WO2023236412A1 - 一种高精密多层线路板及其 3d 打印制备方法 - Google Patents

一种高精密多层线路板及其 3d 打印制备方法 Download PDF

Info

Publication number
WO2023236412A1
WO2023236412A1 PCT/CN2022/126587 CN2022126587W WO2023236412A1 WO 2023236412 A1 WO2023236412 A1 WO 2023236412A1 CN 2022126587 W CN2022126587 W CN 2022126587W WO 2023236412 A1 WO2023236412 A1 WO 2023236412A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metal
coating
insulating layer
circuit board
Prior art date
Application number
PCT/CN2022/126587
Other languages
English (en)
French (fr)
Inventor
蔡王灿
李赛锋
周南嘉
Original Assignee
芯体素(杭州)科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 芯体素(杭州)科技发展有限公司 filed Critical 芯体素(杭州)科技发展有限公司
Priority to EP22902503.6A priority Critical patent/EP4311382A1/en
Priority to KR1020237033491A priority patent/KR20230170657A/ko
Publication of WO2023236412A1 publication Critical patent/WO2023236412A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4664Adding a circuit layer by thick film methods, e.g. printing techniques or by other techniques for making conductive patterns by using pastes, inks or powders
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1275Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by other printing techniques, e.g. letterpress printing, intaglio printing, lithographic printing, offset printing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/188Processes of additive manufacturing involving additional operations performed on the added layers, e.g. smoothing, grinding or thickness control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0284Details of three-dimensional rigid printed circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0296Conductive pattern lay-out details not covered by sub groups H05K1/02 - H05K1/0295
    • H05K1/0298Multilayer circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/097Inks comprising nanoparticles and specially adapted for being sintered at low temperature
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4626Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/09509Blind vias, i.e. vias having one side closed
    • H05K2201/09518Deep blind vias, i.e. blind vias connecting the surface circuit to circuit layers deeper than the first buried circuit layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/01Tools for processing; Objects used during processing
    • H05K2203/0104Tools for processing; Objects used during processing for patterning or coating
    • H05K2203/0126Dispenser, e.g. for solder paste, for supplying conductive paste for screen printing or for filling holes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/01Tools for processing; Objects used during processing
    • H05K2203/0104Tools for processing; Objects used during processing for patterning or coating
    • H05K2203/013Inkjet printing, e.g. for printing insulating material or resist
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/14Related to the order of processing steps
    • H05K2203/1476Same or similar kind of process performed in phases, e.g. coarse patterning followed by fine patterning
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/0026Etching of the substrate by chemical or physical means by laser ablation
    • H05K3/0032Etching of the substrate by chemical or physical means by laser ablation of organic insulating material
    • H05K3/0035Etching of the substrate by chemical or physical means by laser ablation of organic insulating material of blind holes, i.e. having a metal layer at the bottom
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1241Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by ink-jet printing or drawing by dispensing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4038Through-connections; Vertical interconnect access [VIA] connections
    • H05K3/4053Through-connections; Vertical interconnect access [VIA] connections by thick-film techniques
    • H05K3/4069Through-connections; Vertical interconnect access [VIA] connections by thick-film techniques for via connections in organic insulating substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4647Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits by applying an insulating layer around previously made via studs

