物に用いる場合、好ましくは2,000~100,000程度であり、より好ましくは2,000~70,000程度であり、さらに好ましくは3,000~50,000程度である。この重合体(A)を感光性樹脂組成物に用いる場合、Mwが2,000未満であると、絶縁膜として十分な機械的特性が得られなくなる傾向にある。一方、Mwが100,000超であると、この重合体(A)を用いて得られる感光性樹脂組成物の、溶剤や現像液に対する露光部の溶解性が乏しくなる傾向にある。
 また、重合体(A)により得られる樹脂膜は、伸び性、PCT耐性、i線透過性に優れる。このため、重合体(A)を用いた本組成物を硬化させてなるパターン化樹脂膜は、伸び性、PCT耐性、およびフォトリソグラフィー性に優れると考えられる。
 重合体(A)は1種で、または2種以上を併用して用いることができる。
 本組成物の固形分100質量%中における重合体(A)の含有割合の下限値は、通常20質量%、好ましくは40質量%、より好ましくは60質量%であり;上限値は、通常99質量%、好ましくは95質量%である。なお、前記固形分とは、本組成物に含まれ得る、後述する溶媒(D)以外の全成分をいう。
 重合体(A)は、ポリイミドおよびポリイミド前駆体からなる群より選ばれる少なくとも1種の構造を有する。前記ポリイミド前駆体には、ポリアミック酸およびポリアミック酸エステルが含まれる。重合体(A)の有する構造は、1H-NMR等により確認することができる。
 (重合体(A)の製造方法)
 重合体(A)は、例えば、前記式(1)で示される酸無水物、ジアミン(例えば、フェノール性水酸基を有するジアミン)、ならびに必要に応じて、前記以外の酸無水物、ジアミン、および末端変性剤を用い、重合溶剤中で反応させてポリアミック酸を合成し、さらにイミド化反応を行うことによりポリイミドを合成することで得ることができる。末端変性剤は、導入部位(主鎖末端または側鎖末端)に応じてポリアミック酸合成前、ポリアミック酸合成時、またはイミド化反応後に反応させることができる。このとき、途中合成されるポリアミック酸は、前述したポリイミド前駆体構造を有する重合体(A)とすることができる。また、ポリアミック酸を公知の方法に従いエステル化して得られるポリアミック酸エステルも、同様に前述したポリイミド前駆体構造を有する重合体(A)とすることができる。
 このとき、ポリイミドを得るためのポリアミック酸の合成手順は、例えば、以下の二種類の方法が適用可能であり、いずれの方法で合成してもよい。すなわち、(i)酸無水物を重合溶剤に溶解させた後、ジアミンを反応させる方法、(ii)ジアミンを重合溶剤に溶解させた後、酸無水物を反応させる方法である。
 重合溶剤としては、重合体(A)の合成時における原料および生成物を溶解させることができるものが選択される。重合溶剤としては、N-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、およびγ―ブチロラクトンからなる群より選ばれる少なくとも1種を用いることが好ましい。これらの化合物は、重合溶剤として単独で使用することができ、2種以上を混合して用いることも可能である。
 前記重合溶剤以外に、必要に応じて、その他の溶剤を組み合わせて使用することができる。その他の溶剤としては、例えば、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル等のジエチレングリコールジアルキルエーテル;エチレングリコールモノメチルエーテルアセテート等のエチレングリコールモノアルキルエーテルアセテート;ジエチレングリコールモノメチルエーテルアセテート等のジエチレングリコールモノアルキルエーテルアセテート;プロピレングリコールモノメチルエーテルアセテート等のプロピレングリコールモノアルキルエーテルアセテート;メチルエチルケトン、シクロヘキサノン等のケトン類;メタノール、エタノール、プロパノール等のアルコール類;ジグライム、トリグライム等のエーテル溶剤;トルエン、キシレン等の芳香族炭化水素類を挙げることができる。
 ポリイミド構造を有する重合体(A)を得るためのイミド化反応は、加熱イミド化反応と化学イミド化反応等の公知の方法の適用が可能である。加熱イミド化反応によって重合体(A)を合成する場合、好ましくは、ポリアミック酸の合成溶液を120~210℃、1~16時間加熱することにより行う。なお、必要に応じて、トルエン、キシレン等の共沸溶剤を使用して系内の水を除去しながら反応を行ってもよい。
 <化合物(B)>
 本組成物は、(B)ナフトキノンジアジド化合物を含有する。
 化合物(B)は、光酸発生剤として働き、光照射を含む処理によって酸を発生する化合物である。本組成物から形成される樹脂膜に対する露光処理によって、化合物(B)に基づき露光部に酸が発生し、この酸の作用に基づき露光部のアルカリ性現像液への溶解性が変化する。
 化合物(B)は、光照射およびアルカリ性現像液を用いた現像を含む処理によってカルボン酸を発生する。化合物(B)を含有する組成物から得られる樹脂膜は、アルカリ性現像液に対して難溶な膜である。したがって、化合物(B)を用いることで、ポジ型のパターンを形成することができる。
 化合物(B)は、例えば、フェノール性水酸基を1つ以上有する化合物と、1,2-ナフトキノンジアジド-4-スルホン酸または1,2-ナフトキノンジアジド-5-スルホン酸とのエステル化合物である。フェノール性水酸基を1つ以上有する化合物の具体例としては、例えば、特開2014-186300号公報の段落[0065]~[0070]に記載された化合物が挙げられ、これらは本明細書に記載されているものとする。
 化合物(B)は1種で、または2種以上を併用して用いることができる。
 本組成物において、化合物(B)の含有量は、重合体(A)100質量部に対して、通常は5~50質量部、好ましくは10~40質量部、より好ましくは15~35質量部である。化合物(B)の含有量が前記下限値以上であると、未露光部の残膜率が向上し、パターンマスクに忠実な像が得られやすい。化合物(B)の含有量が前記上限値以下であると、パターン形状に優れた樹脂膜が得られやすく、製膜時の発泡も防止できる傾向にある。
 <架橋剤(C)>
 本組成物は、樹脂膜の硬化性を向上させるため、また、硬化膜の薬品耐性とクラック耐性との両立のため、架橋剤(C)を含有する。架橋剤(C)は、重合体(A)と反応する、または架橋剤同士で反応する架橋成分(硬化成分)として作用する。架橋剤(C)は1種で、または2種以上を併用して用いることができる。
