WO2023238906A1 - 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体 - Google Patents

含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体 Download PDF

Info

Publication number
WO2023238906A1
WO2023238906A1 PCT/JP2023/021328 JP2023021328W WO2023238906A1 WO 2023238906 A1 WO2023238906 A1 WO 2023238906A1 JP 2023021328 W JP2023021328 W JP 2023021328W WO 2023238906 A1 WO2023238906 A1 WO 2023238906A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
group
represented
fluorine
compound
Prior art date
Application number
PCT/JP2023/021328
Other languages
English (en)
French (fr)
Inventor
夏実 吉村
綾乃 浅野
優 丹治
大輔 柳生
卓矢 宇野
剛 加藤
直也 福本
Original Assignee
株式会社レゾナック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社レゾナック filed Critical 株式会社レゾナック
Publication of WO2023238906A1 publication Critical patent/WO2023238906A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/03Ethers having all ether-oxygen atoms bound to acyclic carbon atoms
    • C07C43/04Saturated ethers
    • C07C43/13Saturated ethers containing hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/331Polymers modified by chemical after-treatment with organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/38Lubricating compositions characterised by the base-material being a macromolecular compound containing halogen
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/72Protective coatings, e.g. anti-static or antifriction
    • G11B5/725Protective coatings, e.g. anti-static or antifriction containing a lubricant, e.g. organic compounds
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers

