WO2023237073A1 - 芳胺有机化合物及其在有机电子器件中的应用 - Google Patents

芳胺有机化合物及其在有机电子器件中的应用 Download PDF

Info

Publication number
WO2023237073A1
WO2023237073A1 PCT/CN2023/099258 CN2023099258W WO2023237073A1 WO 2023237073 A1 WO2023237073 A1 WO 2023237073A1 CN 2023099258 W CN2023099258 W CN 2023099258W WO 2023237073 A1 WO2023237073 A1 WO 2023237073A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
atoms
groups
ring
organic
Prior art date
Application number
PCT/CN2023/099258
Other languages
English (en)
French (fr)
Inventor
谭甲辉
柳迪正
潘君友
Original Assignee
浙江光昊光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江光昊光电科技有限公司 filed Critical 浙江光昊光电科技有限公司
Publication of WO2023237073A1 publication Critical patent/WO2023237073A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/54Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to two or three six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/91Dibenzofurans; Hydrogenated dibenzofurans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/96Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings spiro-condensed with carbocyclic rings or ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/76Dibenzothiophenes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers

Definitions

  • the present invention relates to the technical field of organic electronic materials and devices, and in particular to an aromatic amine organic compound, a mixture thereof, and its application in organic electronic devices, especially its application in organic light-emitting diodes.
  • OLEDs organic light-emitting diodes Due to the versatility of organic semiconductor materials in synthesis, relatively low manufacturing costs, and excellent optical and electrical properties, organic light-emitting diodes (OLEDs) have great potential in applications in optoelectronic devices such as flat panel displays and lighting.
  • the phenomenon of organic electroluminescence refers to the phenomenon of converting electrical energy into light energy using organic substances.
  • An organic electroluminescent element utilizing the organic electroluminescence phenomenon usually has a structure including a positive electrode, a negative electrode, and an organic layer between them.
  • the organic layer has a multi-layer structure, and each layer contains different organic substances. Specifically, it may include a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, etc.
  • this organic electroluminescent element when a voltage is applied between the two electrodes, holes are injected into the organic layer from the positive electrode, and electrons are injected from the negative electrode into the organic layer.
  • This organic electroluminescent element has characteristics such as self-luminescence, high brightness, high efficiency, low driving voltage, wide viewing angle, high contrast, and high responsiveness.
  • HOMO highest occupied molecular orbital
  • the purpose of the present invention is to provide a class of aromatic amine organic compounds, mixtures thereof, and their applications in organic electronic devices, aiming to solve the problems of low efficiency and low lifespan of existing organic electronic devices. question.
  • a and B are independently selected from hydrogen or groups of formula (I-1) or formula (I-2), and only one of A and B is formula (I-1) or formula (I-2) group;
  • X is O, S, NR 1 , CR 2 R 3 ;
  • Y in each case may be identically or differently represented as CR 4 or N, where no more than two Y groups per ring are N;
  • L 1 is selected from substituted or unsubstituted ring carbon atoms with a number of 6 to 30
  • L 2 to L 3 are each independently selected from a single bond, and a substituted or unsubstituted ring carbon number is 6 to 30 30 arylene group or substituted or unsubstituted heteroarylene group with 2 to 30 ring carbon atoms;
  • Ar 1 to Ar 2 are each independently selected from substituted or unsubstituted aromatic or heteroaryl groups having 5 to 40 ring atoms, or aryloxy or heteroaryloxy groups having 5 to 40 ring atoms. groups, or combinations of these groups, wherein one or more groups may form a monocyclic or polycyclic aliphatic or aromatic ring system with each other and/or with the ring to which said group is bonded;
  • L 2 to L 3 are each independently selected from a substituted or unsubstituted arylene group with 6 to 30 ring carbon atoms or a substituted or unsubstituted heteroarylene group with 2 to 30 ring carbon atoms;
  • X , Y, L 1 , Ar 1 and Ar 2 have the same definitions as above.
  • L 2 and/or L 3 are not fluorene.
  • a mixture comprising an organic compound as described above, and at least one other organic functional material selected from the group consisting of hole injection materials, hole transport materials, electron transport materials, electron injection materials, and electron blocking materials.
  • organic functional material selected from the group consisting of hole injection materials, hole transport materials, electron transport materials, electron injection materials, and electron blocking materials.
  • the present invention also provides an organic electronic device, including a functional layer containing an organic compound or mixture as described above.
  • the above-mentioned organic electronic device is an organic electroluminescent device, which includes a first electrode; a hole transport region, which is disposed on the first electrode; a light-emitting layer, which is disposed on the hole transport region; and an electron transport region, is disposed on the light-emitting layer; and a second electrode is disposed on the electron transport region; wherein the hole transport region contains at least one organic compound or mixture as described above.
  • the hole transport region has a multi-layer structure
  • the multi-layer structure has a plurality of layers
  • at least one layer in the multi-layer structure that is in contact with the light-emitting layer includes one of the above The organic compound or mixture.
  • the organic compound of the present invention is used as a hole auxiliary layer in an organic electroluminescent device, which can effectively promote hole transport from the hole transport layer to the light-emitting layer, thereby achieving high luminous efficiency and long life of the device.
  • the invention provides an aromatic amine organic compound and its application in organic electroluminescent devices, as well as organic electronic devices containing the aromatic amine organic compound and its preparation method.
  • organic electroluminescent devices as well as organic electronic devices containing the aromatic amine organic compound and its preparation method.
  • the energy level structure of the organic material singlet energy level S1, triplet energy level T1, HOMO, and LUMO play a key role. The determination of these energy levels is introduced below.
  • HOMO and LUMO energy levels can be measured by photoelectric effects, such as XPS (X-ray photoelectron spectroscopy) and UPS (ultraviolet photoelectron spectroscopy) or by cyclic voltammetry (hereinafter referred to as CV).
  • photoelectric effects such as XPS (X-ray photoelectron spectroscopy) and UPS (ultraviolet photoelectron spectroscopy) or by cyclic voltammetry (hereinafter referred to as CV).
  • CV cyclic voltammetry
  • DFT density functional theory
  • the singlet energy level S1 of organic materials can be determined by luminescence spectra, and the triplet energy level T1 can be measured by low-temperature time-resolved luminescence spectra.
  • S1 and T1 can also be obtained through quantum simulation calculations (such as through Time-dependent DFT), such as Through the commercial software Gaussian 09W (Gaussian Inc.), specific simulation methods can be found in WO2011141110 or as described below in the examples.
  • ⁇ E ST is defined as (S1-T1).
  • the absolute values of HOMO, LUMO, S1, and T1 depend on the measurement method or calculation method used. Even for the same method, different evaluation methods, such as the starting point and peak point on the CV curve, can give different HOMO. /LUMO value. Therefore, reasonable and meaningful comparisons should be made using the same measurement methods and the same evaluation methods.
  • the values of HOMO, LUMO, S1, and T1 are based on Time-dependent DFT simulation, but do not affect the application of other measurement or calculation methods.
  • (HOMO-1) is defined as the second highest occupied orbital energy level
  • (HOMO-2) is the third highest occupied orbital energy level
  • (LUMO+1) is defined as the second lowest unoccupied orbital energy level
  • (LUMO+2) is the third lowest occupied orbital energy level, and so on.
  • composition and printing ink, or ink have the same meaning and are interchangeable.
  • aromatic group, aromatic group, and aromatic ring system have the same meaning and are interchangeable.
  • heteroaromatic group heteroaromatic and heteroaromatic ring system have the same meaning and can be interchanged.
  • substituted means that the hydrogen atom in the substituent is replaced by the substituent.
  • the "number of ring atoms" represents the number of structural compounds (for example, monocyclic compounds, condensed ring compounds, cross-linked compounds, carbocyclic compounds, heterocyclic compounds) in which atoms are bonded to form a ring that constitute the ring itself.
  • the ring is substituted by a substituent, the atoms contained in the substituent are not included in the ring-forming atoms.
  • the “number of ring atoms” described below is the same unless otherwise specified.
  • the benzene ring has 6 ring atoms
  • the naphthalene ring has 10 ring atoms
  • the thienyl ring has 5 ring atoms.
  • aromatic ring system or aromatic group refers to a hydrocarbon group containing at least one aromatic ring, including monocyclic groups and polycyclic ring systems.
  • Heteroaromatic ring system or heteroaromatic group refers to a hydrocarbon group (containing heteroatoms) containing at least one heteroaromatic ring, including monocyclic groups and polycyclic ring systems.
  • the heteroatoms are preferably selected from Si, N, P, O, S and/or Ge, particularly preferably from Si, N, P, O and/or S.
  • These polycyclic rings can have two or more rings in which two carbon atoms are shared by two adjacent rings, i.e., fused rings. At least one of these polycyclic ring species is aromatic or heteroaromatic.
  • an aromatic or heteroaromatic group includes not only aryl or heteroaryl systems, but also systems in which multiple aryl or heteroaromatic groups may be interrupted by short non-aromatic units ( ⁇ 10% of non-H atoms, preferably less than 5% of non-H atoms, such as C, N or O atoms). Therefore, systems such as 9,9'-spirobifluorene, 9,9-diarylfluorene, triarylamines, diaryl ethers, etc. are also considered to be aromatic groups for the purpose of this invention.
  • aromatic groups include: benzene, naphthalene, anthracene, phenanthrene, perylene, tetracene, pyrene, benzopyrene, triphenylene, acenaphthylene, fluorene, and derivatives thereof.
  • heteroaromatic groups include: furan, benzofuran, thiophene, benzothiophene, pyrrole, pyrazole, triazole, imidazole, oxazole, oxadiazole, thiazole, tetrazole, indole, carbide Azole, pyrroloimidazole, pyrrolopyrrole, thienopyrrole, thienothiophene, furopyrrole, furanofuran, thienofuran, benzisoxazole, benzisothiazole, benzimidazole, pyridine, pyrazine, Pyridazine, pyrimidine, triazine, quinoline, isoquinoline, o-naphthalene, quinoxaline, phenanthridine, primidine, quinazoline, quinazolinone, and their derivatives.
  • alkyl may represent linear, branched and/or cyclic alkyl.
  • the alkyl group may have a carbon number of 1 to 50, 1 to 30, 1 to 20, 1 to 10 or 1 to 6.
  • alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, isobutyl, 2-ethylbutyl, 3,3-di Methylbutyl, n-pentyl, isopentyl, neopentyl, tert-pentyl, cyclopentyl, 1-methylpentyl, 3-methylpentyl, 2-ethylpentyl, 4-methyl -2-pentyl, n-hexyl, 1-methylhexyl, 2-ethylhexyl, 2-butylhexyl, cyclohexyl, 4-methylcyclo
  • An organic compound of the present invention has a structure represented by general formula (I):
  • a and B are independently selected from hydrogen or groups of formula (I-1) or formula (I-2), and only one of A and B is formula (I-1) or formula (I-2) Group; " * " indicates the position of attachment; The Y group is N.
  • L 1 is selected from a substituted or unsubstituted arylene group with 6 to 30 ring carbon atoms or a substituted or unsubstituted heteroarylene group with 2 to 30 ring carbon atoms;
  • L 2 to L 3 are each independent Selected from a single bond, a substituted or unsubstituted arylene group with 6 to 30 ring carbon atoms or a substituted or unsubstituted heteroarylene group with 2 to 30 ring carbon atoms; each of Ar 1 to Ar 2 Independently selected from substituted or unsubstituted aromatic or heteroaromatic groups having 5 to 40 ring atoms, or aryloxy or heteroaryloxy groups having 5 to 40 ring atoms, or these groups A combination in which one or more groups may form a monocyclic or polycyclic aliphatic or aromatic ring system with each other and/or with the ring to which the group is bonded; R 1 to R 4 are substituents, in each The two occurrences may be the
  • each occurrence of R 1 to R 4 is independently selected from D, cyano group, linear alkyl group with 1 to 18 C atoms, or branched or cyclic alkyl group with 3 to 18 C atoms. , alkoxy, thioalkoxy or silyl, or a substituted or unsubstituted aromatic group, heteroaryl group, aryloxy group or heteroaryloxy group having 5 to 30 ring atoms; more preferably
  • each occurrence of R 1 to R 4 is independently selected from D, a straight-chain alkyl group with 1 to 12 C atoms, or a substituted or unsubstituted aromatic group with 5 to 20 ring atoms, Heteroaryl group, aryloxy group or heteroaryloxy group; in the most preferred embodiment, each occurrence of R 1 -R 4 is independently selected from D, a straight-chain alkyl group with 1 to 6 C atoms, or A substituted or unsubstituted aromatic group, a
  • each occurrence of R 1 -R 4 is fully or partially deuterated, respectively.
  • the organic compound according to the present invention has a structure represented by general formula (II):
  • L 2 to L 3 are each independently selected from a substituted or unsubstituted arylene group with 6 to 30 ring carbon atoms or a substituted or unsubstituted heteroarylene group with 2 to 30 ring carbon atoms;
  • X , Y, L 1 , Ar 1 and Ar 2 have the same definitions as above.
  • L 2 and/or L 3 are not fluorene.
  • two adjacent Y can be bonded to the group represented by formula (I-3) or formula (I-4) at the same time and the remaining Y is in The same or different in each case is represented by CR 4 or N,
  • the dotted bond represents the bonding position
  • Z represents N or CR 5
  • Q is selected from O, S, NR 1 , CR 2 R 3 , R 4 has the same meaning as above, and R 5 has the same meaning as R 4 .
  • organic compounds according to the present invention have structures represented by general formulas (II-01)-(II-10):
  • the dotted line represents the connecting bond; the meanings of Aryl group or substituted or unsubstituted heteroaromatic group having 2 to 30 ring carbon atoms.
  • L 2 and/or L 3 are not fluorene.
  • L1 is independently selected from the following groups and combinations thereof:
  • each time X 1 appears it is independently selected from CR 6 or N;
  • R 6 to R 11 is independently selected from: H, D, or straight-chain alkyl having 1 to 20 C atoms, or straight-chain alkoxy having 1 to 20 C atoms, or having Linear thioalkoxy group with 1 to 20 C atoms, or branched or cyclic alkyl group with 3 to 20 C atoms, or branched or cyclic alkoxy group with 3 to 20 C atoms base, or have 3 to Branched or cyclic thioalkoxy, silyl group with 20 C atoms, or ketone group with 1 to 20 C atoms, or alkoxycarbonyl group with 2 to 20 C atoms, or 7 Aryloxycarbonyl to 20 C atoms, or cyano, carbamoyl, haloformyl, formyl, isocyanate, isocyanate, thiocyanate, isothiocyanate, hydroxyl, nitro, CF 3 , Cl, Br, F, crosslinkable group
  • L1 is independently selected from the following groups or combinations thereof:
  • H atoms on the ring can be further substituted.
  • L 1 is selected from the following groups and combinations thereof:
  • R 12 to R 28 have the same meaning as R 1 .
  • L 2 -L 3 are independently selected from the following groups and combinations thereof:
  • each time X 2 appears it is independently selected from CR 1 or N;
  • R 1 to R 6 is independently selected from: H, D, or straight-chain alkyl having 1 to 20 C atoms, or straight-chain alkoxy having 1 to 20 C atoms, or having Linear thioalkoxy group with 1 to 20 C atoms, or branched or cyclic alkyl group with 3 to 20 C atoms, or branched or cyclic alkoxy group with 3 to 20 C atoms group, or a branched or cyclic thioalkoxy group, silyl group with 3 to 20 C atoms, or a ketone group with 1 to 20 C atoms, or an alkoxy group with 2 to 20 C atoms Carbonyl, or aryloxycarbonyl having 7 to 20 C atoms, or cyano, carbamoyl, haloformyl, formyl, isocyanate, isocyanate, thiocyanate, isothiocyanate, hydroxyl , nitro, CF 3 , Cl,
  • L 2 to L 3 are each independently selected from the following groups and combinations thereof:
  • R 12 to R 28 have the same meanings as above.
  • Ar 1 and Ar 2 are independently selected from the following groups and combinations thereof:
  • Z 1 is selected from N or CR 29 ;
  • R 29 to R 34 is independently selected from: H, D, or straight-chain alkyl having 1 to 20 C atoms, or straight-chain alkoxy having 1 to 20 C atoms, or having Linear thioalkoxy group with 1 to 20 C atoms, or branched or cyclic alkyl group with 3 to 20 C atoms, or branched or cyclic alkoxy group with 3 to 20 C atoms group, or a branched or cyclic thioalkoxy group, silyl group with 3 to 20 C atoms, or a ketone group with 1 to 20 C atoms, or an alkoxy group with 2 to 20 C atoms Carbonyl, or aryloxycarbonyl having 7 to 20 C atoms, or cyano, carbamoyl, haloformyl, formyl, isocyanate, isocyanate, thiocyanate, isothiocyanate, hydroxyl , nitro, CF 3 , Cl,
  • Ar 1 and Ar 2 are independently selected from the following groups and their combinations:
  • the above groups are optionally substituted by 0, 1, 2 or 3 selected from D, F, Cl, Br, cyano, C1-C4 alkyl, C1-C3 haloalkyl, phenyl, naphthyl, fluorenyl, spiro Substituted by fluorenyl and C3-C10 cycloalkyl;
  • a 1 has the same meaning as the aforementioned R 1 .
  • the organic compound according to the present invention is preferably composed of, but not limited to, the following structures:
  • the organic compound according to the present invention has a glass transition temperature Tg ⁇ 100°C. In a preferred embodiment, its Tg ⁇ 120°C. In a more preferred embodiment, its Tg is ⁇ 140°C. In a more preferred embodiment, its Tg ⁇ 160°C. In a most preferred embodiment, its Tg is ⁇ 180°C.
  • the organic compound according to the present invention is partially deuterated, preferably 10% of H is deuterated, more preferably 20% of H is deuterated, and preferably 30% H is deuterated, preferably 40% of H is deuterated.
  • the organic compound according to the invention is a small molecule material.
  • organic compounds according to the present invention are used in evaporable OLED devices.
  • organic compounds according to the invention have a molecular weight of ⁇ 1000 g/mol, preferably ⁇ 900 g/mol, very preferably ⁇ 850 g/mol, more preferably ⁇ 800 g/mol, most preferably ⁇ 700 g/mol.
  • the present invention also relates to a method for synthesizing organic compounds according to general formula (I) or general formula (II), in which raw materials containing active groups are used for reaction.
  • These reactive starting materials contain at least one leaving group, for example, bromine, iodine, boronic acid or boronic ester.
  • Suitable reactions for forming C-C linkages are well known to those skilled in the art and are described in the literature, particularly suitable and preferred coupling reactions are SUZUKI, STILLE and HECK coupling reactions.
  • the present invention also relates to a polymer in which at least one repeating unit contains a structure represented by general formula (I) or general formula (II).
  • the polymer is a non-conjugated polymer, in which the structural unit represented by general formula (I) or general formula (II) is on the side chain.
  • the polymer is a conjugated polymer.
  • small molecule refers to molecules that are not polymers, oligomers, dendrimers, or blends. In particular, there are no repeating structures in small molecules. The molecular weight of the small molecule is ⁇ 3000g/mol, preferably ⁇ 2000g/mol, and most preferably ⁇ 1500g/mol.
  • Polymers include homopolymers, copolymers, and block copolymers.
  • polymers also include dendrimer. Please refer to the synthesis and application of dendrimer. See [Dendrimers and Dendrons, Wiley-VCH Verlag GmbH & Co. KGaA, 2002, Ed. George R. Newkome, Charles N. Moorefield, Fritz Vogtle.].
  • Conjugated polymer is a polymer. Its main chain backbone is mainly composed of sp2 hybrid orbitals of C atoms. Famous examples are: polyacetylene polyacetylene and poly (phenylene vinylene). Its main chain The C atoms on the polymer can also be replaced by other non-C atoms, and when the sp2 hybridization on the main chain is interrupted by some natural defects, it is still considered a conjugated polymer.
  • the conjugated polymer in the present invention also includes aryl amine, aryl phosphine and other heterocyclic aromatic hydrocarbons (heteroarmotics) and organometallic complexes on the main chain. )wait.
  • the synthesis method of the polymer is selected from SUZUKI-, YAMAMOTO-, STILLE-, NIGESHI-, KUMADA-, HECK-, SONOGASHIRA-, HIYAMA-, FUKUYAMA-, HARTWIG-BUCHWALD- and ULLMAN.
  • the glass transition temperature (Tg) of the polymer according to the present invention is ⁇ 100°C, preferably ⁇ 120°C, more preferably ⁇ 140°C, more preferably ⁇ 160°C, and optimally is ⁇ 180°C.
  • the molecular weight distribution (PDI) of the polymer according to the present invention is preferably in the range of 1 to 5, more preferably in the range of 1 to 4, more preferably in the range of 1 to 3, and even more preferably in the range of 1 ⁇ 2, most preferably 1-1.5.
  • the weight average molecular weight (Mw) of the polymer according to the present invention is preferably in the range of 10,000 to 1,000,000, more preferably in the range of 50,000 to 500,000, and more preferably in the range of 100,000 to 40 Ten thousand, more preferably 150,000 to 300,000, most preferably 200,000 to 250,000.
  • the present invention also relates to a mixture, including an organic compound as described above, and at least one other organic functional material, the other organic functional material being selected from the group consisting of hole injection materials (HIM), hole transport materials ( HTM), electron transport material (ETM), electron injection material (EIM), electron blocking material (EBM), hole blocking material (HBM), emitter (Emitter), host material (Host) and organic dyes.
  • HIM hole injection materials
  • HTM hole transport materials
  • ETM electron transport material
  • EIM electron injection material
  • EBM electron blocking material
  • Emitter emitter
  • host material Host
  • organic dyes organic dyes
  • organic functional materials are described in detail in WO2010135519A1, US20090134784A1 and WO2011110277A1. The entire contents of these three patent documents are hereby incorporated by reference.
  • Organic functional materials can be small molecules and polymer materials.
  • the mixture contains an organic compound according to the invention and a phosphorescent emitter.
  • the organic compound according to the present invention can be used as the main body, and the weight percentage of the phosphorescent emitter is ⁇ 30wt%, preferably ⁇ 25wt%, and more preferably ⁇ 20wt%.
  • the mixture contains an organic compound according to the invention, a further host material and a phosphorescent emitter.
  • the organic compound according to the present invention is used as a co-host material, and its weight percentage is ⁇ 10wt%, preferably ⁇ 20wt%, more preferably ⁇ 30wt%, and most preferably ⁇ 40wt%.
  • the mixture contains an organic compound according to the invention, a phosphorescent emitter and a host material.
  • the organic compound according to the present invention can be used as an auxiliary light-emitting material, and the weight ratio of the organic compound to the phosphorescent emitter is from 1:2 to 2:1.
  • the T1 of the organic compound according to the invention is higher than that of the phosphorescent emitter.
  • the mixture includes an organic compound according to the invention, and another TADF material.
  • the mixture according to the present invention includes one organic functional material H1, selected from the organic compounds described above, and at least one other organic functional material H2, selected from holes (also known as Hole) injection or transport material (HIM/HTM), organic host material (Host).
  • holes also known as Hole injection or transport material (HIM/HTM) injection or transport material (HIM/HTM), organic host material (Host).
  • At least one of H1 and H2 has ((LUMO+1)-LUMO) ⁇ 0.2eV, preferably ⁇ 0.25eV, more preferably ⁇ 0.3eV , better is ⁇ 0.35eV, very good is ⁇ 0.4eV, and best is ⁇ 0.45eV.
  • the mixture according to the present invention wherein H1 has ((LUMO+1)-LUMO) ⁇ 0.2 eV, preferably ⁇ 0.25eV, more preferably ⁇ 0.3eV, still more preferably ⁇ 0.35eV, very preferably ⁇ 0.4eV, most preferably ⁇ 0.45eV.
  • At least one of H1 and H2 has ((HOMO-(HOMO-1)) ⁇ 0.2eV, preferably ⁇ 0.25eV, more preferably ⁇ 0.3 eV, more preferably ⁇ 0.35eV, very preferably ⁇ 0.4eV, most preferably ⁇ 0.45eV.
  • the mixture according to the present invention wherein H2 ((HOMO-(HOMO-1)) ⁇ 0.2eV, preferably ⁇ 0.25eV, better still ⁇ 0.3eV, even better is ⁇ 0.35eV, very preferably ⁇ 0.4eV, most preferably ⁇ 0.45eV.
  • the mixture wherein 1) H1 has a ⁇ E(S1-T1) ⁇ 0.30eV, preferably ⁇ 0.25eV, more preferably ⁇ 0.20eV, preferably ⁇ 0.10 eV; and/or 2) the LUMO of H2 is higher than the LUMO of H1, and the HOMO of H2 is lower than the HOMO of H1.
  • the mixture wherein H1 and H2 have a type II semiconductor heterojunction structure, and min((LUMO(H1)-HOMO(H2),LUMO(H2)-HOMO(H1 )) ⁇ min(ET(H1),ET(H2))+0.1eV, where LUMO(H1), HOMO(H1) and ET(H1) are the lowest unoccupied orbital, the highest occupied orbital and the triplet state of H1 respectively Energy levels, LUMO(H2), HOMO(H2) and ET(H2) are respectively the lowest unoccupied orbital, the highest occupied orbital and the triplet energy level of H2.
  • the more preferred ones are min((LUMO(H1)-HOMO( H2),LUMO(H2)-HOMO(H1)) ⁇ min(ET(H1),ET(H2)); more preferred is min((LUMO(H1)-HOMO(H2),LUMO(H2)- HOMO(H1)) ⁇ min(ET(H1),ET(H2))-0.1eV.
  • the H1 and H2 have an I-type semiconductor heterojunction structure, and the difference between the singlet energy level and the triplet energy level (S1-T1) of H1 or H2 is less than or equal to 0.25eV, which is greater than Preferably it is less than or equal to 0.20eV, more preferably less than or equal to 0.15eV, still more preferably less than or equal to 0.10eV.
  • the molar ratio of H1 and H2 in the mixture is from 1:9 to 9:1; a preferred molar ratio is 2:8 to 8:2; a preferred molar ratio is 3 :7 to 7:3; the more preferred molar ratio is 4:6 to 6:4; the most preferred molar ratio is 4.5:5.5 to 5.5:4.5.
  • the mixture in which the difference in molecular weight of H1 and H2 does not exceed 100 Dalton, preferably does not exceed 80 Dalton, better still does not exceed 70 Dalton, better still does not exceed 60 Dalton, very preferably No more than 40Dalton, preferably no more than 30Dalton.
  • the difference in the sublimation temperatures of H1 and H2 does not exceed 50K; a more preferred difference in sublimation temperatures does not exceed 30K; a more preferred difference in sublimation temperatures does not exceed 20K; most preferably Preferred sublimation temperatures differ by no more than 10K.
  • At least one of H1 and H2 in the mixture according to the present invention has a glass transition temperature Tg ⁇ 100°C; in a preferred embodiment, at least one has a Tg ⁇ 120°C; in one In a more preferred embodiment, at least one has a Tg ⁇ 140°C; in a more preferred embodiment, at least one has a Tg ⁇ 160°C; in a most preferred embodiment, at least one has a Tg ⁇ 180°C.
  • Organic functional layers include, but are not limited to, hole injection layer (HIL), hole transport layer (HTL), electron transport layer (ETL), electron injection layer (EIL), electron blocking layer (EBL), hole blocking layer (HBL), light emitting layer (EML).
  • HIL hole injection layer
  • HTL hole transport layer
  • ETL electron transport layer
  • EIL electron injection layer
  • EBL electron blocking layer
  • HBL hole blocking layer
  • EML light emitting layer
  • organic compounds according to the present invention are used in the light-emitting layer.
  • organic compounds according to the invention are used in hole transport layers.
  • singlet host materials singlet luminophores, TADF luminophores, and HTM are described in detail below (but are not limited to this).
  • singlet host materials are not particularly limited, and any organic compound may be used as a host as long as its singlet energy is higher than that of the luminophore, especially the singlet luminophor or the fluorescent luminophore.
