WO2023238906A1 - 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体 - Google Patents
含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体 Download PDFInfo
- Publication number
- WO2023238906A1 WO2023238906A1 PCT/JP2023/021328 JP2023021328W WO2023238906A1 WO 2023238906 A1 WO2023238906 A1 WO 2023238906A1 JP 2023021328 W JP2023021328 W JP 2023021328W WO 2023238906 A1 WO2023238906 A1 WO 2023238906A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- formula
- group
- represented
- fluorine
- compound
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C43/00—Ethers; Compounds having groups, groups or groups
- C07C43/02—Ethers
- C07C43/03—Ethers having all ether-oxygen atoms bound to acyclic carbon atoms
- C07C43/04—Saturated ethers
- C07C43/13—Saturated ethers containing hydroxy or O-metal groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/02—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
- C08G65/32—Polymers modified by chemical after-treatment
- C08G65/329—Polymers modified by chemical after-treatment with organic compounds
- C08G65/331—Polymers modified by chemical after-treatment with organic compounds containing oxygen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M107/00—Lubricating compositions characterised by the base-material being a macromolecular compound
- C10M107/38—Lubricating compositions characterised by the base-material being a macromolecular compound containing halogen
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/62—Record carriers characterised by the selection of the material
- G11B5/72—Protective coatings, e.g. anti-static or antifriction
- G11B5/725—Protective coatings, e.g. anti-static or antifriction containing a lubricant, e.g. organic compounds
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/84—Processes or apparatus specially adapted for manufacturing record carriers
Definitions
- the present invention relates to a fluorine-containing ether compound, a lubricant for a magnetic recording medium, and a magnetic recording medium.
- magnetic recording media which are a type of recording media, are expected to be a receptacle for the increasing amount of information because they can store large amounts of information at low cost.
- a protective layer and a lubricant layer are provided on the magnetic layer (magnetic recording layer) of a magnetic recording medium in order to ensure the durability and reliability of the magnetic recording medium.
- the lubricating layer placed on the outermost surface of a magnetic recording medium is required to have various properties such as long-term stability, chemical substance resistance (preventing contamination with siloxane, etc.), abrasion resistance, and heat resistance. There is.
- Examples of lubricants used in forming the lubricant layer of magnetic recording media include those containing a compound having a polar group such as a hydroxyl group at the end of a fluorine-based polymer having a repeating structure containing -CF 2 -. is proposed.
- Patent Document 1 the molecule contains two perfluoropolyether chains, and a linking group having a secondary hydroxyl group is arranged between the two perfluoropolyether chains.
- a fluorine-containing ether compound is disclosed.
- Patent Document 4 describes a fluorine-containing ether compound that contains two perfluoropolyether chains in the molecule, and a linking group having a primary hydroxyl group and a secondary hydroxyl group is arranged between the two perfluoropolyether chains. Disclosed.
- Patent Document 5 Patent Document 6, and Patent Document 7 have a skeleton in which three perfluoropolyether chains are bonded via a linking group having a secondary hydroxyl group, and a methylene group (-CH 2 - )
- a fluorine-containing ether compound is disclosed in which terminal groups each having a polar group are bonded to each other via a fluorine-containing ether compound.
- Patent Document 8 discloses a method for producing polyol (per)fluoropolyether derivatives useful as lubricants for magnetic media.
- a protected triol having two protected hydroxyl functional groups and one free hydroxyl group is reacted with an activating agent to form an activated protected triol, and a functionalized (per)fluoropolyether derivative is prepared. It is described that a protected polyol (per)fluoropolyether derivative is produced by a nucleophilic substitution reaction with a hydroxyl group located at the terminal of the hydroxyl group.
- Pick-up characteristics and spin-off characteristics are known as indicators of long-term stability of a lubricant layer.
- Pick-up is a phenomenon in which lubricant adheres to a magnetic head as a foreign substance (smear). The pickup affects the flight stability of the magnetic head.
- Spin-off is a phenomenon in which lubricant scatters or evaporates due to centrifugal force and heat generated as the magnetic recording medium rotates. When spin-off occurs, the thickness of the lubricant layer decreases, which deteriorates the chemical substance resistance and wear resistance of the lubricant layer.
- the present invention has been made in view of the above circumstances, and it is possible to form a lubricant layer that is highly effective in suppressing corrosion of magnetic recording media and is less likely to cause pick-up and spin-off even if it is thin, and provides a lubricant for magnetic recording media. It is an object of the present invention to provide a fluorine-containing ether compound that can be suitably used as a material for agents. Another object of the present invention is to provide a lubricant for magnetic recording media containing the fluorine-containing ether compound of the present invention. Another object of the present invention is to provide a magnetic recording medium that has a lubricating layer containing the fluorine-containing ether compound of the present invention, is less susceptible to pickup and spin-off, and has excellent corrosion resistance.
- the present invention relates to the following matters.
- [1] A fluorine-containing ether compound represented by the following formula (1).
- [A] is represented by the following formula (2-1)
- a in formula (2-1) is an integer from 0 to 3.
- [B] is represented by the following formula (2-2).
- b in formula (2-2) is an integer from 0 to 3
- c is an integer from 2 to 5.However, the sum of the values of a and b is 1 to 3.Equation In (1), [A] and [B] may be interchanged.
- [C] is represented by the following formula (3-1), and d in formula (3-1) is an integer from 0 to 2.
- [D] is represented by the following formula (3-2), where e in formula (3-2) is an integer from 0 to 2, and f is an integer from 2 to 5.However, the values of d and e The total of is 1 or 2.
- R 4 is a branched terminal group having 3 to 30 carbon atoms, and the following formula (4) L in formula (4) represents an integer of 0 to 6.
- Y 1 and Y 2 in formula (4) each independently represent an ether oxygen atom having only one primary hydroxyl group.
- Y3 in formula (4) is a hydrocarbon group that has only one primary hydroxyl group and may contain an ether oxygen atom, or a hydrogen atom.
- R1 is R is a terminal group that may be the same as or different from 4 , and is a branched terminal group having 3 to 30 carbon atoms represented by formula (4), or a terminal group that is bonded to [A] or [B].
- Ether is an organic group having 1 to 30 carbon atoms having an oxygen atom, or a hydroxyl group.
- z represents 1 or 2.
- R 2 is a perfluoropolyether chain. Two or three R 2 are Parts or all of them may be the same or different.
- R 3 is a divalent linking group represented by the following formula (5).
- y1 in formula (5) is 1 to is an integer of 3, and y2 is an integer of 1 to 3.
- the dotted line bonded to the oxygen atom on the left side indicates the bond to the methylene group on the R 1 side
- the dotted line bonded to the oxygen atom on the right side indicates the bond with the methylene group on the R 4 side.
- the two R 3s may be the same or different.
- g represents an integer from 1 to 6.
- X 1 and X 2 are represented by formula (7). X 1 and X 2 may be the same or different. good.
- h represents an integer of 0 to 6.
- i and j each independently represent an integer of 1 to 6.
- X 3 and X 4 are hydrogen atoms or ( X3 and X4 may be the same or different.
- k represents an integer of 0 to 6.
- p, q and r each independently represent an integer of 1 to 6.
- X 5 , X 6 and X 7 are hydrogen atoms Or represented by formula (7).
- X 5 , X 6 and X 7 may be different from each other, or may be partially or entirely the same.
- s represents an integer from 2 to 6, and t represents 1 or 2.
- R 5 represents a hydrogen atom, an alkyl group that may have a substituent not containing a hydroxyl group, or a double bond or an organic group having at least one triple bond.However, the alkyl group and the organic group may be linear or branched.
- R 5 in the above formula (8) is an organic group having 6 to 12 carbon atoms having an aromatic hydrocarbon, an organic group having 3 to 10 carbon atoms having an aromatic heterocycle, or an organic group having 2 to 10 carbon atoms.
- R 5 in the formula (8) is a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a 2,2,2-trifluoroethyl group, or a 2,2,3,3,3-pentafluoro group.
- w1 and w6 are average values representing the number of CF 2 and each independently represents 1 to 3. (CF 2 O), (CF 2 CF 2 O), (CF There is no particular restriction on the arrangement order of (CF 2 CF 2 CF 2 O) and (CF 2 CF 2 CF 2 CF 2 O).)
- R 2 in the formula (1) are each independently any one selected from perfluoropolyether chains represented by the following formulas (10-1) to (10-4).
- a magnetic recording medium in which at least a magnetic layer, a protective layer, and a lubricant layer are sequentially provided on a substrate A magnetic recording medium characterized in that the lubricating layer contains the fluorine-containing ether compound according to any one of [1] to [15].
- the lubricating layer has an average thickness of 0.5 nm to 2.0 nm.
- the fluorine-containing ether compound of the present invention is a compound represented by the above formula (1), and is suitable as a material for a lubricant for magnetic recording media.
- the magnetic recording medium lubricant of the present invention contains the fluorine-containing ether compound of the present invention. Therefore, even if the thickness is small, it is possible to form a lubricating layer that is highly effective in suppressing corrosion of the magnetic recording medium, has good adhesion to the protective layer, and can suppress pickup and spin-off.
- the magnetic recording medium of the present invention has a lubricating layer that has good adhesion to the protective layer, can suppress pickup and spin-off, and provides excellent corrosion resistance. Therefore, it has excellent reliability and durability.
- FIG. 1 is a schematic cross-sectional view showing an example of an embodiment of a magnetic recording medium of the present invention.
- the present inventors focused on the relationship between the molecular structure of the fluorine-containing ether compound contained in the lubricating layer and the protective layer, and conducted extensive research as shown below.
- a fluorine-containing material having a polar group such as a hydroxyl group at the end of a chain structure has been used as a material for a magnetic recording medium lubricant (hereinafter sometimes abbreviated as "lubricant") applied to the surface of a protective layer.
- lubricant a magnetic recording medium lubricant
- Ether compounds are used.
- a lubricant layer formed using a conventional lubricant may not have sufficient adhesion to the protective layer and/or a sufficient effect of suppressing corrosion of the magnetic recording medium.
- the inventors of the present invention found that if the adhesion of the lubricating layer to the protective layer is insufficient, pick-up and spin-off are likely to occur.
- the present inventors conducted further studies in order to improve the adhesion of the lubricating layer to the protective layer and the corrosion inhibiting effect of the magnetic recording medium. As a result, it was found that it was necessary to use a fluorine-containing ether compound having a hydroxyl group and capable of providing the functions ⁇ 1> to ⁇ 3> shown below as a lubricant.
- PFPE perfluoropolyether
- the hydroxyl group in the perfluoropolyether (hereinafter sometimes referred to as PFPE)-based compound effectively participates in bonding with the active site on the protective layer.
- the hydroxyl group in the PFPE-based compound participates in the formation of intermolecular hydrogen bonds between the PFPE-based compounds.
- Sufficient hydrophobicity is obtained by including perfluoropolyether chains (PFPE chains), and the PFPE chains are not too far away from the protective layer.
- PFPE chains perfluoropolyether chains
- a specific linking group having a secondary hydroxyl group is bonded to each perfluoropolyether chain via a methylene group (-CH 2 -), and a branched terminal group having a plurality of primary hydroxyl groups is arranged at least at one end.
- PFPE chains perfluoropolyether chains
- a specific linking group having a secondary hydroxyl group is bonded to each perfluoropolyether chain via a methylene group (-CH 2 -)
- a branched terminal group having a plurality of primary hydroxyl groups is arranged at least at one end.
- the fluorine-containing ether compound, magnetic recording medium lubricant, and magnetic recording medium of the present invention will be explained in detail.
- the present invention is not limited only to the embodiments shown below.
- the present invention is not limited to the following examples, and additions, omissions, substitutions, etc. of numbers, amounts, ratios, compositions, types, positions, materials, configurations, etc. are not limited to the following examples. , change is possible.
- [Fluorine-containing ether compound] The fluorine-containing ether compound of this embodiment is represented by the following formula (1).
- [A] is represented by the following formula (2-1)
- a in formula (2-1) is an integer from 0 to 3.
- [B] is represented by the following formula (2-2).
- b in formula (2-2) is an integer from 0 to 3
- c is an integer from 2 to 5.However, the sum of the values of a and b is 1 to 3.Equation In (1), [A] and [B] may be interchanged.
- [C] is represented by the following formula (3-1), and d in formula (3-1) is an integer from 0 to 2.
- [D] is represented by the following formula (3-2), where e in formula (3-2) is an integer from 0 to 2, and f is an integer from 2 to 5.However, the values of d and e The total of is 1 or 2.
- [C] and [D] may be exchanged.
- R 4 is a branched terminal group having 3 to 30 carbon atoms, and the following formula (4) L in formula (4) represents an integer of 0 to 6.
- L in formula (4) represents an integer of 0 to 6.
- Y 1 and Y 2 in formula (4) each independently represent an ether oxygen atom having only one primary hydroxyl group.
- Y3 in formula (4) is a hydrocarbon group that has only one primary hydroxyl group and may contain an ether oxygen atom, or a hydrogen atom.
- R1 is R is a terminal group that may be the same as or different from 4 , and is a branched terminal group having 3 to 30 carbon atoms represented by formula (4), or a terminal group that is bonded to [A] or [B].
- R 3 is a divalent linking group represented by the following formula (5).
- y1 in formula (5) is an integer of 1 to 3
- y2 is an integer from 1 to 3.
- the dotted line bonded to the oxygen atom on the left side indicates the bond to the methylene group on the R 1 side
- the dotted line bonded to the oxygen atom on the right side indicates the bond to the methylene group on the R 1 side.
- the two R 3s may be the same or different.
- Formulas (2-1) and (2-2) are combinations in which a is 1 and b is 0, or a is 0 and b is 1, from the viewpoint of ease of obtaining raw materials and synthesis. Certain combinations are preferred.
- formulas (2-1) and (2-2) have a combination in which a is 2 and b is 0, or a is 1 and b is 1, from the viewpoint of adhesion with the protective layer.
- a combination is preferred.
- the direction in which the two hydroxyl groups of formula (2-1) are arranged is steric with respect to the extending direction of the PFPE chain. are in the same direction, and there is a tendency for the two hydroxyl groups of formula (2-1) to be easily adsorbed onto the protective layer.
- c in formula (2-2) is an integer from 2 to 5.
- b is an integer from 1 to 3
- c is preferably an integer from 2 to 4, most preferably 2. This is because the -[B]-[A]- structure does not contain too many carbon atoms, has even better adhesion to the protective layer, and forms a lubricating layer that can suppress pick-up and spin-off. This is because it becomes a fluorine-containing ether compound that can be produced.
- Formulas (3-1) and (3-2) are combinations in which d is 1 and e is 0, or d is 0 and e is 1, from the viewpoint of ease of obtaining raw materials and synthesis. Certain combinations are preferred.
- formulas (3-1) and (3-2) have a combination in which d is 2 and e is 0, or d is 1 and e is 1, from the viewpoint of adhesion with the protective layer.
- a combination is preferred.
- the direction in which the two hydroxyl groups of formula (3-1) are arranged is steric with respect to the extending direction of the PFPE chain. are in the same direction, and there is a tendency for the two hydroxyl groups of formula (3-1) to be easily adsorbed onto the protective layer.
- f in formula (3-2) is an integer from 2 to 5.
- e is an integer of 1 to 2
- f is preferably an integer of 2 to 3, most preferably 2. This does not contain too many carbon atoms in the -[C]-[D]- structure, and forms a lubricating layer that has even better adhesion to the protective layer and can suppress pick-up and spin-off. This is because it becomes a fluorine-containing ether compound that can be produced.
- R 4 is a branched terminal group having 3 to 30 carbon atoms and represented by formula (4).
- the number of carbon atoms in R 4 is preferably 3 to 20, more preferably 3 to 12.
- the number of carbon atoms in R 4 may be 3 to 5, 5 to 10, 10 to 15, etc.
- the proportion of fluorine atoms in the fluorine-containing ether compound molecule decreases, and the surface free energy of the entire molecule can be prevented from increasing.
- Formula (4) is a branched terminal group containing two or three primary hydroxyl groups and having a carbon atom as a branching point.
- the plurality of primary hydroxyl groups contained in R 4 participate in the formation of intermolecular hydrogen bonds between the fluorine-containing ether compounds.
- L in formula (4) represents an integer from 0 to 6.
- Y 1 and Y 2 are each independently a hydrocarbon group that has only one primary hydroxyl group and may contain an ether oxygen atom.
- the hydrocarbon groups represented by Y 1 and Y 2 may be linear or branched, and preferably do not contain a secondary hydroxyl group or a tertiary hydroxyl group.
- Y 3 is a hydrocarbon group that has only one primary hydroxyl group and may contain an ether oxygen atom, or a hydrogen atom.
- the hydrocarbon group represented by Y 3 may be linear or branched, and preferably does not contain a secondary hydroxyl group or a tertiary hydroxyl group.
- R 4 preferably contains three or more ether bonds (-O-).
- the lubricating layer containing the fluorine-containing ether compound represented by formula (1) has even better adhesion to the protective layer.
- R 4 has a plurality of ether bonds, it is preferable that adjacent ether bonds are bonded to each other via a linking group in which two or more carbon atoms are bonded. In this case, the distance between adjacent ether bonds becomes appropriate, resulting in a fluorine-containing ether compound that is difficult to aggregate.
- Formula (4) representing R 4 is preferably a branched terminal group of any of the following formulas (6-1) to (6-3).
- R 4 is a branched terminal group of any of formulas (6-1) to (6-3)
- the carbon atoms to which the primary hydroxyl groups contained in R 4 are bonded are methine groups and/or Alternatively, it is bonded via a linking group containing a methylene group and an ether bond. Therefore, the distance between the adjacent primary hydroxyl groups of R 4 becomes appropriate, and the plurality of primary hydroxyl groups of R 4 are arranged to easily form hydrogen bonds between molecules of the fluorine-containing ether compounds. ing.
- R 4 is a branched terminal group represented by any of the following formulas (6-1) to (6-3)
- the proportion of fluorine atoms in the fluorine-containing ether compound molecule is increased due to the large molecular weight of R 4 . can be suppressed from increasing the surface free energy of the entire molecule.
- R 4 is more preferably represented by formula (6-1) or (6-2) because it can suppress an increase in the surface free energy of the entire molecule.
- g represents an integer from 1 to 6.
- X 1 and X 2 are represented by formula (7). X 1 and X 2 may be the same or different. good.
- h represents an integer of 0 to 6.
- i and j each independently represent an integer of 1 to 6.
- X 3 and X 4 are hydrogen atoms or ( X3 and X4 may be the same or different.
- k represents an integer of 0 to 6.
- p, q and r each independently represent an integer of 1 to 6.
- X 5 , X 6 and X 7 are hydrogen atoms Or it is represented by formula (7).
- X 5 , X 6 and X 7 may be different from each other, or may be partially or entirely the same.
- s represents an integer from 2 to 6, and t represents 1 or 2.
- g represents an integer from 1 to 6.
- g is preferably an integer of 1 to 4, more preferably 1 or 2, because it facilitates ensuring the proportion of fluorine atoms in the fluorine-containing ether compound molecule.
- the terminal mobility will not become too high due to the large number of carbon atoms in R 4 . Therefore, the fluorine-containing ether compound has even better adhesion to the protective layer and can form a lubricating layer that can suppress pick-up and spin-off, which is preferable.
- X 1 and X 2 are represented by formula (7). X 1 and X 2 may be the same or different.
- h represents an integer from 0 to 6.
- h is preferably an integer of 0 to 4, more preferably an integer of 0 to 2, since it becomes easier to ensure the proportion of fluorine atoms in the fluorine-containing ether compound molecule.
- the terminal mobility will not become too high due to the large number of carbon atoms in R 4 . Therefore, the fluorine-containing ether compound has even better adhesion to the protective layer and can form a lubricating layer that can suppress pick-up and spin-off, which is preferable.
- i and j each independently represent an integer from 1 to 6.
- i and j are each independently preferably an integer of 1 to 4, more preferably 1 or 2, since this facilitates securing the proportion of fluorine atoms in the fluorine-containing ether compound molecule.
- i and j may be the same or different.
- i and j are preferably the same because the fluorine-containing ether compound can be easily produced.
- X 3 and X 4 are represented by a hydrogen atom or formula (7).
- X 3 and X 4 may be the same or different.
- k represents an integer from 0 to 6.
- k is preferably an integer of 0 to 4, more preferably an integer of 0 to 2, since it becomes easier to ensure the proportion of fluorine atoms in the fluorine-containing ether compound molecule.
- p, q and r each independently represent an integer of 1 to 6.
- p, q and r are each independently preferably an integer of 1 to 4, more preferably 1 or 2, since this makes it easier to ensure the proportion of fluorine atoms in the fluorine-containing ether compound molecule.
- p, q and r may be different from each other, or may be partially or entirely the same.
- X 5 , X 6 and X 7 are each a hydrogen atom or represented by formula (7). X 5 , X 6 and X 7 may be different from each other, or a part or all of them may be the same.
- s represents an integer from 2 to 6.
- s is preferably an integer of 2 to 4, more preferably 2 or 3, since this makes it easier to ensure the proportion of fluorine atoms in the fluorine-containing ether compound molecule.
- t represents 1 or 2. When t is 2, s in each [-(CH 2 ) s -O-] may be the same or different. t is preferably 1 because it becomes easier to ensure the proportion of fluorine atoms in the fluorine-containing ether compound molecule.
- s is preferably 3 or more and/or t is 2, and the formula (7) as X 1 in the formula (6-1) It is more preferable that in both (7) and formula (7) as X 2 in formula (6-1), s is 3 or more and/or t is 2.
- the distance from the carbon atom that is the branching point in formula (6-1) to the primary hydroxyl group is not too short and is appropriate, and a fluorine-containing material that can form a lubricating layer that can more effectively suppress pick-up and spin-off. This is because it becomes an ether compound.
- -[C]-[D]-R 4 in formula (1) is preferably one of the structures represented by the following formulas (11-1) to (11-25), The following formulas (11-1) to (11-5), (11-7) to (11-10), (11 -13) to (11-21), (11-24), and (11-25) are more preferred.
- Terminal group represented by R 1 is a terminal group which may be the same as or different from R 4 , and is a branched terminal group having 3 to 30 carbon atoms represented by formula (4).
- [A] or [B] is an organic group having 1 to 30 carbon atoms having an ether oxygen atom at the end, or a hydroxyl group.
- the terminal group represented by R 1 can be appropriately selected depending on the performance required of a lubricant containing a fluorine-containing ether compound.
- R 1 is a terminal group having 3 to 30 carbon atoms represented by formula (4)
- R 1 is a branched terminal group containing two or three primary hydroxyl groups and having a carbon atom as a branching point. becomes. Therefore, the plurality of primary hydroxyl groups contained in R 1 participate in the formation of intermolecular hydrogen bonds between the fluorine-containing ether compounds, and the intermolecular hydrogen bonds between the fluorine-containing ether compounds are further strengthened.
- formula (4) representing R 1 is a branched terminal group of any of the above formulas (6-1) to (6-3). It is preferable.
- g in formula (6-1), h to j in formula (6-2), k, p to r in formula (6-3), and s and t in formula (7) Preferred values are the same as when R 4 is a branched terminal group of any of formulas (6-1) to (6-3).
- -[A]-[B]-R 1 is specifically a terminal group represented by formulas (11-1) to (11-25) above. It is preferable that the structure is
- R 1 when R 1 is a terminal group represented by formula (4), both R 1 and R 4 are branched from any one of formulas (6-1) to (6-3) above. More preferably, it is a type terminal group.
- R 1 and R 4 when R 1 is a terminal group represented by formula (4), it is preferable that R 1 and R 4 are the same, and both R 1 and R 4 are the terminal group represented by formula (6). More preferably, it is a branched terminal group of any one of -1) to (6-3).
- R 1 bonds with [A] or [B] It is an organic group having 1 to 30 carbon atoms having an ether oxygen atom at the end, or a hydroxyl group.
- R 1 is preferably a terminal group represented by the following formula (8).
- R 5 represents a hydrogen atom, an alkyl group that may have a substituent not containing a hydroxyl group, or a double bond or an organic group having at least one triple bond.However, the alkyl group and the organic group may be linear or branched.
- u represents an integer from 2 to 6, and v represents 0 or 1.
- v in formula (8) is 0, it is possible to more effectively suppress the proportion of fluorine atoms in the fluorine-containing ether compound molecule from decreasing and increasing the surface free energy of the entire molecule.
- v is 1, the ether bond contained in formula (8) imparts flexibility to the fluorine-containing ether compound represented by formula (1), making it even more likely to be adsorbed onto the protective layer.
- u is an integer of 2 to 6, the terminal group represented by R 1 is chemically stable and difficult to decompose.
- u is preferably an integer of 2 to 4, more preferably 2 or 3.
- u is 2 or 3 the proportion of fluorine atoms in the fluorine-containing ether compound molecule decreases, and it is possible to suppress an increase in the surface free energy of the entire molecule.
- R 5 in formula (8) is a hydrogen atom, an alkyl group which may have a substituent not containing a hydroxyl group, or an organic group having at least one double bond or triple bond.
- R 5 is a hydrogen atom
- R 5 forms a hydroxyl group together with the oxygen atom in formula (8).
- R 1 represented by formula (8) is an alkoxy group having a hydroxyl group at the terminal.
- R 1 represented by formula (8) is a hydroxyl group.
- R 5 is a hydrogen atom and v in formula (8) is 1
- a preferred specific example of R 1 represented by formula (8) is -O-CH 2 CH 2 -OH (formula ( Examples include 8) in which u is 2) and -O-CH 2 CH 2 CH 2 -OH (u in formula (8) is 3).
- R 5 is a hydrogen atom and v in formula (8) is 0 (that is, when R 1 is a hydroxyl group)
- R 1 is bonded to [A] represented by formula (2-1). or may be bonded to [B] represented by formula (2-2).
- R 1 is bonded to [B]
- R 5 is an alkyl group that may have a substituent that does not contain a hydroxyl group
- substituent include a fluoro group, a cyano group, and an alkoxy group.
- the substituent does not include a substituent containing a hydroxyl group such as a hydroxyalkoxy group.
- the alkyl group which may have a substituent is preferably an alkyl group having 1 to 6 carbon atoms without a substituent, or an alkyl group having 1 to 6 carbon atoms having a substituent.
- the substituent of the alkyl group having 1 to 6 carbon atoms is preferably a fluoro group or a cyano group.
- An alkyl group having 1 to 6 carbon atoms having a substituent is one in which one or more of the hydrogen atoms of the alkyl group is substituted with a substituent, and an alkyl group in which all of the hydrogen atoms of the alkyl group are substituted with a substituent. It may be something like that.
- the alkyl group having 1 to 6 carbon atoms without a substituent and the alkyl group having 1 to 6 carbon atoms having a substituent may be linear or branched. It's okay.
- the alkyl group includes methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, isobutyl group, tert-butyl group, n-pentyl group and structural isomers thereof. , n-hexyl group and its structural isomers.
- alkyl group having 1 to 6 carbon atoms in which one or more hydrogen atoms are substituted with a fluoro group examples include a trifluoromethyl group, a perfluoroethyl group, a perfluoropropyl group, a perfluorobutyl group, and a perfluoropentyl group.
- the alkyl group having 1 to 6 carbon atoms in which one or more of the hydrogen atoms is substituted with a cyano group may have one or more cyano groups. If the number of cyano groups is large, the polarity of the fluorine-containing ether compound becomes too high, so the number of cyano groups is preferably two or less, and most preferably one.