Definitions

  • the present invention relates to a fluorine-containing ether compound, a lubricant for a magnetic recording medium, and a magnetic recording medium.
  • magnetic recording media which are a type of recording media, are expected to be a receptacle for the increasing amount of information because they can store large amounts of information at low cost.
  • a protective layer and a lubricant layer are provided on the magnetic layer (magnetic recording layer) of a magnetic recording medium in order to ensure the durability and reliability of the magnetic recording medium.
  • the lubricating layer placed on the outermost surface of a magnetic recording medium is required to have various properties such as long-term stability, chemical substance resistance (preventing contamination with siloxane, etc.), abrasion resistance, and heat resistance. There is.
  • Examples of lubricants used in forming the lubricant layer of magnetic recording media include those containing a compound having a polar group such as a hydroxyl group at the end of a fluorine-based polymer having a repeating structure containing -CF 2 -. is proposed.
  • Patent Document 1 the molecule contains two perfluoropolyether chains, and a linking group having a secondary hydroxyl group is arranged between the two perfluoropolyether chains.
  • a fluorine-containing ether compound is disclosed.
  • Patent Document 4 describes a fluorine-containing ether compound that contains two perfluoropolyether chains in the molecule, and a linking group having a primary hydroxyl group and a secondary hydroxyl group is arranged between the two perfluoropolyether chains. Disclosed.
  • Patent Document 5 Patent Document 6, and Patent Document 7 have a skeleton in which three perfluoropolyether chains are bonded via a linking group having a secondary hydroxyl group, and a methylene group (-CH 2 - )
  • a fluorine-containing ether compound is disclosed in which terminal groups each having a polar group are bonded to each other via a fluorine-containing ether compound.
  • Patent Document 8 discloses a method for producing polyol (per)fluoropolyether derivatives useful as lubricants for magnetic media.
  • a protected triol having two protected hydroxyl functional groups and one free hydroxyl group is reacted with an activating agent to form an activated protected triol, and a functionalized (per)fluoropolyether derivative is prepared. It is described that a protected polyol (per)fluoropolyether derivative is produced by a nucleophilic substitution reaction with a hydroxyl group located at the terminal of the hydroxyl group.
  • Pick-up characteristics and spin-off characteristics are known as indicators of long-term stability of a lubricant layer.
  • Pick-up is a phenomenon in which lubricant adheres to a magnetic head as a foreign substance (smear). The pickup affects the flight stability of the magnetic head.
  • Spin-off is a phenomenon in which lubricant scatters or evaporates due to centrifugal force and heat generated as the magnetic recording medium rotates. When spin-off occurs, the thickness of the lubricant layer decreases, which deteriorates the chemical substance resistance and wear resistance of the lubricant layer.
  • the present invention has been made in view of the above circumstances, and it is possible to form a lubricant layer that is highly effective in suppressing corrosion of magnetic recording media and is less likely to cause pick-up and spin-off even if it is thin, and provides a lubricant for magnetic recording media. It is an object of the present invention to provide a fluorine-containing ether compound that can be suitably used as a material for agents. Another object of the present invention is to provide a lubricant for magnetic recording media containing the fluorine-containing ether compound of the present invention. Another object of the present invention is to provide a magnetic recording medium that has a lubricating layer containing the fluorine-containing ether compound of the present invention, is less susceptible to pickup and spin-off, and has excellent corrosion resistance.
  • the present invention relates to the following matters.
  • [1] A fluorine-containing ether compound represented by the following formula (1).
  • [A] is represented by the following formula (2-1)
  • a in formula (2-1) is an integer from 0 to 3.
  • [B] is represented by the following formula (2-2).
  • b in formula (2-2) is an integer from 0 to 3
  • c is an integer from 2 to 5.However, the sum of the values of a and b is 1 to 3.Equation In (1), [A] and [B] may be interchanged.
  • [C] is represented by the following formula (3-1), and d in formula (3-1) is an integer from 0 to 2.
  • [D] is represented by the following formula (3-2), where e in formula (3-2) is an integer from 0 to 2, and f is an integer from 2 to 5.However, the values of d and e The total of is 1 or 2.
  • R 4 is a branched terminal group having 3 to 30 carbon atoms, and the following formula (4) L in formula (4) represents an integer of 0 to 6.
  • Y 1 and Y 2 in formula (4) each independently represent an ether oxygen atom having only one primary hydroxyl group.
  • Y3 in formula (4) is a hydrocarbon group that has only one primary hydroxyl group and may contain an ether oxygen atom, or a hydrogen atom.
  • R1 is R is a terminal group that may be the same as or different from 4 , and is a branched terminal group having 3 to 30 carbon atoms represented by formula (4), or a terminal group that is bonded to [A] or [B].
  • Ether is an organic group having 1 to 30 carbon atoms having an oxygen atom, or a hydroxyl group.
  • z represents 1 or 2.
  • R 2 is a perfluoropolyether chain. Two or three R 2 are Parts or all of them may be the same or different.
  • R 3 is a divalent linking group represented by the following formula (5).
  • y1 in formula (5) is 1 to is an integer of 3, and y2 is an integer of 1 to 3.
  • the dotted line bonded to the oxygen atom on the left side indicates the bond to the methylene group on the R 1 side
  • the dotted line bonded to the oxygen atom on the right side indicates the bond with the methylene group on the R 4 side.
  • the two R 3s may be the same or different.
  • g represents an integer from 1 to 6.
  • X 1 and X 2 are represented by formula (7). X 1 and X 2 may be the same or different. good.
  • h represents an integer of 0 to 6.
  • i and j each independently represent an integer of 1 to 6.
  • X 3 and X 4 are hydrogen atoms or ( X3 and X4 may be the same or different.
  • k represents an integer of 0 to 6.
  • p, q and r each independently represent an integer of 1 to 6.
  • X 5 , X 6 and X 7 are hydrogen atoms Or represented by formula (7).
  • X 5 , X 6 and X 7 may be different from each other, or may be partially or entirely the same.
  • s represents an integer from 2 to 6, and t represents 1 or 2.
  • R 5 represents a hydrogen atom, an alkyl group that may have a substituent not containing a hydroxyl group, or a double bond or an organic group having at least one triple bond.However, the alkyl group and the organic group may be linear or branched.
  • R 5 in the above formula (8) is an organic group having 6 to 12 carbon atoms having an aromatic hydrocarbon, an organic group having 3 to 10 carbon atoms having an aromatic heterocycle, or an organic group having 2 to 10 carbon atoms.
  • R 5 in the formula (8) is a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a 2,2,2-trifluoroethyl group, or a 2,2,3,3,3-pentafluoro group.
  • w1 and w6 are average values representing the number of CF 2 and each independently represents 1 to 3. (CF 2 O), (CF 2 CF 2 O), (CF There is no particular restriction on the arrangement order of (CF 2 CF 2 CF 2 O) and (CF 2 CF 2 CF 2 CF 2 O).)
  • R 2 in the formula (1) are each independently any one selected from perfluoropolyether chains represented by the following formulas (10-1) to (10-4).
  • a magnetic recording medium in which at least a magnetic layer, a protective layer, and a lubricant layer are sequentially provided on a substrate A magnetic recording medium characterized in that the lubricating layer contains the fluorine-containing ether compound according to any one of [1] to [15].
  • the lubricating layer has an average thickness of 0.5 nm to 2.0 nm.
  • the fluorine-containing ether compound of the present invention is a compound represented by the above formula (1), and is suitable as a material for a lubricant for magnetic recording media.
  • the magnetic recording medium lubricant of the present invention contains the fluorine-containing ether compound of the present invention. Therefore, even if the thickness is small, it is possible to form a lubricating layer that is highly effective in suppressing corrosion of the magnetic recording medium, has good adhesion to the protective layer, and can suppress pickup and spin-off.
  • the magnetic recording medium of the present invention has a lubricating layer that has good adhesion to the protective layer, can suppress pickup and spin-off, and provides excellent corrosion resistance. Therefore, it has excellent reliability and durability.
  • FIG. 1 is a schematic cross-sectional view showing an example of an embodiment of a magnetic recording medium of the present invention.
  • the present inventors focused on the relationship between the molecular structure of the fluorine-containing ether compound contained in the lubricating layer and the protective layer, and conducted extensive research as shown below.
  • a fluorine-containing material having a polar group such as a hydroxyl group at the end of a chain structure has been used as a material for a magnetic recording medium lubricant (hereinafter sometimes abbreviated as "lubricant") applied to the surface of a protective layer.
  • lubricant a magnetic recording medium lubricant
  • Ether compounds are used.
  • a lubricant layer formed using a conventional lubricant may not have sufficient adhesion to the protective layer and/or a sufficient effect of suppressing corrosion of the magnetic recording medium.
  • the inventors of the present invention found that if the adhesion of the lubricating layer to the protective layer is insufficient, pick-up and spin-off are likely to occur.
  • the present inventors conducted further studies in order to improve the adhesion of the lubricating layer to the protective layer and the corrosion inhibiting effect of the magnetic recording medium. As a result, it was found that it was necessary to use a fluorine-containing ether compound having a hydroxyl group and capable of providing the functions ⁇ 1> to ⁇ 3> shown below as a lubricant.
  • PFPE perfluoropolyether
  • the hydroxyl group in the perfluoropolyether (hereinafter sometimes referred to as PFPE)-based compound effectively participates in bonding with the active site on the protective layer.
  • the hydroxyl group in the PFPE-based compound participates in the formation of intermolecular hydrogen bonds between the PFPE-based compounds.
  • Sufficient hydrophobicity is obtained by including perfluoropolyether chains (PFPE chains), and the PFPE chains are not too far away from the protective layer.
  • PFPE chains perfluoropolyether chains
  • a specific linking group having a secondary hydroxyl group is bonded to each perfluoropolyether chain via a methylene group (-CH 2 -), and a branched terminal group having a plurality of primary hydroxyl groups is arranged at least at one end.
  • PFPE chains perfluoropolyether chains
  • a specific linking group having a secondary hydroxyl group is bonded to each perfluoropolyether chain via a methylene group (-CH 2 -)
  • a branched terminal group having a plurality of primary hydroxyl groups is arranged at least at one end.
  • the fluorine-containing ether compound, magnetic recording medium lubricant, and magnetic recording medium of the present invention will be explained in detail.
  • the present invention is not limited only to the embodiments shown below.
  • the present invention is not limited to the following examples, and additions, omissions, substitutions, etc. of numbers, amounts, ratios, compositions, types, positions, materials, configurations, etc. are not limited to the following examples. , change is possible.
  • [Fluorine-containing ether compound] The fluorine-containing ether compound of this embodiment is represented by the following formula (1).
  • [A] is represented by the following formula (2-1)
  • a in formula (2-1) is an integer from 0 to 3.
  • [B] is represented by the following formula (2-2).
  • b in formula (2-2) is an integer from 0 to 3
  • c is an integer from 2 to 5.However, the sum of the values of a and b is 1 to 3.Equation In (1), [A] and [B] may be interchanged.
  • [C] is represented by the following formula (3-1), and d in formula (3-1) is an integer from 0 to 2.
  • [D] is represented by the following formula (3-2), where e in formula (3-2) is an integer from 0 to 2, and f is an integer from 2 to 5.However, the values of d and e The total of is 1 or 2.
  • [C] and [D] may be exchanged.
  • R 4 is a branched terminal group having 3 to 30 carbon atoms, and the following formula (4) L in formula (4) represents an integer of 0 to 6.
  • L in formula (4) represents an integer of 0 to 6.
  • Y 1 and Y 2 in formula (4) each independently represent an ether oxygen atom having only one primary hydroxyl group.
  • Y3 in formula (4) is a hydrocarbon group that has only one primary hydroxyl group and may contain an ether oxygen atom, or a hydrogen atom.
  • R1 is R is a terminal group that may be the same as or different from 4 , and is a branched terminal group having 3 to 30 carbon atoms represented by formula (4), or a terminal group that is bonded to [A] or [B].
  • R 3 is a divalent linking group represented by the following formula (5).
  • y1 in formula (5) is an integer of 1 to 3
  • y2 is an integer from 1 to 3.
  • the dotted line bonded to the oxygen atom on the left side indicates the bond to the methylene group on the R 1 side
  • the dotted line bonded to the oxygen atom on the right side indicates the bond to the methylene group on the R 1 side.
  • the two R 3s may be the same or different.
  • Formulas (2-1) and (2-2) are combinations in which a is 1 and b is 0, or a is 0 and b is 1, from the viewpoint of ease of obtaining raw materials and synthesis. Certain combinations are preferred.
  • formulas (2-1) and (2-2) have a combination in which a is 2 and b is 0, or a is 1 and b is 1, from the viewpoint of adhesion with the protective layer.
  • a combination is preferred.
  • the direction in which the two hydroxyl groups of formula (2-1) are arranged is steric with respect to the extending direction of the PFPE chain. are in the same direction, and there is a tendency for the two hydroxyl groups of formula (2-1) to be easily adsorbed onto the protective layer.
  • c in formula (2-2) is an integer from 2 to 5.
  • b is an integer from 1 to 3
  • c is preferably an integer from 2 to 4, most preferably 2. This is because the -[B]-[A]- structure does not contain too many carbon atoms, has even better adhesion to the protective layer, and forms a lubricating layer that can suppress pick-up and spin-off. This is because it becomes a fluorine-containing ether compound that can be produced.
  • Formulas (3-1) and (3-2) are combinations in which d is 1 and e is 0, or d is 0 and e is 1, from the viewpoint of ease of obtaining raw materials and synthesis. Certain combinations are preferred.
  • formulas (3-1) and (3-2) have a combination in which d is 2 and e is 0, or d is 1 and e is 1, from the viewpoint of adhesion with the protective layer.
  • a combination is preferred.
  • the direction in which the two hydroxyl groups of formula (3-1) are arranged is steric with respect to the extending direction of the PFPE chain. are in the same direction, and there is a tendency for the two hydroxyl groups of formula (3-1) to be easily adsorbed onto the protective layer.
  • f in formula (3-2) is an integer from 2 to 5.
  • e is an integer of 1 to 2
  • f is preferably an integer of 2 to 3, most preferably 2. This does not contain too many carbon atoms in the -[C]-[D]- structure, and forms a lubricating layer that has even better adhesion to the protective layer and can suppress pick-up and spin-off. This is because it becomes a fluorine-containing ether compound that can be produced.
  • R 4 is a branched terminal group having 3 to 30 carbon atoms and represented by formula (4).
  • the number of carbon atoms in R 4 is preferably 3 to 20, more preferably 3 to 12.
  • the number of carbon atoms in R 4 may be 3 to 5, 5 to 10, 10 to 15, etc.
  • the proportion of fluorine atoms in the fluorine-containing ether compound molecule decreases, and the surface free energy of the entire molecule can be prevented from increasing.
  • Formula (4) is a branched terminal group containing two or three primary hydroxyl groups and having a carbon atom as a branching point.
  • the plurality of primary hydroxyl groups contained in R 4 participate in the formation of intermolecular hydrogen bonds between the fluorine-containing ether compounds.
  • L in formula (4) represents an integer from 0 to 6.
  • Y 1 and Y 2 are each independently a hydrocarbon group that has only one primary hydroxyl group and may contain an ether oxygen atom.
  • the hydrocarbon groups represented by Y 1 and Y 2 may be linear or branched, and preferably do not contain a secondary hydroxyl group or a tertiary hydroxyl group.
  • Y 3 is a hydrocarbon group that has only one primary hydroxyl group and may contain an ether oxygen atom, or a hydrogen atom.
  • the hydrocarbon group represented by Y 3 may be linear or branched, and preferably does not contain a secondary hydroxyl group or a tertiary hydroxyl group.
  • R 4 preferably contains three or more ether bonds (-O-).
  • the lubricating layer containing the fluorine-containing ether compound represented by formula (1) has even better adhesion to the protective layer.
  • R 4 has a plurality of ether bonds, it is preferable that adjacent ether bonds are bonded to each other via a linking group in which two or more carbon atoms are bonded. In this case, the distance between adjacent ether bonds becomes appropriate, resulting in a fluorine-containing ether compound that is difficult to aggregate.
  • Formula (4) representing R 4 is preferably a branched terminal group of any of the following formulas (6-1) to (6-3).
  • R 4 is a branched terminal group of any of formulas (6-1) to (6-3)
  • the carbon atoms to which the primary hydroxyl groups contained in R 4 are bonded are methine groups and/or Alternatively, it is bonded via a linking group containing a methylene group and an ether bond. Therefore, the distance between the adjacent primary hydroxyl groups of R 4 becomes appropriate, and the plurality of primary hydroxyl groups of R 4 are arranged to easily form hydrogen bonds between molecules of the fluorine-containing ether compounds. ing.
  • R 4 is a branched terminal group represented by any of the following formulas (6-1) to (6-3)
  • the proportion of fluorine atoms in the fluorine-containing ether compound molecule is increased due to the large molecular weight of R 4 . can be suppressed from increasing the surface free energy of the entire molecule.
  • R 4 is more preferably represented by formula (6-1) or (6-2) because it can suppress an increase in the surface free energy of the entire molecule.
  • g represents an integer from 1 to 6.
  • X 1 and X 2 are represented by formula (7). X 1 and X 2 may be the same or different. good.
  • h represents an integer of 0 to 6.
  • i and j each independently represent an integer of 1 to 6.
  • X 3 and X 4 are hydrogen atoms or ( X3 and X4 may be the same or different.
  • k represents an integer of 0 to 6.
  • p, q and r each independently represent an integer of 1 to 6.
  • X 5 , X 6 and X 7 are hydrogen atoms Or it is represented by formula (7).
  • X 5 , X 6 and X 7 may be different from each other, or may be partially or entirely the same.
  • s represents an integer from 2 to 6, and t represents 1 or 2.
  • g represents an integer from 1 to 6.
  • g is preferably an integer of 1 to 4, more preferably 1 or 2, because it facilitates ensuring the proportion of fluorine atoms in the fluorine-containing ether compound molecule.
  • the terminal mobility will not become too high due to the large number of carbon atoms in R 4 . Therefore, the fluorine-containing ether compound has even better adhesion to the protective layer and can form a lubricating layer that can suppress pick-up and spin-off, which is preferable.
  • X 1 and X 2 are represented by formula (7). X 1 and X 2 may be the same or different.
  • h represents an integer from 0 to 6.
  • h is preferably an integer of 0 to 4, more preferably an integer of 0 to 2, since it becomes easier to ensure the proportion of fluorine atoms in the fluorine-containing ether compound molecule.
  • the terminal mobility will not become too high due to the large number of carbon atoms in R 4 . Therefore, the fluorine-containing ether compound has even better adhesion to the protective layer and can form a lubricating layer that can suppress pick-up and spin-off, which is preferable.
  • i and j each independently represent an integer from 1 to 6.
  • i and j are each independently preferably an integer of 1 to 4, more preferably 1 or 2, since this facilitates securing the proportion of fluorine atoms in the fluorine-containing ether compound molecule.
  • i and j may be the same or different.
  • i and j are preferably the same because the fluorine-containing ether compound can be easily produced.
  • X 3 and X 4 are represented by a hydrogen atom or formula (7).
  • X 3 and X 4 may be the same or different.
  • k represents an integer from 0 to 6.
  • k is preferably an integer of 0 to 4, more preferably an integer of 0 to 2, since it becomes easier to ensure the proportion of fluorine atoms in the fluorine-containing ether compound molecule.
  • p, q and r each independently represent an integer of 1 to 6.
  • p, q and r are each independently preferably an integer of 1 to 4, more preferably 1 or 2, since this makes it easier to ensure the proportion of fluorine atoms in the fluorine-containing ether compound molecule.
  • p, q and r may be different from each other, or may be partially or entirely the same.
  • X 5 , X 6 and X 7 are each a hydrogen atom or represented by formula (7). X 5 , X 6 and X 7 may be different from each other, or a part or all of them may be the same.
  • s represents an integer from 2 to 6.
  • s is preferably an integer of 2 to 4, more preferably 2 or 3, since this makes it easier to ensure the proportion of fluorine atoms in the fluorine-containing ether compound molecule.
  • t represents 1 or 2. When t is 2, s in each [-(CH 2 ) s -O-] may be the same or different. t is preferably 1 because it becomes easier to ensure the proportion of fluorine atoms in the fluorine-containing ether compound molecule.
  • s is preferably 3 or more and/or t is 2, and the formula (7) as X 1 in the formula (6-1) It is more preferable that in both (7) and formula (7) as X 2 in formula (6-1), s is 3 or more and/or t is 2.
  • the distance from the carbon atom that is the branching point in formula (6-1) to the primary hydroxyl group is not too short and is appropriate, and a fluorine-containing material that can form a lubricating layer that can more effectively suppress pick-up and spin-off. This is because it becomes an ether compound.
  • -[C]-[D]-R 4 in formula (1) is preferably one of the structures represented by the following formulas (11-1) to (11-25), The following formulas (11-1) to (11-5), (11-7) to (11-10), (11 -13) to (11-21), (11-24), and (11-25) are more preferred.
  • Terminal group represented by R 1 is a terminal group which may be the same as or different from R 4 , and is a branched terminal group having 3 to 30 carbon atoms represented by formula (4).
  • [A] or [B] is an organic group having 1 to 30 carbon atoms having an ether oxygen atom at the end, or a hydroxyl group.
  • the terminal group represented by R 1 can be appropriately selected depending on the performance required of a lubricant containing a fluorine-containing ether compound.
  • R 1 is a terminal group having 3 to 30 carbon atoms represented by formula (4)
  • R 1 is a branched terminal group containing two or three primary hydroxyl groups and having a carbon atom as a branching point. becomes. Therefore, the plurality of primary hydroxyl groups contained in R 1 participate in the formation of intermolecular hydrogen bonds between the fluorine-containing ether compounds, and the intermolecular hydrogen bonds between the fluorine-containing ether compounds are further strengthened.
  • formula (4) representing R 1 is a branched terminal group of any of the above formulas (6-1) to (6-3). It is preferable.
  • g in formula (6-1), h to j in formula (6-2), k, p to r in formula (6-3), and s and t in formula (7) Preferred values are the same as when R 4 is a branched terminal group of any of formulas (6-1) to (6-3).
  • -[A]-[B]-R 1 is specifically a terminal group represented by formulas (11-1) to (11-25) above. It is preferable that the structure is
  • R 1 when R 1 is a terminal group represented by formula (4), both R 1 and R 4 are branched from any one of formulas (6-1) to (6-3) above. More preferably, it is a type terminal group.
  • R 1 and R 4 when R 1 is a terminal group represented by formula (4), it is preferable that R 1 and R 4 are the same, and both R 1 and R 4 are the terminal group represented by formula (6). More preferably, it is a branched terminal group of any one of -1) to (6-3).
  • R 1 bonds with [A] or [B] It is an organic group having 1 to 30 carbon atoms having an ether oxygen atom at the end, or a hydroxyl group.
  • R 1 is preferably a terminal group represented by the following formula (8).
  • R 5 represents a hydrogen atom, an alkyl group that may have a substituent not containing a hydroxyl group, or a double bond or an organic group having at least one triple bond.However, the alkyl group and the organic group may be linear or branched.
  • u represents an integer from 2 to 6, and v represents 0 or 1.
  • v in formula (8) is 0, it is possible to more effectively suppress the proportion of fluorine atoms in the fluorine-containing ether compound molecule from decreasing and increasing the surface free energy of the entire molecule.
  • v is 1, the ether bond contained in formula (8) imparts flexibility to the fluorine-containing ether compound represented by formula (1), making it even more likely to be adsorbed onto the protective layer.
  • u is an integer of 2 to 6, the terminal group represented by R 1 is chemically stable and difficult to decompose.
  • u is preferably an integer of 2 to 4, more preferably 2 or 3.
  • u is 2 or 3 the proportion of fluorine atoms in the fluorine-containing ether compound molecule decreases, and it is possible to suppress an increase in the surface free energy of the entire molecule.
  • R 5 in formula (8) is a hydrogen atom, an alkyl group which may have a substituent not containing a hydroxyl group, or an organic group having at least one double bond or triple bond.
  • R 5 is a hydrogen atom
  • R 5 forms a hydroxyl group together with the oxygen atom in formula (8).
  • R 1 represented by formula (8) is an alkoxy group having a hydroxyl group at the terminal.
  • R 1 represented by formula (8) is a hydroxyl group.
  • R 5 is a hydrogen atom and v in formula (8) is 1
  • a preferred specific example of R 1 represented by formula (8) is -O-CH 2 CH 2 -OH (formula ( Examples include 8) in which u is 2) and -O-CH 2 CH 2 CH 2 -OH (u in formula (8) is 3).
  • R 5 is a hydrogen atom and v in formula (8) is 0 (that is, when R 1 is a hydroxyl group)
  • R 1 is bonded to [A] represented by formula (2-1). or may be bonded to [B] represented by formula (2-2).
  • R 1 is bonded to [B]
  • R 5 is an alkyl group that may have a substituent that does not contain a hydroxyl group
  • substituent include a fluoro group, a cyano group, and an alkoxy group.
  • the substituent does not include a substituent containing a hydroxyl group such as a hydroxyalkoxy group.
  • the alkyl group which may have a substituent is preferably an alkyl group having 1 to 6 carbon atoms without a substituent, or an alkyl group having 1 to 6 carbon atoms having a substituent.
  • the substituent of the alkyl group having 1 to 6 carbon atoms is preferably a fluoro group or a cyano group.
  • An alkyl group having 1 to 6 carbon atoms having a substituent is one in which one or more of the hydrogen atoms of the alkyl group is substituted with a substituent, and an alkyl group in which all of the hydrogen atoms of the alkyl group are substituted with a substituent. It may be something like that.
  • the alkyl group having 1 to 6 carbon atoms without a substituent and the alkyl group having 1 to 6 carbon atoms having a substituent may be linear or branched. It's okay.
  • the alkyl group includes methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, isobutyl group, tert-butyl group, n-pentyl group and structural isomers thereof. , n-hexyl group and its structural isomers.
  • alkyl group having 1 to 6 carbon atoms in which one or more hydrogen atoms are substituted with a fluoro group examples include a trifluoromethyl group, a perfluoroethyl group, a perfluoropropyl group, a perfluorobutyl group, and a perfluoropentyl group.
  • the alkyl group having 1 to 6 carbon atoms in which one or more of the hydrogen atoms is substituted with a cyano group may have one or more cyano groups. If the number of cyano groups is large, the polarity of the fluorine-containing ether compound becomes too high, so the number of cyano groups is preferably two or less, and most preferably one.
  • alkyl group having 1 to 6 carbon atoms in which one or more hydrogen atoms are substituted with a cyano group examples include 2-cyanoethyl group, 3-cyanopropyl group, 4-cyanobutyl group, 5-cyanopentyl group, 6 -cyanohexyl group, 2-cyano-1-methylethyl group, and 2,2'-dicyanoisopropyl group.
  • Examples of the organic group having at least one double bond or triple bond include an organic group having 6 to 12 carbon atoms having an aromatic hydrocarbon, an organic group having 3 to 10 carbon atoms having an aromatic heterocycle, and a carbon atom. It is preferably an alkenyl group having 2 to 8 carbon atoms or an alkynyl group having 3 to 8 carbon atoms.
  • the organic group having at least one double bond or triple bond may be linear or branched.
  • the organic group having at least one double bond or triple bond may have a substituent that does not contain a hydroxyl group.
  • Examples of the organic group having 6 to 12 carbon atoms and having an aromatic hydrocarbon include phenyl group, methoxyphenyl group, dimethoxyphenyl group, cyanophenyl group, dicyanophenyl group, fluorinated phenyl group, naphthyl group, and methoxynaphthyl group. , benzyl group, methoxybenzyl group, phenethyl group, methoxyphenethyl group, fluorinated phenethyl group, naphthylmethyl group, and naphthylethyl group.
  • the aromatic hydrocarbon has a substituent, the substituent may be bonded to any position.
  • organic groups having 3 to 10 carbon atoms having an aromatic heterocycle include pyrrolyl group, pyrazolyl group, methylpyrazolylmethyl group, imidazolyl group, furyl group, furfuryl group, oxazolyl group, isoxazolyl group, thienyl group, and thienylmethyl group.
  • alkenyl group having 2 to 8 carbon atoms examples include vinyl group, allyl group, 1-propenyl group, isopropenyl group, 3-butenyl group and its structural isomers, 4-pentenyl group and its structural isomers, 5 Examples include -hexenyl group and its structural isomers, 6-heptenyl group and its structural isomers, and 7-octenyl group and its structural isomers.
  • alkynyl group having 3 to 8 carbon atoms 1-propynyl group, propargyl group, 3-butynyl group and its structural isomers, 4-pentynyl group and its structural isomers, 5-hexynyl group and its structural isomers, Examples include 6-heptynyl group and its structural isomers, and 7-octynyl group and its structural isomers.
  • R 5 in formula (8) is a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a 2,2,2-trifluoroethyl group, 2, from the viewpoint of ease of acquisition and/or synthesis.
  • ,2,3,3,3-pentafluoropropyl group 2,2,2,2,2,2-hexafluoroisopropyl group, 2-cyanoethyl group, 3-cyanopropyl group, 4-cyanobutyl group, phenyl group, Group consisting of methoxyphenyl group, cyanophenyl group, phenethyl group, thienylethyl group, N-methylpyrazolylmethyl group, allyl group, 3-butenyl group, 4-pentenyl group, propargyl group, 3-butynyl group, 4-pentynyl group Preferably it is one group selected from.
  • hydrogen atom methyl group, ethyl group, n-propyl group, 2,2,2-trifluoroethyl group, 2,2,3,3,3-pentafluoropropyl group, 3-cyanopropyl group, More preferably, it is one group selected from the group consisting of 4-cyanobutyl group, methoxyphenyl group, cyanophenyl group, N-methylpyrazolylmethyl group, thienylethyl group, propargyl group, allyl group, and 3-butenyl group.
  • z represents 1 or 2.
  • the number (z+1) of PFPE chains represented by R 2 is 2 or 3, and the PFPE represented by R 2 It has good hydrophobicity compared to compounds with one chain. Therefore, even if the thickness is small, a lubricating layer that is highly effective in suppressing corrosion of the magnetic recording medium can be formed. Further, since z is 1 or 2, the number of R 3 arranged between R 2 is 1 or 2.
  • the number of polar groups of -R 2 [-CH 2 -R 3 -CH 2 -R 2 ] z - in formula (1) is appropriate, for example, compared to the case where z is 0. , a lubricating layer with good adhesion to the protective layer can be formed.
  • the fluorine-containing ether compound represented by formula (1) can prevent interaction between polar groups within the molecule, compared to, for example, the case where z is 3 or more, and the fluorine-containing ether compound The polar groups it has are unlikely to aggregate with each other.
  • R 2 are each independently a perfluoropolyether chain.
  • the PFPE chains represented by R 2 cover the surface of the protective layer and provide lubrication to the lubricant layer. This reduces the frictional force between the magnetic head and the protective layer.
  • the PFPE chain represented by R 2 is appropriately selected depending on the performance required of a lubricant containing a fluorine-containing ether compound.
  • (z+1) R 2 may be the same or different. It is preferable that all (z+1) R 2 's are the same. This is because the coating state of the fluorine-containing ether compound on the protective layer becomes uniform, resulting in a lubricating layer with better adhesion.
  • Two or more R 2s out of (z+1) R 2s are the same means that two or more R 2s out of (z+1) R 2s have the same repeating unit structure of the PFPE chain. It means there is.
  • the same R 2 also includes those having the same repeating unit structure but different average degrees of polymerization.
  • Examples of the PFPE chain represented by R 2 include those made of a perfluoroalkylene oxide polymer or copolymer.
  • Examples of the perfluoroalkylene oxide include perfluoromethylene oxide, perfluoroethylene oxide, perfluoro-n-propylene oxide, perfluoroisopropylene oxide, and perfluorobutylene oxide.
  • two or three R 2 in formula (1) are each independently a PFPE chain represented by the following formula (9) derived from a perfluoroalkylene oxide polymer or copolymer.
  • formula (9) derived from a perfluoroalkylene oxide polymer or copolymer.
  • w2, w3, w4, and w5 indicate the average degree of polymerization, and each independently represents 0 to 20.
  • w1 and w6 are average values representing the number of CF 2 and each independently represents 1 to 3. (CF 2 O), (CF 2 CF 2 O), (CF There are no particular restrictions on the arrangement order of 2 CF 2 CF 2 O) and (CF 2 CF 2 CF 2 CF 2 O).)
  • w2, w3, w4, and w5 represent average degrees of polymerization, each independently representing 0 to 20, preferably 0 to 15, and more preferably 0 to 10.
  • w1 and w6 are average values indicating the number of CF 2 and each independently represents 1 to 3.
  • w1 and w6 are determined depending on the structure of repeating units arranged at the ends of the chain structure in the PFPE chain represented by formula (9).
  • (CF 2 O), (CF 2 CF 2 O), (CF 2 CF 2 CF 2 O), and (CF 2 CF 2 CF 2 O) in formula (9) are repeating units. There is no particular restriction on the arrangement order of the repeating units in formula (9). Further, there is no particular restriction on the number of types of repeating units in formula (9).
  • R 2 in formula (1) are each independently selected from PFPE chains represented by the following formulas (10-1) to (10-4).
  • PFPE chains represented by the following formulas (10-1) to (10-4) When each of (z+1) R 2 in formula (1) is one selected from PFPE chains represented by formulas (10-1) to (10-4), a lubrication agent having good lubricity can be obtained. A layer is obtained from the fluorine-containing ether compound.
  • (z+1) R 2 are each one selected from the PFPE chains represented by formulas (10-1) to (10-4), the oxygen atom relative to the number of carbon atoms in the PFPE chain The ratio of the number (the number of ether bonds (-O-)) is appropriate. Therefore, the fluorine-containing ether compound has appropriate hardness.
  • the fluorine-containing ether compound applied on the protective layer is unlikely to aggregate on the protective layer, and a thinner lubricating layer can be formed with a sufficient coverage. Further, since the fluorine-containing ether compound has appropriate flexibility, a lubricating layer with better pick-up characteristics and spin-off characteristics can be formed.
  • formula (10-1) there is no particular restriction on the arrangement order of the repeating units (OCF 2 CF 2 ) and (OCF 2 ).
  • the number l of (OCF 2 CF 2 ) and the number m of (OCF 2 ) may be the same or different.
  • the PFPE chain represented by formula (10-1) may be a polymer of (OCF 2 CF 2 ).
  • the PFPE chain represented by formula (10-1) is a random copolymer, a block copolymer, or an alternating copolymer consisting of (OCF 2 CF 2 ) and (OCF 2 ). Good too.
  • l indicating the average degree of polymerization is 0.1 to 20
  • m is 0 to 20
  • n is 0.1 to 15, and o is 0.1 to 10. Therefore, the fluorine-containing ether compound can provide a lubricating layer with good lubricity.
  • l and m indicating the average degree of polymerization are 20 or less, n is 15 or less, and o is 10 or less, so the viscosity of the fluorine-containing ether compound is high. It is preferable because it does not become too thick and the lubricant containing it is easy to apply.
  • l, m, n, and o which indicate the average degree of polymerization, are preferably from 1 to 10 because the fluorine-containing ether compound easily spreads on the protective layer and provides a lubricating layer with a uniform thickness. , more preferably from 1.5 to 8, and even more preferably from 2 to 7.
  • formula (10-4) there is no particular restriction on the arrangement order of the repeating units (CF 2 CF 2 CF 2 O) and (CF 2 CF 2 O).
  • the number w8 of (CF 2 CF 2 CF 2 O) and the number w9 of (CF 2 CF 2 O) indicating the average degree of polymerization may be the same or different.
  • Formula (10-4) includes a random copolymer, a block copolymer, or an alternating copolymer consisting of monomer units (CF 2 CF 2 CF 2 O) and (CF 2 CF 2 O). It may be.
  • w8 and w9 indicating the average degree of polymerization are each independently from 0.1 to 20, preferably from 1 to 15, and more preferably from 1 to 10.
  • w7 and w10 in formula (10-4) are average values indicating the number of CF 2 and each independently represents 1 to 2.
  • w7 and w10 are determined depending on the structure of the repeating unit arranged at the end of the chain structure in the PFPE chain represented by formula (10-4).
  • R 3 (Divalent linking group represented by R 3 )
  • one or two R 3 are divalent linking groups represented by formula (5) above.
  • the dotted line bonded to the oxygen atom on the left side indicates the bond to the methylene group on the R 1 side
  • the dotted line bonded to the oxygen atom on the right side indicates the bond to the methylene group on the R 4 side.
  • R 3 is placed between two PFPE chains represented by R 2 .
  • z two R 3 are arranged between R 2 on the R 1 side and R 2 in the center, and between R 2 on the R 4 side and R 2 in the middle, respectively.
  • R 3 is a divalent linking group having a secondary hydroxyl group. Therefore, R 3 has good adhesion to the protective layer due to the secondary hydroxyl group. Therefore, R 3 suppresses the PFPE chains represented by R 2 located at both ends of R 3 from moving too far away from the protective layer, and creates a lubricating layer and a magnetic head having good hydrophobicity derived from R 2 . Maintain an appropriate distance from. That is, R3 contributes to forming a lubricating layer with a sufficient coverage rate, which is highly effective in suppressing corrosion of the magnetic recording medium.
  • y1 is an integer from 1 to 3
  • y2 is an integer from 1 to 3. It is preferable that at least one of y1 and y2 is 1. It is preferable that at least one of y1 and y2 is 1 because manufacturing becomes easy. In order to maintain flexibility of the entire linking group, it is more preferable that y1 is 1 and y2 is 1.
  • two R 3 's may be the same or different.
  • the coating state of the fluorine-containing ether compound on the protective layer becomes more uniform, and a lubricating layer with better adhesion can be formed.
  • the resulting fluorine-containing ether compound is easy to produce, which is preferable.
  • "Two R 3 are the same” means that the atoms contained in the two R 3 are arranged symmetrically with respect to R 2 located at the center of the chain structure of the molecule.
  • the fluorine-containing ether compound represented by formula (1) is such that y1 and y2 in formula (5) in two R 3 are R 2 located at the center of the chain structure. It is preferable to use a fluorine-containing ether compound having a value that is symmetrical to the above. For example, if y1 in formula (5) in R 3 on the R 1 side is 1 and y2 is 2, and y1 in formula (5) in R 3 on the R 4 side is 2, y2 is 1, then 2 The two R3s are the same.
  • the fluorine-containing ether compound represented by formula (1) is preferably a compound represented by the following formulas (1A) to (1V) and (2A) to (2V).
  • Rf 1 and Rf 2 representing PFPE chains have the following structures, respectively. That is, Rf 1 is a PFPE chain represented by the above formula (10-1), and Rf 2 is a PFPE chain represented by the above formula (10-2).
  • l and m in Rf 1 and n in Rf 2 which represent the PFPE chains in formulas (1A) to (1V) and (2A) to (2V), are values that indicate the average degree of polymerization, so they are not necessarily integers. Not necessarily.
  • Rf 2 1a in formula (1A) is represented by formula (1AF).
  • n1a indicates an average degree of polymerization and represents 0.1 to 15.
  • Two Rf in formula (1A) 2 n1a in 1a may be the same or different.
  • Rf 2 1b in formula (1B) is represented by formula (1BF).
  • n1b indicates the average degree of polymerization and represents 0.1 to 15.
  • Two Rf in formula (1B) n1b in 2 1b may be the same or different.
  • Rf 1 1c in formula (1C) is represented by formula (1CF).
  • Rf 1 1c, l1c and m1c represent the average degree of polymerization, l1c represents 0.1 to 20, and m1c represents 0 to 20.
  • (l1c and m1c in the two Rf 1 1c in formula (1C) may be the same or different.
  • Rf 1 1d in formula (1D) is represented by formula (1DF).
  • Rf 1 1d, l1d and m1d represent the average degree of polymerization, l1d represents 0.1 to 20, and m1d represents 0 to 20.
  • (l1d and m1d in the two Rf 1 1d in formula (1D) may be the same or different.)
  • Rf 2 1e in formula (1E) is represented by formula (1EF).
  • n1e indicates the average degree of polymerization and represents 0.1 to 15.
  • Two Rf in formula (1E) 2 n1e in 1e may be the same or different.
  • Rf 2 1f in formula (1F) is represented by formula (1FF).
  • n1f indicates the average degree of polymerization and represents 0.1 to 15.
  • Two Rf in formula (1F) 2 n1f in 1f may be the same or different.
  • Rf 2 1g in formula (1G) is represented by formula (1GF).
  • n1g indicates the average degree of polymerization and represents 0.1 to 15.
  • Two Rf in formula (1G) 2 n1g in 1g may be the same or different.
  • Rf 1 1h in formula (1H) is represented by formula (1HF).
  • l1h and m1h represent the average degree of polymerization, l1h represents 0.1 to 20, and m1h represents 0 to 20.
  • (l1h and m1h in the two Rf 1 1h in formula (1H) may be the same or different.)
  • Rf 1 1i in formula (1I) is represented by formula (1IF).
  • Rf 1 1i l1i and m1i represent the average degree of polymerization, l1i represents 0.1 to 20, and m1i represents 0 to 20.
  • (l1i and m1i in the two Rf 1 1i in formula (1I) may be the same or different.
  • Rf 2 1j in formula (1J) is represented by formula (1JF).
  • n1j represents an average degree of polymerization and represents 0.1 to 15.
  • Two Rf in formula (1J) n1j in 2 1j may be the same or different.
  • Rf 1 1k in formula (1K) is represented by formula (1KF).
  • Rf 1 1k, l1k and m1k represent the average degree of polymerization, l1k represents 0.1 to 20, and m1k represents 0 to 20.
  • (l1k and m1k in the two Rf 1 1k in formula (1K) may be the same or different.
  • Rf 2 1l in formula (1L) is represented by formula (1LF).
  • n1l indicates the average degree of polymerization and represents 0.1 to 15.
  • Two Rf in formula (1L) 2 n1l in 1l may be the same or different.
  • Rf 2 1m in formula (1M) is represented by formula (1MF).
  • n1m indicates the average degree of polymerization and represents 0.1 to 15.
  • Two Rf in formula (1M) 2 n1m in 1m may be the same or different.
  • Rf 2 1n in formula (1N) is represented by formula (1NF).
  • n1n indicates the average degree of polymerization and represents 0.1 to 15.
  • Two Rf in formula (1N) n1n in 2 1n may be the same or different.
  • Rf 2 1o in formula (1O) is represented by formula (1OF).
  • n1o indicates the average degree of polymerization and represents 0.1 to 15.
  • Two Rf in formula (1O) 2 n1o in 1o may be the same or different.
  • Rf 2 1p in formula (1P) is represented by formula (1PF).
  • n1p indicates an average degree of polymerization and represents 0.1 to 15.
  • Two Rf in formula (1P) 2 n1p in 1p may be the same or different.
  • Rf 1 1q in formula (1Q) is represented by formula (1QF).
  • Rf 1 1q, l1q and m1q represent the average degree of polymerization, l1q represents 0.1 to 20, and m1q represents 0 to 20.
  • (l1q and m1q in the two Rf 1 1q in formula (1Q) may be the same or different.
  • Rf 1 1r in formula (1R) is represented by formula (1RF).
  • Rf 1 1r, l1r and m1r represent the average degree of polymerization, l1r represents 0.1 to 20, and m1r represents 0 to 20.
  • (l1r and m1r in the two Rf 1 1r in formula (1R) may be the same or different.)
  • Rf 1 1s in formula (1S) is represented by formula (1SF).
  • l1s and m1s represent the average degree of polymerization, l1s represents 0.1 to 20, and m1s represents 0 to 20.
  • (l1s and m1s in the two Rf 1 1s in formula (1S) may be the same or different.
  • Rf 1 it in formula (1T) is represented by formula (1TF).
  • l1t and m1t indicate the average degree of polymerization, l1t represents 0.1 to 20, and m1t represents 0 to 20.
  • (l1t and m1t in the two Rf 1 it in formula (1T) may be the same or different.)
  • Rf 2 1u in formula (1U) is represented by formula (1UF).
  • n1u indicates the average degree of polymerization and represents 0.1 to 15.
  • Two Rf in formula (1U) 2 n1u in 1u may be the same or different.
  • Rf 2 1v in formula (1V) is represented by formula (1VF).
  • n1v indicates the average degree of polymerization and represents 0.1 to 15.
  • Two Rf in formula (1V) 2 n1v in 1v may be the same or different.
  • Rf 2 2a in formula (2A) is represented by formula (2AF).
  • n2a indicates the average degree of polymerization and represents 0.1 to 15.
  • the three Rf in formula (2A) 2 n2a in 2a may be different, or a part or all of them may be the same.
  • Rf 2 2b in formula (2B) is represented by formula (2BF).
  • n2b indicates the average degree of polymerization and represents 0.1 to 15.
  • the three Rf in formula (2B) n2b in 2 2b may be different from each other, or may be partly or completely the same.
  • Rf 1 2c in formula (2C) is represented by formula (2CF).
  • Rf 1 2c, l2c and m2c represent the average degree of polymerization, l2c represents 0.1 to 20, and m2c represents 0 to 20.
  • (l2c and m2c in the three Rf 1 2c in formula (2C) may be different from each other, or may be partially or entirely the same.
  • Rf 1 2d in formula (2D) is represented by formula (2DF).
  • Rf 1 2d, l2d and m2d represent the average degree of polymerization, l2d represents 0.1 to 20, and m2d represents 0 to 20.
  • (l2d and m2d in the three Rf 1 2d in formula (2D) may be different from each other, or may be partially or entirely the same.)
  • Rf 2 2e in formula (2E) is represented by formula (2EF).
  • n2e indicates the average degree of polymerization and represents 0.1 to 15.
  • the three Rf in formula (2E) n2e in 22e may be different from each other, or may be partly or completely the same.
  • Rf 2 2f in formula (2F) is represented by formula (2FF).
  • n2f indicates the average degree of polymerization and represents 0.1 to 15.
  • the three Rf in formula (2F) n2f in 22f may be different from each other, or may be partly or completely the same.
  • Rf 2 2g in formula (2G) is represented by formula (2GF).
  • n2g indicates the average degree of polymerization and represents 0.1 to 15.
  • the three Rf in formula (2G) n2g in 22g may be different, or may be partly or completely the same.
  • Rf 1 2h in formula (2H) is represented by formula (2HF).
  • l2h and m2h represent the average degree of polymerization, l2h represents 0.1 to 20, and m2h represents 0 to 20.
  • (l2h and m2h in the three Rf 1 2h in formula (2H) may be different from each other, or may be partially or entirely the same.)
  • Rf 1 2i in formula (2I) is represented by formula (2IF).
  • l2i and m2i represent the average degree of polymerization, l2i represents 0.1 to 20, and m2i represents 0 to 20.
  • (l2i and m2i in the three Rf 1 2i in formula (2I) may be different from each other, or may be partially or entirely the same.
  • Rf 2 2j in formula (2J) is represented by formula (2JF).
  • n2j indicates the average degree of polymerization and represents 0.1 to 15.
  • the three Rf in formula (2J) n2j in 2 2j may be different from each other, or may be partly or completely the same.
  • Rf 1 2k in formula (2K) is represented by formula (2KF).
  • Rf 1 2k l2k and m2k represent the average degree of polymerization, l2k represents 0.1 to 20, and m2k represents 0 to 20.
  • (l2k and m2k in the three Rf 1 2k in formula (2K) may be different from each other, or may be partially or entirely the same.
  • Rf 2 2l in formula (2L) is represented by formula (2LF).
  • n2l indicates the average degree of polymerization and represents 0.1 to 15.
  • the three Rf in formula (2L) n2l in 2 2l may be different, or may be partly or completely the same.
  • Rf 2 2m in formula (2M) is represented by formula (2MF).
  • n2m indicates the average degree of polymerization and represents 0.1 to 15.
  • the three Rf in formula (2M) n2m in 22m may be different, or may be partially or completely the same.
  • Rf 2 2n in formula (2N) is represented by formula (2NF).
  • n2n indicates the average degree of polymerization and represents 0.1 to 15.
  • the three Rf in formula (2N) n2n in 22n may be different from each other, or a part or all of them may be the same.
  • Rf 2 2o in formula (2O) is represented by formula (2OF).
  • n2o indicates the average degree of polymerization and represents 0.1 to 15.
  • the three Rf in formula (2O) n2o in 22o may be different, or may be partly or completely the same.
  • Rf 2 2p in formula (2P) is represented by formula (2PF).
  • n2p indicates the average degree of polymerization and represents 0.1 to 15.
  • the three Rf in formula (2P) 2 n2p in 2p may be different from each other, or a part or all of them may be the same.
  • Rf 1 2q in formula (2Q) is represented by formula (2QF).
  • Rf 1 2q, l2q and m2q represent the average degree of polymerization, l2q represents 0.1 to 20, and m2q represents 0 to 20.
  • (l2q and m2q in the three Rf 1 2q in formula (2Q) may be different from each other, or may be partially or entirely the same.
  • Rf 1 2r in formula (2R) is represented by formula (2RF).
  • Rf 1 2r, l2r and m2r represent the average degree of polymerization, l2r represents 0.1 to 20, and m2r represents 0 to 20.
  • (l2r and m2r in the three Rf 1 2r in formula (2R) may be different from each other, or may be partially or entirely the same.)
  • Rf 1 2s in formula (2S) is represented by formula (2SF).
  • l2s and m2s indicate the average degree of polymerization, l2s represents 0.1 to 20, and m2s represents 0 to 20.
  • (l2s and m2s in the three Rf 1 2s in formula (2S) may be different from each other, or may be partially or entirely the same.
  • Rf 1 2t in formula (2T) is represented by formula (2TF).
  • Rf 1 2t l2t and m2t represent the average degree of polymerization, l2t represents 0.1 to 20, and m2t represents 0 to 20.
  • (l2t and m2t in the three Rf 1 2t in formula (2T) may be different from each other, or may be partially or entirely the same.)
  • Rf 2 2u in formula (2U) is represented by formula (2UF).
  • n2u indicates the average degree of polymerization and represents 0.1 to 15.
  • the three Rf in formula (2U) n2u in 22u may be different, or may be partially or completely the same.
  • Rf 2 2v in formula (2V) is represented by formula (2VF).
  • n2v indicates the average degree of polymerization and represents 0.1 to 15.
  • the three Rf in formula (2V) n2v in 22v may be different from each other, or may be partly or completely the same.
  • the fluorine-containing ether compound represented by formula (1) is also preferably a compound represented by the following formulas (4A) to (4O) and (5A) to (5O).
  • Rf 1 representing a PFPE chain is a PFPE chain represented by the above formula (10-1)
  • Rf 2 is a PFPE chain represented by the above formula (10-2).
  • l and m in Rf 1 and n in Rf 2 which represent the PFPE chains in formulas (4A) to (4O) and (5A) to (5O), are values that indicate the average degree of polymerization, so they are not necessarily integers. Not necessarily.
  • Rf 2 4a in formula (4A) is represented by formula (4AF).
  • n4a indicates an average degree of polymerization and represents 0.1 to 15.
  • Two Rf in formula (4A) n4a in 2 4a may be the same or different.
  • Rf 2 4b in formula (4B) is represented by formula (4BF).
  • n4b indicates an average degree of polymerization and represents 0.1 to 15.
  • Two Rf in formula (4B) n4b in 2 4b may be the same or different.
  • Rf 2 4c in formula (4C) is represented by formula (4CF).
  • n4c indicates the average degree of polymerization and represents 0.1 to 15.
  • Two Rf in formula (4C) n4c in 24c may be the same or different.
  • Rf 2 4d in formula (4D) is represented by formula (4DF).
  • n4d indicates the average degree of polymerization and represents 0.1 to 15.
  • Two Rf in formula (4D) n4d in 2 4d may be the same or different.
  • Rf 2 4e in formula (4E) is represented by formula (4EF).
  • n4e indicates the average degree of polymerization and represents 0.1 to 15.
  • Two Rf in formula (4E) n4e in 2 4e may be the same or different.
  • Rf 2 4f in formula (4F) is represented by formula (4FF).
  • n4f indicates the average degree of polymerization and represents 0.1 to 15.
  • Two Rf in formula (4F) n4f in 2 4f may be the same or different.
  • Rf 2 4g in formula (4G) is represented by formula (4GF).
  • n4g indicates the average degree of polymerization and represents 0.1 to 15.
  • Two Rf in formula (4G) n4g in 24g may be the same or different.
  • Rf 2 4h in formula (4H) is represented by formula (4HF).
  • n4h indicates the average degree of polymerization and represents 0.1 to 15.
  • Two Rf in formula (4H) n4h in 24h may be the same or different.
  • Rf 2 4i in formula (4I) is represented by formula (4IF).
  • n4i represents an average degree of polymerization and represents 0.1 to 15.
  • Two Rf in formula (4I) n4i in 2 4i may be the same or different.
  • Rf 2 4j in formula (4J) is represented by formula (4JF).
  • n4j represents an average degree of polymerization and represents 0.1 to 15.
  • Two Rf in formula (4J) n4j in 2 4j may be the same or different.
  • Rf 2 4k in formula (4K) is represented by formula (4KF).
  • Me represents a methyl group.
  • n4k represents an average degree of polymerization and represents 0.1 to 15.
  • Formula ( n4k in the two Rf 2 4k in 4K) may be the same or different.
  • Rf 2 4l in formula (4L) is represented by formula (4LF).
  • n4l indicates the average degree of polymerization and represents 0.1 to 15.
  • Two Rf in formula (4L) n4l in 2 4l may be the same or different.
  • Rf 2 4m in formula (4M) is represented by formula (4MF).
  • n4m indicates the average degree of polymerization and represents 0.1 to 15.
  • Two Rf in formula (4M) n4m in 24m may be the same or different.
  • Rf 2 4n in formula (4N) is represented by formula (4NF).
  • n4n indicates the average degree of polymerization and represents 0.1 to 15.
  • Two Rf in formula (4N) n4n in 24n may be the same or different.
  • Rf 2 4o in formula (4O) is represented by formula (4OF).
  • n4o indicates an average degree of polymerization and represents 0.1 to 15.
  • Two Rf in formula (4O) n4o in 24o may be the same or different.
  • Rf 2 5a in formula (5A) is represented by formula (5AF).
  • n5a indicates the average degree of polymerization and represents 0.1 to 15.
  • the three Rf in formula (5A) n5a in 2 5a may be different from each other, or a part or all of them may be the same.
  • Rf 2 5b in formula (5B) is represented by formula (5BF).
  • n5b indicates the average degree of polymerization and represents 0.1 to 15.
  • the three Rf in formula (5B) n5b in 2 5b may be different from each other, or may be partly or completely the same.
  • Rf 2 5c in formula (5C) is represented by formula (5CF).
  • n5c indicates the average degree of polymerization and represents 0.1 to 15.
  • the three Rf in formula (5C) n5c in 25c may be different, or may be partly or completely the same.
  • Rf 2 5d in formula (5D) is represented by formula (5DF).
  • n5d indicates the average degree of polymerization and represents 0.1 to 15.
  • the three Rf in formula (5D) n5d in 2 5d may be different, or may be partly or completely the same.
  • Rf 2 5e in formula (5E) is represented by formula (5EF).
  • n5e indicates the average degree of polymerization and represents 0.1 to 15.
  • the three Rf in formula (5E) n5e in 2 5e may be different from each other, or a part or all of them may be the same.
  • Rf 2 5f in formula (5F) is represented by formula (5FF).
  • n5f indicates the average degree of polymerization and represents 0.1 to 15.
  • the three Rf in formula (5F) n5f in 25f may be different, or may be partly or completely the same.
  • Rf 2 5g in formula (5G) is represented by formula (5GF).
  • n5g indicates the average degree of polymerization and represents 0.1 to 15.
  • the three Rf in formula (5G) n5g in 25g may be different, or may be partially or completely the same.
  • Rf 2 5h in formula (5H) is represented by formula (5HF).
  • n5h indicates the average degree of polymerization and represents 0.1 to 15.
  • the three Rf in formula (5H) n5h in 25h may be different, or may be partly or completely the same.
  • Rf 2 5i in formula (5I) is represented by formula (5IF).
  • n5i represents an average degree of polymerization and represents 0.1 to 15.
  • Three Rf in formula (5I) n5i in 2 5i may be different, or may be partly or completely the same.
  • Rf 2 5j in formula (5J) is represented by formula (5JF).
  • n5j indicates the average degree of polymerization and represents 0.1 to 15.
  • the three Rf in formula (5J) n5j in 2 5j may be different from each other, or a part or all of them may be the same.
  • Rf 2 5k in formula (5K) is represented by formula (5KF). Me represents a methyl group.
  • n5k represents the average degree of polymerization and represents 0.1 to 15.
  • Formula ( n5k in the three Rf 2 5k's in 5K) may be different from each other, or may be partially or entirely the same.)
  • Rf 2 5l in formula (5L) is represented by formula (5LF).
  • n5l indicates the average degree of polymerization and represents 0.1 to 15.
  • the three Rf in formula (5L) n5l in 25l may be different, or may be partly or completely the same.
  • Rf 2 5m in formula (5M) is represented by formula (5MF).
  • n5m indicates the average degree of polymerization and represents 0.1 to 15.
  • the three Rf in formula (5M) n5m in 25m may be different, or may be partly or completely the same.
  • Rf 2 5n in formula (5N) is represented by formula (5NF).
  • n5n indicates the average degree of polymerization and represents 0.1 to 15.
  • the three Rf in formula (5N) n5n in 25n may be different from each other, or a part or all of them may be the same.
  • Rf 2 5o in formula (5O) is represented by formula (5OF).
  • n5o indicates the average degree of polymerization and represents 0.1 to 15.
  • the three Rf in formula (5O) n5o in 25o may be different, or may be partly or completely the same.
  • the fluorine-containing ether compound represented by formula (1) is one of the above formulas (1A) to (1V), (2A) to (2V), (4A) to (4O), and (5A) to (5O).
  • a compound represented by is preferable because it is highly effective in suppressing corrosion of a magnetic recording medium and can form a lubricating layer capable of suppressing pickup and spin-off even if it is thin.
  • the number average molecular weight (Mn) of the fluorine-containing ether compound of the present embodiment is preferably within the range of 500 to 10,000, particularly preferably within the range of 600 to 5,000.
  • the lubricating layer made of the lubricant containing the fluorine-containing ether compound of this embodiment has excellent heat resistance.
  • the number average molecular weight of the fluorine-containing ether compound is more preferably 600 or more. Further, when the number average molecular weight is 10,000 or less, the viscosity of the fluorine-containing ether compound becomes appropriate, and by applying a lubricant containing this, a thin lubricating layer can be easily formed.
  • the number average molecular weight of the fluorine-containing ether compound is more preferably 5,000 or less since it provides a viscosity that is easy to handle when applied to a lubricant.
  • the number average molecular weight (Mn) of the fluorine-containing ether compound is a value measured by 1 H-NMR and 19 F-NMR using AVANCE III400 manufactured by Bruker Biospin. Specifically, the number of repeating units of the PFPE chain is calculated from the integral value measured by 19 F-NMR, and the number average molecular weight is determined.
  • NMR nuclear magnetic resonance
  • the sample is diluted into a hexafluorobenzene/d-acetone (4/1 v/v) solvent.
  • the standard for 19 F-NMR chemical shift is the peak of hexafluorobenzene at -164.7 ppm
  • the standard for 1 H-NMR chemical shift is the peak of acetone at 2.2 ppm.
  • the fluorine-containing ether compound of this embodiment is preferably subjected to molecular weight fractionation by an appropriate method to have a molecular weight dispersity (weight average molecular weight (Mw)/number average molecular weight (Mn) ratio) of 1.3 or less.
  • the method for molecular weight fractionation is not particularly limited, but for example, molecular weight fractionation by silica gel column chromatography, gel permeation chromatography (GPC), etc., molecular weight fractionation by supercritical extraction, etc. can be used.
  • [A], [B], [C] and [D] are each a divalent linking group having a secondary hydroxyl group.
  • the fluorine-containing ether compound of the present embodiment has a -[B]-[A]- structure (hereinafter sometimes abbreviated as "BA structure”) containing 1 to 3 secondary hydroxyl groups, and 1 A -[C]-[D]- structure (hereinafter sometimes abbreviated as "CD structure”) containing ⁇ 2 secondary hydroxyl groups forms -R via a methylene group (-CH 2 -).
  • the carbon atoms to which the secondary hydroxyl groups are bonded form a methylene group (-CH 2 -) and an ether bond (-O-). are bonded via a linking group consisting of Therefore, even if the BA structure and/or CD structure has multiple secondary hydroxyl groups, the distance between adjacent secondary hydroxyl groups is appropriate, and each secondary hydroxyl group is arranged to be easily adsorbed to the protective layer. has been done.
  • R 4 in formula (1) is a branched terminal group containing two or three primary hydroxyl groups. Since the primary hydroxyl group has less steric hindrance than the secondary hydroxyl group and the tertiary hydroxyl group, it effectively participates in the formation of intermolecular hydrogen bonds between fluorine-containing ether compounds.
  • ⁇ 1> the secondary hydroxyl group contained in the BA structure and the secondary hydroxyl group contained in the CD structure are active points on the protective layer.
  • the plurality of primary hydroxyl groups contained in ⁇ 2>R 4 participate in the formation of intermolecular hydrogen bonds between the fluorine-containing ether compounds.
  • the secondary hydroxyl groups arranged at both ends of -R 2 [-CH 2 -R 3 -CH 2 -R 2 ] z - in formula (1) are The excellent adsorption power to the protective layer and the excellent intermolecular force shown by the primary hydroxyl group of the branched terminal group act effectively in a well-balanced manner.
  • lubricating layer containing the fluorine-containing ether compound of this embodiment sufficient hydrophobicity is obtained by including two or three PFPE chains represented by R 2 in ⁇ 3> formula (1), and R 3 having a secondary hydroxyl group located between adjacent R 2 prevents R 2 from being too far away from the protective layer.