 本組成物は、架橋剤(C)として、(C1)メチロール基またはアルコキシメチル基を有する架橋性化合物を含有する。本組成物に用いる架橋性化合物(C1)は、架橋性基が、メチロール基またはアルコキシメチル基のみで構成されており、その他の架橋性基、例えば、エポキシ基(オキシラン環)を含有した架橋性化合物は含まれない。架橋剤(C1)は1種で、または2種以上を併用して用いることができる。
 前記メチロール基またはアルコキシメチル基とは、-CH2ORで表される基である。
前記式中、Rは、水素原子、炭素数1~10のアルキル基または炭素数2~10のアシル基であり、好ましくは水素原子または炭素数1~6のアルキル基である。前記アルキル基としては、メチル基、エチル基、プロピル基、ブチル基等が挙げられる。前記アシル基としては、アセチル基等が挙げられる。ここで、-CH2ORで表される基は、酸によりメチレン基が活性化され、重合体(A)のフェノール性水酸基やそのオルト位との反応性が高く、架橋反応が進行し易いと考えられる。
 架橋性化合物(C1)としては、例えば、メチロール基含有フェノール化合物、アルキルメチロール基含有フェノール化合物およびアシロキシメチル基含有フェノール化合物が挙げられ、具体的には、下記に示す化合物が好ましい。
Figure JPOXMLDOC01-appb-C000013
 また、前記化合物以外の架橋性化合物(C1)としては、例えば、ポリメチロール化メラミン、ポリメチロール化グリコールウリル、ポリメチロール化グアナミン、ポリメチロール化ウレア等の窒素化合物;前記窒素化合物中の活性メチロール基(N原子に結合したCH2OH基)の全部または一部がアルキルエーテル化またはアシロキシ化された化合物が挙げられる。ここで、アルキルエーテルを構成するアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基が挙げられ、これらは互いに同一であってもよいし、異なっていてもよい。また、アルキルエーテル化またはアシロキシ化されていない活性メチロール基は、一分子内で自己縮合することができ、または、二分子間で縮合して、その結果、オリゴマー成分を形成することができる。
 前記架橋性化合物(C1)としては、例えば、特開平6-180501号公報、特開2006-178059号公報、および特開2012-226297号公報に記載の架橋剤が挙げられる。具体的には、ポリメチロール化メラミン、ヘキサメトキシメチルメラミン、ヘキサエトキシメチルメラミン、ヘキサプロポキシメチルメラミン、ヘキサブトキシメチルメラミン等のメラミン系架橋剤;ポリメチロール化グリコールウリル、テトラメトキシメチルグリコールウリル、テトラブトキシメチルグリコールウリル等のグリコールウリル系架橋剤;3,9-ビス[2-(3,5-ジアミノ-2,4,6-トリアザフェニル)エチル]2,4,8,10-テトラオキソスピロ[5.5]ウンデカン、3,9-ビス[2-(3,5-ジアミノ-2,4,6-トリアザフェニル)プロピル]2,4,8,10-テトラオキソスピロ[5.5]ウンデカン等のグアナミンをメチロール化した化合物;および当該化合物中の活性メチロール基の全部または一部をアルキルエーテル化またはアシロキシ化した化合物等のグアナミン系架橋剤が挙げられる。これらの中でも、メラミン系架橋剤およびグアナミン系架橋剤が好ましい。
 前記架橋性化合物(C1)として、具体的には、下記に示す化合物が好ましい。
Figure JPOXMLDOC01-appb-C000014
 また、本組成物は、架橋剤(C)として、架橋性化合物(C1)に加え、さらにエポキシ系化合物(C2)を含んでもよい。本発明において、エポキシ系化合物(C2)は、架橋性基としてエポキシ基(オキシラン環)が含まれる化合物であり、メチロール基またはアルコキシメチル基を含んでいる化合物であっても、エポキシ基を含んでいればエポキシ系化合物(C2)に該当する。すなわち、エポキシ系化合物(C2)は架橋性化合物(C1)とは異なる。架橋剤(C2)は1種で、または2種以上を併用して用いてもよい。
 エポキシ系化合物(C2)としては、例えば、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトール-フェノール共縮ノボラック型エポキシ樹脂、ナフトール-クレゾール共縮ノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリスフェノール型エポキシ樹脂、テトラフェノール型エポキシ樹脂、フェノール-キシリレン型エポキシ樹脂、ナフトール-キシリレン型エポキシ樹脂、フェノール-ジシクロペンタジエン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、レゾルシン型エポキシ樹脂、ハイドロキノン型エポキシ樹脂、カテコール型エポキシ樹脂、ジヒドロキシナフタレン型エポキシ樹脂、脂環式エポキシ樹脂、脂肪族エポキシ樹脂が挙げられる。
 エポキシ系化合物(C2)としては、脂環式エポキシ樹脂や脂肪族エポキシ樹脂が溶剤溶解性の点で好ましく、そのようなエポキシ系化合物(C2)としては、具体的には、ペンタエリスリトールグリシジルエーテル(市販品例;ナガセケムテック(株)製、商品名:デナコールEX411)、トリメチロールプロパンポリグリシジルエーテル(市販品例;ナガセケムテックス(株)製、商品名:デナコールEX321、321L)、グリセロールポリグリシジルエーテル(市販品例;ナガセケムテックス(株)製、商品名:デナコールEX313、EX314)、ネオペンチルグリコールジグリシジルエーテル(市販品例;ナガセケムテックス(株)製、商品名:デナコールEX211)、エチレン/ポリエチレングリコールジグリシジルエーテル(市販品例;ナガセケムテックス(株)製、商品名:デナコールEX810、850)、プロピレン/ポリプロピレングリコールジグリシジルエーテル(ナガセケムテックス(株)製、商品名:デナコールEX911、941、920)、1,6-ヘキサンジオールジグリシジルエーテル(市販品例;ナガセケムテックス(株)製、商品名:デナコールEX212)、ソルビトールポリグリシジルエーテル(市販品例;ナガセケムテック(株)製、商品名:デナコールEX611、EX612、EX614、EX614B、EX610U)、プロピレングリコールジグリシジルエーテル(市販品例;共栄社(株)製、商品名:エポライト70P)、トリメチロールプロパントリグリシジルエーテル(市販品例;共栄社(株)製、商品名:エポライト100MF)が挙げられる。
 さらに、架橋剤(C)として、本発明の目的および特性を損なわない範囲で、架橋性化合物(C1)およびエポキシ系化合物(C2)以外の他の架橋剤(C3)を用いてもよい。他の架橋剤(C3)としては、例えば、オキセタン環含有化合物、オキサゾリン環含有化合物、イソシアネート基含有化合物(ブロック化されたものを含む。)、マレイミド基含有化合物、シアネートエステル基含有化合物が挙げられる。架橋剤(C3)は1種で、または2種以上を併用して用いてもよい。