- alkyl group having 1 to 6 carbon atoms in which one or more hydrogen atoms are substituted with a cyano group examples include 2-cyanoethyl group, 3-cyanopropyl group, 4-cyanobutyl group, 5-cyanopentyl group, 6 -cyanohexyl group, 2-cyano-1-methylethyl group, and 2,2'-dicyanoisopropyl group.
- Examples of the organic group having at least one double bond or triple bond include an organic group having 6 to 12 carbon atoms having an aromatic hydrocarbon, an organic group having 3 to 10 carbon atoms having an aromatic heterocycle, and a carbon atom. It is preferably an alkenyl group having 2 to 8 carbon atoms or an alkynyl group having 3 to 8 carbon atoms.
- the organic group having at least one double bond or triple bond may be linear or branched.
- the organic group having at least one double bond or triple bond may have a substituent that does not contain a hydroxyl group.
- Examples of the organic group having 6 to 12 carbon atoms and having an aromatic hydrocarbon include phenyl group, methoxyphenyl group, dimethoxyphenyl group, cyanophenyl group, dicyanophenyl group, fluorinated phenyl group, naphthyl group, and methoxynaphthyl group. , benzyl group, methoxybenzyl group, phenethyl group, methoxyphenethyl group, fluorinated phenethyl group, naphthylmethyl group, and naphthylethyl group.
- the aromatic hydrocarbon has a substituent, the substituent may be bonded to any position.
- organic groups having 3 to 10 carbon atoms having an aromatic heterocycle include pyrrolyl group, pyrazolyl group, methylpyrazolylmethyl group, imidazolyl group, furyl group, furfuryl group, oxazolyl group, isoxazolyl group, thienyl group, and thienylmethyl group.
- alkenyl group having 2 to 8 carbon atoms examples include vinyl group, allyl group, 1-propenyl group, isopropenyl group, 3-butenyl group and its structural isomers, 4-pentenyl group and its structural isomers, 5 Examples include -hexenyl group and its structural isomers, 6-heptenyl group and its structural isomers, and 7-octenyl group and its structural isomers.
- alkynyl group having 3 to 8 carbon atoms 1-propynyl group, propargyl group, 3-butynyl group and its structural isomers, 4-pentynyl group and its structural isomers, 5-hexynyl group and its structural isomers, Examples include 6-heptynyl group and its structural isomers, and 7-octynyl group and its structural isomers.
- R 5 in formula (8) is a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a 2,2,2-trifluoroethyl group, 2, from the viewpoint of ease of acquisition and/or synthesis.
- ,2,3,3,3-pentafluoropropyl group 2,2,2,2,2,2-hexafluoroisopropyl group, 2-cyanoethyl group, 3-cyanopropyl group, 4-cyanobutyl group, phenyl group, Group consisting of methoxyphenyl group, cyanophenyl group, phenethyl group, thienylethyl group, N-methylpyrazolylmethyl group, allyl group, 3-butenyl group, 4-pentenyl group, propargyl group, 3-butynyl group, 4-pentynyl group Preferably it is one group selected from.
- hydrogen atom methyl group, ethyl group, n-propyl group, 2,2,2-trifluoroethyl group, 2,2,3,3,3-pentafluoropropyl group, 3-cyanopropyl group, More preferably, it is one group selected from the group consisting of 4-cyanobutyl group, methoxyphenyl group, cyanophenyl group, N-methylpyrazolylmethyl group, thienylethyl group, propargyl group, allyl group, and 3-butenyl group.
- z represents 1 or 2.
- the number (z+1) of PFPE chains represented by R 2 is 2 or 3, and the PFPE represented by R 2 It has good hydrophobicity compared to compounds with one chain. Therefore, even if the thickness is small, a lubricating layer that is highly effective in suppressing corrosion of the magnetic recording medium can be formed. Further, since z is 1 or 2, the number of R 3 arranged between R 2 is 1 or 2.
- the number of polar groups of -R 2 [-CH 2 -R 3 -CH 2 -R 2 ] z - in formula (1) is appropriate, for example, compared to the case where z is 0. , a lubricating layer with good adhesion to the protective layer can be formed.
- the fluorine-containing ether compound represented by formula (1) can prevent interaction between polar groups within the molecule, compared to, for example, the case where z is 3 or more, and the fluorine-containing ether compound The polar groups it has are unlikely to aggregate with each other.
- R 2 are each independently a perfluoropolyether chain.
- the PFPE chains represented by R 2 cover the surface of the protective layer and provide lubrication to the lubricant layer. This reduces the frictional force between the magnetic head and the protective layer.
- the PFPE chain represented by R 2 is appropriately selected depending on the performance required of a lubricant containing a fluorine-containing ether compound.
- (z+1) R 2 may be the same or different. It is preferable that all (z+1) R 2 's are the same. This is because the coating state of the fluorine-containing ether compound on the protective layer becomes uniform, resulting in a lubricating layer with better adhesion.
- Two or more R 2s out of (z+1) R 2s are the same means that two or more R 2s out of (z+1) R 2s have the same repeating unit structure of the PFPE chain. It means there is.
- the same R 2 also includes those having the same repeating unit structure but different average degrees of polymerization.
- Examples of the PFPE chain represented by R 2 include those made of a perfluoroalkylene oxide polymer or copolymer.
- Examples of the perfluoroalkylene oxide include perfluoromethylene oxide, perfluoroethylene oxide, perfluoro-n-propylene oxide, perfluoroisopropylene oxide, and perfluorobutylene oxide.
- two or three R 2 in formula (1) are each independently a PFPE chain represented by the following formula (9) derived from a perfluoroalkylene oxide polymer or copolymer.
- formula (9) derived from a perfluoroalkylene oxide polymer or copolymer.
- w2, w3, w4, and w5 indicate the average degree of polymerization, and each independently represents 0 to 20.
- w1 and w6 are average values representing the number of CF 2 and each independently represents 1 to 3. (CF 2 O), (CF 2 CF 2 O), (CF There are no particular restrictions on the arrangement order of 2 CF 2 CF 2 O) and (CF 2 CF 2 CF 2 CF 2 O).)
- w2, w3, w4, and w5 represent average degrees of polymerization, each independently representing 0 to 20, preferably 0 to 15, and more preferably 0 to 10.
- w1 and w6 are average values indicating the number of CF 2 and each independently represents 1 to 3.
- w1 and w6 are determined depending on the structure of repeating units arranged at the ends of the chain structure in the PFPE chain represented by formula (9).
- (CF 2 O), (CF 2 CF 2 O), (CF 2 CF 2 CF 2 O), and (CF 2 CF 2 CF 2 O) in formula (9) are repeating units. There is no particular restriction on the arrangement order of the repeating units in formula (9). Further, there is no particular restriction on the number of types of repeating units in formula (9).
- R 2 in formula (1) are each independently selected from PFPE chains represented by the following formulas (10-1) to (10-4).
- PFPE chains represented by the following formulas (10-1) to (10-4) When each of (z+1) R 2 in formula (1) is one selected from PFPE chains represented by formulas (10-1) to (10-4), a lubrication agent having good lubricity can be obtained. A layer is obtained from the fluorine-containing ether compound.
- (z+1) R 2 are each one selected from the PFPE chains represented by formulas (10-1) to (10-4), the oxygen atom relative to the number of carbon atoms in the PFPE chain The ratio of the number (the number of ether bonds (-O-)) is appropriate. Therefore, the fluorine-containing ether compound has appropriate hardness.
- the fluorine-containing ether compound applied on the protective layer is unlikely to aggregate on the protective layer, and a thinner lubricating layer can be formed with a sufficient coverage. Further, since the fluorine-containing ether compound has appropriate flexibility, a lubricating layer with better pick-up characteristics and spin-off characteristics can be formed.
- formula (10-1) there is no particular restriction on the arrangement order of the repeating units (OCF 2 CF 2 ) and (OCF 2 ).
- the number l of (OCF 2 CF 2 ) and the number m of (OCF 2 ) may be the same or different.
- the PFPE chain represented by formula (10-1) may be a polymer of (OCF 2 CF 2 ).
- the PFPE chain represented by formula (10-1) is a random copolymer, a block copolymer, or an alternating copolymer consisting of (OCF 2 CF 2 ) and (OCF 2 ). Good too.
- l indicating the average degree of polymerization is 0.1 to 20
- m is 0 to 20
- n is 0.1 to 15, and o is 0.1 to 10. Therefore, the fluorine-containing ether compound can provide a lubricating layer with good lubricity.
- l and m indicating the average degree of polymerization are 20 or less, n is 15 or less, and o is 10 or less, so the viscosity of the fluorine-containing ether compound is high. It is preferable because it does not become too thick and the lubricant containing it is easy to apply.
- l, m, n, and o which indicate the average degree of polymerization, are preferably from 1 to 10 because the fluorine-containing ether compound easily spreads on the protective layer and provides a lubricating layer with a uniform thickness. , more preferably from 1.5 to 8, and even more preferably from 2 to 7.
- formula (10-4) there is no particular restriction on the arrangement order of the repeating units (CF 2 CF 2 CF 2 O) and (CF 2 CF 2 O).
- the number w8 of (CF 2 CF 2 CF 2 O) and the number w9 of (CF 2 CF 2 O) indicating the average degree of polymerization may be the same or different.
- Formula (10-4) includes a random copolymer, a block copolymer, or an alternating copolymer consisting of monomer units (CF 2 CF 2 CF 2 O) and (CF 2 CF 2 O). It may be.
- w8 and w9 indicating the average degree of polymerization are each independently from 0.1 to 20, preferably from 1 to 15, and more preferably from 1 to 10.
- w7 and w10 in formula (10-4) are average values indicating the number of CF 2 and each independently represents 1 to 2.
- w7 and w10 are determined depending on the structure of the repeating unit arranged at the end of the chain structure in the PFPE chain represented by formula (10-4).
- R 3 (Divalent linking group represented by R 3 )
- one or two R 3 are divalent linking groups represented by formula (5) above.
- the dotted line bonded to the oxygen atom on the left side indicates the bond to the methylene group on the R 1 side
- the dotted line bonded to the oxygen atom on the right side indicates the bond to the methylene group on the R 4 side.
- R 3 is placed between two PFPE chains represented by R 2 .
- z two R 3 are arranged between R 2 on the R 1 side and R 2 in the center, and between R 2 on the R 4 side and R 2 in the middle, respectively.
- R 3 is a divalent linking group having a secondary hydroxyl group. Therefore, R 3 has good adhesion to the protective layer due to the secondary hydroxyl group. Therefore, R 3 suppresses the PFPE chains represented by R 2 located at both ends of R 3 from moving too far away from the protective layer, and creates a lubricating layer and a magnetic head having good hydrophobicity derived from R 2 . Maintain an appropriate distance from. That is, R3 contributes to forming a lubricating layer with a sufficient coverage rate, which is highly effective in suppressing corrosion of the magnetic recording medium.
- y1 is an integer from 1 to 3
- y2 is an integer from 1 to 3. It is preferable that at least one of y1 and y2 is 1. It is preferable that at least one of y1 and y2 is 1 because manufacturing becomes easy. In order to maintain flexibility of the entire linking group, it is more preferable that y1 is 1 and y2 is 1.
- two R 3 's may be the same or different.
- the coating state of the fluorine-containing ether compound on the protective layer becomes more uniform, and a lubricating layer with better adhesion can be formed.
- the resulting fluorine-containing ether compound is easy to produce, which is preferable.
- "Two R 3 are the same” means that the atoms contained in the two R 3 are arranged symmetrically with respect to R 2 located at the center of the chain structure of the molecule.
- the fluorine-containing ether compound represented by formula (1) is such that y1 and y2 in formula (5) in two R 3 are R 2 located at the center of the chain structure. It is preferable to use a fluorine-containing ether compound having a value that is symmetrical to the above. For example, if y1 in formula (5) in R 3 on the R 1 side is 1 and y2 is 2, and y1 in formula (5) in R 3 on the R 4 side is 2, y2 is 1, then 2 The two R3s are the same.
- the fluorine-containing ether compound represented by formula (1) is preferably a compound represented by the following formulas (1A) to (1V) and (2A) to (2V).
- Rf 1 and Rf 2 representing PFPE chains have the following structures, respectively. That is, Rf 1 is a PFPE chain represented by the above formula (10-1), and Rf 2 is a PFPE chain represented by the above formula (10-2).
- l and m in Rf 1 and n in Rf 2 which represent the PFPE chains in formulas (1A) to (1V) and (2A) to (2V), are values that indicate the average degree of polymerization, so they are not necessarily integers. Not necessarily.
- Rf 2 1a in formula (1A) is represented by formula (1AF).
- n1a indicates an average degree of polymerization and represents 0.1 to 15.
- Two Rf in formula (1A) 2 n1a in 1a may be the same or different.
- Rf 2 1b in formula (1B) is represented by formula (1BF).
- n1b indicates the average degree of polymerization and represents 0.1 to 15.
- Two Rf in formula (1B) n1b in 2 1b may be the same or different.
- Rf 1 1c in formula (1C) is represented by formula (1CF).
- Rf 1 1c, l1c and m1c represent the average degree of polymerization, l1c represents 0.1 to 20, and m1c represents 0 to 20.
- (l1c and m1c in the two Rf 1 1c in formula (1C) may be the same or different.
- Rf 1 1d in formula (1D) is represented by formula (1DF).
- Rf 1 1d, l1d and m1d represent the average degree of polymerization, l1d represents 0.1 to 20, and m1d represents 0 to 20.
- (l1d and m1d in the two Rf 1 1d in formula (1D) may be the same or different.)
- Rf 2 1e in formula (1E) is represented by formula (1EF).
- n1e indicates the average degree of polymerization and represents 0.1 to 15.
- Two Rf in formula (1E) 2 n1e in 1e may be the same or different.
- Rf 2 1f in formula (1F) is represented by formula (1FF).
- n1f indicates the average degree of polymerization and represents 0.1 to 15.
- Two Rf in formula (1F) 2 n1f in 1f may be the same or different.
- Rf 2 1g in formula (1G) is represented by formula (1GF).
- n1g indicates the average degree of polymerization and represents 0.1 to 15.
- Two Rf in formula (1G) 2 n1g in 1g may be the same or different.
- Rf 1 1h in formula (1H) is represented by formula (1HF).
- l1h and m1h represent the average degree of polymerization, l1h represents 0.1 to 20, and m1h represents 0 to 20.
- (l1h and m1h in the two Rf 1 1h in formula (1H) may be the same or different.)
- Rf 1 1i in formula (1I) is represented by formula (1IF).
- Rf 1 1i l1i and m1i represent the average degree of polymerization, l1i represents 0.1 to 20, and m1i represents 0 to 20.
- (l1i and m1i in the two Rf 1 1i in formula (1I) may be the same or different.
- Rf 2 1j in formula (1J) is represented by formula (1JF).
- n1j represents an average degree of polymerization and represents 0.1 to 15.
- Two Rf in formula (1J) n1j in 2 1j may be the same or different.
- Rf 1 1k in formula (1K) is represented by formula (1KF).
- Rf 1 1k, l1k and m1k represent the average degree of polymerization, l1k represents 0.1 to 20, and m1k represents 0 to 20.
- (l1k and m1k in the two Rf 1 1k in formula (1K) may be the same or different.
- Rf 2 1l in formula (1L) is represented by formula (1LF).
- n1l indicates the average degree of polymerization and represents 0.1 to 15.
- Two Rf in formula (1L) 2 n1l in 1l may be the same or different.
- Rf 2 1m in formula (1M) is represented by formula (1MF).
- n1m indicates the average degree of polymerization and represents 0.1 to 15.
- Two Rf in formula (1M) 2 n1m in 1m may be the same or different.
- Rf 2 1n in formula (1N) is represented by formula (1NF).
- n1n indicates the average degree of polymerization and represents 0.1 to 15.
- Two Rf in formula (1N) n1n in 2 1n may be the same or different.
- Rf 2 1o in formula (1O) is represented by formula (1OF).
- n1o indicates the average degree of polymerization and represents 0.1 to 15.
- Two Rf in formula (1O) 2 n1o in 1o may be the same or different.
- Rf 2 1p in formula (1P) is represented by formula (1PF).
- n1p indicates an average degree of polymerization and represents 0.1 to 15.
- Two Rf in formula (1P) 2 n1p in 1p may be the same or different.
- Rf 1 1q in formula (1Q) is represented by formula (1QF).
- Rf 1 1q, l1q and m1q represent the average degree of polymerization, l1q represents 0.1 to 20, and m1q represents 0 to 20.
- (l1q and m1q in the two Rf 1 1q in formula (1Q) may be the same or different.
- Rf 1 1r in formula (1R) is represented by formula (1RF).
- Rf 1 1r, l1r and m1r represent the average degree of polymerization, l1r represents 0.1 to 20, and m1r represents 0 to 20.
- (l1r and m1r in the two Rf 1 1r in formula (1R) may be the same or different.)
- Rf 1 1s in formula (1S) is represented by formula (1SF).
- l1s and m1s represent the average degree of polymerization, l1s represents 0.1 to 20, and m1s represents 0 to 20.
- (l1s and m1s in the two Rf 1 1s in formula (1S) may be the same or different.
- Rf 1 it in formula (1T) is represented by formula (1TF).
- l1t and m1t indicate the average degree of polymerization, l1t represents 0.1 to 20, and m1t represents 0 to 20.
- (l1t and m1t in the two Rf 1 it in formula (1T) may be the same or different.)
- Rf 2 1u in formula (1U) is represented by formula (1UF).
- n1u indicates the average degree of polymerization and represents 0.1 to 15.
- Two Rf in formula (1U) 2 n1u in 1u may be the same or different.
- Rf 2 1v in formula (1V) is represented by formula (1VF).
- n1v indicates the average degree of polymerization and represents 0.1 to 15.
- Two Rf in formula (1V) 2 n1v in 1v may be the same or different.
- Rf 2 2a in formula (2A) is represented by formula (2AF).
- n2a indicates the average degree of polymerization and represents 0.1 to 15.
- the three Rf in formula (2A) 2 n2a in 2a may be different, or a part or all of them may be the same.
- Rf 2 2b in formula (2B) is represented by formula (2BF).
- n2b indicates the average degree of polymerization and represents 0.1 to 15.
- the three Rf in formula (2B) n2b in 2 2b may be different from each other, or may be partly or completely the same.
- Rf 1 2c in formula (2C) is represented by formula (2CF).
- Rf 1 2c, l2c and m2c represent the average degree of polymerization, l2c represents 0.1 to 20, and m2c represents 0 to 20.
- (l2c and m2c in the three Rf 1 2c in formula (2C) may be different from each other, or may be partially or entirely the same.
- Rf 1 2d in formula (2D) is represented by formula (2DF).
- Rf 1 2d, l2d and m2d represent the average degree of polymerization, l2d represents 0.1 to 20, and m2d represents 0 to 20.
- (l2d and m2d in the three Rf 1 2d in formula (2D) may be different from each other, or may be partially or entirely the same.)
- Rf 2 2e in formula (2E) is represented by formula (2EF).
- n2e indicates the average degree of polymerization and represents 0.1 to 15.
- the three Rf in formula (2E) n2e in 22e may be different from each other, or may be partly or completely the same.
- Rf 2 2f in formula (2F) is represented by formula (2FF).
- n2f indicates the average degree of polymerization and represents 0.1 to 15.
- the three Rf in formula (2F) n2f in 22f may be different from each other, or may be partly or completely the same.
- Rf 2 2g in formula (2G) is represented by formula (2GF).
- n2g indicates the average degree of polymerization and represents 0.1 to 15.
- the three Rf in formula (2G) n2g in 22g may be different, or may be partly or completely the same.
- Rf 1 2h in formula (2H) is represented by formula (2HF).
- l2h and m2h represent the average degree of polymerization, l2h represents 0.1 to 20, and m2h represents 0 to 20.
- (l2h and m2h in the three Rf 1 2h in formula (2H) may be different from each other, or may be partially or entirely the same.)
- Rf 1 2i in formula (2I) is represented by formula (2IF).
- l2i and m2i represent the average degree of polymerization, l2i represents 0.1 to 20, and m2i represents 0 to 20.
- (l2i and m2i in the three Rf 1 2i in formula (2I) may be different from each other, or may be partially or entirely the same.
- Rf 2 2j in formula (2J) is represented by formula (2JF).
- n2j indicates the average degree of polymerization and represents 0.1 to 15.
- the three Rf in formula (2J) n2j in 2 2j may be different from each other, or may be partly or completely the same.
- Rf 1 2k in formula (2K) is represented by formula (2KF).
- Rf 1 2k l2k and m2k represent the average degree of polymerization, l2k represents 0.1 to 20, and m2k represents 0 to 20.
- (l2k and m2k in the three Rf 1 2k in formula (2K) may be different from each other, or may be partially or entirely the same.
- Rf 2 2l in formula (2L) is represented by formula (2LF).
- n2l indicates the average degree of polymerization and represents 0.1 to 15.
- the three Rf in formula (2L) n2l in 2 2l may be different, or may be partly or completely the same.
- Rf 2 2m in formula (2M) is represented by formula (2MF).
- n2m indicates the average degree of polymerization and represents 0.1 to 15.
- the three Rf in formula (2M) n2m in 22m may be different, or may be partially or completely the same.
- Rf 2 2n in formula (2N) is represented by formula (2NF).
- n2n indicates the average degree of polymerization and represents 0.1 to 15.
- the three Rf in formula (2N) n2n in 22n may be different from each other, or a part or all of them may be the same.
- Rf 2 2o in formula (2O) is represented by formula (2OF).
- n2o indicates the average degree of polymerization and represents 0.1 to 15.
- the three Rf in formula (2O) n2o in 22o may be different, or may be partly or completely the same.
- Rf 2 2p in formula (2P) is represented by formula (2PF).
- n2p indicates the average degree of polymerization and represents 0.1 to 15.
- the three Rf in formula (2P) 2 n2p in 2p may be different from each other, or a part or all of them may be the same.
- Rf 1 2q in formula (2Q) is represented by formula (2QF).
- Rf 1 2q, l2q and m2q represent the average degree of polymerization, l2q represents 0.1 to 20, and m2q represents 0 to 20.
- (l2q and m2q in the three Rf 1 2q in formula (2Q) may be different from each other, or may be partially or entirely the same.
- Rf 1 2r in formula (2R) is represented by formula (2RF).
- Rf 1 2r, l2r and m2r represent the average degree of polymerization, l2r represents 0.1 to 20, and m2r represents 0 to 20.
- (l2r and m2r in the three Rf 1 2r in formula (2R) may be different from each other, or may be partially or entirely the same.)
- Rf 1 2s in formula (2S) is represented by formula (2SF).
- l2s and m2s indicate the average degree of polymerization, l2s represents 0.1 to 20, and m2s represents 0 to 20.
- (l2s and m2s in the three Rf 1 2s in formula (2S) may be different from each other, or may be partially or entirely the same.
- Rf 1 2t in formula (2T) is represented by formula (2TF).
- Rf 1 2t l2t and m2t represent the average degree of polymerization, l2t represents 0.1 to 20, and m2t represents 0 to 20.
- (l2t and m2t in the three Rf 1 2t in formula (2T) may be different from each other, or may be partially or entirely the same.)
- Rf 2 2u in formula (2U) is represented by formula (2UF).
- n2u indicates the average degree of polymerization and represents 0.1 to 15.
- the three Rf in formula (2U) n2u in 22u may be different, or may be partially or completely the same.
- Rf 2 2v in formula (2V) is represented by formula (2VF).
- n2v indicates the average degree of polymerization and represents 0.1 to 15.
- the three Rf in formula (2V) n2v in 22v may be different from each other, or may be partly or completely the same.
- the fluorine-containing ether compound represented by formula (1) is also preferably a compound represented by the following formulas (4A) to (4O) and (5A) to (5O).
- Rf 1 representing a PFPE chain is a PFPE chain represented by the above formula (10-1)
- Rf 2 is a PFPE chain represented by the above formula (10-2).
- l and m in Rf 1 and n in Rf 2 which represent the PFPE chains in formulas (4A) to (4O) and (5A) to (5O), are values that indicate the average degree of polymerization, so they are not necessarily integers. Not necessarily.
- Rf 2 4a in formula (4A) is represented by formula (4AF).
- n4a indicates an average degree of polymerization and represents 0.1 to 15.
- Two Rf in formula (4A) n4a in 2 4a may be the same or different.
- Rf 2 4b in formula (4B) is represented by formula (4BF).
- n4b indicates an average degree of polymerization and represents 0.1 to 15.
- Two Rf in formula (4B) n4b in 2 4b may be the same or different.
- Rf 2 4c in formula (4C) is represented by formula (4CF).
- n4c indicates the average degree of polymerization and represents 0.1 to 15.
- Two Rf in formula (4C) n4c in 24c may be the same or different.
- Rf 2 4d in formula (4D) is represented by formula (4DF).
- n4d indicates the average degree of polymerization and represents 0.1 to 15.
- Two Rf in formula (4D) n4d in 2 4d may be the same or different.
- Rf 2 4e in formula (4E) is represented by formula (4EF).
- n4e indicates the average degree of polymerization and represents 0.1 to 15.
- Two Rf in formula (4E) n4e in 2 4e may be the same or different.
- Rf 2 4f in formula (4F) is represented by formula (4FF).
- n4f indicates the average degree of polymerization and represents 0.1 to 15.
- Two Rf in formula (4F) n4f in 2 4f may be the same or different.
- Rf 2 4g in formula (4G) is represented by formula (4GF).
- n4g indicates the average degree of polymerization and represents 0.1 to 15.
- Two Rf in formula (4G) n4g in 24g may be the same or different.
- Rf 2 4h in formula (4H) is represented by formula (4HF).
- n4h indicates the average degree of polymerization and represents 0.1 to 15.
- Two Rf in formula (4H) n4h in 24h may be the same or different.
- Rf 2 4i in formula (4I) is represented by formula (4IF).
- n4i represents an average degree of polymerization and represents 0.1 to 15.
- Two Rf in formula (4I) n4i in 2 4i may be the same or different.
- Rf 2 4j in formula (4J) is represented by formula (4JF).
- n4j represents an average degree of polymerization and represents 0.1 to 15.
- Two Rf in formula (4J) n4j in 2 4j may be the same or different.
- Rf 2 4k in formula (4K) is represented by formula (4KF).
- Me represents a methyl group.
- n4k represents an average degree of polymerization and represents 0.1 to 15.
- Formula ( n4k in the two Rf 2 4k in 4K) may be the same or different.
- Rf 2 4l in formula (4L) is represented by formula (4LF).
- n4l indicates the average degree of polymerization and represents 0.1 to 15.
- Two Rf in formula (4L) n4l in 2 4l may be the same or different.
- Rf 2 4m in formula (4M) is represented by formula (4MF).
- n4m indicates the average degree of polymerization and represents 0.1 to 15.
- Two Rf in formula (4M) n4m in 24m may be the same or different.
- Rf 2 4n in formula (4N) is represented by formula (4NF).
- n4n indicates the average degree of polymerization and represents 0.1 to 15.
- Two Rf in formula (4N) n4n in 24n may be the same or different.
- Rf 2 4o in formula (4O) is represented by formula (4OF).
- n4o indicates an average degree of polymerization and represents 0.1 to 15.
- Two Rf in formula (4O) n4o in 24o may be the same or different.
- Rf 2 5a in formula (5A) is represented by formula (5AF).
