WO2023240437A1 - 一种双金属配位卟啉基d-a型共轭聚合物及制备方法与应用 - Google Patents

一种双金属配位卟啉基d-a型共轭聚合物及制备方法与应用 Download PDF

Info

Publication number
WO2023240437A1
WO2023240437A1 PCT/CN2022/098624 CN2022098624W WO2023240437A1 WO 2023240437 A1 WO2023240437 A1 WO 2023240437A1 CN 2022098624 W CN2022098624 W CN 2022098624W WO 2023240437 A1 WO2023240437 A1 WO 2023240437A1
Authority
WO
WIPO (PCT)
Prior art keywords
porphyrin
type conjugated
metal
bimetallic
conjugated polymer
Prior art date
Application number
PCT/CN2022/098624
Other languages
English (en)
French (fr)
Inventor
路建美
李娜君
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Priority to PCT/CN2022/098624 priority Critical patent/WO2023240437A1/zh
Publication of WO2023240437A1 publication Critical patent/WO2023240437A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen

Definitions

  • the invention belongs to the field of polymer functional materials and also relates to the field of photocatalytic oxidative degradation. Specifically, it relates to a bimetallic coordination D-A type conjugated organic polymer based on a porphyrin structure, its preparation method and its use in photocatalytic removal of organic matter in water. Applications in pollutants.
  • photocatalytic technology can effectively convert inexhaustible solar energy into electrical energy and chemical energy, providing an effective solution to problems such as environmental pollution and energy shortages.
  • efficient photocatalytic materials can produce a variety of active species under light conditions to degrade various organic pollutants in water and photooxidize them into non-toxic substances. Therefore, photocatalytic technology has broad application prospects in the treatment of organic pollutants in water bodies.
  • the existing technology is to obtain metal-coordinated porphyrin through solvothermal reaction with 4,7-bis(4-formylphenyl)-2,1,3-benzothiadiazole in an inert atmosphere. Based on the conjugated polymer, it shows the morphology of hollow nanotubes.
  • the catalyst shows good ability to degrade bisphenol A, but in the face of high concentrations of pollutants, the treatment effect needs to be further improved.
  • the purpose of the present invention is to provide a porphyrin-based D-A type conjugated polymer photocatalytic material with bimetallic sites and a preparation method thereof, so as to achieve the purpose of effectively removing organic pollutants in water through photocatalytic reactions.
  • porphyrin has a ⁇ conjugated structure, and the formed conjugated organic polymer has a wide response range to the solar spectrum and has a high utilization rate of solar energy; on the other hand, the D-A type heterostructure
  • the construction of the polymer and the introduction of bimetallic active sites improve the transmission and separation efficiency of carriers inside the polymer.
  • the abundant surface metal sites enhance the contact ability with pollutants and generate more activities with stronger oxidizing properties. species, which enhances the photocatalytic degradation performance of bimetallic polymer photocatalytic materials for organic pollutants.
  • a bimetallic coordination porphyrin-based D-A type conjugated organic polymer and its preparation method is as follows: using metal-coordinated porphyrin and 2,2'-bipyridyl- 5,5'-diformaldehyde is used as raw material to prepare monometallic coordination porphyrin-based D-A conjugated polymer; then the monometallic coordination porphyrin-based D-A conjugated polymer is reacted with acetate to obtain bimetallic coordination Porphyrin-based D-A type conjugated organic polymer.
  • Bimetallic in the present invention means that the conjugated organic polymer contains two different metals, or two identical metals at different positions.
  • 5,5'-dimethyl-2,2'-bipyridine is obtained through bromination reaction, and then further purified by recrystallization.
  • 2,2'-bipyridyl-5,5'-dicarboxaldehyde (Bpy) is obtained through ionization and oxidation reactions.
  • N-bromosuccinimide and hydrobromic acid are selected as the bromination reagent for the bromination reaction, and N-bromosuccinimide is preferred.
  • azobisisobutyronitrile and dibenzoyl peroxide as the initiator, preferably azobisisobutyronitrile; the mole of 5,5'-dimethyl-2,2'-bipyridyl and brominated reagent
  • the ratio is 1:2 ⁇ 2.5, preferably 1:2.2; the solvent is carbon tetrachloride, the reflux temperature is 75 ⁇ 85 ° C, and the reaction time is 10 ⁇ 14 h.
  • dichloromethane and tetrahydrofuran are selected as solvents, with dichloromethane being preferred.
  • hexamethylenetetramine or triethylamine and 5,5'-dibromomethyl-2,2'-bipyridine to form ionic crystals, preferably hexamethylenetetramine;
  • the solvent is dichloromethane , the reflux temperature is 40 ⁇ 55 o C, and the reaction time is 10 ⁇ 14h.
  • acetic acid solution was selected as the solvent, the concentration was 1 ⁇ 2 mol/L, the reaction temperature was 100 ⁇ 110 o C, and the time was 8 ⁇ 12 h.
  • the metal-coordinated porphyrin and 2,2'-bipyridyl-5,5 The molar ratio of '-diformaldehyde is 1:2 ⁇ 4, preferably 1:3; the solvent is a mixed solvent of o-dichlorobenzene/n-butanol, the volume ratio is 1:1; the catalyst is an acetic acid solution of 3 ⁇ 6 mol/L , preferably 6 mol/L; the solvothermal temperature is 100 ⁇ 140 o C, the reaction time is 48 ⁇ 96 h; the molar ratio of acetic acid to 2,2'-bipyridyl-5,5'-dicarboxaldehyde is 1: (10 ⁇ 20).