 本組成物において、架橋剤(C)の含有量は、重合体(A)100質量部に対して、通常は1~60質量部、好ましくは3~50質量部、より好ましくは5~40質量部である。架橋剤(C)の含有量が前記範囲にあると、引張伸びやPCT耐性に優れた硬化膜が形成される。また、組成物の硬化性に優れる。
 架橋剤(C)として、架橋性化合物(C1)に加え、さらにエポキシ系化合物(C2)を用いる場合、架橋剤(C)100質量%中、50質量%未満であることが好ましい。エポキシ系化合物(C2)を用いると、耐薬品性の向上する傾向にある。
 <溶媒(D)>
 本組成物は、溶媒(D)を含有する。溶媒(D)を用いることで、本組成物の取扱い性を向上させたり、粘度や保存安定性を調節したりすることができる。
 溶媒(D)は、重合体(A)、化合物(B)および架橋剤(C)等の各成分を溶解または分散可能な有機溶媒であれば特に限定されない。溶媒(D)としては、例えば、ケトン溶媒、アルコール溶媒、エーテル溶媒、エステル溶媒、アミド溶媒、炭化水素溶媒、ラクトン溶媒が挙げられる。溶媒(D)としては、アミド溶媒、およびラクトン溶媒からなる群より選ばれる少なくとも1種を含むことが、溶解性に優れるため好ましい。
 アミド溶媒としては、例えば、N-メチル-2-ピロリドン(NMP)、ジメチルイミダゾリジノン(DMI)等の環状アミド溶媒が挙げられ、ラクトン溶媒としては、例えば、γ―ブチロラクトン(GBL)等の環状ラクトン溶媒が挙げられる。
 溶媒(D)は1種で、または2種以上を併用して用いることができる。
 本組成物における溶媒(D)の含有量は、当該組成物における固形分濃度が、通常、10~50質量%となる量である。
 <その他の成分>
 本組成物は、前述した各成分の他、本発明の目的および特性を損なわない範囲で、その他の成分を含有することができる。その他の成分としては、重合体(A)以外の重合体、低分子フェノール化合物、シランカップリング剤、防錆剤、密着助剤、架橋微粒子、レベリング剤、増感剤、無機フィラー、およびクエンチャー等が挙げられる。
 <感光性樹脂組成物の製造方法>
 本組成物は、本組成物を構成する各成分を、公知の方法で均一に混合することにより製造できる。また、異物を取り除くために、前記各成分を均一に混合した後、得られた混合物をフィルター等で濾過することができる。
 <感光性樹脂組成物の特性>
 本組成物を硬化させてなるパターン化樹脂膜は、引張伸び、およびPCT耐性に優れる。このような特性を得るためには、用いる重合体のi線透過率、引張伸び、及びPCT耐性が優れていることが好ましく、重合体(A)はこの観点から好適である。さらに、用いる重合体(A)に、フェノール性水酸基等の親水性のある極性の高い官能基を、重合体の繰り返し構造単位中または重合体末端に導入することで、現像液としてアルカリ性化合物を含有する水溶液を用いる場合、現像液に対する溶解性を適宜調整することが容易となる他、架橋剤(C)との反応による硬化性を調節することが可能となる。
 [パターンを有する樹脂膜]
 本発明の一態様に係るパターンを有する樹脂膜(パターン化樹脂膜)は、前述した本組成物を硬化させてなる。具体的には、後述する製造方法で得られ、該パターン化樹脂膜は、半導体回路基板が有する絶縁膜(例:表面保護膜、層間絶縁膜、平坦化膜)として好適に用いることができる。
 [パターンを有する樹脂膜の製造方法]
 前記パターン化樹脂膜は、基板上に、本組成物の塗膜を形成する工程(1)と、前記塗膜を選択的に露光する工程(2)と、アルカリ現像液により前記露光後の塗膜を現像する工程(3)とを有する方法で製造することができる。
 <工程(1)>
 工程(1)では、通常、最終的に得られるパターン化樹脂膜の厚さが例えば0.1~100μmとなるように、本組成物を基板上に塗布する。前記組成物塗布後の基板をオーブンやホットプレートを用いて、通常、50~140℃で10~360秒間加熱する。このようにして基板上に本組成物からなる塗膜を形成する。
 基板としては、例えば、シリコンウエハ、化合物半導体ウエハ、金属薄膜付きウエハ、ガラス基板、石英基板、セラミックス基板、アルミ基板、およびこれらの基板の表面に半導体チップを有する基板が挙げられる。塗布方法としては、例えば、ディッピング法、スプレー法、バーコート法、ロールコート法、スピンコート法、カーテンコート法、グラビア印刷法、シルクスクリーン法、インクジェット法が挙げられる。
 <工程(2)>
 工程(2)では、例えばコンタクトアライナー、ステッパーまたはスキャナーを用いて、前記塗膜に対して選択的に露光を行う。「選択的に」とは、具体的には、所定のマスクパターンが形成されたフォトマスクを介して、という意味である。
 露光光としては、紫外線、可視光線などが挙げられ、通常、波長200~500nmの光(例:i線(365nm))を用いる。露光による照射量は、本組成物中の各成分の種類、配合割合および塗膜の厚さなどによって異なるが、通常100~1500mJ/cm2である。
 <工程(3)>
 工程(3)では、アルカリ現像液により前記樹脂膜を現像して、露光部を溶解・除去することにより、基板上に所望のパターンを形成する。現像方法としては、シャワー現像法、スプレー現像法、浸漬現像法、パドル現像法等が挙げられる。現像条件は、例えば、5~40℃で1~10分間程度である。なお、アルカリ現像液で樹脂膜を現像した後は、水で洗浄し、乾燥することができる。
 アルカリ現像液としては、例えば、水酸化ナトリウム、水酸化カリウム、アンモニア水、水酸化テトラメチルアンモニウム、コリン等のアルカリ性化合物を、1~10質量%濃度となるように水に溶解させたアルカリ性水溶液が挙げられる。前記アルカリ水溶液には、例えば、メタノール、エタノール等の水溶性の有機溶剤および界面活性剤などを適量添加することができる。
 パターン化樹脂膜におけるパターンの形状としては、凹凸構造を有する形状であれば特に限定されないが、例えば、ライン・アンド・スペースパターン、ドットパターン、ホールパターン、格子パターンが挙げられる。
 <工程(4)>
 本発明の一態様に係るパターン化樹脂膜の製造方法は、工程(3)後、絶縁膜としての特性を充分に発現させるため、必要に応じて、加熱処理(ポストベーク)により前記パターン化樹脂膜を充分に硬化させる工程(4)を有することができる。硬化条件は特に限定されないが、パターン化樹脂膜の用途に応じて、例えば100~350℃の温度で30分間~10時間程度加熱する。