- n5a indicates the average degree of polymerization and represents 0.1 to 15.
- the three Rf in formula (5A) n5a in 2 5a may be different from each other, or a part or all of them may be the same.
- Rf 2 5b in formula (5B) is represented by formula (5BF).
- n5b indicates the average degree of polymerization and represents 0.1 to 15.
- the three Rf in formula (5B) n5b in 2 5b may be different from each other, or may be partly or completely the same.
- Rf 2 5c in formula (5C) is represented by formula (5CF).
- n5c indicates the average degree of polymerization and represents 0.1 to 15.
- the three Rf in formula (5C) n5c in 25c may be different, or may be partly or completely the same.
- Rf 2 5d in formula (5D) is represented by formula (5DF).
- n5d indicates the average degree of polymerization and represents 0.1 to 15.
- the three Rf in formula (5D) n5d in 2 5d may be different, or may be partly or completely the same.
- Rf 2 5e in formula (5E) is represented by formula (5EF).
- n5e indicates the average degree of polymerization and represents 0.1 to 15.
- the three Rf in formula (5E) n5e in 2 5e may be different from each other, or a part or all of them may be the same.
- Rf 2 5f in formula (5F) is represented by formula (5FF).
- n5f indicates the average degree of polymerization and represents 0.1 to 15.
- the three Rf in formula (5F) n5f in 25f may be different, or may be partly or completely the same.
- Rf 2 5g in formula (5G) is represented by formula (5GF).
- n5g indicates the average degree of polymerization and represents 0.1 to 15.
- the three Rf in formula (5G) n5g in 25g may be different, or may be partially or completely the same.
- Rf 2 5h in formula (5H) is represented by formula (5HF).
- n5h indicates the average degree of polymerization and represents 0.1 to 15.
- the three Rf in formula (5H) n5h in 25h may be different, or may be partly or completely the same.
- Rf 2 5i in formula (5I) is represented by formula (5IF).
- n5i represents an average degree of polymerization and represents 0.1 to 15.
- Three Rf in formula (5I) n5i in 2 5i may be different, or may be partly or completely the same.
- Rf 2 5j in formula (5J) is represented by formula (5JF).
- n5j indicates the average degree of polymerization and represents 0.1 to 15.
- the three Rf in formula (5J) n5j in 2 5j may be different from each other, or a part or all of them may be the same.
- Rf 2 5k in formula (5K) is represented by formula (5KF). Me represents a methyl group.
- n5k represents the average degree of polymerization and represents 0.1 to 15.
- Formula ( n5k in the three Rf 2 5k's in 5K) may be different from each other, or may be partially or entirely the same.)
- Rf 2 5l in formula (5L) is represented by formula (5LF).
- n5l indicates the average degree of polymerization and represents 0.1 to 15.
- the three Rf in formula (5L) n5l in 25l may be different, or may be partly or completely the same.
- Rf 2 5m in formula (5M) is represented by formula (5MF).
- n5m indicates the average degree of polymerization and represents 0.1 to 15.
- the three Rf in formula (5M) n5m in 25m may be different, or may be partly or completely the same.
- Rf 2 5n in formula (5N) is represented by formula (5NF).
- n5n indicates the average degree of polymerization and represents 0.1 to 15.
- the three Rf in formula (5N) n5n in 25n may be different from each other, or a part or all of them may be the same.
- Rf 2 5o in formula (5O) is represented by formula (5OF).
- n5o indicates the average degree of polymerization and represents 0.1 to 15.
- the three Rf in formula (5O) n5o in 25o may be different, or may be partly or completely the same.
- the fluorine-containing ether compound represented by formula (1) is one of the above formulas (1A) to (1V), (2A) to (2V), (4A) to (4O), and (5A) to (5O).
- a compound represented by is preferable because it is highly effective in suppressing corrosion of a magnetic recording medium and can form a lubricating layer capable of suppressing pickup and spin-off even if it is thin.
- the number average molecular weight (Mn) of the fluorine-containing ether compound of the present embodiment is preferably within the range of 500 to 10,000, particularly preferably within the range of 600 to 5,000.
- the lubricating layer made of the lubricant containing the fluorine-containing ether compound of this embodiment has excellent heat resistance.
- the number average molecular weight of the fluorine-containing ether compound is more preferably 600 or more. Further, when the number average molecular weight is 10,000 or less, the viscosity of the fluorine-containing ether compound becomes appropriate, and by applying a lubricant containing this, a thin lubricating layer can be easily formed.
- the number average molecular weight of the fluorine-containing ether compound is more preferably 5,000 or less since it provides a viscosity that is easy to handle when applied to a lubricant.
- the number average molecular weight (Mn) of the fluorine-containing ether compound is a value measured by 1 H-NMR and 19 F-NMR using AVANCE III400 manufactured by Bruker Biospin. Specifically, the number of repeating units of the PFPE chain is calculated from the integral value measured by 19 F-NMR, and the number average molecular weight is determined.
- NMR nuclear magnetic resonance
- the sample is diluted into a hexafluorobenzene/d-acetone (4/1 v/v) solvent.
- the standard for 19 F-NMR chemical shift is the peak of hexafluorobenzene at -164.7 ppm
- the standard for 1 H-NMR chemical shift is the peak of acetone at 2.2 ppm.
- the fluorine-containing ether compound of this embodiment is preferably subjected to molecular weight fractionation by an appropriate method to have a molecular weight dispersity (weight average molecular weight (Mw)/number average molecular weight (Mn) ratio) of 1.3 or less.
- the method for molecular weight fractionation is not particularly limited, but for example, molecular weight fractionation by silica gel column chromatography, gel permeation chromatography (GPC), etc., molecular weight fractionation by supercritical extraction, etc. can be used.
- [A], [B], [C] and [D] are each a divalent linking group having a secondary hydroxyl group.
- the fluorine-containing ether compound of the present embodiment has a -[B]-[A]- structure (hereinafter sometimes abbreviated as "BA structure”) containing 1 to 3 secondary hydroxyl groups, and 1 A -[C]-[D]- structure (hereinafter sometimes abbreviated as "CD structure”) containing ⁇ 2 secondary hydroxyl groups forms -R via a methylene group (-CH 2 -).
- the carbon atoms to which the secondary hydroxyl groups are bonded form a methylene group (-CH 2 -) and an ether bond (-O-). are bonded via a linking group consisting of Therefore, even if the BA structure and/or CD structure has multiple secondary hydroxyl groups, the distance between adjacent secondary hydroxyl groups is appropriate, and each secondary hydroxyl group is arranged to be easily adsorbed to the protective layer. has been done.
- R 4 in formula (1) is a branched terminal group containing two or three primary hydroxyl groups. Since the primary hydroxyl group has less steric hindrance than the secondary hydroxyl group and the tertiary hydroxyl group, it effectively participates in the formation of intermolecular hydrogen bonds between fluorine-containing ether compounds.
- ⁇ 1> the secondary hydroxyl group contained in the BA structure and the secondary hydroxyl group contained in the CD structure are active points on the protective layer.
- the plurality of primary hydroxyl groups contained in ⁇ 2>R 4 participate in the formation of intermolecular hydrogen bonds between the fluorine-containing ether compounds.
- the secondary hydroxyl groups arranged at both ends of -R 2 [-CH 2 -R 3 -CH 2 -R 2 ] z - in formula (1) are The excellent adsorption power to the protective layer and the excellent intermolecular force shown by the primary hydroxyl group of the branched terminal group act effectively in a well-balanced manner.
- lubricating layer containing the fluorine-containing ether compound of this embodiment sufficient hydrophobicity is obtained by including two or three PFPE chains represented by R 2 in ⁇ 3> formula (1), and R 3 having a secondary hydroxyl group located between adjacent R 2 prevents R 2 from being too far away from the protective layer.
- the lubricating layer containing the fluorine-containing ether compound of the present embodiment has the functions ⁇ 1> to ⁇ 3> above, and the synergistic effect of these functions improves the adhesion to the protective layer and magnetic recording.
- the effect of inhibiting corrosion of the medium can be sufficiently obtained.
- the fluorine-containing ether compound existing without adhering (adsorbing) to the protective layer is transferred to the magnetic head as a foreign substance (smear). Adhesion can be prevented and pickup can be suppressed.
- this magnetic recording medium spin-off, in which the lubricant scatters and evaporates due to centrifugal force and/or heat generation caused by high-speed rotation, and the thickness of the lubricant layer decreases, is suppressed. Furthermore, this magnetic recording medium has excellent corrosion resistance, and has good reliability and durability.
- the method for producing the fluorine-containing ether compound of this embodiment is not particularly limited, and can be produced using a conventionally known production method.
- the fluorine-containing ether compound of this embodiment can be manufactured using, for example, the manufacturing method shown below.
- the epoxy group corresponding to the group consisting of R 1 -[B]-[A]- (or -[C]-[D]-R 4 ) used in producing the fluorine-containing ether compound of this embodiment The compound may be synthesized or a commercially available product may be purchased and used.
- synthesizing the above epoxy compound for example, a structure corresponding to a group consisting of R 1 -[B]-[A]- (or -[C]-[D]-R 4 ) of the fluorine-containing ether compound to be produced A method of reacting an alcohol having an epoxy group with a compound having an epoxy group can be used.
- the compound having an epoxy group for example, any compound selected from epichlorohydrin, epibromohydrin, 2-bromoethyloxirane, and allyl glycidyl ether can be used.
- the group consisting of R 1 -[B]-[A]- (or -[C]-[D]-R 4 ) of the fluorine-containing ether compound to be produced is A method may also be used in which an unsaturated compound having a corresponding structure is prepared and the unsaturated bonds thereof are oxidized.
- the hydroxyl group of the hydroxymethyl group located at the terminal of the intermediate compound 1-1 is reacted with a halogen compound having an epoxy group corresponding to R 3 . Then, the obtained epoxy compound is reacted with the hydroxyl group located at the end of one more molecule of the intermediate compound 1-1 (second reaction).
- halogen compound having an epoxy group corresponding to R 3 above for example, when R 3 is represented by formula (5) and y1 and y2 in formula (5) are both 1, epibromohydrin is used. be able to.
- z in formula (1) is 1, R 1 -[B]-[A]- and -[C]-[D]-R 4 are the same, Compounds can be prepared in which the two PFPE chains denoted by R 2 are the same.
- R 1 -[B]-[A]- and -[C]-[D]-R 4 are different and/or the two R 2 are different
- R 1 -[B]-[A]- and -[C]-[D]-R 4 are the same, and the two PFPE chains represented by R 2 are In the same way as when producing the same compound, the PFPE chain corresponding to R 2 on the R 1 side has a group corresponding to R 1 -[B]-[A]- at one end, and the other An intermediate compound 1-2 having a hydroxymethyl group at the end is produced.
- intermediate compound 1-2 is reacted with a halogen compound having an epoxy group corresponding to R 3 to obtain an epoxy compound.
- the obtained epoxy compound is reacted with intermediate compound 1-3 (second reaction).
- second reaction the case where the epoxy compound obtained by reacting intermediate compound 1-2 with a halogen compound having an epoxy group corresponding to R 3 and intermediate compound 1-3 is reacted.
- an epoxy compound obtained by reacting intermediate compound 1-3 with a halogen compound having an epoxy group corresponding to R 3 is reacted with intermediate compound 1-2. Good too.
- z in formula (1) is 1 and R 1 -[B]-[A]- and -[C]-[D]-R 4 are different, and/or Compounds can be prepared in which the two PFPE chains represented by R 2 are different.
- the second reaction in the second production method may be performed after the first reaction or may be performed before the first reaction.
- intermediate compound 2-1 is synthesized, which has an epoxy group corresponding to R 3 at both ends of a PFPE chain corresponding to R 2 at the center of the molecule.
- intermediate compounds 2-2a and 2-2b are synthesized in the same manner as intermediate compound 2-2.
- a fluorine-based compound is prepared in which hydroxymethyl groups are placed at both ends of the PFPE chain corresponding to R 2 on the R 1 side. Then, the hydroxyl group of the hydroxymethyl group located at one end of the fluorine-based compound is reacted with an epoxy compound corresponding to the group consisting of R 1 -[B]-[A]- in formula (1). As a result, the PFPE chain corresponding to R 2 on the R 1 side had a group corresponding to R 1 -[B]-[A]- at one end, and a hydroxymethyl group was placed at the other end. Intermediate compound 2-2a is obtained.
- a fluorine-based compound in which hydroxymethyl groups are arranged at both ends of the PFPE chain corresponding to R 2 on the R 4 side is prepared. Then, the hydroxyl group of the hydroxymethyl group located at one end of the fluorine-based compound is reacted with an epoxy compound corresponding to the group consisting of -[C]-[D]-R 4 in formula (1). As a result, the PFPE chain corresponding to R 2 on the R 4 side had a group corresponding to -[C]-[D]-R 4 at one end, and a hydroxymethyl group was placed at the other end. Intermediate compound 2-2b is obtained.
- R 1 -[B]-[A]- and -[C]-[D]-R 4 are the same, two R 3 are the same, and three R 2 are the same.
- Intermediate compound 2-2 is synthesized in the same manner as in the case where Then, in the third reaction, R 1 -[B]-[A]- and -[C]-[D]-R except that intermediate compound 2-1b is used instead of intermediate compound 2-1. 4 are the same, two R 3 are the same, and three R 2 are the same, intermediate compound 2-1b and intermediate compound 2-2 are reacted.
- z in formula (1) is 2, the two linking groups represented by R 3 are different, and R 1 -[B]-[A]- and -[C]-[ D]-R 4 are the same and the three PFPE chains represented by R 2 are the same.
- intermediate compound 2-1b instead of intermediate compound 2-1
- the two R 3 are the same, and R 1 -[B]-[A]- and - [C]-[D]-R 4 is different and/or any one or more of the three R 2 is different, in the same way as when R 3 on the R 1 side of intermediate compound 2-1b is
- the corresponding epoxy group is reacted with intermediate compound 2-2a, and the epoxy group corresponding to R 3 on the R 4 side of intermediate compound 2-1b is reacted with intermediate compound 2-2b.
- z in formula (1) is 2, the two linking groups represented by R 3 are different, and R 1 -[B]-[A]- and -[C]-[ D]-R 4 and/or compounds in which any one or more of the three PFPE chains represented by R 2 are different can be produced.
- the magnetic recording medium lubricant of this embodiment contains a fluorine-containing ether compound represented by the above formula (1).
- the lubricant of this embodiment may be made of known materials used as lubricant materials as long as the properties of the fluorine-containing ether compound represented by formula (1) are not impaired. They can be mixed and used depending on the situation.
- the known material used in combination with the lubricant of this embodiment preferably has a number average molecular weight of 1,000 to 10,000.
- the fluorine-containing ether compound represented by the above formula (1) in the lubricant of this embodiment contains other materials of the fluorine-containing ether compound represented by the above formula (1)
- the fluorine-containing ether compound represented by the above formula (1) in the lubricant of this embodiment The content of is preferably 50% by mass or more, more preferably 70% by mass or more. Since the lubricant of this embodiment contains the fluorine-containing ether compound represented by the above formula (1), even if it is thin, it is highly effective in suppressing corrosion of the magnetic recording medium and has good adhesion to the protective layer. It is possible to form a lubricating layer with good pickup characteristics and spin-off characteristics of a magnetic recording medium.
- Magnetic recording medium The magnetic recording medium of this embodiment has at least a magnetic layer, a protective layer, and a lubricating layer provided in this order on a substrate.
- one or more underlayers can be provided between the substrate and the magnetic layer as necessary.
- at least one of an adhesion layer and a soft magnetic layer may be provided between the underlayer and the substrate.
- FIG. 1 is a schematic cross-sectional view showing one embodiment of the magnetic recording medium of the present invention.
- the magnetic recording medium 10 of this embodiment includes, on a substrate 11, an adhesion layer 12, a soft magnetic layer 13, a first underlayer 14, a second underlayer 15, a magnetic layer 16, a protective layer 17, It has a structure in which lubricating layers 18 are sequentially provided.
- substrate for example, a nonmagnetic substrate in which a film made of NiP or NiP alloy is formed on a base made of metal or alloy material such as Al or Al alloy can be used. Further, as the substrate 11, a nonmagnetic substrate made of a nonmetallic material such as glass, ceramics, silicon, silicon carbide, carbon, or resin may be used, or NiP or a NiP alloy may be used on a substrate made of these nonmetallic materials. A nonmagnetic substrate having a film formed thereon may also be used.
- the adhesion layer 12 prevents the progress of corrosion of the substrate 11 that occurs when the substrate 11 and the soft magnetic layer 13 provided on the adhesion layer 12 are placed in contact with each other.
- the material of the adhesion layer 12 can be appropriately selected from, for example, Cr, Cr alloy, Ti, Ti alloy, CrTi, NiAl, AlRu alloy, etc.
- the adhesion layer 12 can be formed by, for example, a sputtering method.
- the soft magnetic layer 13 preferably has a structure in which a first soft magnetic film, an intermediate layer made of a Ru film, and a second soft magnetic film are laminated in this order. That is, the soft magnetic layer 13 has a structure in which the soft magnetic films above and below the intermediate layer are coupled by anti-ferro coupling (AFC) by sandwiching an intermediate layer made of a Ru film between two soft magnetic films. It is preferable to have.
- AFC anti-ferro coupling
- the material for the first soft magnetic film and the second soft magnetic film examples include CoZrTa alloy and CoFe alloy. It is preferable that Zr, Ta, or Nb be added to the CoFe alloy used for the first soft magnetic film and the second soft magnetic film. This promotes amorphization of the first soft magnetic film and the second soft magnetic film. As a result, it becomes possible to improve the orientation of the first underlayer (seed layer) and to reduce the flying height of the magnetic head.
- the soft magnetic layer 13 can be formed by, for example, a sputtering method.
- the first underlayer 14 is a layer that controls the orientation and crystal size of the second underlayer 15 and magnetic layer 16 provided thereon.
- Examples of the first underlayer 14 include a Cr layer, a Ta layer, a Ru layer, a CrMo alloy layer, a CoW alloy layer, a CrW alloy layer, a CrV alloy layer, a CrTi alloy layer, and the like.
- the first base layer 14 can be formed by, for example, a sputtering method.
- the second underlayer 15 is a layer that controls the orientation of the magnetic layer 16 to be good.
- the second base layer 15 is preferably a layer made of Ru or Ru alloy.
- the second base layer 15 may be a single layer or may be a plurality of layers. When the second base layer 15 is composed of multiple layers, all the layers may be composed of the same material, or at least one layer may be composed of different materials.
- the second base layer 15 can be formed by, for example, a sputtering method.
- the magnetic layer 16 is made of a magnetic film whose axis of easy magnetization is perpendicular or horizontal to the substrate surface.
- the magnetic layer 16 is a layer containing Co and Pt.
- the magnetic layer 16 may be a layer containing oxide, Cr, B, Cu, Ta, Zr, etc. to improve SNR characteristics. Examples of the oxide contained in the magnetic layer 16 include SiO 2 , SiO, Cr 2 O 3 , CoO, Ta 2 O 3 , and TiO 2 .
- the magnetic layer 16 may be composed of one layer, or may be composed of a plurality of magnetic layers made of materials with different compositions.
- the first magnetic layer contains Co, Cr, and Pt, and is further oxidized. It is preferable to have a granular structure made of a material containing substances.
- the oxide contained in the first magnetic layer it is preferable to use, for example, an oxide of Cr, Si, Ta, Al, Ti, Mg, Co, or the like. Among them, TiO 2 , Cr 2 O 3 , SiO 2 and the like can be particularly preferably used.
- the first magnetic layer is preferably made of a composite oxide containing two or more types of oxides.
- Cr 2 O 3 --SiO 2 , Cr 2 O 3 --TiO 2 , SiO 2 --TiO 2 and the like can be particularly preferably used.
- the first magnetic layer contains one or more elements selected from B, Ta, Mo, Cu, Nd, W, Nb, Sm, Tb, Ru, and Re in addition to Co, Cr, Pt, and oxides. can be included.
- the same material as the first magnetic layer can be used for the second magnetic layer.
- the second magnetic layer has a granular structure.
- the third magnetic layer preferably has a non-granular structure made of a material containing Co, Cr, and Pt and no oxide.
- the third magnetic layer contains one or more elements selected from B, Ta, Mo, Cu, Nd, W, Nb, Sm, Tb, Ru, Re, and Mn in addition to Co, Cr, and Pt. be able to.
- the magnetic layer 16 When the magnetic layer 16 is formed of a plurality of magnetic layers, it is preferable to provide a non-magnetic layer between adjacent magnetic layers.
- the magnetic layer 16 consists of three layers: a first magnetic layer, a second magnetic layer, and a third magnetic layer, there is a gap between the first magnetic layer and the second magnetic layer, and between the second magnetic layer and the third magnetic layer. It is preferable to provide a nonmagnetic layer between them.
- the nonmagnetic layer provided between adjacent magnetic layers of the magnetic layer 16 is, for example, Ru, Ru alloy, CoCr alloy, CoCrX1 alloy (X1 is Pt, Ta, Zr, Re, Ru, Cu, Nb, Ni, Mn, Represents one or more elements selected from Ge, Si, O, N, W, Mo, Ti, V, and B), etc. can be suitably used.
- an alloy material containing an oxide, a metal nitride, or a metal carbide for the nonmagnetic layer provided between adjacent magnetic layers of the magnetic layer 16.
- the oxide for example, SiO 2 , Al 2 O 3 , Ta 2 O 5 , Cr 2 O 3 , MgO, Y 2 O 3 , TiO 2 or the like can be used.
- the metal nitride for example, AlN, Si 3 N 4 , TaN, CrN, etc. can be used.
- the metal carbide for example, TaC, BC, SiC, etc. can be used.
- the nonmagnetic layer can be formed by, for example, a sputtering method.
- the magnetic layer 16 is preferably a perpendicular magnetic recording magnetic layer in which the axis of easy magnetization is perpendicular to the substrate surface.
- the magnetic layer 16 may be a magnetic layer for longitudinal magnetic recording.
- the magnetic layer 16 may be formed by any conventionally known method, such as vapor deposition, ion beam sputtering, and magnetron sputtering.
- the magnetic layer 16 is usually formed by a sputtering method.
- Protective layer 17 protects magnetic layer 16 .
- the protective layer 17 may be composed of one layer or may be composed of multiple layers.
- a carbon-based protective layer can be preferably used, and an amorphous carbon protective layer is particularly preferable. It is preferable that the protective layer 17 is a carbon-based protective layer because the interaction with the polar groups (especially hydroxyl groups) contained in the fluorine-containing ether compound in the lubricating layer 18 is further enhanced.
- the adhesion between the carbon-based protective layer and the lubricating layer 18 can be achieved by using hydrogenated carbon and/or nitrogenated carbon as the carbon-based protective layer and adjusting the hydrogen content and/or nitrogen content in the carbon-based protective layer. It is controllable.
- the hydrogen content in the carbon-based protective layer is preferably 3 at.% to 20 at.% when measured by hydrogen forward scattering (HFS).
- the nitrogen content in the carbon-based protective layer is preferably 4 atomic % to 15 atomic % when measured by X-ray photoelectron spectroscopy (XPS).
- the hydrogen and/or nitrogen contained in the carbon-based protective layer does not need to be uniformly contained throughout the carbon-based protective layer.
- the carbon-based protective layer is preferably a compositionally graded layer in which the protective layer 17 on the lubricating layer 18 side contains nitrogen and the protective layer 17 on the magnetic layer 16 side contains hydrogen. In this case, the adhesion between the magnetic layer 16 and lubricating layer 18 and the carbon-based protective layer is further improved.
- the thickness of the protective layer 17 is preferably 1 nm to 7 nm. When the thickness of the protective layer 17 is 1 nm or more, sufficient performance as the protective layer 17 can be obtained. It is preferable that the thickness of the protective layer 17 is 7 nm or less from the viewpoint of making the protective layer 17 thinner.
- a sputtering method using a target material containing carbon As a method for forming the protective layer 17, a sputtering method using a target material containing carbon, a CVD (chemical vapor deposition) method using a hydrocarbon raw material such as ethylene or toluene, an IBD (ion beam deposition) method, etc. can be used. can.
- a carbon-based protective layer as the protective layer 17 it can be formed by, for example, a DC magnetron sputtering method.
- the amorphous carbon protective layer formed by plasma CVD has a uniform surface and low roughness.
- Lubricating layer 18 prevents contamination of magnetic recording medium 10. Furthermore, the lubricating layer 18 reduces the frictional force of the magnetic head of the magnetic recording/reproducing device that slides on the magnetic recording medium 10, thereby improving the durability of the magnetic recording medium 10.
- the lubricating layer 18 is formed on and in contact with the protective layer 17, as shown in FIG.
- the lubricant layer 18 is formed by applying the magnetic recording medium lubricant of the above-described embodiment onto the protective layer 17. Therefore, the lubricating layer 18 contains the above-mentioned fluorine-containing ether compound.
- the lubricating layer 18 is bonded to the protective layer 17 with a high bonding force, especially when the protective layer 17 disposed below the lubricating layer 18 is a carbon-based protective layer. As a result, even if the lubricating layer 18 is thin, it is easy to obtain a magnetic recording medium 10 in which the surface of the protective layer 17 is coated with a high coverage rate, and contamination of the surface of the magnetic recording medium 10 can be effectively prevented. .
- the average thickness of the lubricating layer 18 is preferably 0.5 nm (5 ⁇ ) to 2.0 nm (20 ⁇ ), more preferably 0.5 nm (5 ⁇ ) to 1.2 nm (12 ⁇ ).
- the average thickness of the lubricant layer 18 is 0.5 nm or more, the lubricant layer 18 does not have an island shape or a mesh shape and is formed with a uniform thickness. Therefore, the surface of the protective layer 17 can be covered with the lubricating layer 18 at a high coverage rate. Further, by setting the average thickness of the lubricant layer 18 to 2.0 nm or less, the lubricant layer 18 can be made sufficiently thin, and the flying height of the magnetic head can be made sufficiently small.
- Method for forming a lubricating layer As a method for forming the lubricating layer 18, for example, a magnetic recording medium in the process of being manufactured in which each layer up to the protective layer 17 is formed on the substrate 11 is prepared, and a lubricating layer forming solution is applied onto the protective layer 17.
- a method of drying is a method of drying.
- the lubricant layer forming solution can be obtained by dispersing and dissolving the magnetic recording medium lubricant of the above-described embodiment in a solvent as necessary to obtain a viscosity and concentration suitable for the coating method.
- the solvent used in the lubricating layer forming solution include fluorine-based solvents such as Vertrell (registered trademark) XF (trade name, manufactured by DuPont Mitsui Fluorochemicals Co., Ltd.).
- the method for applying the lubricant layer forming solution is not particularly limited, and examples thereof include a spin coating method, a spray method, a paper coating method, a dipping method, and the like.
- the dip method for example, the method shown below can be used.
- the substrate 11 on which each layer up to the protective layer 17 has been formed is immersed in a lubricating layer forming solution placed in a dipping tank of a dip coater.
- the substrate 11 is pulled up from the immersion bath at a predetermined speed.
- the lubricating layer forming solution is applied to the surface of the protective layer 17 of the substrate 11.
- the lubricating layer forming solution can be uniformly applied to the surface of the protective layer 17, and the lubricating layer 18 can be formed on the protective layer 17 with a uniform thickness.
- the substrate 11 on which the lubricant layer 18 is formed is subjected to heat treatment.