  • organic compounds used as singlet host materials may be selected from compounds containing cyclic aromatic hydrocarbons, such as benzene, biphenyl, triphenyl, benzo, naphthalene, anthracene, pyrene, phenanthrene, fluorene, pyrene, chrysene, perylene, Aromatic heterocyclic compounds, such as dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolecarbazole, pyridine Indole, pyrrodipyridine, pyrazole, imidazole, triazole, isoxazole, thiazole, oxadiazole, oxtriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, tria
  • the singlet host material may be selected from compounds containing at least one of the following groups:
  • each time Y 0 appears it is independently selected from C(R) 2 or NR or O or S; each time X 0 appears, it is independently selected from CR or N.
  • Each time R appears it is independently selected from the following bases. Groups: hydrogen, deuterium, halogen atoms (F, Cl, Br, I), cyano, alkyl, alkoxy, amino, alkenyl, alkynyl, aralkyl, heteroalkyl, aryl and heteroaryl , n is selected from an integer from 1 to 20.
  • the singlet host is selected from derivatives of anthracene, such as CN102224614 B, CN 100471827 C, CN 1914293 B, WO2015033559A1, US2014246657A1, WO2016117848A1, WO2016117861A1, WO2016 171429A2, CN102369256B, CN102428158B and other patent documents disclosed of.
  • derivatives of anthracene such as CN102224614 B, CN 100471827 C, CN 1914293 B, WO2015033559A1, US2014246657A1, WO2016117848A1, WO2016117861A1, WO2016 171429A2, CN102369256B, CN102428158B and other patent documents disclosed of.
  • anthracene-based singlet host materials are listed below:
  • the anthracene-based singlet host material is deuterated, that is, the host material molecule contains at least one deuterium atom.
  • the host material molecule contains at least one deuterium atom.
  • Singlet emitters tend to have longer conjugated ⁇ electron systems. So far, there have been many examples, such as styrylamine and its derivatives disclosed in JP2913116B and WO2001021729A1, indenofluorene and its derivatives disclosed in WO2008/006449 and WO2007/140847, and US7233019 and KR2006-0006760. Triarylamine derivatives of pyrene.
  • the singlet luminophore can be selected from the group consisting of mono-styrene amine, di-styrene amine, tri-styrene amine, tetra-styrene amine, styrene phosphine, styrene ether and aromatic amine.
  • a monovalent styrylamine refers to a compound which contains an unsubstituted or substituted styryl group and at least one amine, preferably an aromatic amine.
  • a dibasic styrylamine refers to a compound containing two unsubstituted or substituted styryl groups and at least one amine, preferably an aromatic amine.
  • a trivalent styrene amine refers to a compound containing three unsubstituted or substituted styrene groups and at least one amine, preferably an aromatic amine.
  • a quaternary styrylamine refers to a compound containing four unsubstituted or substituted styryl groups and at least one amine, preferably an aromatic amine.
  • a preferred styrene is stilbene, which may be further substituted.
  • the corresponding definitions of phosphines and ethers are similar to those of amines.
  • Arylamine or aromatic amine refers to a compound containing three unsubstituted or substituted aromatic or heterocyclic ring systems directly linked to nitrogen. At least one of these aromatic or heterocyclic ring systems is preferably a fused ring system and preferably has at least 14 aromatic ring atoms.
  • aromatic anthracene amines aromatic anthracene diamines, aromatic pyrene amines, aromatic pyrene diamines, aromatic diamines and aromatic diamines.
  • An aromatic anthracene amine refers to a compound in which a divalent arylamine group is attached directly to the anthracene, preferably at the 9 position.
  • An aromatic anthracene diamine refers to a compound in which two dibasic arylamine groups are attached directly to the anthracene, preferably at the 9,10 positions.
  • Aromatic pyrene amines, aromatic pyrene diamines, aromatic diamines and aromatic diamines are similarly defined, with the dibasic arylamine group preferably linked to the 1 or 1,6 position of the pyrene.
  • singlet emitters based on vinylamines and aromatic amines can be found in the following patent documents: WO 2006/000388, WO 2006/058737, WO 2006/000389, WO 2007/065549, WO 2007 /115610, US 7250532 B2, DE 102005058557 A1, CN 1583691 A, JP 08053397 A, US 6251531 B1, US 2006/210830 A, EP 1957606 A1 and US 2008/0113101 A1.
  • the entire contents of the patent documents listed above are hereby incorporated by reference.
  • Further preferred singlet emitters may be selected from indenofluorene-amines and indenofluorene-diamines, as disclosed in WO 2006/122630, benzindenofluorene-amines and benzindenofluorene-diamines , as disclosed in WO 2008/006449, dibenzoindenofluorene-amine and dibenzoindenofluorene-diamine, as disclosed in WO2007/140847.
  • Further preferred singlet luminophores can be selected from fluorene-based fused ring systems, such as those disclosed in US2015333277A1, US2016099411A1, and US2016204355A1.
  • More preferred singlet luminophores can be selected from pyrene derivatives, such as the structure disclosed in US2013175509A1; triarylamine derivatives of pyrene, such as the triarylamine derivatives of pyrene containing dibenzofuran units disclosed in CN102232068B; others Triarylamine derivatives of pyrene with specific structures are disclosed in CN105085334A and CN105037173A.
  • polycyclic aromatic hydrocarbon compounds especially derivatives of the following compounds: anthracene such as 9,10-bis(2-naphthoanthracene), naphthalene, tetraphenyl, xanthene, phenanthrene , Pyrene (such as 2,5,8,11-tetra-t-butylperylene), indenopyrene, phenylene such as (4,4'-bis(9-ethyl-3-carbazolevinyl)-1 , 1'-biphenyl), diindenopyrene, decacyclocene, hexabenzocene, fluorene, spirobifluorene, arylpyrene (such as US20060222886), arylene vinylene (such as US5121029, US5130603), cyclopentadiene Alkenes such as tetraphenylcyclopenta
  • This type of material generally has a small singlet-triplet energy level difference ( ⁇ E ST ), and triplet excitons can be converted into singlet excitons to emit light through anti-intersystem crossing. This makes full use of singlet and triplet excitons formed under electrical excitation. The quantum efficiency within the device can reach 100%. At the same time, the material structure is controllable, has stable properties, is cheap and does not require precious metals, and has broad application prospects in the OLED field.
  • TADF materials need to have a small singlet-triplet energy level difference, preferably ⁇ E ST ⁇ 0.3eV, the second best is ⁇ E ST ⁇ 0.2eV, and the best is ⁇ E ST ⁇ 0.1eV.
  • the TADF material has a relatively small ⁇ E ST , and in another preferred embodiment, the TADF material has a better fluorescence quantum efficiency.
  • TADF luminescent materials can be found in the following patent documents: CN103483332(A), TW201309696(A), TW201309778(A), TW201343874(A), TW201350558(A), US20120217869(A1), WO2013133359(A1), WO20 13154064( A1), Adachi, et.al.Adv.Mater., 21, 2009, 4802, Adachi, et.al.Appl.Phys.Lett., 98, 2011, 083302, Adachi, et.al.Appl.Phys.Lett .,101,2012,093306,Adachi,et.al.Chem.Commun.,48,2012,11392,Adachi,et.al.Nature Photonics,6,2012,253,Adachi,et.al.Nature,492, 2012, 234, Adachi, et.al.
  • TADF luminescent materials Some examples of suitable TADF luminescent materials are listed below:
  • Suitable organic HTM materials may optionally contain compounds containing the following structural units: phthalocyanine, porphyrin, amine, aromatic amine, biphenyl triarylamine, thiophene, thiophene, pyrrole, aniline, carbazole, indolozofluorene and their derivatives.
  • cyclic aromatic amine derivative compounds useful as HTM include (but are not limited to) the following general structures:
  • Each Ar 1 -Ar 9 can be independently selected from cyclic aromatic hydrocarbon compounds, such as benzene, biphenyl, triphenyl, benzo, naphthalene, anthracene, phenadene, phenanthrene, fluorene, pyrene, chrysene, perylene, azulene; aromatic Heterocyclic compounds such as dibenzothiophene, dibenzofuran, furan, thiophene, benzofuran, benzothiophene, carbazole, pyrazole, imidazole, triazole, isoxazole, thiazole, oxadiazole, oxazole Triazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazo
  • Ar 1 -Ar 9 can be further substituted, replacing The radicals may be selected from hydrogen, deuterium, alkyl, alkoxy, amino, alkene, alkyne, aralkyl, heteroalkyl, aryl and heteroaryl.
  • Ar 1 -Ar 9 can be independently selected from groups containing the following structural units:
  • X 1 -X 8 are CH or N; Ar 10 is defined as Ar 1 ; n is defined as above.
  • the present invention also relates to a composition
  • a composition comprising at least one organic compound or mixture as described above, and at least one organic solvent; the at least one organic solvent is selected from aromatic or heteroaromatic, ester, aromatic Ketones or aromatic ethers, aliphatic ketones or aliphatic ethers, alicyclic or olefin compounds, or borate or phosphate ester compounds, or a mixture of two or more solvents.
  • said at least one organic solvent is selected from aromatic or heteroaromatic based solvents.
  • aromatic or heteroaromatic-based solvents suitable for the present invention include, but are not limited to: p-diisopropylbenzene, pentylbenzene, tetralin, cyclohexylbenzene, chloronaphthalene, 1,4-dimethylnaphthalene , 3-isopropylbiphenyl, p-methylcumene, dipentylbenzene, tripentylbenzene, amyltoluene, o-diethylbenzene, m-diethylbenzene, p-diethylbenzene, 1,2,3,4 -Tetramethylbenzene, 1,2,3,5-tetramethylbenzene, 1,2,4,5-tetramethylbenzene, butylbenzene, dodecylbenzene, dihexylbenzene, dibutylbenzene, p-diisopropylbenzene , cyclohexyl
  • aromatic ketone-based solvents suitable for the present invention include, but are not limited to: 1-tetralone, 2-tetralone, 2-(phenylepoxy)tetralone, 6-(methoxy)tetralone, base) tetralone, acetophenone, phenylacetone, benzophenone, and their derivatives, such as 4-methylacetophenone, 3-methylacetophenone, 2-methylacetophenone, 4-methylpropiophenone, 3-methylpropiophenone, 2-methylpropiophenone, etc.
  • aromatic ether-based solvents suitable for the present invention include, but are not limited to: 3-phenoxytoluene, butoxybenzene, p-anisaldehyde dimethylacetal, tetrahydro-2-phenoxy-2H -Pyran, 1,2-dimethoxy-4-(1-propenyl)benzene, 1,4-benzodioxane, 1,3-dipropylbenzene, 2,5-dimethoxy Toluene, 4-ethyl basic ether, 1,3-dipropoxybenzene, 1,2,4-trimethoxybenzene, 4-(1-propenyl)-1,2-dimethoxybenzene, 1, 3-Dimethoxybenzene, glycidyl phenyl ether, dibenzyl ether, 4-tert-butyl anisole, trans-p-propenyl anisole, 1,2-dimethoxybenzene, 1-methyl Oxynaphthalene, diphenyl ether
  • the at least one solvent can be selected from: aliphatic ketones, such as 2-nonanone, 3-nonanone, 5-nonanone, 2-nonanone, -Decanone, 2,5-hexanedione, 2,6,8-trimethyl-4-nonanone, phoenone, phor Ketone, isophorone, di-n-amyl ketone, etc.; or aliphatic ethers, such as amyl ether, hexyl ether, dioctyl ether, ethylene glycol dibutyl ether, diethylene glycol diethyl ether, diethylene glycol butyl methyl ether Ether, diethylene glycol dibutyl ether, triethylene glycol dimethyl ether, triethylene glycol ethyl methyl ether, triethylene glycol butyl methyl ether, tripropylene glycol dimethyl ether, tetraethylene glycol dimethyl ether,
  • the at least one solvent can be selected from the group consisting of ester-based solvents: alkyl caprylate, alkyl sebacate, alkyl stearate, benzene. Alkyl formate, alkyl phenylacetate, alkyl cinnamate, alkyl oxalate, alkyl maleate, alkyl lactone, alkyl oleate, etc. Particularly preferred are octyl octanoate, diethyl sebacate, diallyl phthalate, and isononyl isononanoate.
  • the solvent can be used alone or as a mixture of two or more organic solvents.
  • a composition according to the present invention includes at least one organic compound or polymer or mixture as described above and at least one organic solvent, and may also include another organic solvent.
  • another organic solvent include (but are not limited to): methanol, ethanol, 2-methoxyethanol, dichloromethane, chloroform, chlorobenzene, o-dichlorobenzene, tetrahydrofuran, anisole, morpholine, Toluene, o-xylene, m-xylene, p-xylene, 1,4dioxane, acetone, methyl ethyl ketone, 1,2dichloroethane, 3-phenoxytoluene, 1,1 ,1-trichloroethane, 1,1,2,2-tetrachloroethane, ethyl acetate, butyl acetate, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, tetralin , de
  • solvents particularly suitable for the present invention are solvents with a Hansen solubility parameter in the following range:
  • ⁇ d (dispersion force) is in the range of 17.0 ⁇ 23.2MPa1/2, especially in the range of 18.5 ⁇ 21.0MPa1/2;
  • ⁇ p (polar force) is in the range of 0.2 ⁇ 12.5MPa1/2, especially in the range of 2.0 ⁇ 6.0MPa1/2;
  • ⁇ h hydrogen bonding force is in the range of 0.9 to 14.2MPa1/2, especially in the range of 2.0 to 6.0MPa1/2.
  • the boiling point parameter of the organic solvent needs to be considered when selecting it.
  • the boiling point of the organic solvent is ⁇ 150°C; preferably ⁇ 180°C; more preferably ⁇ 200°C; more preferably ⁇ 250°C; most preferably ⁇ 275°C or ⁇ 300°C. Boiling points within these ranges are beneficial in preventing nozzle clogging of inkjet print heads.
  • the organic solvent can be evaporated from the solvent system to form a thin film containing functional materials.
  • the composition according to the invention is a solution.
  • composition according to the invention is a suspension.
  • composition in the embodiment of the present invention may include 0.01 to 10 wt% of the compound or mixture according to the present invention, preferably 0.1 to 15 wt%, more preferably 0.2 to 5 wt%, most preferably 0.25 to 3 wt% .
  • the present invention also relates to the use of the composition as a coating or printing ink in the preparation of organic electronic devices. Particularly preferred is the preparation method by printing or coating.
  • suitable printing or coating technologies include (but are not limited to) inkjet printing, nozzle printing, letterpress printing, screen printing, dip coating, spin coating, doctor blade coating, roller printing, twist roller Printing, offset printing, flexographic printing, rotary printing, spray coating, brush coating or pad printing, slit extrusion coating, etc.
  • the first choices are gravure printing, jet printing and inkjet printing.
  • the solution or suspension may additionally include one or more components such as surface-active compounds, lubricants, wetting agents, dispersants, hydrophobic agents, adhesives, etc., for adjusting viscosity, film-forming properties, improving adhesion, etc.
  • printing technology and its related requirements for related solutions such as solvent and concentration, viscosity, etc.
  • the present invention also provides an application of the aromatic amine compound, mixture or composition as described above in organic electronic devices.
  • the organic electronic devices can be selected from, but are not limited to, organic light-emitting diodes (OLEDs), organic photovoltaic cells. (OPV), organic light-emitting cells (OLEEC), organic field effect transistors (OFETs), organic light-emitting field effect tubes, organic lasers, organic spin electronic devices, organic sensors and organic plasmon emitting diodes (Organic Plasmon Emitting Diode) etc., and OLED is particularly preferred.
  • the aromatic amine compound is preferably used in the hole transport layer of the OLED device.
  • the invention further relates to an organic electronic device, comprising at least one functional layer, the functional layer comprising an organic compound, mixture or prepared from the above composition.
  • the organic electronic device includes a cathode, An anode and at least one functional layer, the functional layer comprising an aromatic amine compound or mixture as described above or prepared from a composition as described above.
  • the functional layer is selected from the group consisting of hole injection layer (HIL), hole transport layer (HTL), light emitting layer (EML), electron blocking layer (EBL), electron injection layer (EIL), electron transport layer (ETL), hole Hole blocking layer (HBL); preferably, the functional layer is selected from the hole transport layer.
  • the organic electronic device may be selected from, but is not limited to, organic light emitting diode (OLED), organic photovoltaic cell (OPV), organic light emitting cell (OLEEC), organic field effect tube (OFET), organic light emitting field effect tube, organic Lasers, organic spin electronic devices, organic sensors and organic plasmon emitting diodes (Organic Plasmon Emitting Diode), etc.
  • organic electroluminescent devices such as OLED, OLEEC, and organic light-emitting field effect tubes.
  • the above-mentioned organic electronic device especially OLED, includes a substrate, an anode, at least one light-emitting layer, and a cathode.
  • the substrate can be opaque or transparent.
  • a transparent substrate can be used to create a transparent light-emitting component. See, for example, Bulovic et al. Nature 1996, 380, p29, and Gu et al., Appl. Phys. Lett. 1996, 68, p2606.
  • the substrate can be rigid or elastic.
  • the substrate can be plastic, metal, semiconductor wafer or glass.
  • Preferably the substrate has a smooth surface. Substrates free of surface defects are particularly ideal.
  • the substrate is flexible and can be selected from polymer film or plastic, and its glass transition temperature Tg is above 150°C, preferably above 200°C, preferably above 250°C, preferably above over 300°C. Examples of suitable flexible substrates are poly(ethylene terephthalate) (PET) and polyethylene glycol (2,6-naphthalene) (PEN).
  • the anode may include a conductive metal or metal oxide, or a conductive polymer.
  • the anode can easily inject holes into the hole injection layer (HIL) or hole transport layer (HTL) or the light emitting layer.
  • HIL hole injection layer
  • HTL hole transport layer
  • the absolute value of the difference between the work function of the anode and the HOMO energy level or valence band energy level of the emitter in the light-emitting layer or the p-type semiconductor material as HIL or HTL or electron blocking layer (EBL) Less than 0.5eV, preferably less than 0.3eV, most preferably less than 0.2eV.
  • anode materials include, but are not limited to: Al, Cu, Au, Ag, Mg, Fe, Co, Ni, Mn, Pd, Pt, ITO, aluminum-doped zinc oxide (AZO), etc.
  • suitable anode materials are known and can be readily selected for use by one of ordinary skill in the art.
  • the anode material may be deposited using any suitable technique, such as a suitable physical vapor deposition method, including radio frequency magnetron sputtering, vacuum thermal evaporation, e-beam, etc.
  • the anode is patterned. Patterned ITO conductive substrates are commercially available and can be used to prepare devices according to the present invention.
  • the cathode may include a conductive metal or metal oxide.
  • the cathode can easily inject electrons into the EIL or ETL or directly into the emitting layer.
  • the work function of the cathode and the LUMO energy level or conduction of the n-type semiconductor material in the light-emitting layer or as the electron injection layer (EIL) or electron transport layer (ETL) or hole blocking layer (HBL) The absolute value of the difference in band energy levels is less than 0.5 eV, preferably less than 0.3 eV, most preferably less than 0.2 eV.
  • all materials that can be used as cathodes for OLEDs are possible as cathode materials for the device of the invention.
  • cathode materials include, but are not limited to: Al, Au, Ag, Ca, Ba, Mg, LiF/Al, MgAg alloy, BaF 2 /Al, Cu, Fe, Co, Ni, Mn, Pd, Pt, ITO, etc.
  • the cathode material may be deposited using any suitable technique, such as a suitable physical vapor deposition method, including radio frequency magnetron sputtering, vacuum thermal evaporation, e-beam, etc.
  • OLEDs can also contain other functional layers, such as hole injection layer (HIL), hole transport layer (HTL), electron blocking layer (EBL), electron injection layer (EIL), electron transport layer (ETL), hole blocking layer (HBL).
  • HIL hole injection layer
  • HTL hole transport layer
  • EBL electron blocking layer
  • EIL electron injection layer
  • ETL electron transport layer
  • HBL hole blocking layer
  • an organic electroluminescent device which includes a first electrode, a second electrode, and one or more organic layers between the first electrode and the second electrode, wherein at least one organic layer
  • the layer contains an organic compound represented by general formula (I) or general formula (II).
  • the organic electroluminescent device includes: a first electrode; a hole transport region disposed on the first electrode; a light emitting layer disposed on the hole transport region; electron transport a region disposed on the light-emitting layer; and a second electrode disposed on the electron transport region; wherein the hole transport region includes at least one an organic compound or mixture as described above.
  • the hole transport region has a multi-layer structure, and the layer in contact with the light-emitting layer in the multi-layer structure contains an organic compound or mixture as described above.
  • the hole transport region includes: a hole injection layer provided on the first electrode, a hole transport layer provided on the hole injection layer, and a hole transport layer provided on the hole injection layer.
  • the organic electroluminescent device can be manufactured by a suitable method known in the art using suitable materials known in the art, except that an organic compound of general formula (I) or general formula (II) forms the corresponding organic layer.
  • the organic layer of the organic electroluminescent device according to the present invention has a single-layer or multi-layer structure.
  • the organic layer may be a hole injection layer, a hole transport layer, a hole auxiliary layer, a light emitting layer, an electron transport layer, and an electron injection layer.
  • the number of organic layers is not limited and can be increased or decreased.
  • an organic electroluminescent device may include a substrate, a first electrode, a first hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer and a second electrode, wherein The hole auxiliary layer of the compound represented by the general formula (I) or the general formula (II) is interposed between the hole transport layer and the light-emitting layer. Since the presence of the compound represented by the general formula (I) or the general formula (II) is beneficial to hole transport to the light-emitting layer, the luminous efficiency and lifetime characteristics of the device can be further improved.
  • the organic electroluminescent device of the present invention includes an anode, a hole transport layer, a light emitting layer, an electron transport layer and a cathode.
  • the organic electroluminescent device of the present invention may also optionally include a hole injection layer between the anode and the hole transport layer and an electron injection layer between the electron transport layer and the cathode. If necessary, the organic electroluminescent device of the present invention may further include one or two intermediate layers.
  • the intermediate layer may be a hole blocking layer or an electron blocking layer.
  • the organic electroluminescent device of the present invention may also include one or more organic layers having various functions according to desired characteristics of the device.
  • the organic electroluminescent device of the present invention may further include a hole auxiliary layer between the hole transport layer and the light emitting layer, wherein the hole auxiliary layer may include a compound represented by general formula (I) or general formula (II).
  • its emission wavelength is between 300 and 1200nm, preferably between 350 and 1000nm, more preferably between 400 and 900nm, and most preferably between 450 and 650nm. between.
  • the present invention also relates to the application of the organic electroluminescent device according to the present invention in various electronic devices, including, but not limited to, display devices, lighting devices, light sources, sensors and the like.
  • Synthesis of compound 4-6 Add compound 4-5 (15.2g, 30mmol), pinacol diborate (8.38g, 33mol), potassium acetate (14.7g, 150mmol) into a dry reaction bottle, [1 ,1'-bis(diphenylphosphine)ferrocene]palladium dichloride (1.09g, 1.5mmol) and 2-dicyclohexylphosphine-2',4',6'-triisopropylbiphenyl ( 0.72g, 1.5mmol), add 150mL of 1,4-dioxane to dissolve, vacuum and replace with nitrogen three times, and react at 85°C overnight. After the reaction is completed, cool to room temperature, filter with suction, and concentrate the mother liquor.
  • Synthesis of compound 6-2 In a dry two-neck bottle, add compound 6-1 (17.8g, 50mmol), 4,4'-4"-phenyl-dibromotriphenylamine (24.0g, 50mmol) and tetrakis Triphenylphosphine palladium (2.89g, 2.5mmol) was added to 30mL of 2M potassium carbonate solution and 120mL of 1,4-dioxane to dissolve. Vacuum and nitrogen were circulated three times, and the reaction was stirred at 80°C overnight. After the reaction was completed, it was cooled to room temperature. After liquid separation, the solvent was evaporated under reduced pressure, and then dissolved in dichloromethane.
  • Synthesis of compound 6-3 Add compound 6-2 (18.9g, 30mmol), pinacol diborate (8.38g, 33mol), potassium acetate (14.7g, 150mmol) into a dry reaction bottle, [1 ,1'-bis(diphenylphosphine)ferrocene]palladium dichloride (1.09g, 1.5mmol) and 2-dicyclohexylphosphine-2',4',6'-triisopropylbiphenyl ( 0.72g, 1.5mmol), add 200mL of 1,4-dioxane to dissolve, vacuum and replace with nitrogen three times, and react at 85°C overnight. After the reaction is completed, cool to room temperature, filter with suction, and concentrate the mother liquor.
  • the energy levels of organic materials can be obtained through quantum calculations, such as using TD-DFT (time-dependent density functional theory) through Gaussian03W (Gaussian Inc.). For specific simulation methods, see WO2011141110.
  • TD-DFT time-dependent density functional theory
  • the semi-empirical method “Ground State/Semi-empirical/Default Spin/AM1” (Charge 0/Spin Singlet) is used to optimize the molecular geometry structure, and then the energy structure of the organic molecules is determined by the TD-DFT (time-dependent density functional theory) method.
  • TD-SCF/DFT/Default Spin/B3PW91 and the basis set "6-31G(d)” (Charge 0/Spin Singlet).
  • the HOMO and LUMO energy levels are calculated according to the calibration formula below, and S1 and T1 are used directly.
  • HOMO(eV) ((HOMO(G) ⁇ 27.212)-0.9899)/1.1206
  • HOMO(G) and LUMO(G) are the direct calculation results of Gaussian 03W, and the unit is Hartree.
  • the results are shown in Table 1:
  • the preparation process of the above-mentioned OLED device is explained in detail through specific examples below.
  • ITO Indium Tin Oxide
  • conductive glass substrate Use various solvents (such as one or more of chloroform, acetone or isopropyl alcohol) to clean, and then perform UV-ozone treatment.
  • Evaporation Move the substrate into the vacuum vapor deposition equipment. Under high vacuum (1 ⁇ 10 -6 mbar), control the ratio of PD and HT-1 to 3:100 to form a 10nm hole injection layer ( HIL), then the compound HT-1 is evaporated on the hole injection layer to form a 50 nm hole transport layer (HTL), and then the inventive compound is evaporated on the hole transport layer to form a 10 nm hole auxiliary layer.
  • HIL 10nm hole injection layer
  • HTL hole transport layer
  • inventive compound is evaporated on the hole transport layer to form a 10 nm hole auxiliary layer.
  • a light-emitting layer a 25 nm light-emitting layer thin film was formed using BH:BD in a ratio of 100:3.
  • the electron auxiliary layer ET-1 is evaporated to 5nm, and then ET-2 and LiQ are placed in different evaporation units to co-deposit at a ratio of 50% by weight to obtain an electron transport layer of 25nm, and then 1nm of LiQ is deposited as the electron injection layer, and finally deposit an Al cathode with a thickness of 100 nm on the electron injection layer.
  • Encapsulation The device is encapsulated with ultraviolet curing resin in a nitrogen glove box.
  • the device performance of the above embodiments and comparative examples was tested, as shown in Table 2; the driving voltage and current efficiency were tested at a current density of 10mA/cm2; the device life of T95 refers to a constant current density of 50mA/cm2 Time for brightness to decay to 95%.
  • This substituent has a spatial electron repulsion with other hydrogen atoms at the 1'-position, further reducing the planarity of the molecule, thereby improving hole transport and increasing The probability of hole and electron recombination in the light-emitting layer is determined.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明涉及一种包含芳胺有机化合物及其在有机电子器件中的应用。按照本发明所述的有机化合物具有较高的热稳定性,可提高器件的发光效率及寿命。