  • the lubricating layer containing the fluorine-containing ether compound of the present embodiment has the functions ⁇ 1> to ⁇ 3> above, and the synergistic effect of these functions improves the adhesion to the protective layer and magnetic recording.
  • the effect of inhibiting corrosion of the medium can be sufficiently obtained.
  • the fluorine-containing ether compound existing without adhering (adsorbing) to the protective layer is transferred to the magnetic head as a foreign substance (smear). Adhesion can be prevented and pickup can be suppressed.
  • this magnetic recording medium spin-off, in which the lubricant scatters and evaporates due to centrifugal force and/or heat generation caused by high-speed rotation, and the thickness of the lubricant layer decreases, is suppressed. Furthermore, this magnetic recording medium has excellent corrosion resistance, and has good reliability and durability.
  • the method for producing the fluorine-containing ether compound of this embodiment is not particularly limited, and can be produced using a conventionally known production method.
  • the fluorine-containing ether compound of this embodiment can be manufactured using, for example, the manufacturing method shown below.
  • the epoxy group corresponding to the group consisting of R 1 -[B]-[A]- (or -[C]-[D]-R 4 ) used in producing the fluorine-containing ether compound of this embodiment The compound may be synthesized or a commercially available product may be purchased and used.
  • synthesizing the above epoxy compound for example, a structure corresponding to a group consisting of R 1 -[B]-[A]- (or -[C]-[D]-R 4 ) of the fluorine-containing ether compound to be produced A method of reacting an alcohol having an epoxy group with a compound having an epoxy group can be used.
  • the compound having an epoxy group for example, any compound selected from epichlorohydrin, epibromohydrin, 2-bromoethyloxirane, and allyl glycidyl ether can be used.
  • the group consisting of R 1 -[B]-[A]- (or -[C]-[D]-R 4 ) of the fluorine-containing ether compound to be produced is A method may also be used in which an unsaturated compound having a corresponding structure is prepared and the unsaturated bonds thereof are oxidized.
  • the hydroxyl group of the hydroxymethyl group located at the terminal of the intermediate compound 1-1 is reacted with a halogen compound having an epoxy group corresponding to R 3 . Then, the obtained epoxy compound is reacted with the hydroxyl group located at the end of one more molecule of the intermediate compound 1-1 (second reaction).
  • halogen compound having an epoxy group corresponding to R 3 above for example, when R 3 is represented by formula (5) and y1 and y2 in formula (5) are both 1, epibromohydrin is used. be able to.
  • z in formula (1) is 1, R 1 -[B]-[A]- and -[C]-[D]-R 4 are the same, Compounds can be prepared in which the two PFPE chains denoted by R 2 are the same.
  • R 1 -[B]-[A]- and -[C]-[D]-R 4 are different and/or the two R 2 are different
  • R 1 -[B]-[A]- and -[C]-[D]-R 4 are the same, and the two PFPE chains represented by R 2 are In the same way as when producing the same compound, the PFPE chain corresponding to R 2 on the R 1 side has a group corresponding to R 1 -[B]-[A]- at one end, and the other An intermediate compound 1-2 having a hydroxymethyl group at the end is produced.
  • intermediate compound 1-2 is reacted with a halogen compound having an epoxy group corresponding to R 3 to obtain an epoxy compound.
  • the obtained epoxy compound is reacted with intermediate compound 1-3 (second reaction).
  • second reaction the case where the epoxy compound obtained by reacting intermediate compound 1-2 with a halogen compound having an epoxy group corresponding to R 3 and intermediate compound 1-3 is reacted.
  • an epoxy compound obtained by reacting intermediate compound 1-3 with a halogen compound having an epoxy group corresponding to R 3 is reacted with intermediate compound 1-2. Good too.
  • z in formula (1) is 1 and R 1 -[B]-[A]- and -[C]-[D]-R 4 are different, and/or Compounds can be prepared in which the two PFPE chains represented by R 2 are different.
  • the second reaction in the second production method may be performed after the first reaction or may be performed before the first reaction.
  • intermediate compound 2-1 is synthesized, which has an epoxy group corresponding to R 3 at both ends of a PFPE chain corresponding to R 2 at the center of the molecule.
  • intermediate compounds 2-2a and 2-2b are synthesized in the same manner as intermediate compound 2-2.
  • a fluorine-based compound is prepared in which hydroxymethyl groups are placed at both ends of the PFPE chain corresponding to R 2 on the R 1 side. Then, the hydroxyl group of the hydroxymethyl group located at one end of the fluorine-based compound is reacted with an epoxy compound corresponding to the group consisting of R 1 -[B]-[A]- in formula (1). As a result, the PFPE chain corresponding to R 2 on the R 1 side had a group corresponding to R 1 -[B]-[A]- at one end, and a hydroxymethyl group was placed at the other end. Intermediate compound 2-2a is obtained.
  • a fluorine-based compound in which hydroxymethyl groups are arranged at both ends of the PFPE chain corresponding to R 2 on the R 4 side is prepared. Then, the hydroxyl group of the hydroxymethyl group located at one end of the fluorine-based compound is reacted with an epoxy compound corresponding to the group consisting of -[C]-[D]-R 4 in formula (1). As a result, the PFPE chain corresponding to R 2 on the R 4 side had a group corresponding to -[C]-[D]-R 4 at one end, and a hydroxymethyl group was placed at the other end. Intermediate compound 2-2b is obtained.
  • R 1 -[B]-[A]- and -[C]-[D]-R 4 are the same, two R 3 are the same, and three R 2 are the same.
  • Intermediate compound 2-2 is synthesized in the same manner as in the case where Then, in the third reaction, R 1 -[B]-[A]- and -[C]-[D]-R except that intermediate compound 2-1b is used instead of intermediate compound 2-1. 4 are the same, two R 3 are the same, and three R 2 are the same, intermediate compound 2-1b and intermediate compound 2-2 are reacted.
  • z in formula (1) is 2, the two linking groups represented by R 3 are different, and R 1 -[B]-[A]- and -[C]-[ D]-R 4 are the same and the three PFPE chains represented by R 2 are the same.
  • intermediate compound 2-1b instead of intermediate compound 2-1
  • the two R 3 are the same, and R 1 -[B]-[A]- and - [C]-[D]-R 4 is different and/or any one or more of the three R 2 is different, in the same way as when R 3 on the R 1 side of intermediate compound 2-1b is
  • the corresponding epoxy group is reacted with intermediate compound 2-2a, and the epoxy group corresponding to R 3 on the R 4 side of intermediate compound 2-1b is reacted with intermediate compound 2-2b.
  • z in formula (1) is 2, the two linking groups represented by R 3 are different, and R 1 -[B]-[A]- and -[C]-[ D]-R 4 and/or compounds in which any one or more of the three PFPE chains represented by R 2 are different can be produced.
  • the magnetic recording medium lubricant of this embodiment contains a fluorine-containing ether compound represented by the above formula (1).
  • the lubricant of this embodiment may be made of known materials used as lubricant materials as long as the properties of the fluorine-containing ether compound represented by formula (1) are not impaired. They can be mixed and used depending on the situation.
  • the known material used in combination with the lubricant of this embodiment preferably has a number average molecular weight of 1,000 to 10,000.
  • the fluorine-containing ether compound represented by the above formula (1) in the lubricant of this embodiment contains other materials of the fluorine-containing ether compound represented by the above formula (1)
  • the fluorine-containing ether compound represented by the above formula (1) in the lubricant of this embodiment The content of is preferably 50% by mass or more, more preferably 70% by mass or more. Since the lubricant of this embodiment contains the fluorine-containing ether compound represented by the above formula (1), even if it is thin, it is highly effective in suppressing corrosion of the magnetic recording medium and has good adhesion to the protective layer. It is possible to form a lubricating layer with good pickup characteristics and spin-off characteristics of a magnetic recording medium.
  • Magnetic recording medium The magnetic recording medium of this embodiment has at least a magnetic layer, a protective layer, and a lubricating layer provided in this order on a substrate.
  • one or more underlayers can be provided between the substrate and the magnetic layer as necessary.
  • at least one of an adhesion layer and a soft magnetic layer may be provided between the underlayer and the substrate.
  • FIG. 1 is a schematic cross-sectional view showing one embodiment of the magnetic recording medium of the present invention.
  • the magnetic recording medium 10 of this embodiment includes, on a substrate 11, an adhesion layer 12, a soft magnetic layer 13, a first underlayer 14, a second underlayer 15, a magnetic layer 16, a protective layer 17, It has a structure in which lubricating layers 18 are sequentially provided.
  • substrate for example, a nonmagnetic substrate in which a film made of NiP or NiP alloy is formed on a base made of metal or alloy material such as Al or Al alloy can be used. Further, as the substrate 11, a nonmagnetic substrate made of a nonmetallic material such as glass, ceramics, silicon, silicon carbide, carbon, or resin may be used, or NiP or a NiP alloy may be used on a substrate made of these nonmetallic materials. A nonmagnetic substrate having a film formed thereon may also be used.
  • the adhesion layer 12 prevents the progress of corrosion of the substrate 11 that occurs when the substrate 11 and the soft magnetic layer 13 provided on the adhesion layer 12 are placed in contact with each other.
  • the material of the adhesion layer 12 can be appropriately selected from, for example, Cr, Cr alloy, Ti, Ti alloy, CrTi, NiAl, AlRu alloy, etc.
  • the adhesion layer 12 can be formed by, for example, a sputtering method.
  • the soft magnetic layer 13 preferably has a structure in which a first soft magnetic film, an intermediate layer made of a Ru film, and a second soft magnetic film are laminated in this order. That is, the soft magnetic layer 13 has a structure in which the soft magnetic films above and below the intermediate layer are coupled by anti-ferro coupling (AFC) by sandwiching an intermediate layer made of a Ru film between two soft magnetic films. It is preferable to have.
  • AFC anti-ferro coupling
  • the material for the first soft magnetic film and the second soft magnetic film examples include CoZrTa alloy and CoFe alloy. It is preferable that Zr, Ta, or Nb be added to the CoFe alloy used for the first soft magnetic film and the second soft magnetic film. This promotes amorphization of the first soft magnetic film and the second soft magnetic film. As a result, it becomes possible to improve the orientation of the first underlayer (seed layer) and to reduce the flying height of the magnetic head.
  • the soft magnetic layer 13 can be formed by, for example, a sputtering method.
  • the first underlayer 14 is a layer that controls the orientation and crystal size of the second underlayer 15 and magnetic layer 16 provided thereon.
  • Examples of the first underlayer 14 include a Cr layer, a Ta layer, a Ru layer, a CrMo alloy layer, a CoW alloy layer, a CrW alloy layer, a CrV alloy layer, a CrTi alloy layer, and the like.
  • the first base layer 14 can be formed by, for example, a sputtering method.
  • the second underlayer 15 is a layer that controls the orientation of the magnetic layer 16 to be good.
  • the second base layer 15 is preferably a layer made of Ru or Ru alloy.
  • the second base layer 15 may be a single layer or may be a plurality of layers. When the second base layer 15 is composed of multiple layers, all the layers may be composed of the same material, or at least one layer may be composed of different materials.
  • the second base layer 15 can be formed by, for example, a sputtering method.
  • the magnetic layer 16 is made of a magnetic film whose axis of easy magnetization is perpendicular or horizontal to the substrate surface.
  • the magnetic layer 16 is a layer containing Co and Pt.
  • the magnetic layer 16 may be a layer containing oxide, Cr, B, Cu, Ta, Zr, etc. to improve SNR characteristics. Examples of the oxide contained in the magnetic layer 16 include SiO 2 , SiO, Cr 2 O 3 , CoO, Ta 2 O 3 , and TiO 2 .
  • the magnetic layer 16 may be composed of one layer, or may be composed of a plurality of magnetic layers made of materials with different compositions.
  • the first magnetic layer contains Co, Cr, and Pt, and is further oxidized. It is preferable to have a granular structure made of a material containing substances.
  • the oxide contained in the first magnetic layer it is preferable to use, for example, an oxide of Cr, Si, Ta, Al, Ti, Mg, Co, or the like. Among them, TiO 2 , Cr 2 O 3 , SiO 2 and the like can be particularly preferably used.
  • the first magnetic layer is preferably made of a composite oxide containing two or more types of oxides.
  • Cr 2 O 3 --SiO 2 , Cr 2 O 3 --TiO 2 , SiO 2 --TiO 2 and the like can be particularly preferably used.
  • the first magnetic layer contains one or more elements selected from B, Ta, Mo, Cu, Nd, W, Nb, Sm, Tb, Ru, and Re in addition to Co, Cr, Pt, and oxides. can be included.
  • the same material as the first magnetic layer can be used for the second magnetic layer.
  • the second magnetic layer has a granular structure.
  • the third magnetic layer preferably has a non-granular structure made of a material containing Co, Cr, and Pt and no oxide.
  • the third magnetic layer contains one or more elements selected from B, Ta, Mo, Cu, Nd, W, Nb, Sm, Tb, Ru, Re, and Mn in addition to Co, Cr, and Pt. be able to.
  • the magnetic layer 16 When the magnetic layer 16 is formed of a plurality of magnetic layers, it is preferable to provide a non-magnetic layer between adjacent magnetic layers.
  • the magnetic layer 16 consists of three layers: a first magnetic layer, a second magnetic layer, and a third magnetic layer, there is a gap between the first magnetic layer and the second magnetic layer, and between the second magnetic layer and the third magnetic layer. It is preferable to provide a nonmagnetic layer between them.
  • the nonmagnetic layer provided between adjacent magnetic layers of the magnetic layer 16 is, for example, Ru, Ru alloy, CoCr alloy, CoCrX1 alloy (X1 is Pt, Ta, Zr, Re, Ru, Cu, Nb, Ni, Mn, Represents one or more elements selected from Ge, Si, O, N, W, Mo, Ti, V, and B), etc. can be suitably used.
  • an alloy material containing an oxide, a metal nitride, or a metal carbide for the nonmagnetic layer provided between adjacent magnetic layers of the magnetic layer 16.
  • the oxide for example, SiO 2 , Al 2 O 3 , Ta 2 O 5 , Cr 2 O 3 , MgO, Y 2 O 3 , TiO 2 or the like can be used.
  • the metal nitride for example, AlN, Si 3 N 4 , TaN, CrN, etc. can be used.
  • the metal carbide for example, TaC, BC, SiC, etc. can be used.
  • the nonmagnetic layer can be formed by, for example, a sputtering method.
  • the magnetic layer 16 is preferably a perpendicular magnetic recording magnetic layer in which the axis of easy magnetization is perpendicular to the substrate surface.
  • the magnetic layer 16 may be a magnetic layer for longitudinal magnetic recording.
  • the magnetic layer 16 may be formed by any conventionally known method, such as vapor deposition, ion beam sputtering, and magnetron sputtering.
  • the magnetic layer 16 is usually formed by a sputtering method.
  • Protective layer 17 protects magnetic layer 16 .
  • the protective layer 17 may be composed of one layer or may be composed of multiple layers.
  • a carbon-based protective layer can be preferably used, and an amorphous carbon protective layer is particularly preferable. It is preferable that the protective layer 17 is a carbon-based protective layer because the interaction with the polar groups (especially hydroxyl groups) contained in the fluorine-containing ether compound in the lubricating layer 18 is further enhanced.
  • the adhesion between the carbon-based protective layer and the lubricating layer 18 can be achieved by using hydrogenated carbon and/or nitrogenated carbon as the carbon-based protective layer and adjusting the hydrogen content and/or nitrogen content in the carbon-based protective layer. It is controllable.
  • the hydrogen content in the carbon-based protective layer is preferably 3 at.% to 20 at.% when measured by hydrogen forward scattering (HFS).
  • the nitrogen content in the carbon-based protective layer is preferably 4 atomic % to 15 atomic % when measured by X-ray photoelectron spectroscopy (XPS).
  • the hydrogen and/or nitrogen contained in the carbon-based protective layer does not need to be uniformly contained throughout the carbon-based protective layer.
  • the carbon-based protective layer is preferably a compositionally graded layer in which the protective layer 17 on the lubricating layer 18 side contains nitrogen and the protective layer 17 on the magnetic layer 16 side contains hydrogen. In this case, the adhesion between the magnetic layer 16 and lubricating layer 18 and the carbon-based protective layer is further improved.
  • the thickness of the protective layer 17 is preferably 1 nm to 7 nm. When the thickness of the protective layer 17 is 1 nm or more, sufficient performance as the protective layer 17 can be obtained. It is preferable that the thickness of the protective layer 17 is 7 nm or less from the viewpoint of making the protective layer 17 thinner.
  • a sputtering method using a target material containing carbon As a method for forming the protective layer 17, a sputtering method using a target material containing carbon, a CVD (chemical vapor deposition) method using a hydrocarbon raw material such as ethylene or toluene, an IBD (ion beam deposition) method, etc. can be used. can.
  • a carbon-based protective layer as the protective layer 17 it can be formed by, for example, a DC magnetron sputtering method.
  • the amorphous carbon protective layer formed by plasma CVD has a uniform surface and low roughness.
  • Lubricating layer 18 prevents contamination of magnetic recording medium 10. Furthermore, the lubricating layer 18 reduces the frictional force of the magnetic head of the magnetic recording/reproducing device that slides on the magnetic recording medium 10, thereby improving the durability of the magnetic recording medium 10.
  • the lubricating layer 18 is formed on and in contact with the protective layer 17, as shown in FIG.
  • the lubricant layer 18 is formed by applying the magnetic recording medium lubricant of the above-described embodiment onto the protective layer 17. Therefore, the lubricating layer 18 contains the above-mentioned fluorine-containing ether compound.
  • the lubricating layer 18 is bonded to the protective layer 17 with a high bonding force, especially when the protective layer 17 disposed below the lubricating layer 18 is a carbon-based protective layer. As a result, even if the lubricating layer 18 is thin, it is easy to obtain a magnetic recording medium 10 in which the surface of the protective layer 17 is coated with a high coverage rate, and contamination of the surface of the magnetic recording medium 10 can be effectively prevented. .
  • the average thickness of the lubricating layer 18 is preferably 0.5 nm (5 ⁇ ) to 2.0 nm (20 ⁇ ), more preferably 0.5 nm (5 ⁇ ) to 1.2 nm (12 ⁇ ).
  • the average thickness of the lubricant layer 18 is 0.5 nm or more, the lubricant layer 18 does not have an island shape or a mesh shape and is formed with a uniform thickness. Therefore, the surface of the protective layer 17 can be covered with the lubricating layer 18 at a high coverage rate. Further, by setting the average thickness of the lubricant layer 18 to 2.0 nm or less, the lubricant layer 18 can be made sufficiently thin, and the flying height of the magnetic head can be made sufficiently small.
  • Method for forming a lubricating layer As a method for forming the lubricating layer 18, for example, a magnetic recording medium in the process of being manufactured in which each layer up to the protective layer 17 is formed on the substrate 11 is prepared, and a lubricating layer forming solution is applied onto the protective layer 17.
  • a method of drying is a method of drying.
  • the lubricant layer forming solution can be obtained by dispersing and dissolving the magnetic recording medium lubricant of the above-described embodiment in a solvent as necessary to obtain a viscosity and concentration suitable for the coating method.
  • the solvent used in the lubricating layer forming solution include fluorine-based solvents such as Vertrell (registered trademark) XF (trade name, manufactured by DuPont Mitsui Fluorochemicals Co., Ltd.).
  • the method for applying the lubricant layer forming solution is not particularly limited, and examples thereof include a spin coating method, a spray method, a paper coating method, a dipping method, and the like.
  • the dip method for example, the method shown below can be used.
  • the substrate 11 on which each layer up to the protective layer 17 has been formed is immersed in a lubricating layer forming solution placed in a dipping tank of a dip coater.
  • the substrate 11 is pulled up from the immersion bath at a predetermined speed.
  • the lubricating layer forming solution is applied to the surface of the protective layer 17 of the substrate 11.
  • the lubricating layer forming solution can be uniformly applied to the surface of the protective layer 17, and the lubricating layer 18 can be formed on the protective layer 17 with a uniform thickness.
  • the substrate 11 on which the lubricant layer 18 is formed is subjected to heat treatment.
  • the heat treatment temperature is preferably 100°C to 180°C, more preferably 100°C to 160°C.
  • the heat treatment temperature is 100° C. or higher, the effect of improving the adhesion between the lubricating layer 18 and the protective layer 17 can be sufficiently obtained.
  • the heat treatment time can be adjusted as appropriate depending on the heat treatment temperature, and is preferably 10 minutes to 120 minutes.
  • the lubricant layer 18 may be irradiated with ultraviolet (UV) light before or after heat treatment.
  • UV ultraviolet
  • the magnetic recording medium 10 of this embodiment has at least a magnetic layer 16, a protective layer 17, and a lubricating layer 18 provided in this order on a substrate 11.
  • a lubricating layer 18 containing the above-mentioned fluorine-containing ether compound is formed on and in contact with the protective layer 17 . Even if the lubricating layer 18 is thin, it is highly effective in suppressing corrosion of the magnetic recording medium and provides good pickup characteristics and spin-off characteristics. Therefore, the magnetic recording medium 10 of this embodiment has excellent reliability and durability.
  • the magnetic recording medium 10 of this embodiment can have a low flying height of the magnetic head (for example, 10 nm or less), and is stable over a long period of time even under harsh environments associated with diversification of applications. It works. Therefore, the magnetic recording medium 10 of this embodiment is particularly suitable as a magnetic disk mounted in a magnetic disk device of the LUL (Load/Unload) system.
  • LUL Load/Unload
  • Example 1 A compound represented by the above formula (1A) was produced by the method shown below. (first reaction) Under a nitrogen gas atmosphere, HOCH 2 CF 2 CF 2 O (CF 2 CF 2 CF 2 O) n CF 2 CF 2 CH 2 OH (in the formula, n indicating the average degree of polymerization is 3.8) in a 200 mL eggplant flask. ) (number average molecular weight 909, molecular weight distribution 1.1), 5.3 g (molecular weight 404, 13.2 mmol) of the compound represented by the following formula (12), and 20 mL of t-butanol. The mixture was charged and stirred at room temperature until homogeneous. Further, 0.74 g (molecular weight 112.21, 6.6 mmol) of potassium tert-butoxide was added to this homogeneous liquid, and the mixture was stirred at 70° C. for 16 hours to react.
  • reaction product obtained after the reaction was cooled to 25°C, transferred to a separatory funnel containing 100 mL of water, and extracted three times with 100 mL of ethyl acetate.
  • the organic layer was washed with water and dehydrated with anhydrous sodium sulfate. After filtering off the desiccant, the filtrate was concentrated, and the residue was purified by silica gel column chromatography to obtain 11.6 g of a compound represented by the following formula (13) as intermediate compound 1-1 (molecular weight 1313, 8.8 mmol). ) was obtained.
  • the compound represented by the following formula (12) was synthesized by the method shown below. One equivalent of 3-allyloxy-1,2-propanediol was reacted with two equivalents of 2-(2-bromoethoxy)tetrahydro-2H-pyran. A compound represented by the following formula (12) was synthesized by oxidizing the double bond of the obtained compound using m-chloroperbenzoic acid.
  • THP represents a tetrahydropyranyl group.
  • n indicating the average degree of polymerization represents 3.8.
  • THP represents a tetrahydropyranyl group.
  • reaction solution obtained after the reaction was returned to room temperature, 31 g of a 10% hydrogen chloride/methanol solution (hydrogen chloride-methanol reagent (5-10%) manufactured by Tokyo Chemical Industry Co., Ltd.) was added, and the mixture was stirred at room temperature for 2 hours.
  • the reaction solution was transferred little by little into a separatory funnel containing 100 mL of brine, and extracted three times with 200 mL of ethyl acetate.
  • the organic layer was washed with 100 mL of brine, 100 mL of saturated sodium bicarbonate solution, and 100 mL of brine in this order, and dehydrated with anhydrous sodium sulfate.
  • Example 2 Example 1 except that in the first reaction, 5.5 g (molecular weight 419, 13.2 mmol) of the compound represented by the following formula (14) was used instead of the compound represented by formula (12). A similar operation was performed to obtain a compound represented by the above formula (1B) (Rf 2 1b in formula (1B) is represented by formula (1BF). Among the two Rf 2 1b, n1b indicating the average degree of polymerization is 3.8) was obtained (4.3 g (number average molecular weight: 2377, 1.8 mmol)).
  • the compound represented by formula (14) was synthesized by the method shown below. Allyl glycidyl ether and tetrahydropyranyl ethylene glycol were reacted. Synthesis was carried out by reacting the obtained compound with 2-(3-bromopropoxy)tetrahydro-2H-pyran and oxidizing the double bond of the compound using m-chloroperbenzoic acid.
  • THP represents a tetrahydropyranyl group.
  • Rf 1 1c in formula (1C) is represented by formula (1CF).
  • formula (1CF the average degree of polymerization is shown. 4.3 g (number average molecular weight: 2399, 1.8 mmol) of l1c (l1c: 4.0, m1c (average degree of polymerization): 4.0) was obtained.
  • the compound represented by formula (15) was synthesized by the method shown below. One equivalent of 3-allyloxy-1,2-propanediol was reacted with two equivalents of 2-(3-bromopropoxy)tetrahydro-2H-pyran. A compound represented by formula (15) was synthesized by oxidizing the double bond of the obtained compound using m-chloroperbenzoic acid.
  • THP represents a tetrahydropyranyl group.
  • the compound represented by formula (16) was synthesized by the method shown below. One equivalent of 3-allyloxy-1,2-propanediol was reacted with two equivalents of 2-(4-bromobutoxy)tetrahydro-2H-pyran. A compound represented by the following formula (16) was synthesized by oxidizing the double bond of the obtained compound using m-chloroperbenzoic acid.
  • THP represents a tetrahydropyranyl group.
  • Example 5 Example 1 except that in the first reaction, 5.7 g (molecular weight 432, 13.2 mmol) of the compound represented by the following formula (18) was used instead of the compound represented by formula (12). A similar operation was performed to obtain a compound represented by the above formula (1E) (Rf 2 1e in formula (1E) is represented by formula (1EF). Among the two Rf 2 1e, n1e indicating the average degree of polymerization is 3.8) was obtained (4.3 g (number average molecular weight: 2405, 1.8 mmol)).
  • the compound represented by formula (18) was synthesized by the method shown below. By oxidizing the double bond on one side of di(3-butenyl) ether using 1 equivalent of m-chloroperbenzoic acid to form an epoxy group, and then opening the epoxy group using concentrated sulfuric acid, A compound represented by the following formula (17) was synthesized. The obtained compound represented by formula (17) was reacted with 2 equivalents of 2-(2-bromoethoxy)tetrahydro-2H-pyran. Thereafter, the double bond was oxidized using m-chloroperbenzoic acid to synthesize a compound represented by formula (18).
  • THP represents a tetrahydropyranyl group.
  • Example 6 Same as Example 1 except that in the first reaction, 6.8 g (molecular weight 516, 13.2 mmol) of the compound represented by the following formula (20) was used instead of the compound represented by the formula (12). A similar operation was performed to obtain a compound represented by the above formula (1F) (Rf 2 1f in formula (1F) is represented by formula (1FF). Among the two Rf 2 1f, n1f indicating the average degree of polymerization is 3.8) was obtained (4.6 g (number average molecular weight: 2573, 1.8 mmol)).
  • the compound represented by formula (20) was synthesized by the method shown below. By oxidizing the double bond on one side of di(6-heptenyl) ether using 1 equivalent of m-chloroperbenzoic acid to form an epoxy group, and then opening the epoxy group using concentrated sulfuric acid, A compound represented by the following formula (19) was synthesized. The obtained compound represented by formula (19) was reacted with 2 equivalents of 2-(2-bromoethoxy)tetrahydro-2H-pyran. Thereafter, a compound represented by the following formula (20) was synthesized by oxidation using m-chloroperbenzoic acid.
  • THP represents a tetrahydropyranyl group.
  • Example 7 Example 1 except that in the first reaction, 6.3 g (molecular weight 479, 13.2 mmol) of the compound represented by the following formula (21) was used instead of the compound represented by formula (12). A similar operation was performed to obtain a compound represented by the above formula (1G) (Rf 2 1g in formula (1G) is represented by formula (1GF). Among the two Rf 2 1g, n1g indicating the average degree of polymerization is 3.8) was obtained (4.5 g (number average molecular weight: 2497, 1.8 mmol)).
  • the compound represented by the following formula (21) is obtained by reacting the compound represented by the above formula (12) with allyl alcohol, and then removing the double bond of the resulting compound using m-chloroperbenzoic acid. It was synthesized by oxidation.
  • THP represents a tetrahydropyranyl group.
  • Example 8 Same as Example 3 except that in the first reaction, 2.5 g (molecular weight 188, 13.2 mmol) of the compound represented by the following formula (23) was used instead of the compound represented by the formula (15). A similar operation was performed to obtain a compound represented by the above formula (1H) (Rf 1 1h in formula (1H) is represented by formula (1HF). Among the two Rf 1 1h, l1h indicating the average degree of polymerization is 4.0, m1h indicating the average degree of polymerization is 4.0) was obtained (3.9 g (number average molecular weight: 2167, 1.8 mmol)).
  • the compound represented by the following formula (23) was synthesized by the method shown below.
  • a compound represented by the following formula (22) was synthesized by reducing the carbonyl site of 2,2-dimethyl-1,3-dioxan-5-one with lithium aluminum hydride.
  • a compound represented by the following formula (23) was synthesized by reacting the obtained compound represented by formula (22) with epibromohydrin.
  • Example 9 Example 4 except that in the first reaction, 2.7 g (molecular weight 202, 13.2 mmol) of the compound represented by the following formula (24) was used instead of the compound represented by formula (16). A similar operation was performed to obtain a compound represented by the above formula (1I) (Rf 1 1i in formula (1I) is represented by formula (1IF). Among the two Rf 1 1i, l1i indicating the average degree of polymerization is 6.3, m1i indicating the average degree of polymerization is 0) was obtained (4.0 g (number average molecular weight 2200, 1.8 mmol)).
  • the compound represented by formula (24) was synthesized by reacting 5-hydroxymethyl-2,2-dimethyl-1,3-dioxane with epibromohydrin.
  • Example 10 Same as Example 1 except that in the first reaction, 2.9 g (molecular weight 216, 13.2 mmol) of the compound represented by the following formula (25) was used instead of the compound represented by the formula (12). A similar operation was performed to obtain a compound represented by the above formula (1J) (Rf 2 1j in formula (1J) is represented by formula (1JF). Among the two Rf 2 1j, n1j indicating the average degree of polymerization is 3.8) was obtained in an amount of 4.0 g (number average molecular weight: 2228, 1.8 mmol).
  • the compound represented by formula (25) was synthesized by reacting 5-hydroxyethyl-2,2-dimethyl-1,3-dioxane with epibromohydrin.
  • Example 11 Example 4 except that in the first reaction, 3.6 g (molecular weight 272, 13.2 mmol) of the compound represented by the following formula (26) was used instead of the compound represented by formula (16). A similar operation was performed to obtain a compound represented by the above formula (1K) (Rf 1 1k in formula (1K) is represented by formula (1KF). Among the two Rf 1 1k, l1k indicating the average degree of polymerization is 6.3, m1k indicating the average degree of polymerization is 0) was obtained (4.2 g (number average molecular weight: 2340, 1.8 mmol)).
  • the compound represented by formula (26) was synthesized by reacting 5-hydroxyhexyl-2,2-dimethyl-1,3-dioxane with epibromohydrin.
  • Example 12 Same as Example 1 except that in the first reaction, 2.7 g (molecular weight 202, 13.2 mmol) of the compound represented by the following formula (27) was used instead of the compound represented by the formula (12). A similar operation was performed to obtain a compound represented by the above formula (1L) (Rf 2 1l in formula (1L) is represented by formula (1LF). Among the two Rf 2 1l, n1l indicating the average degree of polymerization is 3.8) was obtained in an amount of 4.0 g (number average molecular weight 2200, 1.8 mmol).
  • the compound represented by formula (27) is obtained by reacting the compound represented by formula (22) with 3-butenyl bromide, and then removing the double bond of the resulting compound using m-chloroperbenzoic acid. Synthesized by oxidation.
  • Example 13 Example 1 except that in the first reaction, 3.6 g (molecular weight 276, 13.2 mmol) of the compound represented by the following formula (28) was used instead of the compound represented by formula (12). A similar operation was performed to obtain a compound represented by the above formula (1M) (Rf 2 1m in formula (1M) is represented by formula (1MF). Among the two Rf 2 1m, n1m indicating the average degree of polymerization is 3.8) was obtained (4.2 g (number average molecular weight: 2349, 1.8 mmol)).
  • the compound represented by formula (28) is obtained by reacting the compound represented by formula (23) with 3-buten-1-ol, and then converting the double bond of the resulting compound into m-chloroperoxide. It was synthesized by oxidation using benzoic acid.
  • Example 14 Example 1 except that in the first reaction, 5.3 g (molecular weight 405, 13.2 mmol) of the compound represented by the following formula (29) was used instead of the compound represented by formula (12). A similar operation was performed to obtain a compound represented by the above formula (1N) (Rf 2 1n in formula (1N) is represented by formula (1NF). Among the two Rf 2 1n, n1n indicating the average degree of polymerization is 3.8) was obtained in an amount of 4.2 g (number average molecular weight: 2321, 1.8 mmol).
  • the compound represented by formula (29) is obtained by reacting the compound represented by formula (23) with allyl alcohol, and then removing the double bond of the resulting compound using m-chloroperbenzoic acid. Synthesized by oxidation.
  • Example 15 Same as Example 1 except that in the first reaction, 5.3 g (molecular weight 404, 13.2 mmol) of the compound represented by the following formula (31) was used instead of the compound represented by formula (12). A similar operation was performed to obtain a compound represented by the above formula (1O) (Rf 2 1o in formula (1O) is represented by formula (1OF). Among the two Rf 2 1o, n1o indicating the average degree of polymerization is 3.8) was obtained (4.2 g (number average molecular weight: 2349, 1.8 mmol)).
  • the compound represented by formula (31) was synthesized by the method shown below. Two equivalents of tetrahydropyranyl ethylene glycol and one equivalent of epichlorohydrin were reacted to synthesize a compound represented by the following formula (30). A compound represented by the following formula (31) was synthesized by reacting the obtained compound represented by formula (30) with epibromohydrin.
  • THP represents a tetrahydropyranyl group.
  • THP represents a tetrahydropyranyl group.
  • Example 16 Same as Example 1 except that in the first reaction, 5.7 g (molecular weight 433, 13.2 mmol) of the compound represented by the following formula (33) was used instead of the compound represented by the formula (12). A similar operation was performed to obtain a compound represented by the above formula (1P) (Rf 2 1p in formula (1P) is represented by formula (1PF). Among the two Rf 2 1p, n1p indicating the average degree of polymerization is 3.8) was obtained (4.3 g (number average molecular weight: 2405, 1.8 mmol)).
  • the compound represented by formula (33) was synthesized by the method shown below. Two equivalents of tetrahydropyranyl trimethylene glycol and one equivalent of epichlorohydrin were reacted to synthesize a compound represented by the following formula (32). A compound represented by the following formula (33) was synthesized by reacting the obtained compound represented by formula (32) with epibromohydrin.
  • THP represents a tetrahydropyranyl group.
  • THP represents a tetrahydropyranyl group.
  • Example 17 Same as Example 3 except that in the first reaction, 6.1 g (molecular weight 461, 13.2 mmol) of the compound represented by the following formula (35) was used instead of the compound represented by formula (15). A similar operation was performed to obtain a compound represented by the above formula (1Q) (Rf 1 1q in formula (1Q) is represented by formula (1QF). Among the two Rf 1 1q, l1q indicating the average degree of polymerization is 4.0, m1q indicating the average degree of polymerization is 4.0) was obtained (4.4 g (number average molecular weight: 2455, 1.8 mmol)).
  • the compound represented by formula (35) was synthesized by the method shown below. Two equivalents of tetrahydropyranyltetramethylene glycol and one equivalent of epichlorohydrin were reacted to synthesize a compound represented by the following formula (34). A compound represented by the following formula (35) was synthesized by reacting the obtained compound represented by formula (34) with epibromohydrin.
  • THP represents a tetrahydropyranyl group.
  • THP represents a tetrahydropyranyl group.
  • Example 18 Example 4 except that in the first reaction, 6.8 g (molecular weight 517, 13.2 mmol) of the compound represented by the following formula (37) was used instead of the compound represented by formula (16). A similar operation was performed to obtain a compound represented by the above formula (1R) (Rf 1 1r in formula (1R) is represented by formula (1RF). Among the two Rf 1 1r, l1r indicating the average degree of polymerization is 6.3, m1r indicating the average degree of polymerization is 0) was obtained (4.6 g (number average molecular weight: 2573, 1.8 mmol)).
  • the compound represented by formula (37) was synthesized by the method shown below. Two equivalents of tetrahydropyranylhexamethylene glycol and one equivalent of epichlorohydrin were reacted to synthesize a compound represented by the following formula (36). A compound represented by the following formula (37) was synthesized by reacting the obtained compound represented by formula (36) with epibromohydrin.
  • THP represents a tetrahydropyranyl group.
  • THP represents a tetrahydropyranyl group.
  • Example 19 Example 3 except that in the first reaction, 7.0 g (molecular weight 531, 13.2 mmol) of the compound represented by the following formula (39) was used instead of the compound represented by formula (15). A similar operation was performed to obtain a compound represented by the above formula (1S) (Rf 1 1s in formula (1S) is represented by formula (1SF). Among the two Rf 1 1s, l1s indicating the average degree of polymerization is 4.7 g (number average molecular weight: 2595, 1.8 mmol) was obtained.
  • the compound represented by formula (39) was synthesized by the method shown below. 1 equivalent of 4-allyloxy-1,2-butanediol and 2 equivalents of 2-(6-bromohexyloxy)tetrahydro-2H-pyran are reacted to synthesize a compound represented by the following formula (38). did. The double bond of the obtained compound represented by formula (38) was oxidized using m-chloroperbenzoic acid to synthesize a compound represented by formula (39) below.
  • THP represents a tetrahydropyranyl group.
  • THP represents a tetrahydropyranyl group.
  • Example 20 Example 4 except that in the first reaction, 7.7 g (molecular weight 587, 13.2 mmol) of the compound represented by the following formula (41) was used instead of the compound represented by formula (16). A similar operation was performed to obtain a compound represented by the above formula (1T) (Rf 1 1t in formula (1T) is represented by formula (1TF). Among the two Rf 1 1t, l1t indicating the average degree of polymerization is 6.3, mlt indicating the average degree of polymerization is 0) was obtained (4.9 g (number average molecular weight: 2713, 1.8 mmol)).
  • the compound represented by formula (41) was synthesized by the method shown below. 1 equivalent of 8-allyloxy-1,2-octanediol and 2 equivalents of 2-(6-bromohexyloxy)tetrahydro-2H-pyran are reacted to synthesize a compound represented by the following formula (40). did. The double bond of the obtained compound represented by formula (40) was oxidized using m-chloroperbenzoic acid to synthesize a compound represented by formula (41) below.
  • THP represents a tetrahydropyranyl group.
  • THP represents a tetrahydropyranyl group.
  • Example 21 Example 1 except that in the first reaction, 6.5 g (molecular weight 493, 13.2 mmol) of the compound represented by the following formula (43) was used instead of the compound represented by formula (12). A similar operation was performed to obtain a compound represented by the above formula (1U) (Rf 2 1u in formula (1U) is represented by formula (1UF). Among the two Rf 2 1u, n1u indicating the average degree of polymerization is 3.8) was obtained (4.5 g (number average molecular weight: 2525, 1.8 mmol)).
  • the compound represented by formula (43) was synthesized by the method shown below. Two equivalents of tetrahydropyranyldiethylene glycol and one equivalent of epichlorohydrin were reacted to synthesize a compound represented by the following formula (42). A compound represented by the following formula (43) was synthesized by reacting the obtained compound represented by formula (42) with epibromohydrin.
  • THP represents a tetrahydropyranyl group.
  • THP represents a tetrahydropyranyl group.
  • Example 22 Example 1 except that in the first reaction, 5.9 g (molecular weight 445, 13.2 mmol) of the compound represented by the following formula (45) was used instead of the compound represented by formula (12). A similar operation was performed to obtain a compound represented by the above formula (1V) (Rf 2 1v in formula (1V) is represented by formula (1VF). Among the two Rf 2 1v, n1v indicating the average degree of polymerization is 3.8) was obtained in an amount of 4.1 g (number average molecular weight: 2260, 1.8 mmol).
  • the compound represented by formula (45) was synthesized by the method shown below. 2-(bromomethyl)-2-(hydroxymethyl)-1,3-propanediol and 3,4-dihydro-2H-pyran are reacted to produce 2-(bromomethyl)-2-(hydroxymethyl)-1. , 3-propanediol was protected with a tetrahydropyranyl group to synthesize a compound represented by the following formula (44). After reacting the obtained compound represented by formula (44) with allyl alcohol, the double bond of the obtained compound is oxidized using m-chloroperbenzoic acid to obtain the following formula (45 ) was synthesized.
  • THP represents a tetrahydropyranyl group.
  • THP represents a tetrahydropyranyl group.
  • Example 23 A compound represented by the above formula (2A) was produced by the method shown below. (first reaction) Under a nitrogen gas atmosphere, HOCH 2 CF 2 CF 2 O (CF 2 CF 2 CF 2 O) n CF 2 CF 2 CH 2 OH (in the formula, n indicating the average degree of polymerization is 2.0) in a 200 mL eggplant flask. ) 12.2 g (20 mmol) of the compound represented by (number average molecular weight 610, molecular weight distribution 1.1), 1.76 g (44 mmol) of 60% sodium hydride, and 15.6 mL of N,N-dimethylformamide. The mixture was charged and stirred at room temperature until homogeneous. 3.45 mL (42 mmol) of epibromohydrin was added to this homogeneous liquid, and the mixture was stirred at 40° C. for 2 hours to react.
  • reaction product obtained after the reaction was cooled to 25°C, transferred to a separatory funnel containing 100 mL of water, and extracted three times with 100 mL of ethyl acetate.
  • the organic layer was washed with water and dehydrated with anhydrous sodium sulfate. After filtering off the desiccant, the filtrate was concentrated, and the residue was purified by silica gel column chromatography to obtain a compound represented by the above formula (13) as intermediate compound 2-2 (in formula (13), the average degree of polymerization 12 g (molecular weight: 1015, 12.0 mmol) was obtained.
  • Example 24 In the second reaction, the same operation as in Example 23 was carried out, except that 5.6 g of the compound represented by formula (14) was used instead of the compound represented by formula (12), and the above formula ( 2B) (Rf 2 2b in formula (2B) is represented by formula (2BF). Among the three Rf 2 2b, n2b indicating the average degree of polymerization is 2.0) is 4 .4 g (molecular weight 2447, 1.8 mmol) was obtained.
  • Example 25 In the first and second reactions, HOCH 2 CF 2 CF 2 O (CF 2 CF 2 CF 2 O) n CF 2 CF 2 CH 2 OH was replaced with HOCH 2 CF 2 O (CF 2 CF 2 O) l (CF 2 O) m CF 2 CH 2 OH (in the formula, l indicating the average degree of polymerization is 2.4, m indicating the average degree of polymerization is 2.4) (number average molecular weight 615 , molecular weight distribution 1.1), and in the second reaction, 5.7 g of the compound represented by formula (15) was used instead of the compound represented by formula (12).
  • Example 27 In the second reaction, the same operation as in Example 23 was carried out, except that 5.7 g of the compound represented by formula (18) was used instead of the compound represented by formula (12), and the above formula ( 2E) (Rf 2 2e in formula (2E) is represented by formula (2EF). Among the three Rf 2 2e, n2e indicating the average degree of polymerization is 2.0) is 4 .5 g (molecular weight 2475, 1.8 mmol) was obtained.
  • Example 28 In the second reaction, the same operation as in Example 23 was carried out, except that 6.8 g of the compound represented by formula (20) was used instead of the compound represented by formula (12), and the above formula ( 2F) (Rf 2 2f in formula (2F) is represented by formula (2FF). Among the three Rf 2 2f, n2f indicating the average degree of polymerization is 2.0) is 4 .8 g (molecular weight 2644, 1.8 mmol) was obtained.
  • Example 29 In the second reaction, the same operation as in Example 23 was carried out, except that 6.4 g of the compound represented by formula (21) was used instead of the compound represented by formula (12), and the above formula ( 2G) (Rf 2 2g in formula (2G) is represented by formula (2GF). Among the three Rf 2 2g, n2g indicating the average degree of polymerization is 2.0) is 4 .6 g (molecular weight 2567, 1.8 mmol) was obtained.
  • Example 30 In the second reaction, the same operation as in Example 25 was carried out, except that 2.5 g of the compound represented by formula (23) was used instead of the compound represented by formula (15), and the above formula ( 2H) (Rf 1 2h in formula (2H) is represented by formula (2HF). Among the three Rf 1 2h, l2h indicating the average degree of polymerization is 2.4, indicating the average degree of polymerization 4.1 g (number average molecular weight 2257, 1.8 mmol) of m2h is 2.4 was obtained.
  • Example 31 In the second reaction, the same operation as in Example 26 was carried out, except that 2.6 g of the compound represented by formula (24) was used instead of the compound represented by formula (16), and the above formula ( 2I) (Rf 1 2i in formula (2I) is represented by formula (2IF). Among the three Rf 1 2i, l2i indicating the average degree of polymerization is 3.8, indicating the average degree of polymerization m2i is 0) was obtained (4.1 g (number average molecular weight 2297, 1.8 mmol)).
  • Example 32 In the second reaction, the same operation as in Example 23 was carried out, except that 2.9 g of the compound represented by formula (25) was used instead of the compound represented by formula (12), and the above formula ( 2J) (Rf 2 2j in formula (2J) is represented by formula (2JF). Among the three Rf 2 2j, n2j indicating the average degree of polymerization is 2.0) is 4 .1 g (molecular weight 2299, 1.8 mmol) was obtained.
  • Example 33 In the second reaction, the same operation as in Example 26 was carried out, except that 3.6 g of the compound represented by formula (26) was used instead of the compound represented by formula (16), and the above formula ( 2K) (Rf 1 2k in formula (2K) is represented by formula (2KF). Among the three Rf 1 2k, l2k indicating the average degree of polymerization is 3.8, indicating the average degree of polymerization (m2k is 0) was obtained (4.4 g (number average molecular weight: 2437, 1.8 mmol)).
  • Example 34 In the second reaction, the same operation as in Example 23 was carried out, except that 2.7 g of the compound represented by formula (27) was used instead of the compound represented by formula (12), and the above formula ( 2L) (Rf 2 2l in formula (2L) is represented by formula (2LF). Among the three Rf 2 2l, n2l indicating the average degree of polymerization is 2.0) is 4 .1 g (molecular weight 2271, 1.8 mmol) was obtained.
  • Example 35 In the second reaction, the same operation as in Example 23 was carried out, except that 3.7 g of the compound represented by formula (28) was used instead of the compound represented by formula (12), and the above formula ( 2M) (Rf 2 2m in formula (2M) is represented by formula (2MF). Among the three Rf 2 2m, n2m indicating the average degree of polymerization is 2.0) is 4 .4 g (molecular weight 2419, 1.8 mmol) was obtained.
  • Example 36 In the second reaction, the same operation as in Example 23 was carried out, except that 3.5 g of the compound represented by formula (29) was used instead of the compound represented by formula (12), and the above formula ( 2N) (Rf 2 2n in formula (2N) is represented by formula (2NF). Among the three Rf 2 2n, n2n indicating the average degree of polymerization is 2.0) is 4 .3 g (molecular weight 2391, 1.8 mmol) was obtained.
  • Example 37 In the second reaction, the same operation as in Example 23 was carried out, except that 5.4 g of the compound represented by formula (31) was used instead of the compound represented by formula (12), and the above formula ( 2O) (Rf 2 2o in formula (2O) is represented by formula (2OF). Among the three Rf 2 2o, n2o indicating the average degree of polymerization is 2.0) is 4 .4 g (molecular weight 2419, 1.8 mmol) was obtained.
  • Example 38 In the second reaction, the same operation as in Example 23 was carried out, except that 5.7 g of the compound represented by formula (33) was used instead of the compound represented by formula (12), and the above formula ( 2P) (Rf 2 2p in formula (2P) is represented by formula (2PF). Among the three Rf 2 2p, n2p indicating the average degree of polymerization is 2.0) is 4 .5 g (molecular weight 2475, 1.8 mmol) was obtained.
  • Example 39 In the second reaction, the same operation as in Example 25 was carried out, except that 6.1 g of the compound represented by formula (35) was used instead of the compound represented by formula (15), and the above formula ( 2Q) (Rf 1 2q in formula (2Q) is represented by formula (2QF). Among the three Rf 1 2q, l2q indicating the average degree of polymerization is 2.4, indicating the average degree of polymerization (m2q is 2.4) was obtained (4.6 g (number average molecular weight 2546, 1.8 mmol)).
  • Example 40 In the second reaction, the same operation as in Example 26 was carried out, except that 6.8 g of the compound represented by formula (37) was used instead of the compound represented by formula (16), and the above formula ( 2R) (Rf 1 2r in formula (2R) is represented by formula (2RF). Among the three Rf 1 2r, l2r indicating the average degree of polymerization is 3.8, indicating the average degree of polymerization 4.8 g (number average molecular weight 2670, 1.8 mmol) of m2r is 0 was obtained.
  • Example 41 In the second reaction, the same operation as in Example 25 was carried out, except that 7.0 g of the compound represented by formula (39) was used instead of the compound represented by formula (15), and the above formula ( 2S) (Rf 1 2s in formula (2S) is represented by formula (2SF). Among the three Rf 1 2s, l2s indicating the average degree of polymerization is 2.4, indicating the average degree of polymerization m2s is 2.4)) was obtained (number average molecular weight 2686, 1.8 mmol).
  • Example 42 In the second reaction, the same operation as in Example 26 was carried out, except that 7.7 g of the compound represented by formula (41) was used instead of the compound represented by formula (16), and the above formula ( 2T) (Rf 1 2t in formula (2T) is represented by formula (2TF). Among the three Rf 1 2t, l2t indicating the average degree of polymerization is 3.8, indicating the average degree of polymerization (m2t is 0) was obtained (5.1 g (number average molecular weight: 2810, 1.8 mmol)).
  • Example 43 In the second reaction, the same operation as in Example 23 was carried out, except that 6.5 g of the compound represented by formula (43) was used instead of the compound represented by formula (12), and the above formula ( 2U) (Rf 2 2u in formula (2U) is represented by formula (2UF). Among the three Rf 2 2u, n2u indicating the average degree of polymerization is 2.0) is 4 .7 g (molecular weight 2595, 1.8 mmol) was obtained.
  • Example 44 In the second reaction, the same operation as in Example 23 was carried out, except that 5.9 g of the compound represented by formula (45) was used instead of the compound represented by formula (12), and the above formula ( 2V) (Rf 2 2v in formula (2V) is represented by formula (2VF). Among the three Rf 2 2v, n2v indicating the average degree of polymerization is 2.0) is 4 .2 g (molecular weight 2331, 1.8 mmol) was obtained.
  • Rf 1 3a in formula (3A) is a PFPE chain represented by the above formula (3AF).
  • l3a indicating the average degree of polymerization represents 4.0
  • the average degree of polymerization m3a indicates 4.0.
  • Rf 2 3b in formula (3B) is a PFPE chain represented by the above formula (3BF).
  • n3b indicating the average degree of polymerization represents 3.8.
  • Rf 2 3c in formula (3C) is a PFPE chain represented by the above formula (3CF).
  • n3c indicating the average degree of polymerization represents 3.8.
  • Rf 2 3d in formula (3D) is a PFPE chain represented by the above formula (3DF).
  • Me represents a methyl group.
  • n3d indicating the average degree of polymerization is 3. (Represents 8.)
  • Rf 2 3e in formula (3E) is a PFPE chain represented by the above formula (3EF).
  • n3e indicating the average degree of polymerization represents 3.8.
  • Rf 2 3f in formula (3F) is a PFPE chain represented by the above formula (3FF).
  • n3f indicating the average degree of polymerization represents 3.8.
  • Rf 1 3g in formula (3G) is a PFPE chain represented by the above formula (3GF).
  • l3g indicating the average degree of polymerization is 3.8 m3g indicating the average degree of polymerization represents 0.
  • m3g indicating the average degree of polymerization represents 2.4.
  • Rf 1 3h in formula (3H) is a PFPE chain represented by the above formula (3HF).
  • l3h indicating the average degree of polymerization represents 3.8
  • the average degree of polymerization m3h indicates 0.
  • Rf 1 3i in formula (3I) is a PFPE chain represented by the above formula (3IF).
  • l3i indicating the average degree of polymerization represents 3.8
  • the average degree of polymerization m3i indicates 0.
  • the number average molecular weights (Mn) of the compounds of Examples 1 to 44 and Comparative Examples 1 to 11 thus obtained were measured by the method described above. The results are shown in Tables 10 to 12.
  • a lubricating layer forming solution was prepared using the compounds obtained in Examples 1 to 44 and Comparative Examples 1 to 11 by the method shown below. Then, using the obtained lubricant layer forming solution, lubricant layers of magnetic recording media were formed by the method shown below to obtain magnetic recording media of Examples 1 to 44 and Comparative Examples 1 to 11.
  • Magnetic recording medium A magnetic recording medium was prepared in which an adhesive layer, a soft magnetic layer, a first underlayer, a second underlayer, a magnetic layer, and a protective layer were sequentially provided on a substrate having a diameter of 65 mm.
  • the protective layer was made of carbon.
  • the lubricating layer forming solutions of Examples 1 to 44 and Comparative Examples 1 to 11 were applied by dipping onto the protective layer of the magnetic recording medium in which each layer up to the protective layer was formed. Note that the dipping method was performed under the conditions of a dipping speed of 10 mm/sec, a dipping time of 30 sec, and a pulling rate of 1.2 mm/sec.
  • the magnetic recording medium coated with the lubricant layer forming solution is placed in a constant temperature bath, and heat treatment is performed at 120°C for 10 days to remove the solvent in the lubricant layer forming solution and improve the adhesion between the protective layer and the lubricant layer.
  • a lubricating layer was formed on the protective layer by carrying out this treatment for a few minutes, and a magnetic recording medium was obtained.
  • a disk was prepared in which an adhesive layer, a soft magnetic layer, a first underlayer, a second underlayer, a magnetic layer, and a protective layer were sequentially provided on a substrate having a diameter of 65 mm.
  • a lubricating layer was formed on each protective layer of this disk to a thickness of 6 to 20 ⁇ (in 2 ⁇ increments). Thereafter, for each disk on which a lubricant layer was formed, the increase in film thickness from the surface of the disk on which no lubricant layer was formed was measured using an ellipsometer, and this was taken as the film thickness of the lubricant layer.
  • the peak height in CF vibrational expansion and contraction was measured using FT-IR. Then, a correlation equation between the peak height obtained by FT-IR and the thickness of the lubricant layer obtained using an ellipsometer was determined.
  • spin-off characteristics test The magnetic recording medium was mounted on a spin stand and rotated at a rotation speed of 10,000 rpm for 72 hours in an environment of 80°C. Before and after this operation, the thickness of the lubricant layer at a position 20 mm radius from the center of the magnetic recording medium was measured using FT-IR using the method described above, and the rate of decrease in the thickness of the lubricant layer before and after the test was calculated. did. Using the calculated film thickness reduction rate, the spin-off characteristics were evaluated according to the evaluation criteria shown below.
  • the magnetic recording medium was exposed to a temperature of 85° C. and a relative humidity of 90% for 48 hours. Thereafter, the number of corrosion spots with a diameter of 5 ⁇ m or more generated on the surface of the magnetic recording medium was counted using an optical surface analyzer (Candela 7140 manufactured by KLA-Tencor Co., Ltd.), and evaluated based on the following evaluation criteria.
  • an optical surface analyzer Candela 7140 manufactured by KLA-Tencor Co., Ltd.
  • the magnetic recording media of Examples 1 to 44 were evaluated as A to B in all evaluation items. From this, it was confirmed that the lubricating layers of the magnetic recording media of Examples 1 to 44 had good results in all of the pickup characteristic test, spin-off characteristic test, and corrosion resistance test.
  • the lubricating layers of the magnetic recording media of Examples 1 to 5, 7 to 10, 12 to 27, 29 to 32, and 34 to 44 were good, with the results of both the pickup characteristic test and the spin-off characteristic test being A. there were.
  • Compounds (1A) to (1E), (1G) to (1J), (1L) to (1V), (2A) to (2E), (2G) to (2J) used in the lubricating layer of the above examples, (2L) to (2V) all have a relatively small number of carbon atoms contained in R 1 -[B]-[A]- and -[C]-[D]-R 4 , or Even if the number is large, the distance from the carbon atom serving as the branching point in the branched terminal group to the primary hydroxyl group is not too short and is appropriate.
  • the secondary hydroxyl groups present in R 1 -[B]-[A]- and -[C]-[D]-R 4 have excellent adsorption power to the protective layer, and the branched terminal group has excellent adsorption power to the protective layer. It is presumed that the excellent intermolecular force exhibited by the primary hydroxyl group acted effectively in a well-balanced manner, resulting in more effective adhesion of the hydroxyl group to the protective layer. As a result, it is presumed that the adhesion of lubricant to the magnetic head was suppressed and excellent pickup characteristics were exhibited. It is also presumed that the adhesion of the lubricating layer to the protective layer was maintained, and good spin-off characteristics were obtained.
  • the magnetic recording media of Comparative Examples 1 to 11 had pickup characteristic test and spin-off characteristic test results of C to D.
  • Comparative Examples 1 and 7 the structures corresponding to R 1 and R 4 in the compound used in the lubricating layer each have only one primary hydroxyl group. Therefore, the lubricating layers of Comparative Examples 1 and 7 were compared with the lubricating layers of Examples 1 to 44 containing compounds in which R 1 and R 4 are branched terminal groups having two or three primary hydroxyl groups, respectively. Therefore, it is difficult to obtain adhesion to the protective layer. As a result, it is presumed that in Comparative Examples 1 and 7, the lubricant adhered to the magnetic head, resulting in the pickup characteristic test result being C. Further, in Comparative Examples 1 and 7, it is presumed that the result of the spin-off characteristic test was C because it was difficult to maintain adhesion to the protective layer.
  • Comparative Example 8 the structures corresponding to R 1 and R 4 in the compound used in the lubricating layer each have only one primary hydroxyl group, and the -[B]-[A]- structure and the - Only the divalent linking group corresponding to one of the [C]-[D]- structures is present. From this, it is presumed that the lubricating layer of Comparative Example 8 has insufficient adhesion to the protective layer. As a result, in Comparative Example 8, it is presumed that the lubricant adhered to the magnetic head, resulting in a pickup characteristic test result of D. Furthermore, in Comparative Example 8, it is presumed that the adhesion to the protective layer could not be maintained and the result of the spin-off characteristic test was also D. Furthermore, in Comparative Example 8, since a compound having only OH at one end was used, it is presumed that the adhesion to the protective layer was insufficient and the result of the corrosion resistance test was C.
  • Comparative Examples 10 and 11 a compound in which terminal groups having two primary hydroxyl groups are arranged at both ends of the molecule is used for the lubricating layer.
  • the compounds used for the lubricating layer in Comparative Examples 10 and 11 were the -[B]-[A]- and -[C]-[D]- structures in the fluorine-containing ether compound represented by formula (1). Does not contain divalent linking groups that fall under the following. Therefore, the lubricating layers of Comparative Examples 10 and 11 have inferior adsorption power to the protective layer compared to the lubricating layers of Examples 1 to 44, and the pick-up characteristic test result is C or D, and the spin-off characteristic test result is It is estimated that it became D. Furthermore, since the compound used for the lubricating layer in Comparative Examples 10 and 11 had only one PFPE chain, it is presumed that the hydrophobicity of the lubricating layer was insufficient and the result of the corrosion resistance test was D. be done.
  • a fluorine-containing ether compound that can be used for.
  • SYMBOLS 10 Magnetic recording medium, 11... Substrate, 12... Adhesion layer, 13... Soft magnetic layer, 14... First underlayer, 15... Second underlayer, 16... - Magnetic layer, 17... protective layer, 18... lubricating layer.