- the heat treatment temperature is preferably 100°C to 180°C, more preferably 100°C to 160°C.
- the heat treatment temperature is 100° C. or higher, the effect of improving the adhesion between the lubricating layer 18 and the protective layer 17 can be sufficiently obtained.
- the heat treatment time can be adjusted as appropriate depending on the heat treatment temperature, and is preferably 10 minutes to 120 minutes.
- the lubricant layer 18 may be irradiated with ultraviolet (UV) light before or after heat treatment.
- UV ultraviolet
- the magnetic recording medium 10 of this embodiment has at least a magnetic layer 16, a protective layer 17, and a lubricating layer 18 provided in this order on a substrate 11.
- a lubricating layer 18 containing the above-mentioned fluorine-containing ether compound is formed on and in contact with the protective layer 17 . Even if the lubricating layer 18 is thin, it is highly effective in suppressing corrosion of the magnetic recording medium and provides good pickup characteristics and spin-off characteristics. Therefore, the magnetic recording medium 10 of this embodiment has excellent reliability and durability.
- the magnetic recording medium 10 of this embodiment can have a low flying height of the magnetic head (for example, 10 nm or less), and is stable over a long period of time even under harsh environments associated with diversification of applications. It works. Therefore, the magnetic recording medium 10 of this embodiment is particularly suitable as a magnetic disk mounted in a magnetic disk device of the LUL (Load/Unload) system.
- LUL Load/Unload
- Example 1 A compound represented by the above formula (1A) was produced by the method shown below. (first reaction) Under a nitrogen gas atmosphere, HOCH 2 CF 2 CF 2 O (CF 2 CF 2 CF 2 O) n CF 2 CF 2 CH 2 OH (in the formula, n indicating the average degree of polymerization is 3.8) in a 200 mL eggplant flask. ) (number average molecular weight 909, molecular weight distribution 1.1), 5.3 g (molecular weight 404, 13.2 mmol) of the compound represented by the following formula (12), and 20 mL of t-butanol. The mixture was charged and stirred at room temperature until homogeneous. Further, 0.74 g (molecular weight 112.21, 6.6 mmol) of potassium tert-butoxide was added to this homogeneous liquid, and the mixture was stirred at 70° C. for 16 hours to react.
- reaction product obtained after the reaction was cooled to 25°C, transferred to a separatory funnel containing 100 mL of water, and extracted three times with 100 mL of ethyl acetate.
- the organic layer was washed with water and dehydrated with anhydrous sodium sulfate. After filtering off the desiccant, the filtrate was concentrated, and the residue was purified by silica gel column chromatography to obtain 11.6 g of a compound represented by the following formula (13) as intermediate compound 1-1 (molecular weight 1313, 8.8 mmol). ) was obtained.
- the compound represented by the following formula (12) was synthesized by the method shown below. One equivalent of 3-allyloxy-1,2-propanediol was reacted with two equivalents of 2-(2-bromoethoxy)tetrahydro-2H-pyran. A compound represented by the following formula (12) was synthesized by oxidizing the double bond of the obtained compound using m-chloroperbenzoic acid.
- THP represents a tetrahydropyranyl group.
- n indicating the average degree of polymerization represents 3.8.
- THP represents a tetrahydropyranyl group.
- reaction solution obtained after the reaction was returned to room temperature, 31 g of a 10% hydrogen chloride/methanol solution (hydrogen chloride-methanol reagent (5-10%) manufactured by Tokyo Chemical Industry Co., Ltd.) was added, and the mixture was stirred at room temperature for 2 hours.
- the reaction solution was transferred little by little into a separatory funnel containing 100 mL of brine, and extracted three times with 200 mL of ethyl acetate.
- the organic layer was washed with 100 mL of brine, 100 mL of saturated sodium bicarbonate solution, and 100 mL of brine in this order, and dehydrated with anhydrous sodium sulfate.
- Example 2 Example 1 except that in the first reaction, 5.5 g (molecular weight 419, 13.2 mmol) of the compound represented by the following formula (14) was used instead of the compound represented by formula (12). A similar operation was performed to obtain a compound represented by the above formula (1B) (Rf 2 1b in formula (1B) is represented by formula (1BF). Among the two Rf 2 1b, n1b indicating the average degree of polymerization is 3.8) was obtained (4.3 g (number average molecular weight: 2377, 1.8 mmol)).
- the compound represented by formula (14) was synthesized by the method shown below. Allyl glycidyl ether and tetrahydropyranyl ethylene glycol were reacted. Synthesis was carried out by reacting the obtained compound with 2-(3-bromopropoxy)tetrahydro-2H-pyran and oxidizing the double bond of the compound using m-chloroperbenzoic acid.
- THP represents a tetrahydropyranyl group.
- Rf 1 1c in formula (1C) is represented by formula (1CF).
- formula (1CF the average degree of polymerization is shown. 4.3 g (number average molecular weight: 2399, 1.8 mmol) of l1c (l1c: 4.0, m1c (average degree of polymerization): 4.0) was obtained.
- the compound represented by formula (15) was synthesized by the method shown below. One equivalent of 3-allyloxy-1,2-propanediol was reacted with two equivalents of 2-(3-bromopropoxy)tetrahydro-2H-pyran. A compound represented by formula (15) was synthesized by oxidizing the double bond of the obtained compound using m-chloroperbenzoic acid.
- THP represents a tetrahydropyranyl group.
- the compound represented by formula (16) was synthesized by the method shown below. One equivalent of 3-allyloxy-1,2-propanediol was reacted with two equivalents of 2-(4-bromobutoxy)tetrahydro-2H-pyran. A compound represented by the following formula (16) was synthesized by oxidizing the double bond of the obtained compound using m-chloroperbenzoic acid.
- THP represents a tetrahydropyranyl group.
- Example 5 Example 1 except that in the first reaction, 5.7 g (molecular weight 432, 13.2 mmol) of the compound represented by the following formula (18) was used instead of the compound represented by formula (12). A similar operation was performed to obtain a compound represented by the above formula (1E) (Rf 2 1e in formula (1E) is represented by formula (1EF). Among the two Rf 2 1e, n1e indicating the average degree of polymerization is 3.8) was obtained (4.3 g (number average molecular weight: 2405, 1.8 mmol)).
- the compound represented by formula (18) was synthesized by the method shown below. By oxidizing the double bond on one side of di(3-butenyl) ether using 1 equivalent of m-chloroperbenzoic acid to form an epoxy group, and then opening the epoxy group using concentrated sulfuric acid, A compound represented by the following formula (17) was synthesized. The obtained compound represented by formula (17) was reacted with 2 equivalents of 2-(2-bromoethoxy)tetrahydro-2H-pyran. Thereafter, the double bond was oxidized using m-chloroperbenzoic acid to synthesize a compound represented by formula (18).
- THP represents a tetrahydropyranyl group.
- Example 6 Same as Example 1 except that in the first reaction, 6.8 g (molecular weight 516, 13.2 mmol) of the compound represented by the following formula (20) was used instead of the compound represented by the formula (12). A similar operation was performed to obtain a compound represented by the above formula (1F) (Rf 2 1f in formula (1F) is represented by formula (1FF). Among the two Rf 2 1f, n1f indicating the average degree of polymerization is 3.8) was obtained (4.6 g (number average molecular weight: 2573, 1.8 mmol)).
- the compound represented by formula (20) was synthesized by the method shown below. By oxidizing the double bond on one side of di(6-heptenyl) ether using 1 equivalent of m-chloroperbenzoic acid to form an epoxy group, and then opening the epoxy group using concentrated sulfuric acid, A compound represented by the following formula (19) was synthesized. The obtained compound represented by formula (19) was reacted with 2 equivalents of 2-(2-bromoethoxy)tetrahydro-2H-pyran. Thereafter, a compound represented by the following formula (20) was synthesized by oxidation using m-chloroperbenzoic acid.
- THP represents a tetrahydropyranyl group.
- Example 7 Example 1 except that in the first reaction, 6.3 g (molecular weight 479, 13.2 mmol) of the compound represented by the following formula (21) was used instead of the compound represented by formula (12). A similar operation was performed to obtain a compound represented by the above formula (1G) (Rf 2 1g in formula (1G) is represented by formula (1GF). Among the two Rf 2 1g, n1g indicating the average degree of polymerization is 3.8) was obtained (4.5 g (number average molecular weight: 2497, 1.8 mmol)).
- the compound represented by the following formula (21) is obtained by reacting the compound represented by the above formula (12) with allyl alcohol, and then removing the double bond of the resulting compound using m-chloroperbenzoic acid. It was synthesized by oxidation.
- THP represents a tetrahydropyranyl group.
- Example 8 Same as Example 3 except that in the first reaction, 2.5 g (molecular weight 188, 13.2 mmol) of the compound represented by the following formula (23) was used instead of the compound represented by the formula (15). A similar operation was performed to obtain a compound represented by the above formula (1H) (Rf 1 1h in formula (1H) is represented by formula (1HF). Among the two Rf 1 1h, l1h indicating the average degree of polymerization is 4.0, m1h indicating the average degree of polymerization is 4.0) was obtained (3.9 g (number average molecular weight: 2167, 1.8 mmol)).
- the compound represented by the following formula (23) was synthesized by the method shown below.
- a compound represented by the following formula (22) was synthesized by reducing the carbonyl site of 2,2-dimethyl-1,3-dioxan-5-one with lithium aluminum hydride.
- a compound represented by the following formula (23) was synthesized by reacting the obtained compound represented by formula (22) with epibromohydrin.
- Example 9 Example 4 except that in the first reaction, 2.7 g (molecular weight 202, 13.2 mmol) of the compound represented by the following formula (24) was used instead of the compound represented by formula (16). A similar operation was performed to obtain a compound represented by the above formula (1I) (Rf 1 1i in formula (1I) is represented by formula (1IF). Among the two Rf 1 1i, l1i indicating the average degree of polymerization is 6.3, m1i indicating the average degree of polymerization is 0) was obtained (4.0 g (number average molecular weight 2200, 1.8 mmol)).
- the compound represented by formula (24) was synthesized by reacting 5-hydroxymethyl-2,2-dimethyl-1,3-dioxane with epibromohydrin.
- Example 10 Same as Example 1 except that in the first reaction, 2.9 g (molecular weight 216, 13.2 mmol) of the compound represented by the following formula (25) was used instead of the compound represented by the formula (12). A similar operation was performed to obtain a compound represented by the above formula (1J) (Rf 2 1j in formula (1J) is represented by formula (1JF). Among the two Rf 2 1j, n1j indicating the average degree of polymerization is 3.8) was obtained in an amount of 4.0 g (number average molecular weight: 2228, 1.8 mmol).
- the compound represented by formula (25) was synthesized by reacting 5-hydroxyethyl-2,2-dimethyl-1,3-dioxane with epibromohydrin.
- Example 11 Example 4 except that in the first reaction, 3.6 g (molecular weight 272, 13.2 mmol) of the compound represented by the following formula (26) was used instead of the compound represented by formula (16). A similar operation was performed to obtain a compound represented by the above formula (1K) (Rf 1 1k in formula (1K) is represented by formula (1KF). Among the two Rf 1 1k, l1k indicating the average degree of polymerization is 6.3, m1k indicating the average degree of polymerization is 0) was obtained (4.2 g (number average molecular weight: 2340, 1.8 mmol)).
- the compound represented by formula (26) was synthesized by reacting 5-hydroxyhexyl-2,2-dimethyl-1,3-dioxane with epibromohydrin.
- Example 12 Same as Example 1 except that in the first reaction, 2.7 g (molecular weight 202, 13.2 mmol) of the compound represented by the following formula (27) was used instead of the compound represented by the formula (12). A similar operation was performed to obtain a compound represented by the above formula (1L) (Rf 2 1l in formula (1L) is represented by formula (1LF). Among the two Rf 2 1l, n1l indicating the average degree of polymerization is 3.8) was obtained in an amount of 4.0 g (number average molecular weight 2200, 1.8 mmol).
- the compound represented by formula (27) is obtained by reacting the compound represented by formula (22) with 3-butenyl bromide, and then removing the double bond of the resulting compound using m-chloroperbenzoic acid. Synthesized by oxidation.
- Example 13 Example 1 except that in the first reaction, 3.6 g (molecular weight 276, 13.2 mmol) of the compound represented by the following formula (28) was used instead of the compound represented by formula (12). A similar operation was performed to obtain a compound represented by the above formula (1M) (Rf 2 1m in formula (1M) is represented by formula (1MF). Among the two Rf 2 1m, n1m indicating the average degree of polymerization is 3.8) was obtained (4.2 g (number average molecular weight: 2349, 1.8 mmol)).
- the compound represented by formula (28) is obtained by reacting the compound represented by formula (23) with 3-buten-1-ol, and then converting the double bond of the resulting compound into m-chloroperoxide. It was synthesized by oxidation using benzoic acid.
- Example 14 Example 1 except that in the first reaction, 5.3 g (molecular weight 405, 13.2 mmol) of the compound represented by the following formula (29) was used instead of the compound represented by formula (12). A similar operation was performed to obtain a compound represented by the above formula (1N) (Rf 2 1n in formula (1N) is represented by formula (1NF). Among the two Rf 2 1n, n1n indicating the average degree of polymerization is 3.8) was obtained in an amount of 4.2 g (number average molecular weight: 2321, 1.8 mmol).
- the compound represented by formula (29) is obtained by reacting the compound represented by formula (23) with allyl alcohol, and then removing the double bond of the resulting compound using m-chloroperbenzoic acid. Synthesized by oxidation.
- Example 15 Same as Example 1 except that in the first reaction, 5.3 g (molecular weight 404, 13.2 mmol) of the compound represented by the following formula (31) was used instead of the compound represented by formula (12). A similar operation was performed to obtain a compound represented by the above formula (1O) (Rf 2 1o in formula (1O) is represented by formula (1OF). Among the two Rf 2 1o, n1o indicating the average degree of polymerization is 3.8) was obtained (4.2 g (number average molecular weight: 2349, 1.8 mmol)).
- the compound represented by formula (31) was synthesized by the method shown below. Two equivalents of tetrahydropyranyl ethylene glycol and one equivalent of epichlorohydrin were reacted to synthesize a compound represented by the following formula (30). A compound represented by the following formula (31) was synthesized by reacting the obtained compound represented by formula (30) with epibromohydrin.
- THP represents a tetrahydropyranyl group.
- THP represents a tetrahydropyranyl group.
- Example 16 Same as Example 1 except that in the first reaction, 5.7 g (molecular weight 433, 13.2 mmol) of the compound represented by the following formula (33) was used instead of the compound represented by the formula (12). A similar operation was performed to obtain a compound represented by the above formula (1P) (Rf 2 1p in formula (1P) is represented by formula (1PF). Among the two Rf 2 1p, n1p indicating the average degree of polymerization is 3.8) was obtained (4.3 g (number average molecular weight: 2405, 1.8 mmol)).
- the compound represented by formula (33) was synthesized by the method shown below. Two equivalents of tetrahydropyranyl trimethylene glycol and one equivalent of epichlorohydrin were reacted to synthesize a compound represented by the following formula (32). A compound represented by the following formula (33) was synthesized by reacting the obtained compound represented by formula (32) with epibromohydrin.
- THP represents a tetrahydropyranyl group.
- THP represents a tetrahydropyranyl group.
- Example 17 Same as Example 3 except that in the first reaction, 6.1 g (molecular weight 461, 13.2 mmol) of the compound represented by the following formula (35) was used instead of the compound represented by formula (15). A similar operation was performed to obtain a compound represented by the above formula (1Q) (Rf 1 1q in formula (1Q) is represented by formula (1QF). Among the two Rf 1 1q, l1q indicating the average degree of polymerization is 4.0, m1q indicating the average degree of polymerization is 4.0) was obtained (4.4 g (number average molecular weight: 2455, 1.8 mmol)).
- the compound represented by formula (35) was synthesized by the method shown below. Two equivalents of tetrahydropyranyltetramethylene glycol and one equivalent of epichlorohydrin were reacted to synthesize a compound represented by the following formula (34). A compound represented by the following formula (35) was synthesized by reacting the obtained compound represented by formula (34) with epibromohydrin.
- THP represents a tetrahydropyranyl group.
- THP represents a tetrahydropyranyl group.
- Example 18 Example 4 except that in the first reaction, 6.8 g (molecular weight 517, 13.2 mmol) of the compound represented by the following formula (37) was used instead of the compound represented by formula (16). A similar operation was performed to obtain a compound represented by the above formula (1R) (Rf 1 1r in formula (1R) is represented by formula (1RF). Among the two Rf 1 1r, l1r indicating the average degree of polymerization is 6.3, m1r indicating the average degree of polymerization is 0) was obtained (4.6 g (number average molecular weight: 2573, 1.8 mmol)).
- the compound represented by formula (37) was synthesized by the method shown below. Two equivalents of tetrahydropyranylhexamethylene glycol and one equivalent of epichlorohydrin were reacted to synthesize a compound represented by the following formula (36). A compound represented by the following formula (37) was synthesized by reacting the obtained compound represented by formula (36) with epibromohydrin.
- THP represents a tetrahydropyranyl group.
- THP represents a tetrahydropyranyl group.
- Example 19 Example 3 except that in the first reaction, 7.0 g (molecular weight 531, 13.2 mmol) of the compound represented by the following formula (39) was used instead of the compound represented by formula (15). A similar operation was performed to obtain a compound represented by the above formula (1S) (Rf 1 1s in formula (1S) is represented by formula (1SF). Among the two Rf 1 1s, l1s indicating the average degree of polymerization is 4.7 g (number average molecular weight: 2595, 1.8 mmol) was obtained.
- the compound represented by formula (39) was synthesized by the method shown below. 1 equivalent of 4-allyloxy-1,2-butanediol and 2 equivalents of 2-(6-bromohexyloxy)tetrahydro-2H-pyran are reacted to synthesize a compound represented by the following formula (38). did. The double bond of the obtained compound represented by formula (38) was oxidized using m-chloroperbenzoic acid to synthesize a compound represented by formula (39) below.
- THP represents a tetrahydropyranyl group.
- THP represents a tetrahydropyranyl group.
- Example 20 Example 4 except that in the first reaction, 7.7 g (molecular weight 587, 13.2 mmol) of the compound represented by the following formula (41) was used instead of the compound represented by formula (16). A similar operation was performed to obtain a compound represented by the above formula (1T) (Rf 1 1t in formula (1T) is represented by formula (1TF). Among the two Rf 1 1t, l1t indicating the average degree of polymerization is 6.3, mlt indicating the average degree of polymerization is 0) was obtained (4.9 g (number average molecular weight: 2713, 1.8 mmol)).
- the compound represented by formula (41) was synthesized by the method shown below. 1 equivalent of 8-allyloxy-1,2-octanediol and 2 equivalents of 2-(6-bromohexyloxy)tetrahydro-2H-pyran are reacted to synthesize a compound represented by the following formula (40). did. The double bond of the obtained compound represented by formula (40) was oxidized using m-chloroperbenzoic acid to synthesize a compound represented by formula (41) below.
- THP represents a tetrahydropyranyl group.
- THP represents a tetrahydropyranyl group.
- Example 21 Example 1 except that in the first reaction, 6.5 g (molecular weight 493, 13.2 mmol) of the compound represented by the following formula (43) was used instead of the compound represented by formula (12). A similar operation was performed to obtain a compound represented by the above formula (1U) (Rf 2 1u in formula (1U) is represented by formula (1UF). Among the two Rf 2 1u, n1u indicating the average degree of polymerization is 3.8) was obtained (4.5 g (number average molecular weight: 2525, 1.8 mmol)).
- the compound represented by formula (43) was synthesized by the method shown below. Two equivalents of tetrahydropyranyldiethylene glycol and one equivalent of epichlorohydrin were reacted to synthesize a compound represented by the following formula (42). A compound represented by the following formula (43) was synthesized by reacting the obtained compound represented by formula (42) with epibromohydrin.
- THP represents a tetrahydropyranyl group.
- THP represents a tetrahydropyranyl group.
- Example 22 Example 1 except that in the first reaction, 5.9 g (molecular weight 445, 13.2 mmol) of the compound represented by the following formula (45) was used instead of the compound represented by formula (12). A similar operation was performed to obtain a compound represented by the above formula (1V) (Rf 2 1v in formula (1V) is represented by formula (1VF). Among the two Rf 2 1v, n1v indicating the average degree of polymerization is 3.8) was obtained in an amount of 4.1 g (number average molecular weight: 2260, 1.8 mmol).
- the compound represented by formula (45) was synthesized by the method shown below. 2-(bromomethyl)-2-(hydroxymethyl)-1,3-propanediol and 3,4-dihydro-2H-pyran are reacted to produce 2-(bromomethyl)-2-(hydroxymethyl)-1. , 3-propanediol was protected with a tetrahydropyranyl group to synthesize a compound represented by the following formula (44). After reacting the obtained compound represented by formula (44) with allyl alcohol, the double bond of the obtained compound is oxidized using m-chloroperbenzoic acid to obtain the following formula (45 ) was synthesized.
- THP represents a tetrahydropyranyl group.
- THP represents a tetrahydropyranyl group.
- Example 23 A compound represented by the above formula (2A) was produced by the method shown below. (first reaction) Under a nitrogen gas atmosphere, HOCH 2 CF 2 CF 2 O (CF 2 CF 2 CF 2 O) n CF 2 CF 2 CH 2 OH (in the formula, n indicating the average degree of polymerization is 2.0) in a 200 mL eggplant flask. ) 12.2 g (20 mmol) of the compound represented by (number average molecular weight 610, molecular weight distribution 1.1), 1.76 g (44 mmol) of 60% sodium hydride, and 15.6 mL of N,N-dimethylformamide. The mixture was charged and stirred at room temperature until homogeneous. 3.45 mL (42 mmol) of epibromohydrin was added to this homogeneous liquid, and the mixture was stirred at 40° C. for 2 hours to react.
- reaction product obtained after the reaction was cooled to 25°C, transferred to a separatory funnel containing 100 mL of water, and extracted three times with 100 mL of ethyl acetate.
- the organic layer was washed with water and dehydrated with anhydrous sodium sulfate. After filtering off the desiccant, the filtrate was concentrated, and the residue was purified by silica gel column chromatography to obtain a compound represented by the above formula (13) as intermediate compound 2-2 (in formula (13), the average degree of polymerization 12 g (molecular weight: 1015, 12.0 mmol) was obtained.
- Example 24 In the second reaction, the same operation as in Example 23 was carried out, except that 5.6 g of the compound represented by formula (14) was used instead of the compound represented by formula (12), and the above formula ( 2B) (Rf 2 2b in formula (2B) is represented by formula (2BF). Among the three Rf 2 2b, n2b indicating the average degree of polymerization is 2.0) is 4 .4 g (molecular weight 2447, 1.8 mmol) was obtained.
- Example 25 In the first and second reactions, HOCH 2 CF 2 CF 2 O (CF 2 CF 2 CF 2 O) n CF 2 CF 2 CH 2 OH was replaced with HOCH 2 CF 2 O (CF 2 CF 2 O) l (CF 2 O) m CF 2 CH 2 OH (in the formula, l indicating the average degree of polymerization is 2.4, m indicating the average degree of polymerization is 2.4) (number average molecular weight 615 , molecular weight distribution 1.1), and in the second reaction, 5.7 g of the compound represented by formula (15) was used instead of the compound represented by formula (12).
- Example 27 In the second reaction, the same operation as in Example 23 was carried out, except that 5.7 g of the compound represented by formula (18) was used instead of the compound represented by formula (12), and the above formula ( 2E) (Rf 2 2e in formula (2E) is represented by formula (2EF). Among the three Rf 2 2e, n2e indicating the average degree of polymerization is 2.0) is 4 .5 g (molecular weight 2475, 1.8 mmol) was obtained.
- Example 28 In the second reaction, the same operation as in Example 23 was carried out, except that 6.8 g of the compound represented by formula (20) was used instead of the compound represented by formula (12), and the above formula ( 2F) (Rf 2 2f in formula (2F) is represented by formula (2FF). Among the three Rf 2 2f, n2f indicating the average degree of polymerization is 2.0) is 4 .8 g (molecular weight 2644, 1.8 mmol) was obtained.
- Example 29 In the second reaction, the same operation as in Example 23 was carried out, except that 6.4 g of the compound represented by formula (21) was used instead of the compound represented by formula (12), and the above formula ( 2G) (Rf 2 2g in formula (2G) is represented by formula (2GF). Among the three Rf 2 2g, n2g indicating the average degree of polymerization is 2.0) is 4 .6 g (molecular weight 2567, 1.8 mmol) was obtained.
- Example 30 In the second reaction, the same operation as in Example 25 was carried out, except that 2.5 g of the compound represented by formula (23) was used instead of the compound represented by formula (15), and the above formula ( 2H) (Rf 1 2h in formula (2H) is represented by formula (2HF). Among the three Rf 1 2h, l2h indicating the average degree of polymerization is 2.4, indicating the average degree of polymerization 4.1 g (number average molecular weight 2257, 1.8 mmol) of m2h is 2.4 was obtained.
- Example 31 In the second reaction, the same operation as in Example 26 was carried out, except that 2.6 g of the compound represented by formula (24) was used instead of the compound represented by formula (16), and the above formula ( 2I) (Rf 1 2i in formula (2I) is represented by formula (2IF). Among the three Rf 1 2i, l2i indicating the average degree of polymerization is 3.8, indicating the average degree of polymerization m2i is 0) was obtained (4.1 g (number average molecular weight 2297, 1.8 mmol)).
- Example 32 In the second reaction, the same operation as in Example 23 was carried out, except that 2.9 g of the compound represented by formula (25) was used instead of the compound represented by formula (12), and the above formula ( 2J) (Rf 2 2j in formula (2J) is represented by formula (2JF). Among the three Rf 2 2j, n2j indicating the average degree of polymerization is 2.0) is 4 .1 g (molecular weight 2299, 1.8 mmol) was obtained.
- Example 33 In the second reaction, the same operation as in Example 26 was carried out, except that 3.6 g of the compound represented by formula (26) was used instead of the compound represented by formula (16), and the above formula ( 2K) (Rf 1 2k in formula (2K) is represented by formula (2KF). Among the three Rf 1 2k, l2k indicating the average degree of polymerization is 3.8, indicating the average degree of polymerization (m2k is 0) was obtained (4.4 g (number average molecular weight: 2437, 1.8 mmol)).
- Example 34 In the second reaction, the same operation as in Example 23 was carried out, except that 2.7 g of the compound represented by formula (27) was used instead of the compound represented by formula (12), and the above formula ( 2L) (Rf 2 2l in formula (2L) is represented by formula (2LF). Among the three Rf 2 2l, n2l indicating the average degree of polymerization is 2.0) is 4 .1 g (molecular weight 2271, 1.8 mmol) was obtained.
- Example 35 In the second reaction, the same operation as in Example 23 was carried out, except that 3.7 g of the compound represented by formula (28) was used instead of the compound represented by formula (12), and the above formula ( 2M) (Rf 2 2m in formula (2M) is represented by formula (2MF). Among the three Rf 2 2m, n2m indicating the average degree of polymerization is 2.0) is 4 .4 g (molecular weight 2419, 1.8 mmol) was obtained.
