WO2023236300A1 - 星轮实时加工检测系统 - Google Patents

星轮实时加工检测系统 Download PDF

Info

Publication number
WO2023236300A1
WO2023236300A1 PCT/CN2022/103883 CN2022103883W WO2023236300A1 WO 2023236300 A1 WO2023236300 A1 WO 2023236300A1 CN 2022103883 W CN2022103883 W CN 2022103883W WO 2023236300 A1 WO2023236300 A1 WO 2023236300A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
star wheel
transfer
processing
component
Prior art date
Application number
PCT/CN2022/103883
Other languages
English (en)
French (fr)
Inventor
高龙
黄文金
焦云志
马海斌
苏杰
李强
Original Assignee
玉环普天单向器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 玉环普天单向器有限公司 filed Critical 玉环普天单向器有限公司
Publication of WO2023236300A1 publication Critical patent/WO2023236300A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/02Measures preceding sorting, e.g. arranging articles in a stream orientating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/36Sorting apparatus characterised by the means used for distribution
    • B07C5/38Collecting or arranging articles in groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q3/00Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
    • B23Q3/02Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine for mounting on a work-table, tool-slide, or analogous part
    • B23Q3/06Work-clamping means
    • B23Q3/062Work-clamping means adapted for holding workpieces having a special form or being made from a special material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q41/00Combinations or associations of metal-working machines not directed to a particular result according to classes B21, B23, or B24
    • B23Q41/02Features relating to transfer of work between machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q7/00Arrangements for handling work specially combined with or arranged in, or specially adapted for use in connection with, machine tools, e.g. for conveying, loading, positioning, discharging, sorting
    • B23Q7/04Arrangements for handling work specially combined with or arranged in, or specially adapted for use in connection with, machine tools, e.g. for conveying, loading, positioning, discharging, sorting by means of grippers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q7/00Arrangements for handling work specially combined with or arranged in, or specially adapted for use in connection with, machine tools, e.g. for conveying, loading, positioning, discharging, sorting
    • B23Q7/12Sorting arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the invention belongs to the field of mechanical parts processing, and specifically relates to a star wheel real-time processing and detection system.
  • the star wheel is an important component of the one-way structure.
  • the star wheel includes a wheel body 100 and a mounting part 101.
  • the mounting part 101 and the wheel body 100 are coaxially arranged and have an outer diameter larger than the wheel body 100.
  • the mounting part 101 The inner wall has a plurality of positioning grooves 102 evenly distributed along the axial direction.
  • the processing requirements of the star wheel include turning the end face of the wheel body 100, grooving the outer wall of the wheel body 100, chamfering the connection corner between the wheel body 100 and the mounting part 101, turning the end face of the mounting part 101, boring, and cutting the outer wall of the mounting part 101. Groove, etc., the star wheel completes the above processing requirements according to the corresponding set processing steps. After the star wheel is processed, the depth from the bottom wall of the positioning groove 102 to the opening of the end of the mounting portion 101 facing away from the wheel body 100 needs to be detected.
  • the present invention provides a real-time star wheel processing and detection system to solve the problem that it is difficult to directly transport all the star wheels transported through multiple blanking transmission lines of multiple processing equipment to the detection equipment. Problem with testing.
  • the star wheel real-time processing and detection system includes a processing mechanism, a detection mechanism and a transmission mechanism.
  • the processing mechanism includes multiple process toolings set up in sequence according to the star wheel processing steps. Each process tooling includes at least two processing equipment set side by side; detection mechanism settings At the end of the tooling of the last process of the processing mechanism, it is used to detect the depth of the positioning groove of the finished star wheel;
  • the transmission mechanism includes a processing transmission component for the processing mechanism, a detection transmission component for the detection mechanism, and a detection transmission component for the detection mechanism.
  • the finished star wheel at the processing mechanism is transferred to the transfer transmission assembly of the testing mechanism.
  • the processing transmission assembly includes an initial loading line corresponding to the first process tooling, an end unloading line corresponding to the last process tooling, and a transfer line.
  • the transfer lines are all It includes a connected unloading part and a loading part.
  • the unloading part and the loading part respectively correspond to two adjacent process tools;
  • the transfer transmission component includes a transfer conveyor belt, and the feed end of the transfer conveyor belt is connected to the end of the end unloading line. , the discharge end of the transfer conveyor belt is connected to the first end of the detection conveyor assembly.
  • the present invention has the following beneficial effects:
  • the loading and unloading of multiple processing equipment with multi-process tooling is completed through the processing and transmission assembly.
  • the star wheels to be processed are transferred to the first process tooling through the initial loading line.
  • Multiple machines at the first process tooling are The processing equipment is set up side by side. As long as the star wheel on the initial loading line can cover multiple processing equipment, multiple processing equipment can grab the star wheel from the initial loading line for processing.
  • the processed star wheel is transferred to the next processing equipment through the transfer line for processing.
  • the transfer between multiple process tooling is completed through the transfer line.
  • the star wheel processed by the last process tooling is It can be transferred to the transfer conveyor through the end unloading line, and then transferred to the inspection mechanism for inspection.
  • both the initial feeding line and the feeding part include a feeding conveyor belt and several sets of intercepting components installed on the feeding conveyor belt.
  • the intercepting components correspond to the processing equipment one-to-one.
  • the intercepting components include stops fixedly connected to the end of the feeding conveyor belt. plate, a cut-off plate movably connected to the loading conveyor belt, and a counting detection piece used to count the star wheels to be processed by each processing equipment.
  • the cut-off plate and counting detection piece of each group of cut-off components are arranged along the conveying direction of the loading conveyor belt. .
  • the transmission of the star wheel on the feeding conveyor belt is controlled through the interception of the interceptor plate, and the star wheels to be processed corresponding to the accumulation of each processing equipment are detected by counting detection parts.
  • the star wheels to be processed accumulate to a certain number, , the star wheel can be blocked from continuing to transmit to the outlet through the interceptor plate.
  • multiple processing equipment can share a star wheel feeding transmission route, and a certain number of star wheels to be processed can be accumulated at each processing equipment to complete continuous processing.
  • the interception component also includes a interception controller and a interception driving member for controlling the movement of the interception plate.
  • the interception driving member and the counting detection member are both connected with signals of the interception controller.
  • the signal receiving end of the interception controller is used to receive the counting detection member. Detection signal, the signal output end of the interceptor controller is used to control the interceptor driving member to drive the interceptor plate to move.
  • the number of corresponding stacked star wheels at each processing equipment is detected by counting detection parts. When the number reaches a certain level, the cutoff plate is controlled to prevent the star wheels from continuing to be transmitted there. When the number of star wheels there is insufficient, When, the interceptor plate is controlled to open to facilitate the star wheel transmission and filling, and realize the automation of star wheel transmission and filling.
  • the processing equipment includes a positioning fixture for clamping the star wheel and a processing component for processing the star wheel.
  • the positioning fixture includes a positioning shaft for placing the star wheel.
  • the positioning fixture also includes a slide plate that is slidably arranged and is slidably connected to the slide plate.
  • the sliding directions of the sliding plate and the resisting piece are along the axial direction of the positioning shaft.
  • the resisting piece is used to be in contact with the end face of the star wheel.
  • the sliding plate drives the pressing member to slide the set distance (set the sliding plate each time The sliding distance is consistent), when the sliding plate stops sliding, the pressing member and the end face of the star wheel just offset each other, and the processing assembly can be started to start processing.
  • the star wheel is not clamped in place, that is, it is stuck somewhere on the positioning shaft due to the influence of debris, and when the slide plate stops sliding, the pressing member and the end face of the star wheel will come into contact and be squeezed to slide on the slide plate.
  • the sliding of the pressing member is detected through the positioning detection piece.
  • the sliding of the pressing member it can be judged that the star wheel is not clamped in place and needs to be stopped for inspection.
  • a mounting block is fixed on the sliding plate, and the resisting member includes a resisting rod slidably connected to the mounting block.
  • An elastic member is fixed between the resisting rod and the mounting block.
  • the pressure rod can always remain in a fixed position on the installation block when no external force is applied, so that the pressure rod can be accurately reset after each slide movement, making subsequent detection possible. More precise.
  • the detection mechanism includes a correction component and a detection component for detecting the depth of the positioning groove of the star wheel.
  • the correction component includes a correction detection component for detecting the position of the positioning groove of the star wheel and a component for driving the star wheel to rotate for correction. Rotating parts.
  • the position of the star wheel positioning groove is detected by the correction detection piece. If the position of the positioning groove cannot be detected or the position of the positioning groove is detected to be deviated, the rotating part is used to drive the star wheel to rotate for correction. After the star wheel correction is completed, Test again.
  • a correction component is added to correct the star wheel and adjust the position of the star wheel positioning slot so that when the star wheel is placed at the detection component, the positioning slot can be aligned with the detection component to avoid positioning.
  • the problem of detection error caused by the inability of the groove to align with the detection component.
  • the detection and transmission component includes a feed part, a feed transfer part, an outfeed transfer part and an outfeed part.
  • the feed part is used to transfer the star wheel to the correction component, and the feed transfer part is used to transfer the star wheel from the correction component.
  • the discharge transfer part is used to transfer the star wheel that has completed the detection at the detection component; the discharge part includes a qualified discharge line and an abnormal discharge line, and the discharge transfer part is used to transfer the qualified materials at the detection component
  • the star wheel is transferred to the qualified discharging line, and the star wheel that fails the detection at the detection component is transferred to the abnormal discharging line.
  • the rotating member includes a rotating rod and a correction driving member for driving the movement of the rotating rod.
  • the correcting driving member includes a mounting plate and a sliding plate slidably connected to the mounting plate.
  • the sliding direction of the sliding plate is parallel to the axis of the rotating rod.
  • the sliding plate is rotatably connected to the rotating rod.
  • the sliding plate drives the rotating rod to slide vertically. If the positioning groove is located directly below the rotating rod, the rotating rod can be inserted into the positioning groove. If the positioning groove is not located directly below the rotating rod, the rotating rod slides downward to and When the end faces of the installation parts of the star wheel are in contact with each other, they are blocked. At this time, the rotating disk is rotated so that the rotating rod rotates to the top of the positioning groove. The rotating rod slides down and is inserted into the positioning groove and contacts the inner wall of the positioning groove to drive the star wheel to rotate. Make the star wheel rotate to the appropriate position.
  • the correction component also includes a correction controller, the correction controller is connected to the correction detection part and the rotating part with signals, the signal receiving end of the correction controller is used to receive the detection signal of the correction detection part, and the signal output end of the correction controller is used to Control the opening and closing of rotating parts.
  • the correction controller controls the rotating part to drive the star wheel to rotate and correct by correcting the signal of the detection part, thereby improving the automation of the correction and detection.
  • the detection component includes a depth detection part and a detection controller.
  • the depth detection part and the discharging transfer part are all connected with the detection controller signal.