Abstract

R1-[B]-[A]-CH2-R2[-CH2-R3-CH2-R2]z-CH2-[C]-[D]-R4で表される含フッ素エーテル化合物([A]は式(2-1)。[B]は式(2-2)。[C]は式(3-1)。[D]は式(3-2)。R4は式(4)。R1はR4と同じであっても異なっていてもよい末端基。zは1または2。R2はパーフルオロポリエーテル鎖。R3は式(5)。)。

Description

含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
 本発明は、含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体に関する。
 本願は、2022年6月10日に、日本に出願された特願2022-094482号に基づき優先権を主張し、その内容をここに援用する。
 近年、インターネットを介した情報処理量が、飛躍的に増大している。それに伴って、情報を保存する記録媒体の開発に注目が集まっている。とりわけ、記録媒体の一種である磁気記録媒体は、低コストで大容量の情報を保存できることから、増大する情報の受け皿として期待されている。
 一般に、磁気記録媒体の磁性層(磁気記録層)の上には、磁気記録媒体の耐久性および信頼性を確保するために、保護層と潤滑層とが設けられている。磁気記録媒体の最表面に配置される潤滑層には、長期安定性、化学物質耐性(シロキサンなどのコンタミネーションを防ぐ)、耐摩耗性、耐熱性等の様々な特性を有することが要求されている。
 磁気記録媒体の潤滑層を形成する際に用いられる潤滑剤としては、例えば、-CF-を含む繰り返し構造を有するフッ素系のポリマーの末端に、水酸基などの極性基を有する化合物を含有するものが提案されている。
 例えば、特許文献1、特許文献2および特許文献3には、分子内に2つのパーフルオロポリエーテル鎖を含み、2つのパーフルオロポリエーテル鎖間に、2級水酸基を有する連結基が配置されている含フッ素エーテル化合物が開示されている。
 特許文献4には、分子内に2つのパーフルオロポリエーテル鎖を含み、2つのパーフルオロポリエーテル鎖間に、1級水酸基および2級水酸基を有する連結基が配置されている含フッ素エーテル化合物が開示されている。
 特許文献5、特許文献6および特許文献7には、3つのパーフルオロポリエーテル鎖が2級水酸基を有する連結基を介して結合した骨格を有し、その両側に、メチレン基(-CH-)を介して極性基を有する末端基がそれぞれ結合されている含フッ素エーテル化合物が開示されている。
 特許文献8には、磁気媒体用の潤滑剤として有用なポリオール(ペル)フルオロポリエーテル誘導体を製造する方法が開示されている。特許文献8には、2個の保護ヒドロキシル官能基および1個の遊離ヒドロキシル基を有する保護トリオールを、活性化剤と反応させて活性化保護トリオールを生成させ、官能性(ペル)フルオロポリエーテル誘導体の末端に配置された水酸基と求核置換反応させて、保護ポリオール(ペル)フルオロポリエーテル誘導体を生成させることが記載されている。
国際公開第2021/251335号 米国特許出願公開第2020/0002640号明細書 国際公開第2016/084781号 国際公開第2021/019998号 米国特許出願公開第2016/0260452号明細書 国際公開第2018/116742号 国際公開第2017/145995号 特許第5334064号公報
 近年、磁気記録媒体の用途の多様化により、磁気記録媒体に求められる環境耐性が非常に厳しくなっている。それに伴って、磁気記録媒体の信頼性および耐久性に大きな影響を及ぼす潤滑層には、より一層、長期安定性を向上させることが求められている。
 潤滑層の長期安定性の指標としては、ピックアップ特性とスピンオフ特性が知られている。ピックアップとは、潤滑剤が異物(スメア)として磁気ヘッドに付着する現象のことである。ピックアップは、磁気ヘッドの飛行安定性に影響する。スピンオフとは、磁気記録媒体の回転に伴う遠心力および発熱によって、潤滑剤が飛散したり蒸発したりする現象である。スピンオフが発生すると潤滑層の膜厚が減少するため、潤滑層の化学物質耐性および耐摩耗性が劣化する。
 また、近年、磁気記録媒体の大容量化に向けて、さらなる磁気スペーシング(磁気ヘッドと磁気記録媒体の磁性層との距離)の低減と、磁気記録媒体の回転速度の高速化が求められている。しかし、磁気ヘッドの浮上高さを低くすると、ピックアップが発生しやすくなる。また、磁気記録媒体の回転速度を速くすると、スピンオフが発生しやすくなる。また、磁気ヘッドの浮上量を小さくするために潤滑層の厚みを薄くすると、磁気記録媒体の耐腐食性が低下する傾向がある。
 本発明は、上記事情を鑑みてなされたものであり、厚みが薄くても、磁気記録媒体の腐食を抑制する効果が高く、ピックアップおよびスピンオフの生じにくい潤滑層を形成でき、磁気記録媒体用潤滑剤の材料として好適に用いることができる含フッ素エーテル化合物を提供することを目的とする。
 また、本発明は、本発明の含フッ素エーテル化合物を含む磁気記録媒体用潤滑剤を提供することを目的とする。
 また、本発明は、本発明の含フッ素エーテル化合物を含む潤滑層を有し、ピックアップおよびスピンオフが生じにくく、優れた耐腐食性を有する磁気記録媒体を提供することを目的とする。
 すなわち、本発明は以下の事項に関する。
[1] 下記式(1)で表されることを特徴とする含フッ素エーテル化合物。
-[B]-[A]-CH-R[-CH-R-CH-R-CH-[C]-[D]-R (1)
(式(1)中、[A]は下記式(2-1)で表され、式(2-1)中のaは0~3の整数である。[B]は下記式(2-2)で表され、式(2-2)中のbは0~3の整数であり、cは2~5の整数である。ただし、aとbの値の合計は1~3である。式(1)において[A]と[B]は入れ替えてもよい。[C]は下記式(3-1)で表され、式(3-1)中のdは0~2の整数である。[D]は下記式(3-2)で表され、式(3-2)中のeは0~2の整数であり、fは2~5の整数である。ただし、dとeの値の合計は1または2である。式(1)において[C]と[D]は入れ替えてもよい。Rは炭素原子数が3~30の分岐型末端基であり、下記式(4)で表される。式(4)中のLは0~6の整数を表す。式(4)中のYおよびYは、それぞれ独立に、1級水酸基を1つのみ有する、エーテル酸素原子を含んでもよい炭化水素基である。式(4)中のYは、1級水酸基を1つのみ有する、エーテル酸素原子を含んでもよい炭化水素基、または水素原子である。Rは、Rと同じであっても異なっていてもよい末端基であり、式(4)で表される炭素原子数3~30の分岐型末端基、[A]または[B]と結合する末端にエーテル酸素原子を有する炭素原子数1~30の有機基、または水酸基である。zは、1または2を表す。Rは、パーフルオロポリエーテル鎖である。2つまたは3つのRは一部または全部が同じであってもよいし、それぞれ異なっていてもよい。Rは、下記式(5)で表される2価の連結基である。式(5)中のy1は1~3の整数であり、y2は1~3の整数である。式(5)中の左側の酸素原子に結合する点線は、R側のメチレン基との結合を示し、右側の酸素原子に結合する点線は、R側のメチレン基との結合を示す。zが2である場合、2つのRは同じであってもよいし、それぞれ異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000004
[2] 前記式(1)におけるRを表す前記式(4)が、下記式(6-1)~(6-3)のいずれかである[1]に記載の含フッ素エーテル化合物。
Figure JPOXMLDOC01-appb-C000005
(式(6-1)中、gは1~6の整数を表す。XおよびXは、式(7)で表される。XとXは同じであっても異なっていてもよい。)
(式(6-2)中、hは0~6の整数を表す。iおよびjは、それぞれ独立して1~6の整数を表す。XおよびXは、水素原子または式(7)で表される。XとXは同じであっても異なっていてもよい。)
(式(6-3)中、kは0~6の整数を表す。p、qおよびrは、それぞれ独立して1~6の整数を表す。X、XおよびXは、水素原子または式(7)で表される。X、XおよびXは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
(式(7)中、sは2~6の整数を表し、tは1または2を表す。)
[3] 前記式(1)におけるRが、前記式(4)で表される炭素原子数3~30の分岐型末端基である[1]または[2]に記載の含フッ素エーテル化合物。
[4] 前記式(1)におけるRとRの両方が、前記式(6-1)~(6-3)のいずれかの分岐型末端基である[2]に記載の含フッ素エーテル化合物。
[5] 前記式(1)におけるR-[B]-[A]-と、-[C]-[D]-Rとが同じである[1]~[4]のいずれかに記載の含フッ素エーテル化合物。
[6] 前記式(1)におけるzが2であって、2つのRに含まれる原子が、分子の鎖状構造中央に配置されたRに対して対称配置されている[1]~[5]のいずれかに記載の含フッ素エーテル化合物。
[7] 前記式(1)におけるRが下記式(8)で表される[1]~[6]のいずれかに記載の含フッ素エーテル化合物。
Figure JPOXMLDOC01-appb-C000006
(式(8)中、uは2~6の整数を表し、vは0または1を表す。Rは、水素原子、水酸基を含まない置換基を有してもよいアルキル基、二重結合または三重結合を少なくとも一つ有する有機基のいずれかである。ただし、前記アルキル基および前記有機基は、直鎖であっても、分岐を有していてもよい。)
[8] 前記式(8)におけるRが、炭素原子数1~6のアルキル基である[7]に記載の含フッ素エーテル化合物。
[9] 前記式(8)におけるRが、置換基を有する炭素原子数1~6のアルキル基であり、前記置換基がフルオロ基またはシアノ基である[7]に記載の含フッ素エーテル化合物。
[10] 前記式(8)におけるRが、芳香族炭化水素を有する炭素原子数6~12の有機基、芳香族複素環を有する炭素原子数3~10の有機基、炭素原子数2~8のアルケニル基、および炭素原子数3~8のアルキニル基のいずれかである[7]に記載の含フッ素エーテル化合物。
[11] 前記式(8)におけるRが、メチル基、エチル基、n-プロピル基、イソプロピル基、2,2,2-トリフルオロエチル基、2,2,3,3,3-ペンタフルオロプロピル基、2,2,2,2,2,2-ヘキサフルオロイソプロピル基、2-シアノエチル基、3-シアノプロピル基、4-シアノブチル基、フェニル基、メトキシフェニル基、シアノフェニル基、フェネチル基、チエニルエチル基、N-メチルピラゾリルメチル基、アリル基、3-ブテニル基、4-ペンテニル基、プロパルギル基、3-ブチニル基、および4-ペンチニル基からなる群から選択される1つの基である[7]に記載の含フッ素エーテル化合物。
[12] 前記式(8)におけるRが、水素原子である[7]に記載の含フッ素エーテル化合物。
[13] 前記式(1)における2つまたは3つのRが、それぞれ独立に、下記式(9)で表されるパーフルオロポリエーテル鎖である[1]~[12]のいずれかに記載の含フッ素エーテル化合物。
 -(CFw1-O-(CFO)w2-(CFCFO)w3-(CFCFCFO)w4-(CFCFCFCFO)w5-(CFw6-   (9)
(式(9)中、w2、w3、w4、w5は平均重合度を示し、それぞれ独立に0~20を表す。ただし、w2、w3、w4、w5の全てが同時に0になることはない。w1、w6は、CFの数を表す平均値であり、それぞれ独立に1~3を表す。式(9)における繰り返し単位である(CFO)、(CFCFO)、(CFCFCFO)、(CFCFCFCFO)の配列順序には、特に制限はない。)
[14] 前記式(1)における2つまたは3つのRが、それぞれ独立に、下記式(10-1)~(10-4)で表されるパーフルオロポリエーテル鎖から選ばれるいずれか1種である[1]~[12]のいずれかに記載の含フッ素エーテル化合物。
 -CF-(OCFCF-(OCF-OCF- (10-1)
(式(10-1)中、lおよびmは平均重合度を示し、lは0.1~20を表し、mは0~20を表す。)
 -CFCF-(OCFCFCF-OCFCF- (10-2)
(式(10-2)中、nは平均重合度を示し、0.1~15を表す。)
 -CFCFCF-(OCFCFCFCF-OCFCFCF- (10-3)
(式(10-3)中、oは平均重合度を示し、0.1~10を表す。)
 -(CFw7-O-(CFCFCFO)w8-(CFCFO)w9-(CFw10- (10-4)
(式(10-4)中、w8、w9は平均重合度を示し、それぞれ独立に0.1~20を表す。w7、w10は、CFの数を表す平均値であり、それぞれ独立に1~2を表す。)
[15] 数平均分子量が500~10000の範囲内である[1]~[14]のいずれかに記載の含フッ素エーテル化合物。
[16] [1]~[15]のいずれかに記載の含フッ素エーテル化合物を含むことを特徴とする磁気記録媒体用潤滑剤。
[17] 基板上に、少なくとも磁性層と、保護層と、潤滑層とが順次設けられた磁気記録媒体であって、
 前記潤滑層が、[1]~[15]のいずれかに記載の含フッ素エーテル化合物を含むことを特徴とする磁気記録媒体。
[18] 前記潤滑層の平均膜厚が0.5nm~2.0nmである[17]に記載の磁気記録媒体。
 本発明の含フッ素エーテル化合物は、上記式(1)で表される化合物であり、磁気記録媒体用潤滑剤の材料として好適である。
 本発明の磁気記録媒体用潤滑剤は、本発明の含フッ素エーテル化合物を含む。このため、厚みが薄くても、磁気記録媒体の腐食を抑制する効果が高く、保護層との密着性が良好で、ピックアップおよびスピンオフを抑制できる潤滑層を形成できる。
 本発明の磁気記録媒体は、保護層との密着性が良好で、ピックアップおよびスピンオフを抑制でき、優れた耐腐食性が得られる潤滑層を有している。このため、優れた信頼性および耐久性を有する。
本発明の磁気記録媒体の一実施形態の例を示した概略断面図である。
 本発明者らは、上記課題を解決するために、潤滑層に含まれる含フッ素エーテル化合物の分子構造と、保護層との関係に着目し、以下に示すように、鋭意研究を重ねた。
 従来、保護層の表面に塗布される磁気記録媒体用潤滑剤(以下、「潤滑剤」と略記する場合がある。)の材料として、鎖状構造の末端に水酸基などの極性基を有する含フッ素エーテル化合物が用いられている。しかしながら、従来の潤滑剤を用いて形成した潤滑層は、保護層に対する密着性および/または磁気記録媒体の腐食抑制効果が十分に得られない場合があった。また、本発明者らが、鋭意検討した結果、潤滑層の保護層に対する密着性が不十分であると、ピックアップおよびスピンオフが生じやすいことが分かった。
 そこで、本発明者らは、潤滑層の保護層に対する密着性および磁気記録媒体の腐食抑制効果を高めるべく、さらに検討を重ねた。その結果、潤滑剤として、水酸基を有する含フッ素エーテル化合物であって、以下に示す<1>~<3>の機能が得られるものを用いる必要があることが分かった。
<1>パーフルオロポリエーテル(以下、PFPEと呼ぶことがある。)系化合物中の水酸基が、保護層上の活性点との結合に有効に関与すること。
<2>PFPE系化合物中の水酸基が、PFPE系化合物同士の分子間水素結合の形成に関与すること。
<3>パーフルオロポリエーテル鎖(PFPE鎖)を含むことによる十分な疎水性が得られ、かつPFPE鎖が保護層から離れすぎないこと。
 このことから、本発明者らは、上記<1>~<3>の機能が効果的に得られる含フッ素エーテル化合物の分子構造について検討を重ねた。
 その結果、2つまたは3つのパーフルオロポリエーテル鎖(PFPE鎖)が、メチレン基(-CH-)と、2級水酸基を有する特定の2価の連結基とを介して結合し、両端のパーフルオロポリエーテル鎖に、メチレン基(-CH-)を介して2級水酸基を有する特定の連結基がそれぞれ結合し、少なくとも片末端に1級水酸基を複数有する分岐型末端基が配置された含フッ素エーテル化合物とすればよいことを見出した。そして、このような含フッ素エーテル化合物を含む潤滑層は、厚みが薄くても、磁気記録媒体の腐食を抑制する効果が高く、ピックアップおよびスピンオフを抑制できることを確認し、本発明を想到した。
 以下、本発明の含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体について詳細に説明する。なお、本発明は、以下に示す実施形態のみに限定されるものではない。例えば、本発明は以下の例のみに限定されることは無く、本発明の趣旨を逸脱しない範囲で、数、量、比率、組成、種類、位置、材料、構成等について、付加、省略、置換、変更が可能である。
[含フッ素エーテル化合物]
 本実施形態の含フッ素エーテル化合物は、下記式(1)で表される。
-[B]-[A]-CH-R[-CH-R-CH-R-CH-[C]-[D]-R (1)
(式(1)中、[A]は下記式(2-1)で表され、式(2-1)中のaは0~3の整数である。[B]は下記式(2-2)で表され、式(2-2)中のbは0~3の整数であり、cは2~5の整数である。ただし、aとbの値の合計は1~3である。式(1)において[A]と[B]は入れ替えてもよい。[C]は下記式(3-1)で表され、式(3-1)中のdは0~2の整数である。[D]は下記式(3-2)で表され、式(3-2)中のeは0~2の整数であり、fは2~5の整数である。ただし、dとeの値の合計は1または2である。式(1)において[C]と[D]は入れ替えてもよい。Rは炭素原子数が3~30の分岐型末端基であり、下記式(4)で表される。式(4)中のLは0~6の整数を表す。式(4)中のYおよびYは、それぞれ独立に、1級水酸基を1つのみ有する、エーテル酸素原子を含んでもよい炭化水素基である。式(4)中のYは、1級水酸基を1つのみ有する、エーテル酸素原子を含んでもよい炭化水素基、または水素原子である。Rは、Rと同じであっても異なっていてもよい末端基であり、式(4)で表される炭素原子数3~30の分岐型末端基、[A]または[B]と結合する末端にエーテル酸素原子を有する炭素原子数1~30の有機基、または水酸基である。zは1または2を表す。Rはパーフルオロポリエーテル鎖である。2つまたは3つのRは一部または全部が同じであってもよいし、それぞれ異なっていてもよい。Rは下記式(5)で表される2価の連結基である。式(5)中のy1は1~3の整数であり、y2は1~3の整数である。式(5)中の左側の酸素原子に結合する点線は、R側のメチレン基との結合を示し、右側の酸素原子に結合する点線は、R側のメチレン基との結合を示す。zが2である場合、2つのRは同じであってもよいし、それぞれ異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000007
(-[B]-[A]-で示される連結基)
 式(1)で表される本実施形態の含フッ素エーテル化合物において、[A]は前記式(2-1)で表され、[B]は前記式(2-2)で表される。式(1)における[A]および[B]は、2価の連結基である。式(1)において[A]と[B]は入れ替えてもよい。式(2-1)中のaおよび式(2-2)中のbは0~3の整数である。ただし、aとbの値の合計は1~3である。
 式(2-1)および式(2-2)は、原料入手および合成の容易さの観点から、aが1であってbが0である組み合わせ、またはaが0であってbが1である組み合わせが好ましい。
 また、式(2-1)および式(2-2)は、保護層との密着性の観点から、aが2であってbが0である組み合わせ、またはaが1であってbが1である組み合わせが好ましい。特に、aが2であってbが0である場合、含フッ素エーテル化合物において、式(2-1)の有する2つの水酸基の配置される方向が、PFPE鎖の延在方向に対して立体的に同じ方向となり、式(2-1)の有する2つの水酸基が保護層に吸着しやすいものとなる傾向がみられる。また、aおよびbが1であって[A]と[B]の結合順がR側から-[A]-[B]-である場合、-[A]-[B]-構造中に含まれる水酸基同士間の距離がより遠くなる。このため、式(1)で示される含フッ素エーテル化合物の分子内水素結合を小さくし、保護層との親和性を高くすることが出来る。
 式(2-2)中のcは2~5の整数である。bが1~3の整数である場合、cは2~4の整数であることが好ましく、2であることが最も好ましい。これは、-[B]-[A]-構造中に含まれる炭素原子数が多すぎることがなく、より一層、保護層への密着性が良好で、ピックアップおよびスピンオフを抑制できる潤滑層を形成できる含フッ素エーテル化合物となるためである。
(-[C]-[D]-で示される連結基)
 式(1)で表される本実施形態の含フッ素エーテル化合物において、[C]は前記式(3-1)で表され、[D]は前記式(3-2)で表される。式(1)における[C]および[D]は、2価の連結基である。式(1)において[C]と[D]は入れ替えてもよい。式(3-1)中のdおよび式(3-2)中のeは0~2の整数である。ただし、dとeの値の合計は1または2である。
 式(3-1)および式(3-2)は、原料入手および合成の容易さの観点から、dが1であってeが0である組み合わせ、またはdが0であってeが1である組み合わせが好ましい。
 また、式(3-1)および式(3-2)は、保護層との密着性の観点から、dが2であってeが0である組み合わせ、またはdが1であってeが1である組み合わせが好ましい。特に、dが2であってeが0である場合、含フッ素エーテル化合物において、式(3-1)の有する2つの水酸基の配置される方向が、PFPE鎖の延在方向に対して立体的に同じ方向となり、式(3-1)の有する2つの水酸基が保護層に吸着しやすいものとなる傾向がみられる。また、dおよびeが1であって[C]と[D]の結合順がR側から-[D]-[C]-である場合、-[D]-[C]-構造中に含まれる水酸基同士間の距離がより遠くなる。このため、式(1)で示される含フッ素エーテル化合物の分子内水素結合を小さくし、保護層との親和性を高くすることが出来る。
 式(3-2)中のfは2~5の整数である。eが1~2の整数である場合、fは2~3の整数であることが好ましく、2であることが最も好ましい。これは、-[C]-[D]-構造中に含まれる炭素原子数が多すぎることがなく、より一層、保護層への密着性が良好で、ピックアップおよびスピンオフを抑制できる潤滑層を形成できる含フッ素エーテル化合物となるためである。
(Rで示される分岐型末端基)
 式(1)中、Rは式(4)で表される、炭素原子数が3~30の分岐型末端基である。Rの炭素原子数は、3~20が好ましく、さらに好ましくは3~12である。Rの炭素原子数は、3~5や、5~10や、10~15などであってもよい。Rの炭素原子数が3~12であると、含フッ素エーテル化合物分子中におけるフッ素原子の割合が低下して、分子全体の表面自由エネルギーが大きくなってしまうことを抑制できる。
 式(4)は、1級水酸基を2つまたは3つ含み、炭素原子を分岐点とする分岐型末端基である。Rに含まれる複数の1級水酸基は、含フッ素エーテル化合物同士の分子間水素結合の形成に関与する。
 式(4)中のLは0~6の整数を表す。式(4)中、YおよびYは、それぞれ独立に、1級水酸基を1つのみ有する、エーテル酸素原子を含んでもよい炭化水素基である。YおよびYで示される炭化水素基は、直鎖であっても分岐であってもよく、2級水酸基および3級水酸基を含まないことが好ましい。Yは、1級水酸基を1つのみ有する、エーテル酸素原子を含んでもよい炭化水素基、または水素原子である。Yで示される炭化水素基は、直鎖であっても分岐であってもよく、2級水酸基および3級水酸基を含まないことが好ましい。
 Rは、エーテル結合(-O-)を3つ以上含むことが好ましい。この場合、Rが適度な柔軟性を有するものとなるため、式(1)で示される含フッ素エーテル化合物を含む潤滑層が、より一層保護層との密着性に優れるものとなる。
 Rが複数のエーテル結合を有する場合、隣接するエーテル結合同士は、2つ以上の炭素原子が連結された連結基を介して結合していることが好ましい。この場合、隣接するエーテル結合の間の距離が適正となり、凝集しにくい含フッ素エーテル化合物となる。
 Rを表す式(4)は、下記式(6-1)~(6-3)のいずれかの分岐型末端基であることが好ましい。Rが、式(6-1)~(6-3)のいずれかの分岐型末端基である場合、Rに含まれる1級水酸基の結合している炭素原子同士が、メチン基および/またはメチレン基と、エーテル結合とを含む連結基を介して結合している。このため、Rの有する隣接する1級水酸基同士の間の距離が適正となり、Rの有する複数の1級水酸基が、含フッ素エーテル化合物同士の分子間で水素結合を形成しやすい配置となっている。しかも、Rが下記式(6-1)~(6-3)のいずれかの分岐型末端基であると、Rの分子量が大きいことにより、含フッ素エーテル化合物分子中におけるフッ素原子の割合が低下して、分子全体の表面自由エネルギーが大きくなることを抑制できる。Rは、分子全体の表面自由エネルギーが大きくなることを抑制できるため、式(6-1)または(6-2)であることがより好ましい。
Figure JPOXMLDOC01-appb-C000008
(式(6-1)中、gは1~6の整数を表す。XおよびXは、式(7)で表される。XとXは同じであっても異なっていてもよい。)
(式(6-2)中、hは0~6の整数を表す。iおよびjは、それぞれ独立して1~6の整数を表す。XおよびXは、水素原子または式(7)で表される。XとXは同じであっても異なっていてもよい。)
(式(6-3)中、kは0~6の整数を表す。p、qおよびrは、それぞれ独立して1~6の整数を表す。X、XおよびXは、水素原子または式(7)で表される。X、XおよびXは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
(式(7)中、sは2~6の整数を表し、tは1または2を表す。)
 式(6-1)中、gは1~6の整数を表す。gは、含フッ素エーテル化合物分子中におけるフッ素原子の割合を確保しやすくなるため、1~4の整数であることが好ましく、さらに好ましくは1または2である。また、gが1~4の整数であると、R中の炭素原子数が多いことによって末端の運動性が高くなりすぎることがない。このため、より一層、保護層への密着性が良好で、ピックアップおよびスピンオフを抑制できる潤滑層を形成できる含フッ素エーテル化合物となり、好ましい。
 XおよびXは、式(7)で表される。XとXは同じであっても異なっていてもよい。
 式(6-2)中、hは0~6の整数を表す。hは、含フッ素エーテル化合物分子中におけるフッ素原子の割合を確保しやすくなるため、0~4の整数であることが好ましく、さらに好ましくは0~2の整数である。また、hが0~5の整数であると、R中の炭素原子数が多いことによって末端の運動性が高くなりすぎることがない。このため、より一層、保護層への密着性が良好で、ピックアップおよびスピンオフを抑制できる潤滑層を形成できる含フッ素エーテル化合物となり、好ましい。
 式(6-2)中、iおよびjは、それぞれ独立して1~6の整数を表す。iおよびjは、含フッ素エーテル化合物分子中におけるフッ素原子の割合を確保しやすくなるため、それぞれ独立して、1~4の整数であることが好ましく、さらに好ましくは1または2である。iおよびjは、同じであってもよいし、異なっていてもよい。iおよびjは、含フッ素エーテル化合物の製造が容易であるため、同じであることが好ましい。
 XおよびXは、水素原子または式(7)で表される。XとXは同じであっても異なっていてもよい。
 式(6-3)中、kは0~6の整数を表す。kは、含フッ素エーテル化合物分子中におけるフッ素原子の割合を確保しやすくなるため、0~4の整数であることが好ましく、さらに好ましくは0~2の整数である。
 p、qおよびrは、それぞれ独立して1~6の整数を表す。p、qおよびrは、含フッ素エーテル化合物分子中におけるフッ素原子の割合を確保しやすくなるため、それぞれ独立して、1~4の整数であることが好ましく、さらに好ましくは1または2である。p、qおよびrは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。p、qおよびrは、含フッ素エーテル化合物の製造が容易であるため、全て同じであることが好ましい。
 X、XおよびXは、水素原子または式(7)で表される。X、XおよびXは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。
 式(7)中、sは2~6の整数を表す。sは、含フッ素エーテル化合物分子中におけるフッ素原子の割合を確保しやすくなるため、2~4の整数であることが好ましく、さらに好ましくは2または3である。
 tは1または2を表す。tが2である場合、それぞれの[-(CH-O-]におけるsは同じであってもよいし、異なっていてもよい。tは、含フッ素エーテル化合物分子中におけるフッ素原子の割合を確保しやすくなるため、1であることが好ましい。
 式(6-1)中のXとしての式(7)は、sが3以上である、および/またはtが2であることが好ましく、式(6-1)中のXとしての式(7)および式(6-1)中のXとしての式(7)の両方が、sが3以上である、および/またはtが2であることがより好ましい。式(6-1)中の分岐点となっている炭素原子から1級水酸基までの距離が近すぎることがなく適正となり、ピックアップおよびスピンオフを、より効果的に抑制できる潤滑層を形成できる含フッ素エーテル化合物となるためである。
 式(1)の-[C]-[D]-Rは、具体的には、下記式(11-1)~(11-25)で表されるいずれかの構造であることが好ましく、ピックアップおよびスピンオフを効果的に抑制できる潤滑層を形成できる含フッ素エーテル化合物となるため、下記式(11-1)~(11-5)、(11-7)~(11-10)、(11-13)~(11-21)、(11-24)、(11-25)で表されるいずれかの構造であることがより好ましい。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
(Rで示される末端基)
 (1)においてRで示される末端基は、Rと同じであっても異なっていてもよい末端基であり、式(4)で表される炭素原子数3~30の分岐型末端基、[A]または[B]と結合する末端にエーテル酸素原子を有する炭素原子数1~30の有機基、または水酸基である。Rで示される末端基は、含フッ素エーテル化合物を含む潤滑剤に求められる性能などに応じて適宜選択できる。
 Rが式(4)で表される炭素原子数3~30の末端基である場合、Rは、1級水酸基を2つまたは3つ含み、炭素原子を分岐点とする分岐型末端基となる。このため、Rに含まれる複数の1級水酸基が、含フッ素エーテル化合物同士の分子間水素結合の形成に関与するものとなり、含フッ素エーテル化合物同士の分子間水素結合がより強められる。
 Rが式(4)で表される末端基である場合、Rを表す式(4)は、前記式(6-1)~(6-3)のいずれかの分岐型末端基であることが好ましい。この場合、式(6-1)中のg、式(6-2)中のh~j、式(6-3)中のk、p~r、および式(7)中のs、tの好ましい値は、Rが式(6-1)~(6-3)のいずれかの分岐型末端基である場合と同じである。
 Rが式(4)で表される末端基である場合、-[A]-[B]-Rは、具体的には、前記式(11-1)~(11-25)で表される構造であることが好ましい。
 式(1)において、Rが式(4)で表される末端基である場合、RとRの両方が、前記式(6-1)~(6-3)のいずれかの分岐型末端基であることがさらに好ましい。
 式(1)において、Rが式(4)で表される末端基である場合、RとRとが同じであることが好ましく、RとRの両方が、前記式(6-1)~(6-3)のいずれかの分岐型末端基であることがさらに好ましい。
 式(1)で表される本実施形態の含フッ素エーテル化合物において、Rが式(4)で表される分岐型末端基でない場合、Rは、[A]または[B]と結合する末端にエーテル酸素原子を有する炭素原子数1~30の有機基、または水酸基である。具体的には、Rは下記式(8)で表される末端基であることが好ましい。この場合、Rの分子量が大きいことにより、含フッ素エーテル化合物分子中におけるフッ素原子の割合が低下して、分子全体の表面自由エネルギーが大きくなることを抑制できる。
Figure JPOXMLDOC01-appb-C000013
(式(8)中、uは2~6の整数を表し、vは0または1を表す。Rは、水素原子、水酸基を含まない置換基を有してもよいアルキル基、二重結合または三重結合を少なくとも一つ有する有機基のいずれかである。ただし、前記アルキル基および前記有機基は、直鎖であっても、分岐を有していてもよい。)
 式(8)中、uは2~6の整数を表し、vは0または1を表す。式(8)のvが0である場合、含フッ素エーテル化合物分子中におけるフッ素原子の割合が低下して、分子全体の表面自由エネルギーが大きくなることを、より効果的に抑制できる。vが1である場合、式(8)に含まれるエーテル結合が、式(1)で示される含フッ素エーテル化合物に柔軟性を付与するため、より一層保護層に吸着しやすいものとなる。
 また、式(8)中のvが1である場合、uが2~6の整数であるため、Rで表される末端基が化学的に安定で分解しにくいものとなる。uは2~4の整数であることが好ましく、2または3であることがより好ましい。uが2または3であると、含フッ素エーテル化合物分子中におけるフッ素原子の割合が低下して、分子全体の表面自由エネルギーが大きくなることを抑制できる。
 式(8)中のRは、水素原子、水酸基を含まない置換基を有してもよいアルキル基、二重結合または三重結合を少なくとも一つ有する有機基のいずれかである。
 Rが水素原子である場合、Rは式(8)中の酸素原子とともに水酸基を形成する。式(8)中のvが1である場合、式(8)で表されるRは、末端に水酸基を有するアルコキシ基である。式(8)中のvが0である場合、式(8)で表されるRは水酸基である。
 Rが水素原子であって、式(8)中のvが1である場合、式(8)で表されるRの好ましい具体例として、-O-CHCH-OH(式(8)中のuが2)、-O-CHCHCH-OH(式(8)中のuが3)が挙げられる。
 Rが水素原子であって、式(8)中のvが0である場合(すなわちRが水酸基である場合)、Rは式(2-1)で表される[A]に結合してもよく、式(2-2)で表される[B]に結合してもよい。Rが[B]に結合する場合、Rで表される水酸基と、隣接する水酸基の間の距離がより適正となるため好ましい。
 Rが、水酸基を含まない置換基を有してもよいアルキル基である場合、前記置換基としては、フルオロ基、シアノ基、アルコキシ基などが挙げられる。前記置換基には、ヒドロキシアルコキシ基などの、水酸基を含む置換基は含まない。
 置換基を有してもよいアルキル基は、置換基を有さない炭素原子数1~6のアルキル基、または置換基を有する炭素原子数1~6のアルキル基であることが好ましい。置換基を有する炭素原子数1~6のアルキル基の有する置換基は、フルオロ基またはシアノ基であることが好ましい。置換基を有する炭素原子数1~6のアルキル基は、アルキル基の有する水素原子の1つ以上が置換基で置換されたものであり、アルキル基の有する水素原子の全てが置換基で置換されたものであってもよい。
 置換基を有さない炭素原子数1~6のアルキル基、および置換基を有する炭素原子数1~6のアルキル基の有するアルキル基は、直鎖であってもよいし、分岐を有していてもよい。具体的には、アルキル基として、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基とその構造異性体、n-ヘキシル基とその構造異性体が挙げられる。
 水素原子の1つ以上がフルオロ基で置換された炭素原子数1~6のアルキル基としては、例えば、トリフルオロメチル基、パーフルオロエチル基、パーフルオロプロピル基、パーフルオロブチル基、パーフルオロペンチル基、パーフルオロヘキシル基、2,2,2-トリフルオロエチル基、2,2,3,3,3-ペンタフルオロプロピル基、2,2,2,2,2,2-ヘキサフルオロイソプロピル基、2,2,3,3,4,4,4-ヘプタフルオロブチル基、2,2,3,3,4,4,5,5,5-ノナフルオロペンチル基、2,2,3,3,4,4,5,5,6,6,6-ウンデカフルオロヘキシル基が挙げられる。
 水素原子の1つ以上がシアノ基で置換された炭素原子数1~6のアルキル基の有するシアノ基の数は、1つであってもよいし、2つ以上であってもよい。シアノ基の数が多いと含フッ素エーテル化合物の極性が高くなりすぎるため、シアノ基の数は2つ以下であることが好ましく、最も好ましくは1である。
 水素原子の1つ以上がシアノ基で置換された炭素原子数1~6のアルキル基としては、例えば、2-シアノエチル基、3-シアノプロピル基、4-シアノブチル基、5-シアノペンチル基、6-シアノヘキシル基、2-シアノ-1-メチルエチル基、2,2’-ジシアノイソプロピル基が挙げられる。
 二重結合または三重結合を少なくとも一つ有する有機基としては、芳香族炭化水素を有する炭素原子数6~12の有機基、芳香族複素環を有する炭素原子数3~10の有機基、炭素原子数2~8のアルケニル基、および炭素原子数3~8のアルキニル基のいずれかであることが好ましい。二重結合または三重結合を少なくとも一つ有する有機基は、直鎖であってもよいし、分岐を有していてもよい。二重結合または三重結合を少なくとも一つ有する有機基は、水酸基を含まない置換基を有していてもよい。
 芳香族炭化水素を有する炭素原子数6~12の有機基としては、例えば、フェニル基、メトキシフェニル基、ジメトキシフェニル基、シアノフェニル基、ジシアノフェニル基、フッ化フェニル基、ナフチル基、メトキシナフチル基、ベンジル基、メトキシベンジル基、フェネチル基、メトキシフェネチル基、フッ化フェネチル基、ナフチルメチル基、ナフチルエチル基が挙げられる。芳香族炭化水素が置換基を有する場合、置換基の結合されている位置は、どこでもよい。
 芳香族複素環を有する炭素原子数3~10の有機基としては、ピロリル基、ピラゾリル基、メチルピラゾリルメチル基、イミダゾリル基、フリル基、フルフリル基、オキサゾリル基、イソオキサゾリル基、チエニル基、チエニルメチル基、チエニルエチル基、チアゾリル基、メチルチアゾリルエチル基、イソチアゾリル基、ピリジル基、ピリミジニル基、ピリダジニル基、ピラジニル基、インドリニル基、ベンゾフラニル基、ベンゾチエニル基、ベンゾイミダゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、ベンゾピラゾリル基、ベンゾイソオキサゾリル基、ベンゾイソチアゾリル基、キノリル基、イソキノリル基、キナゾリニル基、キノキサリニル基、フタラジニル基、シンノリニル基が挙げられる。
 炭素原子数2~8のアルケニル基としては、例えば、ビニル基、アリル基、1-プロペニル基、イソプロペニル基、3-ブテニル基とその構造異性体、4-ペンテニル基とその構造異性体、5-ヘキセニル基とその構造異性体、6-ヘプテニル基とその構造異性体、7-オクテニル基とその構造異性体が挙げられる。
 炭素原子数3~8のアルキニル基としては、1-プロピニル基、プロパルギル基、3-ブチニル基とその構造異性体、4-ペンチニル基とその構造異性体、5-ヘキシニル基とその構造異性体、6-ヘプチニル基とその構造異性体、7-オクチニル基とその構造異性体が挙げられる。
 式(8)におけるRは、入手および/または合成の容易さの観点から、水素原子、メチル基、エチル基、n-プロピル基、イソプロピル基、2,2,2-トリフルオロエチル基、2,2,3,3,3-ペンタフルオロプロピル基、2,2,2,2,2,2-ヘキサフルオロイソプロピル基、2-シアノエチル基、3-シアノプロピル基、4-シアノブチル基、フェニル基、メトキシフェニル基、シアノフェニル基、フェネチル基、チエニルエチル基、N-メチルピラゾリルメチル基、アリル基、3-ブテニル基、4-ペンテニル基、プロパルギル基、3-ブチニル基、4-ペンチニル基からなる群から選択される1つの基であることが好ましい。これらの中でも、水素原子、メチル基、エチル基、n-プロピル基、2,2,2-トリフルオロエチル基、2,2,3,3,3-ペンタフルオロプロピル基、3-シアノプロピル基、4-シアノブチル基、メトキシフェニル基、シアノフェニル基、N-メチルピラゾリルメチル基、チエニルエチル基、プロパルギル基、アリル基、3-ブテニル基からなる群から選択される1つの基であることがより好ましい。
 式(1)で表される含フッ素エーテル化合物において、zは1または2を表す。式(1)で表される含フッ素エーテル化合物は、zが1または2であるため、Rで示されるPFPE鎖の数(z+1)が2つまたは3つであり、Rで示されるPFPE鎖の数が1つである化合物と比較して、良好な疎水性を有する。このため、厚みが薄くても、磁気記録媒体の腐食を抑制する効果の高い潤滑層を形成できる。また、zが1または2であるため、R間に配置されるRの数が1または2となる。このことから、式(1)における-R[-CH-R-CH-R-の有する極性基の数が適正となり、例えば、zが0である場合と比較して、保護層との密着性の良好な潤滑層を形成できる。また、式(1)で表される含フッ素エーテル化合物は、例えば、zが3以上である場合と比較して、分子内における極性基同士の相互作用を防ぐことができ、含フッ素エーテル化合物の有する極性基同士が凝集しにくい。
(Rで示されるPFPE鎖)
 式(1)で表される含フッ素エーテル化合物において、(z+1)個のRは、それぞれ独立にパーフルオロポリエーテル鎖である。Rで示されるPFPE鎖は、本実施形態の含フッ素エーテル化合物を含む潤滑剤を保護層上に塗布して潤滑層を形成した場合に、保護層の表面を被覆するとともに、潤滑層に潤滑性を付与して磁気ヘッドと保護層との摩擦力を低減させる。Rで示されるPFPE鎖は、含フッ素エーテル化合物を含む潤滑剤に求められる性能等に応じて適宜選択される。
 式(1)で表される含フッ素エーテル化合物において、(z+1)個のRは、一部または全部が同じであってもよいし、それぞれ異なっていても良い。(z+1)個のRは全て同じであることが好ましい。これは、含フッ素エーテル化合物の保護層に対する被覆状態が均一となり、より良好な密着性を有する潤滑層となるためである。
 (z+1)個のRのうち2つ以上のRが同じであるとは、(z+1)個のRのうち、PFPE鎖の繰り返し単位の構造が同じRが2つ以上含まれていることを意味する。同じRには、繰り返し単位の構造が同じであって、平均重合度が異なるものも含まれる。
 Rで示されるPFPE鎖としては、パーフルオロアルキレンオキシドの重合体または共重合体からなるものなどが挙げられる。パーフルオロアルキレンオキシドとしては、例えば、パーフルオロメチレンオキシド、パーフルオロエチレンオキシド、パーフルオロ-n-プロピレンオキシド、パーフルオロイソプロピレンオキシド、パーフルオロブチレンオキシドなどが挙げられる。
 式(1)における2つまたは3つのRは、それぞれ独立に、パーフルオロアルキレンオキシドの重合体または共重合体に由来する下記式(9)で表されるPFPE鎖であることが好ましい。
 -(CFw1-O-(CFO)w2-(CFCFO)w3-(CFCFCFO)w4-(CFCFCFCFO)w5-(CFw6-   (9)
(式(9)中、w2、w3、w4、w5は平均重合度を示し、それぞれ独立に0~20を表す。ただし、w2、w3、w4、w5の全てが同時に0になることはない。w1、w6は、CFの数を表す平均値であり、それぞれ独立に1~3を表す。式(9)における繰り返し単位である(CFO)、(CFCFO)、(CFCFCFO)、(CFCFCFCFO)の配列順序には、特に制限はない。)
 式(9)中、w2、w3、w4、w5は平均重合度を示し、それぞれ独立に0~20を表し、0~15であることが好ましく、0~10であることがより好ましい。
 式(9)中、w1、w6はCFの数を示す平均値であり、それぞれ独立に1~3を表す。w1、w6は、式(9)で表されるPFPE鎖において、鎖状構造の端部に配置されている繰り返し単位の構造などに応じて決定される。
 式(9)における(CFO)、(CFCFO)、(CFCFCFO)、(CFCFCFCFO)は、繰り返し単位である。式(9)における繰り返し単位の配列順序には、特に制限はない。また、式(9)における繰り返し単位の種類の数にも、特に制限はない。
 式(1)における2つまたは3つのRは、それぞれ独立に、下記式(10-1)~(10-4)で表されるPFPE鎖から選ばれるいずれか1種であることが好ましい。
