WO2023234377A1 - 長尺積層基材、長尺シートロール、及びそれらの製造方法 - Google Patents

長尺積層基材、長尺シートロール、及びそれらの製造方法 Download PDF

Info

Publication number
WO2023234377A1
WO2023234377A1 PCT/JP2023/020373 JP2023020373W WO2023234377A1 WO 2023234377 A1 WO2023234377 A1 WO 2023234377A1 JP 2023020373 W JP2023020373 W JP 2023020373W WO 2023234377 A1 WO2023234377 A1 WO 2023234377A1
Authority
WO
WIPO (PCT)
Prior art keywords
base material
polymer
thickness
laminated base
layer
Prior art date
Application number
PCT/JP2023/020373
Other languages
English (en)
French (fr)
Inventor
賢太 関川
文 伊藤
蔵 藤岡
創太 結城
渉 笠井
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Publication of WO2023234377A1 publication Critical patent/WO2023234377A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/36Successively applying liquids or other fluent materials, e.g. without intermediate treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H75/00Storing webs, tapes, or filamentary material, e.g. on reels
    • B65H75/02Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks
    • B65H75/04Kinds or types
    • B65H75/08Kinds or types of circular or polygonal cross-section
    • B65H75/10Kinds or types of circular or polygonal cross-section without flanges, e.g. cop tubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present disclosure relates to a long laminated base material, a long sheet roll, and a manufacturing method thereof.
  • Tetrafluoroethylene polymers have excellent physical properties such as mold releasability, electrical insulation, water and oil repellency, chemical resistance, weather resistance, and heat resistance. Tetrafluoroethylene polymers are used to form various molded articles such as impregnated substrates, supported substrates, and layered substrates.
  • Patent Document 1 discloses a multilayer film formed by laminating tetrafluoroethylene polymer films of the same thickness on both sides of a polyimide base film.
  • Patent Document 2 describes a multilayer film having fluororesin layers of the same thickness formed by continuously coating a tetrafluoroethylene polymer on both sides of a polyimide base film.
  • a long laminated base material which is a laminate in which polymer layers containing a tetrafluoroethylene polymer are provided on both sides of the base material, can have both the physical properties of the tetrafluoroethylene polymer and the physical properties of the base material.
  • the elongated laminated base material when wound around a core to form a roll-shaped base material and then unwound, the elongated laminated base material may be undulated.
  • a metal foil is pressure-bonded to the surface of a long laminated base material that has waviness to produce a metal-clad laminate, the metal foil tends to peel off due to the waviness of the long laminated base material. be.
  • the type and shape (thickness, etc.) of the base material and the type and shape (thickness, etc.) of the tetrafluoroethylene polymer can be selected.
  • the physical properties of the entire laminated base material can be arbitrarily and easily controlled. Therefore, the above laminated base material is useful as a material for printed wiring boards and the like.
  • the present inventors have discovered that in a long sheet roll in which a long laminated base material, which is the long laminated base material, is wound around a core, the long laminated base material is unwound to form a metal-clad laminate. It was discovered that when doing so, wrinkles may occur in the metal foil. When wrinkles occur in the metal foil, it tends to cause problems (deterioration of yield, deterioration of product quality, etc.) when manufacturing printed wiring boards and the like.
  • the present disclosure suppresses peeling of the metal foil caused by waviness of the long laminated base material even when a metal foil laminate is produced by winding the base material around a core to form a roll-shaped base material and then unrolling the base material.
  • the object of the present invention is to provide a long laminated base material and a method for manufacturing the same.
  • the present disclosure aims to provide a long sheet roll and a method for manufacturing the same, in which the generation of wrinkles in metal foil is suppressed when a long laminated base material is unrolled to form a metal-clad laminate. .
  • the base material includes at least one selected from the group consisting of polyimide, liquid crystal polyester, and polytetrafluoroethylene.
  • ⁇ A3> The elongated laminated base material according to ⁇ A1> or ⁇ A2>, wherein the two polymer layers are layers containing sintered bodies of particles of the tetrafluoroethylene polymer.
  • ⁇ A4> The elongated laminate according to any one of ⁇ A1> to ⁇ A3>, wherein the total thickness of the two polymer layers is 1.8 to 3.0 times the thickness of the base material.
  • ⁇ A5> Any one of ⁇ A1> to ⁇ A4>, wherein the thickness of one of the two polymer layers is 0.9 to 1.1 times the thickness of the other polymer layer.
  • ⁇ A6> The elongated laminated base material according to any one of ⁇ A1> to ⁇ A5>, wherein the tetrafluoroethylene polymer has a melting point of 260 to 320°C.
  • ⁇ A7> The tetrafluoroethylene polymer has an oxygen-containing polar group, ⁇ A1> ⁇
  • ⁇ A8> The elongated laminated base material according to any one of ⁇ A1> to ⁇ A7>, which is a roll-shaped base material wound around a core.
  • a long base having a thickness of 12 to 50 ⁇ m is placed on the outer peripheral surface of the back roll whose outer peripheral surface has a ten-point average roughness Rzjis of 0.5 to 10 ⁇ m so that the contact surface pressure is 100 to 3000 kPa.
  • Transporting the base material while bringing the second surface of the material into contact with the material applying a composition containing tetrafluoroethylene polymer particles and a liquid dispersion medium to the first surface of the base material, and heat-treating the composition. and forming a first layer on the first surface, and applying the base material while bringing the first layer into contact with the outer peripheral surface of the back roll so that the contact surface pressure is 100 to 3000 kPa.
  • a long laminated base comprising: a first polymer layer containing the tetrafluoroethylene polymer and having a thickness of 12 to 40 ⁇ m; and a second polymer layer containing the tetrafluoroethylene polymer and having a thickness of 12 to 40 ⁇ m.
  • a method for producing a long laminated base material ⁇ A10> The manufacturing method according to ⁇ A9>, wherein the ten-point average roughness Rzjis of the outer peripheral surface of the back roll is 0.5 to 8 ⁇ m.
  • ⁇ A11> The manufacturing method according to ⁇ A9> or ⁇ A10>, wherein the contact surface pressure is 250 to 2000 kPa.
  • ⁇ A12> The manufacturing method according to any one of ⁇ A9> to ⁇ A11>, wherein the liquid dispersion medium has a surface tension of 20 to 30 mN/m.
  • ⁇ A13> The manufacturing method according to any one of ⁇ A9> to ⁇ A12>, wherein the base material includes at least one selected from the group consisting of polyimide, liquid crystal polyester, and polytetrafluoroethylene.
  • ⁇ A14> Any one of ⁇ A9> to ⁇ A13>, wherein the total thickness of the first polymer layer and the second polymer layer is 1.8 to 3.0 times the thickness of the base material.
  • the manufacturing method described in. ⁇ A15> The thickness of the first polymer layer is 0.9 to 1.1 times the thickness of the second polymer layer, according to any one of ⁇ A9> to ⁇ A14>.
  • Production method. ⁇ A16> The production method according to any one of ⁇ A9> to ⁇ A15>, wherein the tetrafluoroethylene polymer particles include a tetrafluoroethylene polymer having a melting point of 260° C. or higher.
  • ⁇ A17> The production method according to any one of ⁇ A9> to ⁇ A16>, wherein the tetrafluoroethylene polymer particles include a tetrafluoroethylene polymer having an oxygen-containing polar group.
  • ⁇ A18> The manufacturing method according to any one of ⁇ A9> to ⁇ A17>, further comprising winding the long laminated base material around a core to form a roll-shaped base material.
  • the present disclosure also includes the following aspects.
  • ⁇ B1> It has a cylindrical winding core and a long laminated base material wound around the outer peripheral surface of the winding core, and the long laminated base material has a base material with a thickness of 12 to 50 ⁇ m, and the two polymer layers provided on both sides of the base material, each containing a tetrafluoroethylene-based polymer and having a thickness of 12 to 40 ⁇ m, and the total thickness of the two polymer layers is equal to or less than the base material.
  • the thickness of one of the two polymer layers is 0.9 to 1.1 times the thickness of the other polymer layer,
  • a long sheet roll wherein the value of the product C ⁇ T of the curvature Cmm ⁇ 1 at the outer diameter of the core and the total thickness Tmm of the long laminated base material is less than 0.0015.
  • ⁇ B2> The long sheet roll according to ⁇ B1>, wherein the curvature Cmm ⁇ 1 at the outer diameter of the core is 0.009 to 0.037 mm ⁇ 1 .
  • ⁇ B3> The long sheet roll according to ⁇ B1> or ⁇ B2>, wherein the length in the longitudinal direction of the long laminated base material is 200 m or more.
  • ⁇ B4> The elongated sheet roll according to any one of ⁇ B1> to ⁇ B3>, wherein the elongated laminated base material has a width in the lateral direction of 500 to 1250 mm.
  • ⁇ B5> The long sheet roll according to any one of ⁇ B1> to ⁇ B4>, wherein the two polymer layers are layers containing sintered bodies of particles of the tetrafluoroethylene polymer.
  • ⁇ B6> The long sheet roll according to any one of ⁇ B1> to ⁇ B5>, wherein the tetrafluoroethylene polymer has a melting point of 260 to 320°C.
  • ⁇ B7> When the laminated base material piece cut out by unrolling 500 mm of the long laminated base material is placed on a horizontal surface, the height of the laminated base material piece lifted from the horizontal surface is 1 cm or less, ⁇ B1> ⁇ The long sheet roll according to any one of ⁇ B6>.
  • ⁇ B8> A base material having a thickness of 12 to 50 ⁇ m, and two polymer layers each containing a tetrafluoroethylene polymer and each having a thickness of 12 to 40 ⁇ m, provided on both sides of the base material. and the total thickness of the two polymer layers is 1.8 to 3.0 times the thickness of the base material, and the thickness of one of the two polymer layers is less than that of the other polymer layer.
  • ⁇ B10> The manufacturing method according to ⁇ B8> or ⁇ B9>, wherein the curvature Cmm ⁇ 1 at the outer diameter of the winding core is 0.009 to 0.037 mm ⁇ 1 .
  • ⁇ B11> The manufacturing method according to any one of ⁇ B8> to ⁇ B10>, wherein the length in the longitudinal direction of the elongated laminated base material is 200 m or more.
  • ⁇ B12> The manufacturing method according to any one of ⁇ B8> to ⁇ B11>, wherein the elongated laminated base material has a width in the lateral direction of 500 to 1250 mm.
  • ⁇ B13> The two polymer layers are obtained by applying a composition containing particles of the tetrafluoroethylene polymer and a liquid dispersion medium to both sides of the base material and heat-treating the composition, ⁇ B8> to ⁇ B12 >The manufacturing method according to any one of >.
  • ⁇ B14> The manufacturing method according to any one of ⁇ B8> to ⁇ B13>, wherein the tetrafluoroethylene polymer has a melting point of 260 to 320°C.
  • a long laminated base material that is suppressed and a method for manufacturing the same are provided.
  • a long sheet roll and a method for manufacturing the same in which the generation of wrinkles in metal foil is suppressed when a long laminated base material is unwound to form a metal-clad laminate.
  • FIG. 1 is a schematic cross-sectional view showing the layer structure of a long laminated base material according to an embodiment.
  • FIG. 1 is a schematic diagram schematically showing a coating section of an apparatus used in a method for manufacturing a long laminated base material according to an embodiment.
  • FIG. 1 is a perspective view schematically showing a long sheet roll according to an embodiment.
  • FIG. 4 is a schematic cross-sectional view showing the layer structure of the elongated laminated base material in the elongated sheet roll shown in FIG. 3.
  • each component may contain multiple types of corresponding substances. If there are multiple types of substances corresponding to each component in the composition, the content rate or content of each component is the total content rate or content of the multiple types of substances present in the composition, unless otherwise specified. means quantity. In the present disclosure, a plurality of types of particles corresponding to each component may be included.
  • the particle diameter of each component means a value for a mixture of the plurality of types of particles present in the composition, unless otherwise specified.
  • the term “layer” or “film” refers to the case where the layer or film is formed only in a part of the region, in addition to the case where the layer or film is formed in the entire region when observing the region where the layer or film is present. This also includes cases where it is formed.
  • the term “laminate” refers to stacking layers, and two or more layers may be bonded, or two or more layers may be removable. In the present disclosure, when embodiments are described with reference to drawings, the configuration of the embodiments is not limited to the configuration shown in the drawings. Furthermore, the sizes of the members in each figure are conceptual, and the relative size relationships between the members are not limited thereto.
  • a "polymer” is a compound formed by polymerizing monomers. That is, a “polymer” has multiple units based on monomers.
  • a "unit" in a polymer means an atomic group based on the monomer formed by polymerization of the monomer.
  • the unit may be a unit directly formed by a polymerization reaction, or may be a unit in which a part of said unit is converted into another structure by processing the polymer.
  • a unit based on monomer a will also be simply referred to as a "monomer a unit.”
  • the "weight average molecular weight" is determined in terms of polystyrene using gel permeation chromatography (GPC).
  • the "melting point" of a polymer is the temperature corresponding to the maximum value of the melting peak of the polymer as measured by differential scanning calorimetry (DSC).
  • the "melt flow rate” of a polymer means the melt mass flow rate of the polymer as defined in JIS K 7210-1:2014 (ISO1133-1:2011).
  • the "glass transition point (Tg)" of a polymer is a value measured by analyzing the polymer using a dynamic mechanical analysis (DMA) method.
  • DMA dynamic mechanical analysis
  • the "volume average particle diameter (D50)" of the polymer particles is the volume-based cumulative 50% diameter of the particles determined by a laser diffraction/scattering method. That is, the particle size distribution is measured by a laser diffraction/scattering method, a cumulative curve is determined with the total volume of the particle population as 100%, and the particle diameter is the point on the cumulative curve where the cumulative volume becomes 50%.
  • the D50 of polymer particles is determined by dispersing the particles in water and analyzing them using a laser diffraction/scattering method using a laser diffraction/scattering type particle size distribution measuring device (for example, Horiba, Ltd., LA-920 measuring device). It will be done.
  • the "average particle diameter" of the inorganic filler is the average value of the equivalent circular diameter of 100 randomly selected particles when the particles are observed with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • “specific surface area” is a value calculated by measuring particles by gas adsorption (constant volume method) BET multi-point method, for example, using NOVA4200e (manufactured by Quantachrome Instruments).
  • the "ten-point average roughness Rzjis” is a value specified in Annex JA of JIS B 0601:2013, and is measured in accordance with JIS B 0601:2013. Specifically, the measurement can be performed using, for example, a high-precision shape measurement system (for example, "KS-1100” manufactured by Keyence Corporation, tip head model number "LT-9510VM”).
  • the "viscosity" of the composition is determined by measuring the composition using a B-type viscometer at 25° C. and a rotation speed of 30 rpm. Repeat the measurement three times and use the average value of the three measurements.
  • a long laminated base material in an embodiment of the present disclosure includes a base material with a thickness of 12 to 50 ⁇ m, and a tetrafluoroethylene-based polymer provided on both sides of the base material, each having a thickness of 12 to 40 ⁇ m. and two polymer layers having a root mean square gradient Sdq of 5 ⁇ m/mm or less obtained by measuring the surface opposite to the base material based on ISO25178-2:2012.
  • the tetrafluoroethylene polymer is also referred to as "F polymer”
  • the surface of the polymer layer opposite to the base material is also referred to as “exposed surface”, which is obtained by measuring the surface to be measured based on ISO25178-2:2012.
  • the value of the root mean square gradient Sdq is also simply referred to as "Sdq”.
  • long means that the length in the longitudinal direction is 100 m or more.
  • the length of the long laminated base material in the longitudinal direction is preferably 200 m or more.
  • the length in the longitudinal direction is preferably 1000 m or less.
  • the long laminated base material is stored, for example, as a roll-shaped base material wound around a core.
  • a roll-shaped base material in which a long laminated base material is wound around a core will also be referred to as a "roll sheet.”
  • the laminated base material obtained by unrolling a portion of the elongated laminated base material from the roll sheet is used, for example, to produce a metal-clad laminate.
  • a metal-clad laminate is obtained by pressure-bonding metal foil to the surface of a laminate base material.
  • a long laminated base material in which polymer layers containing F polymer are provided on both sides of the base material can be expected to have both the physical properties of the F polymer and the physical properties of the base material.
  • a heat-resistant base material containing a heat-resistant resin is used as a base material, both the physical properties such as heat resistance and dimensional stability, and the electrical properties such as low dielectric constant and low dielectric loss tangent, which are the physical properties of F polymer, can be improved.
  • a long laminated base material having the following properties is obtained.
  • the long laminated base material when wound around a core to form a roll sheet and then unwound, the long laminated base material may be undulated.
  • a metal foil is pressure-bonded to the surface of a laminated base material obtained from a long laminated base material with waviness to produce a metal-clad laminate, peeling of the metal foil occurs due to the waviness of the long laminated base material. is likely to occur.
  • peeling of the metal foil due to waviness of the long laminated base material becomes noticeable.
  • the Sdq on the exposed surfaces of the two polymer layers is both 5 ⁇ m/mm or less.
  • the above Sdq is a parameter calculated from the root mean square of the slope on the surface of the measurement target, and represents the average size of the local slope of the uneven shape. The larger the Sdq, the more steep the surface is.
  • the present inventors have determined that by setting Sdq within the above range rather than the height of unevenness on the exposed surface, even if the thickness of the base material is 12 to 50 ⁇ m and the thickness of each polymer layer is 12 to 40 ⁇ m, It has been found that peeling of the metal foil caused by the waviness of the long laminated base material is suppressed.
  • an example of the elongated laminated base material will be described using drawings, but the elongated laminated base material of the present disclosure is not limited thereto.
  • FIG. 1 is a schematic cross-sectional view showing the layer structure of a long laminated base material according to an embodiment.
  • the elongated laminated base material 10 shown in FIG. 1 includes a base material 12 and a polymer layer 14 and a polymer layer 16 provided on both sides of the base material 12, respectively.
  • the Sdq of the exposed surface 14S of the polymer layer 14 and the exposed surface 16S of the polymer layer 16 are both 5 ⁇ m/mm or less.
  • Each layer constituting the elongated laminated base material will be described below. Note that the symbols may be omitted.
  • the base material examples include a long film containing resin.
  • the base material may have a single layer structure or a multilayer structure.
  • the base material is preferably a heat-resistant base material, and more preferably a film containing a heat-resistant resin.
  • the base material contains a heat-resistant resin.