  • the signal receiving end of the detection controller is used to receive the detection signal of the depth detection part.
  • the detection controller The signal output terminal is used to control the movement of the discharging transfer part.
  • the detection controller receives the detection signal of the depth detection part, and then determines the depth detection result, and then determines whether the discharge transfer part will transfer the detected star wheel to the qualified discharge line or the abnormal discharge line, thereby improving the automation of the detection process. degree.
  • Figure 1 is a schematic diagram of the overall structure of the star wheel in the background technology of the present invention.
  • Figure 2 is a schematic diagram of the overall structure of an embodiment of the present invention.
  • Figure 3 is a schematic structural diagram of the processing mechanism and the processing transmission assembly in the embodiment of the present invention.
  • Figure 4 is a schematic structural diagram of the initial feeding line in Figure 3.
  • FIG. 5 is a schematic structural diagram of the processing equipment in Figure 3.
  • Figure 6 is a schematic structural diagram of the detection mechanism and detection transmission assembly in the embodiment of the present invention.
  • Figure 7 is an enlarged view of part A in Figure 6.
  • Figure 8 is a schematic structural diagram of the detection component in Figure 6.
  • the star wheel real-time processing and detection system includes a processing mechanism, a detection mechanism 21 and a transmission mechanism.
  • the processing mechanism includes multiple process tooling 6 arranged in sequence according to the processing steps of the star wheel 23.
  • Each process tooling 6 It includes at least two processing equipment 7 arranged side by side; the detection mechanism 21 is arranged at the end of the last process tool 6 of the processing mechanism, and is used to detect the depth of the positioning groove 102 of the finished star wheel 23.
  • the transmission mechanism includes a processing transmission assembly for the processing mechanism, a detection transmission assembly for the detection mechanism 21, and a transfer transmission assembly for transmitting the processed star wheel 23 at the processing mechanism to the detection mechanism 21.
  • the processing transmission assembly includes a corresponding The initial loading line 8 of a process tool 6, the end unloading line 9 corresponding to the last process tool 6, the transfer line 12 and multiple processing transfer parts.
  • the transfer line 12 includes a connected unloading part 10 and a loading part. Part 11, the unloading part 10 and the loading part 11 respectively correspond to two adjacent process tools 6.
  • the number of transfer lines 12 is one less than the number of process tooling 6 . That is, in this embodiment, there are two transfer lines 12 .
  • the first transfer line 12 is used as an example to illustrate the function of the transfer line 12 .
  • the first transfer line 12 corresponds to the first process tool 6 and the second process tool 6.
  • the blanking part 10 of the first transfer line 12 is used to transfer the star wheel 23 processed by the first process tool 6.
  • the first transfer line 12 The loading part 11 is used to send the star wheel 23 transmitted from the unloading part 10 to the second process tool 6 to be processed.
  • the second transfer line 12 corresponds to the second process tooling 6 and the third process tooling 6 .
  • the initial loading line 8, the terminal unloading line 9 and the multiple transfer lines 12 are distributed as follows: the whole is arranged in two lines, and the transfer lines 12 with overlapping parts are staggered.
  • the overlapping part of the two transfer lines 12 is at the second process tool 6, then one of the transfer lines 12 is located on the inside close to the process tool 6, and the other transfer line 12 is located on the outside.
  • the multiple transmission lines are distributed as two lines, which not only meets the transmission needs, but also reduces the floor space.
  • Both the initial loading line 8 and the loading part 11 include a loading conveyor belt 20 and a number of intercepting components 18 installed on the loading conveyor belt 20.
  • the intercepting components 18 correspond to the processing equipment 7 one-to-one.
  • Each process in this embodiment is equipped with Taking three processing equipments 7 as an example, the initial loading line 8 and the loading part 11 are each provided with three sets of intercepting assemblies 18 to correspond to the three processing equipments 7 respectively.
  • the blocking assembly 18 includes a stop plate 13 fixedly connected to the end of the feeding conveyor belt 20 , a blocking plate 17 movably connected to the feeding conveyor belt 20 , a blocking driving member for driving the movement of the blocking plate 17 and a For counting and detecting parts for counting the star wheels 23 to be processed in each processing equipment 7, the blocking plate 17 and the counting detection parts are arranged along the conveying direction of the feeding conveyor belt 20.
  • the blocking plate 17 is vertically slidably connected to the feeding conveyor belt 20.
  • the cut-off driving member includes a cylinder fixed on the loading conveyor belt 20 for driving the sliding plate 17 Transmission on Star Wheel 23.
  • the conventional counting photoelectric switch 16 in the prior art is selected as the counting detection component.
  • the counting photoelectric switch 16 includes a counting photoelectric signal transmitting end 14 and a counting photoelectric signal receiving end 15 respectively located on both sides of the feeding conveyor belt 20.
  • the light source emission height of 16 is lower than the height of the upper end of the star wheel 23.
  • the star wheel 23 is located at the counting photoelectric switch 16, it hinders the counting photoelectric signal receiving end 15 from receiving the photoelectric signal.
  • the counting The photoelectric signal receiving end 15 can receive the photoelectric signal.
  • the shut-off component 18 also includes a shut-off controller, and the shut-off controller is a conventional controller controlled by a program such as PLC in the prior art.
  • the interception driving part and the counting detection part are both connected with the signal of the interception controller.
  • the signal receiving end of the interception controller is used to receive the detection signal of the counting detection part.
  • the signal output end of the interception controller is used to control the interception driving part to drive the interception plate 17 to move.
  • the signal receiving end of the cutoff controller receives the detection signal from the photoelectric signal receiving end, and the signal output end of the cutoff controller controls the cylinder to drive the cutoff plate 17 to slide vertically.
  • the processing transfer part is used to transfer the star wheel 23 from the processing transfer assembly to the processing equipment 7 or from the processing equipment 7 to the processing transfer assembly.
  • the number of the processing transfer parts is consistent with the number of the processing equipment 7.
  • the processing transfer parts and the processing equipment 7 corresponds to one-to-one, and conventional manipulators in the prior art are used to process the transfer parts.
  • the terminal unloading line 9 and the unloading part 10 both use conventional conveyor belts in the prior art.
  • the transfer line 12 can be designed as an integral conveyor belt, and the conveyor belt is divided into a unloading part 10 and a loading part 11 The feeding conveyor belt 20.
  • a wheel body 100 or a mounting portion 101 for catching the star wheel 23 can be provided on the surfaces of the initial loading line 8 , the transfer line 12 , and the end unloading line 9
  • the limit groove 19 is set along the transmission direction of the processing transmission assembly.
  • the wheel body 100 or the mounting part 101 of the star wheel 23 is inserted into the limit groove 19, so that the star wheel 23 can only move along the limit groove 19. direction for transportation.
  • the transfer conveyor assembly includes a transfer conveyor belt 22.
  • the feed end of the transfer conveyor belt 22 is connected to the end of the end unloading line 9.
  • the discharge end of the transfer conveyor belt 22 is connected to the first end of the detection transfer assembly.
  • the end unloading line is connected.
  • the star wheel 23 processed on the line 9 is transferred to the detection and transmission assembly, and then sent to the detection mechanism 21 for detection.
  • the star wheel 23 to be processed is transmitted through the initial feeding line 8.
  • the transmission process of the star wheel 23 on the initial feeding line 8 is: the three intercepting plates 17 are initially open, that is, the intercepting plates 17 and Leave a gap between the feeding conveyor belts 20 for the star wheel 23 to pass through.
  • Multiple star wheels 23 are dispersedly placed on the initial feeding line 8 for transmission.
  • the star wheel 23 reaches the first processing equipment 7, it is The manipulator corresponding to the first processing equipment 7 grabs and sends it into the first processing equipment 7 for processing.
  • the star wheel 23 continues to transmit to the second and third processing equipment 7, they are all picked up and sent by the manipulator. Enter the corresponding processing equipment 7 for processing.
  • the star wheel 23 is transmitted to the stop plate 13 and is blocked from continuing to transmit.
  • the star wheel 23 is at the corresponding position of the initial loading line 8 corresponding to the third processing equipment 7 Segments accumulate.
  • the cut-off controller controls the movement of the cut-off plate 17 at the end of the second processing equipment 7, and the cut-off plate 17 blocks the star.
  • the wheel 23 continues to be transferred to the third processing equipment 7 for accumulation, and so on.
  • the movement of the interceptor plate 17 at the end of the first processing equipment 7 blocks the star wheel. 23 continues to transmit.
  • the intercepting plate 17 at the head end of the first processing equipment 7 moves, preventing the star wheels 23 to be processed from continuing to transmit.
  • the robot takes out the star wheel 23 from the processing equipment 7 and transfers it to the unloading part 10 of the corresponding transfer line 12, and transfers it to the next process tooling 6 through the unloading part 10.
  • the star wheel 23 conveys the unloaded material through the end unloading line 9 , and transmitted to the detection transmission component through the transfer transmission line.
  • the manipulator grabs the star wheels 23 accumulated at the processing equipment 7 to continue processing, and the number of the accumulated star wheels 23 decreases.
  • the cutoff controller controls the corresponding cutoff plate 17 to open, so that the star wheel 23 fills the position.
  • the intercepting plate 17 at the end of the second processing equipment 7 is opened, and the star wheel 23 accumulated at the top of the second processing equipment 7 transports the supplement forward. position, when the star wheel 23 blocks the photoelectric signal at the third processing equipment 7 again, the blocking plate 17 is closed. Since the star wheel 23 accumulated at the second processing equipment 7 is replenished to the third processing equipment 7 , correspondingly, the star wheel 23 also needs to be replenished, and the replenishment process is consistent with the aforementioned process.
  • the processing equipment 7 includes a machine body.
  • the machine body is provided with a positioning fixture for clamping the star wheel 23 and a processing component for processing the star wheel 23 .
  • Each process The processing equipment 7 of the tooling 6 selects different processing components (such as processing components dedicated to grooving or boring) according to the corresponding processing steps of the star wheel 23.
  • the specific processing principles of the processing components will not be described in detail.
  • the positioning fixture includes a positioning shaft 1 for placing the star wheel 23. When clamping, the mounting part 101 or the wheel body 100 of the star wheel 23 can be sleeved on the positioning shaft 1. According to the processing requirements, the mounting part 101 can be sleeved.
  • the wheel body 100 onto the positioning shaft 1, then according to the clamping requirements, set the outer diameter of the positioning shaft 1 so that the outer diameter of the positioning shaft 1 is equal to the inner diameter of the mounting part 101 of the star wheel 23 or the wheel
  • the inner diameter of the body is 100.
  • other structures can be set to assist the positioning axis 1 for positioning and clamping.
  • the positioning fixture also includes a sliding plate 5 slidably connected to the machine body, a resisting piece slidably connected to the sliding plate 5, and a positioning detection piece used to detect the sliding of the resisting piece.
  • the sliding directions of the sliding plate 5 and the resisting piece are along the positioning axis 1 In the axial direction, a cylinder for driving the slide plate 5 to slide is installed on the body.
  • the resisting member is used to be in contact with the end surface of the star wheel 23.
  • the resisting member includes a resisting rod 3 and a resisting block 2 fixed on the end of the resisting rod 3 facing the positioning shaft 1.
  • the resisting block 2 The outer diameter is larger than the outer diameter of the resisting rod 3, and the end surfaces of the resisting block 2 and the star wheel 23 are in contact with each other.
  • a mounting block 4 is fixed on the sliding plate 5, and the resisting rod 3 is slidingly connected to the mounting block 4.
  • An elastic member is fixed between the resisting rod 3 and the mounting block 4. Specifically, a spring is selected as the elastic member, and the contraction direction of the spring and the resisting block 4 are fixed.
  • the sliding direction of the pressure rod 3 is parallel, that is, when the pressure rod 3 slides on the installation block 4, the pressure rod 3 drives the spring to extend or contract.
  • the positioning detection component includes a displacement sensor installed on the installation block 4 and used to detect the displacement of the pressure block 2.