  • purification is performed routinely after the reaction. For example, Soxhlet extraction is used for purification.
  • phenolic pollutants are selected as target organic pollutants in water; illumination is provided by a xenon lamp cold light source.
  • the expanded ⁇ conjugated structure of the bimetallic coordination porphyrin-based D-A type conjugated polymer organic photocatalytic material disclosed in the present invention enables it to have a wide range of photoresponse (200 ⁇ 800 nm), which is A good visible light photocatalytic material.
  • the bimetallic coordination porphyrin-based conjugated polymer organic photocatalytic material disclosed in the present invention has a D-A type heterostructure, which promotes the separation and transfer of photogenerated carriers through electronic polarization, and significantly improves the photocatalytic activity.
  • the bimetallic coordination porphyrin-based conjugated polymer organic photocatalytic material disclosed in the present invention due to the introduction of bimetallic coordination, the internal charge separation efficiency is improved, and at the same time, more metal active sites are exposed, which enhances the interaction with organic pollutants.
  • the contact of small molecules promotes the photocatalytic reaction.
  • Figure 1 shows the synthesis route of bimetallic coordination porphyrin-based D-A conjugated polymer.
  • Figure 2 shows bimetal or single metal in Example 2 (a), Embodiment 3 (b), Embodiment 4 (c), Embodiment 5 and 6 (d), and Embodiment 7 and 8 (e). Infrared spectrum of metal-coordinated porphyrin-based D-A conjugated polymer.
  • Figure 3 is a diagram showing the effect of the double copper-coordinated porphyrin-based D-A conjugated polymer (CuTAPP-CuBpy) organic photocatalytic material obtained in Example 6 on the degradation of bisphenol A in water.
  • CuTAPP-CuBpy double copper-coordinated porphyrin-based D-A conjugated polymer
  • a bimetallic coordination porphyrin-based DA type conjugated polymer photocatalytic material the preparation method of which is as follows: (1) 5,10,15,20-tetrakis (4-aminophenyl) porphyrin and its metal
  • the metal-coordinated porphyrin was replaced with 5,10,15,20-tetrakis(4-aminophenyl)porphyrin to obtain a metal-free porphyrin-based DA type conjugated organic polymer, which was used as a control.
  • step (2) The details of step (2) are as follows: first, add 5,5'-dimethyl-2,2'-bipyridine, N-bromosuccinimide, azobisisobutyronitrile and carbon tetrachloride into the flask. Then the temperature was raised to 75 ⁇ 85 ° C, and the reaction was refluxed for 10 ⁇ 14 hours. Insoluble impurities were removed by suction filtration, and the organic solvent was removed by rotary evaporation to obtain a white solid powder. After recrystallization and purification, the above-mentioned white solid powder and hexamethylenetetramine are dispersed in methylene chloride, the temperature is raised to 40 ⁇ 55 ° C, and the reflux reaction time is 10 ⁇ 14h.
  • Step (3) is as follows: Add 5,10,15,20-tetrakis (4-aminophenyl) porphyrin or metal-coordinated porphyrin, 2,2'- Bipyridine-5,5'-dicarboxaldehyde, o-dichlorobenzene/n-butanol and acetic acid are used as catalysts, ultrasonic dispersed for 10 to 15 minutes and then degassed for 30 minutes. The reaction tube is placed at 100 to 140 o C for a reduced pressure reaction 48 ⁇ 96 h.
  • the above synthesis route is shown in Figure 1.
  • the raw materials used in the present invention are all existing products or prepared according to conventional methods, and the specific preparation operations and tests are existing technologies.
  • Example 1 In the present invention, 2,2'-bipyridyl-5,5'-dicarboxaldehyde (Bpy) monomer is first synthesized. The specific steps are as follows: First, add 2.76 g (15 mmol) 5 to a 250 mL single-neck flask. ,5'-dimethyl-2,2'-bipyridyl, 5.84 g (33 mmol) N-bromosuccinimide and 150 mL carbon tetrachloride, stir magnetically until completely dissolved.
  • Example 2 Synthesis of porphyrin-based DA type conjugated polymer (H 2 TAPP-Bpy). The specific steps are as follows: Add 33.0 mg (0.05 mmol) 5, 10, 15 to a 10 mL ground Shrek tube in sequence. ,20-Tetrakis(4-aminophenyl)porphyrin, 31.8 mg (0.15 mmol) 2,2'-bipyridyl-5,5'-dicarboxaldehyde, 4 mL o-dichlorobenzene/n-butanol (volume ratio 1 /1) and 0.4 mL 6 mol/L acetic acid solution as catalyst.
  • Example 3 Synthesis of copper porphyrin-based DA type conjugated polymer (CuTAPP-Bpy). The specific steps are as follows: Add 36.0 mg of 5,10,15,20-tetrahydrofuran in sequence to a 10 mL ground Shrek reaction tube. (4-Aminophenyl)-copper porphyrin, 31.8 mg (0.15 mmol) 2,2'-bipyridyl-5,5'-dicarboxaldehyde, 4 mL o-dichlorobenzene/n-butanol (volume ratio 1/1 ) and 0.4 mL 6 mol/L acetic acid solution as catalyst.
  • 4-Aminophenyl)-copper porphyrin 31.8 mg (0.15 mmol) 2,2'-bipyridyl-5,5'-dicarboxaldehyde, 4 mL o-dichlorobenzene/n-butanol (volume ratio 1/1 ) and 0.4
  • Example 4 Synthesis of zinc porphyrin-based DA type conjugated polymer (ZnTAPP-Bpy). The specific steps are as follows: Add 37.0 mg of 5,10,15,20-tetrahydrofuran in sequence to a 10 mL ground Shrek reaction tube. (4-Aminophenyl)-zinc porphyrin, 34.5 mg 2,2'-bipyridyl-5,5'-dicarboxaldehyde, 4 mL o-dichlorobenzene/n-butanol (volume ratio 1/1), and 0.4 mL 6 mol/L acetic acid was used as the catalyst. After ultrasonic dispersion for 15 minutes, it was cooled to 77 K in a liquid nitrogen bath.