  • Heat-resistant resins include polyimide (aromatic polyimide, etc.), polyarylate, polysulfone, polyallylsulfone (polyethersulfone, etc.), aromatic polyamide, aromatic polyetheramide, polyphenylene sulfide, polyallyletherketone, polyamideimide. , liquid crystal polyester, liquid crystal polyester amide, polytetrafluoroethylene, and the like.
  • the base material containing the heat-resistant resin may further contain a plasticizer, a resin other than the heat-resistant resin, a coloring agent, an inorganic filler, various additives, and the like.
  • a plasticizer e.g., polyethylene glycol dimethacrylate copolymer
  • a resin other than the heat-resistant resin e.g., polyethylene glycol dimethacrylate
  • a coloring agent e.g., polystylene oxide fillers, polystylene oxide fillers, silicate fillers (silica fillers, wollastonite fillers, talc fillers), and Metal oxide (cerium oxide, aluminum oxide, magnesium oxide, zinc oxide, titanium oxide, etc.) fillers are more preferred, and silica fillers are even more preferred.
  • the total content of the heat-resistant resin in the base material containing the heat-resistant resin is preferably 70% by mass or more, more preferably 80% by mass or more, and may be 100% by mass, based on the entire base material.
  • the base material preferably contains at least one selected from the group consisting of polyimide, liquid crystal polyester, and polytetrafluoroethylene among the heat-resistant resins, and more preferably contains at least polyimide.
  • polyimide contained in the polyimide-containing base material examples include polyimide obtained from polyamic acid obtained by polymerizing an aromatic diamine component and a tetracarboxylic acid component.
  • Aromatic diamine components include paraphenylene diamine, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 1,4-bis(4-aminophenoxy)benzene, 1,3-bis(4-aminophenoxy) ) benzene, 1,3-bis(3-aminophenoxy)benzene, 4,4'-bis(aminophenoxy)biphenyl, 4,4'-bis(3-aminophenoxy)biphenyl, 2,2'-bis(4 -aminophenoxyphenyl)propane and the like.
  • Tetracarboxylic acid components include pyromellitic acid, 3,3',4,4'-biphenyltetracarboxylic acid, oxydiphthalic acid, 2,3',3,4'-biphenyltetracarboxylic acid, 3,3',4 , 4'-benzophenonetetracarboxylic acid, dianhydrides thereof, and the like.
  • One type of tetracarboxylic acid component may be used, or two or more types may be used.
  • the glass transition point of the polyimide contained in the polyimide-containing base material is lower than 288°C, preferably lower than 275°C, and more preferably lower than 260°C.
  • the glass transition point of polyimide is preferably 200°C or higher.
  • base materials containing polyimide include "Kapton 50EN-S” (manufactured by DuPont-Toray Co., Ltd.), “Kapton 100EN” (manufactured by DuPont-Toray Co., Ltd.), and “Kapton 100H” (manufactured by DuPont-Toray Co., Ltd.). ), “Kapton 100KJ” (manufactured by DuPont), “Kapton 100JP” (manufactured by DuPont, USA), “Kapton 100LK” (manufactured by DuPont Toray), and the like. Peeling of the metal foil due to twisting becomes noticeable.
  • the tensile modulus of the base material at 320°C is preferably 0.2 GPa or more, more preferably 0.3 GPa or more.
  • the tensile modulus is preferably 10 GPa or less, more preferably 5 GPa or less.
  • the tensile modulus of the base material at 320° C. is within the above range, deformation due to heating and cooling is unlikely to occur, and the handling property is easily excellent.
  • the tensile modulus of the base material is greater than or equal to the lower limit, deformation of the polymer layer during heating and cooling during processing is likely to be alleviated by the elasticity of the base material.
  • the tensile modulus of the base material is below the above-mentioned upper limit value, the flexibility of the elongated laminated base material is likely to increase.
  • the thickness of the base material is 12 to 50 ⁇ m, preferably 20 to 44 ⁇ m from the viewpoint of dimensional stability of the laminated base material.
  • the width which is the length of the base material in the lateral direction, is preferably 500 to 1250 mm from the viewpoint of dimensional stability of the laminated base material.
  • the length of the base material in the longitudinal direction is preferably 100 to 1000 m.
  • the length of the base material in the longitudinal direction is preferably 50 times or more, more preferably 100 times or more, the width of the base material.
  • the length of the base material in the longitudinal direction is preferably 1000 times or less the width of the base material.
  • the polymer layers are layers provided on both sides of the base material. If both of the two polymer layers provided on both sides of the base material contain F polymer, each has a thickness of 12 to 40 ⁇ m, and the Sdq on the exposed surface is 5 ⁇ m/mm or less, It is not particularly limited. Preferably, both of the two polymer layers are provided in direct contact with the base material.
  • the two polymer layers may each contain only one type of F polymer, or may contain two or more types of F polymer.
  • the compositions of the two polymer layers may be the same or different.
  • the F polymer is a polymer containing units based on tetrafluoroethylene (hereinafter also referred to as "TFE") (hereinafter also referred to as “TFE units”).
  • TFE tetrafluoroethylene
  • the F polymer may also have units based on other comonomers.
  • the content of TFE units in the F polymer is preferably 50 mol % or more, more preferably 90 mol % or more, based on the total units in the F polymer, from the viewpoint of suitably expressing the characteristics due to the TFE units.
  • the content may be 99 mol% or less, or 98 mol% or less.
  • the F polymer may be thermofusible or non-thermofusible. When particularly good development of properties such as thermal conductivity, adhesiveness, processability, etc. is desired, the F polymer is preferably heat-fusible.
  • a heat-melting polymer means a polymer that exists at a temperature at which the melt flow rate is 1 to 1000 g/10 minutes under a load of 49N.
  • a non-thermofusible polymer means a polymer that does not have a temperature at which the melt flow rate is 1 to 1000 g/10 minutes under a load of 49N.
  • the melting point of the heat-melting F polymer is preferably 200°C or higher, more preferably 260°C or higher. From the viewpoint of ease of processing, the melting point of the F polymer is preferably 325°C or lower, more preferably 320°C or lower.
  • the F polymer preferably has a melting point of 200 to 325°C, and more preferably has a melting point of 260 to 320°C.
  • the glass transition point of the F polymer is preferably 50°C or higher, more preferably 75°C or higher. From the viewpoint of processability, the glass transition point of the F polymer is preferably 150°C or lower, more preferably 125°C or lower.
  • the fluorine content of the F polymer is preferably 70% by mass or more, more preferably 72 to 76% by mass, from the viewpoint of suitably exhibiting properties due to fluorine atoms such as electrical properties and heat resistance.
  • the surface tension of the F polymer is preferably 16 to 26 mN/m. Note that the surface tension of the F polymer can be measured by placing droplets of a wettability index reagent (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) on a flat plate made of the F polymer.
  • F polymers include polytetrafluoroethylene (PTFE), polymers containing TFE units and units based on ethylene, polymers containing TFE units and units based on propylene, TFE units and units based on perfluoro(alkyl vinyl ether) (PAVE). (PAVE units), and polymers (FEP) containing TFE units and units based on hexafluoropropylene are preferred. From the viewpoint of properties such as thermal conductivity, adhesiveness, and processability, PFA and FEP are more preferred, and PFA is even more preferred. These polymers may further contain units based on other comonomers.
  • the F polymer is preferably an F polymer having an oxygen-containing polar group, more preferably an F polymer having a hydroxyl group-containing group or a carbonyl group-containing group, and an F polymer having a carbonyl group-containing group is preferable. More preferred.
  • the hydroxyl group-containing group is preferably a group containing an alcoholic hydroxyl group, more preferably -CF 2 CH 2 OH and -C(CF 3 ) 2 OH.
  • the carbonyl group-containing group is a group containing a carbonyl group (>C(O)).
  • Carbonyl group-containing groups include carboxyl group, alkoxycarbonyl group, amide group, isocyanate group, carbamate group (-OC(O)NH 2 ), acid anhydride residue (-C(O)OC(O)-), imide Residues (-C(O)NHC(O)-, etc.) and carbonate groups (-OC(O)O-) are preferred, and acid anhydride residues are more preferred. Peeling of the metal foil due to twisting becomes noticeable.
  • the number of oxygen-containing polar groups in the F polymer is preferably 100 to 5,000, more preferably 300 to 3,000, and more preferably 800 to 5,000 per 1 ⁇ 10 6 carbon atoms in the main chain. More preferably, the number is 1,500. Note that the number of oxygen-containing polar groups in the F polymer can be quantified by the composition of the polymer or the method described in International Publication No. 2020/145133.
  • the oxygen-containing polar group may be contained in a unit based on a monomer in the F polymer, or may be contained in a terminal group of the main chain of the F polymer, with the former being preferred.
  • Examples of the latter embodiment include an F polymer having an oxygen-containing polar group as a terminal group derived from a polymerization initiator, a chain transfer agent, etc., and an F polymer obtained by subjecting the F polymer to plasma treatment or ionizing radiation treatment.
  • the monomer having a carbonyl group-containing group is preferably itaconic anhydride, citraconic anhydride, and 5-norbornene-2,3-dicarboxylic anhydride (hereinafter also referred to as "NAH”), and more preferably NAH.
  • the F polymer is preferably an F polymer containing a TFE unit and a PAVE unit and having an oxygen-containing polar group, and an F polymer containing a TFE unit, a PAVE unit, and a unit based on a monomer having a carbonyl group-containing group (F polymer ( Also referred to as 1)) is more preferable.
  • F polymer ( Also referred to as 1) a unit based on a monomer having an oxygen-containing polar group will also be referred to as an "oxygen-containing unit.”
  • F polymer (1) contains TFE units, PAVE units, and oxygen-containing units in this order in 90 to 99 mol%, 0.5 to 9.97 mol%, and 0.01 to 3 mol% of all units. More preferred is F polymer (1) containing: Specific examples of such F polymer (1) include the polymer described in International Publication No. 2018/016644.
  • the F polymer may be an F polymer that does not have an oxygen-containing unit (also referred to as F polymer (2)), or may be an F polymer that does not have an oxygen-containing polar group.
  • the F polymer (2) preferably contains 2.0 to 5.0 mol% of PAVE units based on the total units and has no oxygen-containing units.
  • F polymer (2) consists of only TFE units and PAVE units, and contains 95.0 to 98.0 mol% of TFE units and 2.0 to 5.0 mol% of PAVE units, based on the total units. Polymer (2) is more preferred.
  • the content of PAVE units in the F polymer (2) is more preferably 2.1 to 5.0 mol%, particularly preferably 2.2 to 5.0 mol%, based on the total units.
  • the F polymer (2) does not have an oxygen-containing polar group, it means that the F polymer (2) has no oxygen-containing polar group per 1 ⁇ 10 6 carbon atoms constituting the polymer main chain. means that the number of is less than 500.
  • the number of the oxygen-containing polar groups is preferably 100 or less, more preferably less than 50.
  • the lower limit of the number of oxygen-containing polar groups is usually 0.
  • the F polymer (2) may be produced using a polymerization initiator, a chain transfer agent, etc. that does not produce an oxygen-containing polar group as the terminal group of the polymer chain, and the F polymer (2) having an oxygen-containing polar group (polymerization initiation It may also be produced by fluorinating a F polymer, etc., which has an oxygen-containing polar group derived from a chemical agent at the end group of the main chain of the polymer. Examples of the fluorination treatment method include a method using fluorine gas (see Japanese Patent Application Publication No. 2019-194314, etc.).
  • the content of the F polymer in the polymer layer is preferably 50% by mass or more, more preferably 60% by mass or more.
  • the upper limit of the F polymer content is 100% by mass.
  • the polymer layer may further contain other resins than the F polymer.
  • the other resin may be a thermosetting resin or a thermoplastic resin.
  • the other resin is preferably an aromatic polymer from the viewpoint of UV absorption of the polymer layer.
  • Other resins include epoxy resin, maleimide resin, urethane resin, polyimide, polyamic acid, polyamideimide, polyphenylene ether, polyphenylene oxide, liquid crystal polyester, and fluoropolymers other than F polymer.
  • the other resins are preferably maleimide resins, polyimides, and polyamic acids from the viewpoint of flexibility of the elongated laminated base material.
  • maleimide resins, polyimides, and polyamic acids, all of which are aromatic, are more preferable.
  • the polyimide is thermoplastic.
  • the total content of maleimide, polyimide, and polyamic acid in the polymer layer is preferably 0.1 to 30% by mass, more preferably 1 to 10% by mass.
  • the ratio of the total content of maleimide, polyimide, and polyamic acid to the content of F polymer is preferably 1.0 or less, and may be from 0.01 to 0.5.
  • the polymer layer may further contain an inorganic filler from the viewpoint of further improving the low linear expansion property and electrical properties of the elongated laminated base material.
  • an inorganic filler nitride fillers and inorganic oxide fillers are preferred, including boron nitride fillers, beryllia fillers (beryllium oxide fillers), silicate fillers (silica fillers, wollastonite fillers, talc fillers), and Metal oxide (cerium oxide, aluminum oxide, magnesium oxide, zinc oxide, titanium oxide, etc.) fillers are more preferred, and silica fillers are even more preferred.
  • the content of silica in the inorganic filler is preferably 50% by mass or more, more preferably 75% by mass or more. The upper limit of the silica content is 100% by mass.
  • the inorganic filler preferably has at least a portion of its surface treated with a silane coupling agent.
  • silane coupling agent include 3-aminopropyltriethoxysilane, vinyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, and 3-mercaptopropyltrimethoxysilane.
  • -Isocyanatepropyltriethoxysilane is preferred.
  • inorganic fillers include silica fillers (such as the "Adma Fine” series manufactured by Admatex), zinc oxide surface-treated with esters such as propylene glycol dicaprate ("FINEX” series manufactured by Sakai Chemical Industry Co., Ltd.), etc. etc.), spherical fused silica (Denka's "SFP” series, etc.), coated with polyhydric alcohol and inorganic substances (Ishihara Sangyo Co., Ltd.'s "Tipeke” series, etc.), rutile type surface-treated with alkylsilane.
  • silica fillers such as the "Adma Fine” series manufactured by Admatex
  • esters such as propylene glycol dicaprate (“FINEX” series manufactured by Sakai Chemical Industry Co., Ltd.), etc. etc.
  • SFP spherical fused silica
  • coated with polyhydric alcohol and inorganic substances Ishihara Sangyo Co., Ltd.'s "Tipeke
  • Titanium oxide (“JMT” series manufactured by Teika, etc.), hollow silica filler (“E-SPHERES” series manufactured by Taiheiyo Cement Co., Ltd., "Silinax” series manufactured by Nippon Steel Mining Co., Ltd., manufactured by Emerson & Cumming Company) ⁇ Ecoco Fire'' series, etc.), talc filler ( ⁇ SG'' series, manufactured by Nippon Talc Co., Ltd.), steatite filler ( ⁇ BST'' series, manufactured by Nippon Talc Co., Ltd.), boron nitride filler ( ⁇ UHP'', manufactured by Showa Denko Co., Ltd.) series, "Denka Boron Nitride” series ("GP", “HGP” grades) manufactured by Denka Corporation, etc.).
  • the content of the inorganic filler in the polymer layer is preferably 1% by mass or more, more preferably 3% by mass or more.
  • the content of the inorganic filler is preferably 40% by mass or less, more preferably 30% by mass or less, and even more preferably 20% by mass or less.
  • the ratio (mass ratio) of the content of the inorganic filler to the content of the F polymer in the polymer layer is preferably 0.01 or more, and more preferably 0.1 or more. The above ratio is preferably 1 or less, more preferably 0.8 or less.
  • the polymer layer also contains silane coupling agents, dehydrating agents, plasticizers, weathering agents, antioxidants, heat stabilizers, lubricants, antistatic agents, brighteners, colorants, conductive agents, and release agents. It may also contain additives such as molding agents, surface treatment agents, and flame retardants.
  • the polymer layer is preferably a layer containing sintered bodies of particles of tetrafluoroethylene polymer, that is, particles containing F polymer.
  • the particles of the tetrafluoroethylene polymer will also be referred to as "F particles.”
  • F particles the particles of the tetrafluoroethylene polymer
  • the polymer layer may contain components other than F particles.
  • Components other than the F particles include components other than the above-mentioned F polymer, and specific examples include resins other than the F polymer, inorganic fillers, additives, and the like.
  • D50 of the F particles is preferably 0.1 ⁇ m or more, more preferably more than 0.3 ⁇ m, and even more preferably 1 ⁇ m or more.
  • D50 of the F particles is preferably 25 ⁇ m or less, more preferably 10 ⁇ m or less, further preferably 8 ⁇ m or less, and particularly preferably 6 ⁇ m or less.
  • the specific surface area of the F particles is preferably 1 to 25 m 2 /g.
  • One type of F particles may be used alone, or two or more types may be used.
  • the content of the F polymer in the F particles is preferably 80% by mass or more, more preferably 100% by mass. That is, the F particles are preferably particles made of F polymer. Components other than the F polymer that may be included in the F particles include resins other than the F polymer, inorganic fillers, and the like.
  • the thickness of each of the two polymer layers is 12 to 40 ⁇ m, preferably 16 to 36 ⁇ m, and more preferably 20 to 33 ⁇ m from the viewpoint of dimensional stability of the laminated base material.
  • the thickness of one of the two polymer layers is preferably 0.9 to 1.1 times the thickness of the other polymer layer from the viewpoint of suppressing the occurrence of waviness in the long laminated base material.
  • the total thickness of the two polymer layers is preferably 1.8 to 3.0 times the thickness of the base material, more preferably 1.8 to 2.4 times, from the viewpoint of the electrical properties of the laminated base material.
  • the two polymer layers are such that the thickness of one polymer layer is 0.9 to 1.1 times the thickness of the other polymer layer, and the total thickness of the two polymer layers is the thickness of the substrate. It is preferably 1.8 to 3.0 times the height.
  • the Sdq on the exposed surface of the polymer layer is 5 ⁇ m/mm or less, even if the total thickness of the two polymer layers is 1.8 times or more the thickness of the base material, the long laminated base material The occurrence of waviness in the material is suppressed.
  • Both of the two polymer layers have an Sdq on the exposed surface of 5 ⁇ m/mm or less, preferably 4 ⁇ m/mm or less, and more preferably 3 ⁇ m/mm or less. It is preferable that Sdq is 0 ⁇ m/mm or more.
  • Sdq is obtained by measuring the exposed surface based on ISO25178-2:2012.
  • the measurement method include a contact method, a white light interference method, and a point autofocus method.
  • a surface texture measuring machine manufactured by Zygo, product name: Newview 7300
  • magnification 1.4 ⁇ 0.5 times
  • scan pitch 100 ⁇ m
  • analysis size 12.621 mm 2
  • filter type Spline
  • filter Low Pass high frequency 1 ⁇ m
  • type Gaussian Spline Fixed.