Definitions

  • the invention belongs to the technical field of circuit board preparation, and specifically relates to a high-precision multi-layer circuit board and a 3D printing preparation method thereof.
  • Multilayer circuit boards are commonly found in IC carriers and package substrates.
  • substrate printed circuit board (PCB), low temperature co-fired ceramics (Low Temperature Co-fired Ceramic, LTCC) substrates, etc.
  • Active devices such as power MOS, transistors, IC chips, etc.
  • various other passive components such as filters, transformers, resistors, capacitors, inductors, etc.
  • filters, transformers, resistors, capacitors, inductors, etc. need to be assembled or embedded into multi-layer circuits after a certain packaging process. board.
  • These substrates need to be assembled with the next level of packaging to form a packaging system. Therefore, multi-layer circuit boards play an important role in electrical connection, assembly connection and structural protection of different components.
  • the design and manufacturing of multi-layer circuit boards need to fully consider the electrical, thermal, mechanical and other requirements brought by devices and packaging.
  • the electronics industry has developed a variety of multilayer circuit board preparation technologies to suit product design and applications.
  • Some 3D printing processes based on Fused Deposition Modeling (FDM) can only be used to prepare insulating layers of specific materials due to limitations of wires and melting technologies.
  • the FDM printing method has poor surface quality, circuit layers and vertical interconnect structures. It needs to be completed by other non-printing methods, and the interconnection accuracy is low.
  • Some 3D printing processes based on selective laser sintering (SLS), selective laser cladding (SLM), electron beam selective melting (EBSM), direct laser metal sintering (DMLS) and other 3D printing processes require high-energy energy sources after powder spreading or powder spraying. Metal is sintered or melted, and the metal processing accuracy is low, so it is not suitable for the preparation of precision multi-layer circuit boards.
  • the Chinese patent with publication number CN109534767A discloses an extrusion 3D white marble powder printing slurry and its preparation method.
  • This invention has high solid content and good shear performance, making it suitable for extrusion 3D printing processes. At room temperature, it can gradually dry and solidify during the 3D printing process, thereby obtaining higher-precision molded parts without collapse. Phenomenon.
  • Another example is the Chinese patent with publication number CN107365158A, which provides a paste with good stability and shear thinning properties, so that the paste can be smoothly extruded from the needle and can still maintain the line shape and shape after being deposited on the substrate. A certain span has good molding performance, thereby improving accuracy.
  • Some 3D printing processes based on Fused Deposition Modeling (FDM) can only be used to prepare insulating layers of specific materials due to limitations of wires and melting technologies.
  • the FDM printing method has poor surface quality, circuit layers and vertical interconnect structures. It needs to be completed by other non-printing methods, and the interconnection accuracy is low.
  • Some 3D printing processes based on selective laser sintering (SLS), selective laser cladding (SLM), electron beam selective melting (EBSM), direct laser metal sintering (DMLS) and other 3D printing processes require high-energy energy sources after powder spreading or powder spraying. Metal is sintered or melted, and the metal processing accuracy is low, so it is not suitable for the preparation of precision multi-layer circuit boards.
  • the present invention proposes a 3D printing and preparation method for high-precision multi-layer circuit boards, which can prepare high-precision multi-layer circuit boards with high interconnection accuracy.
  • the present invention creatively utilizes the extrusion 3D printing method to produce high-precision multi-layer circuit boards with high interconnection accuracy, and overcomes the existing technical considerations that if the extrusion 3D printing method is applied to high-precision multi-layer circuit boards Many technical biases in preparation.
  • each insulating layer needs to be cured even when the insulating layer is coated. Even if the precision is consistent, it is difficult to ensure that the precision of the formed substrates is consistent after curing, and the upper surfaces of each substrate cannot be guaranteed to be a flat surface. The accumulation of formation errors of each substrate will affect the overall preparation accuracy of multi-layer circuit boards. Since the upper surface of each substrate cannot be guaranteed to be a flat surface, the high undulations and surface roughness of the upper surface of the substrate will seriously affect the state of the printing circuit and the printing process window.
  • the present invention overcomes the technical prejudice of those skilled in the art that the extrusion 3D printing method cannot produce high-precision multi-layer circuit boards with high interconnection accuracy, and realizes the use of the extrusion 3D printing method. Preparation of high-precision multi-layer circuit boards.
  • the high precision referred to in the present invention means that the wire width in the three-dimensional circuit layer can reach 1 ⁇ 150um, the wire spacing can reach 1 ⁇ 150um, the vertical interconnection structure size can reach 20 ⁇ 150um, and the vertical interconnection structure spacing can It can reach 20 ⁇ 150um, the line width and line spacing can be significantly reduced to less than 10um, and the size and spacing of the vertical interconnection structure can be significantly reduced to less than 150um, thus making the three-dimensional circuit layer and the three-dimensional circuit layer have a relatively high High interconnection accuracy, that is, the interconnection accuracy of multi-layer circuit boards.
  • the three-dimensional circuit layer means that the extrusion head not only extrudes and prints on a plane, the extrusion plane, relative to the substrate, but also moves the extrusion and printing in the direction perpendicular to the extrusion plane, so that the circuit layer formed is three-dimensional and Unlike the planar shape of the existing technology, this structure not only solves the problems of collision and broken needles during the manufacturing process, but also the three-dimensional circuit layer fits the surface topography of the substrate better, making it less likely to cause damage to the circuit board in subsequent manufacturing processes. circuit break, thereby greatly improving the overall yield of multi-layer circuit boards.
  • step S1 when forming a three-dimensional circuit layer on the upper surface of the substrate, the process includes:
  • step S1 when the three-dimensional circuit layer is formed on the upper surface of the substrate, the difference between the actual position and the preset position of the three-dimensional circuit layer at a specific point on the upper surface of the substrate is measured, and the extrusion process is calculated based on the difference. head to correct.
  • step S1 before the extrusion port extrudes the nanoscale metal slurry with shear thinning properties to form the starting end of each line in the three-dimensional line layer, it is processed on a vertical plane perpendicular to the substrate. Pre-extrusion movement of the curve and formal extrusion forming route into the line along the tangential direction of the curve;
  • step S1 the end of the formal extrusion forming route of the line has a preset flying material section, and the extrusion port is closed when it is at the flying material section to extrude the nanoscale metal slurry with shear thinning properties. material action.
  • step S2 a nanoscale metal slurry with shear-thinning properties is extruded through the extrusion port to alternately form outer frame lines and filling lines on each layer of the metal pillars, so that the current three-dimensional line layer can be Metal pillars are formed at preset positions.
  • the formation method of the insulating layer in step S3 includes:
  • the insulating dielectric material previously applied on the coating surface is pushed by the blade coating blade to form the insulating layer on the upper surface of the current three-dimensional circuit layer.
  • the formation method of the insulating layer in step S3 includes:
  • the insulating dielectric material is extruded through the slit of the slit coating blade and coated on the coating surface to form the insulating layer on the upper surface of the current three-dimensional circuit layer.
  • step S3 before coating the insulating layer in step S3, the following steps are also included:
  • step S3 includes the steps:
  • the line aspect ratio described in the present invention is achieved by using a Musashi 300DS three-axis dispensing machine with a Nordson Optimum® 100um inner diameter universal dispensing needle, and dispensing the slurry under a given air pressure of 20psi and a moving speed of the dispensing head of 2mm/s. Glue to the glass substrate to form a line, let it stand for 10 minutes, observe using a microscope and calculate the ratio of line height and line width.
  • the dispersion medium in nanoscale metal slurry is used to disperse and protect nanoscale metal particles, inhibit the agglomeration of nanoscale metal particles, improve the adhesion between the slurry and the substrate, and provide certain shape-retaining ability and thixotropy.
  • the nanoscale metal particles are nanoscale silver metal particles.
  • the dispersion medium includes a dispersion solvent and a binder.
  • the dispersion solvent includes any one or more of organic solvents and water;
  • the binder includes any one of polyacrylic acid, diethanolamine, and a compound of polyacrylic acid and diethanolamine. one or more.
  • polyacrylic acid includes short-chain polyacrylic acid and long-chain polyacrylic acid.
  • the mass ratio of short-chain polyacrylic acid and long-chain polyacrylic acid is between 2:1 and 8:1.
  • the molar mass of short-chain polyacrylic acid is between 1000 and 10000g/mol, and the molar mass of long-chain polyacrylic acid is between 10000 and 100000g/mol.
  • the organic solvent includes any one or more of ethylene glycol and glycerol.
  • the nanoscale metal particles are nanoscale copper metal particles.
  • the dispersion medium includes a dispersion solvent and a binder.
  • the dispersion solvent includes any one or more of organic solvents and water; the binder includes epoxy resin, curing agent, and protective agent.
  • the epoxy resin is a thermosetting epoxy resin.
  • thermosetting epoxy resin includes any one or more of bisphenol A-type epoxy resin, E-44 epoxy resin, and biphenyl oxy-type epoxy resin.
  • the curing agent is any one of a polythiol curing agent, a dicyandiamide curing agent, and an acid anhydride curing agent, so that the epoxy resin can be rapidly cured by heat.
  • the organic solvent includes any one or more of diethylene glycol monoethyl ether acetate, divalent acid ester, isophorone, terpineol or diethylene glycol monobutyl ether.
  • the nanoscale metal slurry with shear thinning properties further includes a protective agent.
  • the protective agent is formed from any one or a combination of triarylphosphine compounds and trialkylphosphine compounds.
  • the protective agent coordinates with copper powder at ⁇ 100°C, and combines with oxygen atoms at ⁇ 100°C to form a phosphine oxide compound, which inhibits the oxidation of copper nanoparticles during the preparation and printing process.
  • the nanoscale metal slurry with shear thinning properties further includes a non-conductive filler.
  • the non-conductive filler is formed from any one or a combination of carbon powder, nano-graphene powder, bentonite, and nano-silica powder, and is mainly used to adjust the viscosity and thixotropy of the slurry.
  • steps S2 and S3 also include the following steps:
  • step S3 after forming an insulating layer on the upper surface of the current three-dimensional circuit layer, it also includes performing a second pre-curing process on the insulating layer;
  • step S3 after the insulating layer is drilled and filled with nanoscale metal slurry, it also includes performing a third pre-curing process on the filled nanoscale metal slurry;
  • step S5 after connecting the metal pillars on the corresponding three-dimensional circuit layer under the current insulating layer or connecting them to the pad layer through the pre-lead method, it also includes performing an overall sintering and solidification process on the multi-layer circuit board to complete Preparation of multilayer circuit boards.
  • the curing temperature is 100°C ⁇ 150°C and the curing time is 3min ⁇ 10min.
  • the stepped pre-curing treatment includes: first curing at a curing temperature of 60°C to 95°C for 3min to 10min, and then curing at a curing temperature of 120°C to 200°C for 3min to 10min.
  • the insulating layer material is an organic medium.
  • the sintering temperature of the overall sintering and solidification treatment is 200°C to 350°C, and the sintering time is 1h to 3h.
  • the material of the insulating layer is ceramic dielectric.
  • the sintering temperature of the overall sintering and solidification treatment is 850°C, and the sintering time is 0.5h ⁇ 2h.
  • the invention also provides a curing method in the preparation process of high-precision multi-layer circuit boards, which includes the steps:
  • the nanoscale metal slurry with shear thinning properties is extruded to alternately form the outer frame lines and filling lines on each layer of the metal pillars to accumulate and form the metal pillars;
  • the nanoscale metal slurry with shear thinning characteristics includes nanoscale metal particles and a dispersion medium.
  • the content of nanoscale metal particles is 75% to 95%.
  • the viscosity of the nanoscale metal slurry with shear thinning characteristics is between Between 100000cps and 1000000cps, the thixotropic index is 4 ⁇ 10, and the line aspect ratio formed by the nanoscale metal slurry with shear thinning characteristics is ⁇ 0.5.
  • step S2 the height of the metal pillar is higher than the insulating layer to be formed on the three-dimensional circuit layer.
  • the nanoscale metal particles are nanoscale silver metal particles.
  • the invention also provides a miniature passive electronic device, which adopts the above-mentioned high-precision multi-layer circuit board.
  • the wire width in the three-dimensional circuit layer can reach 1 ⁇ 150um
  • the wire spacing can reach 1 ⁇ 150um
  • the vertical interconnection structure size can reach 20 ⁇ 150um
  • the vertical interconnection structure spacing can reach 20 ⁇ 150um
  • the line width and line The distance can be significantly reduced to less than 10um
  • the size and spacing of the vertical interconnection structure can be significantly reduced to less than 150um, so that the three-dimensional circuit layer and the three-dimensional circuit layer have higher interconnection accuracy, that is, multi-layer circuit boards interconnection accuracy.
  • the present invention also uses extrusion of nanoscale metal slurry with shear thinning properties to print metal columns to ensure the printing dimensional accuracy of metal columns. requirements to further ensure the interconnection accuracy of high-precision multi-layer circuit boards.
  • the metal column on the corresponding three-dimensional circuit layer located below the current three-dimensional circuit layer is drilled in the insulation layer and At least one insulating layer is introduced by filling the slurry, which can realize interconnection between any three-dimensional circuit layers.
  • This application presets a curved pre-extrusion movement before the formal extrusion forming route of the line to avoid the problem of delayed and uneven discharging of the extrusion port at the starting end of the formal extrusion forming route; and through the formal extrusion of the line
  • a flying material section is preset at the end of the formation route, and the extrusion power supply for extruding the nanoscale metal slurry with shear thinning properties is turned off when the flying material section is at the flying material section to avoid the formal extrusion of the extrusion port in the line. This causes problems with stacking and wire drawing at the end of the route.
  • the manufacturing method of metal pillars provided by the present invention can improve the shape-retaining force of the metal pillars and ensure the printing size of the metal pillars when using the extrusion 3D printing method to produce high-precision multi-layer circuit boards with high interconnection accuracy. It ensures that the overall size of the vertical interconnection structure is small and meets the high-precision interconnection requirements of high-precision multi-layer circuit boards.
  • Figure 1 is a flow chart of a high-precision multi-layer circuit board 3D printing preparation method according to the present invention
  • Figure 3 is a flow chart of the curing method in the preparation process of a high-precision multi-layer circuit board according to the present invention
  • Figure 5 is a schematic diagram of the first vertical interconnection structure according to the present invention.
  • Figure 6 is a schematic diagram of the first vertical interconnection structural unit according to the present invention.
  • Figure 7 is a schematic diagram of the second vertical interconnection structure according to the present invention.
  • Figure 9 is a schematic structural diagram of the interconnection of two adjacent three-dimensional circuit layers
  • Figure 10 is a schematic structural diagram of multi-layer three-dimensional circuit layer interconnection
  • Figure 11 is a schematic structural diagram of the interconnection between the bottom three-dimensional circuit layer and the surface three-dimensional circuit layer;
  • Figure 12 is a schematic structural diagram of multi-layer three-dimensional circuit layer interconnection on the vertical line where the same metal column is located;
  • Figure 13 is the overall rendering of a high-precision multi-layer circuit board
  • the codes in the figure are: 1. Substrate; 2. Three-dimensional circuit layer; 3. Insulating layer; 4. Metal pillars; 5. Extension pillars; 6. Lead wires; 7. Micropores; 8. Vertical interconnection structure.
  • this embodiment provides a high-precision multi-layer circuit board 3D printing preparation method, including the steps:
  • the pressurized structure is driven by precise air pressure control, so that the high-viscosity nanoscale metal slurry can be extruded from the extrusion port at the tip of the precision printing needle (the inner diameter of the extrusion port is ⁇ 1um, made of glass or ceramics). .
  • the invention creatively uses the extrusion 3D printing method to produce high-precision multi-layer circuit boards with high interconnection accuracy, thereby improving the interconnection accuracy of the multi-layer circuit board.
  • connection structure Due to the high printing accuracy and small size of the three-dimensional circuit layer, only a thin insulating layer is needed to achieve coverage, and the vertical interconnection structure needs to be set through the insulating layer. Therefore, on this basis, the vertical interconnection structure can be reduced.
  • the size of the connection structure further ensures the interconnection accuracy of high-precision multi-layer circuit boards.
  • the following method can be used to prepare nanoscale copper metal slurry with shear thinning properties:
  • High metal solid content can improve shape retention, reduce printing needle wire drawing, reduce shrinkage during sintering and improve conductivity, but the adhesion to glass, silicon wafers, polyimide and other substrates will decrease; if the metal solid content is too high If it is low, the conductivity will decrease, and the slurry will shrink too much during sintering, which can easily lead to line disconnection. Due to their high surface energy, nanoscale metal particles tend to agglomerate with each other and form large particles that block the extrusion port. Therefore, corresponding dispersion media must be added to the slurry to disperse the nanoparticles and inhibit agglomeration. For nanoscale metal particles of different materials, it is necessary to select appropriate dispersion media and add other auxiliary materials based on the physical and chemical properties of the nanometal particles.
  • the dispersion medium includes a dispersion solvent and a binder.
  • the dispersion solvent includes any one or more of organic solvents and water;
  • the binder includes polyacrylic acid, diethanolamine, a composite of polyacrylic acid and diethanolamine. any one or more of them.
  • Polyacrylic acid includes short-chain polyacrylic acid and long-chain polyacrylic acid, and the organic solvent includes any one or more of ethylene glycol and glycerol. Since silver nanoparticles have good antioxidant properties and the dispersion medium contains polyacrylic acid and diethanolamine (polyacrylic acid has good adhesion to the substrate and can disperse metal particles, and diethanolamine slowly reduces metal ions into metal particles), No additional protective agent or curing agent is required.
  • the mass ratio of short-chain and long-chain polyacrylic acid is between 2:1 and 8:1.
  • the molar mass of short-chain polyacrylic acid is between 1000 ⁇ 10000g/mol
  • the molar mass of long-chain polyacrylic acid is between 10000 ⁇ 100000g/mol.
  • the dispersion medium includes a dispersion solvent and a binder.
  • the dispersion solvent includes any one or more of organic solvents and water;
  • the binder includes epoxy resin, curing agent, and protective agent.
  • the epoxy resin is a thermosetting epoxy resin, and the thermosetting epoxy resin includes any one or more of bisphenol A-type epoxy resin, E-44 epoxy resin, and biphenyl oxy-type epoxy resin.
  • the curing agent is any one of polythiol curing agent, dicyandiamide curing agent, and acid anhydride curing agent.
  • the organic solvent includes any one or more of diethylene glycol monoethyl ether acetate, divalent acid ester, isophorone, terpineol or diethylene glycol monobutyl ether.
  • the nanoscale metal slurry with shear thinning properties also includes a protective agent, which is formed from any one of triarylphosphine compounds, trialkylphosphine compounds or a combination thereof.
  • the nanoscale metal slurry with shear thinning properties also includes non-conductive fillers.
  • the non-conductive fillers are formed from any one or a combination of carbon powder, nano-graphene powder, bentonite, and nano-silica powder. .
  • the dispersion medium contains epoxy resin (epoxy resin is hydrophobic and can inhibit moisture intrusion, and has good adhesion to the substrate after curing), so a protective agent is added to prevent Copper nanoparticles are oxidized, and a curing agent is added to quickly solidify the epoxy resin when heated.
  • Non-conductive fillers can be added according to actual viscosity and thixotropy requirements.
  • the nanoscale metal slurry nanoparticles with shear thinning characteristics have good dispersion and can be extruded smoothly and without clogging from 1um to 150um inner diameter glass capillary tubes; the volume shrinkage of the slurry after solidification is less than 30%, which is similar to that of glass and silicon wafers.
  • polyimide and other substrates have good adhesion (use a scraper to scrape about 20um thick slurry on the glass substrate and sinter and solidify at 200°C, and then use 3M Scotch 600 tape to peel off without material peeling); the slurry viscosity and The thixotropic index is characterized by a conventional Brookfield rotational viscometer; the water absorption rate of the slurry is ⁇ 5% under the conditions of 20% ⁇ 60% relative humidity and 23 ⁇ 5°C (affecting the shape retention and shrinkage effect after sintering.
  • Test method use a scraper Apply a thick slurry of about 100um on the glass substrate and weigh it using a precision electronic scale. After an interval of 1 hour, the mass increase is ⁇ 5%).
  • the height-to-width ratio of lines formed by existing slurries used to make single-layer high-precision circuit boards is generally around 0.2. Because the present invention requires vertical interconnections between multiple layers, the low aspect ratio of the slurry cannot support the key points of the present invention. Processes such as printing of metal columns. At the same time, because the use scenarios of multi-layer circuit boards are more complex than single-layer circuit boards (such as carrying high-voltage signals, large currents, etc.), the line thickness requirements are higher than those of single-layer circuit boards. Therefore, if you use a paste with a low line height-width ratio, To manufacture multi-layer circuit boards using materials, it is necessary to increase the line thickness by sacrificing the accuracy of line width and line spacing. Therefore, it is impossible to prepare high-precision multi-layer circuit boards with high interconnection accuracy.
  • step S1 forming a three-dimensional circuit layer on the upper surface of the substrate includes: measuring the height of each point on the upper surface of the substrate, To obtain the height data set of the upper surface of the substrate, and according to the height data set of the upper surface of the substrate, when the nanoscale metal slurry with shear thinning characteristics is extruded from the extrusion port, it will be at the corresponding point on the upper surface of the substrate.
  • Relative movement in the Z-axis direction is performed so that when the extrusion port extrudes the nanoscale metal slurry with shear thinning characteristics, the height between each point on the upper surface of the substrate remains consistent, that is, the three-dimensional circuit in this application
  • the printing of the layer is three-dimensional printing.
  • the extrusion head moves relative to each point on the upper surface of the substrate in the Z direction, so that a three-dimensional circuit layer is finally formed on the upper surface of the substrate to ensure the line alignment. Uniform shape and line width.
  • a laser displacement sensor is used to measure the height of each point on the upper surface of the substrate to obtain a height data set of the upper surface of the substrate.
  • the resolution of the laser displacement sensor needs to be 0.3um and below. If Excessive resolution cannot ensure compensation accuracy in large-format scenarios, resulting in inaccurate height control between the extrusion port and the substrate during actual printing.
  • the extrusion port moves relative to the Z-axis direction at the corresponding point on the upper surface of the substrate.
  • the needle since the needle needs to be brought close to the substrate when extruding the slurry in the present invention to make the filamentary material contact with the substrate, the jitter generated during pneumatic advancement will seriously affect the position accuracy of the printed circuit as well as the line width and line width in high-precision printing scenarios. type, resulting in line alignment, uneven line width and even line misalignment and firing pins. Therefore, it is necessary to add a metal stabilizing mechanism to the needle base.
  • the three-dimensional circuit layer is formed on the upper surface of the substrate, the difference between the actual position and the preset position of the three-dimensional circuit layer at specific points on the upper surface of the substrate is measured, and the stability of the needle is corrected based on the difference.
  • the stabilized horizontal and vertical jitter deviations of the needle are controlled within 0.5um to prevent the difference between the actual position and the preset position from exceeding the preset threshold.
  • the excessive deviation between the actual position and the preset position may not be caused by jitter of the needle, but by a deviation in the fixed position of the needle.
  • computer-aided manufacturing (CAM) technology is used to import the pre-designed circuit pattern to generate a CNC path, and the printing needle moves along the CNC path to form the required circuit pattern. Therefore, if there is a deviation in the fixed position of the needle, it will This causes the entire circuit pattern to deviate. At this time, the fixed position of the needle can also be corrected based on the difference between the actual position and the preset position.
  • the deviation when the deviation is caused by jitter, the deviation will change when the printing air is on and off. If the deviation is caused by the influence of a fixed position, the deviation will not be affected by the printing air on and off.
  • the present invention uses an extrusion 3D printing method
  • lines are extruded by the extrusion 3D printing method
  • delays and uneven discharging may occur at the starting end of the lines, and stacking and wire drawing problems may occur at the end of the lines, which is serious.
  • the impact is obvious after layer by layer accumulation.
  • the extrusion port extrudes nanoscale metal slurry with shear thinning properties to form each line in the three-dimensional line layer
  • a curved pre-extrusion movement is performed on the vertical plane perpendicular to the base plate, and the formal extrusion formation route of the line is entered along the tangential direction of the curve; that is, the curve is used as the extrusion pre-running section, thereby avoiding Delay and uneven discharging during formal extrusion.