  • the displacement sensor is a displacement sensor with a displacement detection function in the existing technology. The displacement sensor is used to detect the pressure block 2 and the installation block. 4 spacing.
  • the sliding plate 5 drives the pressing member to slide a set distance.
  • the sliding plate 5 stops sliding the pressing block 2 and the star wheel 23 end faces are against each other, and the pressing block 2 is squeezed by the end face of the star wheel 23 and slides on the installation block 4, it means that the star wheel 23 is not clamped in place, and the machine needs to be stopped for inspection.
  • the pressure rod 3 is reset by the restoring force of the elastic member.
  • the processing equipment 7 also includes a positioning controller and an alarm signal connected to the positioning controller.
  • the alarm can be an alarm with an audible and photoelectric alarm signal in the prior art, or an existing alarm can be used.
  • a Bluetooth signal transmitter that can be connected to the staff's mobile phone or computer via Bluetooth can serve as a reminder to the staff.
  • the positioning controller uses a conventional controller controlled by a program such as a PLC in the existing technology.
  • the positioning controller is also connected to the signal of the positioning detection part and the processing component.
  • the signal receiving end of the positioning controller is used to receive the detection signal of the positioning detection part. Specifically, the signal receiving end of the positioning controller is used to receive the displacement signal of the displacement sensor.
  • the signal output end of the positioning controller controls the alarm to start, reminding the staff that the star wheel 23 is not clamped in place. If the positioning controller does not receive the detection signal of the positioning detection part, then After the sliding plate 5 is reset, the signal output end of the positioning controller controls the processing assembly to process the star wheel 23 .
  • the detection mechanism 21 includes a frame.
  • the frame is provided with a correction component for detecting the depth of the positioning groove 102 of the star wheel 23 .
  • the correction component It includes a correction detection part 29 for detecting the position of the positioning groove 102 of the star wheel 23, a rotating part for driving the star wheel 23 to rotate for correction, and a correction controller that is signal-connected to both the correction detection part 29 and the rotating part.
  • the correction control The signal receiving end of the controller is used to receive the detection signal of the correction detection member 29, and the signal output end of the correction controller is used to control the opening and closing of the rotating member.
  • the rotating part includes a rotating rod 31 and a correction driving part for driving the movement of the rotating rod 31
  • the correction driving part includes a mounting plate 32 and a sliding plate slidably connected to the mounting plate 32 33.
  • the mounting plate 32 is fixed on the frame or movably connected to the frame.
  • the installation The plate 32 is fixed on the frame, the sliding plate 33 is located directly above the star wheel 23 to be corrected, and the sliding direction of the sliding plate 33 is along the vertical direction.
  • the rotating rod 31 is used to be inserted into the positioning groove 102 of the star wheel 23.
  • the rotating rod 31 is rotationally connected to the sliding plate 33.
  • the sliding plate 33 is rotationally connected to a rotating disk 38, and the rotating rod 31 is eccentrically fixed on the rotating disk 38.
  • a motor for driving the rotating disk 38 to rotate is installed on the sliding plate 33 .
  • the sliding direction of the sliding plate 33 is parallel to the axis of the rotating rod 31 , and a cylinder for driving the sliding plate 33 to slide is installed on the mounting plate 32 .
  • the correction detection part 29 includes a correction photoelectric switch.
  • the rotating rod 31 is provided with a strip hole 34 along its axial direction.
  • the light source emission direction of the correction photoelectric switch is perpendicular to the length direction of the strip hole 34.
  • a baffle 30 is fixed on the frame.
  • the baffle 30 is located directly below the sliding plate 33.
  • the baffle 30 is provided with an arc-shaped groove for the mounting part 101 of the star wheel 23 to snap into.
  • the arc-shaped groove positions the star wheel 23 so that the star wheel 23 is located directly below the rotating disk 38 during calibration.
  • the star wheel 23 is transmitted to the baffle 30 through the detection and transmission assembly, and is limited by the baffle 30 and stops there. At this time, it can be detected by the correction detection part 29.
  • the specific correction and detection process is: slide down.
  • the sliding plate 33 drives the rotating rod 31 to slide down. If the positioning groove 102 is located directly below the rotating rod 31, the rotating rod 31 is inserted into the positioning groove 102 during the sliding process. At this time, the photoelectric signal of the correction detection piece 29 can pass through The strip hole 34 on the rotating rod 31 means that the correction controller can receive the photoelectric signal of the calibration detection part 29. At this time, the correction controller controls the rotating rod 31 to reset, and the star wheel 23 is transmitted to the detection assembly for detection through the transmission assembly. .
  • the rotating rod 31 will be blocked when it reaches the end face of the mounting portion 101 of the star wheel 23 when it slides down.
  • the rod body of the rotating rod 31 blocks the photoelectric signal of the correction detector 29. , that is, the calibration controller cannot receive the photoelectric signal of the calibration detection part 29.
  • the rotating disk 38 is controlled to drive the rotating rod 31 to rotate.
  • the rotating rod 31 rotates to above the positioning groove 102
  • the sliding plate 33 continues to drive the rotating rod 31 to slide down.
  • the rotating rod 31 is inserted into the positioning groove 102, and the star wheel 23 is driven to rotate through the limit of the rotating rod 31 and the inner wall of the positioning groove 102.
  • the correction controller receives the photoelectric signal from the correction detection part 29, and the rotating rod 31 is reset, completing the correction of the star wheel 23.
  • the strip hole 34 is arranged on the upper part of the rotating rod 31.
  • the calibration and detection process is: if the positioning groove 102 is located on the rotating rod 31, the correction detection process is as follows: Directly below the rod 31, the rotating rod 31 is inserted into the positioning groove 102 during the downward process. At this time, the strip hole 34 is inserted into the positioning groove 102.
  • the rod body of the rotating rod 31 blocks the photoelectric signal of the calibration detection part 29, and the calibration controller If the photoelectric signal of the calibration detection part 29 cannot be received, the rotating rod 31 is reset, that is, during this process, the sliding plate 33 makes a vertical reciprocating linear motion.
  • the rotating rod 31 will be blocked when it slides down and reaches the end surface of the mounting portion 101 of the star wheel 23.
  • the strip hole 34 is aligned with the calibration detection piece 29, and the calibration detection piece
  • the photoelectric signal of 29 passes through the strip hole 34.
  • the correction controller receives the photoelectric signal and controls the rotation of the rotating disk 38.
  • the rotating disk 38 drives the rotating rod 31 to rotate, so that the rod body of the rotating rod 31 blocks the photoelectric signal of the correction detection part 29. , the rotating rod 31 is reset, and the correction is completed.
  • both of the above two calibration and detection processes can be selected. It is only necessary to design the control logic of the calibration controller according to the corresponding detection process.
  • the calibration controller uses a conventional controller controlled by programs such as PLC in the existing technology.
  • the correction detection component 29 adopts a conventional photoelectric switch in the prior art (including a photoelectric signal transmitting end and a photoelectric signal receiving end respectively located on both sides of the rotating rod 31, and the correction controller is used to receive the signal reception status of the photoelectric signal receiving end).
  • the detection and transmission assembly includes an infeed part 24, an infeed transfer part 25, an outfeed transfer part 26 and an outfeed part.
  • the infeed part 24 is used to transfer the star wheel 23 to the calibration assembly.
  • the infeed transfer part 25 is used to transfer the star wheel 23 from the calibration component to the detection component, and the outfeed transfer part 26 is used to transfer the star wheel 23 that has completed detection at the detection component.
  • the discharging part includes a qualified discharging line 27 and an abnormal discharging line 28.
  • the discharging transfer part 26 is used to transfer the star wheels 23 that have passed the detection at the detection component to the qualified discharging line 27, and transfer the unqualified ones from the detection component.
  • the star wheel 23 is transferred to the abnormal discharge line 28.
  • the qualified discharging line 27 and the abnormal discharging line 28 are set in parallel, and the discharging transfer part 26 is set between the qualified discharging line 27 and the abnormal discharging line 28.
  • the discharging transfer part 26 includes a rotating turntable and an installation. Transfer pieces on the turntable.
  • the star wheel 23 is transferred to the correction assembly through the feeding member 24, specifically to the baffle 30.
  • the star wheel 23 is hindered by the baffle 30 and stops moving for correction.
  • the star wheel 23 at the baffle 30 is transferred to the detection assembly through the feed transfer part 25 for detection.
  • the discharge transfer part 26 transfers the star wheel 23 that has passed the detection to the qualified discharge line 27, and transfers the star wheel 23 that failed the detection at the detection component to the abnormal discharge line 28.
  • the parallel motion trajectories of the qualified discharge line 27 and the transmission part will be described as an example.
  • the turntable When the test is qualified, the turntable remains stationary, and the transmission part will translate the star wheel 23 and place it on the qualified discharge line 27, and the detection fails. When it is qualified, after the transmission part grabs the star wheel 23 located at the detection component, the turntable rotates 180° so that the transmission part is aligned with the abnormal discharge line 28 and the unqualified star wheel 23 is placed on the abnormal discharge line 28.
  • the feeding part 24, the qualified discharge line 27, and the abnormal discharge line 28 all use conventional conveyor belts in the prior art, and the feeding end of the feeding part 24 is connected to the end of the transfer conveyor belt 22.
  • a limiting groove 19 for blocking the wheel body 100 of the star wheel 23 can be provided on the surface of the feed member 24.
  • the limiting groove 19 is along the surface of the feed member 24. The transmission direction is set, and after the wheel body 100 of the star wheel 23 is inserted into the slot limit groove 19, only the installation part 101 of the star wheel 23 is located on the feed part 24, and the height limit plate 37 is fixed above the feed part 24.
  • the feed transfer part 25 and the transmission part all use conventional manipulators in the prior art.
  • the motion trajectory of the manipulator or the grabbing process of the star wheel 23 can be set according to the program. As long as the transfer requirements for the star wheel 23 are completed, this The specific structure and principle will not be described in detail in the embodiments.
  • the detection component includes a depth detection component 36 and a detection controller.
  • the depth detection component 36 and the discharging transfer component 26 are both signal-connected to the detection controller.
  • the signal receiving end of the detection controller is used to receive The detection signal of the depth detection part 36
  • the signal output end of the detection controller is used to control the movement of the discharging transfer part 26.
  • a motor is provided on the frame to control the rotation of the turntable, and the signal output end of the detection controller is used to control The turntable rotates.
  • the depth detection component 36 uses a conventional displacement sensor in the prior art.
  • the displacement sensor is used to detect the distance from the depth sensor to the bottom wall of the positioning groove 102.
  • the displacement sensor As long as the displacement sensor is in a fixed position, the bottom wall of the positioning groove 102 of the qualified star wheel 23 reaches The distance between the displacement sensors is constant. If the distance detected by the displacement sensor is wrong, it means that the depth detection of the positioning groove 102 is abnormal.
  • the detection assembly includes a positioning platform 35 for placing the star wheel 23 .
  • the positioning platform 35 is provided with a slot 39 into which the wheel body 100 of the star wheel 23 is inserted. By inserting the wheel body 100 of the star wheel 23 into the positioning groove 102, thereby limiting the position of the star wheel 23 and improving detection accuracy.
  • the depth detection part 36 and the positioning table 35 are arranged oppositely.
  • the depth detection part 36 is slidably arranged along the axial direction of the slot 39.
  • the frame is vertically slidably connected to a limit plate 40, and a drive limiter is installed on the frame.
  • the plate 40 is a sliding cylinder.
  • the limit plate 40 includes two vertically distributed horizontal plates and a vertical plate connecting the two horizontal plates.
  • the upper horizontal plate is provided with a mounting hole 41 for installing the depth detection component 36. Specifically, , the depth detection part 36 passes through the mounting hole 41 and is fixed on the upper horizontal plate.
  • the lower horizontal plate is provided with a limit hole 42 for aligning the detection end of the depth detection part 36, and the depth detection part 36 is driven through the limit plate 40 Slide to adjust the height of the depth detection member 36.