  • the Sdq on the exposed surface of the polymer layer can be controlled by the method and conditions for forming the polymer layer.
  • a composition containing F particles and a liquid dispersion medium is coated on the surface of a base material and heat-treated to form a polymer layer, and when the composition is coated, the outer periphery of the back roll used is coated.
  • the ten-point average roughness Rzjis of the surface and the contact surface pressure of the base material with the back roll are adjusted to the ranges described below.
  • an example of a method for manufacturing the elongated laminated base material of this embodiment in which the exposed surface of the polymer layer has an Sdq of 5 ⁇ m/mm or less will be described.
  • a method for producing a long laminated base material is to provide a back roll having a ten-point average roughness Rzjis of 0.5 to 10 ⁇ m on the outer circumferential surface of the back roll so that the contact surface pressure is 100 to 3000 kPa.
  • a long base material having a thickness of 12 to 50 ⁇ m is conveyed while the second surface thereof is in contact with the base material, and a composition containing tetrafluoroethylene polymer particles (i.e., F particles) and a liquid dispersion medium is prepared.
  • a first layer is formed on the first surface by applying a substance to the first surface of the base material and heat-treating the same;
  • a second layer is formed on the second surface by transporting the base material while contacting the first layer so that the composition is applied to the second surface and heat-treated. to do and to have.
  • the base material, the first polymer layer containing the F polymer and having a thickness of 12 to 40 ⁇ m, and the first polymer layer containing the F polymer and having a thickness of 12 to 40 ⁇ m are formed.
  • a second polymer layer having a thickness of 12 to 40 ⁇ m is obtained.
  • the ten-point average roughness Rzjis on the outer peripheral surface of the back roll is also simply referred to as "Rzjis”
  • the contact surface pressure of the base material with respect to the outer peripheral surface of the back roll is also simply referred to as "contact surface pressure”.
  • the first polymer layer is also referred to as the "PA1 layer” and the second polymer layer is also referred to as the "PA2 layer.” ”
  • a long laminated base material in which the Sdq on the exposed surfaces of the two polymer layers is 5 ⁇ m/mm or less can be obtained.
  • the reason for this is not clear, but by setting the Rzjis and contact pressure within the above ranges, it is possible to suppress the stick-slip phenomenon caused by the adhesion of the base material to the back roll, and to make the uneven shape of the outer circumferential surface of the back roll more suitable for the polymer layer. It is presumed that this is because it is possible to simultaneously suppress transfer to the exposed surface.
  • the base material is less likely to stick to the back roll compared to when it is smaller than the above range, and this is a phenomenon in which the base material repeatedly adheres and slips on the outer peripheral surface of the back roll. Stick-slip phenomenon is suppressed. Therefore, it is assumed that periodic fluctuations in the thickness of the formed polymer layer due to the stick-slip phenomenon are suppressed, and Sdq on the exposed surface of the resulting polymer layer is reduced. Furthermore, since Rzjis is within the above range, the uneven shape of the outer peripheral surface of the back roll is temporarily transferred to the exposed surface of the polymer layer when the base material and the back roll come into contact, compared to when it is larger than the above range. is suppressed. Therefore, it is assumed that the flow of the applied composition due to the temporary transfer of the uneven shape and the occurrence of unevenness is suppressed, and the Sdq on the exposed surface of the polymer layer is reduced.
  • the contact surface pressure is within the above range, air is prevented from being caught between the base material and the outer circumferential surface of the back roll, compared to a case where the contact surface pressure is smaller than the above range.
  • the contact surface pressure is within the above range, uneven coating of the composition may occur between the part where the air is caught and the part where the air is not caught.
  • the contact surface pressure is within the above range, the above coating unevenness is suppressed, and as a result, the Sdq on the exposed surface of the resulting polymer layer is reduced.
  • the contact surface pressure is within the above range, the base material is less likely to stick to the back roll, the stick-slip phenomenon is suppressed, and the Sdq on the exposed surface of the resulting polymer layer is small, compared to when it is greater than the above range. It is assumed that.
  • the method for producing a long laminated base material according to the present embodiment may further include winding the obtained long laminated base material around a winding core to form a roll-shaped base material (i.e., a rolled sheet). .
  • a roll sheet in which the elongated laminated base material is wound around the core is obtained.
  • FIG. 2 is a schematic diagram schematically showing a coating section of an apparatus used in the method for manufacturing a long laminated base material according to the present embodiment.
  • the coating section of the apparatus used in the method for manufacturing a long laminated base material according to the present embodiment includes a back roll 20 for conveying the base material 12 to be coated, and a back roll 20 for conveying the base material 12 to be coated, and It has a coating member 22 that applies a coating composition to a work surface.
  • the back roll 20 rotates in a state where the surface of the base material 12 opposite to the coated surface is in pressure contact with the outer peripheral surface of the back roll 20, and the base material 12 is conveyed.
  • a composition for forming a polymer layer is coated by the coating member 22, and a composition layer 26 is formed.
  • the material of the back roll 20 may be any of metal, rubber, and resin.
  • Examples of the back roll 20 include a roll in which an elastic layer containing at least one selected from the group consisting of rubber and resin is provided on the outer peripheral surface of a cylindrical metal base material.
  • examples of the material of the metal base include iron, stainless steel, titanium, aluminum, and the like.
  • the outer diameter of the back roll 20 is not particularly limited, and may be, for example, 100 to 500 mm, and may be 150 to 350 mm.
  • Rzjis on the outer peripheral surface of the back roll 20 is 0.5 to 10 ⁇ m, preferably 0.5 to 8 ⁇ m, more preferably 1 to 6 ⁇ m, from the viewpoint of forming a polymer layer with a small Sdq on the exposed surface. Measurement and calculation of Rzjis is performed in accordance with JIS B 0601:2013, for example, using a high-precision shape measurement system (for example, "KS-1100" manufactured by Keyence Corporation, tip head model number "LT-9510VM”). I will do it. Rzjis may be adjusted by polishing the outer peripheral surface of the back roll 20, or may be adjusted by the type and amount of components (such as inorganic filler) added when forming the outermost layer of the back roll 20.
  • the contact surface pressure of the base material 12 with respect to the outer peripheral surface of the back roll 20 is 100 to 3000 kPa, preferably 200 to 2000 kPa, more preferably 250 to 2000 kPa, and 250 to 2000 kPa from the viewpoint of forming a polymer layer with a small Sdq on the exposed surface. ⁇ 1000kPa is more preferred.
  • the contact surface pressure when forming the first layer and the contact surface pressure when forming the second layer may be the same or different.
  • the contact pressure when forming the second layer is preferably 0.8 to 1.2 times, more preferably 0.9 to 1.1 times, the contact pressure when forming the first layer. More preferably, they are substantially the same.
  • the above-mentioned contact surface pressure can be measured by, for example, a surface pressure distribution system manufactured by Nitta. Specifically, for example, a sensor sheet of a surface pressure distribution system (manufactured by Nitta Co., Ltd.) is sandwiched between the back roll 20 and the base material 12, and the value obtained by measurement is taken as the above-mentioned contact surface pressure.
  • the above-mentioned contact surface pressure may be adjusted by the unwinding tension of the base material 12 or by the winding tension of the base material 12.
  • the composition applied to the coating surface of the base material 12 contains F particles and a liquid dispersion medium.
  • the content of F particles in the composition is preferably 5 to 60% by mass, more preferably 25 to 50% by mass. Since the details of the F particles are as described above, the explanation will be omitted.
  • the composition may contain components other than the F particles.
  • the details of the resin other than the F polymer and the inorganic filler are also as described above, so the explanation will be omitted.
  • the liquid dispersion medium is preferably a compound that is liquid at 25°C under atmospheric pressure and has a boiling point of 50 to 240°C.
  • One type of liquid dispersion medium may be used, or two or more types may be used. When two types of liquid dispersion media are used, it is preferable that the two types of liquid dispersion media are compatible with each other.
  • the liquid dispersion medium is preferably a compound selected from the group consisting of water, amides, ketones, and esters.
  • Amides include N-methyl-2-pyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide, N,N-dimethylpropanamide, 3-methoxy-N,N-dimethylpropanamide, 3-butoxy- N,N-dimethylpropanamide, N,N-diethylformamide, hexamethylphosphoric triamide, and 1,3-dimethyl-2-imidazolidinone are mentioned.
  • Ketones include acetone, methyl ethyl ketone, methyl isopropyl ketone, methyl isobutyl ketone, methyl n-pentyl ketone, methyl isopentyl ketone, 2-heptanone, cyclopentanone, cyclohexanone, and cycloheptanone.
  • esters include methyl acetate, ethyl acetate, butyl acetate, methyl lactate, ethyl lactate, methyl pyruvate, ethyl pyruvate, methyl methoxypropionate, ethyl ethoxypropionate, ethyl 3-ethoxypropionate, ⁇ -butyrolactone, and ⁇ .
  • the liquid dispersion medium is preferably a dispersion medium containing water from the viewpoint of versatility of the apparatus that can be used for production.
  • the liquid dispersion medium preferably further contains a nonionic surfactant from the viewpoint of improving the dispersion stability of the F particles.
  • nonionic surfactants include acetylene surfactants, silicone surfactants, and fluorine surfactants.
  • Specific examples of nonionic surfactants include the "Ftergent” series (manufactured by Neos Corporation), the “Surflon” (registered trademark) series (manufactured by AGC Seimi Chemical Co., Ltd.), and the "Megafac” (registered trademark) series (manufactured by DIC Corporation).
  • the content of the nonionic surfactant in the liquid dispersion medium is preferably 1 to 10% by mass, and 2. It is more preferably .5 to 8% by weight, and even more preferably 4 to 6% by weight.
  • the surface tension of the liquid dispersion medium is, for example, in the range of 20 to 35 mN/m, preferably 20 to 30 mN/m.
  • the composition easily adapts to the surface of the base material, making it easier to obtain a polymer layer with a small Sdq on the exposed surface.
  • the surface tension of the liquid dispersion medium is a value measured at 25° C. using a Dunuy surface tension meter in accordance with JIS K 2241:2007.
  • the measurement is performed, for example, after solid components such as F particles are removed from the composition by filtration or the like.
  • the content of the liquid dispersion medium is preferably 30% by mass or more, more preferably 40% by mass or more based on the total mass of the composition.
  • the content of the liquid dispersion medium is preferably 80% by mass or less, more preferably 60% by mass or less based on the total mass of the composition.
  • the content of the above-mentioned liquid dispersion medium means the total amount of substances excluding solid content from the composition.
  • the solid content concentration in the composition is preferably 20% by mass or more, more preferably 40% by mass or more based on the total mass of the composition.
  • the solid content concentration is preferably 70% by mass or less, more preferably 60% by mass or less.
  • solid content means the total amount of substances forming solid content in a molded article formed from the composition. Specifically, F particles are included in the solid content, if the composition contains other resins, the other resins are also included in the solid content, and if the composition contains an inorganic filler, the inorganic filler is also included in the solid content. include.
  • the composition further contains a thixotropic agent, a viscosity modifier, an antifoaming agent, a dehydrating agent, a plasticizer, a weathering agent, an antioxidant, a heat stabilizer, a lubricant, an antistatic agent, a whitening agent, a coloring agent, and a conductive agent. It may contain additives such as a mold release agent, a surface treatment agent, a flame retardant, and various fillers including conductive fillers.
  • the viscosity of the composition is preferably 10 mPa ⁇ s or more, more preferably 100 mPa ⁇ s or more.
  • the viscosity of the composition is preferably 10,000 mPa ⁇ s or less, more preferably 3,000 mPa ⁇ s or less.
  • the thickness of the composition layer is more likely to be uniform, and a polymer layer with a small Sdq on the exposed surface is more likely to be obtained than when the viscosity is higher than the above range.
  • the liquid dispersion medium of the composition may contain a thickener.
  • the thickener include urethane thickeners, polyacrylic thickeners, polyamide thickeners, cellulose thickeners, and thickeners such as clay minerals such as bentonite.
  • the content of the thickener in the liquid dispersion medium may be in the range of 0.1 to 5% by mass.
  • the composition is obtained by mixing F particles and, if necessary, other resins, inorganic fillers, liquid dispersion media, additives, and the like. There is no particular restriction on the order of mixing, and the mixing method may be all at once or divided into multiple batches.
  • Mixing devices for obtaining the composition include stirring devices equipped with blades such as Henschel mixers, pressure kneaders, Banbury mixers, and planetary mixers; ball mills, attritors, basket mills, sand mills, sand grinders, dyno mills, and dispers.
  • Grinding equipment equipped with media such as mats, SC mills, spike mills, and agitator mills; microfluidizers, nanomizers, articulzers, ultrasonic homogenizers, resolvers, dispersers, high-speed impellers, thin-film rotating high-speed mixers, and rotation-revolution stirrers. and a dispersion device equipped with other mechanisms such as a V-type mixer.
  • Methods for applying the composition to the coated surface of the base material 12 include a spray method, a roll coating method, a spin coating method, a gravure coating method, a microgravure coating method, a gravure offset method, a knife coating method, a kiss coating method, and a bar coating method.
  • coating methods include coating method, die coating method, Fountain- Mayer bar method, slot die coating method, and small diameter gravure reverse method.
  • the conveyance speed of the substrate 12 when coating the coating surface of the substrate 12 with the composition is not particularly limited, and may be, for example, 2 to 50 m/min.
  • Methods for heat-treating the composition layer 26 formed by coating the composition on the coated surface of the base material 12 include a method using an oven, a method using a ventilation drying oven, a method of irradiating heat rays such as infrared rays, etc. Can be mentioned.
  • the atmosphere in the heat treatment may be either normal pressure or reduced pressure. Further, the above-mentioned atmosphere may be any of an oxidizing gas (oxygen gas, etc.) atmosphere, a reducing gas (hydrogen gas, etc.) atmosphere, and an inert gas (rare gas, nitrogen gas) atmosphere.
  • the heat treatment includes heat treatment for the purpose of drying to remove at least a portion of the liquid dispersion medium contained in the composition layer 26 (hereinafter also referred to as “drying treatment”), and heat treatment for the purpose of firing the F particles contained in the composition layer 26.
  • drying treatment heat treatment
  • firing treatment heat treatment
  • the heating temperature in the drying treatment is preferably 120 to 200°C.
  • the holding time of the heating temperature in the drying treatment is preferably 0.1 to 10 minutes.
  • the drying process may be performed in one stage or in two or more stages at different temperatures.
  • the heating temperature in the firing treatment is preferably a temperature equal to or higher than the melting point of the F polymer, specifically preferably 280 to 400°C, more preferably 300 to 380°C.
  • the holding time of the heating temperature in the firing treatment is preferably 0.5 to 30 minutes.
  • the firing process may be performed in one step, or may be performed in two or more steps at different temperatures.
  • the heat treatment in the step of heat-treating the composition layer 26 formed on the first surface of the base material 12 to form the first layer may be only a drying treatment, or only a baking treatment, or a drying treatment and a step after the drying treatment.
  • the heat treatment may include both the firing treatment and the firing treatment performed. That is, the first layer may be a layer in which the composition layer 26 has been subjected to a drying process and the F particles are not fired, or it may be a P-A1 layer containing a sintered body in which the F particles are fired.
  • the heat treatment in the step of forming the second layer by heat-treating the composition layer 26 formed on the second surface of the base material 12 after the first layer is formed on the first surface of the base material 12 is as follows: It may be only a baking treatment, or it may be a heat treatment including both a drying treatment and a baking treatment performed after the drying treatment.
  • a second polymer layer which is a second layer, is formed on the second surface of the base material 12. If the firing process is not performed in the process of forming the first layer, that is, if the F particles in the first layer are not fired, the first layer is also fired in the process of forming the second layer.
  • a P-A1 layer containing a sintered body in which F particles are fired is obtained.
  • the winding core used in the process of winding the obtained long laminated base material around a winding core to form a rolled sheet is not particularly limited, and examples include a cylindrical member having an axial length equal to or larger than the width of the base material 12. It will be done.
  • the cylindrical core may be a cylindrical core with a cavity, or a cylindrical core without a cavity.
  • the material of the winding core is not particularly limited, and examples thereof include resin, rubber, metal, and combinations thereof.
  • the outer diameter of the core is 50 to 240 mm, and the curvature of the outer peripheral surface of the core is 0.009 to 0.049 mm ⁇ 1 .
  • the thickness of the winding core is not particularly limited, and is preferably 5 mm or more from the viewpoint of maintaining the strength of the winding core.
  • the winding stress applied to the long laminated base material when the obtained long laminated base material is wound around the outer peripheral surface of the winding core is preferably 1 to 3 MPa.
  • the winding stress is within the above range, the winding deviation in which the long laminated base material is wound while being shifted in the axial direction of the winding core is suppressed, compared to a case where the winding stress is smaller than the above range.
  • the winding stress is within the above range, curling in the elongated laminated base material that is rolled out after being made into a roll sheet is suppressed compared to when it is larger than the above range.
  • the total thickness of the elongated laminated base material is 36 ⁇ m or more, preferably 50 ⁇ m or more, and more preferably 75 ⁇ m or more from the viewpoint of dimensional stability of the laminated base material.
  • the total thickness of the long laminated base material is 130 ⁇ m or less, and from the same viewpoint, it is preferably 120 ⁇ m or less, and more preferably 100 ⁇ m or less.
  • the width, which is the length in the lateral direction of the long laminated base material, is preferably 500 to 1250 mm from the viewpoint of dimensional stability of the laminated base material.
  • the length of the long laminated base material in the longitudinal direction is preferably 100 to 1000 m.
  • the length in the longitudinal direction of the elongated laminated base material is preferably 50 times or more, more preferably 100 times or more, the width of the elongated laminated base material.
  • the length in the longitudinal direction of the elongated laminated base material is preferably 1000 times or less the width of the elongated laminated base material.
  • the elongated laminated base material of this embodiment is used, for example, to produce a metal-clad laminate for producing a printed wiring board.
  • the metal-clad laminate includes, for example, a laminated base material obtained by cutting a part of the elongated laminated base material of this embodiment, and a metal foil layer provided on one surface of the laminated base material.
  • the metal constituting the metal foil layer include copper, copper alloy, stainless steel, nickel, nickel alloy (including 42 alloy), aluminum, aluminum alloy, titanium, titanium alloy, and the like.
  • Copper foil is preferred as the metal foil for forming the metal foil layer.
  • Examples of the copper foil include rolled copper foil, electrolytic copper foil, sputtering plated copper foil, electroless plated copper foil, and the like.