  • the present invention adopts the following technical solution: the end of the formal extrusion forming route of the line has a preset flying material section, and the extrusion outlet is closed when it is on the flying material section.
  • the action of the nanoscale metal slurry with shear thinning properties is revealed. That is, the extrusion power supply for extruding the metal slurry with shear thinning properties is turned off when the flying material section is located.
  • the flying material section accounts for 5% to 30% of the total length of the end section of each line (note: a line Including multi-segment printing paths for continuous printing, the end of the line refers to the last segment of the printing path in the line).
  • the above line after the above line is printed, its pattern shape and cross-sectional shape can be maintained, and it has a specific aspect ratio line type (the relative humidity of the environment needs to be controlled at 20% ⁇ 60% during line printing. If it is too low, the slurry will not adhere to the substrate easily. If it is too high, The slurry easily absorbs water, resulting in reduced shape retention).
  • a specific aspect ratio line type the relative humidity of the environment needs to be controlled at 20% ⁇ 60% during line printing. If it is too low, the slurry will not adhere to the substrate easily. If it is too high, The slurry easily absorbs water, resulting in reduced shape retention).
  • the multi-layer circuit board is composed of three-dimensional circuit layers and insulating layers stacked alternately, after the three-dimensional circuit layer or insulating layer is formed, it needs to be cured for the formation of the next three-dimensional circuit layer or insulating layer.
  • the present invention is aimed at the preparation of high-precision multi-layer circuit boards, and the preparation accuracy can reach less than 10um. If each three-dimensional circuit layer or insulation layer is completely cured at high temperature, there will be repeated severe thermal deformation between the insulation medium and the circuit. , The thermal stress between the line and the medium, and the thermal stress of the line and the medium itself will lead to circuit breakage failure midway through the process.
  • the present invention adopts the method of pre-curing + integral sintering and solidification, as shown in Figure 3, which includes the steps:
  • step S5. Determine whether the current insulating layer is used as the top insulating layer. If so, form a pad layer on the upper surface of the current insulating layer and perform step S6. If not, use the current insulating layer as a new substrate and return to step S1;
  • the curing temperature of the first pre-curing treatment in the present invention is 100°C ⁇ 150°C, and the curing time is 3 minutes. ⁇ 10min, remove the moisture in the circuit material while shaping the circuit, and enhance the adhesion between the circuit and the substrate for the coating of the next layer of insulation.
  • the insulating layer coated on the three-dimensional circuit layer is also cured by pre-curing. Specifically, for the insulating layer containing solvent, pre-curing is performed after coating. , evaporate the solvent in the wet film (especially water, alcohol, dimethylacetamide and other highly polar solvents), prevent film variation (liquid flow, uneven shrinkage, etc.) and residual solvent dissolve the circuit or reduce the resistance of the circuit and substrate Adhesion. Furthermore, in order to prevent problems such as bubbles and wrinkles, the insulation layer is subjected to 2 or more steps of stepped pre-curing treatment.
  • the insulation layer is first cured at 60°C ⁇ 95°C for 3 minutes ⁇ 10min, then cure at 120°C ⁇ 200°C for 3min ⁇ 10min.
  • the insulation layer coating raw materials often contain a large amount of solvent, if it is cured directly at a higher temperature, the solvent will volatilize too violently and skin effects will easily occur (the coating surface is quickly heated and dried and hardened), resulting in the bubbles and residual solvent being generated. Timely discharge will form residual bubbles and uneven wrinkles. At the same time, if heated too quickly, strong thermal stress will form in the film, which will cause circuit deformation.
  • step S4 and step S5 preliminarily leading the corresponding metal pillars out of the formed insulating layer by drilling holes in the insulating layer and filling it with nanoscale metal slurry, and performing a test on the filled nanoscale metal slurry.
  • the third pre-curing process is similar to the first pre-curing process and will not be described in detail.
  • the pad layer is the connecting layer of the prepared multi-layer circuit board used to connect external electronic components.
  • the metal pillars For a more detailed explanation, see the explanation of the metal pillars below.
  • the pad layer on the top layer of the multi-layer circuit board is formed, it does not need to be pre-cured and can be directly sintering and solidified.
  • the insulation layer material For organic media and thermal curing in air atmosphere, the muffle furnace sintering method is used for overall sintering and solidification treatment.
  • the sintering temperature is 200°C ⁇ 300°C, and the sintering time is 1h ⁇ 3h.
  • pre-curing is mainly characterized by lower temperature and shorter curing time in terms of curing parameters; pre-curing can shape the medium and circuit in time to meet the subsequent process, enhance the adhesion between the circuit and the medium, save efficiency and reduce Thermal effects on precision equipment.
  • each layer of metal circuits and metal columns are directly and completely solidified using a laser in selected areas, and the entire multi-layer circuit board is completely solidified at high temperature using an offline special atmosphere furnace.
  • the laser used here is different from the ultraviolet picosecond laser used for laser drilling later.
  • the laser here can use small infrared band continuous or millisecond-level pulse lasers.
  • the coating blade needs to be made of metal, and the flatness of the blade plane is ⁇ 2um.
  • the coating process includes coating blade tilt correction and coating gap correction.
  • the coating blade By recording the height of the Z-axis motor when the contact sensor signal is triggered at the left and right ends of the coating blade, the coating blade is fed back. Left and right tilt. According to the inclination information, adjust the precision spiral ejector rods on the left and right sides above the coating cutter head to control the left and right inclination, and repeatedly measure and adjust until the height deviation of the left and right ends is less than 2um (it should be noted that this position controls the left and right sides of the overall cutter head.
  • the tilt situation is not the same concept as the flatness of the knife edge ⁇ 2um.
  • the flatness of the knife edge refers to the maximum fluctuation difference of the knife edge plane).
  • Coating gap correction The height gap between the coating blade and the substrate surface is an important coating parameter and has an important impact on the thickness of the insulating layer. In this case, there is no mechanical connection structure between the coating head and the substrate, and the height gap between the two needs to be corrected with the help of a laser displacement sensor and a high-precision contact sensor.
  • the basic structure of a multi-layer circuit board is composed of multiple insulating layers and three-dimensional circuit layers alternately stacked.
  • the three-dimensional circuit layer is composed of metal conductor patterns
  • the insulating layer is composed of organic resin or inorganic ceramics.
  • multiple insulating layers are superimposed by layer-by-layer coating and superposition through blade coating or slit coating, and each insulation layer is coated in situ through a coating blade integrated on the equipment.
  • the coating blade is mounted on the Z-axis controlled by a servo motor.
  • the insulating layer 3 Form and fill the micropores 7 on the insulating layer 3; although the latter can eliminate the need for auxiliary means, it requires that the surface of the metal pillar 4 can pass through the pre-cured insulating layer 3 (that is, the insulating layer 3 occurs after the pre-curing) Shrink, so that the surface of the metal column 4 passes through the insulating layer 3), and due to surface tension, the surface of the insulating layer 3 is curved in a small area near the column, which requires high process control requirements such as material status, metal column height, and coating thickness.
  • the total output volume of printed metal pillars deviates from the design volume of the metal pillar by less than 10%. Incorrect volume matching will cause surface dents or excessive dimensions after pre-curing of the metal columns.
  • the diameter of the metal column structure prepared in this case is generally 20um ⁇ 150um, and the height is 3um ⁇ 150um.
  • the upper surface of the metal column is flat (flatness ⁇ 1um).
  • the above-mentioned pad layer can include multiple pads.
  • the formation process of the pads is similar to the formation process of the metal pillars. It is also printed layer by layer. Each layer has an outer frame line and a filling line.
  • the disk can also be understood as a metal column whose dimensions in the X and Y directions are much larger than the height dimension in the Z direction, for connecting multi-layer circuit boards and external electronic components (not to be elaborated here).
  • the height and cross-sectional dimensions of metal columns need to be determined based on interconnection accuracy requirements, insulation layer thickness requirements and the selection of vertical interconnection structures.
  • the metal pillars of the first type of vertical interconnection structure if the height is too short during printing, the metal pillars will be penetrated during subsequent laser drilling. If the height is too high, the upper insulating dielectric film will bulge, making the subsequent process of making lead wires unstable. The lead wire is easy to break.
  • Micropore filling can be done by precision pneumatic extrusion of nanoscale metal slurry (it should be noted that the nanoscale metal slurry here does not have the thixotropic effect of shear thinning) or by inkjet Fill the nano-scale metal slurry (it should be noted that the nano-scale metal slurry here is a low-viscosity slurry material suitable for inkjet printing and does not have the effect of shearing to thinning) into the micropores.
  • the former is suitable for filling micropores with apertures of 15 ⁇ 150um and hole spacing >20um due to the high enough discharging accuracy.
  • the latter is only suitable for micropore filling with apertures of 100 ⁇ 150um and hole spacing >100um due to the large droplet size.
  • the filled slurry can fully contact and wet the surface of the metal pillar. If the height of the metal column is too thin and the laser energy input is too large, the metal column will be penetrated during the microhole forming process, causing the filling slurry to be filled into the lower three-dimensional circuit layer and cause an electrical short circuit.
  • the metal pillars are not filled directly after laser micro-hole molding, in addition to the risk of short circuit caused by filling the remaining three-dimensional circuit layers with the above-mentioned slurry, when printing fine circuit scenes, due to the comparison of line width, line thickness and other dimensions Because the micropores are very small (the line width and thickness are only a few microns), the lines at the bottom of the microholes are easily ablated by the laser, resulting in no contact between the filling slurry and the metal lines during filling or a very small contact part (can Imagine using a laser to drill a hole above a thin metal line. The size of the hole is much larger than the width of the thin line.
  • the lines at the bottom of the microhole are easily ablated by the laser, causing the filling slurry and the metal lines to not contact or contact during filling. part is extremely small), continuity cannot be guaranteed.
  • the hole surface is filled with filling slurry, and the filling output is controlled so that the filling slurry on the hole surface is basically flush with the hole.
  • the air pressure is between 5 and 80 psi
  • the needle penetration depth into the hole is between 5 and 400um
  • the needle pulling speed is between 0.01 and 5mm/s.
  • the post-processing of the micropore filling slurry is similar to the post-processing of the three-dimensional circuit layer and metal pillars mentioned above, and requires pre-curing and shaping.
  • the lead-out wires electrically connect the bottom metal pillars of the vertical interconnect structure to the upper three-dimensional circuit layer.
  • For the first type of vertical interconnection structure during the lead-out operation, move the precision pneumatic printing needle to a certain height above the hole (this height is related to the interconnection accuracy requirements.
  • the initial stage of the lead wire is key Step, in the initial stage, the printing path needs to be offset in the Z direction to compensate for the local bulge problem of the insulation layer.
  • the printing speed needs to be slowly increased, so that the line width at the starting point of the lead-out is larger ( It is about the same size as microholes (see Figure 6 and Figure 8), and the line width at the lead-out end is small (about the same width as the lines of the three-dimensional line layer).
  • the gradient effect Since there is a process adjustment process between the thickness of the insulating layer and the height of the metal pillar under the first vertical interconnection structure, the impact of the bulge on the upper insulating layer can be effectively controlled.
  • the movement path of the needle during extraction only requires a small Z-direction offset to make the distance between the needle and the substrate surface within the normal printing range (for a 10um high metal pillar and a 20um thick sintered polyimide insulation layer, the metal
  • the surface of the insulation layer above the column is generally 3 ⁇ 5um higher than the surface of the insulation layer away from the metal column).
  • the initial printing speed of the initial section of the lead-out line is generally 0.01mm/s. Starting from this speed, it slowly accelerates to a certain horizontal movement and Z-direction offset. In the first vertical conduction structure, this horizontal displacement is generally 10 ⁇ 50um. After the horizontal displacement and Z-direction offset are completed, it can quickly accelerate to the speed of normal printing lines.
  • the height of the metal pillar is higher than the cured insulation layer and the flatness of the upper surface of the metal pillar is ⁇ 2um, the printing needle can be directly moved to the upper surface of the metal pillar for lead-out. Wire. Due to the influence of the height of the metal column and the surface tension of the coating liquid, the surface of the insulation layer is curved in a small area around the column (generally within a radius of 100um for a 45 ⁇ 55um diameter metal column), and the surface height decreases significantly from near to far.
  • the initial printing speed of the initial section of the lead-out line is generally 0.01mm/s. Starting from this speed, it slowly accelerates to a certain horizontal movement and Z-direction offset. In the second vertical conduction structure, this horizontal displacement is generally 20 ⁇ 100um. After the horizontal displacement and Z-direction offset are completed, it can quickly accelerate to the speed of normal printing lines.
  • the metal pillar 4 is small in size and covered under the insulating layer 3.
  • the micropores 7 are filled in the insulating layer 3 to form a metal
  • the connection can be achieved by connecting the extension column 5 of the upright column 4 with the circuit of the upper three-dimensional circuit layer 2 through the lead-out wire 6 .
  • the second vertical interconnection structure is shown in the figure.
  • the metal pillar 4 is larger in size, and the insulating layer 3 shrinks after curing, so that the surface of the metal pillar 4 passes through the insulating layer 3.
  • the connection can be achieved by directly connecting the metal pillar 4 with the circuit of the upper three-dimensional circuit layer 2 through the lead wire 6 .
  • the figure shows that the interconnection between two adjacent three-dimensional circuit layers 2 is realized through the first vertical interconnection structure.
  • the interconnection between two adjacent three-dimensional circuit layers 2 is used to explain the step S3 "According to the connection requirements between each three-dimensional circuit layer and the height of the metal pillars on each three-dimensional circuit layer, through the insulating layer "Punch holes and fill them with nanoscale metal slurry to preliminarily lead the corresponding metal pillars out of the formed insulating layer": first, print the first three-dimensional circuit layer 2, and pre-print the first three-dimensional circuit layer 2 according to the connection requirements of the first layer of three-dimensional circuit layer 2.
  • FIGS. 10 and 11 the figures show that the interconnection between the three-dimensional circuit layers 2 separated by multiple layers is realized through the first vertical interconnection structure.
  • the form of the vertical interconnection structure can be selected according to the connection requirements. For example, if only the interconnection between two adjacent three-dimensional circuit layers 2 is required, then the form of the vertical interconnection structure can be selected. The second vertical interconnection structure is directly selected. If it is necessary to realize interconnection between three-dimensional line layers 2 separated by multiple layers, the first vertical interconnection structure can be selected.
  • the figure shows the overall effect after the high-precision multi-layer circuit board is connected.
  • the first link multi-layer circuit board printing design:
  • Step 3 Check and correct the printing path and calibrate the coating blade (see the previous article for the correction method);
  • Step 2 Install the barrel containing nanoscale silver metal slurry material onto the precision pneumatic dispensing machine, and install the barrel containing coating medium material into the precision metering feeder;
  • Step 4 Use a laser displacement sensor (measuring resolution 0.3um) to scan the entire substrate printing area, measure the height of each point on the upper surface of the substrate, and obtain the height data set of the upper surface of the substrate.
  • the CAM software records the substrate height data set;
  • the third step multilayer circuit board preparation:
  • Step 1 After moving to the printing starting point, according to the relative height difference information obtained in step 5 in the second step, adjust the Z-axis height of the needle so that the distance between the needle and the polyimide substrate is the distance between the needle and the silicon substrate in the pre-printing area during pre-printing distance between each other; compensation needs to be turned on before printing.
  • the laser displacement sensor has recorded the height data set of the substrate in the software, it automatically compensates for the height fluctuations of the substrate surface through the lifting and lowering of the sample stage. During the printing process, the distance between the needle and the substrate is maintained. at 3um;
  • Step 2 Print the first three-dimensional circuit layer according to the printing path generated in the first step and the printing parameters obtained in the second step;
  • Step 4 Move the sample stage to the starting position of coating, adjust the gap between the scraper and the substrate according to the required coating thickness (100um) of the current layer generated in the first step (see the previous article for the method of adjusting the gap), and apply glue by dispensing
  • the polyimide liquid material is applied 5mm in front of the scraper.
  • the sample stage movement speed is set to 1mm/s.
  • the scraper pushes the polyimide material relative to the sample stage to form a wet film on the substrate and leaves it for 60 seconds.
  • Step 5 Use the heated ceramic suction cup integrated in the equipment to cure the wet film to convert the wet film into a dry film. First, cure at 70°C for 10 minutes, then at 150°C for 10 minutes, and cool after solidification;
  • Step 6 The sample stage is transferred to the microhole forming station.
  • the relative position relationship is corrected by visually grabbing the mark points, and then the laser is used to drill microholes on the metal column to destroy the insulation layer above the metal column.
  • the light source used is 355nm ultraviolet picosecond. Laser, average power 4W, pulse width ⁇ 15ps, repetition frequency 1MHz, spiral scanning speed 0.5mm/s, jump speed 100mm/s, spot diameter 20um, obtained aperture 40um, hole depth 20um;
  • Step 7 The sample stage is transferred back to the printing station.
  • the printing needle fills the micropores with metal slurry through precision pneumatic extrusion.
  • the metal slurry used is also nanoscale silver metal slurry (viscosity diluted to 400000cps) for printing.
  • the depth of the needle inserted into the hole is 15um, the air pressure is 40psi, the pulling speed is 0.05mm/s, and then the lead-out action is performed.
  • the initial speed of the lead-out is 0.01mm/s, the horizontal displacement at the initial stage of lead-out is 20um, and the Z-direction offset is 3um;
  • Step 8 Correct the relative position relationship by visually grabbing the mark points, and print the first layer of lines on the surface of the sintered polyimide insulation layer based on the printing path generated in the first step and the printing parameters obtained in the second step.
  • Metal posts are printed at the interconnection locations;
  • Step 9 Repeat steps 3 to 8 until 4 layers of circuit printing and 4 layers of insulation layer coating and curing are completed;
  • Step 10 Use the heated ceramic suction cup integrated in the equipment to completely solidify the multi-layer circuit board at a temperature of 250°C for 1 hour;
  • Step 11 Turn off vacuum adsorption and unload materials
  • Step 12 Multilayer circuit board sample inspection and cutting.
  • Embodiment 1 The difference between this embodiment and Embodiment 1 is that a multi-layer circuit board is prepared on the sacrificial material.
  • the specific improvements are as follows:
  • Step 3 in the second step described in Embodiment 1 is changed to: Automatically/manually load the 6-inch standard silicon wafer substrate in the loading area (the surface of the 6-inch standard silicon wafer substrate is attached with sacrificial materials), start the CAM software, and open Vacuum adsorption, the sample stage adsorbs the substrate, and the equipment mechanically returns to zero position;
  • Step 11 in the third step described in Example 1 is changed to: turn off the vacuum adsorption and unload the material, de-adhere the sacrificial material through the corresponding chemical reagents, and obtain an independent multi-layer circuit board;
  • Embodiment 1 The difference between this embodiment and Embodiment 1 is that the slit coating method is used, and the specific improvements are as follows:
  • Step 4 in the third link in Example 1 is changed to: after printing, the sample stage moves to the starting position of coating, and the coating is required according to the current layer generated in the first link in Example 1.
  • the thickness is 100um, adjust the gap between the slit coating head and the substrate to 100um, set the discharging volume of the slit coating head to 2250uL and the discharging speed to 15uL/s, and set the average moving speed of the coating head relative to the substrate to 1mm/s , the initial stage is slightly faster (1.2mm/s travels for 5s), the final stage is slightly slower (0.7mm/s travels for 5s), and then the coating process is started to complete the current insulation layer coating;
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • Step 2 in the third step in Embodiment 1 is changed to: print the first layer of circuits based on the printing path generated in the first step and the printing parameters obtained in the second step, and print metal columns at the vertical interconnection positions, and the metal columns pass through the circuit layer It is made by repeated filling in layers, and the center distance between filling lines in each layer (hatch spacing) 5um, layer center distance (layer distance) 3um, the final length, width and height of the metal column after multiple layers are 50um*50um*50um;
  • Step 6 in the third link in Embodiment 1 is cancelled
  • Embodiment 1 lies in the solidification and sintering of the insulating dielectric material.
  • the specific improvements are as follows:
  • Step 5 in the third link in Embodiment 1 is changed to: use the infrared lamp integrated in the equipment to pre-cure the medium, with a power of 600w and a time of 30s;
  • Step 10 in the third link in Example 1 is changed to: use the infrared lamp integrated in the equipment to completely solidify and sinter the multi-layer circuit board, with a power of 3000w and a time of 20s;
  • Step 10 in the third link in Embodiment 1 can also be changed to: turn off the vacuum adsorption, unload the substrate, use an offline muffle furnace to completely solidify the multi-layer circuit board at a temperature of 250°C for 1 hour;
  • Step 5 in the third link in Embodiment 1 is changed to: use the UV curing lamp integrated in the equipment to pre-cure the medium;
  • Step 10 in the third link in Embodiment 1 is changed to: use the equipment-integrated UV curing lamp to completely cure the medium, and use the equipment-integrated infrared lamp or heated ceramic suction cup to completely cure the circuit;
  • Step 10 in the third link in Embodiment 1 can also be changed to: turn off the vacuum adsorption, unload the substrate, use an offline ultraviolet curing lamp to completely solidify the medium, and use an offline muffle furnace and infrared lamp to completely solidify the circuit;
  • Step 5 in the third link in Example 1 is changed to: use the heating ceramic suction cup integrated in the equipment to perform medium pre-sintering at a temperature of 200°C and a time of 5 minutes;
  • Step 10 in the third link in Example 1 is changed to: turn off vacuum adsorption and unload materials, and use an offline muffle furnace to conduct low-temperature co-firing of the entire ceramic sample (temperature 850°C, time 2 hours);
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • Step 3 in the third link in Embodiment 1 is changed to: print metal columns at the vertical interconnection positions, and print cross mark points at the mark points.
  • Metal columns are made by repeatedly filling lines layer by layer, and the center distance of the filling lines in each layer (hatch spacing) 5um, layer center distance 3um, the length, width and height of the final metal column after multi-layer stacking are 50um*50um*12um; the fiber output semiconductor laser integrated in the equipment is used to selectively sinter the metal lines and columns.
  • the laser wavelength emitted by the laser is 915nm.
  • the maximum power is 50W
  • the minimum spot diameter is 200um.
  • the light spot translates along the line path at a speed of 1mm/s.
  • the light spot In the column area, the light spot first translates along the outer frame line of the column with a power of 5W and a speed of 1mm/s, and then moves at 25W along the outer frame of the column.
  • the power is 2mm/s and the speed is reciprocated along the column filling line path; the metal lines and columns after laser sintering are already conductive.
  • Embodiment 1 The difference between this embodiment and Embodiment 1 is that the printing material is changed to nanoscale copper metal slurry.
  • the specific improvements are as follows:
  • Step 1 in the second step of Example 1 is changed to: select a nanoscale copper metal slurry material with shear thinning characteristics, viscosity 580000cps, metal solid content 80%, thixotropic index 9, and line aspect ratio 0.5 , can resist the peeling of 3M Scotch 600 tape; use standard polyimide liquid material as the coating medium material, viscosity 10000cps, effective content 18%; use 5um inner diameter and 10um outer diameter glass needles, end surface flatness ⁇ 1um; choose A metal scraper serves as the coating head;
  • Step 3 in the third link in Embodiment 1 is changed to: print metal columns at the vertical interconnection positions, and print cross mark points at the mark points.
  • Metal columns are made by repeatedly filling lines layer by layer, and the center distance of the filling lines in each layer (hatch spacing) 5um, layer center distance 3um, the length, width and height of the final metal column after multi-layer stacking are 50um*50um*12um; use the heated ceramic suction cup integrated in the equipment to pre-cure the metal lines and columns at a temperature of 100°C and a time of 8 minutes. Cool after pre-curing;
  • Step 7 in the third link in Example 1 is changed to: the sample stage is transferred back to the printing station, and the printing needle fills the micropores with metal slurry through precision pneumatic extrusion.
  • the metal slurry used is also nanometer.
  • Grade copper metal slurry viscosity diluted to 400000cps
  • the printing needle is inserted into the hole to a depth of 15um
  • the air pressure is 40psi
  • the pulling speed is 0.05mm/s
  • the lead-out action is performed, the initial speed of the lead-out line is 0.01mm/s, the initial stage of lead-out Horizontal displacement is 20um, Z-direction offset is 3um;
  • Embodiment 8 is a diagrammatic representation of Embodiment 8