Abstract

一种星轮(23)实时加工检测系统,属于机械零件加工领域,包括加工机构、检测机构(21)以及传送机构,加工机构包括多道工序工装(6),每道工序工装(6)包括至少两台并排设置的加工设备(7);检测机构(21)设置在加工机构的最后一道工序工装(6)的末端;传送机构包括用于加工机构的加工传送组件、用于检测机构(21)的检测传送组件以及用于将加工机构处加工完成的星轮(23)传送至检测机构(21)的中转传送组件,加工传送组件包括对应第一道工序工装(6)的初始上料线(8)、对应最后一道工序工装(6)的末端下料线(9)以及中转线(12),中转线(12)均包括相连接的下料部(10)和上料部(11)。方案可以解决通过多台加工设备的多条下料传送线输送出来的星轮(23),较难直接全部输送至检测设备处进行检测的问题。

Description

星轮实时加工检测系统 技术领域
本发明属于机械零件加工领域,具体涉及了星轮实时加工检测系统。
背景技术
星轮是单向器结构的重要组成部件,如图1所示,星轮包括轮体100以及安装部101,安装部101和轮体100同轴设置且外径大于轮体100,安装部101内壁沿轴向均布有若干定位槽102。星轮的加工需求包括对轮体100车端面、轮体100外壁切槽、对轮体100和安装部101的连接拐角处倒角、对安装部101车端面、镗孔、安装部101外壁切槽等,星轮按照相应设置的加工步骤完成上述加工需求。星轮加工完成后,需要对定位槽102底壁到安装部101背向轮体100一端的开口处的深度进行检测。
在加工过程中,为提高加工效率,现有技术中通常设置多台相同的加工设备同时加工,而为了提高加工流程自动化,每台加工设备均需配备相应的上下料传送线,导致占地面积较大,且待加工的星轮和加工好的星轮均需要在多条上下料传送线上分散,需要工作人员分别放置或分别收集。而为了提高加工流程自动化程度,通过多台加工设备的多条下料传送线输送出来的星轮,较难直接全部输送至检测设备处进行检测。
发明内容
针对现有技术中所存在的不足,本发明提供了星轮实时加工检测系统,以解决通过多台加工设备的多条下料传送线输送出来的星轮,较难直接全部输送至检测设备处进行检测的问题。
为实现上述目的,本发明采用了如下的技术方案:
星轮实时加工检测系统,包括加工机构、检测机构以及传送机构,加工机构包括多道按星轮加工步骤依次设置的工序工装,每道工序工装包括至少两台并排设置的加工设备;检测机构设置在加工机构的最后一道工序工装的末端,用于对加工完成的星轮的定位槽深度进行检测;传送机构包括用于加工机构的加工传送组件、用于检测机构的检测传送组件以及用于将加工机构处加工完成的星轮传送至检测机构的中转传送组件,加工传送组件包括对应第一道工序工装的初始上料线、对应最后一道工序工装的末端下料线以及中转线,中转线均包括 相连接的下料部和上料部,下料部、上料部分别对应相邻的两道工序工装;中转传送组件包括中转传送带,中转传送带的进料端和末端下料线的末端连接,中转传送带的出料端和检测传送组件的首端连接。
相比于现有技术,本发明具有如下有益效果:
通过加工传送组件完成多道工序工装的多台加工设备的上下料,具体的,通过初始上料线将待加工的星轮传送至第一道工序工装处,第一道工序工装处的多台加工设备并排设置,只要初始上料线上的星轮可以覆盖到多台加工设备,即可使得多台加工设备均从初始上料线上抓取星轮进行加工。第一道工序工装加工完成后,加工完成的星轮通过中转线传送至下一道加工设备处进行加工,通过中转线完成多道工序工装之间的传送,最后一道工序工装加工完成的星轮即可通过末端下料线传送至中转传送带上,进而被传送至检测机构处进行检测。
本方案中,通过加工传送组件的设置,完成多道工序工装的多台加工设备的上下料,使得最终加工完成的星轮均可以从末端下料线传送至中转传送带上,加工流程更加自动化。
进一步,初始上料线和上料部均包括上料传送带以及若干组安装在上料传送带上的截流组件,截流组件和加工设备一一对应,截流组件包括固定连接在上料传送带末端的止位板、活动连接在上料传送带上的截流板以及用于对每台加工设备待加工的星轮计数的计数检测件,每组截流组件的截流板、计数检测件沿上料传送带的传送方向设置。
有益效果:通过截流板的截流以控制星轮在上料传送带上的传送,通过计数检测件检测每台加工设备处所对应堆积的待加工的星轮,当待加工的星轮堆积到一定数量后,即可通过截流板阻碍星轮继续向该出传送。通过截流组件的设置,使得多台加工设备共用一条星轮上料的传送路线,且每台加工设备处均可堆积一定数量的待加工星轮,完成连续加工。
进一步,截流组件还包括截流控制器以及用于控制截流板运动的截流驱动件,截流驱动件、计数检测件均和截流控制器信号连接,截流控制器的信号接收端用于接收计数检测件的检测信号,截流控制器的信号输出端用于控制截流驱动件带动截流板运动。
有益效果:通过计数检测件对每台加工设备处对应堆积的星轮数量进行检测,当数量达到一定程度后,控制截流板阻碍星轮继续传送至该处,而当该处的星轮数量不足时,则控制截流板打开,以便于星轮传送补位,实现星轮传送、补位的自动化。
进一步,加工设备包括用于装夹星轮的定位夹具以及用于对星轮加工的加工组件,定位 夹具包括用于放置星轮的定位轴,定位夹具还包括滑动设置的滑板、滑动连接在滑板上的抵压件以及用于检测抵压件滑动的定位检测件,滑板、抵压件的滑动方向均沿定位轴的轴向,抵压件用于和星轮端面相贴。
有益效果:星轮放置到定位轴上后,在定位轴上没有残渣碎屑影响星轮时,星轮可以直接装夹到位,此时滑板带动抵压件滑动设定距离(设定滑板每次的滑动距离均一致),滑板停止滑动时,则抵压件和星轮端面刚好相抵,可以启动加工组件开始进行加工。但若星轮没有装夹到位,即受到残渣碎屑影响为卡在定位轴上某处时,滑板停止滑动时,抵压件和星轮端面相抵,并受到挤压在滑板上滑动。
本方案中,通过定位检测件检测抵压件的滑动,当检测到抵压件滑动时,即可判断星轮没有装夹到位,需要停机检查。
进一步,滑板上固定有安装块,抵压件包括滑动连接在安装块上的抵压杆,抵压杆和安装块之间固定有弹性件。
有益效果:通过弹性件的设置,使得抵压杆可以在未受外力时始终保持在安装块上的固定位置,以便于在每次滑板移动后,抵压杆都能准确复位,使得后续的检测更加精准。
进一步,检测机构包括校正组件以及用于对星轮的定位槽深度进行检测的检测组件,校正组件包括用于对星轮的定位槽位置检测的校正检测件以及用于带动星轮转动进行校正的转动件。
有益效果:通过校正检测件检测星轮定位槽的位置,若无法检测到定位槽的位置或检测到定位槽的位置出现偏差,则通过转动件带动星轮转动进行校正,星轮校正完成后,再进行检测。
本方案中,星轮加工完成后到检测之前,增设校正组件对星轮进行校正,调整星轮定位槽的位置,使得星轮放置到检测组件处时,定位槽可以对准检测组件,避免定位槽无法对准检测组件所导致的检测误差的问题。
进一步,检测传送组件包括进料件、进料转移件、出料转移件以及出料件,进料件用于将星轮传送至校正组件处,进料转移件用于将星轮从校正组件处转移至检测组件处,出料转移件用于转移检测组件处完成检测的星轮;出料件包括合格出料线和异常出料线,出料转移件用于将检测组件处检测合格的星轮转移至合格出料线,并将检测组件处检测不合格的星轮 转移至异常出料线。
有益效果:通过检测传送组件的设置,完成校正组件的上料、下料以及检测组件的上料、下料,使得检测流程自动化程度更高,更加便捷。通过检测组件检测后,将合格星轮、不合格星轮分别通过合格出料线、异常出料线输送,完成合格星轮、不合格星轮的筛分。
进一步,转动件包括转动杆以及用于驱动转动杆运动的校正驱动件,校正驱动件包括安装板以及滑动连接在安装板上的滑板,滑板的滑动方向平行于转动杆的轴线,滑板上转动连接有转动盘,转动杆偏心固定在转动盘上,转动杆用于插入星轮的定位槽内。
有益效果:通过滑板带动转动杆竖向滑动,若定位槽位于转动杆的正下方,则转动杆可以插入定位槽内,若定位槽没有位于转动杆的正下方,则转动杆向下滑动至和星轮的安装部端面相贴时受到阻碍,此时转动转动盘,使得转动杆转动至定位槽上方后,转动杆下滑插入定位槽内并和定位槽内壁相贴,即可带动星轮转动,使得星轮转动至合适的位置。
进一步,校正组件还包括校正控制器,校正控制器和校正检测件、转动件均信号连接,校正控制器的信号接收端用于接收校正检测件的检测信号,校正控制器的信号输出端用于控制转动件的启闭。
有益效果:校正控制器通过校正检测件的信号,进而控制转动件带动星轮转动校正,提高校正检测的自动化程度。
进一步,检测组件包括深度检测件以及检测控制器,深度检测件、出料转移件均和检测控制器信号连接,检测控制器的信号接收端用于接收深度检测件的检测信号,检测控制器的信号输出端用于控制出料转移件运动。
有益效果:通过检测控制器接收深度检测件的检测信号,进而判断深度检测结果,再判断出料转移件将检测完成的星轮转移至合格出料线还是异常出料线,提高检测流程的自动化程度。
附图说明
图1为本发明背景技术中所述星轮的整体结构示意图。
图2为本发明实施例的整体结构示意图。
图3为本发明实施例中加工机构和加工传送组件的结构示意图。
图4为图3中初始上料线的结构示意图。
图5为图3中加工设备的结构示意图。
图6为本发明实施例中检测机构和检测传送组件的结构示意图。
图7为图6中A部分的放大图。
图8为图6中检测组件的结构示意图。