 [半導体回路基板]
 本組成物を用いることにより、前記パターン化樹脂膜を含む半導体回路基板を製造することができる。前記半導体回路基板は、前述した本組成物から形成されたパターン化樹脂膜、好ましくは表面保護膜、層間絶縁膜および平坦化膜等のパターン化絶縁膜を有することから、高信頼性の回路基板として有用である。
 以下、実施例に基づいて本発明をより具体的に説明するが、本発明はこれら実施例に何ら限定されるものではない。以下の実施例等の記載において、特に言及しない限り、「部」は「質量部」の意味で用いる。
 <重合体の合成>
 下記合成例で得られた重合体の重量平均分子量(Mw)については、下記条件下でゲルパーミエーションクロマトグラフィー(GPC)法にて測定した。
・カラム:製品名「TSKgelα-M」(東ソー(株)製)
・溶媒:N-メチル-2-ピロリドン(NMP)
・温度:40℃
・検出方法:屈折率法
・標準物質:ポリスチレン
・GPC装置:装置名「HLC-8320-GPC」(東ソー(株)製)
 [合成例1]重合体(A1)の合成
 還流管を備えた100mLの3つ口フラスコに、酸無水物として、6.67mmolのBzDAxx(ENEOS(株)製、下記式(a1-1))、重合溶媒として19.89gのN-メチル-2-ピロリドン(NMP)を入れて、窒素雰囲気下で攪拌し、溶解させた。ここに、ジアミンとして、5.00mmolの2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパンと1.67mmolの1,3-ビス(4-アミノフェノキシ)プロパンを加え、60℃で1時間攪拌後、さらに180℃で4時間攪拌した。室温に冷却後、反応溶液を500mLの蒸留水に投入し、白色の固形物を得た。この固形物を濾別し、蒸留水で3回洗浄した後、70℃で48時間真空乾燥し、重合体(A1)を得た。得られた重合体(A1)を1H-NMR等で解析したところ、イミド化率が100%であることが判った。重合体(A1)の重量平均分子量(Mw)は、601,900であった。
Figure JPOXMLDOC01-appb-C000015
 [合成例2]重合体(A2)の合成
 合成例1において、用いるジアミンを5.00mmolの2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパンと1.67mmolのED-900(ハンツマン社製、下記式(b2-2))とし、重合溶媒を24.16gのNMPとしたこと以外は、合成例1と同様の操作で、重合体(A2)を得た。得られた重合体(A2)を1H-NMR等で解析したところ、イミド化率が100%であることが判った。重合体(A2)の重量平均分子量(Mw)は、637,700であった。
Figure JPOXMLDOC01-appb-C000016
 [合成例3]重合体(A3)の合成
 合成例1において、用いる酸無水物を6.67mmolのPPHT(日本精化(株)製、下記式(a1-2))とし、重合溶媒を21.54gのNMPとしたこと以外は、合成例1と同様の操作で、重合体(A3)を得た。得られた重合体(A3)を1H-NMR等で解析したところ、イミド化率が100%であることが判った。重合体(A3)の重量平均分子量(Mw)は、634,900であった。
Figure JPOXMLDOC01-appb-C000017
 [合成例4]重合体(A4)の合成
 合成例3において、用いるジアミンを4.00mmolの2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパンと2.67mmolの1,3-ビス(4-アミノフェノキシ)プロパンとし、重合溶媒を21.11gのNMPとしたこと以外は、合成例3と同様の操作で、重合体(A4)を得た。得られた重合体(A4)を1H-NMR等で解析したところ、イミド化率が100%であることが判った。重合体(A4)の重量平均分子量(Mw)は、657,500であった。
 [合成例5]重合体(A5)の合成
 還流管を備えた100mLの3つ口フラスコに、酸無水物として、7.41mmolのBzDAxx、重合溶媒として25.37gのNMPを入れて、窒素雰囲気下で攪拌し、溶解させた。ここに、ジアミンとして、5.00mmolの2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパンと1.67mmolのED-900、末端変性剤として1.48mmolの3-アミノフェノールを加え、60℃で1時間攪拌後、さらに180℃で4時間攪拌した。室温に冷却後、反応溶液を500mLの蒸留水に投入し、白色の固形物を得た。この固形物を濾別し、蒸留水で3回洗浄した後、70℃で48時間真空乾燥し、重合体(A5)を得た。得られた重合体(A5)を1H-NMR等で解析したところ、イミド化率が100%であることが判った。重合体(A5)の重量平均分子量(Mw)は、29,200であった。
 [合成例6]重合体(A6)の合成
 合成例5において、用いる酸無水物を9.26mmolのPPHTとし、ジアミンを5.00mmolの2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパンと3.33mmolの1,3-ビス(4-アミノフェノキシ)プロパンとし、末端変性剤として1.85mmolの3-アミノフェノールとし、重合溶媒を28.12gのNMPとしたこと以外は、合成例5と同様の操作で、重合体(A6)を得た。得られた重合体(A6)を1H-NMR等で解析したところ、イミド化率が100%であることが判った。重合体(A6)の重量平均分子量(Mw)は、24,700であった。
 [合成例7]重合体(A7)の合成
 還流管を備えた100mLの3つ口フラスコに、酸無水物である7.41mmolのBzDAxx、10.00gのメタノール、0.5mLのピリジンを入れて、窒素雰囲気下で、5時間還流させて攪拌した。室温に冷却後、ナスフラスコに移し、エバポレーターでメタノールを留去し、BzDAxxのハーフメチルエステルを得た。次に、100mLの3つ口フラスコAに、得られたBzDAxxのハーフメチルエステル全量を20gのNMPとともに入れ、窒素雰囲気下で攪拌、溶解させ、アイスバスで冷却した。15.56mmolの塩化チオニルを加えた後、アイスバスを外して、50℃で1時間攪拌した。そして、もう一つの100mLの3つ口フラスコBに、ジアミンとして、5.00mmolの2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパンと1.67mmolの1,3-ビス(4-アミノフェノキシ)プロパン、末端変性剤として1.48mmolの3-アミノフェノールを、15.00gのNMP、0.5gのピリジンとともに加え、窒素雰囲気下で攪拌、溶解させ、アイスバスで冷却した。室温まで冷却したフラスコAの内容物をテフロン(登録商標)チューブと窒素により、フラスコBに移送した後、アイスバスを外して、室温で3時間攪拌した。反応溶液を500mLの蒸留水に投入し、白色の固形物を得た。この固形物を濾別し、蒸留水で3回洗浄した後、70℃で48時間真空乾燥し、重合体(A7)を得た。得られた重合体(A7)を1H-NMR等で解析したところ、メチルエステル化率が100%であることが判った。重合体(A7)の重量平均分子量(Mw)は、27,800であった。