  • Example 5 Synthesis of bimetallic-coordinated porphyrin-based DA-type conjugated polymer (CuTAPP-ZnBpy). The specific steps are as follows: Under N 2 protection, add 50 mg of Example 3 in sequence to a 50 mL single-neck flask. CuTAPP-Bpy and 200 mg zinc acetate dihydrate, and then add 20 mL N,N-dimethylformamide, and heat and stir at 80 °C for 24 h under nitrogen protection.
  • Example 6 Synthesis of bimetallic coordination porphyrin-based DA-type conjugated polymer (CuTAPP-CuBpy). The specific steps are as follows: under N 2 protection, add 50 mg of Example 3 in sequence to a 50 mL single-neck flask. CuTAPP-Bpy and 200 mg copper acetate monohydrate, and then add 20 mL N,N-dimethylformamide, and heat and stir at 80 °C for 24 h under nitrogen protection.
  • Example 7 Synthesis of bimetallic-coordinated porphyrin-based DA-type conjugated polymer (ZnTAPP-CuBpy). The specific steps are as follows: under N 2 protection, add 50 mg of Example 4 in sequence to a 50 mL single-neck flask. of ZnTAPP-Bpy and 200 mg copper acetate monohydrate, and then add 20 mL N,N-dimethylformamide to it, and heat and stir at 80 °C for 24 h under nitrogen protection.
  • Example 8 Synthesis of bimetallic coordination porphyrin-based DA type conjugated polymer (ZnTAPP-ZnBpy), the specific steps are as follows: under N 2 protection, add 50 mg of the polymer in Example 4 to a 50 mL single-neck flask. of ZnTAPP-Bpy and 200 mg zinc acetate dihydrate, and then add 20 mL N,N-dimethylformamide to it, and heat and stir at 80 °C for 24 h under nitrogen protection. After the reaction, it was cooled to room temperature, and the precipitate was collected by suction filtration.
  • ZnTAPP-ZnBpy bimetallic coordination porphyrin-based DA type conjugated polymer
  • Example 9 Photocatalytic degradation experiment of bimetallic or monometallic coordinated porphyrin-based D-A type conjugated polymer organic photocatalytic materials on bisphenol A in water: weigh 25 mg of the above Example 2, Example 3, and implementation The bimetallic or monometallic coordination porphyrin-based D-A type conjugated polymer organic photocatalytic material obtained in Example 4, 5, 6, 7 or 8 was placed in 50 mL with a concentration of 50 mg/ L of bisphenol A aqueous solution was first stirred for 2 h in the dark to achieve adsorption-desorption equilibrium. After equilibrium, use a 300 W xenon lamp cold light source to irradiate, start the degradation experiment, and sample 1 mL every 10 minutes.
  • Figure 3 shows the residual bisphenol A concentration and time obtained by photocatalytically degrading bisphenol A in water using the double copper-coordinated porphyrin-based D-A conjugated polymer organic photocatalytic material (CuTAPP-CuBpy) obtained in Example 6.
  • CuTAPP-CuBpy double copper-coordinated porphyrin-based D-A conjugated polymer organic photocatalytic material
  • Example 6 Compared with the photocatalytic effects of other porphyrin-based D-A type conjugated polymer organic photocatalytic materials obtained in Examples 2, 3, 4, 5, 7 and 8, the photocatalytic effects obtained in Example 6 are Organic photocatalytic materials work best. Table 1 shows the removal rate of bisphenol A in aqueous solution using different catalysts using the same experimental method above and after 20 minutes of illumination.
  • the invention discloses a visible light responsive organic photocatalytic material based on a bimetallic coordination DA type conjugated polymer with a porphyrin structure.
  • the DA heterostructure of the bimetallic coordination porphyrin-based DA conjugated polymer and the large number of metal active sites dispersed on the surface can accelerate the intramolecular charge transfer and separation efficiency and improve photocatalysis. activity; at the same time, it promotes the adsorption capacity of small molecules of pollutants, which is conducive to the progress of photocatalytic reactions.
  • the porphyrin-based conjugated organic polymer has an expanded ⁇ conjugated structure, which increases the response range and utilization rate of the photocatalyst prepared based on this material to sunlight, and at the same time is beneficial to the internal stability of the material.
  • Charge transport promotes the separation and transfer of photogenerated electron-hole pairs and improves catalytic activity.
  • the design at the molecular level can further improve the migration and separation efficiency of photogenerated carriers and promote the improvement of photocatalytic activity; at the same time, the active sites can be fully exposed, and small pollutants can be eliminated through ⁇ - ⁇ interactions, hydrogen bonds, etc.
  • the enrichment of molecules promotes the progress of photocatalytic reactions. Therefore, this material plays an important role in photocatalytic degradation of environmental pollutants.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Polymers & Plastics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种双金属配位卟啉基D-A型共轭聚合物及制备方法与应用,首先以金属配位卟啉与2,2'-联吡啶-5,5'-二甲醛为原料,在催化剂下,通过溶剂热法获得单一金属配位的卟啉基D-A型共轭聚合物,接着通过金属醋酸盐后修饰的手段获得双金属配位的卟啉基D-A型共轭有机聚合物,构建了一种具有可见光响应的双金属配位卟啉基D-A型共轭聚合物有机光催化材料,这一设计不仅有利于电荷转移与分离效率,同时还提供了大量的表面金属催化活性位点,提高了对有机污染物小分子的富集能力。在催化性能方面,本发明制备的双铜配位的卟啉基D-A型共轭聚合物有机光催化材料(CuTAPP-CuBpy)表现出对水体中双酚A的有效降解。