在图中:100、轮体;101、安装部;102、定位槽;1、定位轴;2、抵压块;3、抵压杆;4、安装块;5、滑板;6、工序工装;7、加工设备;8、初始上料线;9、末端下料线;10、下料部;11、上料部;12、中转线;13、止位板;14、计数光电信号发射端;15、计数光电信号接收端;16、计数光电开关;17、截流板;18、截流组件;19、限位槽;20、上料传送带;21、检测机构;22、中转传送带;23、星轮;24、进料件;25、进料转移件;26、出料转移件;27、合格出料线;28、异常出料线;29、校正检测件;30、挡板;31、转动杆;32、安装板;33、滑动板;34、条形孔;35、定位台;36、深度检测件;37、限高板;38、转动盘;39、插槽;40、限位板;41、安装孔;42、限位孔。
具体实施方式
以下结合说明书附图对本发明作进一步详细说明,并给出具体实施方式。
如图2、图3所示,星轮实时加工检测系统,包括加工机构、检测机构21以及传送机构,加工机构包括多道按星轮23加工步骤依次设置的工序工装6,每道工序工装6包括至少两台并排设置的加工设备7;检测机构21设置在加工机构的最后一道工序工装6的末端,用于对加工完成的星轮23的定位槽102深度进行检测。
传送机构包括用于加工机构的加工传送组件、用于检测机构21的检测传送组件以及用于将加工机构处加工完成的星轮23传送至检测机构21的中转传送组件,加工传送组件包括对应第一道工序工装6的初始上料线8、对应最后一道工序工装6的末端下料线9、中转线12以及多个加工转移件,中转线12均包括相连接的下料部10和上料部11,下料部10、上料部11分别对应相邻的两道工序工装6。
本实施例中,以三道工序工装6,每道工序工装6包括三台加工设备7为例进行叙述。中转线12的数量比工序工装6的道数少一条,即本实施例中,中转线12共两条,以第一条中转线12为例来说明中转线12的功能,第一条中转线12对应第一道工序工装6和第二道工序工装6,第一条中转线12的下料部10用于传送第一道工序工装6加工完成的星轮23, 第一条中转线12的上料部11则用于将下料部10传送来的星轮23送到第二道工序工装6处待加工。相应的,第二条中转线12则对应第二道工序工装6和第三道工序工装6。
为减少占地面积,初始上料线8、末端下料线9以及多条中转线12的分布方式为:整体呈两条式排布,具有重叠部分的中转线12交错设置,本实施例中,两条中转线12的重叠部分在第二道工序工装6处,则其中一条中转线12位于靠近工序工装6的内侧,另一条中转线12则位于外侧,通过多条中转线12的交错设置,则使得多条传送线整体呈两条式分布,既满足了传送需求,也减少了占地面积。
初始上料线8和上料部11均包括上料传送带20以及若干安装在上料传送带20上的截流组件18,截流组件18和加工设备7一一对应,以本实施例中每道工序工装6有三台加工设备7为例,则初始上料线8、上料部11上均设有三组截流组件18以分别对应三台加工设备7。
结合图4所示,截流组件18包括固定连接在上料传送带20末端的止位板13、活动连接在上料传送带20上的截流板17、用于驱动截流板17运动的截流驱动件以及用于对每台加工设备7待加工的星轮23计数的计数检测件,截流板17、计数检测件沿上料传送带20的传送方向设置,具体的,截流板17沿竖向滑动连接在上料传送带20上方,截流驱动件包括固定在上料传送带20的用于驱动截流板17滑动的气缸,截流板17向下滑动至和上料传送带20上端相贴时,截流板17阻碍上料传送带20上星轮23的传送。计数检测件选用现有技术中常规的计数光电开关16,计数光电开关16包括分别位于上料传送带20两侧的计数光电信号发射端14和计数光电信号接收端15,实际安装时,计数光电开关16的光源发射高度低于星轮23上端的高度,当星轮23位于计数光电开关16处时,阻碍计数光电信号接收端15接收光电信号,当星轮23离开计数光电开关16处后,计数光电信号接收端15即可接收光电信号。
截流组件18还包括截流控制器,截流控制器选用现有技术中常规的通过PLC等程序控制的控制器。截流驱动件、计数检测件均和截流控制器信号连接,截流控制器的信号接收端用于接收计数检测件的检测信号,截流控制器的信号输出端用于控制截流驱动件带动截流板17运动,具体的,截流控制器的信号接收端接收光电信号接收端的检测信号,截流控制器的信号输出端控制气缸驱动截流板17竖向滑动。
加工转移件用于将星轮23从加工传送组件上转移至加工设备7或从加工设备7转移至加工传送组件上,加工转移件的数量和加工设备7的数量一致,加工转移件和加工设备7一一对应,加工转移件选用现有技术中常规的机械手。末端下料线9和下料部10均选用现有技术中常规的传送带,实际使用过程中,中转线12可设计为一条整体的传送带,并将传送带分隔为下料部10和上料部11的上料传送带20。为了避免星轮23在加工传送组件的传送过程中移动,可在初始上料线8、中转线12、末端下料线9的表面均设置用于卡住星轮23的轮体100或安装部101的限位槽19,限位槽19沿加工传送组件的传送方向设置,星轮23的轮体100或安装部101插入槽限位槽19内,则使得星轮23只能沿限位槽19的方向进行输送。
中转传送组件包括中转传送带22,中转传送带22的进料端和末端下料线9的末端连接,中转传送带22的出料端和检测传送组件的首端连接,通过中转传送线,将末端下料线9上加工完成的星轮23传送至检测传送组件处,被送至检测机构21处进行检测。
具体使用时,将待加工的星轮23通过初始上料线8传送,星轮23在初始上料线8上的传送过程为:三个截流板17初始均为打开状态,即截流板17和上料传送带20之间留出供星轮23传送通过的间隙,将多个星轮23分散放置入初始上料线8上进行传送,星轮23传送到达第一台加工设备7处时,被第一台加工设备7所对应的机械手抓取送入第一台加工设备7内进行加工,然后星轮23继续传送至第二台、第三台加工设备7处时,均被机械手抓取送入相应加工设备7内加工。
在三台加工设备7均在加工的过程中,星轮23被传送至止位板13处受到阻碍无法继续传送,星轮23在第三台加工设备7所对应的初始上料线8的对应段堆积,当该段的星轮23堆积到尾端阻碍该组计数光电开关16的光电信号时,截流控制器控制第二台加工设备7末端的截流板17运动,则该截流板17阻碍星轮23继续传送至第三台加工设备7处堆积,依次类推,当第二台加工设备7处也堆积数量足够的星轮23后,第一台加工设备7末端的截流板17运动阻碍星轮23继续传送,当第一台加工设备7处堆积数量足够的星轮23后,第一台加工设备7首端的截流板17运动,阻碍待加工的星轮23继续传送。
当加工设备7加工完成星轮23后,机械手将星轮23从加工设备7内取出并转移至相对应的中转线12的下料部10,通过下料部10传送至下道工序工装6所对应的中转线12的上 料部11时,按照前述的传送过程,在该道工序工装6处传送,直到最后一到工序工装6加工完成后,星轮23通过末端下料线9传送下料,并通过中转传送线传送入检测传送组件上。
随着加工设备7的加工完成,机械手抓取堆积在该台加工设备7处的星轮23继续加工,则堆积的星轮23数量减少,当星轮23不再阻碍计数光电信号接收端15接收光电信号时,截流控制器控制相应的截流板17打开,使得星轮23补位。具体的,当第三台加工设备7处的星轮23数量不足时,第二台加工设备7末端的截流板17打开,堆积在第二台加工设备7处首位的星轮23向前输送补位,当星轮23重新阻碍第三台加工设备7处的光电信号时,截流板17关闭。而由于第二台加工设备7处堆积的星轮23补位到第三台加工设备7处,则相应的,也需要星轮23补位,补位过程和前述过程一致。
本实施例中,通过截流组件18的设置,完成待加工星轮23在相应加工设备7处的堆积、补位过程,使得每台加工设备7均可以持续的对星轮23进行加工,加工流程更加自动化。
在本发明的另一个实施例中,结合图5所示,加工设备7包括机体,机体内设有用于装夹星轮23的定位夹具以及用于对星轮23加工的加工组件,每道工序工装6的加工设备7根据其对应的星轮23加工步骤选用不同的加工组件(例如专用于切槽或专用于镗孔的加工组件),加工组件的具体加工原理不做赘述。定位夹具包括用于放置星轮23的定位轴1,装夹时,星轮23的安装部101或轮体100套设到定位轴1上即可,根据加工需求选择是将安装部101套设到定位轴1上还是将轮体100套设到定位轴1上,那么根据装夹需求,设置定位轴1的外径,使得定位轴1的外径等于星轮23的安装部101内径或轮体100内径,实际使用过程中可设置其他结构辅助定位轴1进行定位装夹。
定位夹具还包括滑动连接在机体上的滑板5、滑动连接在滑板5上的抵压件以及用于检测抵压件滑动的定位检测件,滑板5、抵压件的滑动方向均沿定位轴1的轴向,机体上安装有用于驱动滑板5滑动的气缸。抵压件用于和星轮23端面相贴,具体的,抵压件包括抵压杆3以及固定在抵压杆3朝向定位轴1一侧端部的抵压块2,抵压块2的外径大于抵压杆3的外径,通过抵压块2和星轮23端面相贴。滑板5上固定有安装块4,抵压杆3滑动连接在安装块4上,抵压杆3和安装块4之间固定有弹性件,具体的,弹性件选用弹簧,弹簧的收缩方向和抵压杆3的滑动方向平行,即抵压杆3在安装块4上滑动时,抵压杆3带动弹簧伸长或收缩。定位检测件包括安装在安装块4上且用于检测抵压块2位移的位移传感器,位移 传感器选用现有技术中具有位移检测功能的位移传感器,位移传感器用于检测抵压块2和安装块4之间的间距。
具体使用时,设定气缸驱动滑板5滑动的间距,在星轮23装夹到位时,在弹性件的自然状态下,滑板5滑动后,抵压块2的端面刚好和星轮23相贴,此时滑板5的滑动距离即为滑板5的设定滑动距离。将星轮23放置到定位轴1上后,在定位轴1上没有残渣碎屑影响星轮23时,星轮23可以直接装夹到位,此时滑板5带动抵压件滑动设定距离,滑板5停止滑动时,则抵压件和星轮23端面刚好相抵,可以启动加工组件开始进行加工,滑板5带动抵压件复位。