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

本发明涉及一种高精密多层线路板及其3D打印制备方法。方法包括:S1在基板的上表面上形成立体线路层;S2在当前立体线路层的预设位置处堆积形成金属立柱;S3在当前立体线路层的上表面上形成绝缘层,并通过在绝缘层打孔并填充纳米级金属浆料的方式以将相应金属立柱预先引出所述形成的绝缘层;S4若当前绝缘层是顶层则在当前绝缘层上表面上形成焊盘层并执行步骤S5,若否则将当前绝缘层作为新的基板,重复执行步骤S1-S2并执行步骤S6;S5将相应金属立柱连接或者通过所述预先引出的方式连接至焊盘层以完成多层线路板的制备;S6将相应金属立柱连接或者通过所述预先引出的方式连接至当前立体线路层,并返回步骤S3。本发明可制备互连精度高的高精密多层线路板。

Description

一种高精密多层线路板及其3D打印制备方法 技术领域
本发明属于线路板制备技术领域,具体涉及一种高精密多层线路板及其3D打印制备方法。
背景技术
多层线路板,常见于IC载板(IC carrier)、封装基板(package substrate)、印刷电路板(printed circuit board,PCB)、低温共烧陶瓷(Low Temperature Co-fired Ceramic,LTCC)基板等,是电子应用及产品的构成基础。有源器件(如:功率MOS、晶体管、IC芯片等)及其它各种无源组件(如滤波器、变压器、电阻、电容和电感等)经过一定的封装工艺后需要装配或嵌入到多层线路板中。这些基板又需要继续和下一级封装装配,以便形成一个封装系统。因此,多层线路板起到了将不同元器件进行电气连接、装配连接及结构防护的重要功能。多层线路板的设计和制造需充分考虑由器件和封装所带来的电、热、机械等需求。多年来,电子行业已经开发了多种多层线路板的制备技术以适应产品设计和应用。
传统工艺制备多层线路板主要有薄膜技术、厚膜技术及有机层压板技术。根据线路板类型的不同(IC载板、封装基板、印刷电路板、陶瓷基板)、材质的不同(如有机、无机等)以及对互连精度的不同要求,一般选择通过光刻+显影+化学镀/电镀、气相沉积或丝网印刷等方式进行线路图案转移;通过机械冲/钻孔、激光打孔、化学刻蚀、等离子刻蚀等方式进行通孔成型;通过电镀、丝网印刷等方式进行孔金属化;通过气相沉积、旋涂、层叠共烧、层压等方式将单层叠加合并成多层结构。此类工艺在业界应用最为广泛,然而由于工序流程繁多、需要多道掩模、设备昂贵、材料浪费大等因素,大大增加了多层线路板的生产成本及时间。
近些年,随着3D打印工艺的进步,与多层线路板传统制备工艺相比,其在缩短新产品研发及实现周期、降低NRE成本等方面显示出了巨大的潜力。一些基于喷墨(Inkjet)或气溶胶喷射(Aerosol Jet)的3D打印工艺,由于线宽较大(几十微米到几百微米范围),绝缘层厚度较厚(最小厚度约在35um左右),垂直互连结构尺寸过大(几百微米量级),限制了此类技术在层数较高及高密互连场景线路板的应用,仅可制备对层数及互连精度要求不高的印刷电路板。一些基于熔融沉积成型(Fused deposition modeling, FDM)的3D打印工艺,由于线材以及熔融技术的限制,只能用于制备特定材质的绝缘层且FDM方式打印表面质量差,线路层及垂直互连结构需要通过其它非打印方式完成,互连精度低。一些基于选区激光烧结(SLS)、选区激光熔覆(SLM)、电子束选区熔化(EBSM)、直接激光金属烧结(DMLS)等3D打印工艺由于需要在铺粉或喷粉后用高能能量源进行金属烧结或熔融,金属加工精度较低,不适用于精密多层线路板的制备。也存在一些采用挤出式3D打印方式结合相应浆料提高打印精度的方案,例如公开号为CN109534767A的中国专利,公开了一种挤出式3D汉白玉石粉打印用浆料及其制备方法,该发明浆料的固含量高、剪切性能良好,适用于挤出式3D打印工艺,在室温条件下,3D打印过程中即可逐渐干燥、固化,从而获得较高精度的成型件而且不会出现坍塌现象。又例如公开号为CN107365158A的中国专利,提供一种具有稳定性良好的剪切稀化特性的膏体,使膏体能从针头中顺利挤出,并在沉积到基板上以后依然能维持线条形状和一定的跨度,具有良好的成型性能,从而提高精度。
技术问题
根据线路板类型的不同(IC载板、封装基板、印刷电路板、陶瓷基板)、材质的不同(如有机、无机等)以及对互连精度的不同要求,一般选择通过光刻+显影+化学镀/电镀、气相沉积或丝网印刷等方式进行线路图案转移;通过机械冲/钻孔、激光打孔、化学刻蚀、等离子刻蚀等方式进行通孔成型;通过电镀、丝网印刷等方式进行孔金属化;通过气相沉积、旋涂、层叠共烧、层压等方式将单层叠加合并成多层结构。此类工艺在业界应用最为广泛,然而由于工序流程繁多、需要多道掩模、设备昂贵、材料浪费大等因素,大大增加了多层线路板的生产成本及时间。
近些年,随着3D打印工艺的进步,与多层线路板传统制备工艺相比,其在缩短新产品研发及实现周期、降低NRE成本等方面显示出了巨大的潜力。一些基于喷墨(Inkjet)或气溶胶喷射(Aerosol Jet)的3D打印工艺,由于线宽较大(几十微米到几百微米范围),绝缘层厚度较厚(最小厚度约在35um左右),垂直互连结构尺寸过大(几百微米量级),限制了此类技术在层数较高及高密互连场景线路板的应用,仅可制备对层数及互连精度要求不高的印刷电路板。一些基于熔融沉积成型(Fused deposition modeling, FDM)的3D打印工艺,由于线材以及熔融技术的限制,只能用于制备特定材质的绝缘层且FDM方式打印表面质量差,线路层及垂直互连结构需要通过其它非打印方式完成,互连精度低。一些基于选区激光烧结(SLS)、选区激光熔覆(SLM)、电子束选区熔化(EBSM)、直接激光金属烧结(DMLS)等3D打印工艺由于需要在铺粉或喷粉后用高能能量源进行金属烧结或熔融,金属加工精度较低,不适用于精密多层线路板的制备。
技术解决方案
针对现有技术中存在的上述问题,本发明提出一种高精密多层线路板3D打印制备方法,可制备互连精度高的高精密多层线路板。
本发明采用以下技术方案:
一种高精密多层线路板3D打印制备方法,包括步骤:
S1、通过挤出口挤出具有剪切致稀特性的纳米级金属浆料,以在基板的上表面上形成立体线路层;
S2、通过挤出口挤出具有剪切致稀特性的纳米级金属浆料,以在当前立体线路层的预设位置处堆积形成金属立柱;
S3、在当前立体线路层的上表面上形成绝缘层,并通过在绝缘层打孔并填充纳米级金属浆料的方式以将相应金属立柱预先引出所述形成的绝缘层;
S4、判断当前绝缘层是否作为顶层绝缘层,若是则在当前绝缘层上表面上形成焊盘层并执行步骤S5,若否则将当前绝缘层作为新的基板,重复执行步骤S1-S2并执行步骤S6;
S5、将位于当前绝缘层下的相应立体线路层上的金属立柱连接或者通过所述预先引出的方式连接至焊盘层,以完成多层线路板的制备;
S6、将位于当前立体线路层下的相应立体线路层上的金属立柱连接或者通过所述预先引出的方式连接至当前立体线路层,并返回步骤S3。
本发明创造性地利用挤出式3D打印的方法来制作互连精度高的高精密多层线路板,且克服了现有技术中认为若将该挤出式3D打印方法应用至高精密多层线路板制备时的诸多技术偏见。
多层线路板相较于单层线路板制备,需要增设线路层之间的垂直互连结构,现有技术应用于多层线路板中的垂直互连结构尺寸大,很难满足高精密多层线路板的高精度互连要求。现有技术制备多层线路板时需要刮涂多层绝缘层,以形成多层基板以供各线路层的设置,因此需要进行高精密刮涂,以使形成的各层基板厚度保持一致、各层基板的上表面为一平面,然而涂布过程中的涂布间隙、涂布倾斜度稍有偏差均容易造成误差,且每涂布完一层绝缘层均需要固化,即使涂布绝缘层时做到了精度一致,经过固化后也很难保证形成的基板精度一致,且各基板自身上表面也无法保证均为一平面,进而各基板的形成误差累积将影响多层线路板的整体制备精度。由于各基板自身上表面无法保证均为一平面,因此基板上表面的高度起伏以及表面粗糙度会严重影响打印线路的状态和打印工艺窗口,因此,现有技术人员很难预见可以采用挤出打印的方式实现多层线路板的制造,其必然导致线路线型、线宽不均匀甚至断线、撞针。另外,本发明人在研发过程中发现挤出式3D打印方法挤出线条时,在线条起始端会出现出料延迟及不均匀问题,线条末端会出现堆料及拉丝问题,严重影响线条图案打印精度及均匀性,制备多层线路板时,层层累积后该影响明显。线路层、绝缘层形成后均需要进行固化,每次固化,前面的线路层、绝缘层均会产生反复热变形,因此固化后线路层、绝缘层的保形情况、粘附情况、收缩情况,都将影响高精密多层线路板的制备。
因此,本发明通过上述技术方案,克服了本领域技术人员认为挤出式3D打印的方法无法制作互连精度高的高精密多层线路板的技术偏见,实现了利用挤出式3D打印的方法制备高精密多层线路板。通常本发明所称的高精密度是指立体线路层中的导线线宽可达1~150um,导线线距可达1~150um,垂直互连结构尺寸可达20~150um,垂直互连结构间距可达20~150um,线宽和线距可明显缩小即可达到10um以下,垂直互连结构尺寸和间距可明显缩小即可达到150um以下,从而使立体线路层内及立体线路层之间具有较高的互连精度,即多层线路板的互连精度。立体线路层是指由挤出头相对基板不仅在一个平面即挤出平面上挤出打印,而且在垂直于挤出平面的方向上也进行移动挤出打印,从而形成的线路层是立体的而非现有技术的平面状,这种结构不仅解决了制造过程中的碰撞、断针问题,而且立体的线路层更加贴合基板的表面形貌,在后续的各种制造过程中不易造成线路板断路,从而极大地提升了多层线路板的整体成品率。
作为优选方案,步骤S1中,在基板的上表面上形成立体线路层时,包括:
对基板的上表面的各点位的高度进行测量,以获取基板上表面的高度数据集合,并根据基板上表面的高度数据集合在挤出口挤出所述具有剪切致稀特性的纳米级金属浆料时使其在基板的上表面的对应点位处进行Z轴方向的相对移动,以使得挤出口挤出的具有剪切致稀特性的纳米级金属浆料在基板上表面形成立体线路层。
作为优选方案,步骤S1中,在基板的上表面上形成立体线路层时,测量基板上表面具体点位上的立体线路层的实际位置与预设位置的差值,根据该差值对挤出头进行校正。
作为优选方案,步骤S1中,所述挤出口挤出具有剪切致稀特性的纳米级金属浆料以形成立体线路层中的每条线路的起始端前均在垂直于基板的垂面上做曲线的预挤出运动,并沿该曲线的切向方向进入线路的正式挤出形成路线;
步骤S1中,所述线路的正式挤出形成路线末端具有一个预设的飞料段,所述挤出口在该飞料段位上时关闭挤出所述具有剪切致稀特性的纳米级金属浆料的动作。
作为优选方案,步骤S2中,通过挤出口挤出具有剪切致稀特性的纳米级金属浆料,以交替形成金属立柱的每层上的外框线、填充线,以在当前立体线路层的预设位置处堆积形成金属立柱。
作为优选方案,步骤S3中所述绝缘层的形成方式包括:
通过刮刀涂布刀头推动在涂布面上预先施加的绝缘介质材料,以在当前立体线路层的上表面上形成所述的绝缘层。
作为优选方案,步骤S3中所述绝缘层的形成方式包括:
通过狭缝涂布刀头的狭缝挤出绝缘介质材料并涂布在所述涂布面上,以在当前立体线路层的上表面上形成所述的绝缘层。
作为优选方案,步骤S3中在涂布绝缘层前,还包含如下步骤:
a、控制Z轴电机下降涂布刀头将其左、右两端分别与接触式传感器进行触碰;
b、分别记录所述涂布刀头左、右两端触发接触式传感器信号时的Z轴电机的不同高度,进而得到涂布刀头左右高度差;
c、根据该左右高度差,对涂布刀头左右两端的左右高度进行校正。
作为优选方案,步骤S3中在涂布绝缘层前,还包含如下步骤:
A、用激光位移传感器对接触式传感器的接触面进行探高,以得到接触式传感器高度;
B、用激光位移传感器对涂布面上的涂布起始点进行探高,以得到涂布起始点高度;
C、根据接触式传感器高度、涂布起始点高度,计算得到接触式传感器和涂布起始点的相对高度差;
D、将经过倾斜度校正的涂布刀头中心去触碰接触式传感器,并记录触碰时涂布刀头的Z轴高度;
E、根据接触式传感器和涂布起始点的相对高度差、涂布刀头触碰接触式传感器时的Z轴高度、预设涂布间隙,以对涂布刀头的Z轴高度进行校正。
作为优选方案,步骤S3中,包括步骤:
S3.1、在当前立体线路层的上表面上形成绝缘层;
S3.2、根据各立体线路层的连接需求以及各立体线路层上金属立柱的高度,通过在绝缘层打孔并填充纳米级金属浆料的方式以将相应金属立柱预先引出所述形成的绝缘层。
作为优选方案,所述具有剪切致稀特性的纳米级金属浆料包括纳米级金属颗粒、分散介质,纳米级金属颗粒的含量为75%~95%,具有剪切致稀特性的纳米级金属浆料粘度在100000cps~1000000cps之间,触变指数为4~10,该具有剪切致稀特性的纳米级金属浆料形成的线条高宽比≥0.5。本发明所述的线条高宽比是在使用武藏300DS三轴点胶机搭配诺信Optimum®100um内径通用点胶针头,在给定20psi气压及2mm/s点胶头移动速度下将浆料点胶至玻璃基板上形成一条线条,静置10min后使用显微镜观察并计算线高和线宽两者比值。
纳米级金属浆料中的分散介质用于分散及保护纳米级金属颗粒、抑制纳米级金属颗粒团聚、提高浆料和基板的粘附性以及提供一定保形能力、触变性。
作为优选方案,所述纳米级金属颗粒为纳米级银金属颗粒。
作为优选方案,分散介质包括分散溶剂、粘结剂,分散溶剂包括有机溶剂和水中的任一种或多种;粘结剂包括聚丙烯酸、二乙醇胺、聚丙烯酸和二乙醇胺的复合物中的任一种或多种。
作为优选方案,聚丙烯酸包括短链聚丙烯酸、长链聚丙烯酸。
作为优选方案,短链聚丙烯酸、长链聚丙烯酸的质量配比在2:1~8:1之间。
作为优选方案,短链聚丙烯酸摩尔质量在1000~10000g/mol之间,长链聚丙烯酸摩尔质量在10000~100000g/mol之间。
作为优选方案,所述有机溶剂包括乙二醇、甘油中的任一种或多种。
作为优选方案,所述纳米级金属颗粒为纳米级铜金属颗粒。
作为优选方案,分散介质包括分散溶剂、粘结剂,分散溶剂包括有机溶剂和水中的任一种或多种;粘结剂包括环氧树脂、固化剂、保护剂。
作为优选方案,所述环氧树脂为热固性环氧树脂。
作为优选方案,热固性环氧树脂包括双酚A型环氧树脂、E-44环氧树脂、联苯氧型环氧树脂中的任一种或多种。
作为优选方案,所述固化剂为多元硫醇固化剂、双氰胺固化剂、酸酐类固化剂中的任一种,使所述环氧树脂受热能快速固化。
作为优选方案,所述有机溶剂包括二乙二醇单乙醚醋酸酯、二价酸酯、异氟尔酮、松油醇或二乙二醇单丁醚中的任一种或多种。
作为优选方案,所述具有剪切致稀特性的纳米级金属浆料还包括保护剂。
作为优选方案,保护剂由三芳基膦类化合物、三烷基膦类化合物中的任一种形成或多种组合形成。保护剂在<100℃时和铜粉配位,在≥100℃时和氧原子结合形成氧膦化合物,抑制铜纳米颗粒在制备以及打印过程中被氧化的问题。
作为优选方案,所述具有剪切致稀特性的纳米级金属浆料还包括非导电填料。
作为优选方案,非导电填料由碳粉、纳米石墨烯粉末、膨润土、纳米二氧化硅粉末中的任一种形成或多种组合形成,主要用于调节浆料的粘度与触变性。
作为优选方案,步骤S2与步骤S3之间还包括步骤:
对当前立体线路层以及在当前立体线路层的预设位置处堆积形成的金属立柱进行第一预固化处理;
步骤S3中,在当前立体线路层的上表面上形成绝缘层后,还包括对绝缘层进行第二预固化处理;
步骤S3中,在绝缘层打孔并填充纳米级金属浆料后,还包括对填充的纳米级金属浆料进行第三预固化处理;
步骤S5中,将位于当前绝缘层下的相应立体线路层上的金属立柱连接或者通过所述预先引出的方式连接至焊盘层后,还包括对多层线路板进行整体烧结固化处理,以完成多层线路板的制备。
作为优选方案,所述第一预固化处理,固化温度为100℃~150℃,固化时间为3min~10min。
作为优选方案,所述第二预固化处理,采用阶梯式预固化处理。
作为优选方案,阶梯式预固化处理包括:先在60℃~95℃的固化温度下固化3min~10min,然后在120℃~200℃的固化温度下固化3min~10min。
作为优选方案,绝缘层材质为有机介质。
作为优选方案,整体烧结固化处理烧结温度为200℃~350℃,烧结时间为1h~3h。
作为优选方案,绝缘层材质为陶瓷介质。
作为优选方案,整体烧结固化处理烧结温度为850℃,烧结时间为0.5h~2h。
为保证上述高精密多层线路板制备过程中的效率、精度,避免固化过程对精密设备的热影响以及固化过程中绝缘介质和线路之间存在反复热变形的问题。本发明还提供一种高精密多层线路板制备过程中的固化方法,包括步骤:
S1、在基板的上表面上形成立体线路层;
S2、在当前立体线路层的预设位置处堆积形成金属立柱;
S3、对当前立体线路层以及在当前立体线路层的预设位置处堆积形成的金属立柱进行第一预固化处理;
S4、在当前立体线路层的上表面上形成绝缘层,并对当前绝缘层进行第二预固化处理;
S5、判断当前绝缘层是否作为顶层绝缘层,若是则在当前绝缘层上表面上形成焊盘层并执行步骤S6,若否则将当前绝缘层作为新的基板,返回步骤S1;
S6、对多层线路板进行整体烧结固化处理。
作为优选方案,步骤S1、步骤S2中均通过挤出口挤出具有剪切致稀特性的纳米级金属浆料,以形成立体线路层以及金属立柱;
所述具有剪切致稀特性的纳米级金属浆料包括纳米级金属颗粒、分散介质,纳米级金属颗粒的含量为75%~95%,具有剪切致稀特性的纳米级金属浆料粘度在100000cps~1000000cps之间,触变指数为4~10,该具有剪切致稀特性的纳米级金属浆料形成的线条高宽比≥0.5。
作为优选方案,步骤S4与步骤S5之间还包括步骤:通过在绝缘层打孔并填充纳米级金属浆料的方式以将相应金属立柱预先引出所述形成的绝缘层,并对填充的纳米级金属浆料进行第三预固化处理。
作为优选方案,步骤S3中所述对当前立体线路层以及在当前立体线路层的预设位置处堆积形成的金属立柱进行第一预固化处理,固化温度为100℃~150℃,固化时间为3min~10min。
作为优选方案,步骤S4中所述对当前绝缘层进行第二预固化处理,采用阶梯式预固化处理。
作为优选方案,阶梯式预固化处理包括:先在60℃~95℃的固化温度下固化3min~10min,然后在120℃~200℃的固化温度下固化3min~10min。
作为优选方案,绝缘层材质为有机介质。
作为优选方案,步骤S6中,整体烧结固化处理烧结温度为200℃~350℃,烧结时间为1h~3h。
作为优选方案,绝缘层材质为陶瓷介质。
作为优选方案,步骤S6中,整体烧结固化处理烧结温度为850℃,烧结时间为0.5h~2h。
为提高上述高精密多层线路板制备过程中金属立柱的保形力,保证金属立柱的打印尺寸,进而保证垂直互连结构的整体尺寸较小,满足高精密多层线路板的高精度互连要求,本发明还提供一种高精密多层线路板中金属立柱的制造方法,包括步骤:
S1、通过挤出口挤出具有剪切致稀特性的纳米级金属浆料,以在基板的上表面上形成立体线路层;
S2、在立体线路层预设位置处,通过挤出具有剪切致稀特性的纳米级金属浆料,以交替形成金属立柱的每层上的外框线、填充线,以堆积形成金属立柱;
所述具有剪切致稀特性的纳米级金属浆料包括纳米级金属颗粒、分散介质,纳米级金属颗粒的含量为75%~95%,具有剪切致稀特性的纳米级金属浆料粘度在100000cps~1000000cps之间,触变指数为4~10,该具有剪切致稀特性的纳米级金属浆料形成的线条高宽比≥0.5。
作为优选方案,步骤S2中,所述金属立柱的高度高于在立体线路层上所要形成的绝缘层。
作为优选方案,在形成绝缘层后,还包括步骤:挤出纳米级金属浆料,以形成连接金属立柱上表面的引出线。
作为优选方案,步骤S2中,所述金属立柱的高度低于在立体线路层上所要形成的绝缘层。
作为优选方案,在形成绝缘层后,还包括步骤:对金属立柱上方的绝缘层进行激光打孔,以形成微孔。
作为优选方案,在形成所述微孔后,还包括步骤:对微孔进行纳米级金属浆料填充,以形成金属立柱的延长柱。
作为优选方案,在形成金属立柱的延长柱后,还包括步骤:挤出纳米级金属浆料,以形成连接延长柱上表面的引出线。
作为优选方案,步骤S1与步骤S2中,形成立体线路层和金属立柱时,环境湿度均为20%~60%。
作为优选方案,所述纳米级金属颗粒为纳米级银金属颗粒。
作为优选方案,所述纳米级金属颗粒为纳米级铜金属颗粒。
本发明还提供一种高精密多层线路板,采用上述的一种高精密多层线路板3D打印制备方法得到。
本发明还提供一种柔性电路,采用上述的一种高精密多层线路板。
本发明还提供一种穿戴设备,采用上述的一种高精密多层线路板。
本发明还提供一种微型无源电子器件,采用上述的一种高精密多层线路板。
有益效果
本发明创造性地利用挤出式3D打印的方法来制作互连精度高的高精密多层线路板,提高了多层线路板的互连精度。
本发明所述的高精密多层线路板3D打印制备方法,可适用于不同介质材料和不同金属材质的浆料。
通过挤出口挤出具有剪切致稀特性的纳米级金属浆料,以在基板的上表面上形成立体线路层,由于纳米级金属浆料具有剪切致稀特性,立体线路层的打印精度高,立体线路层中的导线线宽可达1~150um,导线线距可达1~150um,垂直互连结构尺寸可达20~150um,垂直互连结构间距可达20~150um,线宽和线距可明显缩小即可达到10um以下,垂直互连结构尺寸和间距可明显缩小即可达到150um以下,从而使立体线路层及立体线路层之间具有较高的互连精度,即多层线路板的互连精度。
目前虽然可通过激光打孔在绝缘层打出孔径较小的微孔,并通过填充金属浆料与线路接触实现连接,但在打印精细线路场景时,由于线路线宽、线厚等尺寸相比于微孔很小(线宽、线厚如只有几个微米),微孔底部的线路很容易被激光全部烧蚀,导致填充时填充的浆料和金属线路不接触或接触部分极小,无法保证导通。因此本申请中通过在立体线路层的预设位置处打印金属立柱,增加连接面积,以保证线路的互连,避免了线路断路现象。
为适配导线线宽、导线线距、绝缘层厚度的精度要求,本发明中同样采用挤出具有剪切致稀特性的纳米级金属浆料,打印金属立柱,以保证金属立柱的打印尺寸精度要求,进一步保证高精密多层线路板的互连精度。
仅通过预设的一个金属立柱最多只能实现相邻两层立体线路层之间的互连,本发明将位于当前立体线路层下方的相应立体线路层上的金属立柱通过在绝缘层打孔并填充浆料的方式引出至少一层绝缘层,可实现任意立体线路层之间的互连。
由于立体线路层的打印精度高、体积小,只需涂覆很薄的绝缘层即可实现覆盖,而垂直互连结构又需要穿过绝缘层设置,因此在此基础上,可以减小垂直互连结构的尺寸,进一步保证高精密多层线路板的互连精度。
由于各基板自身上表面无法保证均为一平面。本申请在基板的上表面上形成立体线路层时,包括:对基板的上表面的各点位的高度进行测量,以获取基板上表面的高度数据集合,并根据基板上表面的高度数据集合在挤出口挤出所述具有剪切致稀特性的纳米级金属浆料时使其在基板的上表面的对应点位处进行Z轴方向的相对移动,以使得挤出口挤出的具有剪切致稀特性的纳米级金属浆料在基板上表面形成立体线路层,以保证线路线型、线宽的均匀。
由于挤出头在挤出时会发生抖动现象,从而发生挤出位置的偏移,或者挤出头一开始的固定位置存在误差,同样会发生挤出位置的偏移,挤出位置的偏移会严重影响在高精密打印场景下打印线路的位置精度以及线宽、线型,导致线路线型、线宽不均匀甚至线路错位、撞针。因此本申请在基板的上表面上形成立体线路层时,测量基板上表面具体点位上的立体线路层的实际位置与预设位置的差值,根据该差值对挤出头进行校正,该校正可以是对挤出头稳固度进行校正,也可以是对挤出头固定位置的校正。
本申请通过在线路的正式挤出形成路线之前预设一个曲线的预挤出运动,避免挤出口在正式挤出形成路线的起始端出料延迟及不均匀问题;并通过在线路的正式挤出形成路线末端预设一个飞料段,在该飞料段位上时关闭挤出所述具有剪切致稀特性的纳米级金属浆料的挤出动力供给,以避免挤出口在线路的正式挤出形成路线的末端堆料及拉丝的问题。
为适配本案高精密打印场景绝缘层的表面形貌及厚度均匀性需满足极高的质量要求,本发明在涂布绝缘层前,对涂布刀头左右两端倾斜度进行校正。
为保证绝缘层的涂布厚度,本发明在涂布绝缘层前,对涂布刀头和涂布面之间的涂布间隙进行校正。