Description

一种双金属配位卟啉基D-A型共轭聚合物及制备方法与应用 技术领域
本发明属于聚合物功能材料领域,同时涉及光催化氧化降解领域,具体涉及一种基于卟啉结构的双金属配位D-A型共轭有机聚合物、其制备方法及其在光催化去除水体中有机污染物中的应用。
背景技术
光催化技术作为一种清洁、可持续的先进技术,可以将取之不尽的太阳能有效地转化为电能、化学能,为环境污染及能源短缺等问题提供了有效的解决方法。在环境污染物氧化降解领域中,高效的光催化材料可在光照条件下产生多种活性物种用以降解水中的各种有机污染物,使之光氧化为无毒物质。因此,光催化技术在水体中有机污染物治理方面有着广阔的应用前景。现有技术在惰性气氛中,将金属配位卟啉与4,7-二(4-甲酰基苯基)-2,1,3-苯并噻二唑通过溶剂热反应得到金属配位卟啉基共轭聚合物,呈现出中空纳米管的形貌,该催化剂表现出好的降解双酚A的能力,但是面对高浓度污染物,还需要进一步提升处理效果。
技术问题
本发明的目的在于提供一种具有双金属位点的卟啉基D-A型共轭聚合物光催化材料及其制备方法,通过光催化反应实现水体中有机污染物有效去除的目的。本发明构建的有机光催化材料中,一方面卟啉具有π共轭结构,形成的共轭有机聚合物对太阳光谱响应范围广,对太阳能的利用率高;另一方面,D-A型异质结构的构建以及双金属活性位点的引入使聚合物内部载流子的传输与分离效率提高,同时丰富的表面金属位点增强了对污染物的接触能力,产生更多具有更强氧化性的活性物种,增强了双金属聚合物光催化材料对有机污染物的光催化降解性能。
技术解决方案
为达到上述目的,本发明采用如下具体技术方案:一种双金属配位卟啉基D-A型共轭有机聚合物,其制备方法如下:以金属配位卟啉及2,2’-联吡啶-5,5’-二甲醛为原料制备单金属配位卟啉基D-A型共轭聚合物;再将单金属配位卟啉基D-A型共轭聚合物与醋酸盐反应,得到双金属配位卟啉基D-A型共轭有机聚合物。
本发明首先在惰性气氛中,将金属配位卟啉(M 1TAPP,M 1=Cu、Zn)及2,2’-联吡啶-5,5’-二甲醛(Bpy)通过溶剂热反应聚合得到单一金属配位卟啉基D-A型共轭聚合物(M 1TAPP-Bpy,M 1=Cu、Zn),紧接着通过金属醋酸盐后修饰的手段向联吡啶配体单元中引入第二种金属位点M 2,得到最终的双金属配位卟啉基D-A型共轭聚合物(M 1TAPP-M 2Bpy,M 1=Cu、Zn,M 2=Cu、Zn)。本发明的双金属指共轭有机聚合物中,含有两个不同的金属,或者在不同位置分别含有两个相同的金属。
一种去除水体有机污染物的方法,包括以下步骤,将上述双金属配位卟啉基D-A型共轭聚合物光催化材料(M 1TAPP-M 2Bpy,M 1=Cu、Zn,M 2=Cu、Zn)加入含有有机污染物的水中,在可见光的照射下,实现水中有机污染物的去除。
本发明中,利用5,5’-二甲基-2,2’-联吡啶通过溴化反应得到5,5’-二溴甲基-2,2’-联吡啶,重结晶提纯后再进一步通过离子化、氧化反应得到2,2’-联吡啶-5,5’-二甲醛(Bpy)。优选的,制备2,2’-联吡啶-5,5’-二甲醛时,溴化反应选择N-溴代琥珀酰亚胺、氢溴酸作为溴代试剂,优选N-溴代琥珀酰亚胺;选择偶氮二异丁腈、过氧化二苯甲酰为引发剂,优选偶氮二异丁腈;5,5’-二甲基-2,2’-联吡啶与溴代试剂的摩尔比为1∶2~2.5,优选1∶2.2;溶剂为四氯化碳,回流温度为75~85 oC,反应时间为10~14 h。重结晶纯化过程中选择二氯甲烷、四氢呋喃为溶剂,优选二氯甲烷。离子化过程中选择六亚甲基四胺或者三乙胺与5,5’-二溴甲基-2,2’-联吡啶形成离子晶体,优选六亚甲基四胺;溶剂为二氯甲烷,回流温度为40~55 oC,反应时间为10~14h。氧化过程中选择乙酸溶液为溶剂,浓度1~2 mol/L,反应温度为100~110 oC,时间为8~12 h。
本发明中制备单一金属配位卟啉基D-A型共轭聚合物(M 1TAPP-Bpy,M 1=Cu、Zn)时,金属配位卟啉与2,2’-联吡啶-5,5’-二甲醛的摩尔比为1∶2~4,优选1∶3;溶剂为邻二氯苯/正丁醇混合溶剂,体积比为1∶1;催化剂为3~6 mol/L的乙酸溶液,优选6 mol/L;溶剂热温度为100~140 oC,反应时间为48~96 h;乙酸与2,2’-联吡啶-5,5’-二甲醛的摩尔比为1∶(10~20)。作为常识,反应结束后常规提纯,比如,利用索氏提取进行纯化操作,溶剂分别为二氧六环和丙酮,洗涤时间为12~36 h。
本发明中制备双金属配位卟啉基D-A型共轭聚合物(M 1TAPP-M 2Bpy,M 1 =Cu、Zn,M 2=Cu、Zn)时,选择氮气或者氩气为保护气;选择一水合醋酸铜、二水合醋酸锌提供金属离子,单金属配位卟啉基D-A型共轭聚合物、醋酸盐的质量比为1∶2~6;溶剂选择二氯甲烷或者N,N-二甲基甲酰胺,优选N,N-二甲基甲酰胺;反应温度为80~90 oC,时间为20~26 h。反应完成后利用索氏提取进行纯化操作,溶剂分别为二氯甲烷和丙酮,洗涤时间为12~36 h。
本发明中,选择酚类污染物为水体中目标有机污染物;光照通过氙灯冷光源提供。
有益效果
本发明的优点:1. 本发明公开的双金属配位卟啉基D-A型共轭聚合物有机光催化材料的拓展π共轭结构使其具有广泛的光响应范围(200~800 nm),是一种良好的可见光光催化材料。
2. 本发明公开的双金属配位卟啉基共轭聚合物有机光催化材料具有D-A型异质结构,通过电子极化作用促进光生载流子的分离与转移,显著提升了光催化活性。
3. 本发明公开的双金属配位卟啉基共轭聚合物有机光催化材料,由于双金属配位的引入,内部电荷分离效率提高,同时暴露更多金属活性位点,增进与有机污染物小分子的接触,促进光催化反应的进行。
附图说明
图1为双金属配位卟啉基D-A型共轭聚合物的合成路线。
图2为实施例二(a)、实施例三(b)、实施例四(c)、实施例五和实施例六(d)以及实施例七和实施例八(e)中双金属或者单金属配位卟啉基D-A型共轭聚合物的红外图谱。
图3为实施例六所得双铜配位卟啉基D-A型共轭聚合物(CuTAPP-CuBpy)有机光催化材料降解水体中双酚A的效果图。
本发明的实施方式
本发明中,双金属配位卟啉基D-A型共轭聚合物制备方法如下:首先在惰性气氛中,将金属配位卟啉(M 1TAPP,M 1= Cu、Zn)及2,2’-联吡啶-5,5’-二甲醛(Bpy)通过溶剂热反应聚合得到单一金属配位卟啉基D-A型共轭聚合物(M 1TAPP-Bpy,M 1=Cu、Zn),紧接着通过金属醋酸盐后修饰的手段向联吡啶配体单元中引入第二种金属位点M 2,得到最终的双金属配位卟啉基D-A型共轭聚合物(M 1TAPP-M 2Bpy,M 1=Cu、Zn,M 2=Cu、Zn)。