 [合成例8]重合体(A8)の合成
 合成例6において、用いる重合溶媒を28.12gの1,3-ジメチル-2-イミダゾリジノン(DMI)としたこと以外は、合成例6と同様の操作で、重合体(A8)を得た。得られた重合体(A8)を1H-NMR等で解析したところ、イミド化率が100%であることが判った。重合体(A8)の重量平均分子量(Mw)は、24,000であった。
 [合成例9]重合体(A9)の合成
 コック付きの連結管および還流管を備えた100mLの3つ口フラスコに、酸無水物として、9.26mmolのPPHT、重合溶媒として28.12gのγーブチロラクトン(GBL)を入れて、窒素雰囲気下で攪拌し、懸濁させた。ここに、ジアミンとして、5.00mmolの2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパンと3.33mmolの1,3-ビス(4-アミノフェノキシ)プロパン、末端変性剤として1.85mmolの3-アミノフェノールを加え、90℃で1時間攪拌した。
次に、イミド化触媒としてピリジンを14.06g加え、115℃で2時間、さらにピリジンを系外に除去しながら180℃で2時間攪拌した。室温に冷却後、反応溶液を500mLの蒸留水に投入し、白色の固形物を得た。この固形物を濾別し、蒸留水で3回洗浄した後、70℃で48時間真空乾燥し、重合体(A9)を得た。得られた重合体(A9)を1H-NMR等で解析したところ、イミド化率が100%であることが判った。重量平均分子量(Mw)は23,900であった。
 [合成例10]重合体(A10)の合成
 合成例6において、用いる酸無水物を6.95mmolのPPHTと2.31mmolの4,4'-オキシジフタル酸無水物としたこと以外は、合成例6と同様の操作で、重合体(A10)を得た。得られた重合体(A10)を1H-NMR等で解析したところ、イミド化率が100%であることが判った。重合体(A10)の重量平均分子量(Mw)は、25,100であった。
 [合成例11]重合体(A11)の合成
 合成例6において、用いる酸無水物を9.26mmolのPPHTと、用いるジアミンを5.00mmolの2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、2.50mmolの1,3-ビス(4-アミノフェノキシ)プロパン、及び0.83mmolの1,3-ビス(3-アミノプロピル)テトラメチルジシロキサンとしたこと以外は、合成例6と同様の操作で、重合体(A11)を得た。得られた重合体(A11)を1H-NMR等で解析したところ、イミド化率が100%であることが判った。重合体(A11)の重量平均分子量(Mw)は、23,200であった。
 [比較合成例1]重合体(RA1)の合成
 還流管を備えた100mLの3つ口フラスコに、酸無水物として12.00mmolの4,4'-オキシジフタル酸無水物、重合溶媒として32.47gのNMPを入れて、窒素雰囲気下で攪拌し、溶解させた。ここに、ジアミンとして、12.00mmolの2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパンを加え、60℃で1時間攪拌後、さらに180℃で4時間攪拌した。室温に冷却後、反応溶液を700mLの蒸留水に投入し、白色の固形物を得た。この固形物を濾別し、蒸留水で3回洗浄した後、70℃で48時間真空乾燥し、重合体(RA1)を得た。得られた重合体(RA1)を1H-NMR等で解析したところ、イミド化率が100%であることが判った。重合体(RA1)の重量平均分子量(Mw)は、871,400であった。
 [比較合成例2]重合体(RA2)の合成
 比較合成例1において、用いる酸無水物を15.00mmolの4,4'-オキシジフタル酸無水物とし、ジアミンを11.25mmolの2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパンと3.75mmolの1,3-ビス(4-アミノフェノキシ)プロパンとし、重合溶媒を38.97gのNMPとしたこと以外は、比較合成例1と同様の操作で、重合体(RA2)を得た。得られた重合体(RA2)を1H-NMR等で解析したところ、イミド化率が100%であることが判った。重合体(RA2)の重量平均分子量(Mw)は、969,700であった。
 [比較合成例3]重合体(RA3)の合成
 比較合成例2において、用いる酸無水物を15.00mmolの4,4'-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物とし、重合溶媒を47.01gのNMPとしたこと以外は、比較合成例2と同様の操作で、重合体(RA3)を得た。得られた重合体(RA3)を1H-NMR等で解析したところ、イミド化率が100%であることが判った。重合体(RA3)の重量平均分子量(Mw)は、755,900であった。
 [比較合成例4]重合体(RA4)の合成
 比較合成例2において、用いる酸無水物を15.00mmolの3,3',4,4'-ビフェニルテトラカルボン酸二無水物とし、重合溶媒を38.01gのNMPとしたこと以外は、比較合成例2と同様の操作で、重合体(RA4)を得た。得られた重合体(RA4)を1H-NMR等で解析したところ、イミド化率が100%であることが判った。重合体(RA4)の重量平均分子量(Mw)は、855,100であった。
 [比較合成例5]重合体(RA5)の合成
 比較合成例2において、用いる酸無水物を15.00mmolの1,2,3,4-ブタンテトラカルボン酸二無水物とし、重合溶媒を32.24gのNMPとしたこと以外は、比較合成例2と同様の操作で、重合体(RA5)を得た。得られた重合体(RA5)を1H-NMR等で解析したところ、イミド化率が100%であることが判った。重合体(RA5)の重量平均分子量(Mw)は、589,100であった。
 [比較合成例6]重合体(RA6)の合成