  • rolled copper foil with no distinction between front and back and electrolytic copper foil with distinct front and back are more preferred, and rolled copper foil is even more preferred. Since rolled copper foil has a small surface roughness, transmission loss can be reduced even when a metal clad laminate is processed into a printed wiring board. Moreover, it is preferable to use the rolled copper foil after immersing it in a hydrocarbon-based organic solvent to remove rolling oil.
  • the thickness of the metal foil layer is preferably less than 20 ⁇ m, more preferably 2 to 15 ⁇ m.
  • a part of the elongated laminated base material of this embodiment is cut to obtain a laminated base material, and then a metal foil layer is formed on the exposed surface of the polymer layer in the laminated base material.
  • An example of this method is to provide a.
  • Methods for providing a metal foil layer on a laminated base material include a method in which the laminated base material and metal foil are stacked so that the metal foil is in contact with the exposed surface of the polymer layer of the laminated base material, and the laminated base material is laminated by hot pressing. Examples include a method of forming a metal foil layer by directly plating the exposed surface of the polymer layer of the material.
  • the method for producing a metal-clad laminate includes unwinding the elongated laminated base material and the elongated metal foil of the present embodiment together, and providing a metal foil layer on the exposed surface of the polymer layer of the elongated laminated base material. It may also be a method for obtaining a metal-clad laminate.
  • the metal-clad laminate has excellent physical properties such as electrical properties, heat resistance such as solder reflow resistance, drilling workability, chemical resistance, and surface smoothness. Therefore, the metal-clad laminate is suitable as a printed wiring board material, and can be easily and efficiently processed into flexible printed wiring boards, rigid printed wiring boards, and the like.
  • a printed wiring board is obtained by etching the metal foil layer of the metal clad laminate to form a transmission circuit. That is, the method for manufacturing a printed wiring board is a method in which a metal foil of a metal clad laminate is processed by etching to form a transmission circuit to obtain a printed wiring board. Note that both a wet etching method and a dry etching method can be used for etching.
  • an interlayer insulating film may be formed on the transmission circuit, and a conductor circuit may be further formed on the interlayer insulating film.
  • a long sheet roll in an embodiment of the present disclosure includes a cylindrical winding core and a long laminated base material wound around the outer peripheral surface of the winding core, and the long laminated base material has a thickness of A base material having a thickness of 12 to 50 ⁇ m, and two polymer layers each containing a tetrafluoroethylene polymer and having a thickness of 12 to 40 ⁇ m, provided on both sides of the base material, and having a thickness of 12 to 40 ⁇ m.
  • the total thickness of the two polymer layers is 1.8 to 3.0 times the thickness of the substrate, and the thickness of one of the two polymer layers is 0 times the thickness of the other polymer layer.
  • the value of the product C ⁇ T of the curvature Cmm ⁇ 1 at the outer diameter of the winding core and the total thickness Tmm of the elongated laminated base material is less than 0.0015.
  • the tetrafluoroethylene polymer is also referred to as "F polymer”
  • the curvature at the outer diameter of the winding core is also referred to as “curvature”
  • the total thickness of the long laminated base material is also referred to as “laminated thickness”
  • product of 1 and the lamination thickness Tmm is also referred to as "product C ⁇ T”.
  • long means that the length in the longitudinal direction is 100 m or more.
  • the length of the long laminated base material in the longitudinal direction is preferably 200 m or more.
  • the length in the longitudinal direction is preferably 1000 m or less.
  • a long sheet roll in which a long laminated base material is wound around the outer peripheral surface of a winding core is used, for example, to produce a metal-clad laminate.
  • a metal foil is crimped onto the surface of a laminated base material obtained by unwinding a part of the long laminated base material from a long sheet roll, thereby obtaining a metal-clad laminate.
  • a long laminated base material in which polymer layers containing the F polymer are provided on both sides of the base material can be expected to have both the physical properties of the F polymer and the physical properties of the base material.
  • a heat-resistant base material containing a heat-resistant resin is used as a base material, physical properties such as heat resistance and dimensional stability, and electrical properties such as low dielectric constant and low dielectric loss tangent, which are the physical properties of F polymer, can be improved.
  • a long laminated base material having both can be obtained.
  • the total thickness of the two polymer layers is 1.8 to 3.0 times the thickness of the base material, and the thickness of one of the two polymer layers is The thickness is 0.9 to 1.1 times that of the other polymer layer, and the product C ⁇ T is less than 0.0015.
  • the present inventors have found that the above configuration suppresses curling in the elongated laminated base material and suppresses wrinkles in the metal foil caused by curling. Although the reason is not certain, it is assumed as follows.
  • the above-mentioned curvature is a value representing the degree of bending on the outer circumferential surface of the winding core, and the tighter the degree of bending, the larger the value of the curvature.
  • the curvature of a circle with radius r is 1/r.
  • a long laminated base material is wound around a cylindrical winding core, different stresses are generated between the outer polymer layer and the inner polymer layer of the long laminated base material.
  • the larger the curvature of the winding core the larger the difference between the stress generated in the outer polymer layer and the stress generated in the inner polymer layer, and the distortion caused by the difference in stress tends to cause curling.
  • the product C ⁇ T should be less than 0.0015, and the ratio of the total thickness of the two polymer layers to the thickness of the base material should be larger than 1.8 times. Therefore, the difference in stress during winding is easily absorbed by the long laminated base material.
  • FIG. 3 is a perspective view schematically showing a long sheet roll according to this embodiment.
  • FIG. 4 is a schematic cross-sectional view showing the layer structure of the elongated laminated base material in the elongated sheet roll shown in FIG. 3.
  • FIG. The long sheet roll 100 shown in FIG. 3 has a cylindrical winding core 120 and a long laminated base material 10 wound around the outer peripheral surface of the winding core 120.
  • the long laminated base material 10 includes a base material 12, and a polymer layer 14 and a polymer layer 16 provided on both sides of the base material 12, respectively.
  • the winding core is not particularly limited as long as it is a cylindrical winding core, and a cylindrical core whose axial length is equal to or longer than the short-side length (hereinafter also referred to as "width") of the long laminated base material described later.
  • the cylindrical core may be a cylindrical core with a cavity, or a cylindrical core without a cavity.
  • the material of the winding core is not particularly limited, and examples thereof include resin, rubber, metal, and combinations thereof.
  • the material of the winding core is preferably resin or rubber from the viewpoint of handling properties and dimensional stability.
  • the outer diameter of the winding core is 50 to 240 mm, preferably 80 to 200 mm, and more preferably 90 to 185 mm from the viewpoint of suppressing curling of the long laminated base material.
  • the curvature is 0.009 to 0.037 mm -1 , preferably 0.010 to 0.025 mm -1 , and 0.011 to 0.022 mm - from the viewpoint of suppressing curling of the long laminated base material. 1 is more preferred.
  • the length of the winding core in the axial direction may be at least the length of the elongated laminated base material in the lateral direction, and is, for example, in the range of 500 to 1250 mm.
  • the thickness of the winding core is not particularly limited, and is preferably 5 mm or more from the viewpoint of maintaining the strength of the winding core.
  • the product C ⁇ T is less than 0.0015, preferably 0.0012 or less, more preferably 0.00120 or less from the viewpoint of suppressing curling of the long laminated base material.
  • the lower limit of the product C ⁇ T is preferably 0.0010 or more.
  • Examples of the base material include the same base materials as those used in the long laminated base material and the method for producing the same described above, and preferred embodiments of the base material are also the same as those for the long laminated base material and the method for producing the same described above. be.
  • the thickness of the base material, the width that is the length of the base material in the transverse direction, and the length of the base material in the longitudinal direction are also the same as those of the base material in the long laminated base material and the manufacturing method thereof described above.
  • the preferred embodiments are also the same as those in the elongated laminated base material and the manufacturing method thereof described above.
  • the polymer layers are layers provided on both sides of the base material.
  • the two polymer layers provided on both sides of the base material are not particularly limited as long as they both contain F polymer and have a thickness of 12 to 40 ⁇ m.
  • both of the two polymer layers are provided in direct contact with the base material.
  • the two polymer layers may each contain only one type of F polymer, or may contain two or more types of F polymer.
  • the compositions of the two polymer layers may be the same or different.
  • F polymer examples include the same F polymer as in the above-mentioned long laminated base material and method for producing the same, including its preferred embodiments.
  • the content of the F polymer in the polymer layer is preferably 50% by mass or more, more preferably 60% by mass or more.
  • the upper limit of the F polymer content is 100% by mass.
  • the polymer layer may further contain other resins than the F polymer.
  • the other resin may be a thermosetting resin or a thermoplastic resin.
  • Examples of the other resins include the same resins as those used in the elongated laminated base material and the manufacturing method thereof described above, including their preferred embodiments.
  • the polymer layer may further contain an inorganic filler from the viewpoint of further improving the low linear expansion property and electrical properties of the elongated laminated base material.
  • an inorganic filler examples include the same inorganic fillers as those used in the above-described long laminated base material and method for producing the same, including preferred embodiments thereof.
  • the content of the inorganic filler in the polymer layer is within the same range as the inorganic filler in the above-described long laminated base material and method for producing the same, including its preferred range.
  • the polymer layer also contains silane coupling agents, dehydrating agents, plasticizers, weathering agents, antioxidants, heat stabilizers, lubricants, antistatic agents, brighteners, colorants, conductive agents, and release agents. It may also contain additives such as molding agents, surface treatment agents, and flame retardants.
  • the polymer layer is preferably a layer containing sintered bodies of particles of tetrafluoroethylene polymer, that is, particles containing F polymer.
  • the particles of the tetrafluoroethylene polymer will also be referred to as "F particles.”
  • F particles the particles of the tetrafluoroethylene polymer.
  • the polymer layer may contain components other than F particles.
  • Components other than the F particles include components other than the above-mentioned F polymer, and specific examples include resins other than the F polymer, inorganic fillers, additives, and the like.
  • the D50 of the F particles includes the same range as the D50 of the F particles in the above-mentioned elongated laminated base material and method for producing the same, including its suitable range.
  • the specific surface area of the F particles is preferably 1 to 25 m 2 /g.
  • One type of F particles may be used alone, or two or more types may be used.
  • the content of the F polymer in the F particles is within the same range as the content of the F polymer in the F particles in the above-mentioned long laminated base material and method for producing the same, including its preferred range.
  • each of the two polymer layers is 12 to 40 ⁇ m, preferably 16 to 36 ⁇ m, and more preferably 20 to 33 ⁇ m from the viewpoint of dimensional stability of the laminated base material.
  • the thickness of one of the two polymer layers is 0.9 to 1.1 times the thickness of the other polymer layer.
  • the total thickness of the two polymer layers is 1.8 to 3.0 times the thickness of the base material, and from the viewpoint of suppressing curling of the long laminated base material, the total thickness is 1.8 to 2.4 times the thickness of the base material. More preferred.
  • the lamination thickness which is the total thickness of the elongated laminated base material, is 36 ⁇ m or more, preferably 50 ⁇ m or more, and more preferably 75 ⁇ m or more from the viewpoint of dimensional stability of the laminated base material.
  • the total thickness of the long laminated base material is 130 ⁇ m or less, and from the same viewpoint, it is preferably 120 ⁇ m or less, and more preferably 100 ⁇ m or less.
  • the width, which is the length in the lateral direction of the long laminated base material, is preferably 500 to 1250 mm from the viewpoint of dimensional stability of the laminated base material.
  • the length of the long laminated base material in the longitudinal direction is preferably 100 to 1000 m, more preferably 200 to 1000 m.
  • the length in the longitudinal direction of the elongated laminated base material is preferably 50 times or more, more preferably 100 times or more, the width of the elongated laminated base material.
  • the length in the longitudinal direction of the elongated laminated base material is preferably 1000 times or less the width of the elongated laminated base material.
  • the height of the laminated base material piece lifted from the horizontal surface is preferably 1 cm or less, More preferably, it is 0.5 cm or less.
  • the lift height is within the above range, the generation of wrinkles in the metal foil is suppressed when a metal clad laminate is manufactured using the laminate base material piece, compared to when the height is higher than the above range.
  • the above-mentioned floating height refers to the height from the horizontal plane at the farthest position from the horizontal plane among the floating parts of the laminated base material piece placed on the horizontal plane.
  • the width of the laminated base material piece is the same as the width of the elongated laminated base material.
  • a method for manufacturing a long sheet roll includes a base material having a thickness of 12 to 50 ⁇ m, and a 2-layer film having a thickness of 12 to 40 ⁇ m, which is provided on both sides of the base material, contains an F polymer, and has a thickness of 12 to 40 ⁇ m.
  • one polymer layer, the total thickness of the two polymer layers is 1.8 to 3.0 times the thickness of the base material, and the thickness of one of the two polymer layers is Preparing a long laminated base material whose thickness is 0.9 to 1.1 times the thickness of the other polymer layer, and winding the long laminated base material around the outer peripheral surface of a cylindrical winding core.
  • the value of the product C ⁇ T of the curvature Cmm ⁇ 1 at the outer diameter of the winding core and the total thickness Tmm of the elongated laminated base material is less than 0.0015.
  • the method for preparing the elongated laminated base material is not particularly limited, and the elongated laminated base material may be manufactured, or the completed elongated laminated base material may be used as is.
  • the method for producing the long laminated base material is not particularly limited, and may be a method in which a composition containing F particles and a liquid dispersion medium is coated on both sides of the base material and heat treated (hereinafter also referred to as "Method B1"). Alternatively, a method may be used in which films containing the F polymer are laminated on both sides of the base material. It is preferable that the elongated laminated base material is manufactured by method B1. By manufacturing by method B1, the two polymer layers formed become layers containing sintered bodies of F particles, and the occurrence of curl in the elongated laminated base material is easily suppressed. An example of method B1 will be described below.
  • the base material is first conveyed while bringing the second surface (hereinafter also referred to as "surface B2") of the base material into contact with the outer circumferential surface of the back roll, and the base material containing the F particles and the liquid dispersion medium is transported.
  • a layer (hereinafter also referred to as “layer B1") is formed on surface B1 by coating the composition on the first surface (hereinafter also referred to as "surface B1") of the base material and heat-treating the composition.
  • the base material is conveyed while bringing the layer B1 into contact with the outer peripheral surface of the back roll, and the composition is applied to the surface B2 and heat-treated to form a layer (hereinafter also referred to as "layer B2") on the surface B2.
  • layer B2 a layer
  • a long laminated base material which includes the base material, a polymer layer in which layer B1 is a heat-treated layer and contains F polymer, and layer B2, a polymer layer containing F polymer.
  • the heat-treated polymer layer B1 will also be referred to as the "P-B1 layer”
  • the polymer layer B2 will also be referred to as the "P-B2 layer”.
  • composition applied to the surface of the substrate contains F particles and a liquid dispersion medium.
  • the details of the composition and the F particles in the composition, including their preferred embodiments, are the same as those in the elongated laminated base material and the manufacturing method thereof described above.
  • the composition may contain components other than the F particles.
  • the details of the resin other than the F polymer and the inorganic filler are also as described above, so the explanation will be omitted.
  • the liquid dispersion medium has the same aspects as the liquid dispersion medium in the above-mentioned elongated laminated base material and its manufacturing method, including its preferred aspects.
  • the liquid dispersion medium preferably further contains a nonionic surfactant from the viewpoint of improving the dispersion stability of the F particles.
  • the nonionic surfactant has the same embodiments as the nonionic surfactant in the above-described long laminated base material and method for producing the same, including its preferred embodiment.
  • the respective aspects of the content of the liquid dispersion medium, the solid content concentration in the composition, and the viscosity of the composition are the same as those in the long laminated base material and the manufacturing method thereof described above. be.
  • the composition further contains a thixotropic agent, a viscosity modifier, an antifoaming agent, a dehydrating agent, a plasticizer, a weathering agent, an antioxidant, a heat stabilizer, a lubricant, an antistatic agent, a whitening agent, a coloring agent, and a conductive agent. It may contain additives such as a mold release agent, a surface treatment agent, a flame retardant, and various fillers including conductive fillers.
  • the liquid dispersion medium of the composition may contain a thickener.
  • the thickener include urethane thickeners, polyacrylic thickeners, polyamide thickeners, cellulose thickeners, and thickeners such as clay minerals such as bentonite.
  • the content of the thickener in the liquid dispersion medium may be in the range of 0.1 to 5% by mass.
  • the composition is obtained by mixing F particles and, if necessary, other resins, inorganic fillers, liquid dispersion media, additives, and the like. There is no particular restriction on the order of mixing, and the mixing method may be all at once or divided into multiple batches. Examples of the mixing device for obtaining the composition include the devices used in the above-mentioned long laminated base material and method for producing the same.
  • Examples of the method and conditions for applying the composition to the coated surface of the base material include the method and conditions for applying the composition in the long laminated base material and its manufacturing method described above.
  • Examples of the method and conditions for heat-treating the composition layer formed by applying the composition to the coated surface of the base material include the heat-treating method and conditions for the elongated laminated base material and its manufacturing method described above.
  • the heat treatment in the step of heat-treating the composition layer formed on the surface B1 of the base material to form the layer B1 may be only a drying treatment, or only a baking treatment, or may be performed after the drying treatment and the drying treatment.
  • the heat treatment may include both the firing treatment and the firing treatment. That is, the layer B1 may be a layer in which the composition layer has undergone a drying process but the F particles are not fired, or it may be a P-B1 layer containing a sintered body in which the F particles are fired.
  • the heat treatment in the step of forming layer B2 by heat-treating the composition layer formed on surface B2 of the base material after layer B1 is formed on surface B1 of the base material may be only a firing treatment
  • the heat treatment may include both a drying treatment and a firing treatment performed after the drying treatment.
  • a PB2 layer which is layer B2 is formed on surface B2 of the base material.
  • the firing process is not performed in the process of forming layer B1, that is, if the F particles of layer B1 are not fired, layer B1 is also fired in the process of forming layer B2, and the F particles are fired.
  • a P-B1 layer containing the sintered body is obtained.
  • the method of winding the elongated laminated base material around the outer peripheral surface of the core is not particularly limited.
  • the winding tension when winding the long laminated base material around the outer circumferential surface of the core may be adjusted according to the lamination thickness of the long laminated base material, for example, 30 to 200 N. 50 to 200 N is preferable from the viewpoint of suppressing winding misalignment.
  • the winding stress applied to the long laminated base material when the long laminated base material is wound around the outer peripheral surface of the winding core is preferably 1 to 3 MPa, more preferably 1.5 to 2.5 MPa, and 1.7 to 2.3 MPa. is even more preferable.
  • the winding stress is within the above range, the winding deviation in which the long laminated base material is wound while being shifted in the axial direction of the core is suppressed, compared to when the winding stress is smaller than the above range.