一种双金属配位卟啉基D-A型共轭聚合物光催化材料,其制备方法如以下步骤:(1)5,10,15,20-四(4-氨基苯基)卟啉及其金属衍生物(M 1TAPP,M 1=H 2、Cu、Zn)的合成参照已公开的专利(CN112111070A)。
(2)首先利用5,5’-二甲基-2,2’-联吡啶通过溴化反应得到5,5’-二溴甲基-2,2’-联吡啶,重结晶提纯后再进一步通过离子化、氧化反应得到2,2’-联吡啶-5,5’-二甲醛(Bpy)。
(3)以金属配位卟啉与2,2’-联吡啶-5,5’-二甲醛为原料,在催化剂下,通过溶剂热法获得单一金属配位的卟啉基D-A型共轭聚合物(M 1TAPP-Bpy,M 1=Cu、Zn),接着通过金属醋酸盐后修饰的手段获得双金属配位的卟啉基D-A型共轭有机聚合物(M 1TAPP-M 2Bpy,M 1=Cu、Zn,M 2=Cu、Zn)。金属配位卟啉替换为5,10,15,20-四(4-氨基苯基)卟啉,得到无金属卟啉基D-A型共轭有机聚合物,作为对照。
步骤(2)具体如下:首先向烧瓶中加入5,5’-二甲基-2,2’-联吡啶、N-溴代琥珀酰亚胺、偶氮二异丁腈以及四氯化碳。然后升温至75~85 oC,回流反应10~14 h。抽滤去除不溶解的杂质,并通过旋转蒸发除去有机溶剂得到白色固体粉末。重结晶纯化后,将上述白色固体粉末以及六亚甲基四胺分散于二氯甲烷中,升温至40~55 oC,回流反应时间为10~14h。通过抽滤获得白色固体粉末,将其溶于1 mol/L乙酸溶液,升温至100~110 oC,反应8~12 h。抽滤获得白色固体粉末在丙酮中结晶,并在真空烘箱60 oC下干燥。
步骤(3)具体如下:向10 mL的磨口史莱克反应管中依次加入5,10,15,20-四(4-氨基苯基)卟啉或者金属配位卟啉、2,2’-联吡啶-5,5’-二甲醛、邻二氯苯/正丁醇以及乙酸作为催化剂,超声分散10~15 min后脱气30 min,反应管置于100~140 oC下减压反应48~96 h。反应完成后自然冷却至室温,过滤收集沉淀物分别用二氧六环以及丙酮索氏提取12~36 h以除去未反应的单体,在真空烘箱中100 oC干燥12 h,获得无金属或者单一金属配位卟啉基共轭聚合物(M 1TAPP-Bpy,M 1=H 2、Cu、Zn)。在N 2保护下,向单口烧瓶中依次加入上述无金属或者单一金属配位卟啉基共轭聚合物以及过量的一水合醋酸铜、二水合醋酸锌,再向其中加入N, N-二甲基甲酰胺,升温至80~90 oC下加热搅拌20~26 h。结束后冷却至室温,抽滤收集反应管底部的沉淀物,分别用二氯甲烷以及丙酮索氏提取12~36 h,获得的最终产物双金属配位的卟啉基D-A型共轭有机聚合物(M 1TAPP-M 2Bpy,M 1=H 2、Cu、Zn,M 2=H 2、Cu、Zn),优选的,M 1=Cu,M 2=Cu。
以上合成路线参见图1。本发明采用的原料都是现有产品或者根据常规方法制备,具体制备操作以及测试为现有技术。
实施例一:本发明中首先合成2,2’-联吡啶-5,5’-二甲醛(Bpy)单体,具体步骤如下:首先,向250 mL单口烧瓶中加入2.76 g(15 mmol)5,5’-二甲基-2,2’-联吡啶、5.84 g(33 mmol)N-溴代琥珀酰亚胺以及150 mL四氯化碳,磁力搅拌至完全溶解。然后,再将150 mg(0.9 mmol)偶氮二异丁腈加入到上述溶液中,在80 °C下回流反应12 h后,通过旋转蒸发仪除去有机溶剂获得粗产物,接着在二氯甲烷中重结晶纯化得到白色固体,即为5, 5’-二溴甲基-2, 2’-联吡啶。
向100mL单口烧瓶中依次加入1.53 g(4.7 mmol)5,5’-二溴甲基-2,2’-联吡啶、2.94 g(21 mmol)六亚甲基四胺以及80 mL二氯甲烷,在空气中回流反应12 h,结束后冷却至室温,通过抽滤收集白色固体粉末。取3.0 g上述白色粉末于40 mL 1 mol/L的乙酸溶液中搅拌至完全溶解,并在空气下回流反应10 h,反应结束后收集白色固体沉淀,并在丙酮溶液中结晶获得白色固体产物,即为2,2’-联吡啶-5,5’-二甲醛(Bpy),将产物置于真空烘箱60 oC干燥。产物红外光谱可以看出,其中1700 cm -1对应分子两端的醛基,1591 cm -1对应的吡啶结构C=N伸缩振动。另外从核磁图谱中可以看出,10.21 ppm对应分子两端醛基的两个质子信号,9.24~9.25、8.07~8.09以及8.44~8.47 ppm的三个双重峰分别对应与联吡啶结构中的六个氢原子,以上结果表明2, 2’-联吡啶-5, 5’-二甲醛(Bpy)的成功合成。
实施例二:卟啉基D-A型共轭聚合物(H 2TAPP-Bpy)的合成,具体步骤如下:向10 mL的磨口史莱克管中依次加入33.0 mg(0.05 mmol)5,10,15,20-四(4-氨基苯基)卟啉、31.8 mg(0.15 mmol)2,2’-联吡啶-5,5’-二甲醛、4 mL邻二氯苯/正丁醇(体积比1/1)以及0.4 mL 6 mol/L乙酸溶液作为催化剂。超声分散15 min后,在液氮浴下冷却至77 K,一次冷冻-抽气-解冻循环后,氮气保护下120 °C反应72 h。结束后自然冷却至室温,通过抽滤收集沉淀物并用丙酮洗涤三次后,分别用二氧六环以及丙酮索氏提取24 h以除去未反应的单体,获得的最终产物H 2TAPP-Bpy,在真空烘箱中100 °C干燥12 h。其红外图谱如图2(a)所示。从中可以看出,聚合后,3200~3400 cm -1处的氨基以及1700 cm -1处的醛基特征峰减弱,同时出现1602 cm -1属于C=N伸缩振动的特征峰,证明卟啉基D-A型共轭聚合物(H 2TAPP-Bpy)的成功合成。
实施例三:铜卟啉基D-A型共轭聚合物(CuTAPP-Bpy)的合成,具体步骤如下:向10 mL的磨口史莱克反应管中依次加入36.0 mg 5,10,15,20-四(4-氨基苯基)-卟啉铜、31.8 mg(0.15 mmol)2,2’-联吡啶-5,5’-二甲醛、4 mL邻二氯苯/正丁醇(体积比1/1)以及0.4 mL 6 mol/L乙酸溶液作为催化剂。超声分散15 min后,在液氮浴下冷却至77 K,一次冷冻-抽气-解冻循环后,氮气保护下120 oC反应72 h。结束后自然冷却至室温,通过抽滤收集沉淀物并用丙酮洗涤三次后,分别用二氧六环以及丙酮索氏提取24 h以除去未反应的单体,获得的最终产物CuTAPP-Bpy,在真空烘箱中100 °C干燥12 h。其红外图谱如图2(b)所示。从中可以看出,999 cm -1处的特征峰对应于铜卟啉基D-A型共轭聚合物(CuTAPP-Bpy)结构中的Cu-N 4