 式(1)における(z+1)個のRがそれぞれ式(10-1)~(10-4)で表されるPFPE鎖から選ばれるいずれか1種であると、良好な潤滑性を有する潤滑層が得られる含フッ素エーテル化合物となる。また、(z+1)個のRがそれぞれ式(10-1)~(10-4)で表されるPFPE鎖から選ばれるいずれか1種である場合、PFPE鎖中の炭素原子数に対する酸素原子数(エーテル結合(-O-)数)の割合が適正である。このため、適度な硬さを有する含フッ素エーテル化合物となる。よって、保護層上に塗布された含フッ素エーテル化合物が、保護層上で凝集しにくく、より一層厚みの薄い潤滑層を十分な被覆率で形成できる。また、含フッ素エーテル化合物が適度な柔軟性を有することにより、ピックアップ特性およびスピンオフ特性のより良好な潤滑層を形成できる。
 -CF-(OCFCF-(OCF-OCF- (10-1)
(式(10-1)中、lおよびmは平均重合度を示し、lは0.1~20を表し、mは0~20を表す。)
 -CFCF-(OCFCFCF-OCFCF- (10-2)
(式(10-2)中、nは平均重合度を示し、0.1~15を表す。)
 -CFCFCF-(OCFCFCFCF-OCFCFCF- (10-3)
(式(10-3)中、oは平均重合度を示し、0.1~10を表す。)
 -(CFw7-O-(CFCFCFO)w8-(CFCFO)w9-(CFw10- (10-4)
(式(10-4)中、w8、w9は平均重合度を示し、それぞれ独立に0.1~20を表す。w7、w10は、CFの数を表す平均値であり、それぞれ独立に1~2を表す。)
 式(10-1)において、繰り返し単位である(OCFCF)と(OCF)との配列順序に、特に制限はない。式(10-1)において、(OCFCF)の数lと(OCF)の数mは同じであってもよいし、異なっていてもよい。式(10-1)で表されるPFPE鎖は、(OCFCF)の重合体であってもよい。また、式(10-1)で表されるPFPE鎖は、(OCFCF)と(OCF)とからなるランダム共重合体、ブロック共重合体、交互共重合体のいずれかであってもよい。
 式(10-1)~(10-3)においては、平均重合度を示すlが0.1~20、mが0~20、nが0.1~15、oが0.1~10であるので、良好な潤滑性を有する潤滑層が得られる含フッ素エーテル化合物となる。また、式(10-1)~(10-3)においては、平均重合度を示すl、mが20以下、nが15以下、oが10以下であるので、含フッ素エーテル化合物の粘度が高くなりすぎず、これを含む潤滑剤が塗布しやすいものとなり、好ましい。平均重合度を示すl、m、n、oは、保護層上に濡れ広がりやすく、均一な膜厚を有する潤滑層が得られやすい含フッ素エーテル化合物となるため、1~10であることが好ましく、1.5~8であることがより好ましく、2~7であることがさらに好ましい。
 式(10-4)において、繰り返し単位である(CFCFCFO)と(CFCFO)との配列順序には、特に制限はない。式(10-4)において、平均重合度を示す(CFCFCFO)の数w8と(CFCFO)の数w9は同じであってもよいし、異なっていてもよい。式(10-4)は、モノマー単位(CFCFCFO)と(CFCFO)とからなるランダム共重合体、ブロック共重合体、交互共重合体のいずれかを含むものであってもよい。
 式(10-4)において、平均重合度を示すw8およびw9は、それぞれ独立に0.1~20であり、1~15であることが好ましく、さらに1~10であることが好ましい。
 式(10-4)におけるw7およびw10は、CFの数を示す平均値であり、それぞれ独立に1~2を表す。w7およびw10は、式(10-4)で表されるPFPE鎖において、鎖状構造の端部に配置されている繰り返し単位の構造などに応じて決定される。
(Rで示される2価の連結基)
 式(1)で表される含フッ素エーテル化合物において、1つまたは2つのRは、上記式(5)で表される2価の連結基である。式(5)中の左側の酸素原子に結合する点線は、R側のメチレン基との結合を示し、右側の酸素原子に結合する点線は、R側のメチレン基との結合を示す。式(1)中のzが1である場合、Rは2つのRで示されるPFPE鎖の間に配置される。zが2である場合、2つのRは、R側のRと中央のRとの間と、R側のRと中央のRとの間に、それぞれ配置される。
 Rは、2級水酸基を有する2価の連結基である。このため、Rは、2級水酸基に起因する保護層への良好な密着性を有している。よって、Rは、Rの両末端に配置されているRで示されるPFPE鎖が保護層から離れすぎることを抑制し、Rに由来する良好な疎水性を有する潤滑層と磁気ヘッドとの距離を適正に保つ。すなわち、Rは、磁気記録媒体の腐食を抑制する効果の高い潤滑層を、十分な被覆率で形成することに寄与する。
 式(5)において、y1は1~3の整数であり、y2は1~3の整数である。y1、y2のうち少なくとも一方は1であることが好ましい。y1、y2のうち少なくとも一方が1であると、製造が容易になり、好ましい。連結基全体の柔軟性を保つため、y1が1かつy2が1であることがより好ましい。
 式(1)中のzが2である場合、2つのRは同じであってもよいし、それぞれ異なっていてもよい。2つのRが同じであると、含フッ素エーテル化合物の保護層に対する被覆状態がより均一となり、より良好な密着性を有する潤滑層を形成できる。また、2つのRが同じである場合、製造の容易な含フッ素エーテル化合物となり、好ましい。
 「2つのRが同じである」とは、2つのRに含まれる原子が、分子の鎖状構造中央に配置されたRに対して対称配置されていることを意味する。すなわち、zが2である場合、式(1)で表される含フッ素エーテル化合物は、2つのRにおける式(5)中のy1、y2が、鎖状構造中央に配置されたRに対して対称となる値である含フッ素エーテル化合物であることが好ましい。例えば、R側のRにおける式(5)中のy1が1、y2が2であり、R側のRにおける式(5)中のy1が2、y2が1である場合、2つのRは同じである。また、例えば、R側のRにおける式(5)中のy1が2、y2が1あり、R側のRにおける式(5)中のy1が1、y2が2である場合、2つのRは同じである。
 式(1)で表される含フッ素エーテル化合物においては、R-[B]-[A]-と、-[C]-[D]-Rとが同じであることにより、-CH-R[-CH-R-CH-R-CH-で表される構造の両側に、原子が対称配置されていることが好ましい。この場合、製造が容易であるため、製造コストが安価となる。
 式(1)においては、zが1である場合、R-[B]-[A]-と-[C]-[D]-Rとが同じであり、2つのRが同じであることがより好ましい。合成の容易な含フッ素エーテル化合物となるためである。
 式(1)においては、zが2である場合、R-[B]-[A]-と-[C]-[D]-Rとが同じであり、3つのRが同じであることがより好ましい。合成の容易な含フッ素エーテル化合物となるためである。さらに、zが2である場合、2つのRに含まれる原子が、分子の鎖状構造中央に配置されたRに対して対称配置されていることが好ましい。より一層合成の容易な含フッ素エーテル化合物となるためである。
 式(1)で表される含フッ素エーテル化合物は、具体的には、下記式(1A)~(1V)、(2A)~(2V)で表される化合物であることが好ましい。
 下記式(1A)~(1V)、(2A)~(2V)で表される化合物において、PFPE鎖を表すRf、Rfは、それぞれ下記の構造である。すなわち、Rfは上記式(10-1)で表されるPFPE鎖であり、Rfは、上記式(10-2)で表されるPFPE鎖である。なお、式(1A)~(1V)、(2A)~(2V)中のPFPE鎖を表すRfにおけるlおよびm、Rfにおけるnは、平均重合度を示す値であるため、必ずしも整数になるとは限らない。
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
(式(1A)中のRf1aは式(1AF)で表される。Rf1a中、n1aは平均重合度を示し、0.1~15を表す。式(1A)中の2つのRf1aにおけるn1aは同じであっても異なっていてもよい。)
(式(1B)中のRf1bは式(1BF)で表される。Rf1b中、n1bは平均重合度を示し、0.1~15を表す。式(1B)中の2つのRf1bにおけるn1bは同じであっても異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000016
(式(1C)中のRf1cは式(1CF)で表される。Rf1c中、l1cおよびm1cは平均重合度を示し、l1cは0.1~20を表し、m1cは0~20を表す。式(1C)中の2つのRf1cにおけるl1cおよびm1cはそれぞれ同じであっても異なっていてもよい。)
(式(1D)中のRf1dは式(1DF)で表される。Rf1d中、l1dおよびm1dは平均重合度を示し、l1dは0.1~20を表し、m1dは0~20を表す。式(1D)中の2つのRf1dにおけるl1dおよびm1dはそれぞれ同じであっても異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000017
(式(1E)中のRf1eは式(1EF)で表される。Rf1e中、n1eは平均重合度を示し、0.1~15を表す。式(1E)中の2つのRf1eにおけるn1eは同じであっても異なっていてもよい。)
(式(1F)中のRf1fは式(1FF)で表される。Rf1f中、n1fは平均重合度を示し、0.1~15を表す。式(1F)中の2つのRf1fにおけるn1fは同じであっても異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000018
(式(1G)中のRf1gは式(1GF)で表される。Rf1g中、n1gは平均重合度を示し、0.1~15を表す。式(1G)中の2つのRf1gにおけるn1gは同じであっても異なっていてもよい。)
(式(1H)中のRf1hは式(1HF)で表される。Rf1h中、l1hおよびm1hは平均重合度を示し、l1hは0.1~20を表し、m1hは0~20を表す。式(1H)中の2つのRf1hにおけるl1hおよびm1hはそれぞれ同じであっても異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000019
(式(1I)中のRf1iは式(1IF)で表される。Rf1i中、l1iおよびm1iは平均重合度を示し、l1iは0.1~20を表し、m1iは0~20を表す。式(1I)中の2つのRf1iにおけるl1iおよびm1iはそれぞれ同じであっても異なっていてもよい。)
(式(1J)中のRf1jは式(1JF)で表される。Rf1j中、n1jは平均重合度を示し、0.1~15を表す。式(1J)中の2つのRf1jにおけるn1jは同じであっても異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000020
(式(1K)中のRf1kは式(1KF)で表される。Rf1k中、l1kおよびm1kは平均重合度を示し、l1kは0.1~20を表し、m1kは0~20を表す。式(1K)中の2つのRf1kにおけるl1kおよびm1kはそれぞれ同じであっても異なっていてもよい。)
(式(1L)中のRf1lは式(1LF)で表される。Rf1l中、n1lは平均重合度を示し、0.1~15を表す。式(1L)中の2つのRf1lにおけるn1lは同じであっても異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000021
(式(1M)中のRf1mは式(1MF)で表される。Rf1m中、n1mは平均重合度を示し、0.1~15を表す。式(1M)中の2つのRf1mにおけるn1mは同じであっても異なっていてもよい。)
(式(1N)中のRf1nは式(1NF)で表される。Rf1n中、n1nは平均重合度を示し、0.1~15を表す。式(1N)中の2つのRf1nにおけるn1nは同じであっても異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000022
(式(1O)中のRf1oは式(1OF)で表される。Rf1o中、n1oは平均重合度を示し、0.1~15を表す。式(1O)中の2つのRf1oにおけるn1oは同じであっても異なっていてもよい。)
(式(1P)中のRf1pは式(1PF)で表される。Rf1p中、n1pは平均重合度を示し、0.1~15を表す。式(1P)中の2つのRf1pにおけるn1pは同じであっても異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000023
(式(1Q)中のRf1qは式(1QF)で表される。Rf1q中、l1qおよびm1qは平均重合度を示し、l1qは0.1~20を表し、m1qは0~20を表す。式(1Q)中の2つのRf1qにおけるl1qおよびm1qはそれぞれ同じであっても異なっていてもよい。)
(式(1R)中のRf1rは式(1RF)で表される。Rf1r中、l1rおよびm1rは平均重合度を示し、l1rは0.1~20を表し、m1rは0~20を表す。式(1R)中の2つのRf1rにおけるl1rおよびm1rはそれぞれ同じであっても異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000024
(式(1S)中のRf1sは式(1SF)で表される。Rf1s中、l1sおよびm1sは平均重合度を示し、l1sは0.1~20を表し、m1sは0~20を表す。式(1S)中の2つのRf1sにおけるl1sおよびm1sはそれぞれ同じであっても異なっていてもよい。)
(式(1T)中のRf1tは式(1TF)で表される。Rf1t中、l1tおよびm1tは平均重合度を示し、l1tは0.1~20を表し、m1tは0~20を表す。式(1T)中の2つのRf1tにおけるl1tおよびm1tはそれぞれ同じであっても異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000025
(式(1U)中のRf1uは式(1UF)で表される。Rf1u中、n1uは平均重合度を示し、0.1~15を表す。式(1U)中の2つのRf1uにおけるn1uは同じであっても異なっていてもよい。)
(式(1V)中のRf1vは式(1VF)で表される。Rf1v中、n1vは平均重合度を示し、0.1~15を表す。式(1V)中の2つのRf1vにおけるn1vは同じであっても異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000026
(式(2A)中のRf2aは式(2AF)で表される。Rf2a中、n2aは平均重合度を示し、0.1~15を表す。式(2A)中の3つのRf2aにおけるn2aは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
(式(2B)中のRf2bは式(2BF)で表される。Rf2b中、n2bは平均重合度を示し、0.1~15を表す。式(2B)中の3つのRf2bにおけるn2bは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
Figure JPOXMLDOC01-appb-C000027
(式(2C)中のRf2cは式(2CF)で表される。Rf2c中、l2cおよびm2cは平均重合度を示し、l2cは0.1~20を表し、m2cは0~20を表す。式(2C)中の3つのRf2cにおけるl2cおよびm2cは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
(式(2D)中のRf2dは式(2DF)で表される。Rf2d中、l2dおよびm2dは平均重合度を示し、l2dは0.1~20を表し、m2dは0~20を表す。式(2D)中の3つのRf2dにおけるl2dおよびm2dは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
Figure JPOXMLDOC01-appb-C000028
(式(2E)中のRf2eは式(2EF)で表される。Rf2e中、n2eは平均重合度を示し、0.1~15を表す。式(2E)中の3つのRf2eにおけるn2eは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
(式(2F)中のRf2fは式(2FF)で表される。Rf2f中、n2fは平均重合度を示し、0.1~15を表す。式(2F)中の3つのRf2fにおけるn2fは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
Figure JPOXMLDOC01-appb-C000029
(式(2G)中のRf2gは式(2GF)で表される。Rf2g中、n2gは平均重合度を示し、0.1~15を表す。式(2G)中の3つのRf2gにおけるn2gは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
(式(2H)中のRf2hは式(2HF)で表される。Rf2h中、l2hおよびm2hは平均重合度を示し、l2hは0.1~20を表し、m2hは0~20を表す。式(2H)中の3つのRf2hにおけるl2hおよびm2hは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
Figure JPOXMLDOC01-appb-C000030
(式(2I)中のRf2iは式(2IF)で表される。Rf2i中、l2iおよびm2iは平均重合度を示し、l2iは0.1~20を表し、m2iは0~20を表す。式(2I)中の3つのRf2iにおけるl2iおよびm2iは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
(式(2J)中のRf2jは式(2JF)で表される。Rf2j中、n2jは平均重合度を示し、0.1~15を表す。式(2J)中の3つのRf2jにおけるn2jは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
Figure JPOXMLDOC01-appb-C000031
(式(2K)中のRf2kは式(2KF)で表される。Rf2k中、l2kおよびm2kは平均重合度を示し、l2kは0.1~20を表し、m2kは0~20を表す。式(2K)中の3つのRf2kにおけるl2kおよびm2kは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
(式(2L)中のRf2lは式(2LF)で表される。Rf2l中、n2lは平均重合度を示し、0.1~15を表す。式(2L)中の3つのRf2lにおけるn2lは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
Figure JPOXMLDOC01-appb-C000032
(式(2M)中のRf2mは式(2MF)で表される。Rf2m中、n2mは平均重合度を示し、0.1~15を表す。式(2M)中の3つのRf2mにおけるn2mは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
(式(2N)中のRf2nは式(2NF)で表される。Rf2n中、n2nは平均重合度を示し、0.1~15を表す。式(2N)中の3つのRf2nにおけるn2nは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
Figure JPOXMLDOC01-appb-C000033
(式(2O)中のRf2oは式(2OF)で表される。Rf2o中、n2oは平均重合度を示し、0.1~15を表す。式(2O)中の3つのRf2oにおけるn2oは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
(式(2P)中のRf2pは式(2PF)で表される。Rf2p中、n2pは平均重合度を示し、0.1~15を表す。式(2P)中の3つのRf2pにおけるn2pは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
Figure JPOXMLDOC01-appb-C000034
(式(2Q)中のRf2qは式(2QF)で表される。Rf2q中、l2qおよびm2qは平均重合度を示し、l2qは0.1~20を表し、m2qは0~20を表す。式(2Q)中の3つのRf2qにおけるl2qおよびm2qは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
(式(2R)中のRf2rは式(2RF)で表される。Rf2r中、l2rおよびm2rは平均重合度を示し、l2rは0.1~20を表し、m2rは0~20を表す。式(2R)中の3つのRf2rにおけるl2rおよびm2rは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
Figure JPOXMLDOC01-appb-C000035
(式(2S)中のRf2sは式(2SF)で表される。Rf2s中、l2sおよびm2sは平均重合度を示し、l2sは0.1~20を表し、m2sは0~20を表す。式(2S)中の3つのRf2sにおけるl2sおよびm2sは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
(式(2T)中のRf2tは式(2TF)で表される。Rf2t中、l2tおよびm2tは平均重合度を示し、l2tは0.1~20を表し、m2tは0~20を表す。式(2T)中の3つのRf2tにおけるl2tおよびm2tは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
Figure JPOXMLDOC01-appb-C000036
(式(2U)中のRf2uは式(2UF)で表される。Rf2u中、n2uは平均重合度を示し、0.1~15を表す。式(2U)中の3つのRf2uにおけるn2uは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
(式(2V)中のRf2vは式(2VF)で表される。Rf2v中、n2vは平均重合度を示し、0.1~15を表す。式(2V)中の3つのRf2vにおけるn2vは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
 式(1)で表される含フッ素エーテル化合物は、下記式(4A)~(4O)、(5A)~(5O)で表される化合物であることも好ましい。
 下記式(4A)~(4O)、(5A)~(5O)で表される化合物において、PFPE鎖を表すRfは、上記式(10-1)で表されるPFPE鎖であり、Rfは、上記式(10-2)で表されるPFPE鎖である。なお、式(4A)~(4O)、(5A)~(5O)中のPFPE鎖を表すRfにおけるlおよびm、Rfにおけるnは、平均重合度を示す値であるため、必ずしも整数になるとは限らない。
Figure JPOXMLDOC01-appb-C000037
(式(4A)中のRf4aは式(4AF)で表される。Rf4a中、n4aは平均重合度を示し、0.1~15を表す。式(4A)中の2つのRf4aにおけるn4aは同じであっても異なっていてもよい。)
(式(4B)中のRf4bは式(4BF)で表される。Rf4b中、n4bは平均重合度を示し、0.1~15を表す。式(4B)中の2つのRf4bにおけるn4bは同じであっても異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000038
(式(4C)中のRf4cは式(4CF)で表される。Rf4c中、n4cは平均重合度を示し、0.1~15を表す。式(4C)中の2つのRf4cにおけるn4cは同じであっても異なっていてもよい。)
(式(4D)中のRf4dは式(4DF)で表される。Rf4d中、n4dは平均重合度を示し、0.1~15を表す。式(4D)中の2つのRf4dにおけるn4dは同じであっても異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000039
(式(4E)中のRf4eは式(4EF)で表される。Rf4e中、n4eは平均重合度を示し、0.1~15を表す。式(4E)中の2つのRf4eにおけるn4eは同じであっても異なっていてもよい。)
(式(4F)中のRf4fは式(4FF)で表される。Rf4f中、n4fは平均重合度を示し、0.1~15を表す。式(4F)中の2つのRf4fにおけるn4fは同じであっても異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000040
(式(4G)中のRf4gは式(4GF)で表される。Rf4g中、n4gは平均重合度を示し、0.1~15を表す。式(4G)中の2つのRf4gにおけるn4gは同じであっても異なっていてもよい。)
(式(4H)中のRf4hは式(4HF)で表される。Rf4h中、n4hは平均重合度を示し、0.1~15を表す。式(4H)中の2つのRf4hにおけるn4hは同じであっても異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000041
(式(4I)中のRf4iは式(4IF)で表される。Rf4i中、n4iは平均重合度を示し、0.1~15を表す。式(4I)中の2つのRf4iにおけるn4iは同じであっても異なっていてもよい。)
(式(4J)中のRf4jは式(4JF)で表される。Rf4j中、n4jは平均重合度を示し、0.1~15を表す。式(4J)中の2つのRf4jにおけるn4jは同じであっても異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000042
(式(4K)中のRf4kは式(4KF)で表される。Meはメチル基を表す。Rf4k中、n4kは平均重合度を示し、0.1~15を表す。式(4K)中の2つのRf4kにおけるn4kは同じであっても異なっていてもよい。)
(式(4L)中のRf4lは式(4LF)で表される。Rf4l中、n4lは平均重合度を示し、0.1~15を表す。式(4L)中の2つのRf4lにおけるn4lは同じであっても異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000043
(式(4M)中のRf4mは式(4MF)で表される。Rf4m中、n4mは平均重合度を示し、0.1~15を表す。式(4M)中の2つのRf4mにおけるn4mは同じであっても異なっていてもよい。)
(式(4N)中のRf4nは式(4NF)で表される。Rf4n中、n4nは平均重合度を示し、0.1~15を表す。式(4N)中の2つのRf4nにおけるn4nは同じであっても異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000044
(式(4O)中のRf4oは式(4OF)で表される。Rf4o中、n4oは平均重合度を示し、0.1~15を表す。式(4O)中の2つのRf4oにおけるn4oは同じであっても異なっていてもよい。)
(式(5A)中のRf5aは式(5AF)で表される。Rf5a中、n5aは平均重合度を示し、0.1~15を表す。式(5A)中の3つのRf5aにおけるn5aは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
Figure JPOXMLDOC01-appb-C000045
(式(5B)中のRf5bは式(5BF)で表される。Rf5b中、n5bは平均重合度を示し、0.1~15を表す。式(5B)中の3つのRf5bにおけるn5bは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
(式(5C)中のRf5cは式(5CF)で表される。Rf5c中、n5cは平均重合度を示し、0.1~15を表す。式(5C)中の3つのRf5cにおけるn5cは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
Figure JPOXMLDOC01-appb-C000046
(式(5D)中のRf5dは式(5DF)で表される。Rf5d中、n5dは平均重合度を示し、0.1~15を表す。式(5D)中の3つのRf5dにおけるn5dは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
(式(5E)中のRf5eは式(5EF)で表される。Rf5e中、n5eは平均重合度を示し、0.1~15を表す。式(5E)中の3つのRf5eにおけるn5eは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
Figure JPOXMLDOC01-appb-C000047
(式(5F)中のRf5fは式(5FF)で表される。Rf5f中、n5fは平均重合度を示し、0.1~15を表す。式(5F)中の3つのRf5fにおけるn5fは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
(式(5G)中のRf5gは式(5GF)で表される。Rf5g中、n5gは平均重合度を示し、0.1~15を表す。式(5G)中の3つのRf5gにおけるn5gは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
Figure JPOXMLDOC01-appb-C000048
(式(5H)中のRf5hは式(5HF)で表される。Rf5h中、n5hは平均重合度を示し、0.1~15を表す。式(5H)中の3つのRf5hにおけるn5hは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
(式(5I)中のRf5iは式(5IF)で表される。Rf5i中、n5iは平均重合度を示し、0.1~15を表す。式(5I)中の3つのRf5iにおけるn5iは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
Figure JPOXMLDOC01-appb-C000049
(式(5J)中のRf5jは式(5JF)で表される。Rf5j中、n5jは平均重合度を示し、0.1~15を表す。式(5J)中の3つのRf5jにおけるn5jは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
(式(5K)中のRf5kは式(5KF)で表される。Meはメチル基を表す。Rf5k中、n5kは平均重合度を示し、0.1~15を表す。式(5K)中の3つのRf5kにおけるn5kは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
Figure JPOXMLDOC01-appb-C000050
(式(5L)中のRf5lは式(5LF)で表される。Rf5l中、n5lは平均重合度を示し、0.1~15を表す。式(5L)中の3つのRf5lにおけるn5lは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
(式(5M)中のRf5mは式(5MF)で表される。Rf5m中、n5mは平均重合度を示し、0.1~15を表す。式(5M)中の3つのRf5mにおけるn5mは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
Figure JPOXMLDOC01-appb-C000051
(式(5N)中のRf5nは式(5NF)で表される。Rf5n中、n5nは平均重合度を示し、0.1~15を表す。式(5N)中の3つのRf5nにおけるn5nは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
(式(5O)中のRf5oは式(5OF)で表される。Rf5o中、n5oは平均重合度を示し、0.1~15を表す。式(5O)中の3つのRf5oにおけるn5oは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
 上記式(4A)~(4O)、(5A)~(5O)を、それぞれ式(1)に当てはめたときのzの値、R、[A]、[B]、R、R、[C]、[D]、Rの構造を表1~表4に示す。
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-T000054
Figure JPOXMLDOC01-appb-T000055
 式(1)で表される含フッ素エーテル化合物が、上記式(1A)~(1V)、(2A)~(2V)、(4A)~(4O)、(5A)~(5O)のいずれかで表される化合物であると、厚みが薄くても、磁気記録媒体の腐食を抑制する効果が高く、ピックアップおよびスピンオフを抑制できる潤滑層を形成でき、好ましい。
 本実施形態の含フッ素エーテル化合物は、数平均分子量(Mn)が500~10000の範囲内であることが好ましく、600~5000の範囲内であることが特に好ましい。数平均分子量が500以上であると、本実施形態の含フッ素エーテル化合物を含む潤滑剤からなる潤滑層が優れた耐熱性を有するものとなる。含フッ素エーテル化合物の数平均分子量は、600以上であることがより好ましい。また、数平均分子量が10000以下であると、含フッ素エーテル化合物の粘度が適正なものとなり、これを含む潤滑剤を塗布することによって、容易に膜厚の薄い潤滑層を形成できる。含フッ素エーテル化合物の数平均分子量は、潤滑剤に適用した場合に扱いやすい粘度となるため、5000以下であることがより好ましい。
 含フッ素エーテル化合物の数平均分子量(Mn)は、ブルカー・バイオスピン社製AVANCEIII400によるH-NMRおよび19F-NMRによって測定された値である。具体的には、19F-NMRによって測定された積分値よりPFPE鎖の繰り返し単位数を算出し、数平均分子量を求める。NMR(核磁気共鳴)の測定においては、試料をヘキサフルオロベンゼン/d-アセトン(4/1v/v)溶媒へ希釈して測定する。19F-NMRケミカルシフトの基準は、ヘキサフルオロベンゼンのピークを-164.7ppmとし、H-NMRケミカルシフトの基準は、アセトンのピークを2.2ppmとする。
 本実施形態の含フッ素エーテル化合物は、適当な方法で分子量分画することにより、分子量分散度(重量平均分子量(Mw)/数平均分子量(Mn)比)を1.3以下とすることが好ましい。
 本実施形態において、分子量分画する方法としては、特に制限されないが、例えば、シリカゲルカラムクロマトグラフィー法、ゲルパーミエーションクロマトグラフィー(GPC)法などによる分子量分画、超臨界抽出法による分子量分画等を用いることができる。
 ここで、本実施形態の含フッ素エーテル化合物を含む潤滑剤を用いて、磁気記録媒体の保護層上に潤滑層を形成した場合に、厚みが薄くても、磁気記録媒体の腐食を抑制する効果が高く、ピックアップおよびスピンオフを抑制できる潤滑層を形成できる理由について説明する。
 式(1)で表される本実施形態の含フッ素エーテル化合物において、[A]、[B]、[C]および[D]は、それぞれ2級水酸基を有する2価の連結基である。そして、本実施形態の含フッ素エーテル化合物では、1~3個の2級水酸基を含む-[B]-[A]-構造(以下、「BA構造」と略記する場合がある。)と、1~2個の2級水酸基を含む-[C]-[D]-構造(以下、「CD構造」と略記する場合がある。)とが、メチレン基(-CH-)を介して-R[-CH-R-CH-R-の両端にそれぞれバランス良く配置されている。しかも、BA構造およびCD構造の有するエーテル性酸素原子が、式(1)で示される含フッ素エーテル化合物の分子構造に適度な柔軟性を付与している。
 また、BA構造および/またはCD構造が、複数の2級水酸基を含む場合、2級水酸基の結合している炭素原子同士は、メチレン基(-CH-)とエーテル結合(-O-)とからなる連結基を介して結合される。このため、BA構造および/またはCD構造が複数の2級水酸基を有する場合でも、隣接した2級水酸基同士の間の距離が適正となり、各2級水酸基が保護層に対して吸着しやすい配置とされている。
 これらのことから、本実施形態の含フッ素エーテル化合物を含む潤滑層を保護層上に形成した場合、BA構造に含まれる2級水酸基およびCD構造に含まれる2級水酸基が、保護層上の活性点との結合に有効に関与する。
 また、式(1)中のRは、1級水酸基を2つまたは3つ含む分岐型末端基である。1級水酸基は、2級水酸基および3級水酸基と比べて、立体障害が小さいため、含フッ素エーテル化合物同士の分子間水素結合の形成に効果的に関与する。
 このように、式(1)で表される本実施形態の含フッ素エーテル化合物では、<1>BA構造に含まれる2級水酸基およびCD構造に含まれる2級水酸基が、保護層上の活性点との結合に有効に関与し、かつ<2>Rに含まれる複数の1級水酸基が、含フッ素エーテル化合物同士の分子間水素結合の形成に関与する。
 したがって、本実施形態の含フッ素エーテル化合物を含む潤滑層は、式(1)における-R[-CH-R-CH-R-の両端に配置された2級水酸基が示す保護層に対する優れた吸着力と、分岐型末端基の有する1級水酸基が示す優れた分子間力とがバランス良く効果的に作用するものである。
 さらに、本実施形態の含フッ素エーテル化合物を含む潤滑層では、<3>式(1)中のRで示される2つまたは3つのPFPE鎖を含むことによる十分な疎水性が得られ、しかも隣接するR間に配置された2級水酸基を有するRによって、Rが保護層から離れすぎることが抑制される。
 このように、本実施形態の含フッ素エーテル化合物を含む潤滑層は、上記<1>~<3>の機能を有するものであり、これらの機能の相乗効果によって、保護層に対する密着性および磁気記録媒体の腐食抑制効果が十分に得られるものである。その結果、本実施形態の含フッ素エーテル化合物を含む潤滑層を有する磁気記録媒体は、保護層に密着(吸着)せずに存在している含フッ素エーテル化合物が、異物(スメア)として磁気ヘッドに付着することを防止でき、ピックアップが抑制されたものとなる。また、この磁気記録媒体は、高速で回転させることに起因する遠心力および/または発熱によって、潤滑剤が飛散・蒸発して、潤滑層の膜厚が減少するスピンオフが抑制されたものとなる。さらに、この磁気記録媒体は、優れた耐腐食性を有し、信頼性および耐久性の良好なものとなる。
「製造方法」
 本実施形態の含フッ素エーテル化合物の製造方法は、特に限定されるものではなく、従来公知の製造方法を用いて製造できる。本実施形態の含フッ素エーテル化合物は、例えば、以下に示す製造方法を用いて製造できる。
[第1製造方法(zが1である場合)]
(R-[B]-[A]-と-[C]-[D]-Rとが同じで、2つのRが同じ場合)
 まず、式(1)におけるRに対応するPFPE鎖の両末端に、それぞれヒドロキシメチル基(-CHOH)が配置されたフッ素系化合物を用意する。次いで、前記フッ素系化合物の一方の末端に配置されたヒドロキシメチル基の水酸基と、式(1)におけるR-[B]-[A]-(=-[C]-[D]-R)からなる基に対応するエポキシ化合物とを反応させる(第一反応)。このことにより、Rに対応するPFPE鎖の一方の末端にR-[B]-[A]-(=-[C]-[D]-R)に対応する基を有する中間体化合物1-1が得られる。
 第一反応においては、R-[B]-[A]-(=-[C]-[D]-R)からなる基に対応するエポキシ化合物の有する水酸基を、適切な保護基を用いて保護してから、上記フッ素系化合物と反応させても良い。
 本実施形態の含フッ素エーテル化合物を製造する際に使用される、R-[B]-[A]-(または、-[C]-[D]-R)からなる基に対応するエポキシ化合物は、合成してもよいし、市販品を購入して使用してもよい。
 上記エポキシ化合物を合成する場合、例えば、製造する含フッ素エーテル化合物のR-[B]-[A]-(または、-[C]-[D]-R)からなる基に対応する構造を有するアルコールと、エポキシ基を有する化合物とを反応させる方法を用いることができる。この方法では、エポキシ基を有する化合物として、例えば、エピクロロヒドリン、エピブロモヒドリン、2-ブロモエチルオキシラン、アリルグリシジルエーテルから選ばれるいずれかの化合物を用いることができる。また、上記エポキシ化合物を合成する他の方法として、製造する含フッ素エーテル化合物のR-[B]-[A]-(または、-[C]-[D]-R)からなる基に対応する構造を有する不飽和化合物を用意し、その不飽和結合を酸化する方法を用いてもよい。
 次に、前記中間体化合物1-1の末端に配置されたヒドロキシメチル基の水酸基と、Rに対応するエポキシ基を有するハロゲン化合物とを反応させる。そして、得られたエポキシ化合物に、さらにもう一分子の前記中間体化合物1-1の末端に配置された水酸基を反応させる(第二反応)。
 上記Rに対応するエポキシ基を有するハロゲン化合物としては、例えば、Rが式(5)で表され、式(5)中のy1、y2がともに1である場合、エピブロモヒドリンを用いることができる。
 以上の工程を行うことにより、式(1)におけるzが1であって、R-[B]-[A]-と-[C]-[D]-Rとが同じであって、Rで示される2つのPFPE鎖が同じである化合物を製造できる。
(R-[B]-[A]-と-[C]-[D]-Rとが異なる、および/または2つのRが異なる場合)
 第1製造方法における第一反応において、R-[B]-[A]-と-[C]-[D]-Rとが同じであって、Rで示される2つのPFPE鎖が同じである化合物を製造する場合と同様にして、R側のRに対応するPFPE鎖の一方の末端にR-[B]-[A]-に対応する基を有し、他方の末端にヒドロキシメチル基が配置された中間体化合物1-2を製造する。
 さらに、R-[B]-[A]-と-[C]-[D]-Rとが異なる、および/またはRで示される2つのPFPE鎖が異なる場合、第一反応において、一方の末端にR-[B]-[A]-に対応する基を有する中間体化合物1-2と同様にして、R側のRに対応するPFPE鎖の一方の末端に-[C]-[D]-Rに対応する基を有し、他方の末端にヒドロキシメチル基が配置された中間体化合物1-3を製造する。
 その後、中間体化合物1-2と、Rに対応するエポキシ基を有するハロゲン化合物とを反応させてエポキシ化合物を得る。続いて、得られたエポキシ化合物に、中間体化合物1-3を反応させる(第二反応)。
 なお、第二反応において、中間体化合物1-2と、Rに対応するエポキシ基を有するハロゲン化合物とを反応させて得られたエポキシ化合物と、中間体化合物1-3とを反応させる場合を例に挙げて説明したが、中間体化合物1-3と、Rに対応するエポキシ基を有するハロゲン化合物とを反応させて得られたエポキシ化合物と、中間体化合物1-2とを反応させてもよい。
 以上の工程を行うことにより、式(1)におけるzが1であって、R-[B]-[A]-と-[C]-[D]-Rとが異なる、および/またはRで示される2つのPFPE鎖が異なる化合物を製造できる。
[第2製造方法(zが2である場合)]
(R-[B]-[A]-と-[C]-[D]-Rとが同じで、2つのRが同じで、3つのRが同じである場合)
 まず、式(1)におけるRに対応するPFPE鎖の両末端に、それぞれヒドロキシメチル基(-CHOH)が配置されたフッ素系化合物を用意する。次いで、前記フッ素系化合物の両末端に配置されたヒドロキシメチル基の水酸基と、Rに対応するエポキシ基を有するハロゲン化合物とを反応させる(第一反応)。このことにより、Rに対応するPFPE鎖の両末端に、Rに対応するエポキシ基を有する中間体化合物2-1が得られる。
 また、式(1)におけるRに対応するPFPE鎖の両末端に、それぞれヒドロキシメチル基(-CHOH)が配置されたフッ素系化合物を用意する。そして、前記フッ素系化合物の一方の末端に配置されたヒドロキシメチル基の水酸基と、式(1)におけるR-[B]-[A]-(=-[C]-[D]-R)からなる基に対応するエポキシ化合物とを反応させる(第二反応)。このことにより、Rに対応するPFPE鎖の一方の末端に、R-[B]-[A]-(=-[C]-[D]-R)に対応する基を有し、他方の末端にヒドロキシメチル基が配置された中間体化合物2-2が得られる。
 第二反応においては、R-[B]-[A]-(=-[C]-[D]-R)からなる基に対応するエポキシ化合物の有する水酸基を、適切な保護基を用いて保護してから、上記フッ素系化合物と反応させても良い。
 また、第2製造方法における第二反応は、第一反応の後に行ってもよいし、第一反応の前に行ってもよい。
 その後、前記中間体化合物2-2の一方の末端に配置されたヒドロキシメチル基の水酸基と、前記中間体化合物2-1の両末端に配置されたエポキシ基とを反応させる(第三反応)。
 以上の工程を行うことにより、式(1)におけるzが2であって、Rで示される2つの連結基が同じであって、R-[B]-[A]-と-[C]-[D]-Rとが同じであって、Rで示される3つのPFPE鎖が同じである化合物を製造できる。
(2つのRが同じで、R-[B]-[A]-と-[C]-[D]-Rとが異なる、および/または3つのRのうちいずれか1つ以上が異なる場合)