- Example 36 In the second reaction, the same operation as in Example 23 was carried out, except that 3.5 g of the compound represented by formula (29) was used instead of the compound represented by formula (12), and the above formula ( 2N) (Rf 2 2n in formula (2N) is represented by formula (2NF). Among the three Rf 2 2n, n2n indicating the average degree of polymerization is 2.0) is 4 .3 g (molecular weight 2391, 1.8 mmol) was obtained.
- Example 37 In the second reaction, the same operation as in Example 23 was carried out, except that 5.4 g of the compound represented by formula (31) was used instead of the compound represented by formula (12), and the above formula ( 2O) (Rf 2 2o in formula (2O) is represented by formula (2OF). Among the three Rf 2 2o, n2o indicating the average degree of polymerization is 2.0) is 4 .4 g (molecular weight 2419, 1.8 mmol) was obtained.
- Example 38 In the second reaction, the same operation as in Example 23 was carried out, except that 5.7 g of the compound represented by formula (33) was used instead of the compound represented by formula (12), and the above formula ( 2P) (Rf 2 2p in formula (2P) is represented by formula (2PF). Among the three Rf 2 2p, n2p indicating the average degree of polymerization is 2.0) is 4 .5 g (molecular weight 2475, 1.8 mmol) was obtained.
- Example 39 In the second reaction, the same operation as in Example 25 was carried out, except that 6.1 g of the compound represented by formula (35) was used instead of the compound represented by formula (15), and the above formula ( 2Q) (Rf 1 2q in formula (2Q) is represented by formula (2QF). Among the three Rf 1 2q, l2q indicating the average degree of polymerization is 2.4, indicating the average degree of polymerization (m2q is 2.4) was obtained (4.6 g (number average molecular weight 2546, 1.8 mmol)).
- Example 40 In the second reaction, the same operation as in Example 26 was carried out, except that 6.8 g of the compound represented by formula (37) was used instead of the compound represented by formula (16), and the above formula ( 2R) (Rf 1 2r in formula (2R) is represented by formula (2RF). Among the three Rf 1 2r, l2r indicating the average degree of polymerization is 3.8, indicating the average degree of polymerization 4.8 g (number average molecular weight 2670, 1.8 mmol) of m2r is 0 was obtained.
- Example 41 In the second reaction, the same operation as in Example 25 was carried out, except that 7.0 g of the compound represented by formula (39) was used instead of the compound represented by formula (15), and the above formula ( 2S) (Rf 1 2s in formula (2S) is represented by formula (2SF). Among the three Rf 1 2s, l2s indicating the average degree of polymerization is 2.4, indicating the average degree of polymerization m2s is 2.4)) was obtained (number average molecular weight 2686, 1.8 mmol).
- Example 42 In the second reaction, the same operation as in Example 26 was carried out, except that 7.7 g of the compound represented by formula (41) was used instead of the compound represented by formula (16), and the above formula ( 2T) (Rf 1 2t in formula (2T) is represented by formula (2TF). Among the three Rf 1 2t, l2t indicating the average degree of polymerization is 3.8, indicating the average degree of polymerization (m2t is 0) was obtained (5.1 g (number average molecular weight: 2810, 1.8 mmol)).
- Example 43 In the second reaction, the same operation as in Example 23 was carried out, except that 6.5 g of the compound represented by formula (43) was used instead of the compound represented by formula (12), and the above formula ( 2U) (Rf 2 2u in formula (2U) is represented by formula (2UF). Among the three Rf 2 2u, n2u indicating the average degree of polymerization is 2.0) is 4 .7 g (molecular weight 2595, 1.8 mmol) was obtained.
- Example 44 In the second reaction, the same operation as in Example 23 was carried out, except that 5.9 g of the compound represented by formula (45) was used instead of the compound represented by formula (12), and the above formula ( 2V) (Rf 2 2v in formula (2V) is represented by formula (2VF). Among the three Rf 2 2v, n2v indicating the average degree of polymerization is 2.0) is 4 .2 g (molecular weight 2331, 1.8 mmol) was obtained.
- Rf 1 3a in formula (3A) is a PFPE chain represented by the above formula (3AF).
- l3a indicating the average degree of polymerization represents 4.0
- the average degree of polymerization m3a indicates 4.0.
- Rf 2 3b in formula (3B) is a PFPE chain represented by the above formula (3BF).
- n3b indicating the average degree of polymerization represents 3.8.
- Rf 2 3c in formula (3C) is a PFPE chain represented by the above formula (3CF).
- n3c indicating the average degree of polymerization represents 3.8.
- Rf 2 3d in formula (3D) is a PFPE chain represented by the above formula (3DF).
- Me represents a methyl group.
- n3d indicating the average degree of polymerization is 3. (Represents 8.)
- Rf 2 3e in formula (3E) is a PFPE chain represented by the above formula (3EF).
- n3e indicating the average degree of polymerization represents 3.8.
- Rf 2 3f in formula (3F) is a PFPE chain represented by the above formula (3FF).
- n3f indicating the average degree of polymerization represents 3.8.
- Rf 1 3g in formula (3G) is a PFPE chain represented by the above formula (3GF).
- l3g indicating the average degree of polymerization is 3.8 m3g indicating the average degree of polymerization represents 0.
- m3g indicating the average degree of polymerization represents 2.4.
- Rf 1 3h in formula (3H) is a PFPE chain represented by the above formula (3HF).
- l3h indicating the average degree of polymerization represents 3.8
- the average degree of polymerization m3h indicates 0.
- Rf 1 3i in formula (3I) is a PFPE chain represented by the above formula (3IF).
- l3i indicating the average degree of polymerization represents 3.8
- the average degree of polymerization m3i indicates 0.
- the number average molecular weights (Mn) of the compounds of Examples 1 to 44 and Comparative Examples 1 to 11 thus obtained were measured by the method described above. The results are shown in Tables 10 to 12.
- a lubricating layer forming solution was prepared using the compounds obtained in Examples 1 to 44 and Comparative Examples 1 to 11 by the method shown below. Then, using the obtained lubricant layer forming solution, lubricant layers of magnetic recording media were formed by the method shown below to obtain magnetic recording media of Examples 1 to 44 and Comparative Examples 1 to 11.
- Magnetic recording medium A magnetic recording medium was prepared in which an adhesive layer, a soft magnetic layer, a first underlayer, a second underlayer, a magnetic layer, and a protective layer were sequentially provided on a substrate having a diameter of 65 mm.
- the protective layer was made of carbon.
- the lubricating layer forming solutions of Examples 1 to 44 and Comparative Examples 1 to 11 were applied by dipping onto the protective layer of the magnetic recording medium in which each layer up to the protective layer was formed. Note that the dipping method was performed under the conditions of a dipping speed of 10 mm/sec, a dipping time of 30 sec, and a pulling rate of 1.2 mm/sec.
- the magnetic recording medium coated with the lubricant layer forming solution is placed in a constant temperature bath, and heat treatment is performed at 120°C for 10 days to remove the solvent in the lubricant layer forming solution and improve the adhesion between the protective layer and the lubricant layer.
- a lubricating layer was formed on the protective layer by carrying out this treatment for a few minutes, and a magnetic recording medium was obtained.
- a disk was prepared in which an adhesive layer, a soft magnetic layer, a first underlayer, a second underlayer, a magnetic layer, and a protective layer were sequentially provided on a substrate having a diameter of 65 mm.
- a lubricating layer was formed on each protective layer of this disk to a thickness of 6 to 20 ⁇ (in 2 ⁇ increments). Thereafter, for each disk on which a lubricant layer was formed, the increase in film thickness from the surface of the disk on which no lubricant layer was formed was measured using an ellipsometer, and this was taken as the film thickness of the lubricant layer.
- the peak height in CF vibrational expansion and contraction was measured using FT-IR. Then, a correlation equation between the peak height obtained by FT-IR and the thickness of the lubricant layer obtained using an ellipsometer was determined.
- spin-off characteristics test The magnetic recording medium was mounted on a spin stand and rotated at a rotation speed of 10,000 rpm for 72 hours in an environment of 80°C. Before and after this operation, the thickness of the lubricant layer at a position 20 mm radius from the center of the magnetic recording medium was measured using FT-IR using the method described above, and the rate of decrease in the thickness of the lubricant layer before and after the test was calculated. did. Using the calculated film thickness reduction rate, the spin-off characteristics were evaluated according to the evaluation criteria shown below.
- the magnetic recording medium was exposed to a temperature of 85° C. and a relative humidity of 90% for 48 hours. Thereafter, the number of corrosion spots with a diameter of 5 ⁇ m or more generated on the surface of the magnetic recording medium was counted using an optical surface analyzer (Candela 7140 manufactured by KLA-Tencor Co., Ltd.), and evaluated based on the following evaluation criteria.
- an optical surface analyzer Candela 7140 manufactured by KLA-Tencor Co., Ltd.
- the magnetic recording media of Examples 1 to 44 were evaluated as A to B in all evaluation items. From this, it was confirmed that the lubricating layers of the magnetic recording media of Examples 1 to 44 had good results in all of the pickup characteristic test, spin-off characteristic test, and corrosion resistance test.
- the lubricating layers of the magnetic recording media of Examples 1 to 5, 7 to 10, 12 to 27, 29 to 32, and 34 to 44 were good, with the results of both the pickup characteristic test and the spin-off characteristic test being A. there were.
- Compounds (1A) to (1E), (1G) to (1J), (1L) to (1V), (2A) to (2E), (2G) to (2J) used in the lubricating layer of the above examples, (2L) to (2V) all have a relatively small number of carbon atoms contained in R 1 -[B]-[A]- and -[C]-[D]-R 4 , or Even if the number is large, the distance from the carbon atom serving as the branching point in the branched terminal group to the primary hydroxyl group is not too short and is appropriate.
- the secondary hydroxyl groups present in R 1 -[B]-[A]- and -[C]-[D]-R 4 have excellent adsorption power to the protective layer, and the branched terminal group has excellent adsorption power to the protective layer. It is presumed that the excellent intermolecular force exhibited by the primary hydroxyl group acted effectively in a well-balanced manner, resulting in more effective adhesion of the hydroxyl group to the protective layer. As a result, it is presumed that the adhesion of lubricant to the magnetic head was suppressed and excellent pickup characteristics were exhibited. It is also presumed that the adhesion of the lubricating layer to the protective layer was maintained, and good spin-off characteristics were obtained.
- the magnetic recording media of Comparative Examples 1 to 11 had pickup characteristic test and spin-off characteristic test results of C to D.
- Comparative Examples 1 and 7 the structures corresponding to R 1 and R 4 in the compound used in the lubricating layer each have only one primary hydroxyl group. Therefore, the lubricating layers of Comparative Examples 1 and 7 were compared with the lubricating layers of Examples 1 to 44 containing compounds in which R 1 and R 4 are branched terminal groups having two or three primary hydroxyl groups, respectively. Therefore, it is difficult to obtain adhesion to the protective layer. As a result, it is presumed that in Comparative Examples 1 and 7, the lubricant adhered to the magnetic head, resulting in the pickup characteristic test result being C. Further, in Comparative Examples 1 and 7, it is presumed that the result of the spin-off characteristic test was C because it was difficult to maintain adhesion to the protective layer.
- Comparative Example 8 the structures corresponding to R 1 and R 4 in the compound used in the lubricating layer each have only one primary hydroxyl group, and the -[B]-[A]- structure and the - Only the divalent linking group corresponding to one of the [C]-[D]- structures is present. From this, it is presumed that the lubricating layer of Comparative Example 8 has insufficient adhesion to the protective layer. As a result, in Comparative Example 8, it is presumed that the lubricant adhered to the magnetic head, resulting in a pickup characteristic test result of D. Furthermore, in Comparative Example 8, it is presumed that the adhesion to the protective layer could not be maintained and the result of the spin-off characteristic test was also D. Furthermore, in Comparative Example 8, since a compound having only OH at one end was used, it is presumed that the adhesion to the protective layer was insufficient and the result of the corrosion resistance test was C.
- Comparative Examples 10 and 11 a compound in which terminal groups having two primary hydroxyl groups are arranged at both ends of the molecule is used for the lubricating layer.
- the compounds used for the lubricating layer in Comparative Examples 10 and 11 were the -[B]-[A]- and -[C]-[D]- structures in the fluorine-containing ether compound represented by formula (1). Does not contain divalent linking groups that fall under the following. Therefore, the lubricating layers of Comparative Examples 10 and 11 have inferior adsorption power to the protective layer compared to the lubricating layers of Examples 1 to 44, and the pick-up characteristic test result is C or D, and the spin-off characteristic test result is It is estimated that it became D. Furthermore, since the compound used for the lubricating layer in Comparative Examples 10 and 11 had only one PFPE chain, it is presumed that the hydrophobicity of the lubricating layer was insufficient and the result of the corrosion resistance test was D. be done.
- a fluorine-containing ether compound that can be used for.
- SYMBOLS 10 Magnetic recording medium, 11... Substrate, 12... Adhesion layer, 13... Soft magnetic layer, 14... First underlayer, 15... Second underlayer, 16... - Magnetic layer, 17... protective layer, 18... lubricating layer.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
本願は、2022年6月10日に、日本に出願された特願2022-094482号に基づき優先権を主張し、その内容をここに援用する。
特許文献4には、分子内に2つのパーフルオロポリエーテル鎖を含み、2つのパーフルオロポリエーテル鎖間に、1級水酸基および2級水酸基を有する連結基が配置されている含フッ素エーテル化合物が開示されている。
潤滑層の長期安定性の指標としては、ピックアップ特性とスピンオフ特性が知られている。ピックアップとは、潤滑剤が異物(スメア)として磁気ヘッドに付着する現象のことである。ピックアップは、磁気ヘッドの飛行安定性に影響する。スピンオフとは、磁気記録媒体の回転に伴う遠心力および発熱によって、潤滑剤が飛散したり蒸発したりする現象である。スピンオフが発生すると潤滑層の膜厚が減少するため、潤滑層の化学物質耐性および耐摩耗性が劣化する。
また、本発明は、本発明の含フッ素エーテル化合物を含む磁気記録媒体用潤滑剤を提供することを目的とする。
また、本発明は、本発明の含フッ素エーテル化合物を含む潤滑層を有し、ピックアップおよびスピンオフが生じにくく、優れた耐腐食性を有する磁気記録媒体を提供することを目的とする。
R1-[B]-[A]-CH2-R2[-CH2-R3-CH2-R2]z-CH2-[C]-[D]-R4 (1)