  • the winding stress is within the above range, curling in the elongated laminated base material unwound from the roll sheet is suppressed compared to when it is larger than the above range.
  • the winding stress is a value obtained by dividing the measured winding tension by the cross-sectional area of the long laminated base material.
  • the long sheet roll of this embodiment is used, for example, to produce a metal-clad laminate for producing a printed wiring board.
  • Details of the metal-clad laminate are the same as those of the metal-clad laminate in the elongated laminated base material and method for manufacturing the same described above.
  • Surfactant 1 Nonionic surfactant, polyether-modified polydimethylsiloxane, product name: BYK-3450, manufactured by BYK-Chemie Japan Co., Ltd.
  • Thickener 1 Hydroxymethyl cellulose, Product name: HEC-1, manufactured by Sumitomo Seika Co., Ltd.
  • Polyimide film 1 Aromatic polyimide film with a thickness of 34 ⁇ m, a width of 520 mm, a longitudinal length of 500 m, a glass transition point of 245°C, and a tensile modulus of elasticity at 320°C of 0.3 GPa.
  • compositions A1 to A3 were prepared Into a pot, F particles, surfactant 1, thickener 1, and water shown in Table 1 were added in the amounts (parts by mass) shown in Table 1, and zirconia balls were added. Thereafter, the pot was rolled at 150 rpm for 1 hour to prepare compositions A1 to A3 shown in Table 1. Regarding the obtained composition, the viscosity of the composition and the surface tension of the liquid dispersion medium were measured by the above-mentioned method. The results are also shown in Table 1.
  • Examples A1 to A7 Production and measurement of long laminated base materials (Examples A1 to A7) Polymer layers were formed on both sides of the polyimide film 1 using an apparatus having a coating section shown in FIG. 2 and using the polyimide film 1 as the base material 12. Specifically, first, the second surface of the polyimide film 1 is placed on the outer peripheral surface of the back roll 20 whose Rzjis on the outer peripheral surface has the value shown in Table 2, so that the contact surface pressure has the value shown in Table 2. brought into contact. Then, while transporting the polyimide film 1, the composition shown in Table 2 was coated on the first surface of the polyimide film 1 by a slot die coating method, and passed through a ventilation drying oven (furnace temperature: 150°C) for 3 minutes. The water was removed to form a dry film, the first layer.
  • a ventilation drying oven furnace temperature: 150°C
  • the polyimide film 1 is transported while the first layer is in contact with the outer peripheral surface of the back roll 20, the composition is applied to the second surface of the polyimide film 1, and the composition is placed in a ventilation drying oven (furnace temperature: 150°C).
  • a ventilation drying oven furnace temperature: 150°C.
  • the back roll 20 used to form the second dry film, the contact surface pressure, the conveyance speed, the type of composition, and the coating conditions of the composition are the same as the back roll 20 used to form the first layer, the contact surface
  • the pressure, conveyance speed, type of composition, and composition coating conditions are the same.
  • the polyimide film 1 with the dry coating formed on both sides is passed through a far-infrared furnace (furnace temperature 300°C near the entrance and exit of the furnace, furnace temperature 340°C near the center) for 20 minutes to form a composition.
  • the contained F particles were melted and fired to form a sintered body of F particles.
  • polymer layers containing F polymer are formed on both sides of the polyimide film 1, and the P-A1 layer (thickness: 33 ⁇ m), which is the sintered body of the first layer, and the base material (thickness: : 34 ⁇ m) and P-A2 layer (thickness: 33 ⁇ m), which is a sintered body of the second dry coating, were directly formed in this order, and the width was 520 mm and the length in the longitudinal direction was 500 m. I got it. In the manner described above, elongated laminated base materials of Examples A1 to A7 were obtained.
  • the obtained long laminated base material was wound around a cylindrical core (material: ABS resin, outer diameter: 152 mm, curvature: 0.033 mm -1 , axial length: 520 mm, thickness: 8 mm). Then, it was made into a roll sheet.
  • Examples A1 to A3 are examples, and Examples A4 to A7 are comparative examples.
  • Sdq is 5 ⁇ m/mm or less, and peeling of the metal foil is suppressed compared to Examples A4 to A7, in which Sdq exceeds 5 ⁇ m/mm.
  • Sdq exceeds 5 ⁇ m/mm.
  • Example A4 and Example A7 it was confirmed that a stick-slip phenomenon occurred during coating of the composition.
  • F Polymer 1 PFA-based polymer containing TFE units, NAH units, and PPVE units in this order at 98.0 mol%, 0.1 mol%, and 1.9 mol% (melting point: 300°C)
  • F polymer 1 has 1000 carbonyl group-containing groups per 1 ⁇ 10 6 carbon atoms in the main chain.
  • F particles 1 Particles with D50 of 2.1 ⁇ m made of F polymer 1
  • Surfactant Nonionic surfactant, polyether-modified polydimethylsiloxane, product name: BYK-3450, manufactured by BYK-Chemie Japan Co., Ltd.
  • Thickener 1 Hydroxymethyl cellulose, Product name: HEC-1, manufactured by Sumitomo Seika Co., Ltd.
  • Polyimide film 1 aromatic polyimide film with a thickness of 34 ⁇ m, a width of 520 mm, a longitudinal length of 500 m, a glass transition point of 245°C, and a tensile modulus of elasticity at 320°C of 0.3 GPa
  • Polyimide film 2 Thickness Aromatic polyimide film [core] with a width of 17 ⁇ m, a width of 520 mm, a longitudinal length of 500 m, a glass transition point of 245°C, and a tensile modulus of elasticity at 320°C of 0.3 GPa.
  • Winding core 1 Cylindrical winding core made of ABS resin, outer diameter 168 mm, curvature 0.0119 mm -1 , axial length 520 mm, thickness 8 mm
  • Winding core 2 Made of ABS resin, outer diameter A cylindrical winding core with a diameter of 92 mm, a curvature of 0.0217 mm -1 , an axial length of 520 mm, and a thickness of 8 mm.
  • composition 50 parts by mass of F particles 1, 2.5 parts by mass of surfactant 1, 0.5 parts by mass of thickener 1, and 47 parts by mass of water were put into a pot, and zirconia balls were added. I put it in. Thereafter, the pot was rolled at 150 rpm for 1 hour to prepare a composition.
  • the polyimide film 1 with the dry coating formed on both sides is passed through a far-infrared furnace (furnace temperature 300°C near the entrance and exit of the furnace, furnace temperature 340°C near the center) for 20 minutes to form a composition.
  • the contained F particles were melted and fired to form a sintered body of F particles.
  • polymer layers containing F polymer are formed on both sides of the polyimide film 1, and the P-B1 layer (thickness: 33 ⁇ m), which is a sintered body of layer B1, and the base material (thickness: 34 ⁇ m), which is the polyimide film 1, are formed.
  • the lamination thickness was 50 ⁇ m in the same manner as the long laminated base material 1 except that polyimide film 2 was used instead of polyimide film 1 and the thickness of the P-B1 layer and the P-B2 layer was each 16.5 ⁇ m. A long laminated base material 2 was obtained.
  • the winding deviation at the end of the long sheet roll in Examples B1 to B5 was measured using a steel gauge. Specifically, the distance furthest from the axial end of the winding core among the ends in the width direction of the long laminated base material was defined as "winding deviation", and the winding deviation was evaluated based on the following criteria. The results are shown in Table 3.
  • Examples B1 to B4 are examples, and Example B5 is a comparative example.
  • Example B5 is a comparative example.
  • Table 3 in Examples B1 to B4, the occurrence of curling was suppressed and the wrinkles of the metal foil caused by curling were suppressed compared to Example B5 in which the product C ⁇ T was 0.0015 or more. There is.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

長尺積層基材は、所定厚さの基材と、前記基材の両面にそれぞれ設けられ、テトラフルオロエチレン系ポリマーを含み、それぞれの厚さが所定であり、前記基材と反対側の面を測定して得られる二乗平均平方根勾配Sdqの値が5μm/mm以下である、2つのポリマー層と、を有する。長尺シートロールは、円筒状の巻芯と、前記巻芯の外周面に巻き付けられた長尺積層基材と、を有し、前記長尺積層基材は、所定厚さの基材と、前記基材の両面にそれぞれ設けられ、テトラフルオロエチレン系ポリマーを含み、それぞれの厚さが所定である、2つのポリマー層と、を有し、前記2つのポリマー層の合計厚さが前記基材の厚さの所定倍であり、前記2つのポリマー層のうち一方のポリマー層の厚さが他方のポリマー層の厚さの所定倍であり、前記巻芯の外径における曲率と前記長尺積層基材の合計厚さとの積の値が0.0015未満である。

Description

長尺積層基材、長尺シートロール、及びそれらの製造方法
 本開示は、長尺積層基材、長尺シートロール、及びそれらの製造方法に関する。
 テトラフルオロエチレン系ポリマーは、離型性、電気絶縁性、撥水撥油性、耐薬品性、耐候性、耐熱性等の物性に優れている。テトラフルオロエチレン系ポリマーは、含浸基材、担持基材、層状基材等の種々の成形物の形成に使用されている。
 例えば特許文献1には、ポリイミドの基材フィルムの両面に、同厚みのテトラフルオロエチレン系ポリマーのフィルムを積層して形成した、多層フィルムが開示されている。
 また、特許文献2には、ポリイミドの基材フィルムの両面に、テトラフルオロエチレン系ポリマーを連続的に塗工して形成された同厚みのフッ素樹脂層を有する、多層フィルムが記載されている。
国際公開第2010/084867号 国際公開第2021/200630号
 テトラフルオロエチレン系ポリマーを含むポリマー層を基材の両面にそれぞれ設けた積層体である長尺積層基材は、テトラフルオロエチレン系ポリマーの物性と基材の物性との両方を具備できる。
 しかし、上記長尺積層基材を巻芯に巻き付けてロール状の基材とした後に長尺積層基材を巻き出すと、長尺積層基材にうねりが発生する場合がある。そして、うねりが発生した長尺積層基材の表面に金属箔を圧着させて金属張積層体を作製すると、長尺積層基材のうねりに起因して、金属箔の剥離が起こりやすくなる傾向がある。