 第2製造方法における第一反応において、分子中央のRに対応するPFPE鎖の両末端に、Rに対応するエポキシ基を有する中間体化合物2-1を合成する。
 次に、第二反応において、中間体化合物2-2と同様にして、下記の中間体化合物2-2aと、中間体化合物2-2bとをそれぞれ合成する。
 具体的には、R側のRに対応するPFPE鎖の両末端に、それぞれヒドロキシメチル基が配置されたフッ素系化合物を用意する。そして、前記フッ素系化合物の一方の末端に配置されたヒドロキシメチル基の水酸基と、式(1)におけるR-[B]-[A]-からなる基に対応するエポキシ化合物とを反応させる。このことにより、R側のRに対応するPFPE鎖の一方の末端にR-[B]-[A]-に対応する基を有し、他方の末端にヒドロキシメチル基が配置された中間体化合物2-2aが得られる。
 また、R側のRに対応するPFPE鎖の両末端に、それぞれヒドロキシメチル基が配置されたフッ素系化合物を用意する。そして、前記フッ素系化合物の一方の末端に配置されたヒドロキシメチル基の水酸基と、式(1)における-[C]-[D]-Rからなる基に対応するエポキシ化合物とを反応させる。このことにより、R側のRに対応するPFPE鎖の一方の末端に-[C]-[D]-Rに対応する基を有し、他方の末端にヒドロキシメチル基が配置された中間体化合物2-2bが得られる。
 その後、第三反応において、中間体化合物2-1の各末端に配置されたRに対応するエポキシ基に対して、中間体化合物2-2aと中間体化合物2-2bとをそれぞれ反応させる。第三反応において、中間体化合物2-1の末端と中間体化合物2-2aとの反応は、中間体化合物2-1の末端と中間体化合物2-2bとの反応の前に行ってもよいし、後に行ってもよい。
 以上の工程を行うことにより、式(1)におけるzが2であって、Rで示される2つの連結基が同じであって、R-[B]-[A]-と-[C]-[D]-Rとが異なる、および/またはRで示される3つのPFPE鎖のうちいずれか1つ以上が異なる化合物を製造できる。
(2つのRが異なり、R-[B]-[A]-と-[C]-[D]-Rとが同じで、3つのRが同じ場合)
 第2製造方法における第一反応において、前記フッ素系化合物の各末端に配置されたヒドロキシメチル基の水酸基に対して、公知の方法により、一方のRに対応するエポキシ基を有するハロゲン化合物と、もう一方のRに対応するエポキシ基を有するハロゲン化合物とをそれぞれ反応させる。このことにより、Rに対応するPFPE鎖の一端に、一方のRに対応するエポキシ基を有し、他端にもう一方のRに対応するエポキシ基を有する中間体化合物2-1bが得られる。
 次に、第二反応において、R-[B]-[A]-と-[C]-[D]-Rとが同じで、2つのRが同じで、3つのRが同じである場合と同様にして、中間体化合物2-2を合成する。
 その後、第三反応において、中間体化合物2-1に代えて中間体化合物2-1bを用いること以外は、R-[B]-[A]-と-[C]-[D]-Rとが同じで、2つのRが同じで、3つのRが同じである場合と同様にして、中間体化合物2-1bと中間体化合物2-2とを反応させる。
 以上の工程を行うことにより、式(1)におけるzが2であって、Rで示される2つの連結基が異なり、R-[B]-[A]-と-[C]-[D]-Rとが同じであって、Rで示される3つのPFPE鎖が同じである化合物を製造できる。
(2つのRが異なり、R-[B]-[A]-と-[C]-[D]-Rとが異なる、および/または3つのRのうちいずれか1つ以上が異なる場合)
 第2製造方法における第一反応において、2つのRが異なり、R-[B]-[A]-と-[C]-[D]-Rとが同じで、3つのRが同じ場合と同様にして、中間体化合物2-1bを合成する。
 その後、第二反応において、2つのRが同じで、R-[B]-[A]-と-[C]-[D]-Rとが異なる、および/または3つのRのうちいずれか1つ以上が異なる場合と同様にして、中間体化合物2-2aと、中間体化合物2-2bとをそれぞれ合成する。
 その後、第三反応において、中間体化合物2-1に代えて、中間体化合物2-1bを用いること以外は、2つのRが同じで、R-[B]-[A]-と-[C]-[D]-Rとが異なる、および/または3つのRのうちいずれか1つ以上が異なる場合と同様にして、中間体化合物2-1bのR側のRに対応するエポキシ基と中間体化合物2-2aとを反応させ、中間体化合物2-1bのR側のRに対応するエポキシ基と中間体化合物2-2bとを反応させる。
 以上の工程を行うことにより、式(1)におけるzが2であって、Rで示される2つの連結基が異なり、R-[B]-[A]-と-[C]-[D]-Rとが異なる、および/またはRで示される3つのPFPE鎖のうちいずれか1つ以上が異なる化合物を製造できる。
「磁気記録媒体用潤滑剤」
 本実施形態の磁気記録媒体用潤滑剤は、上記式(1)で表される含フッ素エーテル化合物を含む。
 本実施形態の潤滑剤は、上記式(1)で表される含フッ素エーテル化合物を含むことによる特性を損なわない範囲内であれば、潤滑剤の材料として使用されている公知の材料を、必要に応じて混合して用いることができる。
 公知の材料の具体例としては、例えば、FOMBLIN(登録商標) ZDIAC、FOMBLIN ZDEAL、FOMBLIN AM-2001(以上、Solvay Solexis社製)、Moresco A20H(Moresco社製)等が挙げられる。本実施形態の潤滑剤と混合して用いる公知の材料は、数平均分子量が1000~10000であることが好ましい。
 本実施形態の潤滑剤が、上記式(1)で表される含フッ素エーテル化合物の他の材料を含む場合、本実施形態の潤滑剤中の上記式(1)で表される含フッ素エーテル化合物の含有量が50質量%以上であることが好ましく、70質量%以上であることがより好ましい。
 本実施形態の潤滑剤は、上記式(1)で表される含フッ素エーテル化合物を含むため、厚みが薄くても、磁気記録媒体の腐食を抑制する効果が高く、保護層との密着性が良好であり、磁気記録媒体のピックアップ特性およびスピンオフ特性の良好な潤滑層を形成できる。
「磁気記録媒体」
 本実施形態の磁気記録媒体は、基板上に、少なくとも磁性層と、保護層と、潤滑層とが順次設けられたものである。
 本実施形態の磁気記録媒体では、基板と磁性層との間に、必要に応じて1層または2層以上の下地層を設けることができる。また、下地層と基板との間に、付着層および軟磁性層の少なくとも一方を設けることもできる。
 図1は、本発明の磁気記録媒体の一実施形態を示す概略断面図である。
 本実施形態の磁気記録媒体10は、基板11上に、付着層12と、軟磁性層13と、第1下地層14と、第2下地層15と、磁性層16と、保護層17と、潤滑層18とが順次設けられた構造をなしている。
「基板」
 基板11としては、例えば、AlもしくはAl合金などの金属または合金材料からなる基体上に、NiPまたはNiP合金からなる膜が形成された非磁性基板等を用いることができる。
 また、基板11としては、ガラス、セラミックス、シリコン、シリコンカーバイド、カーボン、樹脂などの非金属材料からなる非磁性基板を用いてもよいし、これらの非金属材料からなる基体上にNiPまたはNiP合金の膜を形成した非磁性基板を用いてもよい。
「付着層」
 付着層12は、基板11と、付着層12上に設けられる軟磁性層13とを接して配置した場合に生じる、基板11の腐食の進行を防止する。
 付着層12の材料は、例えば、Cr、Cr合金、Ti、Ti合金、CrTi、NiAl、AlRu合金等から適宜選択できる。付着層12は、例えば、スパッタリング法により形成できる。
「軟磁性層」
 軟磁性層13は、第1軟磁性膜と、Ru膜からなる中間層と、第2軟磁性膜とが順に積層された構造を有していることが好ましい。すなわち、軟磁性層13は、2層の軟磁性膜の間にRu膜からなる中間層を挟み込むことによって、中間層の上下の軟磁性膜がアンチ・フェロ・カップリング(AFC)結合した構造を有していることが好ましい。
 第1軟磁性膜および第2軟磁性膜の材料としては、CoZrTa合金、CoFe合金などが挙げられる。
 第1軟磁性膜および第2軟磁性膜に使用されるCoFe合金には、Zr、Ta、Nbの何れかを添加することが好ましい。これにより、第1軟磁性膜および第2軟磁性膜の非晶質化が促進される。その結果、第1下地層(シード層)の配向性を向上させることが可能になるとともに、磁気ヘッドの浮上量を低減することが可能となる。
 軟磁性層13は、例えば、スパッタリング法により形成できる。
「第1下地層」
 第1下地層14は、その上に設けられる第2下地層15および磁性層16の配向および結晶サイズを制御する層である。
 第1下地層14としては、例えば、Cr層、Ta層、Ru層、あるいはCrMo合金層、CoW合金層、CrW合金層、CrV合金層、CrTi合金層などからなるものが挙げられる。
 第1下地層14は、例えば、スパッタリング法により形成できる。
「第2下地層」
 第2下地層15は、磁性層16の配向が良好になるように制御する層である。第2下地層15は、RuまたはRu合金からなる層であることが好ましい。
 第2下地層15は、1層からなる層であってもよいし、複数層から構成されていてもよい。第2下地層15が複数層からなる場合、全ての層が同じ材料から構成されていてもよいし、少なくとも一層が異なる材料から構成されていてもよい。
 第2下地層15は、例えば、スパッタリング法により形成できる。
「磁性層」
 磁性層16は、磁化容易軸が基板面に対して垂直または水平方向を向いた磁性膜からなる。磁性層16は、CoとPtとを含む層である。磁性層16は、SNR特性を改善するために、酸化物、Cr、B、Cu、Ta、Zr等を含む層であってもよい。
 磁性層16に含有される酸化物としては、SiO、SiO、Cr、CoO、Ta、TiO等が挙げられる。
 磁性層16は、1層から構成されていてもよいし、組成の異なる材料からなる複数の磁性層から構成されていてもよい。
 例えば、磁性層16が、下から順に積層された第1磁性層と第2磁性層と第3磁性層の3層からなる場合、第1磁性層は、Co、Cr、Ptを含み、さらに酸化物を含んだ材料からなるグラニュラー構造であることが好ましい。第1磁性層に含有される酸化物としては、例えば、Cr、Si、Ta、Al、Ti、Mg、Co等の酸化物を用いることが好ましい。その中でも、特に、TiO、Cr、SiO等を好適に用いることができる。また、第1磁性層は、酸化物を2種類以上添加した複合酸化物からなることが好ましい。その中でも、特に、Cr-SiO、Cr-TiO、SiO-TiO等を好適に用いることができる。
 第1磁性層は、Co、Cr、Pt、酸化物の他に、B、Ta、Mo、Cu、Nd、W、Nb、Sm、Tb、Ru、Reの中から選ばれる1種類以上の元素を含むことができる。
 第2磁性層には、第1磁性層と同様の材料を用いることができる。第2磁性層は、グラニュラー構造であることが好ましい。
 第3磁性層は、Co、Cr、Ptを含み、酸化物を含まない材料からなる非グラニュラー構造であることが好ましい。第3磁性層は、Co、Cr、Ptの他に、B、Ta、Mo、Cu、Nd、W、Nb、Sm、Tb、Ru、Re、Mnの中から選ばれる1種類以上の元素を含むことができる。
 磁性層16が複数の磁性層で形成されている場合、隣接する磁性層の間には、非磁性層を設けることが好ましい。磁性層16が、第1磁性層と第2磁性層と第3磁性層の3層からなる場合、第1磁性層と第2磁性層との間と、第2磁性層と第3磁性層との間に、非磁性層を設けることが好ましい。
 磁性層16の隣接する磁性層間に設けられる非磁性層は、例えば、Ru、Ru合金、CoCr合金、CoCrX1合金(X1は、Pt、Ta、Zr、Re、Ru、Cu、Nb、Ni、Mn、Ge、Si、O、N、W、Mo、Ti、V、Bの中から選ばれる1種または2種以上の元素を表す。)等を好適に用いることができる。
 磁性層16の隣接する磁性層間に設けられる非磁性層には、酸化物、金属窒化物、または金属炭化物を含んだ合金材料を使用することが好ましい。具体的には、酸化物として、例えば、SiO、Al、Ta、Cr、MgO、Y、TiO等を用いることができる。金属窒化物として、例えば、AlN、Si、TaN、CrN等を用いることができる。金属炭化物として、例えば、TaC、BC、SiC等を用いることができる。
 非磁性層は、例えば、スパッタリング法により形成できる。
 磁性層16は、より高い記録密度を実現するために、磁化容易軸が基板面に対して垂直方向を向いた垂直磁気記録の磁性層であることが好ましい。磁性層16は、面内磁気記録の磁性層であってもよい。
 磁性層16は、蒸着法、イオンビームスパッタ法、マグネトロンスパッタ法等、従来公知のいかなる方法によって形成してもよい。磁性層16は、通常、スパッタリング法により形成される。
「保護層」
 保護層17は、磁性層16を保護する。保護層17は、1層から構成されていてもよいし、複数層から構成されていてもよい。保護層17としては、炭素系保護層を好ましく用いることができ、特にアモルファス炭素保護層が好ましい。保護層17が炭素系保護層であると、潤滑層18中の含フッ素エーテル化合物に含まれる極性基(特に水酸基)との相互作用が一層高まるため、好ましい。
 炭素系保護層と潤滑層18との付着力は、炭素系保護層を水素化炭素および/または窒素化炭素とし、炭素系保護層中の水素含有量および/または窒素含有量を調節することにより制御可能である。炭素系保護層中の水素含有量は、水素前方散乱法(HFS)で測定したときに3原子%~20原子%であることが好ましい。また、炭素系保護層中の窒素含有量は、X線光電子分光分析法(XPS)で測定したときに、4原子%~15原子%であることが好ましい。
 炭素系保護層に含まれる水素および/または窒素は、炭素系保護層全体に均一に含有される必要はない。炭素系保護層は、例えば、保護層17の潤滑層18側に窒素を含有させ、保護層17の磁性層16側に水素を含有させた組成傾斜層とすることが好適である。この場合、磁性層16および潤滑層18と、炭素系保護層との付着力が、より一層向上する。
 保護層17の膜厚は、1nm~7nmであることが好ましい。保護層17の膜厚が1nm以上であると、保護層17としての性能が充分に得られる。保護層17の膜厚が7nm以下であると、保護層17の薄膜化の観点から好ましい。
 保護層17の成膜方法としては、炭素を含むターゲット材を用いるスパッタ法、エチレンやトルエン等の炭化水素原料を用いるCVD(化学蒸着法)法、IBD(イオンビーム蒸着)法等を用いることができる。
 保護層17として炭素系保護層を形成する場合、例えば、DCマグネトロンスパッタリング法により成膜できる。特に、保護層17として炭素系保護層を形成する場合、プラズマCVD法により、アモルファス炭素保護層を成膜することが好ましい。プラズマCVD法により成膜したアモルファス炭素保護層は、表面が均一で、粗さが小さいものとなる。
「潤滑層」
 潤滑層18は、磁気記録媒体10の汚染を防止する。また、潤滑層18は、磁気記録媒体10上を摺動する磁気記録再生装置の磁気ヘッドの摩擦力を低減させて、磁気記録媒体10の耐久性を向上させる。
 潤滑層18は、図1に示すように、保護層17上に接して形成されている。潤滑層18は、保護層17上に上述した実施形態の磁気記録媒体用潤滑剤を塗布することにより形成されたものである。したがって、潤滑層18は、上述の含フッ素エーテル化合物を含む。
 潤滑層18は、潤滑層18の下に配置されている保護層17が、炭素系保護層である場合、特に、保護層17と高い結合力で結合される。その結果、潤滑層18の厚みが薄くても、高い被覆率で保護層17の表面が被覆された磁気記録媒体10が得られやすくなり、磁気記録媒体10の表面の汚染を効果的に防止できる。
 潤滑層18の平均膜厚は、0.5nm(5Å)~2.0nm(20Å)であることが好ましく、0.5nm(5Å)~1.2nm(12Å)であることがより好ましい。潤滑層18の平均膜厚が0.5nm以上であると、潤滑層18がアイランド状または網目状とならずに均一の膜厚で形成される。そのため、潤滑層18によって、保護層17の表面を高い被覆率で被覆できる。また、潤滑層18の平均膜厚を2.0nm以下にすることで、潤滑層18を充分に薄膜化でき、磁気ヘッドの浮上量を充分に小さくできる。
「潤滑層の形成方法」
 潤滑層18を形成する方法としては、例えば、基板11上に保護層17までの各層が形成された製造途中の磁気記録媒体を用意し、保護層17上に潤滑層形成用溶液を塗布し、乾燥させる方法が挙げられる。
 潤滑層形成用溶液は、上述の実施形態の磁気記録媒体用潤滑剤を必要に応じて、溶媒に分散溶解させ、塗布方法に適した粘度および濃度とすることにより得られる。
 潤滑層形成用溶液に用いられる溶媒としては、例えば、バートレル(登録商標)XF(商品名、三井デュポンフロロケミカル社製)等のフッ素系溶媒等が挙げられる。
 潤滑層形成用溶液の塗布方法は、特に限定されないが、例えば、スピンコート法、スプレイ法、ペーパーコート法、ディップ法等が挙げられる。
 ディップ法を用いる場合、例えば、以下に示す方法を用いることができる。まず、ディップコート装置の浸漬槽に入れられた潤滑層形成用溶液中に、保護層17までの各層が形成された基板11を浸漬する。次いで、浸漬槽から基板11を所定の速度で引き上げる。このことにより、潤滑層形成用溶液を基板11の保護層17上の表面に塗布する。
 ディップ法を用いることで、潤滑層形成用溶液を保護層17の表面に均一に塗布することができ、保護層17上に均一な膜厚で潤滑層18を形成できる。
 本実施形態においては、潤滑層18を形成した基板11に熱処理を施すことが好ましい。熱処理を施すことにより、潤滑層18と保護層17との密着性が向上し、潤滑層18と保護層17との付着力が向上する。
 熱処理温度は100℃~180℃とすることが好ましく、100℃~160℃とすることがより好ましい。熱処理温度が100℃以上であると、潤滑層18と保護層17との密着性を向上させる効果が充分に得られる。また、熱処理温度を180℃以下にすることで、熱処理による潤滑層18の熱分解を防止できる。熱処理時間は、熱処理温度に応じて適宜調整でき、10分~120分とすることが好ましい。
 本実施形態においては、潤滑層18の保護層17に対する付着力をより一層向上させるために、熱処理前もしくは熱処理後の潤滑層18に、紫外線(UV)を照射する処理を行ってもよい。
 本実施形態の磁気記録媒体10は、基板11上に、少なくとも磁性層16と、保護層17と、潤滑層18とが順次設けられたものである。本実施形態の磁気記録媒体10では、保護層17上に接して上述の含フッ素エーテル化合物を含む潤滑層18が形成されている。この潤滑層18は、膜厚が薄くても、磁気記録媒体の腐食を抑制する効果が高く、良好なピックアップ特性およびスピンオフ特性が得られるものである。よって、本実施形態の磁気記録媒体10は、信頼性、耐久性に優れる。また、本実施形態の磁気記録媒体10は、磁気ヘッドの浮上量を低く(例えば、10nm以下)することができ、用途の多様化に伴う厳しい環境下であっても、長期に亘って安定して動作する。したがって、本実施形態の磁気記録媒体10は、特にLUL(Load Unload)方式の磁気ディスク装置に搭載される磁気ディスクとして好適である。
 以下、実施例および比較例により本発明をさらに具体的に説明する。なお、本発明は、以下の実施例のみに限定されない。
[実施例1]
 以下に示す方法により、上記式(1A)で示される化合物を製造した。
(第一反応)
 窒素ガス雰囲気下、200mLナスフラスコにHOCHCFCFO(CFCFCFO)CFCFCHOH(式中の平均重合度を示すnは3.8である。)で表される化合物(数平均分子量909、分子量分布1.1)20gと、下記式(12)で表される化合物5.3g(分子量404、13.2mmol)と、t-ブタノール20mLとを仕込み、室温で均一になるまで撹拌した。この均一の液にさらにカリウムtert-ブトキシド0.74g(分子量112.21、6.6mmol)を加え、70℃で16時間撹拌して反応させた。
 反応後に得られた反応生成物を25℃に冷却し、水100mLが入った分液漏斗へ移し、酢酸エチル100mLで3回抽出した。有機層を水洗し、無水硫酸ナトリウムによって脱水した。乾燥剤を濾別した後、濾液を濃縮し、残渣をシリカゲルカラムクロマトグラフィーにて精製し、中間体化合物1-1として下記式(13)で示される化合物11.6g(分子量1313、8.8mmol)を得た。
 下記式(12)で表される化合物は、以下に示す方法により合成した。1当量の3-アリルオキシ-1,2-プロパンジオールと、2当量の2-(2-ブロモエトキシ)テトラヒドロ-2H-ピランとを反応させた。得られた化合物の二重結合を、m-クロロ過安息香酸を用いて酸化することで、下記式(12)で表される化合物を合成した。
Figure JPOXMLDOC01-appb-C000056
(式(12)中、THPはテトラヒドロピラニル基を表す。)
(式(13)中、平均重合度を示すnは3.8を表す。THPはテトラヒドロピラニル基を表す。)
(第二反応)
 窒素ガス雰囲気下で200mLナスフラスコに、中間体化合物1-1である式(13)で示される化合物11.6g(分子量1313、8.8mmol)と、t-ブタノール6.0mLと、カリウムtert-ブトキシド0.59g(分子量112.21、5.3mmol)とを仕込み、室温で均一になるまで撹拌した。この均一の液にエピブロモヒドリン0.50g(分子量137、3.6mmоl)を加え、70℃で24時間撹拌して反応させた。
 反応後に得られた反応液を室温に戻し、10%の塩化水素・メタノール溶液(塩化水素-メタノール試薬(5-10%)東京化成工業株式会社製)31gを加え、室温で2時間撹拌した。反応液を食塩水100mLが入った分液漏斗に少しずつ移し、酢酸エチル200mLで3回抽出した。有機層を食塩水100mL、飽和重曹水100mL、食塩水100mLの順で洗浄し、無水硫酸ナトリウムによる脱水を行った。乾燥剤を濾別後、濾液を濃縮し、残渣をシリカゲルカラムクロマトグラフィーにて精製した。
 以上の工程を行うことにより、化合物(1A)(式(1A)中のRf1aは式(1AF)で表される。2つのRf1a中、平均重合度を示すn1aは3.8である。)を4.2g(数平均分子量2349、1.8mmol)得た。
 得られた化合物(1A)のH-NMR測定および19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(CDCOCD):δ[ppm]=3.46~4.24(56H)
19F-NMR(CDCOCD):δ[ppm]=-84.0~-83.0(30.4F)、-86.4(8F)、-124.3(8F)、-130.0~-129.0(15.2F)
[実施例2]
 第一反応において、式(12)で表される化合物の代わりに、下記式(14)で表される化合物を5.5g(分子量419、13.2mmol)用いたこと以外は、実施例1と同様な操作を行い、上記式(1B)で表される化合物(式(1B)中のRf1bは式(1BF)で表される。2つのRf1b中、平均重合度を示すn1bは3.8である。)を4.3g(数平均分子量2377、1.8mmol)得た。
 式(14)で表される化合物は、以下に示す方法により合成した。アリルグリシジルエーテルとテトラヒドロピラニルエチレングリコールとを反応させた。得られた化合物と、2-(3-ブロモプロポキシ)テトラヒドロ-2H-ピランとを反応させて得られた化合物の二重結合を、m-クロロ過安息香酸を用いて酸化することで合成した。
Figure JPOXMLDOC01-appb-C000057
(式(14)中、THPはテトラヒドロピラニル基を表す。)
 得られた化合物(1B)のH-NMR測定および19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(CDCOCD):δ[ppm]=1.65~1.81(4H)、3.39~4.35(56H)
19F-NMR(CDCOCD):δ[ppm]=-84.0~-83.0(30.4F)、-86.4(8F)、-124.3(8F)、-130.0~-129.0(15.2F)
[実施例3]
 第一反応において、HOCHCFCFO(CFCFCFO)CFCFCHOHの代わりに、HOCHCFO(CFCFO)(CFO)CFCHOH(式中の平均重合度を示すlは4.0、平均重合度を示すmは4.0である。)で表される化合物(数平均分子量906、分子量分布1.1)20gを用い、式(12)で表される化合物の代わりに、下記式(15)で表される化合物を5.7g(分子量432、13.2mmol)用いたこと以外は、実施例1と同様な操作を行い、上記式(1C)で表される化合物(式(1C)中のRf1cは式(1CF)で表される。2つのRf1c中、平均重合度を示すl1cは4.0、平均重合度を示すm1cは4.0である。)を4.3g(数平均分子量2399、1.8mmol)得た。
 式(15)で表される化合物は、以下に示す方法により合成した。1当量の3-アリルオキシ-1,2-プロパンジオールと、2当量の2-(3-ブロモプロポキシ)テトラヒドロ-2H-ピランとを反応させた。得られた化合物の二重結合を、m-クロロ過安息香酸を用いて酸化することで、式(15)で表される化合物を合成した。
Figure JPOXMLDOC01-appb-C000058
(式(15)中、THPはテトラヒドロピラニル基を表す。)
 得られた化合物(1C)のH-NMR測定および19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(CDCOCD):δ[ppm]=1.65~1.81(8H)、3.39~4.35(56H)
19F-NMR(CDCOCD):δ[ppm]=-55.6~-50.6(16F)、-77.7(4F)、-80.3(4F)、-91.0~-88.5(32F)
[実施例4]
 第一反応において、HOCHCFCFO(CFCFCFO)CFCFCHOHの代わりに、HOCHCFO(CFCFO)(CFO)CFCHOH(式中の平均重合度を示すlは6.3、平均重合度を示すmは0である。)で表される化合物(数平均分子量909、分子量分布1.1)20gを用い、式(12)で表される化合物の代わりに、下記式(16)で表される化合物を6.1g(分子量461、13.2mmol)用いたこと以外は、実施例1と同様な操作を行い、上記式(1D)で表される化合物(式(1D)中のRf1dは式(1DF)で表される。2つのRf1d中、平均重合度を示すl1dは6.3、平均重合度を示すm1dは0である。)を4.4g(数平均分子量2460、1.8mmol)得た。
 式(16)で表される化合物は、以下に示す方法により合成した。1当量の3-アリルオキシ-1,2-プロパンジオールと、2当量の2-(4-ブロモブトキシ)テトラヒドロ-2H-ピランとを反応させた。得られた化合物の二重結合を、m-クロロ過安息香酸を用いて酸化することで、下記式(16)で表される化合物を合成した。
Figure JPOXMLDOC01-appb-C000059
(式(16)中、THPはテトラヒドロピラニル基を表す。)
 得られた化合物(1D)のH-NMR測定および19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(CDCOCD):δ[ppm]=1.65~1.81(16H)、3.39~4.35(56H)
19F-NMR(CDCOCD):δ[ppm]=-78.6(4F)、-81.3(4F)、-90.0~-88.5(50.4F)
[実施例5]
 第一反応において、式(12)で表される化合物の代わりに、下記式(18)で表される化合物を5.7g(分子量432、13.2mmol)用いたこと以外は、実施例1と同様な操作を行い、上記式(1E)で表される化合物(式(1E)中のRf1eは式(1EF)で表される。2つのRf1e中、平均重合度を示すn1eは3.8である。)を4.3g(数平均分子量2405、1.8mmol)得た。
 式(18)で表される化合物は以下に示す方法により合成した。ジ(3-ブテニル)エーテルの片側の二重結合を、1当量のm-クロロ過安息香酸を用いて酸化してエポキシ基とした後、濃硫酸を用いてエポキシ基を開環することにより、下記式(17)で表される化合物を合成した。得られた式(17)で表される化合物に、2当量の2-(2-ブロモエトキシ)テトラヒドロ-2H-ピランを反応させた。その後、m-クロロ過安息香酸を用いて二重結合を酸化することにより、式(18)で表される化合物を合成した。
Figure JPOXMLDOC01-appb-C000060
(式(18)中、THPはテトラヒドロピラニル基を表す。)
 得られた化合物(1E)のH-NMR測定および19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(CDCOCD):δ[ppm]=1.65~1.81(8H)、3.39~4.35(56H)
19F-NMR(CDCOCD):δ[ppm]=-84.0~-83.0(30.4F)、-86.4(8F)、-124.3(8F)、-130.0~-129.0(15.2F)
[実施例6]
 第一反応において、式(12)で表される化合物の代わりに、下記式(20)で表される化合物を6.8g(分子量516、13.2mmol)用いたこと以外は、実施例1と同様な操作を行い、上記式(1F)で表される化合物(式(1F)中のRf1fは式(1FF)で表される。2つのRf1f中、平均重合度を示すn1fは3.8である。)を4.6g(数平均分子量2573、1.8mmol)得た。
 式(20)で表される化合物は、以下に示す方法により合成した。ジ(6-ヘプテニル)エーテルの片側の二重結合を、1当量のm-クロロ過安息香酸を用いて酸化してエポキシ基とした後、濃硫酸を用いてエポキシ基を開環することにより、下記式(19)で表される化合物を合成した。得られた式(19)で表される化合物に、2当量の2-(2-ブロモエトキシ)テトラヒドロ-2H-ピランを反応させた。その後、m-クロロ過安息香酸を用いて酸化することにより、下記式(20)で表される化合物を合成した。
Figure JPOXMLDOC01-appb-C000061
(式(20)中、THPはテトラヒドロピラニル基を表す。)
 得られた化合物(1F)のH-NMR測定および19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(CDCOCD):δ[ppm]=1.65~1.81(32H)、3.39~4.35(56H)
19F-NMR(CDCOCD):δ[ppm]=-84.0~-83.0(30.4F)、-86.4(8F)、-124.3(8F)、-130.0~-129.0(15.2F)
[実施例7]
 第一反応において、式(12)で表される化合物の代わりに、下記式(21)で表される化合物を6.3g(分子量479、13.2mmol)用いたこと以外は、実施例1と同様な操作を行い、上記式(1G)で表される化合物(式(1G)中のRf1gは式(1GF)で表される。2つのRf1g中、平均重合度を示すn1gは3.8である。)を4.5g(数平均分子量2497、1.8mmol)得た。
 下記式(21)で表される化合物は、上記式(12)で表される化合物に、アリルアルコールを反応させた後、得られた化合物の二重結合を、m-クロロ過安息香酸を用いて酸化することで合成した。
Figure JPOXMLDOC01-appb-C000062
(式(21)中、THPはテトラヒドロピラニル基を表す。)
 得られた化合物(1G)のH-NMR測定および19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(CDCOCD):δ[ppm]=3.39~4.35(68H)
19F-NMR(CDCOCD):δ[ppm]=-84.0~-83.0(30.4F)、-86.4(8F)、-124.3(8F)、-130.0~-129.0(15.2F)
[実施例8]
 第一反応において、式(15)で表される化合物の代わりに、下記式(23)で表される化合物を2.5g(分子量188、13.2mmol)用いたこと以外は、実施例3と同様な操作を行い、上記式(1H)で表される化合物(式(1H)中のRf1hは式(1HF)で表される。2つのRf1h中、平均重合度を示すl1hは4.0、平均重合度を示すm1hは4.0である。)を3.9g(数平均分子量2167、1.8mmol)得た。
 下記式(23)で表される化合物は、以下に示す方法により合成した。2,2-ジメチル-1,3-ジオキサン-5-オンのカルボニル部位を、水素化アルミニウムリチウムで還元することで、下記式(22)で表される化合物を合成した。得られた式(22)で表される化合物に、エピブロモヒドリンを反応させることで、下記式(23)で表される化合物を合成した。
Figure JPOXMLDOC01-appb-C000063
 得られた化合物(1H)のH-NMR測定および19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(CDCOCD):δ[ppm]=3.39~4.35(40H)
19F-NMR(CDCOCD):δ[ppm]=-84.0~-83.0(30.4F)、-86.4(8F)、-124.3(8F)、-130.0~-129.0(15.2F)
[実施例9]
 第一反応において、式(16)で表される化合物の代わりに、下記式(24)で表される化合物を2.7g(分子量202、13.2mmol)用いたこと以外は、実施例4と同様な操作を行い、上記式(1I)で表される化合物(式(1I)中のRf1iは式(1IF)で表される。2つのRf1i中、平均重合度を示すl1iは6.3、平均重合度を示すm1iは0である。)を4.0g(数平均分子量2200、1.8mmol)得た。
 式(24)で表される化合物は、5-ヒドロキシメチル-2,2-ジメチル-1,3-ジオキサンにエピブロモヒドリンを反応させることで合成した。
Figure JPOXMLDOC01-appb-C000064
 得られた化合物(1I)のH-NMR測定および19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(CDCOCD):δ[ppm]=1.65~1.81(2H)、3.39~4.35(52H)
19F-NMR(CDCOCD):δ[ppm]=-78.6(4F)、-81.3(4F)、-90.0~-88.5(50.4F)
[実施例10]
 第一反応において、式(12)で表される化合物の代わりに、下記式(25)で表される化合物を2.9g(分子量216、13.2mmol)用いたこと以外は、実施例1と同様な操作を行い、上記式(1J)で表される化合物(式(1J)中のRf1jは式(1JF)で表される。2つのRf1j中、平均重合度を示すn1jは3.8である。)を4.0g(数平均分子量2228、1.8mmol)得た。
 式(25)で表される化合物は、5-ヒドロキシエチル-2,2-ジメチル-1,3-ジオキサンにエピブロモヒドリンを反応させることで合成した。
Figure JPOXMLDOC01-appb-C000065
 得られた化合物(1J)のH-NMR測定および19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(CDCOCD):δ[ppm]=1.65~1.81(6H)、3.39~4.35(42H)
19F-NMR(CDCOCD):δ[ppm]=-84.0~-83.0(30.4F)、-86.4(8F)、-124.3(8F)、-130.0~-129.0(15.2F)
[実施例11]
 第一反応において、式(16)で表される化合物の代わりに、下記式(26)で表される化合物を3.6g(分子量272、13.2mmol)用いたこと以外は、実施例4と同様な操作を行い、上記式(1K)で表される化合物(式(1K)中のRf1kは式(1KF)で表される。2つのRf1k中、平均重合度を示すl1kは6.3、平均重合度を示すm1kは0である。)を4.2g(数平均分子量2340、1.8mmol)得た。
 式(26)で表される化合物は、5-ヒドロキシヘキシル-2,2-ジメチル-1,3-ジオキサンにエピブロモヒドリンを反応させることで合成した。
Figure JPOXMLDOC01-appb-C000066
 得られた化合物(1K)のH-NMR測定および19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(CDCOCD):δ[ppm]=1.65~1.81(22H)、3.39~4.35(42H)
19F-NMR(CDCOCD):δ[ppm]=-78.6(4F)、-81.3(4F)、-90.0~-88.5(50.4F)
[実施例12]
 第一反応において、式(12)で表される化合物の代わりに、下記式(27)で表される化合物を2.7g(分子量202、13.2mmol)用いたこと以外は、実施例1と同様な操作を行い、上記式(1L)で表される化合物(式(1L)中のRf1lは式(1LF)で表される。2つのRf1l中、平均重合度を示すn1lは3.8である。)を4.0g(数平均分子量2200、1.8mmol)得た。
 式(27)で表される化合物は、上記式(22)で表される化合物に3-ブテニルブロミドを反応させた後、得られた化合物の二重結合を、m-クロロ過安息香酸を用いて酸化することで合成した。
Figure JPOXMLDOC01-appb-C000067
 得られた化合物(1L)のH-NMR測定および19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(CDCOCD):δ[ppm]=1.65~1.81(4H)、3.39~4.35(40H)
19F-NMR(CDCOCD):δ[ppm]=-84.0~-83.0(30.4F)、-86.4(8F)、-124.3(8F)、-130.0~-129.0(15.2F)
[実施例13]
 第一反応において、式(12)で表される化合物の代わりに、下記式(28)で表される化合物を3.6g(分子量276、13.2mmol)用いたこと以外は、実施例1と同様な操作を行い、上記式(1M)で表される化合物(式(1M)中のRf1mは式(1MF)で表される。2つのRf1m中、平均重合度を示すn1mは3.8である。)を4.2g(数平均分子量2349、1.8mmol)得た。
 式(28)で表される化合物は、上記式(23)で表される化合物に、3-ブテン-1-オールを反応させた後、得られた化合物の二重結合を、m-クロロ過安息香酸を用いて酸化することで合成した。
Figure JPOXMLDOC01-appb-C000068
 得られた化合物(1M)のH-NMR測定および19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(CDCOCD):δ[ppm]=1.65~1.81(4H)、3.39~4.35(52H)
19F-NMR(CDCOCD):δ[ppm]=-84.0~-83.0(30.4F)、-86.4(8F)、-124.3(8F)、-130.0~-129.0(15.2F)
[実施例14]
 第一反応において、式(12)で表される化合物の代わりに、下記式(29)で表される化合物を5.3g(分子量405、13.2mmol)用いたこと以外は、実施例1と同様な操作を行い、上記式(1N)で表される化合物(式(1N)中のRf1nは式(1NF)で表される。2つのRf1n中、平均重合度を示すn1nは3.8である。)を4.2g(数平均分子量2321、1.8mmol)得た。
 式(29)で表される化合物は、上記式(23)で表される化合物に、アリルアルコールを反応させた後、得られた化合物の二重結合を、m-クロロ過安息香酸を用いて酸化することで合成した。
Figure JPOXMLDOC01-appb-C000069
 得られた化合物(1N)のH-NMR測定および19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(CDCOCD):δ[ppm]=3.39~4.35(52H)
19F-NMR(CDCOCD):δ[ppm]=-84.0~-83.0(30.4F)、-86.4(8F)、-124.3(8F)、-130.0~-129.0(15.2F)
[実施例15]
 第一反応において、式(12)で表される化合物の代わりに、下記式(31)で表される化合物を5.3g(分子量404、13.2mmol)用いたこと以外は、実施例1と同様な操作を行い、上記式(1O)で表される化合物(式(1O)中のRf1oは式(1OF)で表される。2つのRf1o中、平均重合度を示すn1oは3.8である。)を4.2g(数平均分子量2349、1.8mmol)得た。
 式(31)で表される化合物は、以下に示す方法により合成した。2当量のテトラヒドロピラニルエチレングリコールと、1当量のエピクロロヒドリンとを反応させて、下記式(30)で表される化合物を合成した。得られた式(30)で表される化合物とエピブロモヒドリンを反応させることで、下記式(31)で表される化合物を合成した。
Figure JPOXMLDOC01-appb-C000070
(式(30)中、THPはテトラヒドロピラニル基を表す。)
(式(31)中、THPはテトラヒドロピラニル基を表す。)
 得られた化合物(1O)のH-NMR測定および19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(CDCOCD):δ[ppm]=3.39~4.35(56H)
19F-NMR(CDCOCD):δ[ppm]=-84.0~-83.0(30.4F)、-86.4(8F)、-124.3(8F)、-130.0~-129.0(15.2F)
[実施例16]
 第一反応において、式(12)で表される化合物の代わりに、下記式(33)で表される化合物を5.7g(分子量433、13.2mmol)用いたこと以外は、実施例1と同様な操作を行い、上記式(1P)で表される化合物(式(1P)中のRf1pは式(1PF)で表される。2つのRf1p中、平均重合度を示すn1pは3.8である。)を4.3g(数平均分子量2405、1.8mmol)得た。
 式(33)で表される化合物は、以下に示す方法により合成した。2当量のテトラヒドロピラニルトリメチレングリコールと、1当量のエピクロロヒドリンとを反応させて、下記式(32)で表される化合物を合成した。得られた式(32)で表される化合物とエピブロモヒドリンを反応させることで、下記式(33)で表される化合物を合成した。
Figure JPOXMLDOC01-appb-C000071
(式(32)中、THPはテトラヒドロピラニル基を表す。)
(式(33)中、THPはテトラヒドロピラニル基を表す。)
 得られた化合物(1P)のH-NMR測定および19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(CDCOCD):δ[ppm]=1.65~1.81(10H)、3.39~4.35(54H)
19F-NMR(CDCOCD):δ[ppm]=-84.0~-83.0(30.4F)、-86.4(8F)、-124.3(8F)、-130.0~-129.0(15.2F)
[実施例17]
 第一反応において、式(15)で表される化合物の代わりに、下記式(35)で表される化合物を6.1g(分子量461、13.2mmol)用いたこと以外は、実施例3と同様な操作を行い、上記式(1Q)で表される化合物(式(1Q)中のRf1qは式(1QF)で表される。2つのRf1q中、平均重合度を示すl1qは4.0、平均重合度を示すm1qは4.0である。)を4.4g(数平均分子量2455、1.8mmol)得た。
 式(35)で表される化合物は、以下に示す方法により合成した。2当量のテトラヒドロピラニルテトラメチレングリコールと、1当量のエピクロロヒドリンとを反応させて、下記式(34)で表される化合物を合成した。得られた式(34)で表される化合物とエピブロモヒドリンを反応させることで、下記式(35)で表される化合物を合成した。
Figure JPOXMLDOC01-appb-C000072
(式(34)中、THPはテトラヒドロピラニル基を表す。)
(式(35)中、THPはテトラヒドロピラニル基を表す。)
 得られた化合物(1Q)のH-NMR測定および19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(CDCOCD):δ[ppm]=1.65~1.81(18H)、3.39~4.35(54H)
19F-NMR(CDCOCD):δ[ppm]=-84.0~-83.0(30.4F)、-86.4(8F)、-124.3(8F)、-130.0~-129.0(15.2F)
[実施例18]