本发明提供的固化方法,可在采用挤出式3D打印的方法制作互连精度高的高精密多层线路板时,保证高精密多层线路板制备的效率、精度,避免固化过程对精密设备的热影响以及固化过程中绝缘层、金属立柱、立体线路层之间存在反复剧烈热变形的问题。
本发明所选用的具有剪切致稀特性的金属浆料,可在采用挤出式3D打印的方法制作互连精度高的高精密多层线路板时,兼顾粘附力、保形力、导电率、挤出连续性以及减少出料时的拉丝现象,尤其是保证反复固化过程中金属立柱、线路的保形力、粘附力。从而提高制作互连精度高的高精密多层线路板时的成品率。
本发明提供的金属立柱的制造方法,可在采用挤出式3D打印的方法制作互连精度高的高精密多层线路板时,提高金属立柱的保形力,保证金属立柱的打印尺寸,进而保证垂直互连结构的整体尺寸较小,满足高精密多层线路板的高精度互连要求。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明所述一种高精密多层线路板3D打印制备方法的流程图;
图2是多层线路板制备工艺示意图;
图3是本发明所述一种高精密多层线路板制备过程中的固化方法的流程图;
图4是本发明所述一种高精密多层线路板中金属立柱的制造方法的流程图;
图5是本发明所述第一种垂直互连结构的示意图;
图6是本发明所述第一种垂直互连结构单元的示意图;
图7是本发明所述第二种垂直互连结构的示意图;
图8是本发明所述第二种垂直互连结构单元的示意图;
图9是相邻两立体线路层互连的结构示意图;
图10是间隔多层的立体线路层互连的结构示意图;
图11是底层立体线路层与表层立体线路层互连的结构示意图;
图12是同一金属立柱所在垂线上存在多层立体线路层互连的结构示意图;
图13是高精密多层线路板的整体效果图;
图中的编码分别为:1、基板;2、立体线路层;3、绝缘层;4、金属立柱;5、延长柱;6、引出线;7、微孔;8、垂直互连结构。
本发明的实施方式
以下通过特定的具体实施例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。
实施例一:
参照图1、图2,本实施例提供一种高精密多层线路板3D打印制备方法,包括步骤:
S1、通过挤出口挤出具有剪切致稀特性的纳米级金属浆料,以在基板的上表面上形成立体线路层;
S2、通过挤出口挤出具有剪切致稀特性的纳米级金属浆料,以在当前立体线路层的预设位置处堆积形成金属立柱;
S3、在当前立体线路层的上表面上形成绝缘层,并通过在绝缘层打孔并填充纳米级金属浆料的方式以将相应金属立柱预先引出所述形成的绝缘层(具体为根据各立体线路层的连接需求以及各立体线路层上金属立柱的高度,通过在绝缘层打孔并填充纳米级金属浆料的方式以将相应金属立柱预先引出所述形成的绝缘层);
S4、判断当前绝缘层是否作为顶层绝缘层,若是则在当前绝缘层上表面上形成焊盘层并执行步骤S5,若否则将当前绝缘层作为新的基板,重复执行步骤S1-S2并执行步骤S6;
S5、将位于当前绝缘层下的相应立体线路层上的金属立柱连接或者通过所述预先引出的方式连接至焊盘层,以完成多层线路板的制备;
S6、将位于当前立体线路层下的相应立体线路层上的金属立柱连接或者通过所述预先引出的方式连接至当前立体线路层,并返回步骤S3。
本实施例中,通过精密气压控制推动增压结构,使高粘度的纳米级金属浆料可从精密打印针头尖端的挤出口(挤出口内径≥1um,玻璃或陶瓷材质)丝状挤出出料。
可知:
本发明创造性地利用挤出式3D打印的方法来制作互连精度高的高精密多层线路板,提高了多层线路板的互连精度。
通过挤出口挤出具有剪切致稀特性的纳米级金属浆料,以在基板的上表面上形成立体线路层,由于纳米级金属浆料具有剪切致稀特性,立体线路层的打印精度高,立体线路层中的导线线宽可达1~150um,导线线距可达1~150um,垂直互连结构尺寸可达20~150um,垂直互连结构间距可达20~150um,线宽和线距可明显缩小即可达到10um以下,垂直互连结构尺寸和间距可明显缩小即可达到150um以下,从而使立体线路层及立体线路层之间具有较高的互连精度,即多层线路板的互连精度。
目前虽然可通过激光打孔在绝缘层打出孔径较小的微孔,并通过填充金属浆料与线路接触实现连接,但在打印精细线路场景时,由于线路线宽、线厚等尺寸相比于微孔很小(线宽、线厚如只有几个微米),微孔底部的线路很容易被激光全部烧蚀,导致填充时填充的浆料和金属线路不接触或接触部分极小,无法保证导通。因此本申请中通过在立体线路层的预设位置处打印金属立柱,增加连接面积,以保证线路的互连,避免了线路断路现象。
为适配导线线宽、导线线距、绝缘层厚度的精度要求,本发明中同样采用挤出具有剪切致稀特性的纳米级金属浆料,打印金属立柱,以保证金属立柱的打印尺寸精度要求,进一步保证高精密多层线路板的互连精度。
仅通过预设的一个金属立柱最多只能实现相邻两层立体线路层之间的互连,本发明将位于当前立体线路层下方的相应立体线路层上的金属立柱通过在绝缘层打孔并填充浆料的方式引出至少一层绝缘层,可实现任意立体线路层之间的互连。
由于立体线路层的打印精度高、体积小,只需涂覆很薄的绝缘层即可实现覆盖,而垂直互连结构又需要穿过绝缘层设置,因此在此基础上,可以减小垂直互连结构的尺寸,进一步保证高精密多层线路板的互连精度。
具体地:
由于制作高精密多层线路板时,每形成一层立体线路层、立体线路层相应的金属立柱或者涂布一层绝缘层都需要进行固化,因此需要提高立体线路层、立体线路层相应的金属立柱的线路保形性,然而在提高线路保形性的同时,线路的粘附力将下降,因此选用的具有剪切致稀特性的纳米级金属浆料需要兼顾保形性以及粘附力,进一步,由于制作的是高精密多层线路板,因此每层立体线路层形成过程中线路出现的拉丝现象将严重影响整个多层线路板的精度,因此我们选用的具有剪切致稀特性的纳米级金属浆料还需要兼顾拉丝效果。再进一步,我们选用的具有剪切致稀特性的纳米级金属浆料还需要保证导电率,以保证多层线路板的正常使用。更进一步,我们选用的具有剪切致稀特性的纳米级金属浆料还需保证在挤出时的连续性,避免挤出口的堵塞或者断料现象,从而提高在采用挤出式3D打印的方法制作互连精度高的高精密多层线路板时的成品率。
上述具有剪切致稀特性的纳米级金属浆料可选用纳米级银金属浆料或纳米级铜金属浆料。
其中,可以采用如下方式制备具有剪切致稀特性的纳米级银金属浆料:
1、取2g短链聚丙烯酸(PAA)溶液(50wt%,5000g/mol),1g长链聚丙烯酸(PAA)溶液(25wt%,50000g/mol),40gDEA二乙醇胺溶于50ml去离子水;
2、室温下搅拌2h,溶液pH值9.5,作为溶液一;
3、取硝酸银溶液(20g硝酸银溶于20ml去离子水)逐滴加入溶液一中,并快速搅拌获得深黄色溶液二;
4、室温下搅拌24h,溶液二颜色逐渐转变为深黑色并形成2~8nm直径纳米银颗粒;
5、60℃热水浴搅拌2h,获得溶液三,经过该步骤后银颗粒尺寸熟化至5~50nm;
6、以10ml/min速率向溶液三中添加240ml乙醇,搅拌20min,获得溶液四;
7、去除溶液四中上清液,将沉淀物在9000rpm下离心20min,获得高浓度的纳米银浆料干体;
8、在纳米银浆料干体中加入10wt%溶剂(所述溶剂由30wt%乙二醇和70wt%水混合而成,起到溶解聚丙烯酸、二乙醇胺及保湿的作用)震荡均匀,而后在50℃、25mbar真空箱内进行脱泡30min,即获得最终的具有剪切致稀特性的纳米级银金属浆料。
其中,可以采用如下方式制备具有剪切致稀特性的纳米级铜金属浆料:
称取双酚A型环氧树脂8g,溶到15g的乙酸丁酯溶剂中,加热至80℃保持1小时,至完全溶解得到初步载体;称取酸酐类固化剂1g,加入到初步载体中,用高速分散机进行高速分散,分散均匀后加热至30-35℃老化2小时,得到分散介质;称取100~200nm的铜粉70g,还原剂三苯基膦5g,非导电填料纳米石墨烯粉末0.2g、50nm的二氧化硅粉末0.8g;与所述分散介质在混料机中充分混合,再使用高速分散机进行高速分散,得到均匀的初浆料;将初浆料在三辊机进行6遍棍轧,达到<1μm的细度为止,然后经过10μm的滤网进行过滤,最终得到纳米级铜金属浆料。纳米级铜金属浆料更具体的制备方法可参见公开号为CN113362984A的中国发明专利。
基于上述,本领域技术人员可以改变浓度等各种参数以获得性能满足本发明要求的具有剪切致稀特性的纳米级金属浆料。
通常步骤S1中,所述具有剪切致稀特性的纳米级金属浆料为含有纳米级金属颗粒的有机分散体系,包括纳米级金属颗粒、分散介质,纳米级金属颗粒的含量为75%~95%,浆料粘度在100000cps~1000000cps之间,触变指数为4~10,形成的线条高宽比≥0.4。金属固含量高可以提高保形性,减少打印针头拉丝,减少烧结时的收缩以及提高导电性,但和玻璃、硅片、聚酰亚胺等基板的粘附力将下降;若金属固含量太低则电导率下降,且浆料烧结时收缩太大,易导致线路断线。纳米级金属颗粒由于表面能高,易相互团聚结合成大颗粒堵塞挤出口,所以浆料中必须添加相应的分散介质分散纳米颗粒,抑制团聚。对于不同材质纳米级金属颗粒,需要根据纳米金属颗粒理化特性选择合适的分散介质以及添加其它辅料。
针对纳米级银金属浆料,分散介质包括分散溶剂、粘结剂,分散溶剂包括有机溶剂和水中的任一种或多种;粘结剂包括聚丙烯酸、二乙醇胺、聚丙烯酸和二乙醇胺的复合物中的任一种或多种。聚丙烯酸包括短链聚丙烯酸、长链聚丙烯酸,所述有机溶剂包括乙二醇、甘油中的任一种或多种。由于银纳米颗粒具有良好的抗氧化性且分散介质中含有聚丙烯酸、二乙醇胺成分(聚丙烯酸和基板具有良好的粘附性且可分散金属颗粒,二乙醇胺将金属离子缓慢还原成金属颗粒),可不另外添加保护剂、固化剂。短链和长链聚丙烯酸的质量配比在2:1到8:1之间,短链聚丙烯酸摩尔质量在1000~10000g/mol之间,长链聚丙烯酸则在10000~100000g/mol之间,通过调整不同分子量聚丙烯酸的质量配比、聚合度、银纳米颗粒的含量以及水分含量,可调整浆料的打印效果、和基板的粘附力以及烧结固化后的导电性。
针对纳米级铜金属浆料,分散介质包括分散溶剂、粘结剂,分散溶剂包括有机溶剂和水中的任一种或多种;粘结剂包括环氧树脂、固化剂、保护剂。所述环氧树脂为热固性环氧树脂,热固性环氧树脂包括双酚A型环氧树脂、E-44环氧树脂、联苯氧型环氧树脂中的任一种或多种。所述固化剂为多元硫醇固化剂、双氰胺固化剂、酸酐类固化剂中的任一种。所述有机溶剂包括二乙二醇单乙醚醋酸酯、二价酸酯、异氟尔酮、松油醇或二乙二醇单丁醚中的任一种或多种。所述具有剪切致稀特性的纳米级金属浆料还包括保护剂,保护剂由三芳基膦类化合物、三烷基膦类化合物中的任一种形成或多种组合形成。所述具有剪切致稀特性的纳米级金属浆料还包括非导电填料,非导电填料由碳粉、纳米石墨烯粉末、膨润土、纳米二氧化硅粉末中的任一种形成或多种组合形成。由于铜纳米颗粒极易遭受水分、空气氧化,分散介质中含有环氧树脂成分(环氧树脂呈疏水性可抑制水分侵入,固化后和基板具有良好的粘附性),故添加保护剂来抑制铜纳米颗粒氧化,添加固化剂使环氧树脂受热快速固化,非导电填料可根据实际粘度、触变性需求添加。
所述具有剪切致稀特性的纳米级金属浆料纳米颗粒分散性好,可顺畅无堵塞从1um~150um内径玻璃毛细管挤出;固化后浆料体积收缩率小于30%,与玻璃、硅片、聚酰亚胺等基板具有良好粘附性(使用刮刀在玻璃基板上刮涂约20um厚浆料并进行200℃烧结固化,而后使用3M Scotch 600胶带剥离无材料剥落现象);浆料粘度和触变指数使用常规Brookfield旋转粘度计表征;浆料在20%~60%相对湿度,23±5℃条件下,吸水率≤5%(影响保形性及烧结后收缩效果,测试方法:使用刮刀在玻璃基板上刮涂约100um厚浆料,使用精密电子称进行称重,间隔1h后质量增加量≤5%)。
现有制作单层高精度线路板所采用的浆料形成线条的高宽比一般在0.2左右,因为本发明中需要做多层间垂直互连,浆料高宽比较低无法支持本发明中关键工艺如金属立柱的打印。同时由于多层线路板的使用场景相较于单层线路板更复杂(如走高压信号、大电流等)对线路厚度要求比单层线路板更高,所以若使用线条高宽比较低的浆料进行多层板线路制作,需要通过牺牲线宽、线距的精度来提升线路厚度,因此无法制备互连精度高的高精密多层线路板。
制备多层线路板时需要刮涂多层绝缘层,以形成多层基板以供各立体线路层的打印,因此需要进行高精密刮涂,以使形成的各层基板厚度保持一致、各层基板的上表面为一平面,然而涂布过程中的涂布间隙、涂布倾斜度稍有偏差均容易造成误差,且每涂布完一层绝缘层均需要固化,即使涂布绝缘层时做到了精度一致,经过固化后也很难保证形成的基板精度一致,且各基板自身上表面也无法保证均为一平面。而打印时需要将挤出头靠近打印基板使丝状料和打印基板接触,在高精密打印场景下打印基板的高度起伏以及表面粗糙度,会严重影响打印线路的状态,导致线路线型、线宽不均匀甚至断线、撞针。
因此,基于上述各基板自身上表面无法保证均为一平面的情况,步骤S1中,在基板的上表面上形成立体线路层时,包括:对基板的上表面的各点位的高度进行测量,以获取基板上表面的高度数据集合,并根据基板上表面的高度数据集合在挤出口挤出所述具有剪切致稀特性的纳米级金属浆料时使其在基板的上表面的对应点位处进行Z轴方向的相对移动,使得挤出口挤出所述具有剪切致稀特性的纳米级金属浆料时与基板的上表面的各点位间的高度保持一致,即本申请中立体线路层的打印为立体式打印,打印过程中,挤出头相对于基板的上表面的各点位存在Z向的相对移动,以使最终在基板的上表面上形成立体线路层,以保证线路线型、线宽的均匀。
更为详细地,本实施例中,通过激光位移传感器对基板的上表面的各点位的高度进行测量,获得基板上表面的高度数据集合,激光位移传感器分辨率需要在0.3um及以下,若分辨率超标无法在大幅面场景下保证补偿精度,导致实际打印时挤出口和基板间的高度控制不准确。打印时通过基板的Z向运动,使挤出口在基板的上表面的对应点位处进行Z轴方向的相对移动。
同样地,由于本发明中挤出浆料时需要将针头靠近基板使丝状料和基板接触,气动推进时产生的抖动会严重影响在高精密打印场景下打印线路的位置精度以及线宽、线型,导致线路线型、线宽不均匀甚至线路错位、撞针。因此需要在针头底座上增加金属稳固机构。同时,在基板的上表面上形成立体线路层时,测量基板上表面具体点位上的立体线路层的实际位置与预设位置的差值,并根据差值对针头的稳固度进行校正,通过稳定后的针头水平向和垂直向抖动偏差控制在0.5um以内,以避免实际位置与预设位置的差值超过预设阈值。
需要说明的是,某些情况下实际位置与预设位置的偏差过大也许并非由于针头抖动造成,而是针头的固定位置出现了偏差。本实施例中,利用计算机辅助制造(CAM)技术,将预先设计好的电路图案导入生成数控路径,打印针头沿着数控路径移动形成所需要的线路图案,因此若针头的固定位置出现偏差,将导致整个线路图案出现偏差。此时同样可以根据实际位置与预设位置的差值,对针头的固定位置进行校正。
且需要说明的是:当为抖动影响造成偏差时,偏差在打印开气和断气时会发生变化,若为固定位置影响造成偏差时,偏差不受打印开气和断气的影响。
进一步,由于本发明采用的是挤出式3D打印方法,挤出式3D打印方法挤出线条时,在线条起始端会出现出料延迟及不均匀问题,线条末端会出现堆料及拉丝问题,严重影响线条打印精度,制备多层线路板时,层层累积后该影响明显。
针对线条在起始端会出现出料延迟及不均匀问题,本发明中采用如下方案:所述挤出口挤出具有剪切致稀特性的纳米级金属浆料以形成立体线路层中的每条线路的起始端前均在垂直于基板的垂面上做曲线的预挤出运动,并沿该曲线的切向方向进入线路的正式挤出形成路线;即将该曲线作为挤出预跑段,从而避免正式挤出时的出料延迟及不均匀问题。
针对线条末端会出现堆料及拉丝问题,本发明中采用如下技术方案:所述线路的正式挤出形成路线末端具有一个预设的飞料段,所述挤出口在该飞料段位上时关闭挤出所述具有剪切致稀特性的纳米级金属浆料的动作。即在该飞料段位上时关闭挤出所述具有剪切致稀特性的金属浆料的挤出动力供给,飞料段占每条线路末段总长的5%~30%(注:一条线路包括连续打印的多段打印路径,线路末段指线路中最后一段打印路径)。
如上线路打印完毕后可维持其图案形状及截面形状,具有特定的高宽比线型(线路打印时环境相对湿度需控制在20%~60%,过低则浆料不易粘附基板过高则浆料易吸附水分造成保形性下降)。
进一步,由于多层线路板为立体线路层、绝缘层交替堆叠构成,因此在完成立体线路层或者绝缘层形成后均需要对其进行固化,以供下一层立体线路层或绝缘层的形成。本发明中针对的是高精密多层线路板的制备,制备精度可达到10um以下,若针对每一层立体线路层或者绝缘层都采用高温完全固化,绝缘介质和线路之间存在反复剧烈热变形,线路和介质之间的热应力,线路、介质本身热应力将导致工艺中途出现断路失效,除此之外反复高温加热也将导致绝缘介质涨缩问题加剧,绝缘介质氧化。因此本发明中采用预固化+整体烧结固化的方式,参照图3所示,包括步骤:
S1、在基板的上表面上形成立体线路层;
S2、在当前立体线路层的预设位置处堆积形成金属立柱;
S3、对当前立体线路层以及在当前立体线路层的预设位置处堆积形成的金属立柱进行第一预固化处理;
S4、在当前立体线路层的上表面上形成绝缘层,并对当前绝缘层进行第二预固化处理;
S5、判断当前绝缘层是否作为顶层绝缘层,若是则在当前绝缘层上表面上形成焊盘层并执行步骤S6,若否则将当前绝缘层作为新的基板,返回步骤S1;
S6、对多层线路板进行整体烧结固化处理。
具体地:
针对在基板的上表面上形成的立体线路层以及在当前立体线路层的预设位置处堆积形成金属立柱,本发明中第一预固化处理的固化温度为100℃~150℃,固化时间为3min~10min,去除线路材料内的水分同时对线路进行定型,增强线路和基板的粘附力,以供后一层绝缘层的涂布作业。
在完成立体线路层、金属立柱固化后,对涂布于立体线路层上的绝缘层同样采用预固化处理的方式进行固化,具体地,对于含有溶剂的绝缘层,涂布后先进行预固化处理,将湿膜中的溶剂挥发(尤其是水、酒精、二甲基乙酰胺等强极性溶剂),防止薄膜变异(液体流动、不均匀收缩等)以及残余溶剂溶解线路或降低线路和基板的黏附力。进一步地,为防止气泡、褶皱等问题,对绝缘层进行2级或2级以上阶梯式预固化处理,这里以2级阶梯式预固化处理为例,先在60℃~95℃内固化3min~10min,然后在120℃~200℃间固化3min~10min。因为绝缘层涂布原料中往往含有大量溶剂,若直接在较高温度进行固化,溶剂挥发太剧烈同时容易出现皮肤效应(涂层表面迅速受热烘干硬化),导致所产生的气泡和残余溶剂无法及时排出形成残余气泡和不均匀褶皱,同时受热太快膜内形成较强热应力会造成线路的变形。
步骤S4与步骤S5之间还包括步骤:通过在绝缘层打孔并填充纳米级金属浆料的方式以将相应金属立柱预先引出所述形成的绝缘层,并对填充的纳米级金属浆料进行第三预固化处理,这里所述的第三预固化处理与第一预固化处理类似,不作过多赘述。
各立体线路层、绝缘层、焊盘层(焊盘层为制备完成的多层线路板用于连接外部电子元件的连接层,对其更为详细的解释见下文对金属立柱的解释部分)均完成后,需要通过整体烧结固化(需要说明的是:多层线路板顶层的焊盘层形成后,对其无需进行预固化处理,直接进行整体烧结固化即可),具体地:若绝缘层材质为有机介质且为空气氛围下热固化,则采用马弗炉烧结方式进行整体烧结固化处理,烧结温度为200℃~300℃,烧结时间为1h~3h,不同纳米级金属浆料烧结条件会有不同,如纳米级铜金属浆料由于铜本身易氧化的原因,一般整体烧结固化需要在氮气氛围下(具体可见后文实施例七所述)。若使用红外、激光、光子烧结等方式,纳米级金属浆料的烧结时间可进一步缩短;由于常规的有机基板如FR-4环氧玻璃纤维板、有机绝缘层材料如BT(Bismaleimide Triazine,双马来酰亚胺-三嗪树脂)、PI(Polyimide,聚酰亚胺)、Epoxy resin(环氧树脂)、BCB(Benzocyclobutene,苯并环丁烯)等的耐温能力有限,故本发明中一般选择在200℃~300℃进行整体烧结固化。若绝缘层材料为低温共烧陶瓷如氧化铝基、氮化铝基低温共烧陶瓷,则采用陶瓷低温共烧方式进行整体烧结固化处理,烧结温度为850℃,烧结时间为0.5h~2h。通过整体烧结固化,浆料中的有机物部分或完全去除,金属颗粒相互键联,晶粒长大,空隙(气孔)和晶界渐趋减少,最终形成具有良好导电性、特定均匀线型的金属线路;通过整体烧结固化,绝缘介质形成具有特定电气性能的稳定绝缘层。
其中,预固化相比较整体烧结固化从固化参数上看主要表现在温度低,时间短;预固化起到及时定型介质、线路满足后续工艺,增强线路和介质间的粘附力,节省效率以及减少对精密设备的热影响。
需要特别说明当金属浆料固化条件和绝缘介质固化条件不兼容的情况。若绝缘层材质为有机介质且需要特殊气氛下完全热固化(如氮气氛围高温固化型聚酰亚胺,一般需要在350℃完全固化,若直接在空气氛围下高温固化,会造成亚胺氧化问题,导致固化后的聚酰亚胺发黑且机械强度下降),而本案所述配方制备的银金属浆料需要在空气氛围下进行固化,对于金属浆料固化条件和绝缘介质固化条件不兼容的情况则优选采用混合烧结固化方式,即每层金属线路及金属立柱使用激光进行选区直接完全固化,对整体多层线路板采用离线的特殊气氛炉进行高温完全固化。此处所用激光不同于后文激光打孔所用紫外皮秒激光,此处激光可使用小型红外波段连续或毫秒级脉冲激光。使用激光进行金属浆料固化时需要注意由于激光属于局部高能量输入,激光照射时易引起纳米级金属浆料中有机成分的剧烈蒸发、分解。对于金属立柱和表面焊盘层采用激光固化时若短时间内能量输入过大会出现明显鼓泡问题,对于金属立柱和表面焊盘层采用激光固化时也需要采用阶梯式固化的方法,一般用5W~15W激光功率先进行预固化而后采用20W~50W高功率进行完全固化。
更为具体地:
对于上述绝缘层的涂布,本实施例中,对于涂布刀头,需要采用金属材质,且刀口平面的平面度≤2um。涂布过程中包括涂布刀头倾斜校正、涂布间隙校正。
涂布刀头倾斜校正:基于上述可知,绝缘层的表面作为线路打印的基板面,故为适配本案高精密打印场景绝缘层的表面形貌及厚度均匀性需满足极高的质量要求。涂布刀头在进行涂布作业前需对刀头左右两端倾斜度进行校正,具体为,控制Z轴电机下降涂布刀头将其左端、右端分别与高精度接触式传感器进行触碰,当接触式传感器受到涂布刀头的触碰压力并达到传感器阈值后触发接触信号,通过记录涂布刀头左右两端触发接触式传感器信号时的Z轴电机高度,进而反馈得到涂布刀头左右倾斜度。根据倾斜度信息,调节涂布刀头上方左右两侧的精密螺旋顶杆控制左右倾斜度,反复测量、调节直至左右两端高度偏差≤2um以内(需要说明的是,该处控制刀头整体左右倾斜情况,和刀口平面平面度≤2um并非同一概念,刀口平面平面度是指刀口平面的最大起伏差)。
涂布间隙校正:涂布刀头和基板面之间的高度间隙是重要的涂布参数,对绝缘层的厚度有重要影响。本案中涂布刀头和基板之间无机械连接结构,两者间的高度间隙需借助激光位移传感器、高精密接触式传感器进行校正。涂布前,首先用激光位移传感器对接触式传感器的接触面进行探高,以得到接触式传感器高度;其次用激光位移传感器对涂布面上的涂布起始点进行探高,以得到涂布起始点高度;然后根据接触式传感器高度、涂布起始点高度,计算得到接触式传感器和涂布起始点的相对高度差;将经过倾斜度校正的涂布刀头中心去触碰接触式传感器,并记录触碰时涂布刀头的Z轴高度;最后根据接触式传感器和涂布起始点的相对高度差、涂布刀头触碰接触式传感器时的Z轴高度、预设涂布间隙,以对涂布刀头的Z轴高度进行校正。
本实施例中,对于绝缘层涂布:
多层线路板的基本结构是由多个绝缘层及立体线路层交替堆叠构成。立体线路层由金属导体图案构成,绝缘层由有机树脂或无机陶瓷构成。在本发明中通过刮刀涂布或狭缝涂布,层层涂布叠加的方式实现多个绝缘层的叠加,每层绝缘层通过在设备上集成的涂布刀头进行原位涂布。涂布刀头装配在由伺服电机控制的Z轴上,涂布时涂布刀头下降至基板上方特定高度,保持涂布刀头不动,控制放置基板的样品台往前运动,使得涂布刀头相对基板面行进涂布;可通过调整涂布刀头和基板的间隙、基板行进速度、绝缘介质材料收缩量等参数进行精密控制;涂布头有两种模式分别为刮刀涂布刀头、狭缝涂布刀头。前者是先在基板上通过挤出的方式施加一定量的绝缘介质材料后,使刮涂刀头相对基板推动绝缘介质材料在基板上形成一层薄膜;后者则由于刀头本身具有出料狭缝,调节狭缝间隙、狭缝出料量及出料速度后,使狭缝刀头相对基板行进出料在基板上形成一层薄膜。以上涂布过程可重复进行以获得更厚的绝缘层,特别是对于一些溶剂含量较高的绝缘介质材料(如聚酰亚胺液体料),一次性涂较厚的薄膜时(一般当涂布厚度>100um时)所需挥发的溶剂太多,收缩应力明显,易造成气泡或精细线路的断裂,对于该类材料优选多次涂布成型。涂布厚度过薄则会引入表面起伏问题,介质表面会映出前一层线路的起伏形貌(由于线路自身具有一定高度)使得下一层线路在前一层线路上方打印时出现针头和基板面间距高低起伏,且由于前一层线路尺度小,线路引起的高低起伏仅在线路上方局部区域内存在,无法通过前文所述的基板在Z轴方向移动解决,所以在涂布绝缘介质时,介质厚度需要至少大于两倍的前一层线路厚度,以减少前一层线路的高度影响。
以下针对高精密多层线路板中的垂直互连结构进行解释:
参照图5-图8所示,本发明涉及两种垂直互连结构,第一种由金属立柱4、微孔7及其填充的纳米级金属浆料(需要说明的是:填充的纳米级金属浆料可认为是金属立柱4的延长柱5)、引出线6(引出线6用于连接金属立柱4与立体线路层2或者用于连接延长柱5与立体线路层2)构成,第二种由金属立柱4、引出线6直接构成;前者对金属立柱4高度、绝缘层3厚度的工艺要求较低,绝缘层3完全覆盖金属立柱4,绝缘层3表面较平整,但需要增加激光辅助工艺进行绝缘层3上的微孔7成型及填充;后者虽可以省去辅助手段,但需要使金属立柱4表面能穿过经过预固化后的绝缘层3(即绝缘层3经过预固化后发生收缩,以使金属立柱4表面穿过绝缘层3),且由于表面张力原因立柱附近小领域内绝缘层3表面有弯曲,对材料状态、金属立柱高度、涂布厚度等工艺管控要求较高。
具体地,金属立柱是本发明中垂直互连结构的重要组成件,参照图4,金属立柱通过本发明高精密3D打印的方式在需要做垂直互连的线路处进行打印,层层堆叠,立柱一般为立方体或圆柱体,包括步骤:
S1、通过挤出口挤出具有剪切致稀特性的纳米级金属浆料,以在基板的上表面上形成立体线路层;
S2、在立体线路层预设位置处,通过挤出具有剪切致稀特性的纳米级金属浆料,以交替形成金属立柱的每层上的外框线、填充线,以堆积形成金属立柱;
所述具有剪切致稀特性的纳米级金属浆料包括纳米级金属颗粒、分散介质,纳米级金属颗粒的含量为75%~95%,具有剪切致稀特性的纳米级金属浆料粘度在100000cps~1000000cps之间,触变指数为4~10,该具有剪切致稀特性的纳米级金属浆料形成的线条高宽比≥0.5。
本发明说明书中上述步骤制得的具有剪切致稀特性的纳米级金属浆料即可满足本步骤的要求,而金属立柱打印的具有剪切致稀特性的纳米级金属浆料优选保形能力更高,形成的线条高宽比≥0.5,另外,优选打印金属立柱控制环境湿度为20%~60%。若浆料的保形能力及打印时的环境相对湿度(20%~60%)不满足,金属立柱打印时会坍塌或变形,导致尺寸不达标。金属立柱层层打印时,每层均有外框线和填充线,填充线之间重叠率为5%~15%。打印金属立柱的总出料体积(金属立柱打印时间*给定气压下单位时间出料质量/浆料密度)与金属立柱设计体积偏差小于10%。体积匹配错误则会导致金属立柱预固化后表面凹陷或尺寸超标。本案制备的金属立柱结构直径一般为20um~150um,高度3um~150um,金属立柱上表面为平整面(平面度≤1um)。这里需要补充说明的是,上述焊盘层中可包括多个焊盘,焊盘的形成过程与金属立柱的形成过程类似,同样为层层打印,每层均有外框线和填充线,焊盘在本案中也可以理解为X、Y方向尺寸远大于Z向高度尺寸的金属立柱,以供多层线路板与外部电子元件连接,这里不作过多赘述)。金属立柱高度及横截面尺寸需要根据互连精度要求、绝缘层厚度要求及垂直互连结构的选择而定。针对第一种垂直互连结构的金属立柱,打印时高度过矮会导致后续激光打孔时金属立柱打穿,过高则会将上层绝缘介质薄膜隆起使得后续作引出线时工艺不稳定,打印引出线易断线。针对第二种垂直互连结构的金属立柱,金属立柱高度需要打印得足够高使金属立柱上表面能高出预固化后的绝缘层,该场景所用绝缘层材料需要含有一定溶剂以保证预固化后厚度会有足够收缩,若绝缘层预固化后厚度不存在收缩则金属立柱无法高出绝缘层。
微孔成型:本发明中微孔孔径在15~150um。微孔成型及填充仅针对于第一种垂直互连结构。当涂布的绝缘层厚度较高时,金属立柱以被绝缘层完全覆盖的状态存在。通过激光打孔方式破坏金属立柱上方的绝缘层形成微孔。激光打孔优选采用紫外皮秒激光器进行打孔,波长343nm或355nm,平均功率3~10W,脉宽<15ps,重复频率200KHz~1MHz。紫外皮秒加工属于冷加工,对有机、陶瓷绝缘层均有较好的微孔成型效果。由于紫外皮秒激光的烧蚀作用,绝缘层下方的金属立柱表面会有烧蚀痕迹,表面会呈凹陷状态。使用红外飞秒、绿光皮秒、紫外纳秒等激光器加工的微孔孔径较大,对绝缘层材质的适应性较差,且较易打穿金属立柱,适合在某些特定绝缘层及80um~150um微孔加工中应用。激光器出射激光通过振镜和远心镜聚焦于样品表面,通过视觉定位进行逐行扫描打孔,聚焦光斑直径10~25um。打孔路径为螺旋钻路径。若激光扫描偏差较大会造成金属立柱上方绝缘层未烧蚀完全以及立柱附近的金属线路损伤,影响电气导通。为避免激光扫描偏差问题,在激光打孔时需要使用视觉对位识别mark点,但在某些热膨胀系数很大的绝缘层场景中,由于绝缘层在本发明中层层预固化带来的涨缩风险加剧,所以当出现涨缩情况及抓mark识别效果不好时,需要采用金属立柱模板识别,即通过视觉抓取对应金属立柱的外轮廓实现单点对位,这也是金属立柱需要具有高保形效果的原因之一。
微孔填充:微孔的填充可以通过精密气动挤出的方式将纳米级金属浆料(需要说明的是:此处纳米级金属浆料可不具有剪切致稀的触变效果)或通过喷墨的方式将纳米级金属浆料(需要说明的是:此处纳米级金属浆料为适配喷墨打印的低粘度浆料材料,不具有剪切至稀的效果)填充至微孔内。前者由于出料精度足够高,适用于15~150um孔径、孔间距>20um的微孔填充场景,后者由于液滴尺寸较大,仅适用于100~150um孔径、孔间距>100um的微孔填充场景。由于微孔底部是金属立柱,填充的浆料可以和金属立柱表面充分接触润湿。若金属立柱高度过薄、激光能量输入过大,金属立柱会在微孔成型环节打穿,导致填充浆料填充至更下层的立体线路层中造成电气短路。此外,若取消金属立柱直接激光微孔成型后进行填充,除了上述所述浆料填充至其余立体线路层导致短路风险外,在打印精细线路场景时,由于线路线宽、线厚等尺寸相比于微孔很小(线宽、线厚如只有几个微米),微孔底部的线路很容易被激光全部烧蚀,导致填充时填充的浆料和金属线路不接触或接触部分极小(可以想象在一根细金属线上方用激光打孔,孔的大小比细线宽度大很多,微孔底部的线路很容易被激光全部烧蚀,导致填充时填充的浆料和金属线路不接触或接触部分极小),无法保证导通。微孔填充后的孔表面被填充浆料塞满,控制填充的出料量使孔表面的填充浆料基本和孔齐平。针对精密气动挤出方式填孔的场景,气压在5~80psi之间,针头扎入孔内深度在5~400um之间,针头提拉速度在0.01~5mm/s之间。微孔填充浆料的后处理同前文所述立体线路层、金属立柱后处理类似,需要通过预固化定型。
引出线:
引出线是将垂直互连结构的底层金属立柱电连接至上层立体线路层。针对第一种垂直互连结构,引出作业时将精密气动打印针头移至孔上方一定高度(该高度与互连精度要求有关,一般若引出线线宽需要在5um~10um,微孔孔径在40um±5um,该高度在3um~5um)待丝状出料和孔表面充分接触后移动打印针头将引出线引出至孔外部供上层立体线路层的线路进行互连;引出线的起始阶段是关键步骤,在起始阶段打印路径需要做Z向偏移以补偿绝缘层的局部隆起问题,同时为了提高垂直导通结构的可靠性,打印速度需要缓慢增加,使得在引出起始点线宽较大(和微孔差不多大,可参照图6和图8所示),而在引出末端线宽小(和立体线路层的线路差不多宽)的渐变效果。由于在第一种垂直互连结构下,绝缘层厚度和金属立柱高度之间存在工艺调节过程,对上层绝缘层的隆起影响可以有效控制。引出时的针头移动路径仅需做较小的Z向偏移即可使针头与基板面的距离在正常打印范围内(对于10um高金属立柱和20um厚烧结后的聚酰亚胺绝缘层,金属立柱上方的绝缘层表面一般比远离金属立柱的绝缘层表面高3~5um)。引出线起始段的初始打印速度一般是0.01mm/s,以此速度出发缓慢加速作一定水平移动及Z向偏移,在第一种垂直导通结构中,这段水平位移一般在10~50um。水平位移及Z向偏移结束后,即可迅速加速至正常打印线路的速度。
针对第二种垂直互连结构,由于没有微孔及填充结构,金属立柱高度高出固化后的绝缘层且金属立柱上表面平面度≤2um,可直接将打印针头移至金属立柱上表面作引出线。由于金属立柱高度及涂布液体表面张力影响,立柱周围小领域内(对于45~55um直径金属立柱一般在半径100um内)绝缘层表面存在弯曲,由近及远表面高度明显下降。打印针头在金属立柱表面引出打印时需要Z向匹配金属立柱上表面和远离金属立柱的绝缘层表面高度差,以保证打印针头可一次性将引出线从金属立柱上表面引出至金属立柱周围小领域以外的绝缘层上供上层立体线路层线路进行互连。引出线起始段的初始打印速度一般是0.01mm/s,以此速度出发缓慢加速作一定水平移动及Z向偏移,在第二种垂直导通结构中,这段水平位移一般在20~100um。水平位移及Z向偏移结束后,即可迅速加速至正常打印线路的速度。
下面参照相应说明书附图,以更详细的说明本发明所述的多层线路板制备工艺以及垂直互连结构:
参照图5-图6所示,图中示出了第一种垂直互连结构,金属立柱4尺寸较小,被覆盖于绝缘层3下方,通过在绝缘层3进行微孔7填充,形成金属立柱4的延长柱5,并通过引出线6连接该延长柱5与上层立体线路层2的线路,即可实现连接。
参照图7-图8所示,图中示出了第二种垂直互连结构,金属立柱4尺寸较大,绝缘层3经过固化后发生收缩,以使金属立柱4表面穿过绝缘层3,通过引出线6直接连接该金属立柱4与上层立体线路层2的线路,即可实现连接。
参照图9所示,图中示出了通过第一种垂直互连结构,实现相邻两层立体线路层2之间互连。本实施例中以相邻两层立体线路层2之间的互连解释步骤S3中所述“根据各立体线路层之间的连接需求以及各立体线路层上金属立柱的高度,通过在绝缘层打孔并填充纳米级金属浆料的方式以将相应金属立柱预先引出所述形成的绝缘层”:首先打印第一层立体线路层2,并根据第一层立体线路层2的连接需求在预设位置处打印金属立柱4,进一步,在第一层立体线路层2上形成第一层绝缘层3,此时由于第一层立体线路层2与后续所要形成的第二层立体线路层2具有连接需求,且第一层立体线路层2上的金属立柱4高度低于第一层绝缘层3,因此此时需要通过在第一层绝缘层3打孔并填充纳米级金属浆料(填充纳米级金属浆料即形成延长柱5)的方式以将第一层立体线路层2上的金属立柱4预先引出第一层绝缘层3,并在延长柱5上打印引出线6(需要说明的是,若第一层立体线路层2上的金属立柱4高度高于第一层绝缘层3,则无需打孔以及填充,直接在金属立柱4上打印引出线6即可),进一步,在第一层绝缘层3上形成第二层立体线路层2,而后将引出线6连接至第二层立体线路层2的线路即可实现互连。
需要说明的是,本发明中采用预先引出金属立柱4的方式,而不是在形成立体线路层2后再引出需要连接至该立体线路层2的金属立柱4,可避免打孔、填充过程中对该立体线路层2的影响,从而保证多层线路板的互连精度。
参照图10-图11所示,图中示出了通过第一种垂直互连结构,实现间隔多层的立体线路层2之间的互连。
参照图12所示,图中示出了同一垂线上存在多层立体线路层2互连的情况,参照图中所示,通过打印金属立柱4、填充延长柱5,打印引出线6实现第一层与第三层立体线路层2之间的连接后,若该连接处还需与第四层立体线路层2连接,此时可以直接通过打微孔7、填充浆料的方式在第三层立体线路层2引出线6的位置处形成另一延长柱5,无需另外预设金属立柱4,因为引出线6引出起始点线宽较大(和微孔7差不多大,可参照图6、图8所示),不会出现上述无法导通的现象。
这里需要说明的是,在多层线路板的制作过程中,可根据连接需求去选择垂直互连结构的形式,例如:若仅需实现相邻两立体线路层2之间的互连,则可直接选择第二种垂直互连结构,若需要实现间隔多层的立体线路层2之间的互连,则可选择第一种垂直互连结构。
参照图13所示,图中示出了高精密多层线路板完成连接后的整体效果。
下面给出高精密多层线路板的具体制备过程(需要说明的是:为了方便描述,下述制备过程中省略了焊盘层的制备过程):
第一环节:多层线路板打印设计:
步骤1.根据多层线路板设计信息(如线宽线距、叠层设计、阻抗设计、垂直互连设计位置),确定针头类型、介质材料、打印材料,此处以5um线宽、5um线距、3um线高共4层立体线路层及4层聚酰亚胺绝缘层(绝缘层厚18um)为例;
步骤2.导入DXF设计图纸至工艺配套CAM软件,CAM软件对每一线路图层生成打印路径代码,CAM软件对每一绝缘介质层生成涂布厚度、面积,根据多层线路板的连接需求,确定每层立体线路层的垂直互连结构预设位置;
步骤3.检查并修正打印路径,校正涂布刀头(校正方法见前文);
第二环节:上料和机台准备:
步骤1.选用具有剪切致稀特性的纳米级银金属浆料材料,粘度580000cps,金属固含量85%,触变指数9,线条高宽比0.5,可抵抗3M Scotch 600胶带的剥离;选用标准型聚酰亚胺液体料作为涂布介质材料,粘度10000cps,固含量18%;选用5um内径及10um外径玻璃针头,端面平整度≤1um;选用金属刮刀作为涂布头;
步骤2.将装有纳米级银金属浆料材料的料筒安装到精密气动点胶机上,将装有涂布介质材料的料筒安装到精密计量供料器内;
步骤3.上料区200mm*200mm*0.25mm聚酰亚胺薄膜基板自动/手动上料,启动CAM软件,开启真空吸附,样品台吸附基板,设备机械回零对位;
步骤4.用激光位移传感器(测量分辨率0.3um)扫描整个基板打印区域,对基板的上表面各点位的高度进行测量,获得基板上表面的高度数据集合,CAM软件记录基板高度数据集合;
步骤5.在预打印区,开启精密气动点胶机,在CAM软件设定输出气压及打印移动速度,通过软件控制针头下降,使得针头和预打印区域硅基板间高度为3um,预打印不同气压压力及移动速度下的导线,记录对应5±0.5um线宽的压力及速度参数,在本实施例中压力为45psi,速度为0.5mm/s;然后使用激光位移传感器测量并记录聚酰亚胺基板上打印起始点和预打印硅基板上的相对高度差;
第三环节:多层线路板制备:
步骤1.转移至打印起始点后,根据第二环节中步骤5所得的相对高度差信息,调整针头Z轴高度使得针头和聚酰亚胺基板的距离为预打印时针头和预打印区硅基板间的距离;打印前需要开启补偿,同时因激光位移传感器将基板的高度数据集合已记录在软件里,通过样品台升降自动补偿基板表面的高度起伏,在打印的过程中针头与基板间距离保持在3um;
步骤2.根据第一环节生成的打印路径及第二环节获得的打印参数打印第一层立体线路层;
步骤3.在垂直互连的位置打印金属立柱,在mark点位打印十字mark点。金属立柱通过线路层层反复填充制成,每层内填充线中心距(hatch spacing)5um,层中心距3um,多层叠加后最终的金属立柱长宽高为50um*50um*12um;使用设备集成的加热陶瓷吸盘进行金属线路及立柱进行预固化,温度150℃、时间10min,预固化后冷却;
步骤4.将样品台移动到涂布起始位置,根据第一环节生成的当前层所需涂布厚度(100um)调整刮刀与基板的间隙(调整间隙方法见前文),并通过点胶方式将聚酰亚胺液体料涂在刮刀前方5mm处,设置样品台运动速度为1mm/s,刮刀相对样品台推动聚酰亚胺料在基板上形成一层湿膜并静置60s。
步骤5.使用设备集成的加热陶瓷吸盘进行湿膜固化,使湿膜转变成干膜,先在70℃下固化10min,然后在150℃下固化10min,固化后冷却;
步骤6.样品台转移至微孔成型工位通过视觉抓取mark点校正相对位置关系,而后使用激光在金属立柱上方进行激光打微孔,破坏金属立柱上方绝缘层,所用光源为355nm紫外皮秒激光,平均功率4W,脉宽<15ps,重复频率1MHz,螺旋扫描速度0.5mm/s,跳转速度100mm/s,光斑直径20um,所获得孔径40um,孔深度20um;
步骤7.样品台转移回至打印工位,打印针头通过精密气动挤出方式在微孔中进行金属浆料的填充,所用金属浆料同为纳米级银金属浆料(粘度稀释至400000cps)打印针头扎入孔内深度15um,气压40psi,提拉速度0.05mm/s,然后进行引出线动作,引出线初始速度0.01mm/s,引出起始阶段水平位移20um,Z向偏移3um;
步骤8.通过视觉抓取mark点校正相对位置关系,根据第一环节生成的打印路径及第二环节获得的打印参数在已烧结的聚酰亚胺绝缘层表面打印下第一层线路,在垂直互连的位置打印金属立柱;
步骤9.重复步骤3~步骤8直至完成4层线路打印及4层绝缘层涂布固化;
步骤10.使用设备集成的加热陶瓷吸盘进行多层线路板整体完全固化,温度250℃时间1h;
步骤11.关闭真空吸附并下料;
步骤12.多层线路板样品检验、裁切。
实施例二:
本实施例与实施例一的区别在于在牺牲材料上制备多层线路板,具体改进为:
1.实施例一中所述第二环节下步骤3改为:上料区6英寸标准硅片基板(6英寸标准硅片基板表面附着可牺牲材料)自动/手动上料,启动CAM软件,开启真空吸附,样品台吸附基板,设备机械回零对位;
2.实施例一中所述第三环节下步骤11改为:关闭真空吸附并下料,将牺牲材料通过相应化学试剂进行脱黏附,获得独立的多层线路板;
3.其余工艺环节及其步骤与实施例一中保持一致。
实施例三:
本实施例与实施例一的区别在于采用狭缝涂布方式,具体改进为:
1.狭缝涂布方式:实施例一中第三环节下步骤4改为:打印后样品台移动到涂布起始位置,根据实施例一中第一环节下生成的当前层所需涂布厚度100um,调整狭缝涂布头与基板的间隙在100um,设定狭缝涂布头的出料量2250uL及出料速度15uL/s,设定涂布头相对基板的平均移动速度1mm/s,初始阶段稍快(1.2mm/s 行进5s),末尾阶段稍慢(0.7mm/s 行进5s),然后启动涂布过程完成当前绝缘层涂布;
2.其余工艺环节及其步骤与实施例1中保持一致。
实施例四:
本实施例与实施例一的区别在于采用第二种垂直互连结构制备,具体改进为:
1.直接成型:
实施例一中第三环节下步骤2改为:根据第一环节生成的打印路径及第二环节获得的打印参数打印第一层线路,在垂直互连的位置打印金属立柱,金属立柱通过线路层层反复填充制成,每层内填充线中心距(hatch spacing)5um,层中心距(layer distance)3um,多层叠加后最终的金属立柱长宽高为50um*50um*50um;
实施例一中第三环节下步骤6取消;
实施例一中第三环节下步骤7改为:样品台转移至打印工位,打印针头通过精密气动挤出方式直接立柱上表面进行引出线动作,引出线初始速度0.01mm/s,引出起始阶段水平位移70um,Z向偏移32um;
2.其余工艺环节及其步骤与实施例一中保持一致。
实施例五:
本实施例与实施例一的区别在于绝缘介质材料固化烧结,具体改进为:
(1)有机类热固化 聚酰亚胺:
1.实施例一中第三环节下步骤5改为:使用设备集成的红外灯进行介质预固化,功率600w,时间30s;
2.实施例一中第三环节下步骤10改为:使用设备集成的红外灯进行多层线路板整体完全固化烧结,功率3000w,时间20s;
3.实施例一中第三环节下步骤10也可改为:关闭真空吸附,基板下料,使用离线马弗炉进行多层线路板整体完全固化,温度250℃时间1h;
4.其余工艺环节及其步骤与实施例一中保持一致。
(2)有机类光固化 光敏环氧树脂:
1.实施例一中第三环节下步骤5改为:使用设备集成的紫外固化灯进行介质预固化;
2.实施例一中第三环节下步骤10改为:使用设备集成的紫外固化灯进行介质完全固化,使用设备集成的红外灯或加热陶瓷吸盘进行线路完全固化;
3.实施例一中第三环节下步骤10也可改为:关闭真空吸附,基板下料,使用离线紫外固化灯进行介质完全固化,使用离线马弗炉、红外灯进行线路完全固化;
4.其余工艺环节及其步骤与实施例一中保持一致。
(3)陶瓷类烧结 氧化铝陶瓷:
1.实施例一中第三环节下步骤5改为:使用设备集成的加热陶瓷吸盘进行介质预烧结,温度200℃ 时间5min;
2.实施例一中第三环节下步骤10改为:关闭真空吸附并下料,使用离线马弗炉进行陶瓷样品整体低温共烧(温度850℃ 时间2h);
3.其余工艺环节及其步骤与实施例一中保持一致。
实施例六:
本实施例与实施例一的区别在于金属线路及金属立柱采用激光烧结,绝缘介质采用保护性气氛完全固化,具体改进为:
(1)需要氮气环境下高温固化的聚酰亚胺:
1.实施例一中第三环节下步骤3改为:在垂直互连的位置打印金属立柱,在mark点位打印十字mark点。金属立柱通过线路层层反复填充制成,每层内填充线中心距(hatch spacing)5um,层中心距3um,多层叠加后最终的金属立柱长宽高为50um*50um*12um; 使用设备集成的光纤输出半导体激光器对金属线路及立柱进行选区烧结,激光器所发射激光波长915nm,最大功率50W,最小光斑直径200um,在金属线路区域光斑沿着线路路径以1mm/s速度平移,在立柱区域光斑先以5W功率,1mm/s速度沿着立柱外框线平移,再以25W功率2mm/s速度沿着立柱填充线路径往复平移;经过激光烧结后的金属线路及立柱已具备导电性。
2.实施例一中第三环节下步骤10改为:关闭真空吸附,基板下料,使用离线氮气烧结炉进行多层线路板绝缘介质完全固化,氧含量≤20ppm,温度350℃ 1h,升温速率5℃/min;
3.其余工艺环节及其步骤与实施例一中保持一致。
实施例七:
本实施例与实施例一的区别在于打印材料改用纳米级铜金属浆料,具体改进为:
1.实施例一中第二环节下步骤1改为:选用具有剪切致稀特性的纳米级铜金属浆料材料,粘度580000cps,金属固含量80%,触变指数9,线条高宽比0.5,可抵抗3M Scotch 600胶带的剥离;选用标准型聚酰亚胺液体料作为涂布介质材料,粘度10000cps,有效含量18%;选用5um内径及10um外径玻璃针头,端面平整度≤1um;选用金属刮刀作为涂布头;
2.实施例一中第三环节下步骤3改为:在垂直互连的位置打印金属立柱,在mark点位打印十字mark点。金属立柱通过线路层层反复填充制成,每层内填充线中心距(hatch spacing)5um,层中心距3um,多层叠加后最终的金属立柱长宽高为50um*50um*12um;使用设备集成的加热陶瓷吸盘进行金属线路及立柱进行预固化,温度100℃、时间8min,预固化后冷却;
3.实施例一中第三环节下步骤7改为:样品台转移回至打印工位,打印针头通过精密气动挤出方式在微孔中进行金属浆料的填充,所用金属浆料同为纳米级铜金属浆料(粘度稀释至400000cps)打印针头扎入孔内深度15um,气压40psi,提拉速度0.05mm/s,然后进行引出线动作,引出线初始速度0.01mm/s,引出起始阶段水平位移20um,Z向偏移3um;
4.实施例一中第三环节下步骤10改为:关闭真空吸附,基板下料,使用离线氮气烧结炉进行多层线路板整体完全固化,氧含量≤20ppm,温度300℃ 1h,升温速率5℃/min;
3.其余工艺环节及其步骤与实施例一中保持一致。
实施例八:
本实施例提供一种高精密多层线路板,采用上述的一种高精密多层线路板3D打印制备方法得到。
实施例九:
本实施例提供基于所述高精密多层线路板的应用,通过使用不同材质的基板、绝缘介质以及打印特定图案的金属导线制作不同类型的高精密多层线路板,可应用于柔性电路、穿戴设备、微型无源电子器件以及SIP封装interposer板。
以上所述的实施例仅仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案作出的各种变形和改进,均应落入本发明的保护范围内。