若星轮23没有装夹到位,即受到残渣碎屑影响为卡在定位轴1上某处时,滑板5带动抵压件滑动设定距离,滑板5停止滑动时,抵压块2和星轮23端面相抵,且抵压块2受到星轮23端面的挤压在安装块4上滑动,说明星轮23没有装夹到位,此时需要停机检查。滑板5带动抵压杆3复位后,抵压杆3受到弹性件的复原作用力复位。
在本发明的另一个实施例中,加工设备7还包括定位控制器以及和定位控制器信号连接的报警器,报警器选用现有技术中具有声光电报警信号的报警器,也可选用现有技术中可以和工作人员手机或电脑蓝牙连接的蓝牙信号传输器,起到提醒工作人员的作用即可,定位控制器选用现有技术中常规的通过PLC等程序控制的控制器。定位控制器还和定位检测件、加工组件信号连接,定位控制器的信号接收端用于接收定位检测件的检测信号,具体的,定位控制器的信号接收端用于接收位移传感器的位移信号,定位控制器接收到定位检测件的检测信号,则定位控制器的信号输出端控制报警器启动,提醒工作人员星轮23装夹不到位,定位控制器没有接收到定位检测件的检测信号,则在滑板5复位后,定位控制器的信号输出端控制加工组件对星轮23进行加工。
在本发明的另一个实施例中,结合图6所示,检测机构21包括机架,机架上设有校正组件、用于对星轮23的定位槽102深度进行检测的检测组件,校正组件包括用于对星轮23的定位槽102位置检测的校正检测件29、用于带动星轮23转动进行校正的转动件以及和校正检测件29、转动件均信号连接的校正控制器,校正控制器的信号接收端用于接收校正检测件29的检测信号,校正控制器的信号输出端用于控制转动件的启闭。
结合图7所示,转动件的具体设置为:转动件包括转动杆31以及用于驱动转动杆31运 动的校正驱动件,校正驱动件包括安装板32以及滑动连接在安装板32上的滑动板33,安装板32固定在机架上或活动连接在机架上,只要在校正时,滑动板33朝向星轮23并沿靠近或远离星轮23的方向滑动即可,本实施例中,安装板32固定在机架上,滑动板33位于待校正的星轮23的正上方设置,滑动板33的滑动方向沿竖直方向。
转动杆31用于插入星轮23的定位槽102内,转动杆31转动连接在滑动板33上,具体的,滑动板33上转动连接有转动盘38,转动杆31偏心固定在转动盘38上,滑动板33上安装有用于驱动转动盘38转动的电机。滑动板33的滑动方向平行于转动杆31的轴线,安装板32上安装有用于驱动滑动板33滑动的气缸。
校正检测件29包括校正光电开关,转动杆31上开设有沿其轴向的条形孔34,校正光电开关的光源发射方向垂直于条形孔34的长度方向,当条形孔34对准校正光电开关时,校正光电开关的光源信号可穿过条形孔34。
为保证校正检测的准确性,机架上固定有挡板30,挡板30位于滑动板33的正下方,挡板30上开设有供星轮23的安装部101卡入的弧形槽,通过弧形槽对星轮23进行定位,使得星轮23在校正时位于转动盘38的正下方。
具体使用时,星轮23通过检测传送组件传送至挡板30处,受到挡板30的限位停止在该处,此时可以通过校正检测件29进行检测,具体校正检测过程为:向下滑动滑动板33,滑动板33带动转动杆31下滑,若定位槽102位于转动杆31的正下方,则转动杆31下滑过程中插入定位槽102内,此时校正检测件29的光电信号可穿过转动杆31上的条形孔34,即校正控制器可接收到校正检测件29的光电信号,此时校正控制器控制转动杆31复位,通过传送组件将星轮23传送至检测组件处进行检测。
若定位槽102没有位于转动杆31的正下方,则转动杆31下滑时到达星轮23的安装部101的端面时即受到阻碍,此时,转动杆31的杆体挡住校正检测件29的光电信号,即校正控制器无法接收到校正检测件29的光电信号,此时控制转动盘38带动转动杆31转动,当转动杆31转动至定位槽102上方时,滑动板33继续带动转动杆31下滑,使得转动杆31插入定位槽102内,并通过转动杆31和定位槽102内壁的限位带动星轮23转动,当转动杆31转动至校正检测件29的光电信号可穿过条形孔34时,校正控制器接收到校正检测件29的光电信号,转动杆31复位,完成对星轮23的校正。
上述使用过程中,以条形孔34设置在转动杆31的上部为例,实际设计过程中,条形孔34若设置在转动杆31的下部,则校正检测过程为:若定位槽102位于转动杆31的正下方,则转动杆31下滑过程中插入定位槽102内,此时条形孔34随之插入定位槽102内,转动杆31的杆体挡住校正检测件29的光电信号,校正控制器无法接收到校正检测件29的光电信号,转动杆31复位,即在该过程中,滑动板33做竖向往复直线运动。
若定位槽102没有位于转动杆31的正下方,则转动杆31下滑时到达星轮23的安装部101的端面时即受到阻碍,此时条形孔34对准校正检测件29,校正检测件29的光电信号穿过条形孔34,校正控制器接收到光电信号,控制转动盘38转动,转动盘38带动转动杆31转动,使得转动杆31的杆体阻挡住校正检测件29的光电信号后,转动杆31复位,完成校正。
实际使用过程中,上述两种校正检测过程均可选用,只需根据对应的检测过程设计校正控制器的控制逻辑即可,校正控制器选用现有技术中常规的通过PLC等程序控制的控制器,校正检测件29选用现有技术中常规的光电开关(包括分别位于转动杆31两侧的光电信号发射端和光电信号接收端,校正控制器用于接收光电信号接收端的信号接收情况)。
在本发明的另一个实施例中,检测传送组件包括进料件24、进料转移件25、出料转移件26以及出料件,进料件24用于将星轮23传送至校正组件处,进料转移件25用于将星轮23从校正组件处转移至检测组件处,出料转移件26用于转移检测组件处完成检测的星轮23。
出料件包括合格出料线27和异常出料线28,出料转移件26用于将检测组件处检测合格的星轮23转移至合格出料线27,并将检测组件处检测不合格的星轮23转移至异常出料线28。具体的,合格出料线27和异常出料线28平行设置,出料转移件26设置在合格出料线27、异常出料线28之间,出料转移件26包括转动设置的转台以及安装在转台上的传送件。
具体使用时,通过进料件24将星轮23传送至校正组件处,具体为传送星轮23至挡板30处,星轮23受到挡板30的阻碍停止运动进行校正。校正完成后,通过进料转移件25将挡板30处的星轮23转移至检测组件处进行检测。检测完成后,根据检测组件的检测结果,出料转移件26将检测合格的星轮23转移至合格出料线27,将检测组件处检测不合格的星轮23转移至异常出料线28,具体转移时,以合格出料线27和传送件的运动轨迹平行为例进行叙述,检测合格时,转台保持不动,则传送件将星轮23平移放置到合格出料线27上,检测 不合格时,传送件抓取位于检测组件处的星轮23后,转台转动180°,使得传送件对准异常出料线28,并将不合格的星轮23放置到异常出料线28上。
上述结构中,进料件24、合格出料线27、异常出料线28均选用现有技术中常规的传送带,进料件24的进料端和中转传送带22的末端连接。为了避免星轮23在进料件24传送过程中移动,可在进料件24的表面设置用于卡住星轮23的轮体100的限位槽19,限位槽19沿进料件24的传送方向设置,星轮23的轮体100插入槽限位槽19内后,则只有星轮23的安装部101位于进料件24上,进料件24上方固定有限高板37,限高板37呈n字型,限高板37下端供星轮23的安装部101通过,若星轮23无法通过限高板37,则可能星轮23在进料件24上放置错误,需要调整。进料转移件25、传送件均选用现有技术中常规的机械手,可根据程序设置机械手的运动轨迹或抓取星轮23的抓取过程,只要完成对星轮23的转移需求即可,本实施例中对其具体结构、原理不做赘述。
在本发明的另一个实施例中,检测组件包括深度检测件36以及检测控制器,深度检测件36、出料转移件26均和检测控制器信号连接,检测控制器的信号接收端用于接收深度检测件36的检测信号,检测控制器的信号输出端用于控制出料转移件26运动,具体的,机架上设置用于控制转台转动的电机,检测控制器的信号输出端用于控制转台转动。深度检测件36选用现有技术中常规的位移传感器,位移传感器用于检测其到定位槽102底壁的间距,只要位移传感器位于固定位置,则加工合格的星轮23的定位槽102底壁到位移传感器的间距是恒定的,若位移传感器检测到间距有误,这说明定位槽102的深度检测异常。
结合图8所示,检测组件包括用于放置星轮23的定位台35,定位台35上开设有用工星轮23的轮体100插入的插槽39,通过将星轮23的轮体100插入到定位槽102内,进而对星轮23的位置进行限制,提高检测精确性。深度检测件36和定位台35相对设置,深度检测件36沿插槽39的轴向滑动设置,具体的,机架上沿竖向滑动连接有限位板40,机架上安装有用于驱动限位板40滑动的气缸,限位板40包括竖向分布的两层横板以及将两层横板连接起来的竖板,上层横板上开设有用于安装深度检测件36的安装孔41,具体的,深度检测件36穿过安装孔41并固定在上层横板上,下层横板上开设有供深度检测件36的检测端对准的限位孔42,通过限位板40带动深度检测件36滑动,以便于调整深度检测件36的高度。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者 操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (10)