 第一反応において、式(16)で表される化合物の代わりに、下記式(37)で表される化合物を6.8g(分子量517、13.2mmol)用いたこと以外は、実施例4と同様な操作を行い、上記式(1R)で表される化合物(式(1R)中のRf1rは式(1RF)で表される。2つのRf1r中、平均重合度を示すl1rは6.3、平均重合度を示すm1rは0である。)を4.6g(数平均分子量2573、1.8mmol)得た。
 式(37)で表される化合物は、以下に示す方法により合成した。2当量のテトラヒドロピラニルヘキサメチレングリコールと、1当量のエピクロロヒドリンとを反応させて、下記式(36)で表される化合物を合成した。得られた式(36)で表される化合物とエピブロモヒドリンを反応させることで、下記式(37)で表される化合物を合成した。
Figure JPOXMLDOC01-appb-C000073
(式(36)中、THPはテトラヒドロピラニル基を表す。)
(式(37)中、THPはテトラヒドロピラニル基を表す。)
 得られた化合物(1R)のH-NMR測定および19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(CDCOCD):δ[ppm]=1.65~1.81(32H)、3.39~4.35(56H)
19F-NMR(CDCOCD):δ[ppm]=-78.6(4F)、-81.3(4F)、-90.0~-88.5(50.4F)
[実施例19]
 第一反応において、式(15)で表される化合物の代わりに、下記式(39)で表される化合物を7.0g(分子量531、13.2mmol)用いたこと以外は、実施例3と同様な操作を行い、上記式(1S)で表される化合物(式(1S)中のRf1sは式(1SF)で表される。2つのRf1s中、平均重合度を示すl1sは4.0、平均重合度を示すm1sは4.0である。)を4.7g(数平均分子量2595、1.8mmol)得た。
 式(39)で表される化合物は、以下に示す方法により合成した。1当量の4-アリルオキシ-1,2-ブタンジオールと、2当量の2-(6-ブロモヘキシルオキシ)テトラヒドロ-2H-ピランとを反応させて、下記式(38)で表される化合物を合成した。得られた式(38)で表される化合物の二重結合を、m-クロロ過安息香酸を用いて酸化することで、下記式(39)で表される化合物を合成した。
Figure JPOXMLDOC01-appb-C000074
(式(38)中、THPはテトラヒドロピラニル基を表す。)
(式(39)中、THPはテトラヒドロピラニル基を表す。)
 得られた化合物(1S)のH-NMR測定および19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(CDCOCD):δ[ppm]=1.65~1.81(36H)、3.39~4.35(56H)
19F-NMR(CDCOCD):δ[ppm]=-84.0~-83.0(30.4F)、-86.4(8F)、-124.3(8F)、-130.0~-129.0(15.2F)
[実施例20]
 第一反応において、式(16)で表される化合物の代わりに、下記式(41)で表される化合物を7.7g(分子量587、13.2mmol)用いたこと以外は、実施例4と同様な操作を行い、上記式(1T)で表される化合物(式(1T)中のRf1tは式(1TF)で表される。2つのRf1t中、平均重合度を示すl1tは6.3、平均重合度を示すm1tは0である。)を4.9g(数平均分子量2713、1.8mmol)得た。
 式(41)で表される化合物は、以下に示す方法により合成した。1当量の8-アリルオキシ-1,2-オクタンジオールと、2当量の2-(6-ブロモヘキシルオキシ)テトラヒドロ-2H-ピランとを反応させて、下記式(40)で表される化合物を合成した。得られた式(40)で表される化合物の二重結合を、m-クロロ過安息香酸を用いて酸化することで、下記式(41)で表される化合物を合成した。
Figure JPOXMLDOC01-appb-C000075
(式(40)中、THPはテトラヒドロピラニル基を表す。)
(式(41)中、THPはテトラヒドロピラニル基を表す。)
 得られた化合物(1T)のH-NMR測定および19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(CDCOCD):δ[ppm]=1.65~1.81(52H)、3.39~4.35(56H)
19F-NMR(CDCOCD):δ[ppm]=-78.6(4F)、-81.3(4F)、-90.0~-88.5(50.4F)
[実施例21]
 第一反応において、式(12)で表される化合物の代わりに、下記式(43)で表される化合物を6.5g(分子量493、13.2mmol)用いたこと以外は、実施例1と同様な操作を行い、上記式(1U)で表される化合物(式(1U)中のRf1uは式(1UF)で表される。2つのRf1u中、平均重合度を示すn1uは3.8である。)を4.5g(数平均分子量2525、1.8mmol)得た。
 式(43)で表される化合物は、以下に示す方法により合成した。2当量のテトラヒドロピラニルジエチレングリコールと、1当量のエピクロロヒドリンとを反応させて、下記式(42)で表される化合物を合成した。得られた式(42)で表される化合物とエピブロモヒドリンを反応させることで、下記式(43)で表される化合物を合成した。
Figure JPOXMLDOC01-appb-C000076
(式(42)中、THPはテトラヒドロピラニル基を表す。)
(式(43)中、THPはテトラヒドロピラニル基を表す。)
 得られた化合物(1U)のH-NMR測定および19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(CDCOCD):δ[ppm]=3.39~4.35(72H)
19F-NMR(CDCOCD):δ[ppm]=-84.0~-83.0(30.4F)、-86.4(8F)、-124.3(8F)、-130.0~-129.0(15.2F)
[実施例22]
 第一反応において、式(12)で表される化合物の代わりに、下記式(45)で表される化合物を5.9g(分子量445、13.2mmol)用いたこと以外は、実施例1と同様な操作を行い、上記式(1V)で表される化合物(式(1V)中のRf1vは式(1VF)で表される。2つのRf1v中、平均重合度を示すn1vは3.8である。)を4.1g(数平均分子量2260、1.8mmol)得た。
 式(45)で表される化合物は、以下に示す方法により合成した。2-(ブロモメチル)-2-(ヒドロキシメチル)-1,3-プロパンジオールと、3,4-ジヒドロ-2H-ピランとを反応させて、2-(ブロモメチル)-2-(ヒドロキシメチル)-1,3-プロパンジオールの水酸基をテトラヒドロピラニル基で保護し、下記式(44)で表される化合物を合成した。得られた式(44)で表される化合物とアリルアルコールとを反応させた後、得られた化合物の二重結合を、m-クロロ過安息香酸を用いて酸化することで、下記式(45)で表される化合物を合成した。
Figure JPOXMLDOC01-appb-C000077
(式(44)中、THPはテトラヒドロピラニル基を表す。)
(式(45)中、THPはテトラヒドロピラニル基を表す。)
 得られた化合物(1V)のH-NMR測定および19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(CDCOCD):δ[ppm]=3.39~4.35(48H)
19F-NMR(CDCOCD):δ[ppm]=-84.0~-83.0(30.4F)、-86.4(8F)、-124.3(8F)、-130.0~-129.0(15.2F)
[実施例23]
 以下に示す方法により、上記式(2A)で示される化合物を製造した。
(第一反応)
 窒素ガス雰囲気下、200mLナスフラスコにHOCHCFCFO(CFCFCFO)CFCFCHOH(式中の平均重合度を示すnは2.0である。)で表される化合物(数平均分子量610、分子量分布1.1)12.2g(20mmol)と、60%水素化ナトリウム1.76g(44mmol)と、N,N-ジメチルホルムアミド15.6mLとを仕込み、室温で均一になるまで撹拌した。この均一の液にエピブロモヒドリン3.45mL(42mmol)を加え、40℃で2時間撹拌して反応させた。
 反応後に得られた反応生成物を25℃に冷却し、水80mLを加えて反応を停止し、分液漏斗へ移し、酢酸エチル150mLで2回抽出した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムによって脱水した。乾燥剤を濾別した後、濾液を濃縮し、残渣をシリカゲルカラムクロマトグラフィーにて精製し、中間体化合物2-1として下記式(46)で示される化合物3.5g(分子量580、6.0mmol)を得た。
Figure JPOXMLDOC01-appb-C000078
(式(46)中、平均重合度を示すnは2.0である。)
(第二反応)
 窒素ガス雰囲気下、200mLナスフラスコにHOCHCFCFO(CFCFCFO)CFCFCHOH(式中の平均重合度を示すnは2.0である。)で表される化合物(数平均分子量610、分子量分布1.1)14gと、上記式(12)で表される化合物5.4g(分子量405、13mmol)と、t-ブタノール20mLとを仕込み、室温で均一になるまで撹拌した。この均一の液にさらにカリウムtert-ブトキシド0.74g(分子量112、6.6mmol)を加え、70℃で16時間撹拌して反応させた。
 反応後に得られた反応生成物を25℃に冷却し、水100mLが入った分液漏斗へ移し、酢酸エチル100mLで3回抽出した。有機層を水洗し、無水硫酸ナトリウムによって脱水した。乾燥剤を濾別した後、濾液を濃縮し、残渣をシリカゲルカラムクロマトグラフィーにて精製し、中間体化合物2-2として上記式(13)で示される化合物(式(13)中、平均重合度を示すnは2.0を表す。THPはテトラヒドロピラニル基を表す。)12g(分子量1015、12.0mmol)を得た。
(第三反応)
 窒素ガス雰囲気下、200mLナスフラスコに式(13)で表される中間体化合物2-2(式中の平均重合度を示すnは2.0である。)10gと、カリウムtert-ブトキシド0.38gと、t-ブタノール9.5mLとを仕込み、室温で均一になるまで撹拌した。この均一の液にさらに式(46)で表される中間体化合物2-1(式中の平均重合度を示すnは2.0である。)2.2gを加え、70℃で16時間撹拌して反応させた。
 反応後に得られた反応生成物を25℃に冷却し、水100mLが入った分液漏斗へ移し、酢酸エチル100mLで3回抽出した。有機層を水洗し、無水硫酸ナトリウムによって脱水した。乾燥剤を濾別した後、濾液を濃縮し、残渣をシリカゲルカラムクロマトグラフィーにて精製し、上記式(2A)で示される化合物(式(2A)中のRf2aは式(2AF)で表される。3つのRf2a中、平均重合度を示すn2aは2.0である。)を4.4g(分子量2419、1.8mmol)を得た。
 得られた化合物(2A)のH-NMR測定および19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(CDCOCD):δ[ppm]=3.46~4.24(66H)
19F-NMR(CDCOCD):δ[ppm]=-84.0~-83.0(24F)、-86.4(12F)、-124.3(12F)、-130.0~-129.0(12F)
[実施例24]
 第二反応において、式(12)で表される化合物の代わりに、式(14)で表される化合物を5.6g用いたこと以外は、実施例23と同様な操作を行い、上記式(2B)で表される化合物(式(2B)中のRf2bは式(2BF)で表される。3つのRf2b中、平均重合度を示すn2bは2.0である。)を4.4g(分子量2447、1.8mmol)を得た。
 得られた化合物(2B)のH-NMR測定および19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(CDCOCD):δ[ppm]=1.65~1.81(4H)、3.39~4.35(66H)
19F-NMR(CDCOCD):δ[ppm]=-84.0~-83.0(24F)、-86.4(12F)、-124.3(12F)、-130.0~-129.0(12F)
[実施例25]
 第一反応および第二反応において、HOCHCFCFO(CFCFCFO)CFCFCHOHの代わりに、HOCHCFO(CFCFO)(CFO)CFCHOH(式中の平均重合度を示すlは2.4、平均重合度を示すmは2.4である。)で表される化合物(数平均分子量615、分子量分布1.1)12gを用い、第二反応において、式(12)で表される化合物の代わりに、式(15)で表される化合物を5.7g用いたこと以外は、実施例23と同様な操作を行い、上記式(2C)で表される化合物(式(2C)中のRf2cは式(2CF)で表される。3つのRf2c中、平均重合度を示すl2cは2.4、平均重合度を示すm2cは2.4である。)を4.5g(数平均分子量2490、1.8mmol)得た。
 得られた化合物(2C)のH-NMR測定および19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(CDCOCD):δ[ppm]=1.65~1.81(8H)、3.39~4.35(66H)
19F-NMR(CDCOCD):δ[ppm]=-55.6~-50.6(14.4F)、-77.7(6F)、-80.3(6F)、-91.0~-88.5(28.8F)
[実施例26]
 第一反応および第二反応において、HOCHCFCFO(CFCFCFO)CFCFCHOHの代わりに、HOCHCFO(CFCFO)(CFO)CFCHOH(式中の平均重合度を示すlは3.8、平均重合度を示すmは0である。)で表される化合物(数平均分子量619、分子量分布1.1)12gを用い、第二反応において、式(12)で表される化合物の代わりに、式(16)で表される化合物を6.0g用いたこと以外は、実施例23と同様な操作を行い、上記式(2D)で表される化合物(式(2D)中のRf2dは式(2DF)で表される。3つのRf2d中、平均重合度を示すl2dは3.8、平均重合度を示すm2dは0である。)を4.6g(数平均分子量2557、1.8mmol)得た。
 得られた化合物(2D)のH-NMR測定および19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(CDCOCD):δ[ppm]=1.65~1.81(16H)、3.39~4.35(66H)
19F-NMR(CDCOCD):δ[ppm]=-78.6(6F)、-81.3(6F)、-90.0~-88.5(45.6F)
[実施例27]
 第二反応において、式(12)で表される化合物の代わりに、式(18)で表される化合物を5.7g用いたこと以外は、実施例23と同様な操作を行い、上記式(2E)で表される化合物(式(2E)中のRf2eは式(2EF)で表される。3つのRf2e中、平均重合度を示すn2eは2.0である。)を4.5g(分子量2475、1.8mmol)を得た。
 得られた化合物(2E)のH-NMR測定および19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(CDCOCD):δ[ppm]=1.65~1.81(8H)、3.39~4.35(66H)
19F-NMR(CDCOCD):δ[ppm]=-84.0~-83.0(24F)、-86.4(12F)、-124.3(12F)、-130.0~-129.0(12F)
[実施例28]
 第二反応において、式(12)で表される化合物の代わりに、式(20)で表される化合物を6.8g用いたこと以外は、実施例23と同様な操作を行い、上記式(2F)で表される化合物(式(2F)中のRf2fは式(2FF)で表される。3つのRf2f中、平均重合度を示すn2fは2.0である。)を4.8g(分子量2644、1.8mmol)を得た。
 得られた化合物(2F)のH-NMR測定および19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(CDCOCD):δ[ppm]=1.65~1.81(32H)、3.39~4.35(66H)
19F-NMR(CDCOCD):δ[ppm]=-84.0~-83.0(24F)、-86.4(12F)、-124.3(12F)、-130.0~-129.0(12F)
[実施例29]
 第二反応において、式(12)で表される化合物の代わりに、式(21)で表される化合物を6.4g用いたこと以外は、実施例23と同様な操作を行い、上記式(2G)で表される化合物(式(2G)中のRf2gは式(2GF)で表される。3つのRf2g中、平均重合度を示すn2gは2.0である。)を4.6g(分子量2567、1.8mmol)を得た。
 得られた化合物(2G)のH-NMR測定および19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(CDCOCD):δ[ppm]=3.39~4.35(78H)
19F-NMR(CDCOCD):δ[ppm]=-84.0~-83.0(24F)、-86.4(12F)、-124.3(12F)、-130.0~-129.0(12F)
[実施例30]
 第二反応において、式(15)で表される化合物の代わりに、式(23)で表される化合物を2.5g用いたこと以外は、実施例25と同様な操作を行い、上記式(2H)で表される化合物(式(2H)中のRf2hは式(2HF)で表される。3つのRf2h中、平均重合度を示すl2hは2.4、平均重合度を示すm2hは2.4である。)を4.1g(数平均分子量2257、1.8mmol)得た。
 得られた化合物(2H)のH-NMR測定および19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(CDCOCD):δ[ppm]=3.39~4.35(50H)
19F-NMR(CDCOCD):δ[ppm]=-55.6~-50.6(14.4F)、-77.7(6F)、-80.3(6F)、-91.0~-88.5(28.8F)
[実施例31]
 第二反応において、式(16)で表される化合物の代わりに、式(24)で表される化合物を2.6g用いたこと以外は、実施例26と同様な操作を行い、上記式(2I)で表される化合物(式(2I)中のRf2iは式(2IF)で表される。3つのRf2i中、平均重合度を示すl2iは3.8、平均重合度を示すm2iは0である。)を4.1g(数平均分子量2297、1.8mmol)得た。
 得られた化合物(2I)のH-NMR測定および19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(CDCOCD):δ[ppm]=1.65~1.81(2H)、3.39~4.35(62H)
19F-NMR(CDCOCD):δ[ppm]=-78.6(6F)、-81.3(6F)、-90.0~-88.5(45.6F)
[実施例32]
 第二反応において、式(12)で表される化合物の代わりに、式(25)で表される化合物を2.9g用いたこと以外は、実施例23と同様な操作を行い、上記式(2J)で表される化合物(式(2J)中のRf2jは式(2JF)で表される。3つのRf2j中、平均重合度を示すn2jは2.0である。)を4.1g(分子量2299、1.8mmol)を得た。
 得られた化合物(2J)のH-NMR測定および19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(CDCOCD):δ[ppm]=1.65~1.81(6H)、3.39~4.35(52H)
19F-NMR(CDCOCD):δ[ppm]=-84.0~-83.0(24F)、-86.4(12F)、-124.3(12F)、-130.0~-129.0(12F)
[実施例33]
 第二反応において、式(16)で表される化合物の代わりに、式(26)で表される化合物を3.6g用いたこと以外は、実施例26と同様な操作を行い、上記式(2K)で表される化合物(式(2K)中のRf2kは式(2KF)で表される。3つのRf2k中、平均重合度を示すl2kは3.8、平均重合度を示すm2kは0である。)を4.4g(数平均分子量2437、1.8mmol)得た。
 得られた化合物(2K)のH-NMR測定および19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(CDCOCD):δ[ppm]=1.65~1.81(22H)、3.39~4.35(52H)
19F-NMR(CDCOCD):δ[ppm]=-78.6(6F)、-81.3(6F)、-90.0~-88.5(45.6F)
[実施例34]
 第二反応において、式(12)で表される化合物の代わりに、式(27)で表される化合物を2.7g用いたこと以外は、実施例23と同様な操作を行い、上記式(2L)で表される化合物(式(2L)中のRf2lは式(2LF)で表される。3つのRf2l中、平均重合度を示すn2lは2.0である。)を4.1g(分子量2271、1.8mmol)を得た。
 得られた化合物(2L)のH-NMR測定および19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(CDCOCD):δ[ppm]=1.65~1.81(4H)、3.39~4.35(50H)
19F-NMR(CDCOCD):δ[ppm]=-84.0~-83.0(24F)、-86.4(12F)、-124.3(12F)、-130.0~-129.0(12F)
[実施例35]
 第二反応において、式(12)で表される化合物の代わりに、式(28)で表される化合物を3.7g用いたこと以外は、実施例23と同様な操作を行い、上記式(2M)で表される化合物(式(2M)中のRf2mは式(2MF)で表される。3つのRf2m中、平均重合度を示すn2mは2.0である。)を4.4g(分子量2419、1.8mmol)を得た。
 得られた化合物(2M)のH-NMR測定および19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(CDCOCD):δ[ppm]=1.65~1.81(4H)、3.39~4.35(62H)
19F-NMR(CDCOCD):δ[ppm]=-84.0~-83.0(24F)、-86.4(12F)、-124.3(12F)、-130.0~-129.0(12F)
[実施例36]
 第二反応において、式(12)で表される化合物の代わりに、式(29)で表される化合物を3.5g用いたこと以外は、実施例23と同様な操作を行い、上記式(2N)で表される化合物(式(2N)中のRf2nは式(2NF)で表される。3つのRf2n中、平均重合度を示すn2nは2.0である。)を4.3g(分子量2391、1.8mmol)を得た。
 得られた化合物(2N)のH-NMR測定および19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(CDCOCD):δ[ppm]=3.39~4.35(62H)
19F-NMR(CDCOCD):δ[ppm]=-84.0~-83.0(24F)、-86.4(12F)、-124.3(12F)、-130.0~-129.0(12F)
[実施例37]
 第二反応において、式(12)で表される化合物の代わりに、式(31)で表される化合物を5.4g用いたこと以外は、実施例23と同様な操作を行い、上記式(2O)で表される化合物(式(2O)中のRf2oは式(2OF)で表される。3つのRf2o中、平均重合度を示すn2oは2.0である。)を4.4g(分子量2419、1.8mmol)を得た。
 得られた化合物(2O)のH-NMR測定および19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(CDCOCD):δ[ppm]=3.39~4.35(66H)
19F-NMR(CDCOCD):δ[ppm]=-84.0~-83.0(24F)、-86.4(12F)、-124.3(12F)、-130.0~-129.0(12F)
[実施例38]
 第二反応において、式(12)で表される化合物の代わりに、式(33)で表される化合物を5.7g用いたこと以外は、実施例23と同様な操作を行い、上記式(2P)で表される化合物(式(2P)中のRf2pは式(2PF)で表される。3つのRf2p中、平均重合度を示すn2pは2.0である。)を4.5g(分子量2475、1.8mmol)を得た。
 得られた化合物(2P)のH-NMR測定および19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(CDCOCD):δ[ppm]=1.65~1.81(10H)、3.39~4.35(64H)
19F-NMR(CDCOCD):δ[ppm]=-84.0~-83.0(24F)、-86.4(12F)、-124.3(12F)、-130.0~-129.0(12F)
[実施例39]
 第二反応において、式(15)で表される化合物の代わりに、式(35)で表される化合物を6.1g用いたこと以外は、実施例25と同様な操作を行い、上記式(2Q)で表される化合物(式(2Q)中のRf2qは式(2QF)で表される。3つのRf2q中、平均重合度を示すl2qは2.4、平均重合度を示すm2qは2.4である。)を4.6g(数平均分子量2546、1.8mmol)得た。
 得られた化合物(2Q)のH-NMR測定および19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(CDCOCD):δ[ppm]=1.65~1.81(18H)、3.39~4.35(64H)
19F-NMR(CDCOCD):δ[ppm]=-55.6~-50.6(14.4F)、-77.7(6F)、-80.3(6F)、-91.0~-88.5(28.8F)
[実施例40]
 第二反応において、式(16)で表される化合物の代わりに、式(37)で表される化合物を6.8g用いたこと以外は、実施例26と同様な操作を行い、上記式(2R)で表される化合物(式(2R)中のRf2rは式(2RF)で表される。3つのRf2r中、平均重合度を示すl2rは3.8、平均重合度を示すm2rは0である。)を4.8g(数平均分子量2670、1.8mmol)得た。
 得られた化合物(2R)のH-NMR測定および19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(CDCOCD):δ[ppm]=1.65~1.81(32H)、3.39~4.35(66H)
19F-NMR(CDCOCD):δ[ppm]=-78.6(6F)、-81.3(6F)、-90.0~-88.5(45.6F)
[実施例41]
 第二反応において、式(15)で表される化合物の代わりに、式(39)で表される化合物を7.0g用いたこと以外は、実施例25と同様な操作を行い、上記式(2S)で表される化合物(式(2S)中のRf2sは式(2SF)で表される。3つのRf2s中、平均重合度を示すl2sは2.4、平均重合度を示すm2sは2.4である。)を4.8g(数平均分子量2686、1.8mmol)得た。
 得られた化合物(2S)のH-NMR測定および19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(CDCOCD):δ[ppm]=1.65~1.81(36H)、3.39~4.35(66H)
19F-NMR(CDCOCD):δ[ppm]=-55.6~-50.6(14.4F)、-77.7(6F)、-80.3(6F)、-91.0~-88.5(28.8F)
[実施例42]
 第二反応において、式(16)で表される化合物の代わりに、式(41)で表される化合物を7.7g用いたこと以外は、実施例26と同様な操作を行い、上記式(2T)で表される化合物(式(2T)中のRf2tは式(2TF)で表される。3つのRf2t中、平均重合度を示すl2tは3.8、平均重合度を示すm2tは0である。)を5.1g(数平均分子量2810、1.8mmol)得た。
 得られた化合物(2T)のH-NMR測定および19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(CDCOCD):δ[ppm]=1.65~1.81(52H)、3.39~4.35(66H)
19F-NMR(CDCOCD):δ[ppm]=-78.6(6F)、-81.3(6F)、-90.0~-88.5(45.6F)
[実施例43]
 第二反応において、式(12)で表される化合物の代わりに、式(43)で表される化合物を6.5g用いたこと以外は、実施例23と同様な操作を行い、上記式(2U)で表される化合物(式(2U)中のRf2uは式(2UF)で表される。3つのRf2u中、平均重合度を示すn2uは2.0である。)を4.7g(分子量2595、1.8mmol)を得た。
 得られた化合物(2U)のH-NMR測定および19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(CDCOCD):δ[ppm]=3.39~4.35(82H)
19F-NMR(CDCOCD):δ[ppm]=-84.0~-83.0(24F)、-86.4(12F)、-124.3(12F)、-130.0~-129.0(12F)
[実施例44]
 第二反応において、式(12)で表される化合物の代わりに、式(45)で表される化合物を5.9g用いたこと以外は、実施例23と同様な操作を行い、上記式(2V)で表される化合物(式(2V)中のRf2vは式(2VF)で表される。3つのRf2v中、平均重合度を示すn2vは2.0である。)を4.2g(分子量2331、1.8mmol)を得た。
 得られた化合物(2V)のH-NMR測定および19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(CDCOCD):δ[ppm]=3.39~4.35(58H)
19F-NMR(CDCOCD):δ[ppm]=-84.0~-83.0(24F)、-86.4(12F)、-124.3(12F)、-130.0~-129.0(12F)
 このようにして得られた実施例1~44の化合物(1A)~(1V)、(2A)~(2V)を、それぞれ式(1)に当てはめたときのzの値、R、[A]、[B]、R、R、[C]、[D]、Rの構造を表5~表9に示す。
Figure JPOXMLDOC01-appb-T000079
Figure JPOXMLDOC01-appb-T000080
Figure JPOXMLDOC01-appb-T000081
Figure JPOXMLDOC01-appb-T000082
Figure JPOXMLDOC01-appb-T000083
[比較例1]
 下記式(3A)で表される化合物を、特許文献1に記載の方法で合成した。
Figure JPOXMLDOC01-appb-C000084
(式(3A)中のRf3aは、上記式(3AF)で表されるPFPE鎖である。2つのRf3a中において、平均重合度を示すl3aは4.0を表し、平均重合度を示すm3aは4.0を表す。)
[比較例2]
 下記式(3B)で表される化合物を、特許文献2に記載の方法で合成した。
Figure JPOXMLDOC01-appb-C000085
(式(3B)中のRf3bは、上記式(3BF)で表されるPFPE鎖である。2つのRf3b中において、平均重合度を示すn3bは3.8を表す。)
[比較例3]
 下記式(3C)で表される化合物を、特許文献4に記載の方法で合成した。
Figure JPOXMLDOC01-appb-C000086
(式(3C)中のRf3cは、上記式(3CF)で表されるPFPE鎖である。2つのRf3c中において、平均重合度を示すn3cは3.8を表す。)
[比較例4]
 下記式(3D)で表される化合物を、特許文献4に記載の方法で合成した。
Figure JPOXMLDOC01-appb-C000087
(式(3D)中のRf3dは、上記式(3DF)で表されるPFPE鎖である。Meはメチル基を表す。2つのRf3d中において、平均重合度を示すn3dは3.8を表す。)
[比較例5]
 下記式(3E)で表される化合物を、特許文献4に記載の方法で合成した。
Figure JPOXMLDOC01-appb-C000088
(式(3E)中のRf3eは、上記式(3EF)で表されるPFPE鎖である。2つのRf3e中において、平均重合度を示すn3eは3.8を表す。)
[比較例6]
 下記式(3F)で表される化合物を、特許文献3に記載の方法で合成した。
Figure JPOXMLDOC01-appb-C000089
(式(3F)中のRf3fは、上記式(3FF)で表されるPFPE鎖である。2つのRf3f中において、平均重合度を示すn3fは3.8を表す。)
[比較例7]
 下記式(3G)で表される化合物を、特許文献6に記載の方法で合成した。
Figure JPOXMLDOC01-appb-C000090
(式(3G)中のRf3gは、上記式(3GF)で表されるPFPE鎖である。3つのRf3gのうち中央のRf3gにおいて、平均重合度を示すl3gは3.8を表し、平均重合度を示すm3gは0を表す。末端側の2つのRf3gにおいて、平均重合度を示すl3gは2.4を表し、平均重合度を示すm3gは2.4を表す。)
[比較例8]
 下記式(3H)で表される化合物を、特許文献7に記載の方法で合成した。
Figure JPOXMLDOC01-appb-C000091
(式(3H)中のRf3hは、上記式(3HF)で表されるPFPE鎖である。3つのRf3h中において、平均重合度を示すl3hは3.8を表し、平均重合度を示すm3hは0を表す。)
[比較例9]
 下記式(3I)で表される化合物を、特許文献5に記載の方法で合成した。
Figure JPOXMLDOC01-appb-C000092
(式(3I)中のRf3iは、上記式(3IF)で表されるPFPE鎖である。3つのRf3i中において、平均重合度を示すl3iは3.8を表し、平均重合度を示すm3iは0を表す。)
[比較例10]
 下記式(3J)で表される化合物を、特許文献8に記載の方法で合成した。
Figure JPOXMLDOC01-appb-C000093
(式(3J)中、平均重合度を示すl3jは4.5を表し、平均重合度を示すm3jは4.5を表す。)
[比較例11]
 下記式(3K)で表される化合物を、特許文献8に記載の方法で合成した。
Figure JPOXMLDOC01-appb-C000094
(式(3K)中、平均重合度を示すl3kは4.5を表し、平均重合度を示すm3kは4.5を表す。)
 このようにして得られた実施例1~44および比較例1~11の化合物の数平均分子量(Mn)を、上記の方法により測定した。その結果を表10~表12に示す。
 次に、以下に示す方法により、実施例1~44および比較例1~11で得られた化合物を用いて潤滑層形成用溶液を調製した。そして、得られた潤滑層形成用溶液を用いて、以下に示す方法により、磁気記録媒体の潤滑層を形成し、実施例1~44および比較例1~11の磁気記録媒体を得た。
[潤滑層形成用溶液]
 実施例1~44および比較例1~11で得られた化合物を、それぞれフッ素系溶媒であるバートレル(登録商標)XF(商品名、三井デュポンフロロケミカル社製)に溶解し、保護層上に塗布した時の膜厚が9.4Å~9.7ÅになるようにバートレルXFで希釈し、化合物の濃度が0.001質量%~0.01質量%である潤滑層形成用溶液とした。
「磁気記録媒体」
 直径65mmの基板上に、付着層と軟磁性層と第1下地層と第2下地層と磁性層と保護層とを順次設けた磁気記録媒体を用意した。保護層は、炭素からなるものとした。
 保護層までの各層の形成された磁気記録媒体の保護層上に、実施例1~44および比較例1~11の潤滑層形成用溶液を、ディップ法により塗布した。なお、ディップ法は、浸漬速度10mm/sec、浸漬時間30sec、引き上げ速度1.2mm/secの条件で行った。
 その後、潤滑層形成用溶液を塗布した磁気記録媒体を恒温槽に入れ、潤滑層形成用溶液中の溶媒を除去して保護層と潤滑層との密着性を向上させる熱処理を、120℃で10分間行うことにより保護層上に潤滑層を形成し、磁気記録媒体を得た。
(膜厚測定)
 このようにして得られた実施例1~44および比較例1~11の磁気記録媒体の有する潤滑層について、フーリエ変換赤外分光光度計(FT-IR、商品名:Nicolet iS50、Thermo Fisher Scientific社製)を用いて、C-F振動伸縮におけるピーク高さを測定した。次いで、後述の方法により求めた相関式を用いて、潤滑層のC-F振動伸縮におけるピーク高さの測定値から、潤滑層の膜厚を算出した。
(相関式の算出方法)
 直径65mmの基板上に、付着層と軟磁性層と第1下地層と第2下地層と磁性層と保護層とを順次設けたディスクを用意した。このディスクの保護層上に、6~20Å(2Å刻み)の膜厚でそれぞれ潤滑層を形成した。
 その後、潤滑層を形成した各ディスクについて、エリプソメータを用いて、潤滑層を形成していないディスク表面からの膜厚増加分を測定し、潤滑層の膜厚とした。また、潤滑層を形成した各ディスクについて、FT-IRを用いてC-F振動伸縮におけるピーク高さを測定した。
 そして、FT-IRにより得たピーク高さと、エリプソメータを用いて得た潤滑層の膜厚との相関式を求めた。
 次に、実施例1~44および比較例1~11の磁気記録媒体に対して、以下に示すピックアップ特性試験、スピンオフ特性試験、耐腐食性試験を行い、評価した。その結果を表10~表12に示す。
(ピックアップ特性試験)
 スピンスタンドに磁気記録媒体および磁気ヘッドを装着し、常温減圧下(約250torr)で回転を行い、10分間磁気ヘッドを定点浮上させた。その後、磁気ヘッドの磁気記録媒体と相対する面を、ESCA(Electron Spectroscopy for Chemical Analysis)分析装置を用いて分析した。ESCA分析装置を用いた分析により得たフッ素由来ピークの強度(信号強度(a.u.))は、磁気ヘッドへの潤滑剤の付着量を示す。得られた信号強度を用いて、以下に示す評価基準により、ピックアップ特性を評価した。
(ピックアップ特性の評価基準)
A(優):信号強度160以下(付着量が非常に少ない)
B(良):信号強度161~300(付着量が少ない)
C(可):信号強度301~1000(付着量が多い)
D(不可):信号強度1001以上(付着量が非常に多い)
(スピンオフ特性試験)
 スピンスタンドに磁気記録媒体を装着し、80℃の環境下、回転速度10000rpmで72時間にわたり回転させた。この操作の前後において、磁気記録媒体の中心から半径20mmの位置における潤滑層の膜厚を、上記の方法によりFT-IRを用いて測定し、試験前後での潤滑層の膜厚減少率を算出した。算出した膜厚減少率を用いて、以下に示す評価基準により、スピンオフ特性を評価した。
(スピンオフ特性の評価基準)
A(優):膜厚減少率2%以下
B(良):膜厚減少率2%超、3%以下
C(可):膜厚減少率3%超、8%以下
D(不可):膜厚減少率8%超
(耐腐食性試験)
 磁気記録媒体を温度85℃、相対湿度90%の条件下に48時間曝露した。その後、磁気記録媒体上の表面に生じた直径5μm以上のコロージョンスポットの数を、光学表面分析装置(ケーエルエー・テンコール株式会社製Candela7140)を用いて数え、以下の評価基準に基づいて評価した。
(耐腐食性試験の評価基準)
A(優):150箇所未満
B(良):150箇所以上、200箇所未満
C(可):200箇所以上、400箇所未満
D(不可):400箇所以上
Figure JPOXMLDOC01-appb-T000095
Figure JPOXMLDOC01-appb-T000096
Figure JPOXMLDOC01-appb-T000097
 表10~表11に示すように、実施例1~44の磁気記録媒体は、すべての評価項目において評価がA~Bであった。このことから、実施例1~44の磁気記録媒体の潤滑層は、ピックアップ特性試験、スピンオフ特性試験、耐腐食性試験の結果がいずれも良好であることが確認できた。
 特に、実施例1~5、7~10、12~27、29~32、34~44の磁気記録媒体の潤滑層は、ピックアップ特性試験およびスピンオフ特性試験の結果がいずれもAであり、良好であった。上記実施例の潤滑層に使用した化合物(1A)~(1E)、(1G)~(1J)、(1L)~(1V)、(2A)~(2E)、(2G)~(2J)、(2L)~(2V)は、いずれもR-[B]-[A]-および-[C]-[D]-Rに含まれる炭素原子数が比較的少ない、または、炭素原子数が多くても、分岐型末端基において分岐点となっている炭素原子から1級水酸基までの距離が近すぎることがなく適正である。このため、R-[B]-[A]-および-[C]-[D]-R中に存在する2級水酸基が示す保護層に対する優れた吸着力と、分岐型末端基の有する1級水酸基が示す優れた分子間力とがバランス良く効果的に作用し、水酸基の保護層への密着力がより効果的に得られたものと推定される。その結果、磁気ヘッドへの潤滑剤の付着が抑制され、優れたピックアップ特性を示したものと推定される。また、潤滑層の保護層への密着が保持され、良好なスピンオフ特性が得られたものと推定される。
 一方、表12に示すように、比較例1~11の磁気記録媒体は、ピックアップ特性試験およびスピンオフ特性試験の結果がいずれもC~Dであった。
 比較例1および7は、潤滑層に使用した化合物中のRおよびRに相当する構造が、それぞれ1級水酸基を1つのみしか有していない。このため、比較例1および7の潤滑層は、RおよびRが1級水酸基をそれぞれ2つまたは3つ有する分岐型末端基である化合物を含む実施例1~44の潤滑層と比較して、保護層への密着力が得られにくい。その結果、比較例1および7では、磁気ヘッドへの潤滑剤の付着が起こり、ピックアップ特性試験の結果がCになったものと推定される。また、比較例1および7では、保護層への密着を保持しにくいため、スピンオフ特性試験の結果がCになったものと推定される。
 比較例2~6および9は、潤滑層に使用した化合物中のRおよびRに相当する構造が、1級水酸基を2つ有する分岐型末端基を有しておらず、両末端に配置された2つの水酸基がそれぞれ隣り合う炭素原子に結合している。比較例2~6および9において使用した化合物を含む潤滑層では、化合物中の両末端に配置された2つの水酸基のうち、どちらか一方の水酸基が保護層に密着しにくい。その結果、比較例2~6および9では、磁気ヘッドへの潤滑剤の付着が起こり、ピックアップ特性試験の結果がDになったものと推定される。また、保護層への密着を保持できず、スピンオフ特性試験の結果がDになったものと推定される。さらに、比較例2~6、9では、両末端に配置された2つの水酸基がそれぞれ隣り合う炭素原子に結合している化合物を用いているため、保護層への密着力が不足して、耐腐食性試験の結果がCになったものと推定される。
 比較例8は、潤滑層に使用した化合物中のRおよびRに相当する構造がそれぞれ1級水酸基を1つのみしか有しておらず、-[B]-[A]-構造と-[C]-[D]-構造のうち一方に相当する2価の連結基のみしか存在しない。このことから、比較例8の潤滑層は、保護層への密着性が不足しているものと推定される。その結果、比較例8では、磁気ヘッドへの潤滑剤の付着が起こり、ピックアップ特性試験の結果がDになったものと推定される。また、比較例8では、保護層への密着を保持できず、スピンオフ特性試験の結果もDになったものと推定される。さらに、比較例8では、片方の末端がOHのみである化合物を用いているため、保護層への密着力が不足して、耐腐食性試験の結果がCになったものと推定される。
 比較例10、11では、1級水酸基を2つ有する末端基が分子の両末端に配置された化合物を潤滑層に用いている。しかし、比較例10、11において潤滑層に使用した化合物は、式(1)で表される含フッ素エーテル化合物における-[B]-[A]-構造および-[C]-[D]-構造に該当する2価の連結基を含まない。そのため、比較例10、11の潤滑層は、実施例1~44の潤滑層と比較して、保護層に対する吸着力が劣り、ピックアップ特性試験の結果がCまたはDとなり、スピンオフ特性試験の結果がDになったものと推定される。さらに、比較例10、11において潤滑層に使用した化合物は、PFPE鎖が1つのみであるため、潤滑層の疎水性が不十分となり、耐腐食性試験の結果がDになったものと推定される。
 保護層との密着性が良好で、厚みが薄くても、磁気記録媒体の腐食を抑制する効果が高く、ピックアップおよびスピンオフを抑制できる潤滑層を形成でき、磁気記録媒体用潤滑剤の材料として好適に用いることが出来る含フッ素エーテル化合物を提供する。
 10・・・磁気記録媒体、11・・・基板、12・・・付着層、13・・・軟磁性層、14・・・第1下地層、15・・・第2下地層、16・・・磁性層、17・・・保護層、18・・・潤滑層。