实施例四:锌卟啉基D-A型共轭聚合物(ZnTAPP-Bpy)的合成,具体步骤如下:向10 mL的磨口史莱克反应管中依次加入37.0 mg 5,10,15,20-四(4-氨基苯基)-卟啉锌、34.5 mg 2,2’-联吡啶-5,5’-二甲醛、4 mL邻二氯苯/正丁醇(体积比1/1)以及0.4 mL 6 mol/L乙酸作为催化剂,超声分散15 min后,在液氮浴下冷却至77 K,一次冷冻-抽气-解冻循环后,氮气保护下120 oC反应72 h。结束后自然冷却至室温,过滤收集沉淀物并用丙酮洗涤三次后,分别用二氧六环以及丙酮索氏提取24 h以除去未反应的单体,获得的最终产物,即所述的锌卟啉基聚合物,在真空烘箱中100 oC干燥12 h。其红外图谱如图2(c)所示。从中可以看出,999 cm -1处的特征峰对应于锌卟啉基D-A型共轭聚合物(ZnTAPP-Bpy)结构中的Zn-N 4
实施例五:双金属配位的卟啉基D-A型共轭聚合物(CuTAPP-ZnBpy)的合成,具体步骤如下:在N 2保护下,向50 mL单口烧瓶中依次加入50 mg实施例三中的CuTAPP-Bpy以及200 mg二水合醋酸锌,再向其中加入20 mL N,N-二甲基甲酰胺,氮气保护下80 °C加热搅拌24 h。反应结束后冷却至室温,抽滤收集沉淀物,分别用二氯甲烷以及丙酮索氏提取24 h,获得双金属配位的卟啉基D-A型共轭聚合物(CuTAPP-ZnBpy),在真空烘箱中100 °C干燥12 h,其红外图谱如图2(d)所示。
实施例六:双金属配位的卟啉基D-A型共轭聚合物(CuTAPP-CuBpy)的合成,具体步骤如下:在N 2保护下,向50 mL单口烧瓶中依次加入50 mg实施例三中的CuTAPP-Bpy以及200 mg一水合醋酸铜,再向其中加入20 mL N,N-二甲基甲酰胺,氮气保护下80 °C加热搅拌24 h。反应结束后冷却至室温,抽滤收集沉淀物,分别用二氯甲烷以及丙酮索氏提取24 h,获得双金属配位的卟啉基D-A型共轭聚合物(CuTAPP-CuBpy),在真空烘箱中100 °C干燥12 h。其红外图谱如图1(d)所示。
实施例七:双金属配位的卟啉基D-A型共轭聚合物(ZnTAPP-CuBpy)的合成,具体步骤如下:在N 2保护下,向50 mL单口烧瓶中依次加入50 mg实施例四中的ZnTAPP-Bpy以及200 mg一水合醋酸铜,再向其中加入20 mL N,N-二甲基甲酰胺,氮气保护下80 °C加热搅拌24 h。反应结束后冷却至室温,抽滤收集沉淀物,分别用二氯甲烷以及丙酮索氏提取24 h,获得双金属配位的卟啉基D-A型共轭聚合物(ZnTAPP-CuBpy),在真空烘箱中100 °C干燥12 h。其红外图谱如图1(e)所示。
实施例八:双金属配位的卟啉基D-A型共轭聚合物(ZnTAPP-ZnBpy)的合成,具体步骤如下:在N 2保护下,向50 mL单口烧瓶中依次加入50 mg实施例四中的ZnTAPP-Bpy以及200 mg二水合醋酸锌,再向其中加入20 mL N,N-二甲基甲酰胺,氮气保护下80 °C加热搅拌24 h。反应结束后冷却至室温,抽滤收集沉淀物,分别用二氯甲烷以及丙酮索氏提取24 h,获得双金属配位的卟啉基D-A型共轭聚合物(ZnTAPP-ZnBpy),在真空烘箱中100 °C干燥12 h。其红外图谱如图1(e)所示。
实施例九:双金属或者单金属配位卟啉基D-A型共轭聚合物有机光催化材料对水体中双酚A的光催化降解实验:称取25 mg上述实施例二、实施例三、实施例四、实施例五、实施例六、实施例七或者实施例八中所得双金属或者单金属配位卟啉基D-A型共轭聚合物有机光催化材料,置于50 mL浓度为50 mg/L的双酚A水溶液中,先避光搅拌2 h,以达到吸附-解吸平衡。平衡后,使用300 W氙灯冷光源照射,开始降解实验,每隔10 min取样1 mL,采用高效液相色谱法,参照标准曲线计算得到相应水样中双酚A的浓度。附图3为利用实施例六所得双铜配位的卟啉基D-A型共轭聚合物有机光催化材料(CuTAPP-CuBpy)进行光催化降解水体中双酚A得到的残留双酚A浓度和时间的关系图,从图中可以看出,在加入CuTAPP-CuBpy有机光催化材料且施加光照的条件下,光照20分钟后,水溶液中双酚A的去除率达到99.8 %以上,30分钟去除完全。相较于实施例二、实施例三、实施例四、实施例五、实施例七以及实施例八所得的其他卟啉基D-A型共轭聚合物有机光催化材料光催化效果,实施例六所得有机光催化材料的效果最佳。表1为不同催化剂采用上述同样的实验方法,光照20分钟后,水溶液中双酚A的去除率。
进一步的,将25 mg上述CuTAPP-CuBpy置于50 mL浓度为15 mg/L的双酚A水溶液中,先避光搅拌1 h,发现已经完全去除双酚A,这是至目前为止,用于处理有机污染物的催化剂未曾出现的技术效果。
本发明公开了一种基于卟啉结构的双金属配位D-A型共轭聚合物的可见光响应有机光催化材料。首先在惰性气氛中,将金属配位卟啉(M 1TAPP,M 1=Cu、Zn)及2,2’-联吡啶-5,5’-二甲醛(Bpy)通过溶剂热反应聚合得到单一金属配位卟啉基D-A型共轭聚合物(M 1TAPP-Bpy,M 1=Cu、Zn),紧接着通过金属醋酸盐后修饰的手段向联吡啶配体单元中引入第二种金属位点M 2,得到最终的双金属配位卟啉基D-A型共轭聚合物(M 1TAPP-M 2Bpy,M 1/M 2=Cu、Zn)。利用该材料进行催化反应时,双金属配位卟啉基D-A型共轭聚合物具有的D-A异质结构以及表面分散的大量金属活性位点,可以加速分子内电荷转移与分离效率,提高光催化活性;同时促进对污染物小分子的吸附能力,有利于光催化反应的进行。
综上所述,本发明中,卟啉基共轭有机聚合物具有的拓展π共轭结构,使得基于该材料制备的光催化剂对太阳光的响应范围和利用率增加,同时有利于材料内部的电荷传输,促进光生电子-空穴对的分离与转移,提高催化活性。另外,通过分子层面的设计可以进一步提高光生载流子的迁移与分离效率,促进光催化活性的提升;同时可以充分暴露活性位点,通过π-π相互作用、氢键等达到对污染物小分子的富集作用,促进光催化反应的进行。因此,该材料在光催化降解环境污染物等方面有着重要的作用。