 比較合成例2において、用いる酸無水物を15.00mmolの1,2,3,4-シクロブタンテトラカルボン酸二無水物とし、重合溶媒を32.12gのNMPとしたこと以外は、比較合成例2と同様の操作で、重合体(RA6)を得た。得られた重合体(RA6)を1H-NMR等で解析したところ、イミド化率が100%であることが判った。重合体(RA6)の重量平均分子量(Mw)は、634,800であった。
 [比較合成例7]重合体(RA7)の合成
 比較合成例2において、用いる酸無水物を15.00mmolの1,2,4,5-シクロヘキサンテトラカルボン酸二無水物とし、重合溶媒を33.81gのNMPとしたこと以外は、比較合成例2と同様の操作で、重合体(RA7)を得た。得られた重合体(RA7)を1H-NMR等で解析したところ、イミド化率が100%であることが判った。重合体(RA7)の重量平均分子量(Mw)は、845,300であった。
 [比較合成例8]重合体(RA8)の合成
 比較合成例2において、用いる酸無水物を15.00mmolのジシクロヘキシル-3,4,3',4'-テトラカルボン酸二無水物とし、重合溶媒を38.74gのNMPとしたこと以外は、比較合成例2と同様の操作で、重合体(RA8)を得た。得られた重合体(RA8)を1H-NMR等で解析したところ、イミド化率が100%であることが判った。重合体(RA8)の重量平均分子量(Mw)は、672,600であった。
 [比較合成例9]重合体(RA9)の合成
 合成例6において、用いる酸無水物を9.26mmolの4,4'-オキシジフタル酸無水物としたこと以外は、合成例6と同様の操作で、重合体(RA9)を得た。得られた重合体(RA9)を1H-NMR等で解析したところ、イミド化率が100%であることが判った。重合体(RA9)の重量平均分子量(Mw)は、24,000であった。
 得られた重合体について、下記評価を行った。
 ≪引張伸び≫
 離型材付き基板上に、合成例または比較合成例で得られた重合体の20質量%NMP溶液を塗布し、その後、オーブンを用いて200℃で1時間加熱(ただし、重合体(A7)は、300℃で1時間加熱)乾燥し、膜厚20μmの塗膜を作製した。
 離型材付き基板から、ポストベークでの加熱後の塗膜を剥離し、厚さ20μmの樹脂フィルムを得た。得られた樹脂フィルムを縦5cm×横0.5cmの短冊状に切断して、引張試験片を作製した。引張試験片の引張破断伸び(%)を引張圧縮試験機(製品名「AGS-500NX」、(株)島津製作所製)によって測定した。測定条件は、チャック距離=2.5cm、引っ張り速度=5mm/分、測定温度=23℃である。5回の測定値の平均値を「伸び(重合体)」として、下記の基準で評価した。
〇:伸びが50%以上
×:伸びが50%未満もしくは測定不能
 ≪PCT耐性≫
 前記で作製した引張試験片を、130℃/85%RH/96hrの環境に暴露した。暴露後の試験片をNMPに溶解し、前記GPC法による重合体の重量平均分子量(Mw)と同様の測定条件でMwの測定を実施した。重合体合成後のMwを「Mw(初期値)」として、前記PCT試験後の試験片のMwを「Mw(PCT試験後)」とした。
 前記で測定したMw(初期値)とMw(PCT試験後)から「分子量変化」を下記式:「Mw(初期値)-Mw(PCT試験後)」/「Mw(初期値)」×100=分子量変化(%)で算出し、下記の基準で評価した。
〇:分子量変化が30%未満
×:分子量変化が30%以上もしくは測定不能
 ≪i線透過性≫
 ガラス基板上に、合成例または比較合成例で得られた重合体の20質量%NMP溶液を塗布し、その後、オーブンを用いて200℃で1時間加熱(ただし、重合体(A7)は、300℃で1時間加熱)し、膜厚10μmの塗膜を作製した。
 作製した塗膜につき、分光光度計((株)島津製作所製、型式「SolidSpec3700」)を用い、波長365nmにおける透過率を測定し、以下の基準にて評価した。
〇:透過率が80%以上
×:透過率が80%未満もしくは測定不能
 合成例1~11、および比較合成例1~9で使用したモノマーの種類および量、ならびに得られた重合体の各種物性および前記各種評価の結果を、下記表1-1および表1-2に示す。
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
 前記表1-1および表1-2で使用した酸無水物およびジアミンの詳細を下記に示す。
・酸無水物
(a1-1):BzDAxx(ENEOS(株)製)
(a1-2):PPHT(日本精化(株)製)
(a2-1):4,4'-オキシジフタル酸無水物
(a2-2):4,4'-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物
(a2-3):3,3',4,4'-ビフェニルテトラカルボン酸二無水物
(a2-4):1,2,3,4-ブタンテトラカルボン酸二無水物
(a2-5):1,2,3,4-シクロブタンテトラカルボン酸二無水物
(a2-6):1,2,4,5-シクロヘキサンテトラカルボン酸二無水物
(a2-7):ジシクロヘキシル-3,4,3',4'-テトラカルボン酸二無水物
・ジアミン
(b1-1):2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン
(b2-1):1,3-ビス(4-アミノフェノキシ)プロパン
(b2-2):ED-900(ポリエーテルジアミン、ハンツマン社製)
(b2-3):1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン
 <感光性樹脂組成物の製造>
 [実施例1~14および比較例1、2]
 下記表2に示す重合体(重合体(A5)~(A11)、(RA9))、ナフトキンジアジド化合物、架橋剤、およびその他成分を表2に示す量にて、表2に示す溶媒を用いて、表2に示す固形分濃度となるように均一に混合し、表2に示す硬化温度および硬化時間で、実施例1~14および比較例1、2の感光性樹脂組成物を製造した。得られた感光性樹脂組成物について、下記評価を行った。結果を表2に示す。
 ≪露光部溶解性≫
 6インチのシリコンウエハに前記感光性樹脂組成物をスピンコートし、その後、ホットプレートを用いて110℃で5分間加熱乾燥し、膜厚10μmの塗膜を作製した。次いで、アライナー(Suss Microtec(株)製、型式「MA-150」)を用い、高圧水銀灯からの紫外線を、フォトマスクを介して、露光波長g線・h線・i線を用いて、露光量が1000mJ/cm2となるように塗膜に露光した。現像液(2.38wt%濃度の水酸化テトラメチルアンモニウム水溶液)に対しての、露光部の溶解性を観察し、以下の基準にて評価した。