  1. 星轮实时加工检测系统,其特征在于:包括加工机构、检测机构以及传送机构,加工机构包括多道按星轮加工步骤依次设置的工序工装,每道工序工装包括至少两台并排设置的加工设备;检测机构设置在加工机构的最后一道工序工装的末端,用于对加工完成的星轮的定位槽深度进行检测;
    传送机构包括用于加工机构的加工传送组件、用于检测机构的检测传送组件以及用于将加工机构处加工完成的星轮传送至检测机构的中转传送组件,加工传送组件包括对应第一道工序工装的初始上料线、对应最后一道工序工装的末端下料线以及中转线,中转线均包括相连接的下料部和上料部,下料部、上料部分别对应相邻的两道工序工装;
    中转传送组件包括中转传送带,中转传送带的进料端和末端下料线的末端连接,中转传送带的出料端和检测传送组件的首端连接。
  2. 根据权利要求1所述的星轮实时加工检测系统,其特征在于:所述初始上料线和上料部均包括上料传送带以及若干组安装在上料传送带上的截流组件,截流组件和加工设备一一对应,截流组件包括固定连接在上料传送带末端的止位板、活动连接在上料传送带上的截流板以及用于对每台加工设备待加工的星轮计数的计数检测件,每组截流组件的截流板、计数检测件均沿上料传送带的传送方向设置。
  3. 根据权利要求2所述的星轮实时加工检测系统,其特征在于:所述截流组件还包括截流控制器以及用于控制截流板运动的截流驱动件,截流驱动件、计数检测件均和截流控制器信号连接,截流控制器的信号接收端用于接收计数检测件的检测信号,截流控制器的信号输出端用于控制截流驱动件带动截流板运动。
  4. 根据权利要求1所述的星轮实时加工检测系统,其特征在于:所述加工设备包括用于装夹星轮的定位夹具以及用于对星轮加工的加工组件,定位夹具包括用于放置星轮的定位轴,定位夹具还包括滑动设置的滑板、滑动连接在滑板上的抵压件以及用于检测抵压件滑动的定位检测件,滑板、抵压件的滑动方向均沿定位轴的轴向,抵压件用于和星轮端面相贴。
  5. 根据权利要求4所述的星轮实时加工检测系统,其特征在于:所述滑板上固定有安装块,抵压件包括滑动连接在安装块上的抵压杆,抵压杆和安装块之间固定有弹性件。
  6. 根据权利要求1所述的星轮实时加工检测系统,其特征在于:所述检测机构包括校正组件以及用于对星轮的定位槽深度进行检测的检测组件,校正组件包括用于对星轮的定位槽位置检测的校正检测件以及用于带动星轮转动进行校正的转动件。
  7. 根据权利要求6所述的星轮实时加工检测系统,其特征在于:所述检测传送组件包括进料件、进料转移件、出料转移件以及出料件,进料件用于将星轮传送至校正组件处,进料转移件用于将星轮从校正组件处转移至检测组件处,出料转移件用于转移检测组件处完成 检测的星轮;出料件包括合格出料线和异常出料线,出料转移件用于将检测组件处检测合格的星轮转移至合格出料线,并将检测组件处检测不合格的星轮转移至异常出料线。
  8. 根据权利要求6所述的星轮实时加工检测系统,其特征在于:所述转动件包括转动杆以及用于驱动转动杆运动的校正驱动件,校正驱动件包括安装板以及滑动连接在安装板上的滑板,滑板的滑动方向平行于转动杆的轴线,滑板上转动连接有转动盘,转动杆偏心固定在转动盘上,转动杆用于插入星轮的定位槽内。
  9. 根据权利要求6所述的星轮实时加工检测系统,其特征在于:所述校正组件还包括校正控制器,校正控制器和校正检测件、转动件均信号连接,校正控制器的信号接收端用于接收校正检测件的检测信号,校正控制器的信号输出端用于控制转动件的启闭。
  10. 根据权利要求7所述的星轮实时加工检测系统,其特征在于:所述检测组件包括深度检测件以及检测控制器,深度检测件、出料转移件均和检测控制器信号连接,检测控制器的信号接收端用于接收深度检测件的检测信号,检测控制器的信号输出端用于控制出料转移件运动。
PCT/CN2022/103883 2022-06-10 2022-07-05 星轮实时加工检测系统 WO2023236300A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210650962.6 2022-06-10
CN202210650962.6A CN115069569B (zh) 2022-06-10 2022-06-10 星轮实时加工检测系统