Description

芳胺有机化合物及其在有机电子器件中的应用 技术领域
本发明涉及有机电子材料和器件技术领域,尤其涉及一种芳胺有机化合物,包含其的混合物,及其有机电子器件中的应用,特别是在有机发光二极管中的应用。
背景技术
由于有机半导体材料在合成上具有多样性、制造成本相对较低和优良的光学与电学性能,有机发光二极管(OLED)在光电器件(例如平板显示器和照明)的应用方面具有很大的潜力。
有机电致发光现象是指利用有机物质将电能转化为光能的现象。利用有机电致发光现象的有机电致发光元件通常具有正极与负极以及在它们中间包含有机物层的结构。为了提高有机电致发光元件的效率与寿命,有机物层具有多层结构,每一层包含有不同的有机物质。具体的,可以包括空穴注入层、空穴传输层、发光层、电子传输层、电子注入层等。在这种有机电致发光元件中,在两个电极之间施加电压,则由正极向有机物层注入空穴,由负极向有机物层注入电子,当注入的空穴与电子相遇时形成激子,该激子跃迁回基态时发出光。这种有机电致发光元件具有自发光、高亮度、高效率、低驱动电压、广视角、高对比度、高响应性等特性。通常空穴传输层与发光层之间的最高占据分子轨道(HOMO)能级的差异较大增加了空穴从空穴传输层到发光层的难度,导致空穴在空穴传输层与发光层之间的界面处积聚。为了解决这些问题,可以在空穴传输层和发光层引入空穴辅助层用以促进空穴传输。
虽然现有技术例如CN111146349A、CN111279502A、CN113135903A、CN113461547A公开了一些空穴传输类材料用过空穴辅助层,但仍然有必要设计开发新的材料达到降低器件电压、提高器件效率和寿命的效果。
发明内容
鉴于上述现有技术的不足,本发明的目的在于提供一类芳胺有机化合物,包含其的混合物、及其在有机电子器件中的应用,旨在解决现有有机电子器件效率和寿命偏低的问题。
本发明的技术方案如下:
一种有机化合物,具有如通式(I)所示的结构:
其中:A和B分别独立选自氢或式(I-1)或式(I-2)的基团,且A和B仅有一个为式(I-1)或式(I-2)的基团;
“*”表示连接位置;
X为O、S、NR1、CR2R3
Y在每种情况下可相同或不同的表示为CR4或N,其中每个环不超过两个Y基团是N;L1选自取代或未取代的成环碳原子数为6~30的亚芳香基或者取代或未取代的成环碳原子数为2~30的亚杂芳香基;L2-L3各自独立选自单键,取代或未取代的成环碳原子数为6~30的亚芳香基或者取代或未取代的成环碳原子数为2~30的亚杂芳香基;
Ar1-Ar2各自独立选自具有5至40个环原子的取代或未取代的芳香基团或杂芳香基团,或是具有5至40个环原子的芳氧基或杂芳氧基基团,或这些基团的组合,其中一个或多个基团可以彼此和/或与所述基团键合的环形成单环或多环的脂族或芳族环系;
R1-R4是取代基,在每次出现时,可以相同或不同的是H、D,或具有1至20个C原子的直链烷基、烷氧基或硫代烷氧基基团,或具有3至20个C原子的支链或环状的烷基、烷氧基或硫代烷氧基基团或者是甲硅烷基基团,或具有1至20个C原子的取代的酮基基团,或具有2至20个C原子的烷氧基羰基基团,或具有7至20个C原子的芳氧基羰基基团,或氰基基团(-CN)、氨基甲酰基基团(-C(=O)NH2)、卤甲酰基基团(-C(=O)-X其中X代表卤素原子)、甲酰基基团(-C(=O)-H)、异氰基基团、异氰酸酯基团、硫氰酸酯基团或异硫氰酸酯基团、羟基基团、硝基基团、CF3、Cl、Br、F或可交联的基团,或具有5至40个环原子的取代或未取代的芳族或杂芳族环系,或具有5至40个环原子的芳氧基或杂芳氧基基团,或这些基团的组合;R1-R4中任意相邻的两个取代基可以彼此和/或与所述基团键合的环形成单环或多环的脂族或芳族环系。
上述有机化合物,具有如通式(II)所示的结构:
其中:L2-L3各自独立选取代或未取代的成环碳原子数为6~30的亚芳香基或者取代或未取代的成环碳原子数为2~30的亚杂芳香基;X、Y、L1、Ar1、Ar2的定义同上所述。优选的,L2和/或L3不为芴。
一种混合物,包含一种如上所述的有机化合物,及至少另一种有机功能材料,所述有机功能材料选自空穴注入材料、空穴传输材料、电子传输材料、电子注入材料、电子阻挡材料、空穴阻挡材料、发光材料、主体材料、有机染料中的一种或多种。
本发明还提供一种有机电子器件,包含一功能层,所述功能层中包含一种如上所述的有机化合物或混合物。
上述的有机电子器件是一有机电致发光器件,其包括第一电极;空穴传输区域,设置在所述第一电极上;发光层,设置在所述空穴传输区域上;电子传输区域,设置在所述发光层上;以及第二电极,设置在所述电子传输区域上;其中空穴传输区域至少包含一种如上所述的有机化合物或混合物。
在上述的有机电子器件中,其中空穴传输区域具有多层结构,所述多层结构具有多个层,且所述多层结构中至少一层与所述发光层接触的层包含一种如上所述的有机化合物或混合物。
有益效果:本发明的有机化合物被用于有机电致发光器件中的空穴辅助层,可以有效促进从空穴传输层至发光层的空穴传输,实现器件的高发光效率和长寿命。
具体实施方式
本发明提供一种芳胺有机化合物及其在有机电致发光器件中的应用,及包含该芳胺有机化合物的有机电子器件及其制备方法。为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
在本发明中,有机材料的能级结构,单线态能级S1,三线态能级T1、HOMO、LUMO起着关键的作用。下面对这些能级的确定做介绍。
HOMO和LUMO能级可以通过光电效应进行测量,例如XPS(X射线光电子光谱法)和UPS(紫外光电子能谱)或通过循环伏安法(以下简称CV)。最近,量子化学方法,例如密度泛函理论(以下简称DFT),也成为行之有效的计算分子轨道能级的方法。
有机材料的单线态能级S1可通过发光光谱来确定,三线态能级T1可通过低温时间分辨发光光谱来测量,S1和T1还可以通过量子模拟计算(如通过Time-dependent DFT)得到,如通过商业软件Gaussian 09W(Gaussian Inc.),具体的模拟方法可参见WO2011141110或如下在实施例中所述。ΔEST定义为(S1-T1)。
应该注意,HOMO、LUMO、S1、T1的绝对值取决于所用的测量方法或计算方法,甚至对于相同的方法,不同评价的方法,例如在CV曲线上起始点和峰点可给出不同的HOMO/LUMO值。因此,合理有意义的比较应该用相同的测量方法和相同的评价方法进行。本发明实施例的描述中,HOMO、LUMO、S1、T1的值是基于Time-dependent DFT的模拟,但不影响其他测量或计算方法的应用。
在发明中,(HOMO-1)定义为第二高的占有轨道能级,(HOMO-2)为第三高的占有轨道能级,以此类推。(LUMO+1)定义为第二低的未占有轨道能级,(LUMO+2)为第三低的占有轨道能级,以此类推。
在本发明中,组合物和印刷油墨,或油墨具有相同的含义,可以互换。
在本发明中,芳香基团,芳香族,芳香环系具有相同的含义,可以互换。
在本发明中,杂芳香基团,杂芳香族,杂芳香环系具有相同的含义,可以互换。
在本发明中,“取代”表示被取代基中的氢原子被取代基所取代。
在本发明中,“环原子数”表示原子键合成环状而得到的结构化合物(例如,单环化合物、稠环化合物、交联化合物、碳环化合物、杂环化合物)的构成该环自身的原子之中的原子数。该环被取代基所取代时,取代基所包含的原子不包括在成环原子内。关于以下所述的“环原子数”,在没有特别说明的条件下也是同样的。例如,苯环的环原子数为6,萘环的环原子数为10,噻吩基的环原子数为5。
在本发明中,芳香环系或芳香基团指至少包含一个芳环的烃基,包括单环基团和多环的环系统。杂芳香环系或杂芳香基团指包含至少一个杂芳香环的烃基(含有杂原子),包括单环基团和多环的环系统。杂原子优选选自Si、N、P、O、S和/或Ge,特别优选选自Si、N、P、O和/或S。这些多环的环可以具有两个或多个环,其中两个碳原子被两个相邻的环共用,即稠环。多环的这些环种,至少一个是芳族的或杂芳族的。对于本发明的目的,芳香基团或杂芳香基团不仅包括芳香基或杂芳香基的体系,而且,其中多个芳基或杂芳香基也可以被短的非芳族单元间断(<10%的非H原子,优选小于5%的非H原子,比如C、N或O原子)。因此,比如9,9'-螺二芴,9,9-二芳基芴,三芳胺,二芳基醚等体系,对于该发明目的同样认为是芳香族基团。
具体的,芳香基团的例子有:苯、萘、蒽、菲、二萘嵌苯、并四苯、芘、苯并芘、三亚苯、苊、芴、及其衍生物。
具体的,杂芳香族基团的例子有:呋喃、苯并呋喃、噻吩、苯并噻吩、吡咯、吡唑、三唑、咪唑、噁唑、噁二唑、噻唑、四唑、吲哚、咔唑、吡咯并咪唑、吡咯并吡咯、噻吩并吡咯、噻吩并噻吩、呋喃并吡咯、呋喃并呋喃、噻吩并呋喃、苯并异噁唑、苯并异噻唑、苯并咪唑、吡啶、吡嗪、哒嗪、嘧啶、三嗪、喹啉、异喹啉、邻二氮萘、喹喔啉、菲啶、伯啶、喹唑啉、喹唑啉酮、及其衍生物。
在本发明中,“烷基”可以表示直链、支链和/或环状烷基。烷基的碳数可以为1至50、1至30、1至20、1至10或1至6。烷基的非限制性实例包括甲基、乙基、正丙基、异丙基、正丁基、仲丁基、叔丁基、异丁基、2-乙基丁基、3,3-二甲基丁基、正戊基、异戊基、新戊基、叔戊基、环戊基、1-甲基戊基、3-甲基戊基、2-乙基戊基、4-甲基-2-戊基、正己基、1-甲基己基、2-乙基己基、2-丁基己基、环己基、4-甲基环己基、4-叔丁基环己基、正庚基、1-甲基庚基、2,2-二甲基庚基、2-乙基庚基、2-丁基庚基、正辛基、叔辛基、2-乙基辛基、2-丁基辛基、2-己基辛基、3,7-二甲基辛基、环辛基、正壬基、正癸基、金刚烷基、2-乙基癸基、2-丁基癸基、2-己基癸基、2-辛基癸基、正十一烷基、正十二烷基、2-乙基十二烷基、2-丁基十二烷基、2-己基十二 烷基、2-辛基十二烷基、正十三烷基、正十四烷基、正十五烷基、正十六烷基、2-乙基十六烷基、2-丁基十六烷基、2-己基十六烷基、2-辛基十六烷基、正十七烷基、正十八烷基、正十九烷基、正二十烷基、2-乙基二十烷基、2-丁基二十烷基、2-己基二十烷基、2-辛基二十烷基、正二十一烷基、正二十二烷基、正二十三烷基、正二十四烷基、正二十五烷基、正二十六烷基、正二十七烷基、正二十八烷基、正二十九烷基、正三十烷基等。
本发明的一种有机化合物,具有如通式(I)所示的结构:
其中:A和B分别独立选自氢或式(I-1)或式(I-2)的基团,且A和B仅有一个为式(I-1)或式(I-2)的基团;“*”表示连接位置;X为O、S、NR1、CR2R3;Y在每种情况下可相同或不同的表示为CR4或N,其中每个环不超过两个Y基团是N。
L1选自取代或未取代的成环碳原子数为6~30的亚芳香基或者取代或未取代的成环碳原子数为2~30的亚杂芳香基;L2-L3各自独立选自单键,取代或未取代的成环碳原子数为6~30的亚芳香基或者取代或未取代的成环碳原子数为2~30的亚杂芳香基;Ar1-Ar2各自独立选自具有5至40个环原子的取代或未取代的芳香基团或杂芳香基团,或是具有5至40个环原子的芳氧基或杂芳氧基基团,或这些基团的组合,其中一个或多个基团可以彼此和/或与所述基团键合的环形成单环或多环的脂族或芳族环系;R1-R4是取代基,在每次出现时,可以相同或不同的是H、D,或具有1至20个C原子的直链烷基、烷氧基或硫代烷氧基基团,或具有3至20个C原子的支链或环状的烷基、烷氧基或硫代烷氧基基团或者是甲硅烷基基团,或具有1至20个C原子的取代的酮基基团,或具有2至20个C原子的烷氧基羰基基团,或具有7至20个C原子的芳氧基羰基基团,或氰基基团(-CN)、氨基甲酰基基团(-C(=O)NH2)、卤甲酰基基团(-C(=O)-X其中X代表卤素原子)、甲酰基基团(-C(=O)-H)、异氰基基团、异氰酸酯基团、硫氰酸酯基团或异硫氰酸酯基团、羟基基团、硝基基团、CF3基团、Cl、Br、F或可交联的基团,或具有5至40个环原子的取代或未取代的芳族或杂芳族环系,或具有5至40个环原子的芳氧基或杂芳氧基基团,或这些基团的组合;其中任意相邻R1-R4的两个取代基可以彼此和/或与所述基团键合的环形成单环或多环的脂族或芳族环系。
进一步的,R1-R4每次出现分别独立选自D、氰基、具有1至18个C原子的直链烷基,或具有3至18个C原子的支链或环状的烷基、烷氧基、硫代烷氧基或甲硅烷基,或具有5至30个环原子的取代或未取代的芳香基团、杂芳香基团、芳氧基或杂芳氧基;在更加优选的实施例中,R1-R4每次出现分别独立选自D、具有1至12个C原子的直链烷基,或具有5至20个环原子的取代或未取代的芳香基团、杂芳香基团、芳氧基或杂芳氧基;在最为优选的实施例中,R1-R4每次出现分别独立选自D、具有1至6个C原子的直链烷基,或具有5至15个环原子的取代或未取代的芳香基团、杂芳香基团、芳氧基或杂芳氧基,并且相邻的R1至R4可以彼此和/或与所述基团键合的环形成单环或多环的脂族或芳族环系。
在一些优选的实施例中,R1-R4每次出现分别全部或部分氘化。
在一些优选的实施例中,按照本发明的有机化合物,具有如通式(II)所示的结构:
其中:L2-L3各自独立选取代或未取代的成环碳原子数为6~30的亚芳香基或者取代或未取代的成环碳原子数为2~30的亚杂芳香基;X、Y、L1、Ar1、Ar2的定义同上所述。优选的,L2和/或L3不为芴。
在一些优选的实施例中,按照本发明的有机化合物,其中:两个相邻的Y可同时与式(I-3)或式(I-4)表示的基团键联并且其余的Y在每种情况下相同或不同的表示为CR4或N,
其中虚线键表示键联位置,Z表示为N或CR5,Q选自O、S、NR1、CR2R3,R4的含义同上所述,R5的含义同R4
在一些优选的实施例中,按照本发明的有机化合物,具有通式(II-01)-(II-10)所示的结构:
其中,虚线表示连接键;X、Q、Z、L1、Ar1-Ar2的含义同上所述;L2-L3选自取代或未取代的成环碳原子数为6~30的亚芳香基或者取代或未取代的成环碳原子数为2~30的亚杂芳香基。优选的,L2和/或L3不为芴。
在一些实施例中,L1独立选自以下基团及其组合:
其中:X1每次出现时,独立选自CR6或N;
Y1每次出现时,独立选自NR7、CR8R9、O、S、SiR10R11、S=O、SO2
R6-R11每次出现时,分别独立选自:H,D,或具有1至20个C原子的直链烷基,或具有1至20个C原子的直链烷氧基,或具有1至20个C原子的直链硫代烷氧基,或具有3至20个C原子的支链或环状的烷基,或具有3至20个C原子的支链或环状的烷氧基,或具有3至 20个C原子的支链或环状的硫代烷氧基、甲硅烷基,或具有1至20个C原子的酮基,或具有2至20个C原子的烷氧基羰基,或具有7至20个C原子的芳氧基羰基,或氰基、氨基甲酰基、卤甲酰基、甲酰基、异氰基、异氰酸酯、硫氰酸酯、异硫氰酸酯、羟基、硝基、CF3、Cl、Br、F、可交联的基团,或具有5至60个环原子的取代或未取代的芳香基团,或具有5至60个环原子的取代或未取代的杂芳香基团,或具有5至60个环原子的芳氧基,或具有5至60个环原子的杂芳氧基基团,或这些基团的组合,R6-R11中任意相邻的两个取代基可以彼此和/或与所述基团键合的环形成单环或多环的脂族或芳族环系。
在一些实施例中,L1独立选自以下基团或其组合:
其中:环上的H原子可以进一步被取代。
具体的,L1选自以下基团及其组合:
其中,R12-R28的含义同R1
在一些实施例中,L2-L3独立选自以下基团及其组合:
其中:X2每次出现时,独立选自CR1或N;
Y2每次出现时,独立选自NR2、O、S、SiR3R4、S=O、SO2、CR5R6
R1-R6每次出现时,分别独立选自:H,D,或具有1至20个C原子的直链烷基,或具有1至20个C原子的直链烷氧基,或具有1至20个C原子的直链硫代烷氧基,或具有3至20个C原子的支链或环状的烷基,或具有3至20个C原子的支链或环状的烷氧基,或具有3至20个C原子的支链或环状的硫代烷氧基、甲硅烷基,或具有1至20个C原子的酮基,或具有2至20个C原子的烷氧基羰基,或具有7至20个C原子的芳氧基羰基,或氰基、氨基甲酰基、卤甲酰基、甲酰基、异氰基、异氰酸酯、硫氰酸酯、异硫氰酸酯、羟基、硝基、CF3、Cl、Br、F、可交联的基团,或具有5至60个环原子的取代或未取代的芳香基团,或具有5至60个环原子的取代或未取代的杂芳香基团,或具有5至60个环原子的芳氧基,或具有5至60个环原子的杂芳氧基基团,或这些基团的组合,R1-R6中任意相邻的两个取代基可以彼此和/或与所述基团键合的环形成单环或多环的脂族或芳族环系。优选的,Y2每次出现时,独立选自NR2、O、S、SiR3R4、S=O、SO2
在一些优选的实施例中,L2-L3各自独立选自以下基团及其组合:
其中,R12-R28的含义同上所述。
在一些实施例中,Ar1和Ar2独立选自以下基团及其组合:
其中:Z1选自N或CR29;X3选自O、S、S=O、SO2、NR30、CR31R32或SiR33R34
R29-R34每次出现时,分别独立选自:H,D,或具有1至20个C原子的直链烷基,或具有1至20个C原子的直链烷氧基,或具有1至20个C原子的直链硫代烷氧基,或具有3至20个C原子的支链或环状的烷基,或具有3至20个C原子的支链或环状的烷氧基,或具有3至20个C原子的支链或环状的硫代烷氧基、甲硅烷基,或具有1至20个C原子的酮基,或具有2至20个C原子的烷氧基羰基,或具有7至20个C原子的芳氧基羰基,或氰基、氨基甲酰基、卤甲酰基、甲酰基、异氰基、异氰酸酯、硫氰酸酯、异硫氰酸酯、羟基、硝基、CF3、Cl、Br、F、可交联的基团,或具有5至60个环原子的取代或未取代的芳香基团,或具有5至60个环原子的取代或未取代的杂芳香基团,或具有5至60个环原子的芳氧基,或具有5至60个环原子的杂芳氧基基团,或这些基团的组合。
进一步的,Ar1和Ar2独立选自以下基团及其组合:
上述基团任选地被0,1,2或3个选自D、F、Cl、Br、氰基、C1-C4烷基、C1-C3卤代烷基、苯基、萘基、芴基、螺芴基和C3-C10环烷基所取代;A1的含义和前述R1相同。
在一些实施例中,按照本发明的有机化合物,优选自但不限于如下结构:




在一个优选的实施例中,按照本发明的有机化合物,其玻璃化温度Tg≥100℃。在一个优选的实施例中,其Tg≥120℃。在一个较为优选的实施例中,其Tg≥140℃。在一个更为优选的实施例中,其Tg≥160℃。在一个最为优选的实施例中,其Tg≥180℃。
在某些优选的实施例中,按照本发明的有机化合物,其中((HOMO-(HOMO-1))≥0.2eV,较好是≥0.25eV,更好是≥0.3eV,更更好是≥0.35eV,非常好是≥0.4eV,最好是≥0.45eV。
在一个较为优选的实施例中,按照本发明的有机化合物,是部分被氘代,较好是10%的H被氘代,更好是20%的H被氘代,很好是30%的H被氘代,最好是40%的H被氘代。
在一个优选的实施例中,按照本发明的有机化合物是一种小分子材料。
在一个优选的实施例中,按照本发明的有机化合物用于蒸镀性OLED器件。用于这个目的,按照本发明的有机化合物,其分子量≤1000g/mol,优选≤900g/mol,很优选≤850g/mol,更优选≤800g/mol,最优选≤700g/mol。
本发明还涉及一种按照通式(I)或通式(II)的有机化合物的合成方法,其中使用含有活性基团的原料进行反应。这些活性原料包含至少一种离去基团,例如,溴,碘,硼酸或硼酸酯。形成C-C连接的适当的反应是本领域技术人员熟知的并描述于文献中,特别适当和优选的偶联反应是SUZUKI,STILLE和HECK偶联反应。
本发明还涉及一种高聚物,其中至少有一个重复单元包含有如通式(I)或通式(II)所示的结构。在某些实施例中,所述的高聚物是非共轭高聚物,其中如通式(I)或通式(II)所示的结构单元在侧链上。在另一个优选的实施例中,所述的高聚物是共轭高聚物。本文中所定义的术语“小分子”是指不是聚合物,低聚物,树枝状聚合物,或共混物的分子。特别是,小分子中没有重复结构。小分子的分子量≤3000g/mol,较好是≤2000g/mol,最好是≤1500g/mol。
高聚物,即Polymer,包括均聚物(homopolymer),共聚物(copolymer),镶嵌共聚物(block copolymer)。另外在本发明中,高聚物也包括树状物(dendrimer),有关树状物的合成及应用请 参见[Dendrimers and Dendrons,Wiley-VCH Verlag GmbH&Co.KGaA,2002,Ed.George R.Newkome,Charles N.Moorefield,Fritz Vogtle.]。
共轭高聚物(conjugated polymer)是一高聚物,它的主链backbone主要是由C原子的sp2杂化轨道构成,著名的例子有:聚乙炔polyacetylene和poly(phenylene vinylene),其主链上的C原子的也可以被其他非C原子取代,而且当主链上的sp2杂化被一些自然的缺陷打断时,仍然被认为是共轭高聚物。另外在本发明中共轭高聚物也包括主链上包含有芳基胺(aryl amine)、芳基磷化氢(aryl phosphine)及其他杂环芳烃(heteroarmotics)、有机金属络合物(organometallic complexes)等。
在一些优选的实施例中,其中的高聚物的合成方法选自SUZUKI-,YAMAMOTO-,STILLE-,NIGESHI-,KUMADA-,HECK-,SONOGASHIRA-,HIYAMA-,FUKUYAMA-,HARTWIG-BUCHWALD-和ULLMAN。
在一些优选的实施例中,按照本发明的高聚物,其玻璃化温度(Tg)≥100℃,优选为≥120℃,更优为≥140℃,更更优为≥160℃,最优为≥180℃。
在一个优选的实施例中,按照本发明的高聚物,其分子量分布(PDI)取值范围优选为1~5,较优选为1~4,更优选为1~3,更更优选为1~2,最优选为1~1.5。
在一个优选的实施例中,按照本发明的高聚物,其重均分子量(Mw)取值范围优选为1万~100万,较优选为5万~50万,更优选为10万~40万,更更优选为15万~30万,最优选为20万~25万。
本发明还涉及一种混合物,包括一种如上述的有机化合物,及至少另一种有机功能材料,所述的另一种有机功能材料选自空穴注入材料(HIM),空穴传输材料(HTM),电子传输材料(ETM),电子注入材料(EIM),电子阻挡材料(EBM),空穴阻挡材料(HBM),发光体(Emitter),主体材料(Host)和有机染料。例如在WO2010135519A1、US20090134784A1和WO2011110277A1中对各种有机功能材料有详细的描述,特此将此3篇专利文件中的全部内容并入本文作为参考。有机功能材料可以是小分子和高聚物材料。
在一个优选的实施例中,所述的混合物包含一种按照本发明的有机化合物,和一种磷光发光体。这里按照本发明的有机化合物可以作为主体,磷光发光体重量百分比≤30wt%,较好是≤25wt%,更好是≤20wt%。
在另一个优选的实施例中,所述的混合物包含一种按照本发明的有机化合物,另一种主体材料和一种磷光发光体。这里按照本发明的有机化合物作为共主体材料,其重量百分比≥10wt%,较好是≥20wt%,更好是≥30wt%,最好是≥40wt%。
在一个较为优选的实施例中,所述的混合物包含一种按照本发明的有机化合物,一种磷光发光体和一种主体材料。在这种实施例中,按照本发明的有机化合物可以作为辅助发光材料,其与磷光发光体的重量比为从1:2到2:1。在另一种优选的实施例中,按照本发明的有机化合物的T1高于所述的磷光发光体。
在某些实施例中,所述的混合物包含一种按照本发明的有机化合物,和另一种TADF材料。
在某些较为优选的实施例中,按照本发明的混合物,包括一种有机功能材料H1,选自如上所述的有机化合物,以及至少另一种有机功能材料H2,选自空穴(也称电洞)注入或传输材料(HIM/HTM)、有机主体材料(Host)。
在某些优选的实施例中,按照本发明的混合物,其中H1和H2中至少有一个其((LUMO+1)-LUMO)≥0.2eV,较好是≥0.25eV,更好是≥0.3eV,更更好是≥0.35eV,非常好是≥0.4eV,最好是≥0.45eV。
在一个较为优选的实施例中,按照本发明的混合物,其中H1的((LUMO+1)-LUMO)≥0.2 eV,较好是≥0.25eV,更好是≥0.3eV,更更好是≥0.35eV,非常好是≥0.4eV,最好是≥0.45eV。
在某些优选的实施例中,按照本发明的混合物,其中H1和H2中至少有一个其((HOMO-(HOMO-1))≥0.2eV,较好是≥0.25eV,更好是≥0.3eV,更更好是≥0.35eV,非常好是≥0.4eV,最好是≥0.45eV。
在一个较为优选的实施例中,按照本发明的混合物,其中H2的((HOMO-(HOMO-1))≥0.2eV,较好是≥0.25eV,更好是≥0.3eV,更更好是≥0.35eV,非常好是≥0.4eV,最好是≥0.45eV。
在某些更为优选的实施例中,所述的混合物,其中1)H1的ΔE(S1-T1)≤0.30eV,较好是≤0.25eV,更好是≤0.20eV,最好是≤0.10eV;和/或2)H2的LUMO高于H1的LUMO,且H2的HOMO低于H1的HOMO。
在某些优选的实施例中,所述的混合物,其中H1和H2具有II型的半导体异质结结构,并且min((LUMO(H1)-HOMO(H2),LUMO(H2)-HOMO(H1))≤min(ET(H1),ET(H2))+0.1eV,其中LUMO(H1),HOMO(H1)及ET(H1)分别是H1的最低未占有轨道,最高占有轨道,三线态的能级,LUMO(H2),HOMO(H2)及ET(H2)分别是H2的最低未占有轨道,最高占有轨道,三线态的能级。较为优选的是min((LUMO(H1)-HOMO(H2),LUMO(H2)-HOMO(H1))≤min(ET(H1),ET(H2));更为优选的是min((LUMO(H1)-HOMO(H2),LUMO(H2)-HOMO(H1))≤min(ET(H1),ET(H2))-0.1eV。
在一个优选的实施例中,所述的H1和H2具有I型的半导体异质结结构,并且H1或H2的单线态能级和三线态能级差(S1-T1)小于或等于0.25eV,较好是小于或等于0.20eV,更好是小于或等于0.15eV,最好是小于或等于0.10eV。
在一个优选的实施例中,所述的混合物,其中H1和H2的摩尔比为从1:9到9:1;较好的摩尔比为2:8到8:2;优选的摩尔比为3:7到7:3;更加优选的摩尔比为4:6到6:4;最优选的摩尔比为4.5:5.5到5.5:4.5。
在一个优选的实施例中,所述的混合物,其中H1和H2的分子量的差不超过100Dalton,较好是不超过80Dalton,更好是不超过70Dalton,更更好是不超过60Dalton,非常好是不超过40Dalton,最好是不超过30Dalton。
在另一个优选的实施例中,所述的混合物,其中H1和H2的升华温度的差不超过50K;较优选的升华温度的差不超过30K;更加优选的升华温度的差不超过20K;最优选的升华温度的差不超过10K。
在一个优选的实施例中,按照本发明的混合物中的H1和H2,至少有一个其玻璃化温度Tg≥100℃;在一个优选的实施例中,至少有一个其Tg≥120℃;在一个较为优选的实施例中,至少有一个其Tg≥140℃;在一个更为优选的实施例中,至少有一个其Tg≥160℃;在一个最为优选的实施例中,至少有一个其Tg≥180℃。
按照本发明的有机化合物,可以作为功能材料用于电子器件的有机功能层中。有机功能层包括,但不限于,空穴注入层(HIL),空穴传输层(HTL),电子传输层(ETL),电子注入层(EIL),电子阻挡层(EBL),空穴阻挡层(HBL),发光层(EML)。
在一些实施例中,按照本发明的有机化合物用于发光层中。
在一些实施例中,按照本发明的有机化合物用于空穴传输层中。
下面对单重态基质材料,单重态发光体和TADF发光体,HTM作一些详细的描述(但不限于此)。
1.单重态基质材料(Singlet Host):
单重态主体材料的例子并不受特别的限制,任何有机化合物都可能被用作为主体,只要其单重态能量比发光体,特别是单重态发光体或荧光发光体更高。
作为单重态主体材料使用的有机化合物的例子可选自含有环芳香烃化合物,如苯、联苯、三苯基、苯并、萘、蒽、萉、菲、芴、芘、屈、苝、薁;芳香杂环化合物,如二苯并噻吩、二苯并呋喃、二苯并硒吩、呋喃、噻吩、苯并呋喃、苯并噻吩、苯并硒吩、咔唑、吲哚咔唑、吡啶吲哚、吡咯二吡啶、吡唑、咪唑、三氮唑、异恶唑、噻唑、恶二唑、恶三唑、二恶唑、噻二唑、吡啶、哒嗪、嘧啶、吡嗪、三嗪、恶嗪、恶噻嗪、恶二嗪、吲哚、苯并咪唑、吲唑、吲哚嗪、苯并恶唑、苯异恶唑、苯并噻唑、喹啉、异喹啉、噌啉、喹唑啉、喹喔啉、萘、酞、蝶啶、氧杂蒽、吖啶、吩嗪、吩噻嗪、吩恶嗪、苯并呋喃吡啶、呋喃二吡啶、苯并噻吩吡啶、噻吩二吡啶、苯并硒吩吡啶和硒吩二吡啶;包含有2至10环结构的基团,它们可以是相同或不同类型的环芳香烃基团或芳香杂环基团,并彼此直接或通过至少一个以下的基团连结在一起,如氧原子、氮原子、硫原子、硅原子、磷原子、硼原子、链结构单元和脂肪环基团。
在一些优选的实施例中,单重态主体材料可选于包含至少一个以下基团的化合物:
其中,Y0每次出现时,独立选自C(R)2或NR或O或S;X0每次出现时,独立选自CR或N,R每次出现时,独立选自如下的基团:氢、氘、卤原子(F,Cl,Br,I)、氰基、烷基、烷氧基、氨基、烯基、炔基、芳烷基、杂烷基、芳基和杂芳基,n选自1到20的整数。
在一些优先的实施例中,单重态主体选自蒽的衍生物,如CN102224614 B、CN 100471827 C、CN 1914293 B、WO2015033559A1、US2014246657A1、WO2016117848A1、WO2016117861A1、WO2016171429A2、CN102369256B、CN102428158B等专利文献中所公开的。
下面列出一些蒽基单重态主体材料的例子:
在一些更加优先的实施例中,蒽基单重态主体材料是氘代的,即主体材料分子中含有至少一个以上的氘原子,这样的例子在CN102369256B、CN102428158B、CN102639671B、US2015021586A1等专利文献中所公开,具体的例子有:
2.单重态发光体(Singlet Emitter)
单重态发光体往往有较长的共轭π电子系统。迄今,已有许多例子,例如在JP2913116B和WO2001021729A1中公开的苯乙烯胺及其衍生物,在WO2008/006449和WO2007/140847中公开的茚并芴及其衍生物及在US7233019、KR2006-0006760中公开的芘的三芳胺衍生物。
在一个优选的实施例中,单重态发光体可选自一元苯乙烯胺,二元苯乙烯胺,三元苯乙烯胺,四元苯乙烯胺,苯乙烯膦,苯乙烯醚和芳胺。
一个一元苯乙烯胺是指一化合物,它包含一个无取代或取代的苯乙烯基组和至少一个胺,最好是芳香胺。一个二元苯乙烯胺是指一化合物,它包含二个无取代或取代的苯乙烯基组和至少一个胺,最好是芳香胺。一个三元苯乙烯胺是指一化合物,它包含三个无取代或取代的苯乙烯基组和至少一个胺,最好是芳香胺。一个四元苯乙烯胺是指一化合物,它包含四个无取代或取代的苯乙烯基组和至少一个胺,最好是芳香胺。一个优选的苯乙烯是二苯乙烯,其可能会进一步被取代。相应的膦类和醚类的定义与胺类相似。芳基胺或芳香胺是指一种化合物,包含三个直接联接氮的无取代或取代的芳香环或杂环系统。这些芳香族或杂环的环系统中至少有一个优先选于稠环系统,并最好有至少14个芳香环原子。其中优选的例子有芳香蒽胺,芳香蒽二胺,芳香芘胺,芳香芘二胺,芳香屈胺和芳香屈二胺。一个芳香蒽胺是指一化合物,其中一个二元芳基胺基团直接联到蒽上,最好是在9的位置上。一个芳香蒽二胺是指一化合物,其中二个二元芳基胺基团直接联到蒽上,最好是在9,10的位置上。芳香芘胺,芳香芘二胺,芳香屈胺和芳香屈二胺的定义类似,其中二元芳基胺基团最好联到芘的1或1,6位置上。
基于乙烯胺及芳胺的单重态发光体的例子,也是优选的例子,可在下述专利文件中找到:WO 2006/000388,WO 2006/058737,WO 2006/000389,WO 2007/065549,WO 2007/115610,US 7250532 B2,DE 102005058557 A1,CN 1583691 A,JP 08053397 A,US 6251531 B1,US 2006/210830 A,EP 1957606 A1和US 2008/0113101 A1。特此上述列出的专利文件中的全部内容并入本文作为参考。
基于均二苯乙烯极其衍生物的单重态发光体的例子有US 5121029。
进一步的优选的单重态发光体可选于茚并芴-胺和茚并芴-二胺,如WO 2006/122630所公开的,苯并茚并芴-胺和苯并茚并芴-二胺,如WO 2008/006449所公开的,二苯并茚并芴-胺和二苯并茚并芴-二胺,如WO2007/140847所公开的。
进一步优选的单重态发光体可选于基于芴的稠环体系,如US2015333277A1、US2016099411A1、US2016204355A1所公开的。
更加优选的单重态发光体可选于芘的衍生物,如US2013175509A1所公开的结构;芘的三芳胺衍生物,如CN102232068B所公开的含有二苯并呋喃单元的芘的三芳胺衍生物;其它具有特定结构的芘的三芳胺衍生物,如CN105085334A、CN105037173A所公开的。其他可用作单重态发光体的材料有多环芳烃化合物,特别是如下化合物的衍生物:蒽如9,10-二(2-萘并蒽),萘,四苯,氧杂蒽,菲,芘(如2,5,8,11-四-t-丁基苝),茚并芘,苯撑如(4,4’-双(9-乙基-3-咔唑乙烯基)-1,1’-联苯),二茚并芘,十环烯,六苯并苯,芴,螺二芴,芳基芘(如US20060222886),亚芳香基乙烯(如US5121029,US5130603),环戊二烯如四苯基环戊二烯,红荧烯,香豆素,若丹明,喹吖啶酮,吡喃如4(二氰基亚甲基)-6-(4-对二甲氨基苯乙烯基-2-甲基)-4H-吡喃(DCM),噻喃,双(吖嗪基)亚胺硼化合物(US 2007/0092753 A1),双(吖嗪基)亚甲基化合物,carbostyryl化合物,噁嗪酮,苯并恶唑,苯并噻唑,苯并咪唑及吡咯并吡咯二酮,吲哚咔唑并环衍生物(WO2019111971A1,WO2020250961A1,US2020212315A1)。一些单重态发光体的材料可在下述专利文件中找到:US 20070252517 A1,US 4769292,US 6020078,US 2007/0252517 A1,US 2007/0252517 A1。特此将上述列出的专利文件中的全部内容并入本文作为参考。
下面列出一些合适的单重态发光体的例子:
3.TADF材料
传统有机荧光材料只能利用电激发形成的25%单线态激子发光,器件的内量子效率较低(最高为25%)。尽管磷光材料由于重原子中心强的自旋-轨道耦合增强了系间穿越,可以有效利用电激发形成的单线态激子和三线态激子发光,使器件的内量子效率达到100%。但磷光材料昂贵,材料稳定性差,器件效率滚降严重等问题限制了其在OLED中的应用。热激活延迟荧光发光材料是继有机荧光材料和有机磷光材料之后发展的第三代有机发光材料。该类材料一般具有小的单线态-三线态能级差(ΔEST),三线态激子可以通过反系间穿越转变成单线态激子发光。这可以充分利用电激发下形成的单线态激子和三线态激子。器件内量子效率可达到100%。同时材料结构可控,性质稳定,价格便宜无需要贵金属,在OLED领域的应用前景广阔。
TADF材料需要具有较小的单线态-三线态能级差,较好是ΔEST<0.3eV,次好是ΔEST<0.2eV,最好是ΔEST<0.1eV。在一个优选的实施例中,TADF材料有比较小的ΔEST,在另一个优选的实施例中,TADF有较好的荧光量子效率。一些TADF发光的材料可在下述专利文件中找到:CN103483332(A),TW201309696(A),TW201309778(A),TW201343874(A),TW201350558(A),US20120217869(A1),WO2013133359(A1),WO2013154064(A1),Adachi,et.al.Adv.Mater.,21,2009,4802,Adachi,et.al.Appl.Phys.Lett.,98,2011,083302,Adachi,et.al.Appl.Phys.Lett.,101,2012,093306,Adachi,et.al.Chem.Commun.,48,2012,11392,Adachi,et.al.Nature Photonics,6,2012,253,Adachi,et.al.Nature,492,2012,234,Adachi,et.al.J.Am.Chem.Soc,134,2012,14706,Adachi,et.al.Angew.Chem.Int.Ed,51,2012,11311,Adachi,et.al.Chem.Commun.,48,2012,9580,Adachi,et.al.Chem.Commun.,48,2013,10385,Adachi,et.al.Adv.Mater.,25,2013,3319,Adachi,et.al.Adv.Mater.,25,2013,3707,Adachi,et.al.Chem.Mater.,25,2013,3038,Adachi,et.al.Chem.Mater.,25,2013,3766,Adachi,et.al.J.Mater.Chem.C.,1,2013,4599,Adachi,et.al.J.Phys.Chem.A.,117,2013,5607,特此将上述列出的专利或文章文件中的全部内容并入本文作为参考。
在下面列出一些合适的TADF发光材料的例子:

4.HTM材料
合适的有机HTM材料可选包含有如下结构单元的化合物:酞菁、卟啉、胺、芳香胺、联苯类三芳胺、噻吩、并噻吩、吡咯、苯胺、咔唑、氮茚并氮芴及它们的衍生物。
可用作HTM的环芳香胺衍生化合物的例子包括(但不限于)如下的一般结构:
每个Ar1-Ar9可独立选自环芳香烃化合物,如苯、联苯、三苯基、苯并、萘、蒽、非那烯、菲、芴、芘、屈、苝、薁;芳香杂环化合物,如二苯并噻吩、二苯并呋喃、呋喃、噻吩、苯并呋喃、苯并噻吩、咔唑、吡唑、咪唑、三氮唑、异恶唑、噻唑、恶二唑、恶三唑、二恶唑、噻二唑、吡啶、哒嗪、嘧啶、吡嗪、三嗪、恶嗪、恶噻嗪、恶二嗪、吲哚、苯并咪唑、吲唑、吲哚嗪、苯并恶唑、苯异恶唑、苯并噻唑、喹啉、异喹啉、邻二氮(杂)萘、喹唑啉、喹喔啉、萘、酞、蝶啶、氧杂蒽、吖啶、吩嗪、吩噻嗪、吩恶嗪、二苯并硒吩、苯并硒吩、苯并呋喃吡啶、吲哚咔唑、吡啶吲哚、吡咯二吡啶、呋喃二吡啶、苯并噻吩吡啶、噻吩吡啶、苯并硒吩吡啶和硒吩二吡啶;包含有2至10环结构的基团,它们可以是相同或不同类型的环芳香烃基团或芳香杂环基团,并彼此直接或通过至少一个以下的基团连结在一起,如氧原子、氮原子、硫原子、硅原子、磷原子、硼原子、链结构单元和脂肪环基团。其中,Ar1-Ar9可以进一步被取代,取代 基可选为氢、氘、烷基、烷氧基、氨基、烯、炔、芳烷基、杂烷基、芳基和杂芳基。
在一个方面,Ar1-Ar9可独立选自包含如下结构单元的基团:
X1-X8是CH或N;Ar10定义同Ar1;n的定义同上所述。
环芳香胺衍生化合物的另外的例子可参见US3567450,US4720432,US5061569,US3615404和US5061569。
在下面列出合适的可作为HTM化合物的例子:
本发明还涉及一种组合物,包含至少一种如上所述的有机化合物或混合物,及至少一种有机溶剂;所述至少一种的有机溶剂选自芳族或杂芳族、酯、芳族酮或芳族醚、脂肪族酮或脂肪族醚、脂环族或烯烃类化合物,或硼酸酯或磷酸酯类化合物,或两种及两种以上溶剂的混合物。
在一个优选的实施例中,按照本发明的组合物,所述的至少的一种有机溶剂选自基于芳族或杂芳族的溶剂。
适合本发明的基于芳族或杂芳族溶剂的例子有,但不限制于:对二异丙基苯、戊苯、四氢萘、环己基苯、氯萘、1,4-二甲基萘、3-异丙基联苯、对甲基异丙苯、二戊苯、三戊苯、戊基甲苯、邻二乙苯、间二乙苯、对二乙苯、1,2,3,4-四甲苯、1,2,3,5-四甲苯、1,2,4,5-四甲苯、丁苯、十二烷基苯、二己基苯、二丁基苯、对二异丙基苯、环己基苯、苄基丁基苯、二甲基萘、3-异丙基联苯、对甲基异丙苯、1-甲基萘、1,2,4-三氯苯、4,4-二氟二苯甲烷、1,2-二甲氧基-4-(1-丙烯基)苯、二苯甲烷、2-苯基吡啶、3-苯基吡啶、N-甲基二苯胺、4-异丙基联苯、α,α-二氯二苯甲烷、4-(3-苯基丙基)吡啶、苯甲酸苄酯、1,1-双(3,4-二甲基苯基)乙烷、2-异丙基萘、喹啉、异喹啉、2-呋喃甲酸甲酯、2-呋喃甲酸乙酯等。
适合本发明的基于芳族酮溶剂的例子有,但不限制于:1-四氢萘酮,2-四氢萘酮,2-(苯基环氧)四氢萘酮,6-(甲氧基)四氢萘酮,苯乙酮、苯丙酮、二苯甲酮、及它们的衍生物,如4-甲基苯乙酮、3-甲基苯乙酮、2-甲基苯乙酮、4-甲基苯丙酮、3-甲基苯丙酮、2-甲基苯丙酮等。
适合本发明的基于芳族醚溶剂的例子有,但不限制于:3-苯氧基甲苯、丁氧基苯、对茴香醛二甲基乙缩醛、四氢-2-苯氧基-2H-吡喃、1,2-二甲氧基-4-(1-丙烯基)苯、1,4-苯并二噁烷、1,3-二丙基苯、2,5-二甲氧基甲苯、4-乙基本乙醚、1,3-二丙氧基苯、1,2,4-三甲氧基苯、4-(1-丙烯基)-1,2-二甲氧基苯、1,3-二甲氧基苯、缩水甘油基苯基醚、二苄基醚、4-叔丁基茴香醚、反式-对丙烯基茴香醚、1,2-二甲氧基苯、1-甲氧基萘、二苯醚、2-苯氧基甲醚、2-苯氧基四氢呋喃、乙基-2-萘基醚。
在一些优选的实施例中,按照本发明的组合物,所述的至少一种的有溶剂可选自:脂肪族酮,例如,2-壬酮、3-壬酮、5-壬酮、2-癸酮、2,5-己二酮、2,6,8-三甲基-4-壬酮、葑酮、佛尔 酮、异佛尔酮、二正戊基酮等;或脂肪族醚,例如,戊醚、己醚、二辛醚、乙二醇二丁醚、二乙二醇二乙醚、二乙二醇丁基甲醚、二乙二醇二丁醚、三乙二醇二甲醚、三乙二醇乙基甲醚、三乙二醇丁基甲醚、三丙二醇二甲醚、四乙二醇二甲醚等。
在另一些优选的实施例中,按照本发明的组合物,所述的至少一种的有溶剂可选自基于酯的溶剂:辛酸烷酯、癸二酸烷酯、硬脂酸烷酯、苯甲酸烷酯、苯乙酸烷酯、肉桂酸烷酯、草酸烷酯、马来酸烷酯、烷内酯、油酸烷酯等。特别优选辛酸辛酯、癸二酸二乙酯、邻苯二甲酸二烯丙酯、异壬酸异壬酯。
所述的溶剂可以是单独使用,也可以是作为两种或多种有机溶剂的混合物使用。
在某些优选的实施例中,按照本发明的一种组合物,包含至少一种如上所述的有机化合物或高聚物或混合物及至少一种有机溶剂,还可包含另一种有机溶剂。另一种有机溶剂的例子包括(但不限于):甲醇、乙醇、2-甲氧基乙醇、二氯甲烷、三氯甲烷、氯苯、邻二氯苯、四氢呋喃、苯甲醚、吗啉、甲苯、邻二甲苯、间二甲苯、对二甲苯、1,4二氧杂环己烷、丙酮、甲基乙基酮、1,2二氯乙烷、3-苯氧基甲苯、1,1,1-三氯乙烷、1,1,2,2-四氯乙烷、醋酸乙酯、醋酸丁酯、二甲基甲酰胺、二甲基乙酰胺、二甲基亚砜、四氢萘、萘烷、茚和/或它们的混合物。
在一些优选的实施例中,特别适合本发明的溶剂是汉森(Hansen)溶解度参数在以下范围内的溶剂:
δd(色散力)在17.0~23.2MPa1/2的范围,尤其是在18.5~21.0MPa1/2的范围;
δp(极性力)在0.2~12.5MPa1/2的范围,尤其是在2.0~6.0MPa1/2的范围;
δh(氢键力)在0.9~14.2MPa1/2的范围,尤其是在2.0~6.0MPa1/2的范围。
按照本发明的组合物,其中有机溶剂在选取时需考虑其沸点参数。本发明中,所述的有机溶剂的沸点≥150℃;优选为≥180℃;较优选为≥200℃;更优选为≥250℃;最优选为≥275℃或≥300℃。这些范围内的沸点对防止喷墨印刷头的喷嘴堵塞是有益的。所述的有机溶剂可从溶剂体系中蒸发,以形成包含功能材料薄膜。
在一个优选的实施例中,按照本发明的组合物是一溶液。
在另一个优选的实施例中,按照本发明的组合物是一悬浮液。
本发明实施例中的组合物中可以包括0.01至10wt%的按照本发明的化合物或混合物,较好的是0.1至15wt%,更好的是0.2至5wt%,最好的是0.25至3wt%。
本发明还涉及所述组合物作为涂料或印刷油墨在制备有机电子器件时的用途,特别优选的是通过打印或涂布的制备方法。
其中,适合的打印或涂布技术包括(但不限于)喷墨打印,喷印(Nozzle Printing),活版印刷,丝网印刷,浸涂,旋转涂布,刮刀涂布,辊筒印花,扭转辊印刷,平版印刷,柔版印刷,轮转印刷,喷涂,刷涂或移印,狭缝型挤压式涂布等。首选的是凹版印刷,喷印及喷墨印刷。溶液或悬浮液可以另外包括一个或多个组份例如表面活性化合物,润滑剂,润湿剂,分散剂,疏水剂,粘接剂等,用于调节粘度,成膜性能,提高附着性等。有关打印技术,及其对有关溶液的相关要求,如溶剂及浓度,粘度等。
本发明还提供一种如上所述的芳香胺化合物、混合物或组合物在有机电子器件中的应用,所述的有机电子器件可选于,但不限于,有机发光二极管(OLED),有机光伏电池(OPV),有机发光电池(OLEEC),有机场效应管(OFET),有机发光场效应管,有机激光器,有机自旋电子器件,有机传感器及有机等离激元发射二极管(Organic Plasmon Emitting Diode)等,特别优选为OLED。本发明实施例中,优选将所述芳香胺化合物用于OLED器件的空穴传输层。
本发明进一步涉及一种有机电子器件,包含至少一功能层,所述功能层包含一种如上所述的有机化合物、混合物或由上述的组合物制备而成。进一步的,所述有机电子器件,包含阴极、 阳极和至少一功能层,所述功能层包含一种如上所述的芳香胺化合物或混合物或由上述的组合物制备而成。所述功能层选自空穴注入层(HIL)、空穴传输层(HTL)、发光层(EML)、电子阻挡层(EBL)、电子注入层(EIL)、电子传输层(ETL)、空穴阻挡层(HBL);优选的,所述功能层选自空穴传输层。
所述的有机电子器件可选于,但不限于,有机发光二极管(OLED),有机光伏电池(OPV),有机发光电池(OLEEC),有机场效应管(OFET),有机发光场效应管,有机激光器,有机自旋电子器件,有机传感器及有机等离激元发射二极管(Organic Plasmon Emitting Diode)等,特别优选的是有机电致发光器件,如OLED,OLEEC,有机发光场效应管。
在以上所述的有机电子器件,特别是OLED中,包括一基片,一阳极,至少一发光层,一阴极。
基片可以是不透明或透明。一个透明的基板可以用来制造一个透明的发光元器件。例如可参见,Bulovic等Nature 1996,380,p29,和Gu等,Appl.Phys.Lett.1996,68,p2606。基片可以是刚性的或弹性的。基片可以是塑料,金属,半导体晶片或玻璃。最好是基片有一个平滑的表面。无表面缺陷的基板是特别理想的选择。在一个优选的实施例中,基片是柔性的,可选于聚合物薄膜或塑料,其玻璃化温度Tg为150℃以上,较好是超过200℃,更好是超过250℃,最好是超过300℃。合适的柔性基板的例子有聚(对苯二甲酸乙二醇酯)(PET)和聚乙二醇(2,6-萘)(PEN)。
阳极可包括一导电金属或金属氧化物,或导电聚合物。阳极可以容易地注入空穴到空穴注入层(HIL)或空穴传输层(HTL)或发光层中。在一个优选的实施例中,阳极的功函数和发光层中的发光体或作为HIL或HTL或电子阻挡层(EBL)的p型半导体材料的HOMO能级或价带能级的差的绝对值小于0.5eV,较好是小于0.3eV,最好是小于0.2eV。阳极材料的例子包括但不限于:Al、Cu、Au、Ag、Mg、Fe、Co、Ni、Mn、Pd、Pt、ITO、铝掺杂氧化锌(AZO)等。其他合适的阳极材料是已知的,本领域普通技术人员可容易地选择使用。阳极材料可以使用任何合适的技术沉积,如一合适的物理气相沉积法,包括射频磁控溅射,真空热蒸发,电子束(e-beam)等。在某些实施例中,阳极是图案结构化的。图案化的ITO导电基板可在市场上买到,并且可以用来制备根据本发明的器件。
阴极可包括一导电金属或金属氧化物。阴极可以容易地注入电子到EIL或ETL或直接到发光层中。在一个实施例中,阴极的功函数和发光层中发光体或作为电子注入层(EIL)或电子传输层(ETL)或空穴阻挡层(HBL)的n型半导体材料的LUMO能级或导带能级的差的绝对值小于0.5eV,较好是小于0.3eV,最好是小于0.2eV。原则上,所有可用作OLED的阴极的材料都可能作为本发明器件的阴极材料。阴极材料的例子包括但不限于:Al、Au、Ag、Ca、Ba、Mg、LiF/Al、MgAg合金、BaF2/Al、Cu、Fe、Co、Ni、Mn、Pd、Pt、ITO等。阴极材料可以使用任何合适的技术沉积,如一合适的物理气相沉积法,包括射频磁控溅射,真空热蒸发,电子束(e-beam)等。
OLED还可以包含其他功能层,如空穴注入层(HIL)、空穴传输层(HTL)、电子阻挡层(EBL)、电子注入层(EIL)、电子传输层(ETL)、空穴阻挡层(HBL)。适合用于这些功能层中的材料在上面及在WO2010135519A1、US20090134784A1和WO2011110277A1中有详细的描述,特此将此3篇专利文件中的全部内容并入本文作为参考。
本发明的另一方面涉及一种有机电致发光器件,其包括第一电极、第二电极以及介于第一电极与第二电极之间的一个或更多个有机层,其中至少一层有机层中包含通式(I)或通式(II)所示的有机化合物。在一些优选的实施例中,所述有机电致发光器件包括:第一电极;空穴传输区域,设置在所述第一电极上;发光层,设置在所述空穴传输区域上;电子传输区域,设置在所述发光层上;以及第二电极,设置在所述电子传输区域上;其中空穴传输区域至少包含一 种如上所述的有机化合物或混合物。在一些较为优选的实施例中,其中空穴传输区域具有多层结构,所述多层结构中与所述发光层接触的层包含一种如上所述的有机化合物或混合物。在一些更为优选的实施例中,其中空穴传输区域包括:设置在所述第一电极上的空穴注入层、设置在所述空穴注入层上的空穴传输层以及设置在所述空穴传输层上的空穴辅助层,其中空穴辅助层包含一种如上所述的有机化合物或混合物。
有机电致发光器件可以使用本领域已知的合适材料通过本领域已知的合适方法来制造,不同之处在于通式(I)或通式(II)的有机化合物来形成相应的有机层。
根据本发明的有机电致发光器件的有机层具有单层或多层结构。例如,有机层可以为空穴注入层、空穴传输层、空穴辅助层、发光层、电子传输层和电子注入层。然而,有机层的数目没有限制并且可以增加或减少。
根据本发明的一个实施例,有机电致发光器件可以包括基底、第一电极、第一空穴注入层、空穴传输层、发光层、电子传输层、电子注入层和第二电极,其中包含由通式(I)或通式(II)表示的化合物的空穴辅助层介于空穴传输层与发光层之间。由于通式(I)或通式(II)表示的化合物的存在有利于向发光层的空穴传输,实现了器件的进一步改善发光效率和寿命特性。
下面将给出关于根据本发明的有机电致发光器件的实施例的更详细的描述。
本发明的有机电致发光器件包括阳极、空穴传输层、发光层、电子传输层和阴极。本发明的有机电致发光器件还可以任选地包括在阳极与空穴传输层之间的空穴注入层以及在电子传输层与阴极之间的电子注入层。如有必要,本发明的有机电致发光器件还可以包括一个或两个中间层。中间层可以为空穴阻挡层或电子阻挡层。本发明的有机电致发光器件还可以包括根据器件的期望特性具有各种功能的一个或更多个有机层。
本发明的有机电致发光器件还可以包括在空穴传输层与发光层之间的空穴辅助层,其中空穴辅助层可以包含由通式(I)或通式(II)表示的化合物。
按照本发明的有机电致发光器件,其发光波长在300到1200nm之间,较好的是在350到1000nm之间,更好的是在400到900nm之间,最好的是在450到650nm之间。
本发明还涉及按照本发明的有机电致发光器件在各种电子设备中的应用,包含,但不限于,显示设备,照明设备,光源,传感器等等。
下面将结合优选实施例对本发明进行说明,但本发明并不局限于下述实施例,应当理解,所附权利要求概括了本发明的范围在本发明构思的引导下本领域的技术人员应意识到,对本发明的各实施例进行的一定的改变,都将被本发明的权利要求书的精神和范围所覆盖。
具体实施例
1.化合物的合成
化合物1-1的合成:在一个干燥的双口瓶里加入1-溴-2-甲氧基萘(16g,67.48mmol),4-二苯并呋喃硼酸(17.16g,80.98mmol)和四三苯基膦钯(4.0g,3.46mmol),用50mL 2M碳酸钾水溶液和150mL 1,4-二氧六环溶解,抽真空充氮气循环三次,80℃搅拌反应过夜。反应结束后冷却至室温,分液后有机相拌入硅胶浓缩上柱(正己烷:二氯甲烷=4:1),浓缩得18.4g,产率84%。MS(ASAP)=324.4。
化合物1-2的合成:在一个干燥的双口瓶里加入化合物1-1(16g,49.32mmol),用500mL二氯甲烷溶解。抽真空充氮气置换三次。降温至-50℃,缓慢滴加三溴化硼(14.83g,17.80mmol)滴 毕,自然升温至室温搅拌,反应过夜。反应结束后降温,滳加甲醇将反应淬灭。浓缩后用二氯甲烷溶清,过短硅胶脱色,浓缩母液得15g,产率100%。MS(ASAP)=310.4。
化合物1-3的合成:在反应瓶中称入化合物1-2(16g,51.55mmol),加入250mL二氯甲烷溶清,抽真空氮气循环三次,降温至-10℃,加入三乙胺(10.43g,103.1mmol),搅拌30分钟,加入三氟甲磺酸酐(29.08g,103.1mmol),逐渐升至室温搅拌反应过夜。反应结束后加入水100mL搅拌30分钟。分去水层,将有机层直接过短硅胶柱,浓缩母液得19.0g,产率83%。MS(ASAP)=442.41。
化合物1的合成:在一个干燥的双口瓶里加入N,N-二(4-联苯基)-4-(4,4,5,5-四甲基-1,3,2-二氧硼戊环-2-基)苯胺(20.5g,39.16mmol),化合物1-3(19.06g,43.08mmol)和四三苯基膦钯(2.26g,1.96mmol),然后加入80mL 2M碳酸钾水溶液和240mL1,4-二氧六环,抽真空充氮气循环三次,80℃搅拌反应过夜。反应结束后冷却至室温,分液后有机相加入正己烷至饱和迅速过短硅胶住脱色后浓缩得固体,用甲苯重结晶得14.0g,产率52%。MS(ASAP)=689.9。
化合物2-1的合成:在一个干燥的双口瓶里加入1-溴-2-甲氧基萘(16g,67.48mmol),1-二苯并呋喃硼酸(17.16g,80.98mmol)和四三苯基膦钯(4.0g,3.46mmol),用2M碳酸钾水溶液(160mL)和1,4-二氧六环(300mL)溶解,抽真空充氮气循环三次,80℃搅拌反应过夜。趁热分出水相,有机相拌入硅胶浓缩上柱,淋洗剂为正己烷:二氯甲烷=8:1将上方的杂质点冲出后改用正己烷:二氯甲烷=5:1将产品冲出,浓缩得17.7g,产率81%。MS(ASAP)=324.4。
化合物2-2的合成:在一个干燥的双口瓶里加入化合物2-1(16g,49.32mmol),用500mL二氯甲烷溶解。抽真空充氮气置换三次。降温至-50℃,缓慢滴加三溴化硼(14.83g,17.80mmol)滴毕,自然升温至室温搅拌,反应过夜。反应结束后降温,滳加甲醇将反应淬灭。浓缩后用二氯甲烷溶清,过短硅胶脱色,浓缩母液得15g,产率100%。MS(ASAP)=310.4。
化合物2-3的合成:在反应瓶中称入化合物2-2(16g,51.55mmol),加入250mL二氯甲烷溶清,抽真空氮气循环三次,降温至-10℃,加入三乙胺(10.43g,103.1mmol),搅拌30分钟,加入三氟甲磺酸酐(29.08g,103.1mmol),逐渐升至室温搅拌反应过夜。反应结束后加入水100mL搅拌30分钟。分去水层,将有机层直接过短硅胶柱,浓缩母液得20.8g,产率91%。MS(ASAP)=442.41。