(式(1)中、[A]は下記式(2-1)で表され、式(2-1)中のaは0~3の整数である。[B]は下記式(2-2)で表され、式(2-2)中のbは0~3の整数であり、cは2~5の整数である。ただし、aとbの値の合計は1~3である。式(1)において[A]と[B]は入れ替えてもよい。[C]は下記式(3-1)で表され、式(3-1)中のdは0~2の整数である。[D]は下記式(3-2)で表され、式(3-2)中のeは0~2の整数であり、fは2~5の整数である。ただし、dとeの値の合計は1または2である。式(1)において[C]と[D]は入れ替えてもよい。R4は炭素原子数が3~30の分岐型末端基であり、下記式(4)で表される。式(4)中のLは0~6の整数を表す。式(4)中のY1およびY2は、それぞれ独立に、1級水酸基を1つのみ有する、エーテル酸素原子を含んでもよい炭化水素基である。式(4)中のY3は、1級水酸基を1つのみ有する、エーテル酸素原子を含んでもよい炭化水素基、または水素原子である。R1は、R4と同じであっても異なっていてもよい末端基であり、式(4)で表される炭素原子数3~30の分岐型末端基、[A]または[B]と結合する末端にエーテル酸素原子を有する炭素原子数1~30の有機基、または水酸基である。zは、1または2を表す。R2は、パーフルオロポリエーテル鎖である。2つまたは3つのR2は一部または全部が同じであってもよいし、それぞれ異なっていてもよい。R3は、下記式(5)で表される2価の連結基である。式(5)中のy1は1~3の整数であり、y2は1~3の整数である。式(5)中の左側の酸素原子に結合する点線は、R1側のメチレン基との結合を示し、右側の酸素原子に結合する点線は、R4側のメチレン基との結合を示す。zが2である場合、2つのR3は同じであってもよいし、それぞれ異なっていてもよい。)
(式(6-2)中、hは0~6の整数を表す。iおよびjは、それぞれ独立して1~6の整数を表す。X3およびX4は、水素原子または式(7)で表される。X3とX4は同じであっても異なっていてもよい。)
(式(6-3)中、kは0~6の整数を表す。p、qおよびrは、それぞれ独立して1~6の整数を表す。X5、X6およびX7は、水素原子または式(7)で表される。X5、X6およびX7は、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
(式(7)中、sは2~6の整数を表し、tは1または2を表す。)
[4] 前記式(1)におけるR1とR4の両方が、前記式(6-1)~(6-3)のいずれかの分岐型末端基である[2]に記載の含フッ素エーテル化合物。
[6] 前記式(1)におけるzが2であって、2つのR3に含まれる原子が、分子の鎖状構造中央に配置されたR2に対して対称配置されている[1]~[5]のいずれかに記載の含フッ素エーテル化合物。
[9] 前記式(8)におけるR5が、置換基を有する炭素原子数1~6のアルキル基であり、前記置換基がフルオロ基またはシアノ基である[7]に記載の含フッ素エーテル化合物。
-(CF2)w1-O-(CF2O)w2-(CF2CF2O)w3-(CF2CF2CF2O)w4-(CF2CF2CF2CF2O)w5-(CF2)w6- (9)
(式(9)中、w2、w3、w4、w5は平均重合度を示し、それぞれ独立に0~20を表す。ただし、w2、w3、w4、w5の全てが同時に0になることはない。w1、w6は、CF2の数を表す平均値であり、それぞれ独立に1~3を表す。式(9)における繰り返し単位である(CF2O)、(CF2CF2O)、(CF2CF2CF2O)、(CF2CF2CF2CF2O)の配列順序には、特に制限はない。)
-CF2-(OCF2CF2)l-(OCF2)m-OCF2- (10-1)
(式(10-1)中、lおよびmは平均重合度を示し、lは0.1~20を表し、mは0~20を表す。)
-CF2CF2-(OCF2CF2CF2)n-OCF2CF2- (10-2)
(式(10-2)中、nは平均重合度を示し、0.1~15を表す。)
-CF2CF2CF2-(OCF2CF2CF2CF2)o-OCF2CF2CF2- (10-3)
(式(10-3)中、oは平均重合度を示し、0.1~10を表す。)
-(CF2)w7-O-(CF2CF2CF2O)w8-(CF2CF2O)w9-(CF2)w10- (10-4)
(式(10-4)中、w8、w9は平均重合度を示し、それぞれ独立に0.1~20を表す。w7、w10は、CF2の数を表す平均値であり、それぞれ独立に1~2を表す。)
[16] [1]~[15]のいずれかに記載の含フッ素エーテル化合物を含むことを特徴とする磁気記録媒体用潤滑剤。
前記潤滑層が、[1]~[15]のいずれかに記載の含フッ素エーテル化合物を含むことを特徴とする磁気記録媒体。
[18] 前記潤滑層の平均膜厚が0.5nm~2.0nmである[17]に記載の磁気記録媒体。
本発明の磁気記録媒体用潤滑剤は、本発明の含フッ素エーテル化合物を含む。このため、厚みが薄くても、磁気記録媒体の腐食を抑制する効果が高く、保護層との密着性が良好で、ピックアップおよびスピンオフを抑制できる潤滑層を形成できる。
本発明の磁気記録媒体は、保護層との密着性が良好で、ピックアップおよびスピンオフを抑制でき、優れた耐腐食性が得られる潤滑層を有している。このため、優れた信頼性および耐久性を有する。
従来、保護層の表面に塗布される磁気記録媒体用潤滑剤(以下、「潤滑剤」と略記する場合がある。)の材料として、鎖状構造の末端に水酸基などの極性基を有する含フッ素エーテル化合物が用いられている。しかしながら、従来の潤滑剤を用いて形成した潤滑層は、保護層に対する密着性および/または磁気記録媒体の腐食抑制効果が十分に得られない場合があった。また、本発明者らが、鋭意検討した結果、潤滑層の保護層に対する密着性が不十分であると、ピックアップおよびスピンオフが生じやすいことが分かった。
<2>PFPE系化合物中の水酸基が、PFPE系化合物同士の分子間水素結合の形成に関与すること。
<3>パーフルオロポリエーテル鎖(PFPE鎖)を含むことによる十分な疎水性が得られ、かつPFPE鎖が保護層から離れすぎないこと。
その結果、2つまたは3つのパーフルオロポリエーテル鎖(PFPE鎖)が、メチレン基(-CH2-)と、2級水酸基を有する特定の2価の連結基とを介して結合し、両端のパーフルオロポリエーテル鎖に、メチレン基(-CH2-)を介して2級水酸基を有する特定の連結基がそれぞれ結合し、少なくとも片末端に1級水酸基を複数有する分岐型末端基が配置された含フッ素エーテル化合物とすればよいことを見出した。そして、このような含フッ素エーテル化合物を含む潤滑層は、厚みが薄くても、磁気記録媒体の腐食を抑制する効果が高く、ピックアップおよびスピンオフを抑制できることを確認し、本発明を想到した。
本実施形態の含フッ素エーテル化合物は、下記式(1)で表される。
R1-[B]-[A]-CH2-R2[-CH2-R3-CH2-R2]z-CH2-[C]-[D]-R4 (1)
(式(1)中、[A]は下記式(2-1)で表され、式(2-1)中のaは0~3の整数である。[B]は下記式(2-2)で表され、式(2-2)中のbは0~3の整数であり、cは2~5の整数である。ただし、aとbの値の合計は1~3である。式(1)において[A]と[B]は入れ替えてもよい。[C]は下記式(3-1)で表され、式(3-1)中のdは0~2の整数である。[D]は下記式(3-2)で表され、式(3-2)中のeは0~2の整数であり、fは2~5の整数である。ただし、dとeの値の合計は1または2である。式(1)において[C]と[D]は入れ替えてもよい。R4は炭素原子数が3~30の分岐型末端基であり、下記式(4)で表される。式(4)中のLは0~6の整数を表す。式(4)中のY1およびY2は、それぞれ独立に、1級水酸基を1つのみ有する、エーテル酸素原子を含んでもよい炭化水素基である。式(4)中のY3は、1級水酸基を1つのみ有する、エーテル酸素原子を含んでもよい炭化水素基、または水素原子である。R1は、R4と同じであっても異なっていてもよい末端基であり、式(4)で表される炭素原子数3~30の分岐型末端基、[A]または[B]と結合する末端にエーテル酸素原子を有する炭素原子数1~30の有機基、または水酸基である。zは1または2を表す。R2はパーフルオロポリエーテル鎖である。2つまたは3つのR2は一部または全部が同じであってもよいし、それぞれ異なっていてもよい。R3は下記式(5)で表される2価の連結基である。式(5)中のy1は1~3の整数であり、y2は1~3の整数である。式(5)中の左側の酸素原子に結合する点線は、R1側のメチレン基との結合を示し、右側の酸素原子に結合する点線は、R4側のメチレン基との結合を示す。zが2である場合、2つのR3は同じであってもよいし、それぞれ異なっていてもよい。)
式(1)で表される本実施形態の含フッ素エーテル化合物において、[A]は前記式(2-1)で表され、[B]は前記式(2-2)で表される。式(1)における[A]および[B]は、2価の連結基である。式(1)において[A]と[B]は入れ替えてもよい。式(2-1)中のaおよび式(2-2)中のbは0~3の整数である。ただし、aとbの値の合計は1~3である。
式(1)で表される本実施形態の含フッ素エーテル化合物において、[C]は前記式(3-1)で表され、[D]は前記式(3-2)で表される。式(1)における[C]および[D]は、2価の連結基である。式(1)において[C]と[D]は入れ替えてもよい。式(3-1)中のdおよび式(3-2)中のeは0~2の整数である。ただし、dとeの値の合計は1または2である。
式(1)中、R4は式(4)で表される、炭素原子数が3~30の分岐型末端基である。R4の炭素原子数は、3~20が好ましく、さらに好ましくは3~12である。R4の炭素原子数は、3~5や、5~10や、10~15などであってもよい。R4の炭素原子数が3~12であると、含フッ素エーテル化合物分子中におけるフッ素原子の割合が低下して、分子全体の表面自由エネルギーが大きくなってしまうことを抑制できる。
式(4)中のLは0~6の整数を表す。式(4)中、Y1およびY2は、それぞれ独立に、1級水酸基を1つのみ有する、エーテル酸素原子を含んでもよい炭化水素基である。Y1およびY2で示される炭化水素基は、直鎖であっても分岐であってもよく、2級水酸基および3級水酸基を含まないことが好ましい。Y3は、1級水酸基を1つのみ有する、エーテル酸素原子を含んでもよい炭化水素基、または水素原子である。Y3で示される炭化水素基は、直鎖であっても分岐であってもよく、2級水酸基および3級水酸基を含まないことが好ましい。
R4が複数のエーテル結合を有する場合、隣接するエーテル結合同士は、2つ以上の炭素原子が連結された連結基を介して結合していることが好ましい。この場合、隣接するエーテル結合の間の距離が適正となり、凝集しにくい含フッ素エーテル化合物となる。
(式(6-2)中、hは0~6の整数を表す。iおよびjは、それぞれ独立して1~6の整数を表す。X3およびX4は、水素原子または式(7)で表される。X3とX4は同じであっても異なっていてもよい。)
(式(6-3)中、kは0~6の整数を表す。p、qおよびrは、それぞれ独立して1~6の整数を表す。X5、X6およびX7は、水素原子または式(7)で表される。X5、X6およびX7は、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
(式(7)中、sは2~6の整数を表し、tは1または2を表す。)
X1およびX2は、式(7)で表される。X1とX2は同じであっても異なっていてもよい。
X3およびX4は、水素原子または式(7)で表される。X3とX4は同じであっても異なっていてもよい。
p、qおよびrは、それぞれ独立して1~6の整数を表す。p、qおよびrは、含フッ素エーテル化合物分子中におけるフッ素原子の割合を確保しやすくなるため、それぞれ独立して、1~4の整数であることが好ましく、さらに好ましくは1または2である。p、qおよびrは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。p、qおよびrは、含フッ素エーテル化合物の製造が容易であるため、全て同じであることが好ましい。
X5、X6およびX7は、水素原子または式(7)で表される。X5、X6およびX7は、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。
tは1または2を表す。tが2である場合、それぞれの[-(CH2)s-O-]におけるsは同じであってもよいし、異なっていてもよい。tは、含フッ素エーテル化合物分子中におけるフッ素原子の割合を確保しやすくなるため、1であることが好ましい。
式(6-1)中のX2としての式(7)は、sが3以上である、および/またはtが2であることが好ましく、式(6-1)中のX1としての式(7)および式(6-1)中のX2としての式(7)の両方が、sが3以上である、および/またはtが2であることがより好ましい。式(6-1)中の分岐点となっている炭素原子から1級水酸基までの距離が近すぎることがなく適正となり、ピックアップおよびスピンオフを、より効果的に抑制できる潤滑層を形成できる含フッ素エーテル化合物となるためである。
(1)においてR1で示される末端基は、R4と同じであっても異なっていてもよい末端基であり、式(4)で表される炭素原子数3~30の分岐型末端基、[A]または[B]と結合する末端にエーテル酸素原子を有する炭素原子数1~30の有機基、または水酸基である。R1で示される末端基は、含フッ素エーテル化合物を含む潤滑剤に求められる性能などに応じて適宜選択できる。
R1が式(4)で表される末端基である場合、-[A]-[B]-R1は、具体的には、前記式(11-1)~(11-25)で表される構造であることが好ましい。
式(1)において、R1が式(4)で表される末端基である場合、R1とR4とが同じであることが好ましく、R1とR4の両方が、前記式(6-1)~(6-3)のいずれかの分岐型末端基であることがさらに好ましい。
R5が水素原子である場合、R5は式(8)中の酸素原子とともに水酸基を形成する。式(8)中のvが1である場合、式(8)で表されるR1は、末端に水酸基を有するアルコキシ基である。式(8)中のvが0である場合、式(8)で表されるR1は水酸基である。
置換基を有してもよいアルキル基は、置換基を有さない炭素原子数1~6のアルキル基、または置換基を有する炭素原子数1~6のアルキル基であることが好ましい。置換基を有する炭素原子数1~6のアルキル基の有する置換基は、フルオロ基またはシアノ基であることが好ましい。置換基を有する炭素原子数1~6のアルキル基は、アルキル基の有する水素原子の1つ以上が置換基で置換されたものであり、アルキル基の有する水素原子の全てが置換基で置換されたものであってもよい。
水素原子の1つ以上がシアノ基で置換された炭素原子数1~6のアルキル基としては、例えば、2-シアノエチル基、3-シアノプロピル基、4-シアノブチル基、5-シアノペンチル基、6-シアノヘキシル基、2-シアノ-1-メチルエチル基、2,2’-ジシアノイソプロピル基が挙げられる。
式(1)で表される含フッ素エーテル化合物において、(z+1)個のR2は、それぞれ独立にパーフルオロポリエーテル鎖である。R2で示されるPFPE鎖は、本実施形態の含フッ素エーテル化合物を含む潤滑剤を保護層上に塗布して潤滑層を形成した場合に、保護層の表面を被覆するとともに、潤滑層に潤滑性を付与して磁気ヘッドと保護層との摩擦力を低減させる。R2で示されるPFPE鎖は、含フッ素エーテル化合物を含む潤滑剤に求められる性能等に応じて適宜選択される。
(z+1)個のR2のうち2つ以上のR2が同じであるとは、(z+1)個のR2のうち、PFPE鎖の繰り返し単位の構造が同じR2が2つ以上含まれていることを意味する。同じR2には、繰り返し単位の構造が同じであって、平均重合度が異なるものも含まれる。
-(CF2)w1-O-(CF2O)w2-(CF2CF2O)w3-(CF2CF2CF2O)w4-(CF2CF2CF2CF2O)w5-(CF2)w6- (9)
(式(9)中、w2、w3、w4、w5は平均重合度を示し、それぞれ独立に0~20を表す。ただし、w2、w3、w4、w5の全てが同時に0になることはない。w1、w6は、CF2の数を表す平均値であり、それぞれ独立に1~3を表す。式(9)における繰り返し単位である(CF2O)、(CF2CF2O)、(CF2CF2CF2O)、(CF2CF2CF2CF2O)の配列順序には、特に制限はない。)
式(9)中、w1、w6はCF2の数を示す平均値であり、それぞれ独立に1~3を表す。w1、w6は、式(9)で表されるPFPE鎖において、鎖状構造の端部に配置されている繰り返し単位の構造などに応じて決定される。
式(9)における(CF2O)、(CF2CF2O)、(CF2CF2CF2O)、(CF2CF2CF2CF2O)は、繰り返し単位である。式(9)における繰り返し単位の配列順序には、特に制限はない。また、式(9)における繰り返し単位の種類の数にも、特に制限はない。
式(1)における(z+1)個のR2がそれぞれ式(10-1)~(10-4)で表されるPFPE鎖から選ばれるいずれか1種であると、良好な潤滑性を有する潤滑層が得られる含フッ素エーテル化合物となる。また、(z+1)個のR2がそれぞれ式(10-1)~(10-4)で表されるPFPE鎖から選ばれるいずれか1種である場合、PFPE鎖中の炭素原子数に対する酸素原子数(エーテル結合(-O-)数)の割合が適正である。このため、適度な硬さを有する含フッ素エーテル化合物となる。よって、保護層上に塗布された含フッ素エーテル化合物が、保護層上で凝集しにくく、より一層厚みの薄い潤滑層を十分な被覆率で形成できる。また、含フッ素エーテル化合物が適度な柔軟性を有することにより、ピックアップ特性およびスピンオフ特性のより良好な潤滑層を形成できる。
(式(10-1)中、lおよびmは平均重合度を示し、lは0.1~20を表し、mは0~20を表す。)
-CF2CF2-(OCF2CF2CF2)n-OCF2CF2- (10-2)
(式(10-2)中、nは平均重合度を示し、0.1~15を表す。)
-CF2CF2CF2-(OCF2CF2CF2CF2)o-OCF2CF2CF2- (10-3)
(式(10-3)中、oは平均重合度を示し、0.1~10を表す。)
-(CF2)w7-O-(CF2CF2CF2O)w8-(CF2CF2O)w9-(CF2)w10- (10-4)
(式(10-4)中、w8、w9は平均重合度を示し、それぞれ独立に0.1~20を表す。w7、w10は、CF2の数を表す平均値であり、それぞれ独立に1~2を表す。)
式(10-4)におけるw7およびw10は、CF2の数を示す平均値であり、それぞれ独立に1~2を表す。w7およびw10は、式(10-4)で表されるPFPE鎖において、鎖状構造の端部に配置されている繰り返し単位の構造などに応じて決定される。
式(1)で表される含フッ素エーテル化合物において、1つまたは2つのR3は、上記式(5)で表される2価の連結基である。式(5)中の左側の酸素原子に結合する点線は、R1側のメチレン基との結合を示し、右側の酸素原子に結合する点線は、R4側のメチレン基との結合を示す。式(1)中のzが1である場合、R3は2つのR2で示されるPFPE鎖の間に配置される。zが2である場合、2つのR3は、R1側のR2と中央のR2との間と、R4側のR2と中央のR2との間に、それぞれ配置される。
「2つのR3が同じである」とは、2つのR3に含まれる原子が、分子の鎖状構造中央に配置されたR2に対して対称配置されていることを意味する。すなわち、zが2である場合、式(1)で表される含フッ素エーテル化合物は、2つのR3における式(5)中のy1、y2が、鎖状構造中央に配置されたR2に対して対称となる値である含フッ素エーテル化合物であることが好ましい。例えば、R1側のR3における式(5)中のy1が1、y2が2であり、R4側のR3における式(5)中のy1が2、y2が1である場合、2つのR3は同じである。また、例えば、R1側のR3における式(5)中のy1が2、y2が1あり、R4側のR3における式(5)中のy1が1、y2が2である場合、2つのR3は同じである。
式(1)においては、zが1である場合、R1-[B]-[A]-と-[C]-[D]-R4とが同じであり、2つのR2が同じであることがより好ましい。合成の容易な含フッ素エーテル化合物となるためである。
式(1)においては、zが2である場合、R1-[B]-[A]-と-[C]-[D]-R4とが同じであり、3つのR2が同じであることがより好ましい。合成の容易な含フッ素エーテル化合物となるためである。さらに、zが2である場合、2つのR3に含まれる原子が、分子の鎖状構造中央に配置されたR2に対して対称配置されていることが好ましい。より一層合成の容易な含フッ素エーテル化合物となるためである。
下記式(1A)~(1V)、(2A)~(2V)で表される化合物において、PFPE鎖を表すRf1、Rf2は、それぞれ下記の構造である。すなわち、Rf1は上記式(10-1)で表されるPFPE鎖であり、Rf2は、上記式(10-2)で表されるPFPE鎖である。なお、式(1A)~(1V)、(2A)~(2V)中のPFPE鎖を表すRf1におけるlおよびm、Rf2におけるnは、平均重合度を示す値であるため、必ずしも整数になるとは限らない。
(式(1B)中のRf21bは式(1BF)で表される。Rf21b中、n1bは平均重合度を示し、0.1~15を表す。式(1B)中の2つのRf21bにおけるn1bは同じであっても異なっていてもよい。)
(式(1D)中のRf11dは式(1DF)で表される。Rf11d中、l1dおよびm1dは平均重合度を示し、l1dは0.1~20を表し、m1dは0~20を表す。式(1D)中の2つのRf11dにおけるl1dおよびm1dはそれぞれ同じであっても異なっていてもよい。)
(式(1F)中のRf21fは式(1FF)で表される。Rf21f中、n1fは平均重合度を示し、0.1~15を表す。式(1F)中の2つのRf21fにおけるn1fは同じであっても異なっていてもよい。)
(式(1H)中のRf11hは式(1HF)で表される。Rf11h中、l1hおよびm1hは平均重合度を示し、l1hは0.1~20を表し、m1hは0~20を表す。式(1H)中の2つのRf11hにおけるl1hおよびm1hはそれぞれ同じであっても異なっていてもよい。)
(式(1J)中のRf21jは式(1JF)で表される。Rf21j中、n1jは平均重合度を示し、0.1~15を表す。式(1J)中の2つのRf21jにおけるn1jは同じであっても異なっていてもよい。)
(式(1L)中のRf21lは式(1LF)で表される。Rf21l中、n1lは平均重合度を示し、0.1~15を表す。式(1L)中の2つのRf21lにおけるn1lは同じであっても異なっていてもよい。)
(式(1N)中のRf21nは式(1NF)で表される。Rf21n中、n1nは平均重合度を示し、0.1~15を表す。式(1N)中の2つのRf21nにおけるn1nは同じであっても異なっていてもよい。)
(式(1P)中のRf21pは式(1PF)で表される。Rf21p中、n1pは平均重合度を示し、0.1~15を表す。式(1P)中の2つのRf21pにおけるn1pは同じであっても異なっていてもよい。)
(式(1R)中のRf11rは式(1RF)で表される。Rf11r中、l1rおよびm1rは平均重合度を示し、l1rは0.1~20を表し、m1rは0~20を表す。式(1R)中の2つのRf11rにおけるl1rおよびm1rはそれぞれ同じであっても異なっていてもよい。)
(式(1T)中のRf11tは式(1TF)で表される。Rf11t中、l1tおよびm1tは平均重合度を示し、l1tは0.1~20を表し、m1tは0~20を表す。式(1T)中の2つのRf11tにおけるl1tおよびm1tはそれぞれ同じであっても異なっていてもよい。)
(式(1V)中のRf21vは式(1VF)で表される。Rf21v中、n1vは平均重合度を示し、0.1~15を表す。式(1V)中の2つのRf21vにおけるn1vは同じであっても異なっていてもよい。)
(式(2B)中のRf22bは式(2BF)で表される。Rf22b中、n2bは平均重合度を示し、0.1~15を表す。式(2B)中の3つのRf22bにおけるn2bは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
(式(2D)中のRf12dは式(2DF)で表される。Rf12d中、l2dおよびm2dは平均重合度を示し、l2dは0.1~20を表し、m2dは0~20を表す。式(2D)中の3つのRf12dにおけるl2dおよびm2dは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
(式(2F)中のRf22fは式(2FF)で表される。Rf22f中、n2fは平均重合度を示し、0.1~15を表す。式(2F)中の3つのRf22fにおけるn2fは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
(式(2H)中のRf12hは式(2HF)で表される。Rf12h中、l2hおよびm2hは平均重合度を示し、l2hは0.1~20を表し、m2hは0~20を表す。式(2H)中の3つのRf12hにおけるl2hおよびm2hは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
(式(2J)中のRf22jは式(2JF)で表される。Rf22j中、n2jは平均重合度を示し、0.1~15を表す。式(2J)中の3つのRf22jにおけるn2jは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
(式(2L)中のRf22lは式(2LF)で表される。Rf22l中、n2lは平均重合度を示し、0.1~15を表す。式(2L)中の3つのRf22lにおけるn2lは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
(式(2N)中のRf22nは式(2NF)で表される。Rf22n中、n2nは平均重合度を示し、0.1~15を表す。式(2N)中の3つのRf22nにおけるn2nは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
(式(2P)中のRf22pは式(2PF)で表される。Rf22p中、n2pは平均重合度を示し、0.1~15を表す。式(2P)中の3つのRf22pにおけるn2pは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
(式(2R)中のRf12rは式(2RF)で表される。Rf12r中、l2rおよびm2rは平均重合度を示し、l2rは0.1~20を表し、m2rは0~20を表す。式(2R)中の3つのRf12rにおけるl2rおよびm2rは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
(式(2T)中のRf12tは式(2TF)で表される。Rf12t中、l2tおよびm2tは平均重合度を示し、l2tは0.1~20を表し、m2tは0~20を表す。式(2T)中の3つのRf12tにおけるl2tおよびm2tは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
(式(2V)中のRf22vは式(2VF)で表される。Rf22v中、n2vは平均重合度を示し、0.1~15を表す。式(2V)中の3つのRf22vにおけるn2vは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
下記式(4A)~(4O)、(5A)~(5O)で表される化合物において、PFPE鎖を表すRf1は、上記式(10-1)で表されるPFPE鎖であり、Rf2は、上記式(10-2)で表されるPFPE鎖である。なお、式(4A)~(4O)、(5A)~(5O)中のPFPE鎖を表すRf1におけるlおよびm、Rf2におけるnは、平均重合度を示す値であるため、必ずしも整数になるとは限らない。
(式(4B)中のRf24bは式(4BF)で表される。Rf24b中、n4bは平均重合度を示し、0.1~15を表す。式(4B)中の2つのRf24bにおけるn4bは同じであっても異なっていてもよい。)
(式(4D)中のRf24dは式(4DF)で表される。Rf24d中、n4dは平均重合度を示し、0.1~15を表す。式(4D)中の2つのRf24dにおけるn4dは同じであっても異なっていてもよい。)
(式(4F)中のRf24fは式(4FF)で表される。Rf24f中、n4fは平均重合度を示し、0.1~15を表す。式(4F)中の2つのRf24fにおけるn4fは同じであっても異なっていてもよい。)
(式(4H)中のRf24hは式(4HF)で表される。Rf24h中、n4hは平均重合度を示し、0.1~15を表す。式(4H)中の2つのRf24hにおけるn4hは同じであっても異なっていてもよい。)
(式(4J)中のRf24jは式(4JF)で表される。Rf24j中、n4jは平均重合度を示し、0.1~15を表す。式(4J)中の2つのRf24jにおけるn4jは同じであっても異なっていてもよい。)
(式(4L)中のRf24lは式(4LF)で表される。Rf24l中、n4lは平均重合度を示し、0.1~15を表す。式(4L)中の2つのRf24lにおけるn4lは同じであっても異なっていてもよい。)
(式(4N)中のRf24nは式(4NF)で表される。Rf24n中、n4nは平均重合度を示し、0.1~15を表す。式(4N)中の2つのRf24nにおけるn4nは同じであっても異なっていてもよい。)
(式(5A)中のRf25aは式(5AF)で表される。Rf25a中、n5aは平均重合度を示し、0.1~15を表す。式(5A)中の3つのRf25aにおけるn5aは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
(式(5C)中のRf25cは式(5CF)で表される。Rf25c中、n5cは平均重合度を示し、0.1~15を表す。式(5C)中の3つのRf25cにおけるn5cは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
(式(5E)中のRf25eは式(5EF)で表される。Rf25e中、n5eは平均重合度を示し、0.1~15を表す。式(5E)中の3つのRf25eにおけるn5eは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
(式(5G)中のRf25gは式(5GF)で表される。Rf25g中、n5gは平均重合度を示し、0.1~15を表す。式(5G)中の3つのRf25gにおけるn5gは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
(式(5I)中のRf25iは式(5IF)で表される。Rf25i中、n5iは平均重合度を示し、0.1~15を表す。式(5I)中の3つのRf25iにおけるn5iは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
(式(5K)中のRf25kは式(5KF)で表される。Meはメチル基を表す。Rf25k中、n5kは平均重合度を示し、0.1~15を表す。式(5K)中の3つのRf25kにおけるn5kは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
(式(5M)中のRf25mは式(5MF)で表される。Rf25m中、n5mは平均重合度を示し、0.1~15を表す。式(5M)中の3つのRf25mにおけるn5mは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
(式(5O)中のRf25oは式(5OF)で表される。Rf25o中、n5oは平均重合度を示し、0.1~15を表す。式(5O)中の3つのRf25oにおけるn5oは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
本実施形態において、分子量分画する方法としては、特に制限されないが、例えば、シリカゲルカラムクロマトグラフィー法、ゲルパーミエーションクロマトグラフィー(GPC)法などによる分子量分画、超臨界抽出法による分子量分画等を用いることができる。
これらのことから、本実施形態の含フッ素エーテル化合物を含む潤滑層を保護層上に形成した場合、BA構造に含まれる2級水酸基およびCD構造に含まれる2級水酸基が、保護層上の活性点との結合に有効に関与する。
このように、式(1)で表される本実施形態の含フッ素エーテル化合物では、<1>BA構造に含まれる2級水酸基およびCD構造に含まれる2級水酸基が、保護層上の活性点との結合に有効に関与し、かつ<2>R4に含まれる複数の1級水酸基が、含フッ素エーテル化合物同士の分子間水素結合の形成に関与する。
さらに、本実施形態の含フッ素エーテル化合物を含む潤滑層では、<3>式(1)中のR2で示される2つまたは3つのPFPE鎖を含むことによる十分な疎水性が得られ、しかも隣接するR2間に配置された2級水酸基を有するR3によって、R2が保護層から離れすぎることが抑制される。
本実施形態の含フッ素エーテル化合物の製造方法は、特に限定されるものではなく、従来公知の製造方法を用いて製造できる。本実施形態の含フッ素エーテル化合物は、例えば、以下に示す製造方法を用いて製造できる。
(R1-[B]-[A]-と-[C]-[D]-R4とが同じで、2つのR2が同じ場合)
まず、式(1)におけるR2に対応するPFPE鎖の両末端に、それぞれヒドロキシメチル基(-CH2OH)が配置されたフッ素系化合物を用意する。次いで、前記フッ素系化合物の一方の末端に配置されたヒドロキシメチル基の水酸基と、式(1)におけるR1-[B]-[A]-(=-[C]-[D]-R4)からなる基に対応するエポキシ化合物とを反応させる(第一反応)。このことにより、R2に対応するPFPE鎖の一方の末端にR1-[B]-[A]-(=-[C]-[D]-R4)に対応する基を有する中間体化合物1-1が得られる。
上記エポキシ化合物を合成する場合、例えば、製造する含フッ素エーテル化合物のR1-[B]-[A]-(または、-[C]-[D]-R4)からなる基に対応する構造を有するアルコールと、エポキシ基を有する化合物とを反応させる方法を用いることができる。この方法では、エポキシ基を有する化合物として、例えば、エピクロロヒドリン、エピブロモヒドリン、2-ブロモエチルオキシラン、アリルグリシジルエーテルから選ばれるいずれかの化合物を用いることができる。また、上記エポキシ化合物を合成する他の方法として、製造する含フッ素エーテル化合物のR1-[B]-[A]-(または、-[C]-[D]-R4)からなる基に対応する構造を有する不飽和化合物を用意し、その不飽和結合を酸化する方法を用いてもよい。
以上の工程を行うことにより、式(1)におけるzが1であって、R1-[B]-[A]-と-[C]-[D]-R4とが同じであって、R2で示される2つのPFPE鎖が同じである化合物を製造できる。
第1製造方法における第一反応において、R1-[B]-[A]-と-[C]-[D]-R4とが同じであって、R2で示される2つのPFPE鎖が同じである化合物を製造する場合と同様にして、R1側のR2に対応するPFPE鎖の一方の末端にR1-[B]-[A]-に対応する基を有し、他方の末端にヒドロキシメチル基が配置された中間体化合物1-2を製造する。
なお、第二反応において、中間体化合物1-2と、R3に対応するエポキシ基を有するハロゲン化合物とを反応させて得られたエポキシ化合物と、中間体化合物1-3とを反応させる場合を例に挙げて説明したが、中間体化合物1-3と、R3に対応するエポキシ基を有するハロゲン化合物とを反応させて得られたエポキシ化合物と、中間体化合物1-2とを反応させてもよい。
(R1-[B]-[A]-と-[C]-[D]-R4とが同じで、2つのR3が同じで、3つのR2が同じである場合)