Publications (1)

Publication Number Publication Date
WO2023236300A1 true WO2023236300A1 (zh) 2023-12-14

Family

ID=83250422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/103883 WO2023236300A1 (zh) 2022-06-10 2022-07-05 星轮实时加工检测系统

Country Status (2)

Country Link
CN (1) CN115069569B (zh)
WO (1) WO2023236300A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6451261A (en) * 1987-08-20 1989-02-27 Fanuc Ltd Structure for work machining system provided with checkup functioning device
CN104308530A (zh) * 2014-10-14 2015-01-28 浙江工业大学 基于视觉检测的单向器星轮自动化装配装置
CN104308531A (zh) * 2014-10-14 2015-01-28 浙江工业大学 基于视觉检测的单向器星轮自动化装配方法
CN111098135A (zh) * 2020-02-23 2020-05-05 石家庄精石新材料科技有限公司 单向器的同步上料式装配方法
CN211708578U (zh) * 2020-02-23 2020-10-20 石家庄精石新材料科技有限公司 单向器装配系统的星轮上料机构
CN214703355U (zh) * 2021-04-16 2021-11-12 江西汇智盛通精密制造有限公司 一种游星轮成品用外观影像检测机构
CN215203113U (zh) * 2021-06-07 2021-12-17 苏州精爪机器人有限公司 一种自动注塑及检测设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4782567A (en) * 1987-03-30 1988-11-08 Honda Giken Kogyo Kabushiki Kaisha Workpiece transferring, positioning and machining system
JP3179584B2 (ja) * 1992-09-10 2001-06-25 大日本印刷株式会社 筒状体検査装置の排出装置
CN104440037B (zh) * 2014-11-25 2017-01-18 上海天诚通信技术有限公司 一种五类、六类模块自动加工检测设备
CN207239788U (zh) * 2017-03-29 2018-04-17 武汉市恒通诚汽车零部件有限公司 外星轮自动化加工定位及上料装置
CN206869512U (zh) * 2017-07-13 2018-01-12 重庆市诚润机械有限公司 一种外星轮车削定位装置
CN109590486A (zh) * 2019-01-27 2019-04-09 马鞍山南马智能制造研究所有限公司 一种电机端盖的自动加工检测装置及其使用方法
CN110153726A (zh) * 2019-05-16 2019-08-23 广东扬山联合精密制造股份有限公司 空调压缩机滚子的自动加工生产线
CN211331422U (zh) * 2019-11-25 2020-08-25 武汉市恒通诚汽车零部件有限公司 一种外星轮中心孔加工设备
CN111842198B (zh) * 2020-08-06 2022-06-14 长春迈泽精密机械有限公司 一种vl外星轮自动分组仪
CN214454570U (zh) * 2020-12-24 2021-10-22 武汉维奥制药有限公司 一种生产线用计数控制装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6451261A (en) * 1987-08-20 1989-02-27 Fanuc Ltd Structure for work machining system provided with checkup functioning device
CN104308530A (zh) * 2014-10-14 2015-01-28 浙江工业大学 基于视觉检测的单向器星轮自动化装配装置
CN104308531A (zh) * 2014-10-14 2015-01-28 浙江工业大学 基于视觉检测的单向器星轮自动化装配方法
CN111098135A (zh) * 2020-02-23 2020-05-05 石家庄精石新材料科技有限公司 单向器的同步上料式装配方法
CN211708578U (zh) * 2020-02-23 2020-10-20 石家庄精石新材料科技有限公司 单向器装配系统的星轮上料机构
CN214703355U (zh) * 2021-04-16 2021-11-12 江西汇智盛通精密制造有限公司 一种游星轮成品用外观影像检测机构
CN215203113U (zh) * 2021-06-07 2021-12-17 苏州精爪机器人有限公司 一种自动注塑及检测设备

Also Published As

Publication number Publication date
CN115069569A (zh) 2022-09-20
CN115069569B (zh) 2023-06-20

Similar Documents

Publication Publication Date Title
CN108406177B (zh) 电池焊接设备及电池焊接方法
JP2009516595A (ja) 工作機械
KR102032118B1 (ko) 스핀들 유닛용 너트 자동공급장치
US8485955B2 (en) Automatic bag handling method for precisely securing a plastic handle to a plastic bag
KR20170037501A (ko) 스파우트 부착용 자루의 공급장치
CN108788728B (zh) 一种多士炉升降架组装机
CN110733870A (zh) 钢筋连接套加工生产线和生产方法
KR101421427B1 (ko) 2d/3d 캐드캠을 이용한 플라즈마 절단장치
KR101998696B1 (ko) 내경나사 탭핑 및 접촉식 피치 검사 자동화 시스템
WO2023236300A1 (zh) 星轮实时加工检测系统
CN105290257B (zh) 钢桶上盖板自动升降定位法兰锁口输送装置
CN109647729B (zh) 一种蜗轮检测筛选装置
KR20170120228A (ko) 사출기의 튜브 로딩장치
CN212122300U (zh) 螺母安装装置及具有其的燃料电池电堆组装系统
CN205381733U (zh) 一种蓄电池极板包封机的收料装置
TWI555685B (zh) Electronic components operating equipment
WO2023236191A1 (zh) 星轮加工设备、加工系统及加工方法
CN110844858A (zh) 全自动锁瓶盖机
CN110600410A (zh) 一种芯片框架的点胶上芯机
CN106670790B (zh) 一种卷线筒装配装置
CN109732386B (zh) 移管活塞自动化加工设备
CN210557743U (zh) 一种全方位旋转式可视投影检测设备
CN115069570B (zh) 星轮智能加工实时检测系统
KR102032119B1 (ko) 스핀들 유닛용 스핀들 자동 공급 및 체결장치
CN105004740A (zh) X射线闭环自动控制多工位检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22945436

Country of ref document: EP

Kind code of ref document: A1