Claims (15)

  1. 一种高精密多层线路板3D打印制备方法,其特征在于,包括步骤:
    S1、通过挤出口挤出具有剪切致稀特性的纳米级金属浆料,以在基板的上表面上形成立体线路层;
    S2、通过挤出口挤出具有剪切致稀特性的纳米级金属浆料,以在当前立体线路层的预设位置处堆积形成金属立柱;
    S3、在当前立体线路层的上表面上形成绝缘层,并通过在绝缘层打孔并填充纳米级金属浆料的方式以将相应金属立柱预先引出所述形成的绝缘层;
    S4、判断当前绝缘层是否作为顶层绝缘层,若是则在当前绝缘层上表面上形成焊盘层并执行步骤S5,若否则将当前绝缘层作为新的基板,重复执行步骤S1-S2并执行步骤S6;
    S5、将位于当前绝缘层下的相应立体线路层上的金属立柱连接或者通过所述预先引出的方式连接至焊盘层,以完成多层线路板的制备;
    S6、将位于当前立体线路层下的相应立体线路层上的金属立柱连接或者通过所述预先引出的方式连接至当前立体线路层,并返回步骤S3。
  2. 根据权利要求1所述的一种高精密多层线路板3D打印制备方法,其特征在于,步骤S1中,在基板的上表面上形成立体线路层时,包括:
    对基板的上表面的各点位的高度进行测量,以获取基板上表面的高度数据集合,并根据基板上表面的高度数据集合在挤出口挤出所述具有剪切致稀特性的纳米级金属浆料时使其在基板的上表面的对应点位处进行Z轴方向的相对移动,以使得挤出口挤出的具有剪切致稀特性的纳米级金属浆料在基板上表面形成立体线路层。
  3. 根据权利要求1所述的一种高精密多层线路板3D打印制备方法,其特
    征在于:
    步骤S1中,所述挤出口挤出具有剪切致稀特性的纳米级金属浆料以形成立体线路层中的每条线路的起始端前均在垂直于基板的垂面上做曲线的预挤出运动,并沿该曲线的切向方向进入线路的正式挤出形成路线;
    步骤S1中,所述线路的正式挤出形成路线末端具有一个预设的飞料段,所述挤出口在该飞料段位上时关闭挤出所述具有剪切致稀特性的纳米级金属浆料的动作。
  4. 根据权利要求1所述的一种高精密多层线路板3D打印制备方法,其特征在于,步骤S2中,通过挤出口挤出具有剪切致稀特性的纳米级金属浆料,以交替形成金属立柱的每层上的外框线、填充线,以在当前立体线路层的预设位置处堆积形成金属立柱。
  5. 根据权利要求1所述的一种高精密多层线路板3D打印制备方法,其特
    征在于,步骤S3中所述绝缘层的形成方式包括:
    通过刮刀涂布刀头推动在涂布面上预先施加的绝缘介质材料或通过狭缝涂布刀头挤出绝缘介质材料至涂布面上,以在当前立体线路层的上表面上形成所述的绝缘层。
  6. 根据权利要求5所述的一种高精密多层线路板3D打印制备方法,其特征在于,步骤S3中在涂布绝缘层前,还包含如下步骤:
    a、控制Z轴电机下降涂布刀头将其左、右两端分别与接触式传感器进行触碰;
    b、分别记录所述涂布刀头左、右两端触发接触式传感器信号时的Z轴电机的不同高度,进而得到涂布刀头左右高度差;
    c、根据该左右高度差,对涂布刀头左右两端的左右高度进行校正。
  7. 根据权利要求5所述的一种高精密多层线路板3D打印制备方法,其特征在于,步骤S3中在涂布绝缘层前,还包含如下步骤:
    A、用激光位移传感器对接触式传感器的接触面进行探高,以得到接触式传感器高度;
    B、用激光位移传感器对涂布面上的涂布起始点进行探高,以得到涂布起始点高度;
    C、根据接触式传感器高度、涂布起始点高度,计算得到接触式传感器和涂布起始点的相对高度差;
    D、将经过倾斜度校正的涂布刀头中心去触碰接触式传感器,并记录触碰时涂布刀头的Z轴高度;
    E、根据接触式传感器和涂布起始点的相对高度差、涂布刀头触碰接触式传感器时的Z轴高度、预设涂布间隙,以对涂布刀头的Z轴高度进行校正。
  8. 根据权利要求1所述的一种高精密多层线路板3D打印制备方法,其特征在于,步骤S3中,包括步骤:
    S3.1、在当前立体线路层的上表面上形成绝缘层;
    S3.2、根据各立体线路层的连接需求以及各立体线路层上金属立柱的高度,通过在绝缘层打孔并填充纳米级金属浆料的方式以将相应金属立柱预先引出所述形成的绝缘层。
  9. 根据权利要求1所述的一种高精密多层线路板3D打印制备方法,其特征在于,所述具有剪切致稀特性的纳米级金属浆料包括纳米级银或纳米级铜金属颗粒、分散介质,纳米级金属颗粒的含量为75%~95%,具有剪切致稀特性的纳米级金属浆料粘度在100000cps~1000000cps之间,触变指数为4~10,该具有剪切致稀特性的纳米级金属浆料形成的线条高宽比≥0.5。
  10. 根据权利要求9所述的一种高精密多层线路板3D打印制备方法,其特征在于,分散介质包括分散溶剂、粘结剂,分散溶剂包括有机溶剂和水中的任一种或多种;
    粘结剂包括聚丙烯酸、二乙醇胺、聚丙烯酸和二乙醇胺的复合物中的任一种或多种;
    或,粘结剂包括环氧树脂、固化剂、保护剂。
  11. 根据权利要求10所述的一种高精密多层线路板3D打印制备方法,其特征在于,所述有机溶剂包括乙二醇、甘油、二乙二醇单乙醚醋酸酯、二价酸酯、异氟尔酮、松油醇或二乙二醇单丁醚中的任一种或多种,所述保护剂由三芳基膦类化合物、三烷基膦类化合物中的任一种形成或多种组合形成,所述环氧树脂包括双酚A型环氧树脂、E-44环氧树脂、联苯氧型环氧树脂中的任一种或多种,所述固化剂为多元硫醇固化剂、双氰胺固化剂、酸酐类固化剂中的任一种。
  12. 根据权利要求1所述的一种高精密多层线路板3D打印制备方法,其特征在于,步骤S2与步骤S3之间还包括步骤:
    对当前立体线路层以及在当前立体线路层的预设位置处堆积形成的金属立柱进行第一预固化处理;
    步骤S3中,在当前立体线路层的上表面上形成绝缘层后,还包括对绝缘层进行第二预固化处理;
    步骤S3中,在绝缘层打孔并填充纳米级金属浆料后,还包括对填充的纳米级金属浆料进行第三预固化处理;
    步骤S5中,将位于当前绝缘层下的相应立体线路层上的金属立柱连接或者通过所述预先引出的方式连接至焊盘层后,还包括对多层线路板进行整体烧结固化处理,以完成多层线路板的制备。
  13. 根据权利要求12所述的一种高精密多层线路板3D打印制备方法,其特征在于,绝缘层材质为有机或陶瓷介质。
  14. 一种高精密多层线路板,其特征在于,采用权利要求1-13任一项所述的一种高精密多层线路板3D打印制备方法得到。
  15. 一种柔性电路,其特征在于,采用权利要求14所述的一种高精密多层线路板。
PCT/CN2022/126587 2022-06-08 2022-10-21 一种高精密多层线路板及其 3d 打印制备方法 WO2023236412A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22902503.6A EP4311382A1 (en) 2022-06-08 2022-10-21 High-precision multilayer circuit board and 3d printing preparation method therefor
KR1020237033491A KR20230170657A (ko) 2022-06-08 2022-10-21 고정밀 다층 회로 기판 및 이의 3d 프린팅 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210640826.9A CN114745875B (zh) 2022-06-08 2022-06-08 一种高精密多层线路板及其3d打印制备方法
CN202210640826.9 2022-06-08