化合物2的合成:在一个干燥的双口瓶里加入N,N-二(4-联苯基)-4-(4,4,5,5-四甲基-1,3,2-二氧硼戊环-2-基)苯胺(20.5g,39.16mmol),化合物2-3(19.06g,43.08mmol)和四三苯基膦钯(2.26g,1.96mmol),然后加入200mL 2M碳酸钾水溶液和500mL1,4-二氧六环,抽真空充氮气循环三次,80℃搅拌反应过夜。反应结束后冷却至室温,分液后有机相加入正己烷至饱和迅速过短硅胶住脱色后浓缩得固体,用甲苯重结晶得18.4g,产率68%。MS(ASAP)=689.9。
化合物3-1的合成:在一个干燥的反应瓶中加入4-溴苯并[2,1-b:3,4-b']双苯并呋喃(合成方法见CN110655438A)(20.2g,60mmol),联硼酸频那醇酯(16.8g,66mol),醋酸钾(28.3g,300mmol),[1,1'-双(二苯基膦)二茂铁]二氯化钯(2.18g,3mmol)和2-二环己基膦-2',4',6'-三异丙基联苯(1.43g,3mmol),加入250mL 1,4-二氧六环溶解,抽真空氮气置换三次后,85℃反应过夜。反应结束后,冷却至室温,抽滤,浓缩母液,用二氯甲烷溶清后过短硅胶柱脱色,浓缩母液。用乙醇打浆后抽滤得19.6g,产率85%。MS(ASAP)=384.2。
化合物3-2的合成:在一个干燥的双口瓶里加入1-溴-2-甲氧基萘(11.8g,50mmol),化合物3-1(19.2g,50mmol)和四三苯基膦钯(2.89g,2.5mmol),用25mL 2M碳酸钾水溶液和100mL 1,4-二氧六环溶解,抽真空充氮气循环三次,80℃搅拌反应过夜。分液后有机相拌入硅胶浓缩上柱(正己烷:二氯甲烷=3:1),浓缩得18.0g,产率87%。MS(ASAP)=414.4
化合物3-3的合成:在一个干燥的双口瓶里加入化合物3-2(16.6g,40mmol),用250mL二氯甲烷溶解。抽真空充氮气置换三次。降温至-50℃,缓慢滴加三溴化硼(12.0g,14.4mmol)滴毕,自然升温至室温搅拌,反应过夜。反应结束后降温,滳加甲醇将反应淬灭。浓缩后用二氯甲烷溶清,过短硅胶脱色,浓缩母液得16.0g,产率100%。MS(ASAP)=400.4。
化合物3-4的合成:在反应瓶中称入化合物3-3(16.0g,40mmol),加入250mL二氯甲烷溶清,抽真空氮气循环三次,降温至-10℃,加入三乙胺(8.10g,80mmol),搅拌30分钟,加入三氟甲磺酸酐(22.6g,80mmol),逐渐升至室温搅拌反应过夜。反应结束后加入水100mL搅拌30分钟。分去水层,将有机层直接过短硅胶柱,浓缩母液得19.0g,产率89%。MS(ASAP)=532.5。
化合物3的合成:在一个干燥的双口瓶里加入N,N-二(4-联苯基)-4-(4,4,5,5-四甲基-1,3,2-二氧硼戊环-2-基)苯胺(20.1g,38.5mmol),化合物3-4(18.6g,35mmol)和四三苯基膦钯(2.02g,1.75mmol),然后加入50mL 2M碳酸钾水溶液和250mL1,4-二氧六环,抽真空充氮气循环三次,80℃搅拌反应过夜。反应结束后冷却室室温,分流后有机相拌入硅胶浓缩上柱(正己烷:二氯甲烷=2:1),浓缩得23.7g,产率87%。MS(ASAP)=779.9。
化合物4-1的合成:在一个干燥的双口瓶里加入1-溴-2-甲氧基萘(16g,67.48mmol),2-二苯并呋喃硼酸(17.16g,80.98mmol)和四三苯基膦钯(4.0g,3.46mmol),用120mL 2M碳酸钾水溶液和300mL 1,4-二氧六环溶解,抽真空充氮气循环三次,80℃搅拌反应过夜。分液后有机相拌 入硅胶浓缩上柱(正己烷:二氯甲烷=5:1),浓缩得19.0g,产率87%。MS(ASAP)=324.4。
化合物4-2的合成:在一个干燥的双口瓶里加入化合物4-1(16g,49.32mmol),用500mL二氯甲烷溶解。抽真空充氮气置换三次。降温至-50℃,缓慢滴加三溴化硼(14.83g,17.80mmol)滴毕,自然升温至室温搅拌,反应过夜。反应结束后降温,滳加甲醇将反应淬灭。浓缩后用二氯甲烷溶清,过短硅胶脱色,浓缩母液得15g,产率100%。MS(ASAP)=310.4。
化合物4-3的合成:在反应瓶中称入化合物4-2(16g,51.55mmol),加入250mL二氯甲烷溶清,抽真空氮气循环三次,降温至-10℃,加入三乙胺(10.43g,103.1mmol),搅拌30分钟,加入三氟甲磺酸酐(29.08g,103.1mmol),逐渐升至室温搅拌反应过夜。反应结束后加入水100mL搅拌30分钟。分去水层,将有机层直接过短硅胶柱,浓缩母液得19.4g,产率85%。MS(ASAP)=442.41。
化合物4-4的合成:在一个干燥的双口瓶中加入1-溴-4-氯-2-碘苯(15.9g,50mmol),苯硼酸(6.10g,50mmol)和四三苯基膦钯(2.89g,2.5mmol),加入30mL 2M碳酸钾溶液和120mL 1,4-二氧六环溶解。抽真空充氮气循环三次,80℃搅拌反应过夜。反应结束后冷却至室温,分液后减压蒸馏除去溶剂,再用二氯甲烷溶解,水洗后合并有机相,用无水硫酸钠干燥后减压蒸馏除去多余的溶剂,硅胶板样柱层析(石油醚:二氯甲烷=4:1),得到目标产物11.4g,产率约为85%。MS(ASAP)=267.6。
化合物4-5的合成:在一个干燥的双口瓶中加入化合物4-4(10.7g,40mmol),二(4-联苯基)胺(13.5g,42mmol),三(二亚苄基丙酮)二钯(1.83g,2mmol),三叔丁基膦(0.81g,4mmol)和叔丁醇钠(7.69g,80mmol),加入120mL无水甲苯溶解。抽真空充氮气循环三次后升温至回流反应过夜。反应结束后冷却至室温,分液后减压蒸馏除去溶剂,再用二氯甲烷溶解,水洗后合并有机相,用无水硫酸钠干燥后减压蒸馏除去多余的溶剂,硅胶板样柱层析(石油醚:二氯甲烷=3:1),得到目标产物15.2g,产率约为75%。MS(ASAP)=508.1。
化合物4-6的合成:在一个干燥的反应瓶中加入化合物4-5(15.2g,30mmol),联硼酸频那醇酯(8.38g,33mol),醋酸钾(14.7g,150mmol),[1,1'-双(二苯基膦)二茂铁]二氯化钯(1.09g,1.5mmol)和2-二环己基膦-2',4',6'-三异丙基联苯(0.72g,1.5mmol),加入150mL 1,4-二氧六环溶解,抽真空氮气置换三次后,85℃反应过夜。反应结束后,冷却至室温,抽滤,浓缩母液,用二氯甲烷溶清后过短硅胶柱脱色,浓缩母液。用乙醇打浆后抽滤得14.0g,产率78%。MS(ASAP)=599.6。
化合物4的合成:在一个干燥的双口瓶中加入化合物4-6(12.0g,20mmol),化合物4-3(9.73g,22mmol)和四三苯基膦钯(1.16g,1mmol),加入25mL 2M碳酸钾溶液和100mL 1,4-二氧六环溶解。抽真空充氮气循环三次,85℃搅拌反应过夜。反应结束后冷却至室温,分液后减压蒸馏除去溶剂,再用二氯甲烷溶解,水洗后合并有机相,用无水硫酸钠干燥后减压蒸馏除去多余的溶剂,硅胶板样柱层析(石油醚:二氯甲烷=2:1),得到目标产物11.8g,产率约为77%。MS(ASAP)=766.0。
化合物5-1的合成:在一个干燥的双口瓶中加入4-溴-1-氯-2-碘苯(15.9g,50mmol),苯硼酸(6.10g,50mmol)和四三苯基膦钯(2.89g,2.5mmol),加入30mL 2M碳酸钾溶液和120mL 1,4-二氧六环溶解。抽真空充氮气循环三次,80℃搅拌反应过夜。反应结束后冷却至室温,分液后减压蒸馏除去溶剂,再用二氯甲烷溶解,水洗后合并有机相,用无水硫酸钠干燥后减压蒸馏除去 多余的溶剂,硅胶板样柱层析(石油醚:二氯甲烷=4:1),得到目标产物11.6g,产率约为87%。MS(ASAP)=267.6。
化合物5-2的合成:在一个干燥的双口瓶中加入化合物5-1(10.7g,40mmol),二(4-联苯基)胺(13.5g,42mmol),三(二亚苄基丙酮)二钯(1.83g,2mmol),三叔丁基膦(0.81g,4mmol)和叔丁醇钠(7.69g,80mmol),加入120mL无水甲苯溶解。抽真空充氮气循环三次后升温至回流反应过夜。反应结束后冷却至室温,分液后减压蒸馏除去溶剂,再用二氯甲烷溶解,水洗后合并有机相,用无水硫酸钠干燥后减压蒸馏除去多余的溶剂,硅胶板样柱层析(石油醚:二氯甲烷=3:1),得到目标产物15.2g,产率约为75%。MS(ASAP)=508.1。
化合物5-3的合成:在一个干燥的反应瓶中加入化合物5-2(15.2g,30mmol),联硼酸频那醇酯(8.38g,33mol),醋酸钾(14.7g,150mmol),[1,1'-双(二苯基膦)二茂铁]二氯化钯(1.09g,1.5mmol)和2-二环己基膦-2',4',6'-三异丙基联苯(0.72g,1.5mmol),加入150mL 1,4-二氧六环溶解,抽真空氮气置换三次后,85℃反应过夜。反应结束后,冷却至室温,抽滤,浓缩母液,用二氯甲烷溶清后过短硅胶柱脱色,浓缩母液。用乙醇打浆后抽滤得14.6g,产率81%。MS(ASAP)=599.6。
化合物5的合成:在一个干燥的双口瓶中加入化合物5-3(12.0g,20mmol),化合物4-3(9.73g,22mmol)和四三苯基膦钯(1.16g,1mmol),加入25mL 2M碳酸钾溶液和100mL 1,4-二氧六环溶解。抽真空充氮气循环三次,85℃搅拌反应过夜。反应结束后冷却至室温,分液后减压蒸馏除去溶剂,再用二氯甲烷溶解,水洗后合并有机相,用无水硫酸钠干燥后减压蒸馏除去多余的溶剂,硅胶板样柱层析(石油醚:二氯甲烷=2:1),得到目标产物11.8g,产率约为77%。MS(ASAP)=766.0。
化合物6-1的合成:在一个干燥的反应瓶中加入1-溴-2,4-二(苯基)苯(18.6g,60mmol),联硼酸频那醇酯(16.8g,66mol),醋酸钾(28.3g,300mmol),[1,1'-双(二苯基膦)二茂铁]二氯化钯(2.18g,3mmol)和2-二环己基膦-2',4',6'-三异丙基联苯(1.43g,3mmol),加入250mL 1,4-二氧六环溶解,抽真空氮气置换三次后,85℃反应过夜。反应结束后,冷却至室温,抽滤,浓缩母液,用二氯甲烷溶清后过短硅胶柱脱色,浓缩母液。用乙醇打浆后抽滤得19.5g,产率91%。MS(ASAP)=356.3。
化合物6-2的合成:在一个干燥的双口瓶中加入化合物6-1(17.8g,50mmol),4,4'-4”-苯基-二溴三苯胺(24.0g,50mmol)和四三苯基膦钯(2.89g,2.5mmol),加入30mL 2M碳酸钾溶液和120mL1,4-二氧六环溶解。抽真空充氮气循环三次,80℃搅拌反应过夜。反应结束后冷却至室温,分液后减压蒸馏除去溶剂,再用二氯甲烷溶解,水洗后合并有机相,用无水硫酸钠干燥后减压蒸馏除去多余的溶剂,硅胶板样柱层析(石油醚:二氯甲烷=4:1),得到目标产物24.8g,产率约为79%。MS(ASAP)=628.6。
化合物6-3的合成:在一个干燥的反应瓶中加入化合物6-2(18.9g,30mmol),联硼酸频那醇酯(8.38g,33mol),醋酸钾(14.7g,150mmol),[1,1'-双(二苯基膦)二茂铁]二氯化钯(1.09g,1.5mmol)和2-二环己基膦-2',4',6'-三异丙基联苯(0.72g,1.5mmol),加入200mL 1,4-二氧六环溶解,抽真空氮气置换三次后,85℃反应过夜。反应结束后,冷却至室温,抽滤,浓缩母液,用二氯甲烷溶清后过短硅胶柱脱色,浓缩母液。用乙醇打浆后抽滤得15.8g,产率78%。 MS(ASAP)=675.7。
化合物6的合成:在一个干燥的双口瓶中加入化合物6-3(13.5g,20mmol),化合物1-3(9.73g,22mmol)和四三苯基膦钯(1.16g,1mmol),加入25mL 2M碳酸钾溶液和100mL 1,4-二氧六环溶解。抽真空充氮气循环三次,85℃搅拌反应过夜。反应结束后冷却至室温,分液后减压蒸馏除去溶剂,再用二氯甲烷溶解,水洗后合并有机相,用无水硫酸钠干燥后减压蒸馏除去多余的溶剂,硅胶板样柱层析(石油醚:二氯甲烷=2:1),得到目标产物12.5g,产率约为74%。MS(ASAP)=842.1。
化合物7的合成:在一个干燥的双口瓶中加入化合物4-6(12.0g,20mmol),化合物1-3(9.73g,22mmol)和四三苯基膦钯(1.16g,1mmol),加入25mL 2M碳酸钾溶液和100mL 1,4-二氧六环溶解。抽真空充氮气循环三次,85℃搅拌反应过夜。反应结束后冷却至室温,分液后减压蒸馏除去溶剂,再用二氯甲烷溶解,水洗后合并有机相,用无水硫酸钠干燥后减压蒸馏除去多余的溶剂,硅胶板样柱层析(石油醚:二氯甲烷=2:1),得到目标产物11.8g,产率约为77%。MS(ASAP)=766.0。
化合物8的合成:在一个干燥的双口瓶中加入化合物5-3(12.0g,20mmol),化合物1-3(9.73g,22mmol)和四三苯基膦钯(1.16g,1mmol),加入25mL 2M碳酸钾溶液和100mL 1,4-二氧六环溶解。抽真空充氮气循环三次,85℃搅拌反应过夜。反应结束后冷却至室温,分液后减压蒸馏除去溶剂,再用二氯甲烷溶解,水洗后合并有机相,用无水硫酸钠干燥后减压蒸馏除去多余的溶剂,硅胶板样柱层析(石油醚:二氯甲烷=2:1),得到目标产物11.8g,产率约为77%。MS(ASAP)=766.0。
化合物9的合成:在一个干燥的双口瓶中加入化合物4-6(12.0g,20mmol),化合物2-3(9.73g,22mmol)和四三苯基膦钯(1.16g,1mmol),加入25mL 2M碳酸钾溶液和100mL 1,4-二氧六环溶解。抽真空充氮气循环三次,85℃搅拌反应过夜。反应结束后冷却至室温,分液后减压蒸馏除去溶剂,再用二氯甲烷溶解,水洗后合并有机相,用无水硫酸钠干燥后减压蒸馏除去多余的溶剂,硅胶板样柱层析(石油醚:二氯甲烷=2:1),得到目标产物11.8g,产率约为77%。MS(ASAP)=766.0。
化合物10-1的合成:在一个干燥的双口瓶中加入4,4'-二溴-4”-苯基三苯胺(24.0g,50mmol),4-二苯并呋喃硼酸(10.6g,50mmol)和四三苯基膦钯(2.89g,2.5mmol),加入30mL 2M碳酸钾溶液和120mL 1,4-二氧六环溶解。抽真空充氮气循环三次,80℃搅拌反应过夜。反应结束后冷却至室温,分液后减压蒸馏除去溶剂,再用二氯甲烷溶解,水洗后合并有机相,用无水硫酸钠干燥后减压蒸馏除去多余的溶剂,硅胶板样柱层析(石油醚:二氯甲烷=5:1),得到目标产物22.9g,产率约为81%。MS(ASAP)=566.5。
化合物10-2的合成:在一个干燥的双口瓶中加入化合物10-1(22.7g,40mmol),3-氯苯硼酸(6.57g,42mmol)和四三苯基膦钯(2.31g,2mmol),加入25mL 2M碳酸钾溶液和100mL 1,4-二氧六环溶解。抽真空充氮气循环三次,80℃搅拌反应过夜。反应结束后冷却至室温,分液后减压蒸馏除去溶剂,再用二氯甲烷溶解,水洗后合并有机相,用无水硫酸钠干燥后减压蒸馏除去多余的溶剂,硅胶板样柱层析(石油醚:二氯甲烷=5:1),得到目标产物20.3g,产率约为85%。MS(ASAP)=598.1。
化合物10-3的合成:在一个干燥的反应瓶中加入化合物10-2(17.9g,30mmol),联硼酸频那醇酯(8.38g,33mol),醋酸钾(14.7g,150mmol),[1,1'-双(二苯基膦)二茂铁]二氯化钯(1.09g,1.5mmol)和2-二环己基膦-2',4',6'-三异丙基联苯(0.72g,1.5mmol),加入250mL 1,4-二氧六环溶解,抽真空氮气置换三次后,85℃反应过夜。反应结束后,冷却至室温,抽滤,浓缩母液,用二氯甲烷溶清后过短硅胶柱脱色,浓缩母液。用乙醇打浆后抽滤得16.6g,产率80%。MS(ASAP)=689.7。
化合物10的合成:在一个干燥的双口瓶中加入化合物10-3(13.8g,20mmol),化合物1-3(9.73g,22mmol)和四三苯基膦钯(1.16g,1mmol),加入25mL 2M碳酸钾溶液和100mL 1,4-二氧六环溶解。抽真空充氮气循环三次,85℃搅拌反应过夜。反应结束后冷却至室温,分液后减压蒸馏除去溶剂,再用二氯甲烷溶解,水洗后合并有机相,用无水硫酸钠干燥后减压蒸馏除去多余的溶剂,硅胶板样柱层析(石油醚:二氯甲烷=2:1),得到目标产物13.0g,产率约为76%。MS(ASAP)=856.0。
2.有机化合物的能量结构
有机材料的能级可通过量子计算得到,比如利用TD-DFT(含时密度泛函理论)通过Gaussian03W(Gaussian Inc.),具体的模拟方法可参见WO2011141110。首先用半经验方法“Ground State/Semi-empirical/Default Spin/AM1”(Charge 0/Spin Singlet)来优化分子几何结构,然后有机分子的能量结构由TD-DFT(含时密度泛函理论)方法算得“TD-SCF/DFT/Default Spin/B3PW91”与基组“6-31G(d)”(Charge 0/Spin Singlet)。HOMO和LUMO能级按照下面的校准公式计算,S1和T1直接使用。
HOMO(eV)=((HOMO(G)×27.212)-0.9899)/1.1206
LUMO(eV)=((LUMO(G)×27.212)-2.0041)/1.385
其中HOMO(G)和LUMO(G)是Gaussian 03W的直接计算结果,单位为Hartree。结果如表1所示:
表1