まず、式(1)におけるR2に対応するPFPE鎖の両末端に、それぞれヒドロキシメチル基(-CH2OH)が配置されたフッ素系化合物を用意する。次いで、前記フッ素系化合物の両末端に配置されたヒドロキシメチル基の水酸基と、R3に対応するエポキシ基を有するハロゲン化合物とを反応させる(第一反応)。このことにより、R2に対応するPFPE鎖の両末端に、R3に対応するエポキシ基を有する中間体化合物2-1が得られる。
また、第2製造方法における第二反応は、第一反応の後に行ってもよいし、第一反応の前に行ってもよい。
以上の工程を行うことにより、式(1)におけるzが2であって、R3で示される2つの連結基が同じであって、R1-[B]-[A]-と-[C]-[D]-R4とが同じであって、R2で示される3つのPFPE鎖が同じである化合物を製造できる。
第2製造方法における第一反応において、分子中央のR2に対応するPFPE鎖の両末端に、R3に対応するエポキシ基を有する中間体化合物2-1を合成する。
次に、第二反応において、中間体化合物2-2と同様にして、下記の中間体化合物2-2aと、中間体化合物2-2bとをそれぞれ合成する。
また、R4側のR2に対応するPFPE鎖の両末端に、それぞれヒドロキシメチル基が配置されたフッ素系化合物を用意する。そして、前記フッ素系化合物の一方の末端に配置されたヒドロキシメチル基の水酸基と、式(1)における-[C]-[D]-R4からなる基に対応するエポキシ化合物とを反応させる。このことにより、R4側のR2に対応するPFPE鎖の一方の末端に-[C]-[D]-R4に対応する基を有し、他方の末端にヒドロキシメチル基が配置された中間体化合物2-2bが得られる。
以上の工程を行うことにより、式(1)におけるzが2であって、R3で示される2つの連結基が同じであって、R1-[B]-[A]-と-[C]-[D]-R4とが異なる、および/またはR2で示される3つのPFPE鎖のうちいずれか1つ以上が異なる化合物を製造できる。
第2製造方法における第一反応において、前記フッ素系化合物の各末端に配置されたヒドロキシメチル基の水酸基に対して、公知の方法により、一方のR3に対応するエポキシ基を有するハロゲン化合物と、もう一方のR3に対応するエポキシ基を有するハロゲン化合物とをそれぞれ反応させる。このことにより、R2に対応するPFPE鎖の一端に、一方のR3に対応するエポキシ基を有し、他端にもう一方のR3に対応するエポキシ基を有する中間体化合物2-1bが得られる。
その後、第三反応において、中間体化合物2-1に代えて中間体化合物2-1bを用いること以外は、R1-[B]-[A]-と-[C]-[D]-R4とが同じで、2つのR3が同じで、3つのR2が同じである場合と同様にして、中間体化合物2-1bと中間体化合物2-2とを反応させる。
以上の工程を行うことにより、式(1)におけるzが2であって、R3で示される2つの連結基が異なり、R1-[B]-[A]-と-[C]-[D]-R4とが同じであって、R2で示される3つのPFPE鎖が同じである化合物を製造できる。
第2製造方法における第一反応において、2つのR3が異なり、R1-[B]-[A]-と-[C]-[D]-R4とが同じで、3つのR2が同じ場合と同様にして、中間体化合物2-1bを合成する。
その後、第二反応において、2つのR3が同じで、R1-[B]-[A]-と-[C]-[D]-R4とが異なる、および/または3つのR2のうちいずれか1つ以上が異なる場合と同様にして、中間体化合物2-2aと、中間体化合物2-2bとをそれぞれ合成する。
以上の工程を行うことにより、式(1)におけるzが2であって、R3で示される2つの連結基が異なり、R1-[B]-[A]-と-[C]-[D]-R4とが異なる、および/またはR2で示される3つのPFPE鎖のうちいずれか1つ以上が異なる化合物を製造できる。
本実施形態の磁気記録媒体用潤滑剤は、上記式(1)で表される含フッ素エーテル化合物を含む。
本実施形態の潤滑剤は、上記式(1)で表される含フッ素エーテル化合物を含むことによる特性を損なわない範囲内であれば、潤滑剤の材料として使用されている公知の材料を、必要に応じて混合して用いることができる。
本実施形態の潤滑剤は、上記式(1)で表される含フッ素エーテル化合物を含むため、厚みが薄くても、磁気記録媒体の腐食を抑制する効果が高く、保護層との密着性が良好であり、磁気記録媒体のピックアップ特性およびスピンオフ特性の良好な潤滑層を形成できる。
本実施形態の磁気記録媒体は、基板上に、少なくとも磁性層と、保護層と、潤滑層とが順次設けられたものである。
本実施形態の磁気記録媒体では、基板と磁性層との間に、必要に応じて1層または2層以上の下地層を設けることができる。また、下地層と基板との間に、付着層および軟磁性層の少なくとも一方を設けることもできる。
本実施形態の磁気記録媒体10は、基板11上に、付着層12と、軟磁性層13と、第1下地層14と、第2下地層15と、磁性層16と、保護層17と、潤滑層18とが順次設けられた構造をなしている。
基板11としては、例えば、AlもしくはAl合金などの金属または合金材料からなる基体上に、NiPまたはNiP合金からなる膜が形成された非磁性基板等を用いることができる。
また、基板11としては、ガラス、セラミックス、シリコン、シリコンカーバイド、カーボン、樹脂などの非金属材料からなる非磁性基板を用いてもよいし、これらの非金属材料からなる基体上にNiPまたはNiP合金の膜を形成した非磁性基板を用いてもよい。
付着層12は、基板11と、付着層12上に設けられる軟磁性層13とを接して配置した場合に生じる、基板11の腐食の進行を防止する。
付着層12の材料は、例えば、Cr、Cr合金、Ti、Ti合金、CrTi、NiAl、AlRu合金等から適宜選択できる。付着層12は、例えば、スパッタリング法により形成できる。
軟磁性層13は、第1軟磁性膜と、Ru膜からなる中間層と、第2軟磁性膜とが順に積層された構造を有していることが好ましい。すなわち、軟磁性層13は、2層の軟磁性膜の間にRu膜からなる中間層を挟み込むことによって、中間層の上下の軟磁性膜がアンチ・フェロ・カップリング(AFC)結合した構造を有していることが好ましい。
第1軟磁性膜および第2軟磁性膜に使用されるCoFe合金には、Zr、Ta、Nbの何れかを添加することが好ましい。これにより、第1軟磁性膜および第2軟磁性膜の非晶質化が促進される。その結果、第1下地層(シード層)の配向性を向上させることが可能になるとともに、磁気ヘッドの浮上量を低減することが可能となる。
軟磁性層13は、例えば、スパッタリング法により形成できる。
第1下地層14は、その上に設けられる第2下地層15および磁性層16の配向および結晶サイズを制御する層である。
第1下地層14としては、例えば、Cr層、Ta層、Ru層、あるいはCrMo合金層、CoW合金層、CrW合金層、CrV合金層、CrTi合金層などからなるものが挙げられる。
第1下地層14は、例えば、スパッタリング法により形成できる。
第2下地層15は、磁性層16の配向が良好になるように制御する層である。第2下地層15は、RuまたはRu合金からなる層であることが好ましい。
第2下地層15は、1層からなる層であってもよいし、複数層から構成されていてもよい。第2下地層15が複数層からなる場合、全ての層が同じ材料から構成されていてもよいし、少なくとも一層が異なる材料から構成されていてもよい。
第2下地層15は、例えば、スパッタリング法により形成できる。
磁性層16は、磁化容易軸が基板面に対して垂直または水平方向を向いた磁性膜からなる。磁性層16は、CoとPtとを含む層である。磁性層16は、SNR特性を改善するために、酸化物、Cr、B、Cu、Ta、Zr等を含む層であってもよい。
磁性層16に含有される酸化物としては、SiO2、SiO、Cr2O3、CoO、Ta2O3、TiO2等が挙げられる。
例えば、磁性層16が、下から順に積層された第1磁性層と第2磁性層と第3磁性層の3層からなる場合、第1磁性層は、Co、Cr、Ptを含み、さらに酸化物を含んだ材料からなるグラニュラー構造であることが好ましい。第1磁性層に含有される酸化物としては、例えば、Cr、Si、Ta、Al、Ti、Mg、Co等の酸化物を用いることが好ましい。その中でも、特に、TiO2、Cr2O3、SiO2等を好適に用いることができる。また、第1磁性層は、酸化物を2種類以上添加した複合酸化物からなることが好ましい。その中でも、特に、Cr2O3-SiO2、Cr2O3-TiO2、SiO2-TiO2等を好適に用いることができる。
第2磁性層には、第1磁性層と同様の材料を用いることができる。第2磁性層は、グラニュラー構造であることが好ましい。
非磁性層は、例えば、スパッタリング法により形成できる。
磁性層16は、蒸着法、イオンビームスパッタ法、マグネトロンスパッタ法等、従来公知のいかなる方法によって形成してもよい。磁性層16は、通常、スパッタリング法により形成される。
保護層17は、磁性層16を保護する。保護層17は、1層から構成されていてもよいし、複数層から構成されていてもよい。保護層17としては、炭素系保護層を好ましく用いることができ、特にアモルファス炭素保護層が好ましい。保護層17が炭素系保護層であると、潤滑層18中の含フッ素エーテル化合物に含まれる極性基(特に水酸基)との相互作用が一層高まるため、好ましい。
保護層17として炭素系保護層を形成する場合、例えば、DCマグネトロンスパッタリング法により成膜できる。特に、保護層17として炭素系保護層を形成する場合、プラズマCVD法により、アモルファス炭素保護層を成膜することが好ましい。プラズマCVD法により成膜したアモルファス炭素保護層は、表面が均一で、粗さが小さいものとなる。
潤滑層18は、磁気記録媒体10の汚染を防止する。また、潤滑層18は、磁気記録媒体10上を摺動する磁気記録再生装置の磁気ヘッドの摩擦力を低減させて、磁気記録媒体10の耐久性を向上させる。
潤滑層18は、図1に示すように、保護層17上に接して形成されている。潤滑層18は、保護層17上に上述した実施形態の磁気記録媒体用潤滑剤を塗布することにより形成されたものである。したがって、潤滑層18は、上述の含フッ素エーテル化合物を含む。
潤滑層18を形成する方法としては、例えば、基板11上に保護層17までの各層が形成された製造途中の磁気記録媒体を用意し、保護層17上に潤滑層形成用溶液を塗布し、乾燥させる方法が挙げられる。
潤滑層形成用溶液に用いられる溶媒としては、例えば、バートレル(登録商標)XF(商品名、三井デュポンフロロケミカル社製)等のフッ素系溶媒等が挙げられる。
ディップ法を用いる場合、例えば、以下に示す方法を用いることができる。まず、ディップコート装置の浸漬槽に入れられた潤滑層形成用溶液中に、保護層17までの各層が形成された基板11を浸漬する。次いで、浸漬槽から基板11を所定の速度で引き上げる。このことにより、潤滑層形成用溶液を基板11の保護層17上の表面に塗布する。
ディップ法を用いることで、潤滑層形成用溶液を保護層17の表面に均一に塗布することができ、保護層17上に均一な膜厚で潤滑層18を形成できる。
熱処理温度は100℃~180℃とすることが好ましく、100℃~160℃とすることがより好ましい。熱処理温度が100℃以上であると、潤滑層18と保護層17との密着性を向上させる効果が充分に得られる。また、熱処理温度を180℃以下にすることで、熱処理による潤滑層18の熱分解を防止できる。熱処理時間は、熱処理温度に応じて適宜調整でき、10分~120分とすることが好ましい。
以下に示す方法により、上記式(1A)で示される化合物を製造した。
(第一反応)
窒素ガス雰囲気下、200mLナスフラスコにHOCH2CF2CF2O(CF2CF2CF2O)nCF2CF2CH2OH(式中の平均重合度を示すnは3.8である。)で表される化合物(数平均分子量909、分子量分布1.1)20gと、下記式(12)で表される化合物5.3g(分子量404、13.2mmol)と、t-ブタノール20mLとを仕込み、室温で均一になるまで撹拌した。この均一の液にさらにカリウムtert-ブトキシド0.74g(分子量112.21、6.6mmol)を加え、70℃で16時間撹拌して反応させた。
窒素ガス雰囲気下で200mLナスフラスコに、中間体化合物1-1である式(13)で示される化合物11.6g(分子量1313、8.8mmol)と、t-ブタノール6.0mLと、カリウムtert-ブトキシド0.59g(分子量112.21、5.3mmol)とを仕込み、室温で均一になるまで撹拌した。この均一の液にエピブロモヒドリン0.50g(分子量137、3.6mmоl)を加え、70℃で24時間撹拌して反応させた。
以上の工程を行うことにより、化合物(1A)(式(1A)中のRf21aは式(1AF)で表される。2つのRf21a中、平均重合度を示すn1aは3.8である。)を4.2g(数平均分子量2349、1.8mmol)得た。
1H-NMR(CD3COCD3):δ[ppm]=3.46~4.24(56H)
19F-NMR(CD3COCD3):δ[ppm]=-84.0~-83.0(30.4F)、-86.4(8F)、-124.3(8F)、-130.0~-129.0(15.2F)
第一反応において、式(12)で表される化合物の代わりに、下記式(14)で表される化合物を5.5g(分子量419、13.2mmol)用いたこと以外は、実施例1と同様な操作を行い、上記式(1B)で表される化合物(式(1B)中のRf21bは式(1BF)で表される。2つのRf21b中、平均重合度を示すn1bは3.8である。)を4.3g(数平均分子量2377、1.8mmol)得た。
1H-NMR(CD3COCD3):δ[ppm]=1.65~1.81(4H)、3.39~4.35(56H)
19F-NMR(CD3COCD3):δ[ppm]=-84.0~-83.0(30.4F)、-86.4(8F)、-124.3(8F)、-130.0~-129.0(15.2F)
第一反応において、HOCH2CF2CF2O(CF2CF2CF2O)nCF2CF2CH2OHの代わりに、HOCH2CF2O(CF2CF2O)l(CF2O)mCF2CH2OH(式中の平均重合度を示すlは4.0、平均重合度を示すmは4.0である。)で表される化合物(数平均分子量906、分子量分布1.1)20gを用い、式(12)で表される化合物の代わりに、下記式(15)で表される化合物を5.7g(分子量432、13.2mmol)用いたこと以外は、実施例1と同様な操作を行い、上記式(1C)で表される化合物(式(1C)中のRf11cは式(1CF)で表される。2つのRf11c中、平均重合度を示すl1cは4.0、平均重合度を示すm1cは4.0である。)を4.3g(数平均分子量2399、1.8mmol)得た。
1H-NMR(CD3COCD3):δ[ppm]=1.65~1.81(8H)、3.39~4.35(56H)
19F-NMR(CD3COCD3):δ[ppm]=-55.6~-50.6(16F)、-77.7(4F)、-80.3(4F)、-91.0~-88.5(32F)
第一反応において、HOCH2CF2CF2O(CF2CF2CF2O)nCF2CF2CH2OHの代わりに、HOCH2CF2O(CF2CF2O)l(CF2O)mCF2CH2OH(式中の平均重合度を示すlは6.3、平均重合度を示すmは0である。)で表される化合物(数平均分子量909、分子量分布1.1)20gを用い、式(12)で表される化合物の代わりに、下記式(16)で表される化合物を6.1g(分子量461、13.2mmol)用いたこと以外は、実施例1と同様な操作を行い、上記式(1D)で表される化合物(式(1D)中のRf11dは式(1DF)で表される。2つのRf11d中、平均重合度を示すl1dは6.3、平均重合度を示すm1dは0である。)を4.4g(数平均分子量2460、1.8mmol)得た。
1H-NMR(CD3COCD3):δ[ppm]=1.65~1.81(16H)、3.39~4.35(56H)
19F-NMR(CD3COCD3):δ[ppm]=-78.6(4F)、-81.3(4F)、-90.0~-88.5(50.4F)
第一反応において、式(12)で表される化合物の代わりに、下記式(18)で表される化合物を5.7g(分子量432、13.2mmol)用いたこと以外は、実施例1と同様な操作を行い、上記式(1E)で表される化合物(式(1E)中のRf21eは式(1EF)で表される。2つのRf21e中、平均重合度を示すn1eは3.8である。)を4.3g(数平均分子量2405、1.8mmol)得た。
1H-NMR(CD3COCD3):δ[ppm]=1.65~1.81(8H)、3.39~4.35(56H)
19F-NMR(CD3COCD3):δ[ppm]=-84.0~-83.0(30.4F)、-86.4(8F)、-124.3(8F)、-130.0~-129.0(15.2F)
第一反応において、式(12)で表される化合物の代わりに、下記式(20)で表される化合物を6.8g(分子量516、13.2mmol)用いたこと以外は、実施例1と同様な操作を行い、上記式(1F)で表される化合物(式(1F)中のRf21fは式(1FF)で表される。2つのRf21f中、平均重合度を示すn1fは3.8である。)を4.6g(数平均分子量2573、1.8mmol)得た。
1H-NMR(CD3COCD3):δ[ppm]=1.65~1.81(32H)、3.39~4.35(56H)
19F-NMR(CD3COCD3):δ[ppm]=-84.0~-83.0(30.4F)、-86.4(8F)、-124.3(8F)、-130.0~-129.0(15.2F)
第一反応において、式(12)で表される化合物の代わりに、下記式(21)で表される化合物を6.3g(分子量479、13.2mmol)用いたこと以外は、実施例1と同様な操作を行い、上記式(1G)で表される化合物(式(1G)中のRf21gは式(1GF)で表される。2つのRf21g中、平均重合度を示すn1gは3.8である。)を4.5g(数平均分子量2497、1.8mmol)得た。
1H-NMR(CD3COCD3):δ[ppm]=3.39~4.35(68H)
19F-NMR(CD3COCD3):δ[ppm]=-84.0~-83.0(30.4F)、-86.4(8F)、-124.3(8F)、-130.0~-129.0(15.2F)
第一反応において、式(15)で表される化合物の代わりに、下記式(23)で表される化合物を2.5g(分子量188、13.2mmol)用いたこと以外は、実施例3と同様な操作を行い、上記式(1H)で表される化合物(式(1H)中のRf11hは式(1HF)で表される。2つのRf11h中、平均重合度を示すl1hは4.0、平均重合度を示すm1hは4.0である。)を3.9g(数平均分子量2167、1.8mmol)得た。
1H-NMR(CD3COCD3):δ[ppm]=3.39~4.35(40H)
19F-NMR(CD3COCD3):δ[ppm]=-84.0~-83.0(30.4F)、-86.4(8F)、-124.3(8F)、-130.0~-129.0(15.2F)
第一反応において、式(16)で表される化合物の代わりに、下記式(24)で表される化合物を2.7g(分子量202、13.2mmol)用いたこと以外は、実施例4と同様な操作を行い、上記式(1I)で表される化合物(式(1I)中のRf11iは式(1IF)で表される。2つのRf11i中、平均重合度を示すl1iは6.3、平均重合度を示すm1iは0である。)を4.0g(数平均分子量2200、1.8mmol)得た。
1H-NMR(CD3COCD3):δ[ppm]=1.65~1.81(2H)、3.39~4.35(52H)
19F-NMR(CD3COCD3):δ[ppm]=-78.6(4F)、-81.3(4F)、-90.0~-88.5(50.4F)
第一反応において、式(12)で表される化合物の代わりに、下記式(25)で表される化合物を2.9g(分子量216、13.2mmol)用いたこと以外は、実施例1と同様な操作を行い、上記式(1J)で表される化合物(式(1J)中のRf21jは式(1JF)で表される。2つのRf21j中、平均重合度を示すn1jは3.8である。)を4.0g(数平均分子量2228、1.8mmol)得た。
1H-NMR(CD3COCD3):δ[ppm]=1.65~1.81(6H)、3.39~4.35(42H)
19F-NMR(CD3COCD3):δ[ppm]=-84.0~-83.0(30.4F)、-86.4(8F)、-124.3(8F)、-130.0~-129.0(15.2F)
第一反応において、式(16)で表される化合物の代わりに、下記式(26)で表される化合物を3.6g(分子量272、13.2mmol)用いたこと以外は、実施例4と同様な操作を行い、上記式(1K)で表される化合物(式(1K)中のRf11kは式(1KF)で表される。2つのRf11k中、平均重合度を示すl1kは6.3、平均重合度を示すm1kは0である。)を4.2g(数平均分子量2340、1.8mmol)得た。
1H-NMR(CD3COCD3):δ[ppm]=1.65~1.81(22H)、3.39~4.35(42H)
19F-NMR(CD3COCD3):δ[ppm]=-78.6(4F)、-81.3(4F)、-90.0~-88.5(50.4F)
第一反応において、式(12)で表される化合物の代わりに、下記式(27)で表される化合物を2.7g(分子量202、13.2mmol)用いたこと以外は、実施例1と同様な操作を行い、上記式(1L)で表される化合物(式(1L)中のRf21lは式(1LF)で表される。2つのRf21l中、平均重合度を示すn1lは3.8である。)を4.0g(数平均分子量2200、1.8mmol)得た。
1H-NMR(CD3COCD3):δ[ppm]=1.65~1.81(4H)、3.39~4.35(40H)
19F-NMR(CD3COCD3):δ[ppm]=-84.0~-83.0(30.4F)、-86.4(8F)、-124.3(8F)、-130.0~-129.0(15.2F)
第一反応において、式(12)で表される化合物の代わりに、下記式(28)で表される化合物を3.6g(分子量276、13.2mmol)用いたこと以外は、実施例1と同様な操作を行い、上記式(1M)で表される化合物(式(1M)中のRf21mは式(1MF)で表される。2つのRf21m中、平均重合度を示すn1mは3.8である。)を4.2g(数平均分子量2349、1.8mmol)得た。
1H-NMR(CD3COCD3):δ[ppm]=1.65~1.81(4H)、3.39~4.35(52H)
19F-NMR(CD3COCD3):δ[ppm]=-84.0~-83.0(30.4F)、-86.4(8F)、-124.3(8F)、-130.0~-129.0(15.2F)
第一反応において、式(12)で表される化合物の代わりに、下記式(29)で表される化合物を5.3g(分子量405、13.2mmol)用いたこと以外は、実施例1と同様な操作を行い、上記式(1N)で表される化合物(式(1N)中のRf21nは式(1NF)で表される。2つのRf21n中、平均重合度を示すn1nは3.8である。)を4.2g(数平均分子量2321、1.8mmol)得た。
1H-NMR(CD3COCD3):δ[ppm]=3.39~4.35(52H)
19F-NMR(CD3COCD3):δ[ppm]=-84.0~-83.0(30.4F)、-86.4(8F)、-124.3(8F)、-130.0~-129.0(15.2F)
第一反応において、式(12)で表される化合物の代わりに、下記式(31)で表される化合物を5.3g(分子量404、13.2mmol)用いたこと以外は、実施例1と同様な操作を行い、上記式(1O)で表される化合物(式(1O)中のRf21oは式(1OF)で表される。2つのRf21o中、平均重合度を示すn1oは3.8である。)を4.2g(数平均分子量2349、1.8mmol)得た。
1H-NMR(CD3COCD3):δ[ppm]=3.39~4.35(56H)
19F-NMR(CD3COCD3):δ[ppm]=-84.0~-83.0(30.4F)、-86.4(8F)、-124.3(8F)、-130.0~-129.0(15.2F)
第一反応において、式(12)で表される化合物の代わりに、下記式(33)で表される化合物を5.7g(分子量433、13.2mmol)用いたこと以外は、実施例1と同様な操作を行い、上記式(1P)で表される化合物(式(1P)中のRf21pは式(1PF)で表される。2つのRf21p中、平均重合度を示すn1pは3.8である。)を4.3g(数平均分子量2405、1.8mmol)得た。
1H-NMR(CD3COCD3):δ[ppm]=1.65~1.81(10H)、3.39~4.35(54H)
19F-NMR(CD3COCD3):δ[ppm]=-84.0~-83.0(30.4F)、-86.4(8F)、-124.3(8F)、-130.0~-129.0(15.2F)
第一反応において、式(15)で表される化合物の代わりに、下記式(35)で表される化合物を6.1g(分子量461、13.2mmol)用いたこと以外は、実施例3と同様な操作を行い、上記式(1Q)で表される化合物(式(1Q)中のRf11qは式(1QF)で表される。2つのRf11q中、平均重合度を示すl1qは4.0、平均重合度を示すm1qは4.0である。)を4.4g(数平均分子量2455、1.8mmol)得た。
1H-NMR(CD3COCD3):δ[ppm]=1.65~1.81(18H)、3.39~4.35(54H)
19F-NMR(CD3COCD3):δ[ppm]=-84.0~-83.0(30.4F)、-86.4(8F)、-124.3(8F)、-130.0~-129.0(15.2F)
第一反応において、式(16)で表される化合物の代わりに、下記式(37)で表される化合物を6.8g(分子量517、13.2mmol)用いたこと以外は、実施例4と同様な操作を行い、上記式(1R)で表される化合物(式(1R)中のRf11rは式(1RF)で表される。2つのRf11r中、平均重合度を示すl1rは6.3、平均重合度を示すm1rは0である。)を4.6g(数平均分子量2573、1.8mmol)得た。
1H-NMR(CD3COCD3):δ[ppm]=1.65~1.81(32H)、3.39~4.35(56H)
19F-NMR(CD3COCD3):δ[ppm]=-78.6(4F)、-81.3(4F)、-90.0~-88.5(50.4F)
第一反応において、式(15)で表される化合物の代わりに、下記式(39)で表される化合物を7.0g(分子量531、13.2mmol)用いたこと以外は、実施例3と同様な操作を行い、上記式(1S)で表される化合物(式(1S)中のRf11sは式(1SF)で表される。2つのRf11s中、平均重合度を示すl1sは4.0、平均重合度を示すm1sは4.0である。)を4.7g(数平均分子量2595、1.8mmol)得た。
1H-NMR(CD3COCD3):δ[ppm]=1.65~1.81(36H)、3.39~4.35(56H)
19F-NMR(CD3COCD3):δ[ppm]=-84.0~-83.0(30.4F)、-86.4(8F)、-124.3(8F)、-130.0~-129.0(15.2F)
第一反応において、式(16)で表される化合物の代わりに、下記式(41)で表される化合物を7.7g(分子量587、13.2mmol)用いたこと以外は、実施例4と同様な操作を行い、上記式(1T)で表される化合物(式(1T)中のRf11tは式(1TF)で表される。2つのRf11t中、平均重合度を示すl1tは6.3、平均重合度を示すm1tは0である。)を4.9g(数平均分子量2713、1.8mmol)得た。
1H-NMR(CD3COCD3):δ[ppm]=1.65~1.81(52H)、3.39~4.35(56H)
19F-NMR(CD3COCD3):δ[ppm]=-78.6(4F)、-81.3(4F)、-90.0~-88.5(50.4F)
第一反応において、式(12)で表される化合物の代わりに、下記式(43)で表される化合物を6.5g(分子量493、13.2mmol)用いたこと以外は、実施例1と同様な操作を行い、上記式(1U)で表される化合物(式(1U)中のRf21uは式(1UF)で表される。2つのRf21u中、平均重合度を示すn1uは3.8である。)を4.5g(数平均分子量2525、1.8mmol)得た。
1H-NMR(CD3COCD3):δ[ppm]=3.39~4.35(72H)
19F-NMR(CD3COCD3):δ[ppm]=-84.0~-83.0(30.4F)、-86.4(8F)、-124.3(8F)、-130.0~-129.0(15.2F)
第一反応において、式(12)で表される化合物の代わりに、下記式(45)で表される化合物を5.9g(分子量445、13.2mmol)用いたこと以外は、実施例1と同様な操作を行い、上記式(1V)で表される化合物(式(1V)中のRf21vは式(1VF)で表される。2つのRf21v中、平均重合度を示すn1vは3.8である。)を4.1g(数平均分子量2260、1.8mmol)得た。
1H-NMR(CD3COCD3):δ[ppm]=3.39~4.35(48H)
19F-NMR(CD3COCD3):δ[ppm]=-84.0~-83.0(30.4F)、-86.4(8F)、-124.3(8F)、-130.0~-129.0(15.2F)
以下に示す方法により、上記式(2A)で示される化合物を製造した。
(第一反応)
窒素ガス雰囲気下、200mLナスフラスコにHOCH2CF2CF2O(CF2CF2CF2O)nCF2CF2CH2OH(式中の平均重合度を示すnは2.0である。)で表される化合物(数平均分子量610、分子量分布1.1)12.2g(20mmol)と、60%水素化ナトリウム1.76g(44mmol)と、N,N-ジメチルホルムアミド15.6mLとを仕込み、室温で均一になるまで撹拌した。この均一の液にエピブロモヒドリン3.45mL(42mmol)を加え、40℃で2時間撹拌して反応させた。
窒素ガス雰囲気下、200mLナスフラスコにHOCH2CF2CF2O(CF2CF2CF2O)nCF2CF2CH2OH(式中の平均重合度を示すnは2.0である。)で表される化合物(数平均分子量610、分子量分布1.1)14gと、上記式(12)で表される化合物5.4g(分子量405、13mmol)と、t-ブタノール20mLとを仕込み、室温で均一になるまで撹拌した。この均一の液にさらにカリウムtert-ブトキシド0.74g(分子量112、6.6mmol)を加え、70℃で16時間撹拌して反応させた。
窒素ガス雰囲気下、200mLナスフラスコに式(13)で表される中間体化合物2-2(式中の平均重合度を示すnは2.0である。)10gと、カリウムtert-ブトキシド0.38gと、t-ブタノール9.5mLとを仕込み、室温で均一になるまで撹拌した。この均一の液にさらに式(46)で表される中間体化合物2-1(式中の平均重合度を示すnは2.0である。)2.2gを加え、70℃で16時間撹拌して反応させた。
1H-NMR(CD3COCD3):δ[ppm]=3.46~4.24(66H)
19F-NMR(CD3COCD3):δ[ppm]=-84.0~-83.0(24F)、-86.4(12F)、-124.3(12F)、-130.0~-129.0(12F)
第二反応において、式(12)で表される化合物の代わりに、式(14)で表される化合物を5.6g用いたこと以外は、実施例23と同様な操作を行い、上記式(2B)で表される化合物(式(2B)中のRf22bは式(2BF)で表される。3つのRf22b中、平均重合度を示すn2bは2.0である。)を4.4g(分子量2447、1.8mmol)を得た。
1H-NMR(CD3COCD3):δ[ppm]=1.65~1.81(4H)、3.39~4.35(66H)
19F-NMR(CD3COCD3):δ[ppm]=-84.0~-83.0(24F)、-86.4(12F)、-124.3(12F)、-130.0~-129.0(12F)
第一反応および第二反応において、HOCH2CF2CF2O(CF2CF2CF2O)nCF2CF2CH2OHの代わりに、HOCH2CF2O(CF2CF2O)l(CF2O)mCF2CH2OH(式中の平均重合度を示すlは2.4、平均重合度を示すmは2.4である。)で表される化合物(数平均分子量615、分子量分布1.1)12gを用い、第二反応において、式(12)で表される化合物の代わりに、式(15)で表される化合物を5.7g用いたこと以外は、実施例23と同様な操作を行い、上記式(2C)で表される化合物(式(2C)中のRf12cは式(2CF)で表される。3つのRf12c中、平均重合度を示すl2cは2.4、平均重合度を示すm2cは2.4である。)を4.5g(数平均分子量2490、1.8mmol)得た。
1H-NMR(CD3COCD3):δ[ppm]=1.65~1.81(8H)、3.39~4.35(66H)
19F-NMR(CD3COCD3):δ[ppm]=-55.6~-50.6(14.4F)、-77.7(6F)、-80.3(6F)、-91.0~-88.5(28.8F)
第一反応および第二反応において、HOCH2CF2CF2O(CF2CF2CF2O)nCF2CF2CH2OHの代わりに、HOCH2CF2O(CF2CF2O)l(CF2O)mCF2CH2OH(式中の平均重合度を示すlは3.8、平均重合度を示すmは0である。)で表される化合物(数平均分子量619、分子量分布1.1)12gを用い、第二反応において、式(12)で表される化合物の代わりに、式(16)で表される化合物を6.0g用いたこと以外は、実施例23と同様な操作を行い、上記式(2D)で表される化合物(式(2D)中のRf12dは式(2DF)で表される。3つのRf12d中、平均重合度を示すl2dは3.8、平均重合度を示すm2dは0である。)を4.6g(数平均分子量2557、1.8mmol)得た。
1H-NMR(CD3COCD3):δ[ppm]=1.65~1.81(16H)、3.39~4.35(66H)
19F-NMR(CD3COCD3):δ[ppm]=-78.6(6F)、-81.3(6F)、-90.0~-88.5(45.6F)
第二反応において、式(12)で表される化合物の代わりに、式(18)で表される化合物を5.7g用いたこと以外は、実施例23と同様な操作を行い、上記式(2E)で表される化合物(式(2E)中のRf22eは式(2EF)で表される。3つのRf22e中、平均重合度を示すn2eは2.0である。)を4.5g(分子量2475、1.8mmol)を得た。
1H-NMR(CD3COCD3):δ[ppm]=1.65~1.81(8H)、3.39~4.35(66H)
19F-NMR(CD3COCD3):δ[ppm]=-84.0~-83.0(24F)、-86.4(12F)、-124.3(12F)、-130.0~-129.0(12F)
第二反応において、式(12)で表される化合物の代わりに、式(20)で表される化合物を6.8g用いたこと以外は、実施例23と同様な操作を行い、上記式(2F)で表される化合物(式(2F)中のRf22fは式(2FF)で表される。3つのRf22f中、平均重合度を示すn2fは2.0である。)を4.8g(分子量2644、1.8mmol)を得た。
1H-NMR(CD3COCD3):δ[ppm]=1.65~1.81(32H)、3.39~4.35(66H)
19F-NMR(CD3COCD3):δ[ppm]=-84.0~-83.0(24F)、-86.4(12F)、-124.3(12F)、-130.0~-129.0(12F)