 また、基材の両面にテトラフルオロエチレン系ポリマーの層を積層した積層基材は、基材の種類及び形状(厚さ等)及びテトラフルオロエチレン系ポリマーの種類及び形状(厚さ等)を選択することにより、積層基材全体の物性を任意かつ容易にコントロールできる。そのため、上記積層基材はプリント配線基板等の材料として有用である。
 しかし、本発明者らは、長尺の上記積層基材である長尺積層基材を巻芯に巻き取った長尺シートロールにおいては、長尺積層基材を巻き出して金属張積層体としたとき、金属箔のシワが発生する場合があることを知見した。金属箔のシワが発生すると、プリント配線基板等を製造する際の障害(歩留まり悪化、製品品質の低下等)を誘引しやすくなる。
 本開示は、巻芯に巻き付けてロール状の基材とした後に巻き出して用いて金属張積層体を作製した場合においても、長尺積層基材のうねりに起因する金属箔の剥離が抑制される長尺積層基材及びその製造方法を提供することを目的とする。
 また、本開示は、長尺積層基材を巻き出して金属張積層体としたときの、金属箔のシワの発生が抑制される長尺シートロール及びその製造方法を提供することを目的とする。
 本開示は以下の態様を含む。
<A1> 厚さ12~50μmの基材と、前記基材の両面にそれぞれ設けられ、テトラフルオロエチレン系ポリマーを含み、それぞれの厚さが12~40μmであり、ISO25178-2:2012に基づいて前記基材と反対側の面を測定して得られる二乗平均平方根勾配Sdqの値が5μm/mm以下である、2つのポリマー層と、を有する、長尺積層基材。
<A2> 前記基材は、ポリイミド、液晶ポリエステル、及びポリテトラフルオロエチレンからなる群より選択される少なくとも一種を含む、<A1>に記載の長尺積層基材。
<A3> 前記2つのポリマー層は、前記テトラフルオロエチレン系ポリマーの粒子の焼結体を含む層である、<A1>又は<A2>に記載の長尺積層基材。
<A4> 前記2つのポリマー層の合計厚さは、前記基材の厚さの1.8~3.0倍である、<A1>~<A3>のいずれか1つに記載の長尺積層基材。
<A5> 前記2つのポリマー層のうち一方のポリマー層の厚さは、他方のポリマー層の厚さの0.9~1.1倍である、<A1>~<A4>のいずれか1つに記載の長尺積層基材。
<A6> 前記テトラフルオロエチレン系ポリマーは、融点が260~320℃であるテトラフルオロエチレン系ポリマーである、<A1>~<A5>のいずれか1つに記載の長尺積層基材。
<A7> 前記テトラフルオロエチレン系ポリマーは、酸素含有極性基を有する、<A1>~
<A6>のいずれか1つに記載の長尺積層基材。
<A8> 巻芯に巻き付けられたロール状の基材である、<A1>~<A7>のいずれか1つに記載の長尺積層基材。
<A9> 外周面の十点平均粗さRzjisが0.5~10μmであるバックロールの外周面に、接触面圧が100~3000kPaとなるように、厚さ12~50μmである長尺の基材における第2の面を接触させながら前記基材を搬送し、テトラフルオロエチレン系ポリマーの粒子と液状分散媒とを含有する組成物を前記基材における第1の面に塗工し熱処理することで、前記第1の面に第1の層を形成することと、前記バックロールの外周面に、接触面圧が100~3000kPaとなるように前記第1の層を接触させながら前記基材を搬送し、前記組成物を前記第2の面に塗工し熱処理することで、前記第2の面に第2の層を形成することと、を有し、前記基材と、前記テトラフルオロエチレン系ポリマーを含み、厚さが12~40μmである第1のポリマー層と、前記テトラフルオロエチレン系ポリマーを含み、厚さが12~40μmである第2のポリマー層と、を含む長尺積層基材を得る、長尺積層基材の製造方法。
<A10> 前記バックロールの外周面の十点平均粗さRzjisは、0.5~8μmである、<A9>に記載の製造方法。
<A11> 前記接触面圧は、250~2000kPaである、<A9>又は<A10>に記載の製造方法。
<A12> 前記液状分散媒の表面張力は、20~30mN/mである、<A9>~<A11>のいずれか1つに記載の製造方法。
<A13> 前記基材は、ポリイミド、液晶ポリエステル、及びポリテトラフルオロエチレンからなる群より選択される少なくとも一種を含む、<A9>~<A12>のいずれか1つに記載の製造方法。
<A14> 前記第1のポリマー層及び第2のポリマー層の合計厚さは、前記基材の厚さの1.8~3.0倍である、<A9>~<A13>のいずれか1つに記載の製造方法。
<A15> 前記第1のポリマー層の厚さは、前記第2のポリマー層の厚さの0.9~1.1倍である、<A9>~<A14>のいずれか1つに記載の製造方法。
<A16> 前記テトラフルオロエチレン系ポリマーの粒子は、融点が260℃以上であるテトラフルオロエチレン系ポリマーを含む、<A9>~<A15>のいずれか1つに記載の製造方法。
<A17> 前記テトラフルオロエチレン系ポリマーの粒子は、酸素含有極性基を有するテトラフルオロエチレン系ポリマーを含む、<A9>~<A16>のいずれか1つに記載の製造方法。
<A18> 前記長尺積層基材を巻芯に巻き付けてロール状の基材とすることをさらに有する、<A9>~<A17>のいずれか1つに記載の製造方法。
 また、本開示は以下の態様も含む。
<B1> 円筒状の巻芯と、前記巻芯の外周面に巻き付けられた長尺積層基材と、を有し、前記長尺積層基材は、厚さ12~50μmの基材と、前記基材の両面にそれぞれ設けられ、テトラフルオロエチレン系ポリマーを含み、それぞれの厚さが12~40μmである、2つのポリマー層と、を有し、前記2つのポリマー層の合計厚さが前記基材の厚さの1.8~3.0倍であり、前記2つのポリマー層のうち一方のポリマー層の厚さが他方のポリマー層の厚さの0.9~1.1倍であり、前記巻芯の外径における曲率Cmm-1と前記長尺積層基材の合計厚さTmmとの積C×Tの値が0.0015未満である、長尺シートロール。
<B2> 前記巻芯の外径における曲率Cmm-1は、0.009~0.037mm-1である、<B1>に記載の長尺シートロール。
<B3> 前記長尺積層基材の長手方向における長さが200m以上である、<B1>又は<B2>に記載の長尺シートロール。
<B4> 前記長尺積層基材の短手方向における幅が500~1250mmである、<B1>~<B3>のいずれか1つに記載の長尺シートロール。
<B5> 前記2つのポリマー層は、前記テトラフルオロエチレン系ポリマーの粒子の焼結体を含む層である、<B1>~<B4>のいずれか1つに記載の長尺シートロール。
<B6> 前記テトラフルオロエチレン系ポリマーは、融点が260~320℃であるテトラフルオロエチレン系ポリマーである、<B1>~<B5>のいずれか1つに記載の長尺シートロール。
<B7> 前記長尺積層基材を500mm巻き出して切り取った積層基材片を水平面に静置したとき、前記積層基材片における前記水平面からの浮き上がり高さが1cm以下である、<B1>~<B6>のいずれか1つに記載の長尺シートロール。
<B8> 厚さ12~50μmの基材と、前記基材の両面にそれぞれ設けられ、テトラフルオロエチレン系ポリマーを含み、それぞれの厚さが12~40μmである、2つのポリマー層と、を有し、前記2つのポリマー層の合計厚さが前記基材の厚さの1.8~3.0倍であり、前記2つのポリマー層のうち一方のポリマー層の厚さが他方のポリマー層の厚さの0.9~1.1倍である、長尺積層基材を準備することと、円筒状の巻芯の外周面に前記長尺積層基材を巻き付けることと、を有し、前記巻芯の外径における曲率Cmm-1と前記長尺積層基材の合計厚さTmmとの積C×Tの値が0.0015未満である、長尺シートロールの製造方法。
<B9> 前記巻芯の外周面に前記長尺積層基材を巻き付ける際の巻き付け応力は、1~3MPaである、<B8>に記載の製造方法。
<B10> 前記巻芯の外径における曲率Cmm-1は、0.009~0.037mm-1である、<B8>又は<B9>に記載の製造方法。
<B11> 前記長尺積層基材の長手方向における長さが200m以上である、<B8>~<B10>のいずれか1つに記載の製造方法。
<B12> 前記長尺積層基材の短手方向における幅が500~1250mmである、<B8>~<B11>のいずれか1つに記載の製造方法。
<B13> 前記2つのポリマー層は、前記テトラフルオロエチレン系ポリマーの粒子と液状分散媒とを含む組成物を前記基材の両面に塗工し熱処理することで得られる、<B8>~<B12>のいずれか1つに記載の製造方法。
<B14> 前記テトラフルオロエチレン系ポリマーは、融点が260~320℃であるテトラフルオロエチレン系ポリマーである、<B8>~<B13>のいずれか1つに記載の製造方法。
 本開示によれば、巻芯に巻き付けてロール状の基材とした後に巻き出して用いて金属張積層体を作製した場合においても、長尺積層基材のうねりに起因する金属箔の剥離が抑制される長尺積層基材及びその製造方法が提供される。
 また、本開示によれば、長尺積層基材を巻き出して金属張積層体としたときの、金属箔のシワの発生が抑制される長尺シートロール及びその製造方法が提供される。
一実施形態に係る長尺積層基材の層構成を示す概略断面図である。 一実施形態に係る長尺積層基材の製造方法に用いる装置の塗工部を模式的に示す模式図である。 一実施形態に係る長尺シートロールを模式的に示す斜視図である。 図3に示す長尺シートロールにおける長尺積層基材の層構成を示す概略断面図である。
 以下、本開示を実施するための形態について詳細に説明する。但し、本開示は以下の実施形態に限定されない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本開示を制限するものではない。
 なお、実質的に同じ機能を有する部材には、全図面を通して同じ符号を付与し、重複する説明は省略する場合がある。
 本開示において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に記載しない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本開示において各成分に該当する粒子は複数種含まれていてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒子径は、特に記載しない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
 本開示において「層」又は「膜」との語には、当該層又は膜が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
 本開示において「積層」との語は、層を積み重ねることを示し、二以上の層が結合されていてもよく、二以上の層が着脱可能であってもよい。
 本開示において実施形態を図面を参照して説明する場合、当該実施形態の構成は図面に示された構成に限定されない。また、各図における部材の大きさは概念的なものであり、部材間の大きさの相対的な関係はこれに限定されない。
 本開示において、「ポリマー」は、モノマーが重合してなる化合物である。すなわち、「ポリマー」はモノマーに基づく単位を複数有する。
 本開示においてポリマーにおける「単位」とは、モノマーの重合により形成された前記モノマーに基づく原子団を意味する。単位は、重合反応によって直接形成された単位であってもよく、ポリマーを処理することによって前記単位の一部が別の構造に変換された単位であってもよい。以下、モノマーaに基づく単位を、単に「モノマーa単位」とも記す。
 本開示において、「重量平均分子量」は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて、ポリスチレン換算により求める。
 本開示においてポリマーの「融点」は、示差走査熱量測定(DSC)法で測定したポリマーの融解ピークの最大値に対応する温度である。
 本開示においてポリマーの「溶融流れ速度」とは、JIS K 7210-1:2014(ISO1133-1:2011)に規定される、ポリマーのメルトマスフローレートを意味する。
 本開示においてポリマーの「ガラス転移点(Tg)」は、動的粘弾性測定(DMA)法でポリマーを分析して測定される値である。
 本開示においてポリマー粒子の「体積平均粒子径(D50)」は、レーザー回折・散乱法によって求められる、粒子の体積基準累積50%径である。すなわち、レーザー回折・散乱法によって粒度分布を測定し、粒子の集団の全体積を100%として累積カーブを求め、その累積カーブ上で累積体積が50%となる点の粒子径である。
 ポリマー粒子のD50は、粒子を水中に分散させ、レーザー回折・散乱式の粒度分布測定装置(例えば、堀場製作所社製、LA-920測定器)を用いたレーザー回折・散乱法により分析して求められる。
 本開示において、無機フィラーの「平均粒子径」は、粒子を走査型電子顕微鏡(SEM)で観察したときの、ランダムに選択した100個の粒子における円相当径の平均値とする。
 本開示において「比表面積」は、ガス吸着(定容法)BET多点法で粒子を測定し算出される値であり、例えばNOVA4200e(Quantachrome Instruments社製)を使用して求められる。
 本開示において、「十点平均粗さRzjis」は、JIS B 0601:2013の附属書JAで規定される値であり、JIS B 0601:2013に準拠して測定する。具体的には、例えば、高精度形状測定システム(例えば、株式会社キーエンス製「KS-1100」、先端ヘッド型番「LT-9510VM」)等を用いて測定できる。
 本開示において組成物の「粘度」は、B型粘度計を用いて、25℃で回転数が30rpmの条件下で組成物を測定して求められる。測定を3回繰り返し、3回分の測定値の平均値とする。
[長尺積層基材及びその製造方法]
 本開示の一実施形態における長尺積層基材は、厚さ12~50μmの基材と、前記基材の両面にそれぞれ設けられ、テトラフルオロエチレン系ポリマーを含み、それぞれの厚さが12~40μmであり、ISO25178-2:2012に基づいて前記基材と反対側の面を測定して得られる二乗平均平方根勾配Sdqの値が5μm/mm以下である、2つのポリマー層と、を有する。以下、テトラフルオロエチレン系ポリマーを「Fポリマー」ともいい、ポリマー層における基材と反対側の面を「露出面」ともいい、ISO25178-2:2012に基づいて測定対象の面を測定して得られる二乗平均平方根勾配Sdqの値を単に「Sdq」ともいう。
 本実施形態において「長尺」とは、長手方向の長さが100m以上であることをいう。長尺積層基材の長手方向の長さは、200m以上であることが好ましい。長手方向の長さは1000m以下が好ましい。
 長尺積層基材は、例えば、巻芯に巻き付けられたロール状の基材として保管される。以下、長尺積層基材が巻芯に巻きつけられたロール状の基材を「ロールシート」ともいう。そして、ロールシートから長尺積層基材の一部を巻き出して得られる積層基材は、例えば、金属張積層体の作製に用いられる。具体的には、例えば、積層基材の表面に金属箔を圧着させることで金属張積層体を得る。
 Fポリマーを含むポリマー層を基材の両面にそれぞれ設けた長尺積層基材は、前記の通り、Fポリマーの物性と基材の物性との両方を備えることが期待できる。例えば基材として耐熱性樹脂を含む耐熱性基材を用いると、耐熱性、寸法安定性等の物性と、Fポリマーの物性である低誘電率、低誘電正接等の電気物性と、の両方を備えた長尺積層基材が得られる。
 一方で、上記長尺積層基材を巻芯に巻き付けてロールシートとした後に長尺積層基材を巻き出すと、長尺積層基材にうねりが発生する場合がある。そして、うねりが発生した長尺積層基材から得られる積層基材の表面に金属箔を圧着させて金属張積層体を作製すると、長尺積層基材のうねりに起因して、金属箔の剥離が起こりやすい。特に2つのポリマー層の厚さの合計が基材の厚さに対して相対的に厚くなると、長尺積層基材のうねりに起因する金属箔の剥離が顕著になる。
 これに対して、本実施形態では、2つのポリマー層の露出面におけるSdqがいずれも5μm/mm以下である。上記Sdqは、測定対象の表面における傾斜の二乗平均平方根により算出されるパラメータであり、凹凸形状の局所的な勾配の平均的な大きさを表す。Sdqが大きいほど、起伏の激しい急峻な表面であることを意味する。
 本発明者らは、露出面の凹凸高さ等ではなく、Sdqを上記範囲とすることで、基材の厚さが12~50μm、ポリマー層それぞれの厚さが12~40μmであっても、長尺積層基材のうねりに起因する金属箔の剥離が抑制されることを見出した。
 以下、長尺積層基材の一例について、図面を用いて説明するが、本開示の長尺積層基材は、これらに限定されるものではない。
 図1は、一実施形態に係る長尺積層基材の層構成を示す概略断面図である。
 図1に示す長尺積層基材10は、基材12と、基材12の両面にそれぞれ設けられたポリマー層14及びポリマー層16と、を有する。そして、ポリマー層14の露出面14S及びポリマー層16の露出面16SにおけるSdqがいずれも、5μm/mm以下である。
 以下、長尺積層基材を構成する各層について説明する。なお、符号は省略する場合がある。
 基材としては、樹脂を含む長尺フィルム等が挙げられる。基材は、単層構造でもよく多層構造でもよい。
 基材は、耐熱性基材であることが好ましく、耐熱性樹脂を含むフィルムであることがより好ましい。
 基材は、耐熱性樹脂を含むことが好ましい。耐熱性樹脂としては、ポリイミド(芳香族ポリイミド等)、ポリアリレート、ポリスルホン、ポリアリルスルホン(ポリエーテルスルホン等)、芳香族ポリアミド、芳香族ポリエーテルアミド、ポリフェニレンスルファイド、ポリアリルエーテルケトン、ポリアミドイミド、液晶ポリエステル、液晶ポリエステルアミド、ポリテトラフルオロエチレン等が挙げられる。
 耐熱性樹脂を含む基材は、さらに、可塑剤、耐熱性樹脂以外の樹脂、着色剤、無機フィラー、各種添加剤等を含んでいてもよい。
 無機フィラーとしては、窒化物フィラー及び無機酸化物フィラーが好ましく、窒化ホウ素フィラー、ベリリアフィラー(ベリリウムの酸化物のフィラー)、ケイ酸塩フィラー(シリカフィラー、ウォラストナイトフィラー、タルクフィラー)、及び金属酸化物(酸化セリウム、酸化アルミニウム、酸化マグネシウム、酸化亜鉛、酸化チタン等)フィラーがより好ましく、シリカフィラーがさらに好ましい。
 添加剤としては、帯電防止剤、難燃剤、熱安定剤、紫外線吸収剤、滑剤、離型剤、結晶核剤等が挙げられる。
 耐熱性樹脂を含む基材における耐熱性樹脂の総含有率は、基材全体に対し、70質量%以上が好ましく、80質量%以上がより好ましく、100質量%であってもよい。
 基材は、耐熱性の観点から、上記耐熱性樹脂の中でも、ポリイミド、液晶ポリエステル、及びポリテトラフルオロエチレンからなる群より選択される少なくとも一種を含むことが好ましく、少なくともポリイミドを含むことがより好ましい。
 ポリイミドを含む基材に含まれるポリイミドとしては、芳香族ジアミン成分とテトラカルボン酸成分とを重合させたポリアミック酸から得られるポリイミドが挙げられる。
 芳香族ジアミン成分としては、パラフェニレンジアミン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、4,4’-ビス(アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、2,2’-ビス(4-アミノフェノキシフェニル)プロパン等が挙げられる。芳香族ジアミン成分は、1種のみ用いてもよく、2種以上を用いてもよい。
 テトラカルボン酸成分としては、ピロメリット酸、3,3’,4,4’-ビフェニルテトラカルボン酸、オキシジフタル酸、2,3’,3,4’-ビフェニルテトラカルボン酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、これらの二無水物等が挙げられる。テトラカルボン酸成分は、1種のみ用いてもよく、2種以上を用いてもよい。
 ポリイミドを含む基材に含まれるポリイミドのガラス転移点としては、288℃未満が挙げられ、275℃未満が好ましく、260℃以下がより好ましい。ポリイミドのガラス転移点は、200℃以上が好ましい。
 ポリイミドを含む基材の具体例としては、「カプトン50EN-S」(東レ・デュポン株式会社製)、「カプトン100EN」(東レ・デュポン株式会社製)、「カプトン100H」(東レ・デュポン株式会社製)、「カプトン100KJ」(デュポン社製)、「カプトン100JP」(米国デュポン社製)、「カプトン100LK」(東レ・デュポン株式会社製)等が挙げられる。
ねりに起因する金属箔の剥離が顕著になる。
 基材の320℃における引張弾性率は、0.2GPa以上が好ましく、0.3GPa以上がより好ましい。上記引張弾性率は、10GPa以下が好ましく、5GPa以下がより好ましい。基材の320℃における引張弾性率が上記範囲であることにより、加熱及び冷却による変形が起こり難く、ハンドリング性に優れやすい。具体的には、基材の上記引張弾性率が、上記下限値以上であれば、加工時の加熱及び冷却に際して、ポリマー層の変形が基材の弾性により緩和されやすい。また、基材の引張弾性率が、上記上限値以下であれば、長尺積層基材の柔軟性が高まりやすい。