3.OLED器件的制备及表征
下面通过具体实施例来详细说明采用上述的OLED器件的制备过程,蓝光器件结构为HI(10)/HT-1(50)/HT-2(10)/BH:BD=100:3(25)/ET:LiQ=50:50(30)/LiQ(1)/Al(100)。
a、ITO(铟锡氧化物)导电玻璃基片的清洗:使用各种溶剂(例如氯仿、丙酮或异丙醇中的一种或几种)清洗,然后进行紫外臭氧处理。
b、蒸镀:将基片移入真空气相沉积设备中,在高真空(1×10-6毫巴)下,控制PD和HT-1的比例为3:100,形成10nm的空穴注入层(HIL),随后在空穴注入层上蒸镀化合物HT-1形成50nm的空穴传输层(HTL),紧接着在空穴传输层上蒸镀发明化合物形成10nm的空穴辅助层。作为发光层,以BH:BD按照100:3的比例形成25nm的发光层薄膜。接着蒸镀电子辅助层ET-1 5nm,之后ET-2和LiQ置于不同的蒸发单元,使其分别以50重量%的比例进行共沉积,得到电子传输层25nm,随后沉积1nm的LiQ作为电子注入层,最后在所述电子注入层上沉积厚度为100nm的Al阴极。
c、封装:器件在氮气手套箱中用紫外线硬化树脂封装。
对上述实施例和对比例的器件性能进行测试,具体如表2所示;其中驱动电压、电流效率是在10mA/cm2电流密度下进行测试;T95的器件寿命是指在恒定电流密度50mA/cm2亮度衰减至95%的时间。
表2
和对比例1-对比例6相比,器件实施例1-器件实施例8具有更低的驱动电压,同时电流效率和寿命都有明显的提升。推测原因是本发明的在萘基2-位取代芳胺化合物,具有大体积的取代有连接基团的萘基,降低了分子的对称性并抑制了结晶,从而提高了成膜质量。同时本发明化合物在萘基1-位引入特定的取代基,该取代基与其他1’-位的氢原子存在空间电子排斥作用,进一步降低了分子的平面性,从而改善了空穴传输并增加了发光层中空穴和电子复合的几率。
在以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种有机化合物,具有如通式(I)所示的结构:
    其中:
    A和B分别独立选自氢或式(I-1)或式(I-2)的基团,且A和B仅有一个为式(I-1)或式(I-2)的基团;
    “*”表示连接位置;
    X为O、S、NR1、CR2R3
    Y在每种情况下可相同或不同的表示为CR4或N,其中每个环不超过两个Y是N;
    L1选自取代或未取代的成环碳原子数为6~30的亚芳香基或者取代或未取代的成环碳原子数为2~30的亚杂芳香基;
    L2-L3各自独立选自单键,取代或未取代的成环碳原子数为6~30的亚芳香基或者取代或未取代的成环碳原子数为2~30的亚杂芳香基;
    Ar1-Ar2各自独立选自具有5至40个环原子的取代或未取代的芳香基团或杂芳香基团,或是具有5至40个环原子的芳氧基或杂芳氧基基团,或这些基团的组合,其中一个或多个基团可以彼此和/或与所述基团键合的环形成单环或多环的脂族或芳族环系;
    R1-R4是取代基,在每次出现时,可以相同或不同的是H、D,或具有1至20个C原子的直链烷基、烷氧基或硫代烷氧基基团,或具有3至20个C原子的支链或环状的烷基、烷氧基或硫代烷氧基基团或者是甲硅烷基基团,或具有1至20个C原子的取代的酮基基团,或具有2至20个C原子的烷氧基羰基基团,或具有7至20个C原子的芳氧基羰基基团,或氰基基团、氨基甲酰基基团、卤甲酰基基团、甲酰基基团、异氰基基团、异氰酸酯基团、硫氰酸酯基团或异硫氰酸酯基团、羟基基团、硝基基团、CF3、Cl、Br、F或可交联的基团,或具有5至40个环原子的取代或未取代的芳族或杂芳族环系,或具有5至40个环原子的芳氧基或杂芳氧基基团,或这些基团的组合,R1-R4中任意相邻的两个取代基可以彼此和/或与所述基团键合的环形成单环或多环的脂族或芳族环系。
  2. 根据权利要求1所述的有机化合物,具有如通式(II)所示的结构:
    其中:L2-L3各自独立选取代或未取代的成环碳原子数为6~30的亚芳香基或者取代或未取代的成环碳原子数为2~30的亚杂芳香基;X、Y、L1、Ar1、Ar2的定义同权利要求1。
  3. 根据权利要求1或2所述的有机化合物,其中:两个相邻的Y可同时与式(I-3)或式(I-4)表示的基团键联并且其余的Y在每种情况下相同或不同的表示为CR4或N,
    其中,虚线键表示键联位置,Z表示为N或CR5,Q选自O、S、NR1、CR2R3,R4的含义同权利要求1,R5的含义同R4
  4. 根据权利要求1-3任意一项所述的有机化合物,其中:L1选自以下基团及其组合:
    其中,
    X1每次出现时,独立选自CR6或N;
    Y1每次出现时,独立选自NR7、CR8R9、O、S、SiR10R11、S=O、SO2
    R6-R11每次出现时,分别独立选自:H,D,或具有1至20个C原子的直链烷基,或具有1至20个C原子的直链烷氧基,或具有1至20个C原子的直链硫代烷氧基,或具有3至20个C原子的支链或环状的烷基,或具有3至20个C原子的支链或环状的烷氧基,或具有3至20个C原子的支链或环状的硫代烷氧基、甲硅烷基,或具有1至20个C原子的酮基,或具有2至20个C原子的烷氧基羰基,或具有7至20个C原子的芳氧基羰基,或氰基、氨基甲酰基、卤甲酰基、甲酰基、异氰基、异氰酸酯、硫氰酸酯、异硫氰酸酯、羟基、硝基、CF3、Cl、Br、F、可交联的基团,具有5至60个环原子的取代或未取代的芳香基团,或具有5至60个环原子的取代或未取代的杂芳香基团,或具有5至60个环原子的芳氧基,或具有5至60个环原子的杂芳氧基基团,或这些基团的组合,R6-R11中任意相邻的两个取代基可以彼此和/或与所述基团键合的环形成单环或多环的脂族或芳族环系。
  5. 根据权利要求1-4任意一项所述的有机化合物,其中:L2-L3各自独立选自以下基团及其组合:
    其中,
    X2每次出现时,独立选自CR1或N;
    Y2每次出现时,独立选自NR2、O、S、SiR3R4、S=O、SO2、CR5R6
    R1-R6每次出现时,分别独立选自:H,D,或具有1至20个C原子的直链烷基,或具有1至20个C原子的直链烷氧基,或具有1至20个C原子的直链硫代烷氧基,或具有3至20个C原子的支链或环状的烷基,或具有3至20个C原子的支链或环状的烷氧基,或具有3至20个C原子的支链或环状的硫代烷氧基、甲硅烷基,或具有1至20个C原子的酮基,或具有2至20个C原子的烷氧基羰基,或具有7至20个C原子的芳氧基羰基,或氰基、氨基甲酰基、卤甲酰基、甲酰基、异氰基、异氰酸酯、硫氰酸酯、异硫氰酸酯、羟基、硝基、CF3、Cl、Br、F、可交联的基团,或具有5至60个环原子的取代或未取代的芳香基团,或具有5至60个环原子的取代或未取代的杂芳香基团,或具有5至60个环原子的芳氧基,或具有5至60个环原子的杂芳氧基基团,或这些基团的组合,R1-R6中任意相邻的两个取代基可以彼此和/或与所述基团键合的环形成单环或多环的脂族或芳族环系。
  6. 根据权利要求1-5任意一项所述的有机化合物,其中:Ar1和Ar2每次出现时,可独立地选自以下基团及其组合:
    上述基团任选地被0,1,2或3个选自D、F、Cl、Br、氰基、C1-C4烷基、C1-C3卤代烷基、苯基、萘基、芴基、螺芴基和C3-C10环烷基所取代;
    A1是取代基,在每次出现时,可以相同或不同的是H、D,或具有1至20个C原子的直链烷基、烷氧基或硫代烷氧基基团,或具有3至20个C原子的支链或环状的烷基、烷氧基或硫代烷氧基基团或者是甲硅烷基基团,或具有1至20个C原子的取代的酮基基团,或具有2至20个C原子的烷氧基羰基基团,或具有7至20个C原子的芳氧基羰基基团,或氰基基团、氨基甲酰基基团、卤甲酰基基团、甲酰基基团、异氰基基团、异氰酸酯基团、硫氰酸酯基团或异硫氰酸酯基团、羟基基团、硝基基团、CF3、Cl、Br、F或可交联的基团,或具有5至40个环原子的取代或未取代的芳族或杂芳族环系,或具有5至40个环原子的芳氧基或杂芳氧基基团,或这些基团的组合。
  7. 一种混合物,包含一种如权利要求1-6任一项所述的有机化合物,及至少另一种有机功能材料,所述有机功能材料选自空穴注入材料、空穴传输材料、电子传输材料、电子注入材料、电子阻挡材料、空穴阻挡材料、发光材料、主体材料、有机染料中的一种或多种。
  8. 一种有机电子器件,包含一功能层,其特征在于,所述功能层中包含一种如权利要求1-6任一项所述的有机化合物,或如权利要求7所述的混合物。
  9. 根据权利要求8所述的有机电子器件是一有机电致发光器件,所述有机电致发光器件包括:第一电极;空穴传输区域,设置在所述第一电极上;发光层,设置在所述空穴传输区域上;电子传输区域,设置在所述发光层上;以及第二电极,设置在所述电子传输区域上;其中空穴传输区域至少包含一种如权利要求1-6任一项所述的有机化合物,或如权利要求7所述的混合物。
  10. 根据权利要求9所述的有机电子器件,其中空穴传输区域具有多层结构,所述多层结构中与所述发光层接触的层包含一种如权利要求1-6任一项所述的有机化合物,或如权利要求7所述的混合物。
PCT/CN2023/099258 2022-06-10 2023-06-09 芳胺有机化合物及其在有机电子器件中的应用 WO2023237073A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210656519 2022-06-10
CN202210656519.X 2022-06-10