〇:露光部の完全溶解が120秒以内
×:露光部の完全溶解が120秒超過
 ≪引張伸び≫
 離型材付き基板上に前記感光性樹脂組成物を塗布し、その後、オーブンを用いて110℃で5分間加熱し塗膜を作製した。次いで、アライナー(Suss Microtec(株)製、型式「MA-150」)を用い、高圧水銀灯からの紫外線を、波長365nmにおける露光量が500mJ/cm2となるように塗膜の全面に照射した。次いで、オーブンを用いて、窒素雰囲気下、表2に示す加熱条件(硬化温度、硬化時間)で加熱した。
 離型材付き基板から、ポストベークでの加熱後の塗膜を剥離し、厚さ10μmの樹脂フィルムを得た。得られた樹脂フィルムを縦5cm×横0.5cmの短冊状に切断し、引張試験片を作製した。短冊状の樹脂フィルムの引張破断伸び(%)を引張圧縮試験機(製品名「AGS-500NX」、(株)島津製作所製)によって測定した。測定条件は、チャック距離=2.5cm、引っ張り速度=5mm/分、測定温度=23℃である。5回の測定値の平均値を「伸び(組成物)」として、下記の基準で評価した。
◎:伸びが50%以上
〇:伸びが30%以上50%未満
×:伸びが30%未満もしくは測定不能
 ≪PCT耐性≫
 前記で作製した引張試験片に対して、大気下リフロー(最高温度260℃)を3回実施した後、130℃/85%RH/96hrの環境に暴露した。暴露後の試験片の引張伸びを「伸び(組成物)」と同様にして測定し、下記の基準で評価した。
〇:伸びが20%以上
×:伸びが20%未満もしくは測定不能
Figure JPOXMLDOC01-appb-T000020
 前記表2で使用した化合物(B)、架橋性化合物(C1)、エポキシ系化合物(C2)および溶媒(D)の詳細を下記に示す。
・化合物(B)
(B1):4,4'-[1-[4-[1-(4-ヒドロキシフェニル)-1-メチルエチル]フェニル]エチリデン]ビスフェノールと1,2-ナフトキノンジアジド-5-スルホン酸との縮合物(モル比=1.0:2.0)
・架橋性化合物(C1)
(C1-1):HMOM-TPPA(4,4'-[1-[4-[1-[4-ヒドロキシ-3,5-ビス(メトキシメチル)フェニル]-1-メチルエチル]フェニル]エチリデン]ビス[2,6-ビス(メトキシメチル)フェノール]、本州化学工業(株)製)
(C1-2):TMOM-BP(3,3',5,5'-テトラキス(メトキシメチル)-[1,1'-ビフェニル]-4,4'-ジオール、本州化学工業(株)製)
(C1-3):HMOM-TPHAP(4,4',4"-エチリデントリス[2,6-(メトキシメチル)フェノール]、本州化学工業(株)製)
(C1-4):ニカラックMW-100LM(ヘキサメトキシメチル化メラミン、(株)三和ケミカル製)
・エポキシ系化合物(C2)
(C2-1):デナコールEX-321L(トリメチロールプロパンポリグリシジルエーテル、ナガセケムテックス(株)製)
(C2-2):EXA-4850-150(ビスフェノールA型エポキシ樹脂、DIC(株)製)
・溶媒(D)
(D1):N-メチル-2-ピロリドン(NMP)
(D2):1,3-ジメチル-2-イミダゾリジノン(DMI)
(D3):γ-ブチロラクトン(GBL)

Claims (7)

  1. (A)ポリイミドおよびポリイミド前駆体からなる群より選ばれる少なくとも1種である重合体、
    (B)ナフトキノンジアジド化合物、
    (C1)メチロール基またはアルコキシメチル基を有する架橋性化合物、および
    (D)溶媒
    を含有し、
     前記重合体(A)が、酸無水物に由来する構造単位(a)と、ジアミンに由来する構造単位(b)とを含み、
     前記構造単位(a)が、下記式(1)で表される酸無水物に由来する構造単位(a1)を含む、感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    〔前記式(1)中、
     Lは、独立して、単結合、エステル結合、またはアミド結合を表し、
     R1、R2およびR3は、それぞれ独立に、水素原子、または炭素数1~6のアルキル基を表すか、あるいは、同一環内のR1とR2またはR1とR3が互いに結合して形成される炭素数1~4のアルキレン基を表し、
     n1およびn2は、それぞれ独立に、0~3の整数を表し(ただし、同一環内において、n1とn2の少なくとも一方は1以上の整数である。)、
     Y1は、下記式(Y1)または(Y2)で示される構造を表す。
       *-Ar1-*  ・・・(Y1)
       *-Ar2-Y2-Ar2-*  ・・・(Y2)
     前記式(Y1)および(Y2)中、*は前記式(1)中のLへの結合を示し、
     Ar1およびAr2は、それぞれ独立に、無置換の芳香環、または炭素数1~6のアルキル基もしくはアルコキシ基で置換された芳香環から芳香環上の水素原子を2つ除いた基を表し、
     前記式(Y2)中のY2は、単結合、酸素原子、硫黄原子、スルホニル基、カルボニル基、メチレン基、ジメチルメチレン基、およびビス(トリフルオロメチル)メチレン基からなる群より選択される少なくとも一種の基である。〕
  2.  前記重合体(A)が重合体末端にフェノール性水酸基を有する、請求項1に記載の感光性樹脂組成物。
  3.  前記ジアミンに由来する構造単位(b)が、フェノール性水酸基を有するジアミンに由来する構造単位(b1)を含む、請求項1に記載の感光性樹脂組成物。
  4.  さらに(C2)エポキシ系化合物(ただし、前記架橋性化合物(C1)とは異なる。)を含有する、請求項1に記載の感光性樹脂組成物。
  5.  基板上に、請求項1~4のいずれか1項に記載の感光性樹脂組成物の塗膜を形成する工程(1)と、前記塗膜を選択的に露光する工程(2)と、アルカリ現像液により前記露光後の塗膜を現像する工程(3)とを有する、パターンを有する樹脂膜の製造方法。
  6.  請求項1~4のいずれか1項に記載の感光性樹脂組成物を硬化させてなる、パターンを有する樹脂膜。
  7.  請求項6に記載のパターンを有する樹脂膜を含む、半導体回路基板。
PCT/JP2023/014564 2022-06-14 2023-04-10 感光性樹脂組成物、パターンを有する樹脂膜、パターンを有する樹脂膜の製造方法、および半導体回路基板 WO2023243198A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-095999 2022-06-14
JP2022095999 2022-06-14

Publications (1)

Publication Number Publication Date