第二反応において、式(12)で表される化合物の代わりに、式(21)で表される化合物を6.4g用いたこと以外は、実施例23と同様な操作を行い、上記式(2G)で表される化合物(式(2G)中のRf22gは式(2GF)で表される。3つのRf22g中、平均重合度を示すn2gは2.0である。)を4.6g(分子量2567、1.8mmol)を得た。
1H-NMR(CD3COCD3):δ[ppm]=3.39~4.35(78H)
19F-NMR(CD3COCD3):δ[ppm]=-84.0~-83.0(24F)、-86.4(12F)、-124.3(12F)、-130.0~-129.0(12F)
第二反応において、式(15)で表される化合物の代わりに、式(23)で表される化合物を2.5g用いたこと以外は、実施例25と同様な操作を行い、上記式(2H)で表される化合物(式(2H)中のRf12hは式(2HF)で表される。3つのRf12h中、平均重合度を示すl2hは2.4、平均重合度を示すm2hは2.4である。)を4.1g(数平均分子量2257、1.8mmol)得た。
1H-NMR(CD3COCD3):δ[ppm]=3.39~4.35(50H)
19F-NMR(CD3COCD3):δ[ppm]=-55.6~-50.6(14.4F)、-77.7(6F)、-80.3(6F)、-91.0~-88.5(28.8F)
第二反応において、式(16)で表される化合物の代わりに、式(24)で表される化合物を2.6g用いたこと以外は、実施例26と同様な操作を行い、上記式(2I)で表される化合物(式(2I)中のRf12iは式(2IF)で表される。3つのRf12i中、平均重合度を示すl2iは3.8、平均重合度を示すm2iは0である。)を4.1g(数平均分子量2297、1.8mmol)得た。
1H-NMR(CD3COCD3):δ[ppm]=1.65~1.81(2H)、3.39~4.35(62H)
19F-NMR(CD3COCD3):δ[ppm]=-78.6(6F)、-81.3(6F)、-90.0~-88.5(45.6F)
第二反応において、式(12)で表される化合物の代わりに、式(25)で表される化合物を2.9g用いたこと以外は、実施例23と同様な操作を行い、上記式(2J)で表される化合物(式(2J)中のRf22jは式(2JF)で表される。3つのRf22j中、平均重合度を示すn2jは2.0である。)を4.1g(分子量2299、1.8mmol)を得た。
1H-NMR(CD3COCD3):δ[ppm]=1.65~1.81(6H)、3.39~4.35(52H)
19F-NMR(CD3COCD3):δ[ppm]=-84.0~-83.0(24F)、-86.4(12F)、-124.3(12F)、-130.0~-129.0(12F)
第二反応において、式(16)で表される化合物の代わりに、式(26)で表される化合物を3.6g用いたこと以外は、実施例26と同様な操作を行い、上記式(2K)で表される化合物(式(2K)中のRf12kは式(2KF)で表される。3つのRf12k中、平均重合度を示すl2kは3.8、平均重合度を示すm2kは0である。)を4.4g(数平均分子量2437、1.8mmol)得た。
1H-NMR(CD3COCD3):δ[ppm]=1.65~1.81(22H)、3.39~4.35(52H)
19F-NMR(CD3COCD3):δ[ppm]=-78.6(6F)、-81.3(6F)、-90.0~-88.5(45.6F)
第二反応において、式(12)で表される化合物の代わりに、式(27)で表される化合物を2.7g用いたこと以外は、実施例23と同様な操作を行い、上記式(2L)で表される化合物(式(2L)中のRf22lは式(2LF)で表される。3つのRf22l中、平均重合度を示すn2lは2.0である。)を4.1g(分子量2271、1.8mmol)を得た。
1H-NMR(CD3COCD3):δ[ppm]=1.65~1.81(4H)、3.39~4.35(50H)
19F-NMR(CD3COCD3):δ[ppm]=-84.0~-83.0(24F)、-86.4(12F)、-124.3(12F)、-130.0~-129.0(12F)
第二反応において、式(12)で表される化合物の代わりに、式(28)で表される化合物を3.7g用いたこと以外は、実施例23と同様な操作を行い、上記式(2M)で表される化合物(式(2M)中のRf22mは式(2MF)で表される。3つのRf22m中、平均重合度を示すn2mは2.0である。)を4.4g(分子量2419、1.8mmol)を得た。
1H-NMR(CD3COCD3):δ[ppm]=1.65~1.81(4H)、3.39~4.35(62H)
19F-NMR(CD3COCD3):δ[ppm]=-84.0~-83.0(24F)、-86.4(12F)、-124.3(12F)、-130.0~-129.0(12F)
第二反応において、式(12)で表される化合物の代わりに、式(29)で表される化合物を3.5g用いたこと以外は、実施例23と同様な操作を行い、上記式(2N)で表される化合物(式(2N)中のRf22nは式(2NF)で表される。3つのRf22n中、平均重合度を示すn2nは2.0である。)を4.3g(分子量2391、1.8mmol)を得た。
1H-NMR(CD3COCD3):δ[ppm]=3.39~4.35(62H)
19F-NMR(CD3COCD3):δ[ppm]=-84.0~-83.0(24F)、-86.4(12F)、-124.3(12F)、-130.0~-129.0(12F)
第二反応において、式(12)で表される化合物の代わりに、式(31)で表される化合物を5.4g用いたこと以外は、実施例23と同様な操作を行い、上記式(2O)で表される化合物(式(2O)中のRf22oは式(2OF)で表される。3つのRf22o中、平均重合度を示すn2oは2.0である。)を4.4g(分子量2419、1.8mmol)を得た。
1H-NMR(CD3COCD3):δ[ppm]=3.39~4.35(66H)
19F-NMR(CD3COCD3):δ[ppm]=-84.0~-83.0(24F)、-86.4(12F)、-124.3(12F)、-130.0~-129.0(12F)
第二反応において、式(12)で表される化合物の代わりに、式(33)で表される化合物を5.7g用いたこと以外は、実施例23と同様な操作を行い、上記式(2P)で表される化合物(式(2P)中のRf22pは式(2PF)で表される。3つのRf22p中、平均重合度を示すn2pは2.0である。)を4.5g(分子量2475、1.8mmol)を得た。
1H-NMR(CD3COCD3):δ[ppm]=1.65~1.81(10H)、3.39~4.35(64H)
19F-NMR(CD3COCD3):δ[ppm]=-84.0~-83.0(24F)、-86.4(12F)、-124.3(12F)、-130.0~-129.0(12F)
第二反応において、式(15)で表される化合物の代わりに、式(35)で表される化合物を6.1g用いたこと以外は、実施例25と同様な操作を行い、上記式(2Q)で表される化合物(式(2Q)中のRf12qは式(2QF)で表される。3つのRf12q中、平均重合度を示すl2qは2.4、平均重合度を示すm2qは2.4である。)を4.6g(数平均分子量2546、1.8mmol)得た。
1H-NMR(CD3COCD3):δ[ppm]=1.65~1.81(18H)、3.39~4.35(64H)
19F-NMR(CD3COCD3):δ[ppm]=-55.6~-50.6(14.4F)、-77.7(6F)、-80.3(6F)、-91.0~-88.5(28.8F)
第二反応において、式(16)で表される化合物の代わりに、式(37)で表される化合物を6.8g用いたこと以外は、実施例26と同様な操作を行い、上記式(2R)で表される化合物(式(2R)中のRf12rは式(2RF)で表される。3つのRf12r中、平均重合度を示すl2rは3.8、平均重合度を示すm2rは0である。)を4.8g(数平均分子量2670、1.8mmol)得た。
1H-NMR(CD3COCD3):δ[ppm]=1.65~1.81(32H)、3.39~4.35(66H)
19F-NMR(CD3COCD3):δ[ppm]=-78.6(6F)、-81.3(6F)、-90.0~-88.5(45.6F)
第二反応において、式(15)で表される化合物の代わりに、式(39)で表される化合物を7.0g用いたこと以外は、実施例25と同様な操作を行い、上記式(2S)で表される化合物(式(2S)中のRf12sは式(2SF)で表される。3つのRf12s中、平均重合度を示すl2sは2.4、平均重合度を示すm2sは2.4である。)を4.8g(数平均分子量2686、1.8mmol)得た。
1H-NMR(CD3COCD3):δ[ppm]=1.65~1.81(36H)、3.39~4.35(66H)
19F-NMR(CD3COCD3):δ[ppm]=-55.6~-50.6(14.4F)、-77.7(6F)、-80.3(6F)、-91.0~-88.5(28.8F)
第二反応において、式(16)で表される化合物の代わりに、式(41)で表される化合物を7.7g用いたこと以外は、実施例26と同様な操作を行い、上記式(2T)で表される化合物(式(2T)中のRf12tは式(2TF)で表される。3つのRf12t中、平均重合度を示すl2tは3.8、平均重合度を示すm2tは0である。)を5.1g(数平均分子量2810、1.8mmol)得た。
1H-NMR(CD3COCD3):δ[ppm]=1.65~1.81(52H)、3.39~4.35(66H)
19F-NMR(CD3COCD3):δ[ppm]=-78.6(6F)、-81.3(6F)、-90.0~-88.5(45.6F)
第二反応において、式(12)で表される化合物の代わりに、式(43)で表される化合物を6.5g用いたこと以外は、実施例23と同様な操作を行い、上記式(2U)で表される化合物(式(2U)中のRf22uは式(2UF)で表される。3つのRf22u中、平均重合度を示すn2uは2.0である。)を4.7g(分子量2595、1.8mmol)を得た。
1H-NMR(CD3COCD3):δ[ppm]=3.39~4.35(82H)
19F-NMR(CD3COCD3):δ[ppm]=-84.0~-83.0(24F)、-86.4(12F)、-124.3(12F)、-130.0~-129.0(12F)
第二反応において、式(12)で表される化合物の代わりに、式(45)で表される化合物を5.9g用いたこと以外は、実施例23と同様な操作を行い、上記式(2V)で表される化合物(式(2V)中のRf22vは式(2VF)で表される。3つのRf22v中、平均重合度を示すn2vは2.0である。)を4.2g(分子量2331、1.8mmol)を得た。
1H-NMR(CD3COCD3):δ[ppm]=3.39~4.35(58H)
19F-NMR(CD3COCD3):δ[ppm]=-84.0~-83.0(24F)、-86.4(12F)、-124.3(12F)、-130.0~-129.0(12F)
下記式(3A)で表される化合物を、特許文献1に記載の方法で合成した。
下記式(3B)で表される化合物を、特許文献2に記載の方法で合成した。
下記式(3C)で表される化合物を、特許文献4に記載の方法で合成した。
下記式(3D)で表される化合物を、特許文献4に記載の方法で合成した。
下記式(3E)で表される化合物を、特許文献4に記載の方法で合成した。
下記式(3F)で表される化合物を、特許文献3に記載の方法で合成した。
下記式(3G)で表される化合物を、特許文献6に記載の方法で合成した。
下記式(3H)で表される化合物を、特許文献7に記載の方法で合成した。
下記式(3I)で表される化合物を、特許文献5に記載の方法で合成した。
下記式(3J)で表される化合物を、特許文献8に記載の方法で合成した。
下記式(3K)で表される化合物を、特許文献8に記載の方法で合成した。
次に、以下に示す方法により、実施例1~44および比較例1~11で得られた化合物を用いて潤滑層形成用溶液を調製した。そして、得られた潤滑層形成用溶液を用いて、以下に示す方法により、磁気記録媒体の潤滑層を形成し、実施例1~44および比較例1~11の磁気記録媒体を得た。
実施例1~44および比較例1~11で得られた化合物を、それぞれフッ素系溶媒であるバートレル(登録商標)XF(商品名、三井デュポンフロロケミカル社製)に溶解し、保護層上に塗布した時の膜厚が9.4Å~9.7ÅになるようにバートレルXFで希釈し、化合物の濃度が0.001質量%~0.01質量%である潤滑層形成用溶液とした。
直径65mmの基板上に、付着層と軟磁性層と第1下地層と第2下地層と磁性層と保護層とを順次設けた磁気記録媒体を用意した。保護層は、炭素からなるものとした。
保護層までの各層の形成された磁気記録媒体の保護層上に、実施例1~44および比較例1~11の潤滑層形成用溶液を、ディップ法により塗布した。なお、ディップ法は、浸漬速度10mm/sec、浸漬時間30sec、引き上げ速度1.2mm/secの条件で行った。
このようにして得られた実施例1~44および比較例1~11の磁気記録媒体の有する潤滑層について、フーリエ変換赤外分光光度計(FT-IR、商品名:Nicolet iS50、Thermo Fisher Scientific社製)を用いて、C-F振動伸縮におけるピーク高さを測定した。次いで、後述の方法により求めた相関式を用いて、潤滑層のC-F振動伸縮におけるピーク高さの測定値から、潤滑層の膜厚を算出した。
直径65mmの基板上に、付着層と軟磁性層と第1下地層と第2下地層と磁性層と保護層とを順次設けたディスクを用意した。このディスクの保護層上に、6~20Å(2Å刻み)の膜厚でそれぞれ潤滑層を形成した。
その後、潤滑層を形成した各ディスクについて、エリプソメータを用いて、潤滑層を形成していないディスク表面からの膜厚増加分を測定し、潤滑層の膜厚とした。また、潤滑層を形成した各ディスクについて、FT-IRを用いてC-F振動伸縮におけるピーク高さを測定した。
そして、FT-IRにより得たピーク高さと、エリプソメータを用いて得た潤滑層の膜厚との相関式を求めた。
スピンスタンドに磁気記録媒体および磁気ヘッドを装着し、常温減圧下(約250torr)で回転を行い、10分間磁気ヘッドを定点浮上させた。その後、磁気ヘッドの磁気記録媒体と相対する面を、ESCA(Electron Spectroscopy for Chemical Analysis)分析装置を用いて分析した。ESCA分析装置を用いた分析により得たフッ素由来ピークの強度(信号強度(a.u.))は、磁気ヘッドへの潤滑剤の付着量を示す。得られた信号強度を用いて、以下に示す評価基準により、ピックアップ特性を評価した。
A(優):信号強度160以下(付着量が非常に少ない)
B(良):信号強度161~300(付着量が少ない)
C(可):信号強度301~1000(付着量が多い)
D(不可):信号強度1001以上(付着量が非常に多い)
スピンスタンドに磁気記録媒体を装着し、80℃の環境下、回転速度10000rpmで72時間にわたり回転させた。この操作の前後において、磁気記録媒体の中心から半径20mmの位置における潤滑層の膜厚を、上記の方法によりFT-IRを用いて測定し、試験前後での潤滑層の膜厚減少率を算出した。算出した膜厚減少率を用いて、以下に示す評価基準により、スピンオフ特性を評価した。
A(優):膜厚減少率2%以下
B(良):膜厚減少率2%超、3%以下
C(可):膜厚減少率3%超、8%以下
D(不可):膜厚減少率8%超
磁気記録媒体を温度85℃、相対湿度90%の条件下に48時間曝露した。その後、磁気記録媒体上の表面に生じた直径5μm以上のコロージョンスポットの数を、光学表面分析装置(ケーエルエー・テンコール株式会社製Candela7140)を用いて数え、以下の評価基準に基づいて評価した。
A(優):150箇所未満
B(良):150箇所以上、200箇所未満
C(可):200箇所以上、400箇所未満
D(不可):400箇所以上
Claims (18)
- 下記式(1)で表されることを特徴とする含フッ素エーテル化合物。
R1-[B]-[A]-CH2-R2[-CH2-R3-CH2-R2]z-CH2-[C]-[D]-R4 (1)
(式(1)中、[A]は下記式(2-1)で表され、式(2-1)中のaは0~3の整数である。[B]は下記式(2-2)で表され、式(2-2)中のbは0~3の整数であり、cは2~5の整数である。ただし、aとbの値の合計は1~3である。式(1)において[A]と[B]は入れ替えてもよい。[C]は下記式(3-1)で表され、式(3-1)中のdは0~2の整数である。[D]は下記式(3-2)で表され、式(3-2)中のeは0~2の整数であり、fは2~5の整数である。ただし、dとeの値の合計は1または2である。式(1)において[C]と[D]は入れ替えてもよい。R4は炭素原子数が3~30の分岐型末端基であり、下記式(4)で表される。式(4)中のLは0~6の整数を表す。式(4)中のY1およびY2は、それぞれ独立に、1級水酸基を1つのみ有する、エーテル酸素原子を含んでもよい炭化水素基である。式(4)中のY3は、1級水酸基を1つのみ有する、エーテル酸素原子を含んでもよい炭化水素基、または水素原子である。R1は、R4と同じであっても異なっていてもよい末端基であり、式(4)で表される炭素原子数3~30の分岐型末端基、[A]または[B]と結合する末端にエーテル酸素原子を有する炭素原子数1~30の有機基、または水酸基である。zは1または2を表す。R2はパーフルオロポリエーテル鎖である。2つまたは3つのR2は一部または全部が同じであってもよいし、それぞれ異なっていてもよい。R3は下記式(5)で表される2価の連結基である。式(5)中のy1は1~3の整数であり、y2は1~3の整数である。式(5)中の左側の酸素原子に結合する点線は、R1側のメチレン基との結合を示し、右側の酸素原子に結合する点線は、R4側のメチレン基との結合を示す。zが2である場合、2つのR3は同じであってもよいし、それぞれ異なっていてもよい。)
- 前記式(1)におけるR4を表す前記式(4)が、下記式(6-1)~(6-3)のいずれかである請求項1に記載の含フッ素エーテル化合物。
(式(6-2)中、hは0~6の整数を表す。iおよびjは、それぞれ独立して1~6の整数を表す。X3およびX4は、水素原子または式(7)で表される。X3とX4は同じであっても異なっていてもよい。)
(式(6-3)中、kは0~6の整数を表す。p、qおよびrは、それぞれ独立して1~6の整数を表す。X5、X6およびX7は、水素原子または式(7)で表される。X5、X6およびX7は、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
(式(7)中、sは2~6の整数を表し、tは1または2を表す。) - 前記式(1)におけるR1が、前記式(4)で表される炭素原子数3~30の分岐型末端基である請求項1または請求項2に記載の含フッ素エーテル化合物。
- 前記式(1)におけるR1とR4の両方が、前記式(6-1)~(6-3)のいずれかの分岐型末端基である請求項2に記載の含フッ素エーテル化合物。
- 前記式(1)におけるR1-[B]-[A]-と、-[C]-[D]-R4とが同じである請求項1または請求項2に記載の含フッ素エーテル化合物。
- 前記式(1)におけるzが2であって、2つのR3に含まれる原子が、分子の鎖状構造中央に配置されたR2に対して対称配置されている請求項1または請求項2に記載の含フッ素エーテル化合物。
- 前記式(8)におけるR5が、炭素原子数1~6のアルキル基である請求項7に記載の含フッ素エーテル化合物。
- 前記式(8)におけるR5が、置換基を有する炭素原子数1~6のアルキル基であり、前記置換基がフルオロ基またはシアノ基である請求項7に記載の含フッ素エーテル化合物。
- 前記式(8)におけるR5が、芳香族炭化水素を有する炭素原子数6~12の有機基、芳香族複素環を有する炭素原子数3~10の有機基、炭素原子数2~8のアルケニル基、および炭素原子数3~8のアルキニル基のいずれかである請求項7に記載の含フッ素エーテル化合物。
- 前記式(8)におけるR5が、メチル基、エチル基、n-プロピル基、イソプロピル基、2,2,2-トリフルオロエチル基、2,2,3,3,3-ペンタフルオロプロピル基、2,2,2,2,2,2-ヘキサフルオロイソプロピル基、2-シアノエチル基、3-シアノプロピル基、4-シアノブチル基、フェニル基、メトキシフェニル基、シアノフェニル基、フェネチル基、チエニルエチル基、N-メチルピラゾリルメチル基、アリル基、3-ブテニル基、4-ペンテニル基、プロパルギル基、3-ブチニル基、および4-ペンチニル基からなる群から選択される1つの基である請求項7に記載の含フッ素エーテル化合物。
- 前記式(8)におけるR5が、水素原子である請求項7に記載の含フッ素エーテル化合物。
- 前記式(1)における2つまたは3つのR2が、それぞれ独立に、下記式(9)で表されるパーフルオロポリエーテル鎖である請求項1または請求項2に記載の含フッ素エーテル化合物。
-(CF2)w1-O-(CF2O)w2-(CF2CF2O)w3-(CF2CF2CF2O)w4-(CF2CF2CF2CF2O)w5-(CF2)w6- (9)
(式(9)中、w2、w3、w4、w5は平均重合度を示し、それぞれ独立に0~20を表す。ただし、w2、w3、w4、w5の全てが同時に0になることはない。w1、w6は、CF2の数を表す平均値であり、それぞれ独立に1~3を表す。式(9)における繰り返し単位である(CF2O)、(CF2CF2O)、(CF2CF2CF2O)、(CF2CF2CF2CF2O)の配列順序には、特に制限はない。) - 前記式(1)における2つまたは3つのR2が、それぞれ独立に、下記式(10-1)~(10-4)で表されるパーフルオロポリエーテル鎖から選ばれるいずれか1種である請求項1または請求項2に記載の含フッ素エーテル化合物。
-CF2-(OCF2CF2)l-(OCF2)m-OCF2- (10-1)
(式(10-1)中、lおよびmは平均重合度を示し、lは0.1~20を表し、mは0~20を表す。)
-CF2CF2-(OCF2CF2CF2)n-OCF2CF2- (10-2)
(式(10-2)中、nは平均重合度を示し、0.1~15を表す。)
-CF2CF2CF2-(OCF2CF2CF2CF2)o-OCF2CF2CF2- (10-3)
(式(10-3)中、oは平均重合度を示し、0.1~10を表す。)
-(CF2)w7-O-(CF2CF2CF2O)w8-(CF2CF2O)w9-(CF2)w10- (10-4)
(式(10-4)中、w8、w9は平均重合度を示し、それぞれ独立に0.1~20を表す。w7、w10は、CF2の数を表す平均値であり、それぞれ独立に1~2を表す。) - 数平均分子量が500~10000の範囲内である請求項1または請求項2に記載の含フッ素エーテル化合物。
- 請求項1または請求項2に記載の含フッ素エーテル化合物を含むことを特徴とする磁気記録媒体用潤滑剤。
- 基板上に、少なくとも磁性層と、保護層と、潤滑層とが順次設けられた磁気記録媒体であって、
前記潤滑層が、請求項1または請求項2に記載の含フッ素エーテル化合物を含むことを特徴とする磁気記録媒体。 - 前記潤滑層の平均膜厚が0.5nm~2.0nmである請求項17に記載の磁気記録媒体。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2024527013A JPWO2023238906A1 (ja) | 2022-06-10 | 2023-06-08 | |
CN202380037132.9A CN119156367A (zh) | 2022-06-10 | 2023-06-08 | 含氟醚化合物、磁记录介质用润滑剂及磁记录介质 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022094482 | 2022-06-10 | ||
JP2022-094482 | 2022-06-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023238906A1 true WO2023238906A1 (ja) | 2023-12-14 |
Family
ID=89118417
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/021328 WO2023238906A1 (ja) | 2022-06-10 | 2023-06-08 | 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2023238906A1 (ja) |
CN (1) | CN119156367A (ja) |
WO (1) | WO2023238906A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2023145625A1 (ja) * | 2022-01-31 | 2023-08-03 | ||
WO2024143499A1 (ja) * | 2022-12-27 | 2024-07-04 | 株式会社レゾナック | 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体 |
WO2025142321A1 (ja) * | 2023-12-25 | 2025-07-03 | 株式会社レゾナック | 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006202372A (ja) * | 2005-01-18 | 2006-08-03 | Sony Corp | 磁気記録媒体 |
US20200002640A1 (en) * | 2018-07-02 | 2020-01-02 | Seagate Technology Llc | Polyfluoro lubricant compositions |
WO2020184653A1 (ja) * | 2019-03-12 | 2020-09-17 | 昭和電工株式会社 | 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体 |
WO2021019998A1 (ja) * | 2019-07-26 | 2021-02-04 | 株式会社Moresco | パーフルオロポリエーテル化合物、潤滑剤および磁気ディスク |
WO2021131961A1 (ja) * | 2019-12-23 | 2021-07-01 | 昭和電工株式会社 | 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体 |
WO2022131202A1 (ja) * | 2020-12-18 | 2022-06-23 | 昭和電工株式会社 | 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体 |
WO2023286626A1 (ja) * | 2021-07-14 | 2023-01-19 | 昭和電工株式会社 | 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体 |
-
2023
- 2023-06-08 JP JP2024527013A patent/JPWO2023238906A1/ja active Pending
- 2023-06-08 WO PCT/JP2023/021328 patent/WO2023238906A1/ja active Application Filing
- 2023-06-08 CN CN202380037132.9A patent/CN119156367A/zh active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006202372A (ja) * | 2005-01-18 | 2006-08-03 | Sony Corp | 磁気記録媒体 |
US20200002640A1 (en) * | 2018-07-02 | 2020-01-02 | Seagate Technology Llc | Polyfluoro lubricant compositions |
WO2020184653A1 (ja) * | 2019-03-12 | 2020-09-17 | 昭和電工株式会社 | 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体 |
WO2021019998A1 (ja) * | 2019-07-26 | 2021-02-04 | 株式会社Moresco | パーフルオロポリエーテル化合物、潤滑剤および磁気ディスク |
WO2021131961A1 (ja) * | 2019-12-23 | 2021-07-01 | 昭和電工株式会社 | 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体 |
WO2022131202A1 (ja) * | 2020-12-18 | 2022-06-23 | 昭和電工株式会社 | 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体 |
WO2023286626A1 (ja) * | 2021-07-14 | 2023-01-19 | 昭和電工株式会社 | 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2023145625A1 (ja) * | 2022-01-31 | 2023-08-03 | ||
WO2024143499A1 (ja) * | 2022-12-27 | 2024-07-04 | 株式会社レゾナック | 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体 |
WO2025142321A1 (ja) * | 2023-12-25 | 2025-07-03 | 株式会社レゾナック | 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体 |
Also Published As
Publication number | Publication date |
---|---|
CN119156367A (zh) | 2024-12-17 |
JPWO2023238906A1 (ja) | 2023-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7213813B2 (ja) | 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体 | |
WO2023238906A1 (ja) | 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体 | |
JP7149947B2 (ja) | 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体 | |
US11479641B2 (en) | Fluorine-containing ether compound, lubricant for magnetic recording medium, and magnetic recording medium | |
WO2018139174A1 (ja) | 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体 | |
WO2018139058A1 (ja) | 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体 | |
CN114175154B (zh) | 含氟醚化合物、磁记录介质用润滑剂及磁记录介质 | |
WO2011099131A1 (ja) | パーフルオロポリエーテル化合物、その製造方法、該化合物を含有する潤滑剤、および磁気ディスク | |
WO2023224093A1 (ja) | 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体 | |
WO2023033055A1 (ja) | 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体 | |
JP7635726B2 (ja) | 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体 | |
US11661408B2 (en) | Fluorine-containing ether compound, lubricant for magnetic recording medium, and magnetic recording medium | |
WO2025115753A1 (ja) | 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体 | |
WO2024071392A1 (ja) | 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体 | |
WO2022138478A1 (ja) | 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体 | |
WO2024071399A1 (ja) | 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体 | |
WO2024225106A1 (ja) | 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体 | |
WO2024225107A1 (ja) | 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体 | |
WO2024048569A1 (ja) | 含フッ素エーテル化合物およびその製造方法、磁気記録媒体用潤滑剤および磁気記録媒体 | |
WO2023112813A1 (ja) | 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体 | |
WO2024177047A1 (ja) | 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体 | |
CN119212971A (zh) | 含氟醚化合物、磁记录介质用润滑剂及磁记录介质 | |
WO2025142490A1 (ja) | 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体 | |
JP2024090085A (ja) | 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23819886 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2024527013 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202380037132.9 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 23819886 Country of ref document: EP Kind code of ref document: A1 |