Claims (18)

  1.  下記式(1)で表されることを特徴とする含フッ素エーテル化合物。
    -[B]-[A]-CH-R[-CH-R-CH-R-CH-[C]-[D]-R (1)
    (式(1)中、[A]は下記式(2-1)で表され、式(2-1)中のaは0~3の整数である。[B]は下記式(2-2)で表され、式(2-2)中のbは0~3の整数であり、cは2~5の整数である。ただし、aとbの値の合計は1~3である。式(1)において[A]と[B]は入れ替えてもよい。[C]は下記式(3-1)で表され、式(3-1)中のdは0~2の整数である。[D]は下記式(3-2)で表され、式(3-2)中のeは0~2の整数であり、fは2~5の整数である。ただし、dとeの値の合計は1または2である。式(1)において[C]と[D]は入れ替えてもよい。Rは炭素原子数が3~30の分岐型末端基であり、下記式(4)で表される。式(4)中のLは0~6の整数を表す。式(4)中のYおよびYは、それぞれ独立に、1級水酸基を1つのみ有する、エーテル酸素原子を含んでもよい炭化水素基である。式(4)中のYは、1級水酸基を1つのみ有する、エーテル酸素原子を含んでもよい炭化水素基、または水素原子である。Rは、Rと同じであっても異なっていてもよい末端基であり、式(4)で表される炭素原子数3~30の分岐型末端基、[A]または[B]と結合する末端にエーテル酸素原子を有する炭素原子数1~30の有機基、または水酸基である。zは1または2を表す。Rはパーフルオロポリエーテル鎖である。2つまたは3つのRは一部または全部が同じであってもよいし、それぞれ異なっていてもよい。Rは下記式(5)で表される2価の連結基である。式(5)中のy1は1~3の整数であり、y2は1~3の整数である。式(5)中の左側の酸素原子に結合する点線は、R側のメチレン基との結合を示し、右側の酸素原子に結合する点線は、R側のメチレン基との結合を示す。zが2である場合、2つのRは同じであってもよいし、それぞれ異なっていてもよい。)
    Figure JPOXMLDOC01-appb-C000001
  2.  前記式(1)におけるRを表す前記式(4)が、下記式(6-1)~(6-3)のいずれかである請求項1に記載の含フッ素エーテル化合物。
    Figure JPOXMLDOC01-appb-C000002
    (式(6-1)中、gは1~6の整数を表す。XおよびXは、式(7)で表される。XとXは同じであっても異なっていてもよい。)
    (式(6-2)中、hは0~6の整数を表す。iおよびjは、それぞれ独立して1~6の整数を表す。XおよびXは、水素原子または式(7)で表される。XとXは同じであっても異なっていてもよい。)
    (式(6-3)中、kは0~6の整数を表す。p、qおよびrは、それぞれ独立して1~6の整数を表す。X、XおよびXは、水素原子または式(7)で表される。X、XおよびXは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
    (式(7)中、sは2~6の整数を表し、tは1または2を表す。)
  3.  前記式(1)におけるRが、前記式(4)で表される炭素原子数3~30の分岐型末端基である請求項1または請求項2に記載の含フッ素エーテル化合物。
  4.  前記式(1)におけるRとRの両方が、前記式(6-1)~(6-3)のいずれかの分岐型末端基である請求項2に記載の含フッ素エーテル化合物。
  5.  前記式(1)におけるR-[B]-[A]-と、-[C]-[D]-Rとが同じである請求項1または請求項2に記載の含フッ素エーテル化合物。
  6.  前記式(1)におけるzが2であって、2つのRに含まれる原子が、分子の鎖状構造中央に配置されたRに対して対称配置されている請求項1または請求項2に記載の含フッ素エーテル化合物。
  7.  前記式(1)におけるRが下記式(8)で表される請求項1または請求項2に記載の含フッ素エーテル化合物。
    Figure JPOXMLDOC01-appb-C000003
    (式(8)中、uは2~6の整数を表し、vは0または1を表す。Rは、水素原子、水酸基を含まない置換基を有してもよいアルキル基、二重結合または三重結合を少なくとも一つ有する有機基のいずれかである。ただし、前記アルキル基および前記有機基は、直鎖であっても、分岐を有していてもよい。)
  8.  前記式(8)におけるRが、炭素原子数1~6のアルキル基である請求項7に記載の含フッ素エーテル化合物。
  9.  前記式(8)におけるRが、置換基を有する炭素原子数1~6のアルキル基であり、前記置換基がフルオロ基またはシアノ基である請求項7に記載の含フッ素エーテル化合物。
  10.  前記式(8)におけるRが、芳香族炭化水素を有する炭素原子数6~12の有機基、芳香族複素環を有する炭素原子数3~10の有機基、炭素原子数2~8のアルケニル基、および炭素原子数3~8のアルキニル基のいずれかである請求項7に記載の含フッ素エーテル化合物。
  11.  前記式(8)におけるRが、メチル基、エチル基、n-プロピル基、イソプロピル基、2,2,2-トリフルオロエチル基、2,2,3,3,3-ペンタフルオロプロピル基、2,2,2,2,2,2-ヘキサフルオロイソプロピル基、2-シアノエチル基、3-シアノプロピル基、4-シアノブチル基、フェニル基、メトキシフェニル基、シアノフェニル基、フェネチル基、チエニルエチル基、N-メチルピラゾリルメチル基、アリル基、3-ブテニル基、4-ペンテニル基、プロパルギル基、3-ブチニル基、および4-ペンチニル基からなる群から選択される1つの基である請求項7に記載の含フッ素エーテル化合物。
  12.  前記式(8)におけるRが、水素原子である請求項7に記載の含フッ素エーテル化合物。
  13.  前記式(1)における2つまたは3つのRが、それぞれ独立に、下記式(9)で表されるパーフルオロポリエーテル鎖である請求項1または請求項2に記載の含フッ素エーテル化合物。
     -(CFw1-O-(CFO)w2-(CFCFO)w3-(CFCFCFO)w4-(CFCFCFCFO)w5-(CFw6-   (9)
    (式(9)中、w2、w3、w4、w5は平均重合度を示し、それぞれ独立に0~20を表す。ただし、w2、w3、w4、w5の全てが同時に0になることはない。w1、w6は、CFの数を表す平均値であり、それぞれ独立に1~3を表す。式(9)における繰り返し単位である(CFO)、(CFCFO)、(CFCFCFO)、(CFCFCFCFO)の配列順序には、特に制限はない。)
  14.  前記式(1)における2つまたは3つのRが、それぞれ独立に、下記式(10-1)~(10-4)で表されるパーフルオロポリエーテル鎖から選ばれるいずれか1種である請求項1または請求項2に記載の含フッ素エーテル化合物。
     -CF-(OCFCF-(OCF-OCF- (10-1)
    (式(10-1)中、lおよびmは平均重合度を示し、lは0.1~20を表し、mは0~20を表す。)
     -CFCF-(OCFCFCF-OCFCF- (10-2)
    (式(10-2)中、nは平均重合度を示し、0.1~15を表す。)
     -CFCFCF-(OCFCFCFCF-OCFCFCF- (10-3)
    (式(10-3)中、oは平均重合度を示し、0.1~10を表す。)
     -(CFw7-O-(CFCFCFO)w8-(CFCFO)w9-(CFw10- (10-4)
    (式(10-4)中、w8、w9は平均重合度を示し、それぞれ独立に0.1~20を表す。w7、w10は、CFの数を表す平均値であり、それぞれ独立に1~2を表す。)
  15.  数平均分子量が500~10000の範囲内である請求項1または請求項2に記載の含フッ素エーテル化合物。
  16.  請求項1または請求項2に記載の含フッ素エーテル化合物を含むことを特徴とする磁気記録媒体用潤滑剤。
  17.  基板上に、少なくとも磁性層と、保護層と、潤滑層とが順次設けられた磁気記録媒体であって、
     前記潤滑層が、請求項1または請求項2に記載の含フッ素エーテル化合物を含むことを特徴とする磁気記録媒体。
  18.  前記潤滑層の平均膜厚が0.5nm~2.0nmである請求項17に記載の磁気記録媒体。
PCT/JP2023/021328 2022-06-10 2023-06-08 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体 WO2023238906A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-094482 2022-06-10
JP2022094482 2022-06-10

Publications (1)

Publication Number Publication Date
WO2023238906A1 true WO2023238906A1 (ja) 2023-12-14

Family

ID=89118417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/021328 WO2023238906A1 (ja) 2022-06-10 2023-06-08 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体

Country Status (1)

Country Link
WO (1) WO2023238906A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006202372A (ja) * 2005-01-18 2006-08-03 Sony Corp 磁気記録媒体
US20200002640A1 (en) * 2018-07-02 2020-01-02 Seagate Technology Llc Polyfluoro lubricant compositions
WO2020184653A1 (ja) * 2019-03-12 2020-09-17 昭和電工株式会社 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2021019998A1 (ja) * 2019-07-26 2021-02-04 株式会社Moresco パーフルオロポリエーテル化合物、潤滑剤および磁気ディスク
WO2021131961A1 (ja) * 2019-12-23 2021-07-01 昭和電工株式会社 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2022131202A1 (ja) * 2020-12-18 2022-06-23 昭和電工株式会社 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2023286626A1 (ja) * 2021-07-14 2023-01-19 昭和電工株式会社 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006202372A (ja) * 2005-01-18 2006-08-03 Sony Corp 磁気記録媒体
US20200002640A1 (en) * 2018-07-02 2020-01-02 Seagate Technology Llc Polyfluoro lubricant compositions
WO2020184653A1 (ja) * 2019-03-12 2020-09-17 昭和電工株式会社 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2021019998A1 (ja) * 2019-07-26 2021-02-04 株式会社Moresco パーフルオロポリエーテル化合物、潤滑剤および磁気ディスク
WO2021131961A1 (ja) * 2019-12-23 2021-07-01 昭和電工株式会社 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2022131202A1 (ja) * 2020-12-18 2022-06-23 昭和電工株式会社 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2023286626A1 (ja) * 2021-07-14 2023-01-19 昭和電工株式会社 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体

Similar Documents

Publication Publication Date Title
JP7213813B2 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
JP7149947B2 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
US8734966B2 (en) Fluoropolyether compound, lubricant and magnetic disk each containing the same
US11479641B2 (en) Fluorine-containing ether compound, lubricant for magnetic recording medium, and magnetic recording medium
JP6968833B2 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
CN114845984B (zh) 含氟醚化合物、磁记录介质用润滑剂及磁记录介质
WO2018139174A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2011099131A1 (ja) パーフルオロポリエーテル化合物、その製造方法、該化合物を含有する潤滑剤、および磁気ディスク
CN101868521A (zh) 润滑剂和磁盘
WO2021132252A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
JPWO2019087548A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
JP5382876B2 (ja) パーフルオロポリエーテル化合物、これを含有する潤滑剤ならびに磁気ディスク
WO2023238906A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2021020076A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2021157563A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
CN116829525A (zh) 含氟醚化合物、磁记录介质用润滑剂及磁记录介质
WO2024071399A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2024048569A1 (ja) 含フッ素エーテル化合物およびその製造方法、磁気記録媒体用潤滑剤および磁気記録媒体
WO2023112813A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2023033055A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
US11661408B2 (en) Fluorine-containing ether compound, lubricant for magnetic recording medium, and magnetic recording medium
WO2022138478A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2023224093A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2023224095A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23819886

Country of ref document: EP

Kind code of ref document: A1