WO2023243198A1 true WO2023243198A1 (ja) 2023-12-21

Family

ID=89190905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/014564 WO2023243198A1 (ja) 2022-06-14 2023-04-10 感光性樹脂組成物、パターンを有する樹脂膜、パターンを有する樹脂膜の製造方法、および半導体回路基板

Country Status (2)

Country Link
TW (1) TW202348686A (ja)
WO (1) WO2023243198A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008297231A (ja) * 2007-05-30 2008-12-11 Nippon Kayaku Co Ltd ヒドロキシアミド基含有脂環式ポリイミド及びその前駆体、並びにそれらを用いたポジ型感光性樹脂組成物、並びにそれらの硬化物
JP2014074772A (ja) * 2012-10-03 2014-04-24 Jsr Corp 感放射線性重合体組成物、絶縁膜および有機el素子、
JP2016130836A (ja) * 2015-01-13 2016-07-21 太陽ホールディングス株式会社 感光性樹脂組成物、そのドライフィルム及び硬化物、硬化物を含む電子部品又は光学製品、並びに感光性樹脂組成物を含む接着剤
WO2016147490A1 (ja) * 2015-03-16 2016-09-22 太陽ホールディングス株式会社 ポジ型感光性樹脂組成物、ドライフィルム、硬化物およびプリント配線板
JP2017115163A (ja) * 2017-03-30 2017-06-29 Jxtgエネルギー株式会社 重合体、感光性組成物、パターン形成方法及びカラーフィルタ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008297231A (ja) * 2007-05-30 2008-12-11 Nippon Kayaku Co Ltd ヒドロキシアミド基含有脂環式ポリイミド及びその前駆体、並びにそれらを用いたポジ型感光性樹脂組成物、並びにそれらの硬化物
JP2014074772A (ja) * 2012-10-03 2014-04-24 Jsr Corp 感放射線性重合体組成物、絶縁膜および有機el素子、
JP2016130836A (ja) * 2015-01-13 2016-07-21 太陽ホールディングス株式会社 感光性樹脂組成物、そのドライフィルム及び硬化物、硬化物を含む電子部品又は光学製品、並びに感光性樹脂組成物を含む接着剤
WO2016147490A1 (ja) * 2015-03-16 2016-09-22 太陽ホールディングス株式会社 ポジ型感光性樹脂組成物、ドライフィルム、硬化物およびプリント配線板
JP2017115163A (ja) * 2017-03-30 2017-06-29 Jxtgエネルギー株式会社 重合体、感光性組成物、パターン形成方法及びカラーフィルタ

Also Published As

Publication number Publication date
TW202348686A (zh) 2023-12-16

Similar Documents

Publication Publication Date Title
US8232366B2 (en) Transparent, highly heat-resistant polyimide precursor and photosensitive polyimide composition thereof
TWI448512B (zh) 聚亞醯胺及光阻樹脂組成物
KR100969014B1 (ko) 포지티브형 감광성 수지 조성물 및 패턴 형성방법
KR102015098B1 (ko) 폴리이미드수지 및 포지티브형 감광성 수지조성물
TWI402618B (zh) 感光性樹脂組成物
JP2008003581A (ja) 感光性樹脂組成物及びそれを用いた回路基板
JP2010211109A (ja) ポジ型感光性樹脂組成物及びそれを用いた樹脂パターンの製造方法
TWI470353B (zh) A photosensitive resin composition and a hardening film
TWI696893B (zh) 正型感光性樹脂組成物、乾式薄膜、硬化物及印刷配線板
KR101205138B1 (ko) 감광성 수지 및 그의 제조 방법
KR101200140B1 (ko) 포지티브형 감광성 조성물
WO2023243198A1 (ja) 感光性樹脂組成物、パターンを有する樹脂膜、パターンを有する樹脂膜の製造方法、および半導体回路基板
JP7155471B2 (ja) ポジ型感光性組成物、及び、感光性組成物の製造方法
KR101749874B1 (ko) 감광성 수지 조성물, 그의 릴리프 패턴막, 릴리프 패턴막의 제조 방법, 릴리프 패턴막을 포함하는 전자 부품 또는 광학 제품, 및 감광성 수지 조성물을 포함하는 접착제
CN114195688A (zh) 二胺化合物、树脂、感光树脂组合物及固化膜
CN113994257A (zh) 感光性聚酰亚胺树脂组合物
JPH11338143A (ja) ポジ型感光性ポリイミド前駆体樹脂組成物及びこれを用いたレリーフパターンの製造法
JP5068627B2 (ja) 感光性樹脂組成物、感光性樹脂組成物フィルム、およびそれらを用いた樹脂パターン
TWI830255B (zh) 感光性聚醯亞胺樹脂組成物
JP7312000B2 (ja) 感光性樹脂組成物、ドライフィルム、硬化物、および電子部品
JP7167402B2 (ja) ポリイミド樹脂、感光性樹脂組成物、及び、硬化物
WO2024216910A1 (zh) 一种高耐化性正性光敏性树脂组合物及其制备方法和应用
WO2010071100A1 (ja) ポジ型感光性ポリイミド樹脂組成物
WO2023243199A1 (ja) 感光性樹脂組成物、パターンを有する樹脂膜、パターンを有する樹脂膜の製造方法、および半導体回路基板
JPH11109635A (ja) 感光性ポリアミド樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23823502

Country of ref document: EP

Kind code of ref document: A1