Publications (1)

Publication Number Publication Date
WO2023237073A1 true WO2023237073A1 (zh) 2023-12-14

Family

ID=89117541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/099258 WO2023237073A1 (zh) 2022-06-10 2023-06-09 芳胺有机化合物及其在有机电子器件中的应用

Country Status (1)

Country Link
WO (1) WO2023237073A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111146349A (zh) * 2018-11-05 2020-05-12 乐金显示有限公司 有机化合物和包含其的有机电致发光器件
CN111279502A (zh) * 2018-01-17 2020-06-12 株式会社Lg化学 有机发光器件
WO2021132995A1 (ko) * 2019-12-27 2021-07-01 엘티소재주식회사 유기 발광 소자 및 유기 발광 소자의 유기물층용 조성물
CN113135903A (zh) * 2020-01-17 2021-07-20 江苏三月科技股份有限公司 一种芳香族二苯并呋喃类衍生物及其应用
CN113461547A (zh) * 2020-03-31 2021-10-01 江苏三月科技股份有限公司 一种用于有机电致发光器件的二胺衍生物
CN114080381A (zh) * 2019-09-17 2022-02-22 Lt素材株式会社 杂环化合物以及包括其的有机发光元件
KR20220110388A (ko) * 2021-01-29 2022-08-08 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자
WO2023075134A1 (ko) * 2021-10-28 2023-05-04 엘티소재주식회사 아민 화합물 및 이를 포함하는 유기 발광 소자
WO2023095844A1 (ja) * 2021-11-25 2023-06-01 保土谷化学工業株式会社 アリールアミン化合物、有機エレクトロルミネッセンス素子、および電子機器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111279502A (zh) * 2018-01-17 2020-06-12 株式会社Lg化学 有机发光器件
CN111146349A (zh) * 2018-11-05 2020-05-12 乐金显示有限公司 有机化合物和包含其的有机电致发光器件
CN114080381A (zh) * 2019-09-17 2022-02-22 Lt素材株式会社 杂环化合物以及包括其的有机发光元件
WO2021132995A1 (ko) * 2019-12-27 2021-07-01 엘티소재주식회사 유기 발광 소자 및 유기 발광 소자의 유기물층용 조성물
CN113135903A (zh) * 2020-01-17 2021-07-20 江苏三月科技股份有限公司 一种芳香族二苯并呋喃类衍生物及其应用
CN113461547A (zh) * 2020-03-31 2021-10-01 江苏三月科技股份有限公司 一种用于有机电致发光器件的二胺衍生物
KR20220110388A (ko) * 2021-01-29 2022-08-08 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자
WO2023075134A1 (ko) * 2021-10-28 2023-05-04 엘티소재주식회사 아민 화합물 및 이를 포함하는 유기 발광 소자
WO2023095844A1 (ja) * 2021-11-25 2023-06-01 保土谷化学工業株式会社 アリールアミン化合物、有機エレクトロルミネッセンス素子、および電子機器

Similar Documents

Publication Publication Date Title
CN109792002B (zh) 有机混合物、组合物及有机电子器件和应用
CN109803957B (zh) 三嗪类稠环衍生物及其在有机电子器件中的应用
CN108003365B (zh) 有机复合薄膜及其在有机电子器件中的应用
CN109791993B (zh) 有机混合物、组合物以及有机电子器件
CN111278795A (zh) 有机混合物及其在有机电子器件中的应用
CN109608342B (zh) 芳香胺衍生物、聚合物、混合物、组合物和有机电子器件
CN108137604B (zh) 并吡咯衍生物及其在有机电子器件的应用
CN109705107B (zh) 稠环有机化合物、包含其的混合物及有机电子器件
CN110759930B (zh) 螺环化合物及其用途
CN112430239B (zh) 基于七元环结构的化合物、高聚物、混合物、组合物及有机电子器件
CN111848590B (zh) 化合物、高聚物、混合物、组合物及有机电子器件
CN113698426B (zh) 一种多环化合物及其在有机电子器件中的应用
CN109705100B (zh) 含萘咔唑类有机光化合物、混合物、组合物及其用途
CN109790087B (zh) 氘代稠环化合物、高聚物、混合物、组合物以及有机电子器件
WO2022138790A1 (ja) 有機電界発光素子の発光層形成用組成物、有機電界発光素子、有機el表示装置及び有機el照明
CN109659448B (zh) 有机混合物、组合物及有机电子器件
CN111278892B (zh) 含酰胺键基团的聚合物、混合物、组合物及其应用
CN110759910A (zh) 吡啶化合物及其用途
CN113698519B (zh) 一种聚合物及其在有机电子器件中的应用
CN110845525B (zh) 萘并咔唑类化合物及其应用
CN110698475A (zh) 稠环有机化合物及其应用
CN110669048A (zh) 基于含氮稠环的有机化合物及其应用
WO2018103746A1 (zh) 咔唑苯类稠环衍生物、聚合物、混合物、组合物、有机电子器件及其制备方法
WO2023237073A1 (zh) 芳胺有机化合物及其在有机电子器件中的应用
CN112979678A (zh) 一种有机化合物、高聚物、混合物、组合物及有机电子器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23819236

Country of ref document: EP

Kind code of ref document: A1