 基材の厚さは、12~50μmであり、積層基材の寸法安定性の観点から、20~44μmが好ましい。
 基材の短手方向の長さである幅は、積層基材の寸法安定性の観点から、500~1250mmが好ましい。
 基材の長手方向の長さは、100~1000mが好ましい。
 基材の長手方向の長さは、基材の幅の50倍以上が好ましく、100倍以上がより好ましい。基材の長手方向の長さは、基材の幅の1000倍以下が好ましい。
 ポリマー層は、基材の両面にそれぞれ設けられた層である。
 基材の両面に設けられた2つのポリマー層はいずれも、Fポリマーを含み、それぞれの厚さが12~40μmであり、かつ、露出面におけるSdqが5μm/mm以下である層であれば、特に限定されるものではない。
 2つのポリマー層は、いずれも基材に直接接して設けられていることが好ましい。
 2つのポリマー層は、それぞれ、Fポリマーを1種のみ含んでもよく、2種以上含んでもよい。2つのポリマー層の組成は、互いに同じであってもよく、異なっていてもよい。
 Fポリマーは、テトラフルオロエチレン(以下、「TFE」とも記す。)に基づく単位(以下、「TFE単位」とも記す。)を含むポリマーである。Fポリマーは、さらに他のコモノマーに基づく単位を有していてもよい。
 Fポリマー中のTFE単位の含有率は、TFE単位による特性を好適に発現する観点から、Fポリマー中の全単位に対して、50モル%以上が好ましく、90モル%以上がより好ましい。上記含有率は、99モル%以下でもよく、98モル%以下でもよい。
 Fポリマーは熱溶融性であってもよく、非熱溶融性であってもよい。熱伝導性、接着性、加工性等の特性の特に良好な発現が望まれる場合には、Fポリマーは熱溶融性であることが好ましい。
 熱溶融性のポリマーとは、荷重49Nの条件下、溶融流れ速度が1~1000g/10分となる温度が存在するポリマーを意味する。非熱溶融性のポリマーとは、荷重49Nの条件下、溶融流れ速度が1~1000g/10分となる温度が存在しないポリマーを意味する。
 熱溶融性であるFポリマーの融点は、ポリマー層の耐熱性の観点からは、200℃以上が好ましく、260℃以上がより好ましい。前記Fポリマーの融点は、加工容易性の観点からは、325℃以下が好ましく、320℃以下がより好ましい。
 Fポリマーは、融点が200~325℃であるFポリマーが好ましく、融点が260~320℃であるFポリマーがより好ましい。
 Fポリマーのガラス転移点は、耐熱性の観点からは、50℃以上が好ましく、75℃以上がより好ましい。Fポリマーのガラス転移点は、加工容易性の観点からは、150℃以下が好ましく、125℃以下がより好ましい。
 Fポリマーのフッ素含有量は、電気特性、耐熱性等のフッ素原子による特性の好適な発現の観点からは、70質量%以上が好ましく、72~76質量%がより好ましい。
 Fポリマーの表面張力は、16~26mN/mが好ましい。なお、Fポリマーの表面張力は、Fポリマーで作製された平板上に、濡れ指数試薬(富士フイルム和光純薬社製)の液滴を載置して測定できる。
 Fポリマーは、ポリテトラフルオロエチレン(PTFE)、TFE単位とエチレンに基づく単位とを含むポリマー、TFE単位とプロピレンに基づく単位とを含むポリマー、TFE単位とペルフルオロ(アルキルビニルエーテル)(PAVE)に基づく単位(PAVE単位)とを含むポリマー(PFA)、及びTFE単位とヘキサフルオロプロピレンに基づく単位とを含むポリマー(FEP)が好ましく、熱伝導性、接着性、加工性等の特性の観点からは、PFA及びFEPがより好ましく、PFAがさらに好ましい。これらのポリマーは、さらに他のコモノマーに基づく単位を含んでいてもよい。
 PAVEは、CF=CFOCF、CF=CFOCFCF、及びCF=CFOCFCFCF(以下、「PPVE」とも記す。)が好ましく、PPVEがより好ましい。
 Fポリマーは、基材との密着性の観点から、酸素含有極性基を有するFポリマーが好ましく、水酸基含有基又はカルボニル基含有基を有するFポリマーがより好ましく、カルボニル基含有基を有するFポリマーがさらに好ましい。
 水酸基含有基は、アルコール性水酸基を含有する基が好ましく、-CFCHOH及び-C(CFOHがより好ましい。
 カルボニル基含有基はカルボニル基(>C(O))を含む基である。カルボニル基含有基は、カルボキシ基、アルコキシカルボニル基、アミド基、イソシアネート基、カルバメート基(-OC(O)NH)、酸無水物残基(-C(O)OC(O)-)、イミド残基(-C(O)NHC(O)-等)、及びカーボネート基(-OC(O)O-)が好ましく、酸無水物残基がより好ましい。
ねりに起因する金属箔の剥離が顕著になる。
 Fポリマーが酸素含有極性基を有する場合、Fポリマーにおける酸素含有極性基の数は、主鎖の炭素数1×10個あたり、100~5000個が好ましく、300~3000個がより好ましく、800~1500個がさらに好ましい。なお、Fポリマーにおける酸素含有極性基の数は、ポリマーの組成又は国際公開第2020/145133号に記載の方法によって定量できる。
 酸素含有極性基は、Fポリマー中のモノマーに基づく単位に含まれていてもよく、Fポリマーの主鎖の末端基に含まれていてもよく、前者が好ましい。後者の態様としては、重合開始剤、連鎖移動剤等に由来する末端基として酸素含有極性基を有するFポリマー、Fポリマーをプラズマ処理や電離線処理して得られるFポリマーなどが挙げられる。
 カルボニル基含有基を有するモノマーは、無水イタコン酸、無水シトラコン酸、及び5-ノルボルネン-2,3-ジカルボン酸無水物(以下、「NAH」とも記す。)が好ましく、NAHがより好ましい。
 Fポリマーは、TFE単位及びPAVE単位を含み、かつ、酸素含有極性基を有するFポリマーが好ましく、TFE単位、PAVE単位、及びカルボニル基含有基を有するモノマーに基づく単位を含むFポリマー(Fポリマー(1)とも記す。)がより好ましい。以下、酸素含有極性基を有するモノマーに基づく単位を「酸素含有単位」ともいう。
 Fポリマー(1)は、全単位に対して、TFE単位、PAVE単位、及び酸素含有単位をこの順に、90~99モル%、0.5~9.97モル%、0.01~3モル%含むFポリマー(1)がさらに好ましい。かかるFポリマー(1)の具体例としては、国際公開第2018/016644号に記載されるポリマーが挙げられる。
 Fポリマーは、酸素含有単位を有さないFポリマー(Fポリマー(2)とも記す。)であってもよく、酸素含有極性基を有さないFポリマーであってもよい。
 Fポリマー(2)は、全単位に対してPAVE単位を2.0~5.0モル%含み、酸素含有単位を有さないFポリマー(2)が好ましい。
 Fポリマー(2)は、TFE単位及びPAVE単位のみからなり、全単位に対して、TFE単位を95.0~98.0モル%、PAVE単位を2.0~5.0モル%含有するFポリマー(2)がより好ましい。
 Fポリマー(2)におけるPAVE単位の含有量は、全単位に対して、2.1~5.0モル%がさらに好ましく、2.2~5.0モル%が特に好ましい。
 なお、Fポリマー(2)が酸素含有極性基を有さないとは、ポリマー主鎖を構成する炭素原子数の1×10個あたりに対して、Fポリマー(2)が有する酸素含有極性基の数が、500個未満であることを意味する。上記酸素含有極性基の数は、100個以下が好ましく、50個未満がより好ましい。上記酸素含有極性基の数の下限は、通常、0個である。
 Fポリマー(2)は、ポリマー鎖の末端基として酸素含有極性基を生じない、重合開始剤や連鎖移動剤等を使用して製造してもよく、酸素含有極性基を有するFポリマー(重合開始剤に由来する酸素含有極性基をポリマーの主鎖の末端基に有するFポリマー等)をフッ素化処理して製造してもよい。フッ素化処理の方法としては、フッ素ガスを使用する方法(特開2019-194314号公報等を参照)が挙げられる。
 ポリマー層におけるFポリマーの含有率は、50質量%以上が好ましく、60質量%以上がより好ましい。Fポリマーの含有率の上限は、100質量%である。
 ポリマー層は、さらに、Fポリマー以外の他の樹脂を含んでもよい。他の樹脂は、熱硬化性樹脂であってもよく、熱可塑性樹脂であってもよい。
 他の樹脂は、ポリマー層のUV吸収性の観点からは、芳香族性ポリマーが好ましい。
 他の樹脂としては、エポキシ樹脂、マレイミド樹脂、ウレタン樹脂、ポリイミド、ポリアミック酸、ポリアミドイミド、ポリフェニレンエーテル、ポリフェニレンオキシド、液晶ポリエステル、Fポリマー以外のフルオロポリマーが挙げられる。他の樹脂は、長尺積層基材の柔軟性等の観点から、マレイミド樹脂、ポリイミド、及びポリアミック酸が好ましい。他の樹脂としては、いずれも芳香族性の、マレイミド樹脂、ポリイミド、及びポリアミック酸がより好ましい。ポリイミドは、熱可塑性であることが好ましい。
 ポリマー層におけるマレイミド、ポリイミド、及びポリアミック酸の合計含有量は、0.1~30質量%が好ましく、1~10質量%がより好ましい。
 Fポリマーの含有量に対するマレイミド、ポリイミド、及びポリアミック酸の合計含有量の比は、1.0以下が好ましく、0.01~0.5でもよい。
 ポリマー層は、長尺積層基材の低線膨張性及び電気特性を一層向上させる観点から、さらに無機フィラーを含んでもよい。
 無機フィラーとしては、窒化物フィラー及び無機酸化物フィラーが好ましく、窒化ホウ素フィラー、ベリリアフィラー(ベリリウムの酸化物のフィラー)、ケイ酸塩フィラー(シリカフィラー、ウォラストナイトフィラー、タルクフィラー)、及び金属酸化物(酸化セリウム、酸化アルミニウム、酸化マグネシウム、酸化亜鉛、酸化チタン等)フィラーがより好ましく、シリカフィラーがさらに好ましい。
 無機フィラーにおける、シリカの含有率は、50質量%以上が好ましく、75質量%以上がより好ましい。シリカの含有率の上限は、100質量%である。
 無機フィラーは、その表面の少なくとも一部が、シランカップリング剤で表面処理されているものが好ましい。
 シランカップリング剤としては、3-アミノプロピルトリエトキシシラン、ビニルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、及び3-イソシアネートプロピルトリエトキシシランが好ましい。
 無機フィラーの具体例としては、シリカフィラー(アドマテックス社製の「アドマファイン」シリーズ等)、ジカプリン酸プロピレングリコール等のエステルで表面処理された酸化亜鉛(堺化学工業株式会社製の「FINEX」シリーズ等)、球状溶融シリカ(デンカ社製の「SFP」シリーズ等)、多価アルコール及び無機物で被覆処理された(石原産業社製の「タイペーク」シリーズ等)、アルキルシランで表面処理されたルチル型酸化チタン(テイカ社製の「JMT」シリーズ等)、中空状シリカフィラー(太平洋セメント社製の「E-SPHERES」シリーズ、日鉄鉱業社製の「シリナックス」シリーズ、エマーソン・アンド・カミング社製「エココスフイヤー」シリーズ等)、タルクフィラー(日本タルク社製の「SG」シリーズ等)、ステアタイトフィラー(日本タルク社製の「BST」シリーズ等)、窒化ホウ素フィラー(昭和電工社製の「UHP」シリーズ、デンカ社製の「デンカボロンナイトライド」シリーズ(「GP」、「HGP」グレード)等)が挙げられる。
 ポリマー層における無機フィラーの含有率は、1質量%以上が好ましく、3質量%以上がより好ましい。無機フィラーの含有率は、40質量%以下が好ましく、30質量%以下がより好ましく、20質量%以下がより好ましい。
 ポリマー層におけるFポリマーの含有量に対する無機フィラーの含有量の比(質量比)は、0.01以上が好ましく、0.1以上がより好ましい。上記比は、1以下が好ましく、0.8以下がより好ましい。
 ポリマー層は、上述した成分以外にも、シランカップリング剤、脱水剤、可塑剤、耐候剤、酸化防止剤、熱安定剤、滑剤、帯電防止剤、増白剤、着色剤、導電剤、離型剤、表面処理剤、難燃剤等の添加剤を含んでいてもよい。
 ポリマー層は、テトラフルオロエチレン系ポリマーの粒子、つまり、Fポリマーを含む粒子の焼結体を含む層であることが好ましい。以下、テトラフルオロエチレン系ポリマーの粒子を「F粒子」ともいう。なお、ポリマー層がF粒子の焼結体を含むか否かは、ポリマー層の断面を顕微鏡等により観察することで確認できる。
 ポリマー層がF粒子を含む層である場合、ポリマー層はF粒子以外の成分を含んでもよい。F粒子以外の成分としては、前述のFポリマー以外の成分が挙げられ、具体的には、例えば、Fポリマー以外の樹脂、無機フィラー、添加剤等が挙げられる。
 F粒子のD50は、液状分散媒への分散安定性及びSdqの制御容易性の観点からは、0.1μm以上が好ましく、0.3μm超がより好ましく、1μm以上がさらに好ましい。F粒子のD50は、液状分散媒への分散安定性及びSdqの制御容易性の観点からは、25μm以下が好ましく、10μm以下がより好ましく、8μm以下がさらに好ましく、6μm以下が特に好ましい。
 F粒子の比表面積は、1~25m/gが好ましい。
 F粒子は、1種を単独で用いてもよく、2種以上を用いてもよい。
 F粒子におけるFポリマーの含有量は、80質量%以上が好ましく、100質量%がより好ましい。つまり、F粒子は、Fポリマーからなる粒子が好ましい。
 F粒子に含まれ得るFポリマー以外の成分としては、Fポリマー以外の樹脂、無機フィラー等が挙げられる。
 2つのポリマー層それぞれの厚さは、12~40μmであり、積層基材の寸法安定性の観点から、16~36μmが好ましく、20~33μmがより好ましい。
 2つのポリマー層のうち、一方のポリマー層の厚さは、長尺積層基材のうねり発生を抑制する観点から、他方のポリマー層の厚さの0.9~1.1倍が好ましい。
 2つのポリマー層の合計厚さは、積層基材の電気特性の観点から、基材の厚さの1.8~3.0倍が好ましく、1.8~2.4倍がより好ましい。特に、2つのポリマー層は、一方のポリマー層の厚さが他方のポリマー層の厚さの0.9~1.1倍であり、かつ、2つのポリマー層の合計厚さが基材の厚さの1.8~3.0倍であることが好ましい。
 本実施形態では、ポリマー層の露出面におけるSdqが5μm/mm以下であるため、2つのポリマー層の合計厚さが基材の厚さの1.8倍以上であっても、長尺積層基材のうねり発生が抑制される。
 2つのポリマー層はいずれも、露出面におけるSdqが5μm/mm以下であり、4μm/mm以下であることが好ましく、3μm/mm以下であることがより好ましい。Sdqは、0μm/mm以上であるのが好ましい。
 Sdqは、ISO25178-2:2012に基づいて露出面を測定して得られる。測定方式としては、接触式、白色光干渉方式、ポイントオートフォーカス式等が挙げられる。
 白色光干渉方式による測定及びSdqの算出は、例えば、表面性状測定機(Zygo社製、品名:Newview7300)を使用し、倍率:1.4×0.5倍、スキャンピッチ:100μm、解析サイズ:12.621mm、フィルタータイプ:Spline、フィルター:Low Pass high frequency 1μm、タイプ:Gaussian Spline Fixedの条件で行う。
 ポリマー層の露出面におけるSdqは、例えばポリマー層がF粒子の焼結体を含む層である場合、ポリマー層を形成する方法及び形成条件により制御できる。具体的には、例えば、F粒子と液状分散媒とを含有する組成物を基材の表面に塗工し熱処理することでポリマー層を形成し、組成物の塗工時に、用いるバックロールの外周面の十点平均粗さRzjis及びバックロールに対する基材の接触面圧を後述する範囲に調整する。
 以下、ポリマー層の露出面におけるSdqが5μm/mm以下である本実施形態の長尺積層基材の製造方法の一例について説明する。
<長尺積層基材の製造方法>
 一実施形態に係る長尺積層基材の製造方法は、外周面の十点平均粗さRzjisが0.5~10μmであるバックロールの外周面に、接触面圧が100~3000kPaとなるように、厚さ12~50μmである長尺の基材における第2の面を接触させながら前記基材を搬送し、テトラフルオロエチレン系ポリマーの粒子(すなわちF粒子)と液状分散媒とを含有する組成物を前記基材における第1の面に塗工し熱処理することで、前記第1の面に第1の層を形成することと、前記バックロールの外周面に、接触面圧が100~3000kPaとなるように前記第1の層を接触させながら前記基材を搬送し、前記組成物を前記第2の面に塗工し熱処理することで、前記第2の面に第2の層を形成することと、を有する。
 本実施形態に係る長尺積層基材の製造方法では、上記工程を経ることで、前記基材と、Fポリマーを含み厚さが12~40μmである第1のポリマー層と、Fポリマーを含み厚さが12~40μmである第2のポリマー層と、を含む長尺積層基材を得る。
 以下、バックロールの外周面における十点平均粗さRzjisを単に「Rzjis」ともいい、バックロールの外周面に対する基材の接触面圧を単に「接触面圧」ともいう。
 また、第1のポリマー層を「P-A1層」、第2のポリマー層を「P-A2層」ともいう。」
 上記製造方法により長尺積層基材を製造することで、2つのポリマー層の露出面におけるSdqが5μm/mm以下である長尺積層基材が得られる。その理由は定かではないが、Rzjis及び接触面圧を上記範囲とすることで、バックロールへの基材の貼り付きに伴うスティックスリップ現象の抑制と、バックロール外周面の凹凸形状がポリマー層の露出面へ転写されることの抑制と、が両立されるためと推測される。
 具体的には、Rzjisが前記範囲であることにより、前記範囲より小さい場合に比べて基材がバックロールに貼り付きにくく、バックロールの外周面に対する基材の付着と滑りとを繰り返す現象であるスティックスリップ現象が抑制される。そのため、形成されるポリマー層の厚さがスティックスリップ現象に起因して周期的に変動することが抑制され、得られるポリマー層の露出面におけるSdqが小さくなると推測される。
 また、Rzjisが前記範囲であることにより、前記範囲より大きい場合に比べて、基材とバックロールとの接触時にバックロール外周面の凹凸形状がポリマー層の露出面へ一時的に転写されることが抑制される。そのため、凹凸形状の一時的な転写に起因して塗工された組成物が流れてムラが生じることが抑制され、ポリマー層の露出面におけるSdqが小さくなると推測される。
 さらに、接触面圧が前記範囲であることにより、前記範囲より小さい場合に比べて基材とバックロール外周面との間に空気が巻き込まれることが抑制される。ここで、基材とバックロール外周面との間に空気が巻き込まれると、空気が巻き込まれた部分と巻き込まれていない部分で、組成物の塗工ムラが生じることがある。一方、接触面圧が前記範囲であることで、上記塗工ムラが抑制され、その結果、得られるポリマー層の露出面におけるSdqが小さくなると推測される。
 また、接触面圧が前記範囲であることにより、前記範囲より大きい場合に比べて、基材がバックロールに貼り付きにくく、スティックスリップ現象が抑制され、得られるポリマー層の露出面におけるSdqが小さくなると推測される。
 本実施形態に係る長尺積層基材の製造方法は、得られた長尺積層基材を巻芯に巻き付けてロール状の基材(すなわち、ロールシート)とすることをさらに有してもよい。得られた長尺積層基材を巻芯に巻き付ける工程を経ることで、長尺積層基材が巻芯に巻き付けられたロールシートが得られる。
 以下、本実施形態における長尺積層基材の製造方法の一例について、説明する。
 なお、長尺の基材、得られた長尺積層基材におけるP-A1層及びP-A2層については、前述の基材及びポリマー層と同様であるため、説明を省略する。
 図2は、本実施形態に係る長尺積層基材の製造方法に用いる装置の塗工部を模式的に示す模式図である。
 図2に示すように、本実施形態に係る長尺積層基材の製造方法に用いる装置の塗工部は、塗工対象である基材12を搬送するバックロール20と、基材12の塗工面に塗工用の組成物を塗工する塗工部材22と、を有する。
 図2に示す塗工部では、基材12の塗工面と反対側の面がバックロール20の外周面に圧接した状態でバックロール20が回転し、基材12が搬送される。一方、基材12の塗工面側においては、塗工部材22によりポリマー層形成用の組成物が塗工され、組成物層26が形成される。
 バックロール20の材質は、金属、ゴム、及び樹脂のいずれであってもよい。バックロール20としては、例えば、円筒状の金属基材の外周面に、ゴム及び樹脂からなる群より選択される少なくとも一種を含む弾性層が設けられたロールが挙げられる。なお、金属基材の材質としては、例えば、鉄、ステンレス、チタン、アルミニウム等が挙げられる。
 バックロール20の外径は、特に限定されず、例えば100~500mmが挙げられ、150~350mmであってもよい。
 バックロール20の外周面におけるRzjisは、0.5~10μmであり、露出面におけるSdqが小さいポリマー層を形成する観点から、0.5~8μmが好ましく、1~6μmがより好ましい。
 Rzjisの測定及び算出は、JIS B 0601:2013に準拠して行われ、例えば、高精度形状測定システム(例えば、株式会社キーエンス製「KS-1100」、先端ヘッド型番「LT-9510VM」)を用いて行う。