Claims (10)

  1. 一种双金属配位卟啉基D-A型共轭有机聚合物的制备方法,其特征在于,以金属配位卟啉及2,2’-联吡啶-5,5’-二甲醛为原料制备单金属配位卟啉基D-A型共轭聚合物;再将单金属配位卟啉基D-A型共轭聚合物与醋酸盐反应,得到双金属配位卟啉基D-A型共轭有机聚合物。
  2. 根据权利要求1所述双金属配位卟啉基D-A型共轭有机聚合物的制备方法,其特征在于,金属为过渡金属。
  3. 根据权利要求1所述双金属配位卟啉基D-A型共轭有机聚合物的制备方法,其特征在于,利用5,5’-二甲基-2,2’-联吡啶通过溴化反应得到5,5’-二溴甲基-2,2’-联吡啶,再通过离子化、氧化反应得到2,2’-联吡啶-5,5’-二甲醛。
  4. 根据权利要求1所述双金属配位卟啉基D-A型共轭有机聚合物的制备方法,其特征在于,金属配位卟啉与2,2’-联吡啶-5,5’-二甲醛的摩尔比为1∶2~4。
  5. 根据权利要求1所述双金属配位卟啉基D-A型共轭有机聚合物的制备方法,其特征在于,单金属配位卟啉基D-A型共轭聚合物与醋酸盐的反应在保护气中进行,反应的温度为80~90℃,时间为20~26 h。
  6. 根据权利要求1所述双金属配位卟啉基D-A型共轭有机聚合物的制备方法制备的双金属配位卟啉基D-A型共轭有机聚合物。
  7. 权利要求6所述双金属配位卟啉基D-A型共轭有机聚合物在处理有机污染物中的应用。
  8. 一种去除有机污染物的方法,其特征在于,包括以下步骤,将权利要求6所述双金属配位卟啉基D-A型共轭聚合物加入含有有机污染物的体系中,实现有机污染物的去除。
  9. 根据权利要求8所述去除有机污染物的方法,其特征在于,有机污染物为酚类污染物。
  10. 根据权利要求8所述去除有机污染物的方法,其特征在于,光照为可见光照。
PCT/CN2022/098624 2022-06-14 2022-06-14 一种双金属配位卟啉基d-a型共轭聚合物及制备方法与应用 WO2023240437A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/098624 WO2023240437A1 (zh) 2022-06-14 2022-06-14 一种双金属配位卟啉基d-a型共轭聚合物及制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/098624 WO2023240437A1 (zh) 2022-06-14 2022-06-14 一种双金属配位卟啉基d-a型共轭聚合物及制备方法与应用

Publications (1)

Publication Number Publication Date
WO2023240437A1 true WO2023240437A1 (zh) 2023-12-21

Family

ID=89192933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/098624 WO2023240437A1 (zh) 2022-06-14 2022-06-14 一种双金属配位卟啉基d-a型共轭聚合物及制备方法与应用

Country Status (1)