Publications (1)

Publication Number Publication Date
WO2023236412A1 true WO2023236412A1 (zh) 2023-12-14

Family

ID=82287380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/126587 WO2023236412A1 (zh) 2022-06-08 2022-10-21 一种高精密多层线路板及其 3d 打印制备方法

Country Status (5)

Country Link
EP (1) EP4311382A1 (zh)
KR (1) KR20230170657A (zh)
CN (3) CN114745875B (zh)
TW (1) TW202412571A (zh)
WO (1) WO2023236412A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117901409A (zh) * 2024-01-18 2024-04-19 西南交通大学 一种基于3d打印技术的智能涂层传感器制备方法及系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114745875B (zh) * 2022-06-08 2022-09-23 芯体素(杭州)科技发展有限公司 一种高精密多层线路板及其3d打印制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107365158A (zh) 2017-08-28 2017-11-21 武汉理工大学 一种用于挤出式3d打印的结构陶瓷膏体及其制备方法
CN107846790A (zh) * 2016-09-19 2018-03-27 苏州纳格光电科技有限公司 多层柔性电路板的制备方法
WO2018136036A1 (en) * 2017-01-17 2018-07-26 Hewlett-Packard Development Company, L.P. Multi-layered printed circuit board
CN109534767A (zh) 2018-11-01 2019-03-29 华侨大学 一种挤出式3d汉白玉石粉打印用浆料及其制备方法
CN110430666A (zh) * 2019-07-09 2019-11-08 广东工业大学 一种3d打印电路板的制备方法
CN111613888A (zh) * 2020-06-02 2020-09-01 华中科技大学 一种多层互联立体电路的一体化共形制造方法以及产品
CN112969303A (zh) * 2021-02-01 2021-06-15 南昌大学 一种基于3d打印的电路印刷方法及制备的高功率电路板
US11066296B1 (en) * 2018-08-21 2021-07-20 Iowa State University Research Foundation, Inc. Methods, apparatus, and systems for fabricating solution-based conductive 2D and 3D electronic circuits
CN113362984A (zh) 2021-06-18 2021-09-07 西湖未来智造(杭州)科技发展有限公司 适用于高精密直写3d打印的纳米颗粒铜浆、制备及用途
CN114745875A (zh) * 2022-06-08 2022-07-12 芯体素(杭州)科技发展有限公司 一种高精密多层线路板及其3d打印制备方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200611612A (en) * 2004-09-29 2006-04-01 Unimicron Technology Corp Process of electrically interconnect structure
KR100796524B1 (ko) * 2006-09-20 2008-01-21 삼성전기주식회사 다층 인쇄회로기판 제조방법
CN100553414C (zh) * 2007-05-21 2009-10-21 无锡江南计算技术研究所 多层式高密度互连印刷线路板的制作方法
CN101553093B (zh) * 2008-04-03 2011-09-07 欣兴电子股份有限公司 线路板的制造方法
CN103150075B (zh) * 2013-03-19 2016-06-08 宏科有限公司 带有立体导通孔的电容式控制屏及其制造方法
CN103200782B (zh) * 2013-04-18 2015-12-09 汕头超声印制板(二厂)有限公司 一种全喷墨印制电路板制造方法
CN103327741B (zh) * 2013-07-04 2016-03-02 江俊逢 一种基于3d打印的封装基板及其制造方法
CN106111981B (zh) * 2016-07-28 2018-03-16 西安交通大学 一种三维结构电子器件的3d打印制造方法
CN108076596B (zh) * 2016-11-17 2020-06-23 华邦电子股份有限公司 线路板的制造方法
KR102325406B1 (ko) * 2017-04-05 2021-11-12 주식회사 아모센스 다층 인쇄회로기판용 베이스 기재 및 다층 인쇄회로기판 제조방법
CN108495474A (zh) * 2018-04-11 2018-09-04 深圳市百柔新材料技术有限公司 3d打印线路板的方法
CN109548301B (zh) * 2018-12-25 2021-02-12 中国电子科技集团公司第三十研究所 一种基于fr-4基板的电子电路3d打印方法
CN110012617A (zh) * 2019-04-03 2019-07-12 东莞塘厦裕华电路板有限公司 一种电路板导通孔制作方法
CN110191586B (zh) * 2019-06-11 2020-12-18 北京大华博科智能科技有限公司 一种三维电路板一体化制备方法及三维电路板
CN110572939B (zh) * 2019-08-19 2021-06-01 深南电路股份有限公司 一种3d打印电路板的方法以及3d打印电路板
CN112397252B (zh) * 2020-11-26 2021-11-26 青岛理工大学 具有嵌入式金属材料的柔性透明导电薄膜制造方法及系统
CN112654180A (zh) * 2020-12-11 2021-04-13 杨同建 一种多层电路板制作方法与制作机器
CN112802820B (zh) * 2021-01-15 2022-03-11 上海航天电子通讯设备研究所 基于硅铝合金垂直互连封装基板和lcp重布线的三维封装结构及制备方法
CN114501863B (zh) * 2022-03-03 2023-12-15 芯体素(杭州)科技发展有限公司 一种刮涂对位校准的装置及方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107846790A (zh) * 2016-09-19 2018-03-27 苏州纳格光电科技有限公司 多层柔性电路板的制备方法
WO2018136036A1 (en) * 2017-01-17 2018-07-26 Hewlett-Packard Development Company, L.P. Multi-layered printed circuit board
CN107365158A (zh) 2017-08-28 2017-11-21 武汉理工大学 一种用于挤出式3d打印的结构陶瓷膏体及其制备方法
US11066296B1 (en) * 2018-08-21 2021-07-20 Iowa State University Research Foundation, Inc. Methods, apparatus, and systems for fabricating solution-based conductive 2D and 3D electronic circuits
CN109534767A (zh) 2018-11-01 2019-03-29 华侨大学 一种挤出式3d汉白玉石粉打印用浆料及其制备方法
CN110430666A (zh) * 2019-07-09 2019-11-08 广东工业大学 一种3d打印电路板的制备方法
CN111613888A (zh) * 2020-06-02 2020-09-01 华中科技大学 一种多层互联立体电路的一体化共形制造方法以及产品
CN112969303A (zh) * 2021-02-01 2021-06-15 南昌大学 一种基于3d打印的电路印刷方法及制备的高功率电路板
CN113362984A (zh) 2021-06-18 2021-09-07 西湖未来智造(杭州)科技发展有限公司 适用于高精密直写3d打印的纳米颗粒铜浆、制备及用途
CN114745875A (zh) * 2022-06-08 2022-07-12 芯体素(杭州)科技发展有限公司 一种高精密多层线路板及其3d打印制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117901409A (zh) * 2024-01-18 2024-04-19 西南交通大学 一种基于3d打印技术的智能涂层传感器制备方法及系统

Also Published As

Publication number Publication date
CN114980579A (zh) 2022-08-30
CN114980579B (zh) 2024-02-06
CN114745875A (zh) 2022-07-12
KR20230170657A (ko) 2023-12-19
CN115052428B (zh) 2023-10-31
CN115052428A (zh) 2022-09-13
EP4311382A1 (en) 2024-01-24
TW202412571A (zh) 2024-03-16
CN114745875B (zh) 2022-09-23

Similar Documents

Publication Publication Date Title
WO2023236412A1 (zh) 一种高精密多层线路板及其 3d 打印制备方法
US8315060B2 (en) Electronic component module and method of manufacturing the electronic component module
JP4555323B2 (ja) 多層印刷回路基板の製造方法、多層印刷回路基板及び真空印刷装置
JP5233637B2 (ja) 多層セラミック基板、及び電子部品
KR20080041572A (ko) 전자 기판의 제조 방법
CN111065211A (zh) 一种微带滤波器3d打印制造方法
JP2010171275A (ja) 多層セラミック基板およびこれを用いた電子部品並びに多層セラミック基板の製造方法
JP2024526415A (ja) 高精度多層回路基板及びその3d印刷製造方法
JP2009123765A (ja) 多層基板の製造方法
JP5350085B2 (ja) ビア充填装置及びビア充填方法
Renn et al. Aerosol Jet® Printing of Conductive Epoxy for 3D Packaging
JP2011146540A (ja) 導体パターンの形成方法、配線基板および液滴吐出装置
JP2011146485A (ja) 導体パターンの形成方法、配線基板および液滴吐出装置
EP4117397A1 (en) Wiring formation method
WO2021176499A1 (ja) 配線形成方法
JP2008258376A (ja) 回路素子実装モジュールの製造方法、回路素子実装モジュールの製造装置および回路素子実装モジュール
JP2009170683A (ja) 多層基板の製造方法
JP2009129986A (ja) セラミック多層基板の製造方法
JP5409334B2 (ja) 配線基板の製造方法
JP2011155028A (ja) 配線基板の製造方法および配線基板
JP2011129788A (ja) 導体パターン前駆体、導体パターン、導体パターン前駆体付基板、配線基板および配線基板の製造方法
JP2006032664A (ja) ビアホールの製造方法、部品内蔵モジュールの製造方法、及びレーザ加工装置
JP2011171574A (ja) 導体パターンの形成方法および液滴吐出装置
JP2009224587A (ja) セラミックス回路基板の製造方法
JP2012151302A (ja) 配線基板の製造方法および配線基板

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022902503

Country of ref document: EP

Effective date: 20230616

ENP Entry into the national phase

Ref document number: 2023562171

Country of ref document: JP

Kind code of ref document: A