Country Link
WO (1) WO2023240437A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102391175A (zh) * 2011-10-24 2012-03-28 河南省商业科学研究所有限责任公司 2,2'-联吡啶-4,4'-二甲醛的绿色合成方法
CN102417510A (zh) * 2011-09-22 2012-04-18 西北师范大学 希夫碱共轭Zn卟啉及其制备和应用
CN111808282A (zh) * 2020-08-03 2020-10-23 中国地质大学(北京) 低温快速制备二维共价有机框架材料的方法及二维共价有机框架材料
CN112111070A (zh) * 2020-10-20 2020-12-22 苏州大学 一种金属配位卟啉基共轭聚合物及其制备方法与在光催化降解有机污染物中的应用
CN112851896A (zh) * 2021-01-12 2021-05-28 武汉大学 一种钳形配合物桥联的卟啉共轭聚合物、合成方法和应用
CN113504274A (zh) * 2021-07-20 2021-10-15 郑州轻工业大学 一种共价有机骨架材料及其制备方法和应用,适配体传感器及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102417510A (zh) * 2011-09-22 2012-04-18 西北师范大学 希夫碱共轭Zn卟啉及其制备和应用
CN102391175A (zh) * 2011-10-24 2012-03-28 河南省商业科学研究所有限责任公司 2,2'-联吡啶-4,4'-二甲醛的绿色合成方法
CN111808282A (zh) * 2020-08-03 2020-10-23 中国地质大学(北京) 低温快速制备二维共价有机框架材料的方法及二维共价有机框架材料
CN112111070A (zh) * 2020-10-20 2020-12-22 苏州大学 一种金属配位卟啉基共轭聚合物及其制备方法与在光催化降解有机污染物中的应用
CN112851896A (zh) * 2021-01-12 2021-05-28 武汉大学 一种钳形配合物桥联的卟啉共轭聚合物、合成方法和应用
CN113504274A (zh) * 2021-07-20 2021-10-15 郑州轻工业大学 一种共价有机骨架材料及其制备方法和应用,适配体传感器及其制备方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
ALLWOOD JACINDA L., BURRELL ANTHONY K., OFFICER DAVID L., SCOTT SONYA M., WILD KIRSTIE Y., GORDON KEITH C.: "Bipyridine–porphyrin conjugates with a conjugated connection", CHEMICAL COMMUNICATIONS, ROYAL SOCIETY OF CHEMISTRY, UK, no. 9, 1 January 2000 (2000-01-01), UK , pages 747 - 748, XP093118339, ISSN: 1359-7345, DOI: 10.1039/b000364f *
CHEN JIAN; TAO XIAOPING; LI CHUNZHI; MA YINHUA; TAO LIN; ZHENG DAOYUAN; ZHU JUNFA; LI HE; LI RENGUI; YANG QIHUA: "Synthesis of bipyridine-based covalent organic frameworks for visible-light-driven photocatalytic water oxidation", APPLIED CATALYSIS B. ENVIRONMENTAL, ELSEVIER, AMSTERDAM, NL, vol. 262, 11 October 2019 (2019-10-11), AMSTERDAM, NL , XP085914322, ISSN: 0926-3373, DOI: 10.1016/j.apcatb.2019.118271 *
CHENG KAI FAN, DRAIN CHARLES MICHAEL, GROHMANN KLAUS: "Porphyrins Linked Directly to the 5,5‘ Positions of 2,2‘-Bipyridine: A New Supramolecular Building Block and Switch", INORGANIC CHEMISTRY, AMERICAN CHEMICAL SOCIETY, EASTON , US, vol. 42, no. 6, 1 March 2003 (2003-03-01), Easton , US , pages 2075 - 2083, XP093118335, ISSN: 0020-1669, DOI: 10.1021/ic025985v *
HAN JUN, ZHU ZEBIN, LI NAJUN, CHEN DONGYUN, XU QINGFENG, LI HUA, HE JINGHUI, LU JIANMEI: "Metalloporphyrin-based D-A type conjugated organic polymer nanotube for efficient photocatalytic degradation", APPLIED CATALYSIS B. ENVIRONMENTAL, ELSEVIER, AMSTERDAM, NL, vol. 291, 1 August 2021 (2021-08-01), AMSTERDAM, NL , pages 120108, XP093118326, ISSN: 0926-3373, DOI: 10.1016/j.apcatb.2021.120108 *
JOHNSON ERIC M., HAIGES RALF, MARINESCU SMARANDA C.: "Covalent-Organic Frameworks Composed of Rhenium Bipyridine and Metal Porphyrins: Designing Heterobimetallic Frameworks with Two Distinct Metal Sites", APPLIED MATERIALS & INTERFACES, AMERICAN CHEMICAL SOCIETY, US, vol. 10, no. 44, 7 November 2018 (2018-11-07), US , pages 37919 - 37927, XP093118331, ISSN: 1944-8244, DOI: 10.1021/acsami.8b07795 *
ZHANG LIPAN, FENGYING ZHAI, LIANGQI GUO, JING TAN: "The Green Synthesis Process of 2,2′-bipyridine-4,4′-dicarbaldehyde", HENAN SCIENCE., vol. 31, no. 1, 1 January 2013 (2013-01-01), pages 40 - 42, XP093118322, DOI: 10.13537/j.issn.1004-3918.2013.01.006 *
ZOU LEI, SA RONGJIAN, ZHONG HONG, LV HAOWEI, WANG XINCHEN, WANG RUIHU: "Photoelectron Transfer Mediated by the Interfacial Electron Effects for Boosting Visible-Light-Driven CO 2 Reduction", ACS CATALYSIS, AMERICAN CHEMICAL SOCIETY, US, vol. 12, no. 6, 18 March 2022 (2022-03-18), US , pages 3550 - 3557, XP093118308, ISSN: 2155-5435, DOI: 10.1021/acscatal.1c05449 *

Similar Documents

Publication Publication Date Title
US20230132599A1 (en) Porphyrin-based metal coordination conjugated polymer, preparation method therefor, and application thereof in photocatalytic degradation of organic pollutants
CN112939992B (zh) 一种四(4-氨基苯基)卟啉金属配合物的合成方法
CN107805254B (zh) 一种卟啉小分子钙钛矿阴极缓冲层材料及其制备方法与应用
CN113150249B (zh) 一种二炔类共轭微孔聚合物、制备方法及其应用
WO2023240437A1 (zh) 一种双金属配位卟啉基d-a型共轭聚合物及制备方法与应用
CN109762142B (zh) 一种基于光热效应调控二氧化碳吸附的共轭高分子材料
CN115353598B (zh) 一种双金属配位卟啉基d-a型共轭聚合物及制备方法与应用
CN114854034B (zh) 一种钴酞菁和金属卟啉偶联的共价有机框架聚合物材料、制备方法及其应用
CN112934201B (zh) 一种复合废气吸附材料及其制备方法
CN115160634A (zh) 一种阳离子型多孔材料及其制备方法和应用
CN111793196B (zh) 一种基于四-(4-醛基-(1,1-联苯))甲烷的共轭有机微孔聚合物及其制备方法
CN115463687A (zh) 苯并三噻吩基共价有机框架催化剂及其制备方法和应用
CN109942570B (zh) 一种基于吩噻嗪的共轭微孔聚合物、制备方法和高效催化应用
CN117106162B (zh) 一种基于三唑三嗪基共轭微孔聚合物及其应用
CN111790441A (zh) 聚苯胺负载铜铁催化剂材料及其制备方法和应用
CN117105990B (zh) 一种催化制备聚噻吩用催化剂及p3ht材料
CN113072687B (zh) 一种含8-羟基喹啉基团的咔唑多孔聚合物及其制备方法和应用
CN117225384B (zh) 一种高效吸附甲醛和贵金属复合材料及其制备方法和应用
CN114989425B (zh) 一种片层状聚苯胺的光化学制备方法及其应用
CN113354831B (zh) 一类DASA功能化的新型光响应COFs材料及其制备方法和应用
CN114702670B (zh) 一种聚萘二酰亚胺硫酮缩聚物光催化剂及其制备方法和应用
CN113912610B (zh) 一种氢键缔合型无掺杂材料及其制备方法和应用、钙钛矿太阳能电池
CN117777416A (zh) 一种CuTEP-COF聚合物及其制备方法与应用
Lu et al. Triazine-based conjugated polymers with regulation of DA configuration for enhanced photocatalytic activity
CN115403745A (zh) 基于反式二取代的杯[4]吡咯超分子大环多孔有机聚合物、其制备方法及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22946136

Country of ref document: EP

Kind code of ref document: A1