 Rzjisは、バックロール20の外周面を研磨することにより調整してもよく、バックロール20の最外層形成時に添加する成分(無機フィラー等)の種類及び量により調整してもよい。
 バックロール20の外周面に対する基材12の接触面圧は、100~3000kPaであり、露出面におけるSdqが小さいポリマー層を形成する観点から、200~2000kPaが好ましく、250~2000kPaがより好ましく、250~1000kPaがさらに好ましい。
 第1の層を形成する際の接触面圧と第2の層を形成する際の接触面圧とは、同じであってもよく、異なっていてもよい。第2の層を形成する際の接触面圧は、第1の層を形成する際の接触面圧の0.8~1.2倍が好ましく、0.9~1.1倍がより好ましく、実質的に同じであることがさらに好ましい。
 上記接触面圧は、例えば、ニッタ社の面圧分布システムにより測定できる。
 具体的には、例えば、面圧分布システム(ニッタ株式会社製)のセンサーシートをバックロール20と基材12との間に挟み、測定して得られた数値を、上記接触面圧とする。
 上記接触面圧は、基材12の繰り出し張力により調整してもよく、基材12の巻取り張力により調整してもよい。
 基材12の塗工面に塗工する組成物は、F粒子と液状分散媒とを含有する。
 組成物におけるF粒子の含有率は、5~60質量%が好ましく、25~50質量%がより好ましい。
 F粒子の詳細は前述の通りであるため、説明を省略する。
 F粒子以外の成分(Fポリマー以外の樹脂、無機フィラー、添加剤等)を含むポリマー層を形成する場合、組成物は、上記F粒子以外の成分を含んでもよい。
 Fポリマー以外の樹脂、及び無機フィラーの詳細についても、前述の通りであるため、説明を省略する。
 液状分散媒としては、大気圧下、25℃にて液体である化合物であり、沸点が50~240℃である化合物が好ましい。液状分散媒は1種類を用いてもよく、2種以上を用いてもよい。2種の液状分散媒を用いる場合、2種の液状分散媒は、互いに相溶するのが好ましい。
 液状分散媒は、水、アミド、ケトン、及びエステルからなる群より選択される化合物が好ましい。
 アミドとしては、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジメチルプロパンアミド、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、N,N-ジエチルホルムアミド、ヘキサメチルホスホリックトリアミド、及び1,3-ジメチル-2-イミダゾリジノンが挙げられる。
 ケトンとしては、アセトン、メチルエチルケトン、メチルイソプロピルケトン、メチルイソブチルケトン、メチルn-ペンチルケトン、メチルイソペンチルケトン、2-へプタノン、シクロペンタノン、シクロヘキサノン、及びシクロヘプタノンが挙げられる。
 エステルとしては、酢酸メチル、酢酸エチル、酢酸ブチル、乳酸メチル、乳酸エチル、ピルビン酸メチル、ピルビン酸エチル、メトキシプロピオン酸メチル、エトキシプロピオン酸エチル、3-エトキシプロピオン酸エチル、γ-ブチロラクトン、及びγ-バレロラクトンが挙げられる。
 液状分散媒は、製造に使用できる装置の汎用性の観点から、これらの中でも、水を含む分散媒であることが好ましい。
 液状分散媒は、F粒子の分散安定性を向上する観点から、さらにノニオン性界面活性剤を含むことが好ましい。
 ノニオン性界面活性剤としては、アセチレン系界面活性剤、シリコーン系界面活性剤、フッ素系界面活性剤等が挙げられる。
 ノニオン性界面活性剤の具体例としては、「フタージェント」シリーズ(ネオス社製)、「サーフロン」(登録商標)シリーズ(AGCセイミケミカル社製)、「メガファック」(登録商標)シリーズ(DIC社製)、「ユニダイン」シリーズ(ダイキン工業社製)、「BYK-347」、「BYK-349」、「BYK-378」、「BYK-3450」、「BYK-3451」、「BYK-3455」、「BYK-3456」(ビックケミー・ジャパン社製)、「KF-6011」、「KF-6043」(信越化学工業社製)、及び「Tergitol」シリーズ(ダウケミカル社製、「Tergitol TMN-100X」等。)が挙げられる。
 液状分散媒がノニオン性界面活性剤を含有する場合、液状分散媒の表面張力を低くする観点から、液状分散媒中のノニオン性界面活性剤の含有率は、1~10質量%が好ましく、2.5~8質量%がより好ましく、4~6質量%がさらに好ましい。
 液状分散媒の表面張力は、例えば20~35mN/mの範囲が挙げられ、20~30mN/mが好ましい。液状分散媒の表面張力が上記範囲であることにより、基材の表面に組成物が馴染みやすく、露出面におけるSdqが小さいポリマー層が得られやすくなる。
 なお、上記液状分散媒の表面張力は、JIS K 2241:2007に準拠し、デュヌイ表面張力計を用いて25℃で測定される値である。組成物に含まれる液状分散媒の表面張力を測定する場合は、例えば、組成物からF粒子等の固体成分をろ過等により除去した後に測定を行う。
 液状分散媒の含有量は、組成物の全質量に対して30質量%以上が好ましく、40質量%以上がより好ましい。液状分散媒の含有量は、組成物の全質量に対して80質量%以下が好ましく、60質量%以下がより好ましい。上記液状分散媒の含有量は、組成物から固形分を除いた物質の総量を意味する。
 組成物における固形分濃度は、組成物の全質量に対して20質量%以上が好ましく、40質量%以上がより好ましい。固形分濃度は、70質量%以下が好ましく、60質量%以下がより好ましい。なお、固形分とは組成物から形成される成形物において固形分を形成する物質の総量を意味する。具体的には、F粒子が固形分に含まれ、組成物が他の樹脂を含む場合には他の樹脂も固形分に含まれ、組成物が無機フィラーを含む場合には無機フィラーも固形分に含まれる。
 組成物は、さらに、チキソ性付与剤、粘度調節剤、消泡剤、脱水剤、可塑剤、耐候剤、酸化防止剤、熱安定剤、滑剤、帯電防止剤、増白剤、着色剤、導電剤、離型剤、表面処理剤、難燃剤、導電性フィラーをはじめとする各種フィラー等の添加剤を含有してもよい。
 組成物の粘度は、10mPa・s以上が好ましく、100mPa・s以上がより好ましい。組成物の粘度は、10000mPa・s以下が好ましく、3000mPa・s以下がより好ましい。
 組成物の粘度が上記範囲であることにより、上記範囲より低い場合に比べて、基材の表面に組成物層が保持されやすく、液だれ等に起因する組成物層の厚さのムラが抑制され、露出面におけるSdqが小さいポリマー層が得られやすくなる。また、組成物の粘度が上記範囲であることにより、上記範囲より高い場合に比べて、組成物層の厚さが均一になりやすく、露出面におけるSdqが小さいポリマー層が得られやすくなる。
 組成物の粘度を上記範囲に調整する目的で、組成物の液状分散媒に増粘剤を含有させてもよい。
 増粘剤としては、ウレタン系増粘剤、ポリアクリル系増粘剤、ポリアマイド系増粘剤、セルロース系増粘剤、ベントナイト等の粘土鉱物等の増粘剤などが挙げられる。
 液状分散媒が増粘剤を含む場合、液状分散媒中の増粘剤の含有率としては、0.1~5質量%の範囲が挙げられる。
 組成物は、F粒子、及び並びに必要に応じて他の樹脂、無機フィラー、液状分散媒、添加剤等を混合することで得られる。混合の順は特に制限はなく、また混合の方法も一括混合でも複数回に分割して混合してもよい。
 組成物を得るための混合の装置としては、ヘンシェルミキサー、加圧ニーダー、バンバリーミキサー及びプラネタリーミキサー等のブレードを備えた撹拌装置;ボールミル、アトライター、バスケットミル、サンドミル、サンドグラインダー、ダイノーミル、ディスパーマット、SCミル、スパイクミル及びアジテーターミル等のメディアを備えた粉砕装置;並びにマイクロフルイダイザー、ナノマイザー、アルティマイザー、超音波ホモジナイザー、デゾルバー、ディスパー、高速インペラー、薄膜旋回型高速ミキサー、自転公転撹拌機及びV型ミキサー等の他の機構を備えた分散装置が挙げられる。
 組成物を基材12の塗工面に塗工する方法としては、スプレー法、ロールコート法、スピンコート法、グラビアコート法、マイクログラビアコート法、グラビアオフセット法、ナイフコート法、キスコート法、バーコート法、ダイコート法、ファウンテンメイヤーバー法、スロットダイコート法、小径グラビアリバース法等の塗布法が挙げられる。
 組成物を基材12の塗工面に塗工する際における基材12の搬送速度は、特に限定されるものではなく、例えば2~50m/分が挙げられる。
 基材12の塗工面に組成物を塗工して形成される組成物層26を熱処理する方法としては、オーブンを用いる方法、通風乾燥炉を用いる方法、赤外線等の熱線を照射する方法等が挙げられる。
 熱処理における雰囲気は、常圧下、減圧下のいずれの状態であってよい。また、上記雰囲気は、酸化性ガス(酸素ガス等)雰囲気、還元性ガス(水素ガス等)雰囲気、不活性ガス(希ガス、窒素ガス)雰囲気のいずれであってもよい。
 熱処理としては、組成物層26に含まれる液状分散媒の少なくとも一部を除去する乾燥を目的とした熱処理(以下「乾燥処理」ともいう)、組成物層26に含まれるF粒子の焼成を目的とした熱処理(以下「焼成処理」ともいう)等が挙げられる。
 乾燥処理における加熱温度は、120~200℃が好ましい。乾燥処理における加熱温度の保持時間は、0.1~10分間が好ましい。乾燥処理は、1段階で行ってもよく、異なる温度にて2段階以上で行ってもよい。
 焼成処理における加熱温度はFポリマーの融点以上の温度が好ましく、具体的には280~400℃が好ましく、300~380℃がより好ましい。焼成処理における加熱温度の保持時間は、0.5~30分間が好ましい。焼成処理は、1段階で行ってもよく、異なる温度にて2段階以上で行ってもよい。
 基材12の第1の面に形成された組成物層26を熱処理して第1の層を形成する工程における熱処理は、乾燥処理のみでもよく、焼成処理のみでもよく、乾燥処理と乾燥処理後に行われる焼成処理との両方を含む熱処理でもよい。つまり、第1の層は、組成物層26が乾燥処理を経てF粒子が焼成されていない状態の層でもよく、F粒子が焼成された焼結体を含むP-A1層でもよい。
 基材12の第1の面に第1の層が形成された後に基材12の第2の面に形成された組成物層26を熱処理して第2の層を形成する工程における熱処理は、焼成処理のみでもよく、乾燥処理と乾燥処理後に行われる焼成処理との両方を含む熱処理でもよい。基材12の第2の面に形成された組成物層26が少なくとも熱処理を経ることにより、基材12の第2の面に、第2の層である第2ポリマー層が形成される。
 第1の層を形成する工程において焼成処理を経ていない場合、つまり、第1の層のF粒子が焼成されていない場合、第2の層を形成する工程における焼成処理において第1の層も焼成され、F粒子が焼成された焼結体を含むP-A1層が得られる。
 得られた長尺積層基材を巻芯に巻き付けてロールシートとする工程において用いられる巻芯は、特に限定されず、基材12の幅以上の軸方向長さを有する円筒状の部材が挙げられる。ここで、円筒状の巻芯は、空洞を有する円筒状の巻芯であってもよく、空洞を有さない円柱状の巻芯であってもよい。
 巻芯の材質は、特に限定されず、例えば、樹脂、ゴム、金属、これらの組み合わせ等が挙げられる。
 巻芯が円筒状である場合、巻芯の外径としては50~240mmが挙げられ、巻芯の外周面における曲率としては0.009~0.049mm-1が挙げられる。
 巻芯が空洞を有する円筒状の巻芯である場合、巻芯の厚さは特に限定されず、巻芯の強度を維持する観点から5mm以上が好ましい。
 得られた長尺積層基材を巻芯の外周面に巻き付ける際に長尺積層基材にかかる巻き付け応力は、1~3MPaが好ましい。巻き付け応力が上記範囲であることにより、上記範囲よりも小さい場合に比べて、長尺積層基材が巻芯の軸方向にずれながら巻き取られる巻きずれが抑制される。また、巻き付け応力が上記範囲であることにより、上記範囲よりも大きい場合に比べて、ロールシートとした後に巻き出した長尺積層基材におけるカールが抑制される。
 長尺積層基材の合計厚さは、36μm以上であり、積層基材の寸法安定性の観点から、50μm以上が好ましく、75μm以上がより好ましい。長尺積層基材の合計厚さは、130μm以下であり、同様の観点から、120μm以下が好ましく、100μm以下がより好ましい。
 長尺積層基材の短手方向の長さである幅は、積層基材の寸法安定性の観点から、500~1250mmが好ましい。
 長尺積層基材の長手方向の長さは、100~1000mが好ましい。
 長尺積層基材の長手方向の長さは、長尺積層基材の幅の50倍以上が好ましく、100倍以上がより好ましい。長尺積層基材の長手方向の長さは、長尺積層基材の幅の1000倍以下が好ましい。
 本実施形態の長尺積層基材は、例えば、プリント配線基板作製用の金属張積層体の作製に用いられる。
 金属張積層体は、例えば、本実施形態の長尺積層基材の一部を切断して得られる積層基材と、前記積層基材の一方の面に設けられた金属箔層と、を有する。
 金属箔層を構成する金属としては、銅、銅合金、ステンレス鋼、ニッケル、ニッケル合金(42合金も含む)、アルミニウム、アルミニウム合金、チタン、チタン合金等が挙げられる。
 金属箔層を形成するための金属箔としては、銅箔が好ましい。銅箔としては、圧延銅箔、電解銅箔、スパッタリングめっき銅箔、無電解めっき銅箔等が挙げられる。これらの中でも、銅箔は、表裏の区別のない圧延銅箔及び表裏の区別のある電解銅箔がより好ましく、圧延銅箔がさらに好ましい。圧延銅箔は、表面粗さが小さいため、金属張積層体をプリント配線基板に加工した場合でも、伝送損失を低減できる。また、圧延銅箔は、炭化水素系有機溶剤に浸漬し圧延油を除去してから使用するのが好ましい。
 金属箔層の厚さは、20μm未満が好ましく、2~15μmがより好ましい。
 金属張積層体の製造方法としては、例えば、本実施形態の長尺積層基材の一部を切断して積層基材を得てから、前記積層基材におけるポリマー層の露出面に金属箔層を設ける方法が挙げられる。積層基材に金属箔層を設ける方法としては、積層基材と金属箔とを積層基材のポリマー層の露出面に金属箔が接するように重ね、熱プレスして貼合させる方法、積層基材のポリマー層の露出面に直接めっきすることで金属箔層を形成する方法等が挙げられる。金属張積層体の製造方法は、本実施形態の長尺積層基材と長尺の金属箔とを共に巻き出しながら、長尺積層基材のポリマー層の露出面に金属箔層を設け、長尺金属張積層体を得る方法であってもよい。
 上記金属張積層体は、電気特性、はんだリフロー耐性等の耐熱性、穴あけ加工性、耐薬品性、表面平滑性等の諸物性に優れている。このため、上記金属張積層体は、プリント配線基板材料として好適であり、フレキシブルプリント配線基板、リジッドプリント配線基板等に容易に効率よく加工できる。
 上記金属張積層体の金属箔層をエッチングにより加工して伝送回路を形成することで、プリント配線基板が得られる。すなわち、プリント配線基板の製造方法は、金属張積層体の金属箔を、エッチングにより加工し伝送回路を形成して、プリント配線基板を得る方法である。なお、エッチングには、ウェットエッチング法及びドライエッチング法のいずれも使用可能である。
 プリント配線基板の製造においては、伝送回路を形成した後に、伝送回路上に層間絶縁膜を形成し、層間絶縁膜上にさらに導体回路を形成してもよい。
[長尺シートロール及びその製造方法]
 本開示の一実施形態における長尺シートロールは、円筒状の巻芯と、前記巻芯の外周面に巻き付けられた長尺積層基材と、を有し、前記長尺積層基材は、厚さ12~50μmの基材と、前記基材の両面にそれぞれ設けられ、テトラフルオロエチレン系ポリマーを含み、それぞれの厚さが12~40μmである、2つのポリマー層と、を有し、前記2つのポリマー層の合計厚さが前記基材の厚さの1.8~3.0倍であり、前記2つのポリマー層のうち一方のポリマー層の厚さが他方のポリマー層の厚さの0.9~1.1倍であり、前記巻芯の外径における曲率Cmm-1と前記長尺積層基材の合計厚さTmmとの積C×Tの値が0.0015未満である。
 以下、テトラフルオロエチレン系ポリマーを「Fポリマー」ともいい、巻芯の外径における曲率を「曲率」ともいい、長尺積層基材の合計厚さを「積層厚さ」ともいい、曲率Cmm-1と積層厚さTmmとの積を「積C×T」ともいう。
 本実施形態において「長尺」とは、長手方向の長さが100m以上であることをいう。長尺積層基材の長手方向の長さは、200m以上であることが好ましい。長手方向の長さは1000m以下が好ましい。
 巻芯の外周面に長尺積層基材が巻付けられた長尺シートロールは、例えば、金属張積層体の作製に用いられる。具体的には、例えば、長尺シートロールから長尺積層基材の一部を巻き出して得られる積層基材の表面に金属箔を圧着させることで、金属張積層体を得る。
 Fポリマーを含むポリマー層を基材の両面にそれぞれ設けた長尺積層基材は、Fポリマーの物性と基材の物性との両方を備えることが期待できる。例えば基材として耐熱性樹脂を含む耐熱性基材を用いると、耐熱性、寸法安定性等の物性と、Fポリマーの物性である低誘電率性、低誘電正接性等の電気物性と、の両方を備えた長尺積層基材が得られる。
 一方で、上記長尺積層基材を巻芯に巻き付けた長尺シートロールにおいては、長尺積層基材を巻き出して金属張積層体としたとき、金属箔のシワが発生する場合がある。そして、金属箔のシワが発生すると、プリント配線基板等を製造する際の障害(歩留まり悪化、製品品質の低下等)を誘引しやすくなる。上記金属箔のシワが発生する理由は、巻き出した長尺積層基材に発生したカールに起因すると推測される。特にFポリマーを含むポリマー層の合計厚さを基材の厚さに対して厚くすることで、長尺積層基材のカールがより発生しやすくなると考えられる。
 これに対して、本実施形態では、2つのポリマー層の合計厚さが基材の厚さの1.8~3.0倍であり、2つのポリマー層のうち一方のポリマー層の厚さが他方のポリマー層の厚さの0.9~1.1倍であり、かつ、積C×Tを0.0015未満とする構成を採る。本発明者らは、上記構成とすることで、長尺積層基材におけるカールの発生が抑制され、カールに起因する金属箔のシワが抑制されることを見出した。その理由は定かではないが、以下のように推測される。
 上記曲率は、巻芯の外周面における曲がり具合を表す値であり、曲がり具合がきついほど曲率は大きい値となる。例えば半径rの円周の曲率は1/rである。円筒状の巻芯に長尺積層基材を巻き付けると、長尺積層基材における外側のポリマー層と内側のポリマー層とに異なる応力が発生する。そして、巻芯の曲率が大きいほど、外側のポリマー層に発生する応力と内側のポリマー層に発生する応力との差が大きくなり、上記応力の差に起因するひずみによりカールが発生しやすくなる。
 一方、単に曲率を小さくするのではなく積C×Tを0.0015未満とし、かつ、基材の厚さに対する2つのポリマー層の合計厚さの比をさらに大きい1.8倍以上とすることで、巻き取られる際の上記応力の差が長尺積層基材に吸収されやすくなる。そして、巻き出し時にカールの原因になるポリマー層のひずみが緩衝され、カールの発生が抑制されると推測される。
 以下、本実施形態における長尺シートロールの一例について、図面を用いて説明するが、本開示の長尺シートロールは、これらに限定されるものではない。
 図3は、本実施形態に係る長尺シートロールを模式的に示す斜視図である。図4は、図3に示す長尺シートロールにおける長尺積層基材の層構成を示す概略断面図である。
 図3に示す長尺シートロール100は、円筒状の巻芯120と、巻芯120の外周面に巻き付けられた長尺積層基材10と、を有する。長尺積層基材10は、図4に示すように、基材12と、基材12の両面にそれぞれ設けられたポリマー層14及びポリマー層16と、を有する。
 巻芯は、円筒状の巻芯であれば特に限定されず、軸方向の長さが、後述する長尺積層基材の短手方向の長さ(以下「幅」ともいう)以上である円筒状の部材が挙げられる。ここで、円筒状の巻芯は、空洞を有する円筒状の巻芯であってもよく、空洞を有さない円柱状の巻芯であってもよい。
 巻芯の材質は、特に限定されず、例えば、樹脂、ゴム、金属、これらの組み合わせ等が挙げられる。巻芯の材質は、ハンドリング性と寸法安定性の観点から、樹脂又はゴムが好ましい。
 巻芯の外径としては、50~240mmが挙げられ、長尺積層基材のカールを抑制する観点から、80~200mmが好ましく、90~185mmがより好ましい。
 曲率としては、0.009~0.037mm-1が挙げられ、長尺積層基材のカールを抑制する観点から、0.010~0.025mm-1が好ましく、0.011~0.022mm-1がより好ましい。
 巻芯の軸方向の長さは、長尺積層基材の短手方向の長さ以上であればよく、例えば500~1250mmの範囲が挙げられる。
 巻芯が空洞を有する円筒状の巻芯である場合、巻芯の厚さは特に限定されず、巻芯の強度を維持する観点から5mm以上が好ましい。
 積C×Tは、0.0015未満であり、長尺積層基材のカールを抑制する観点から、0.0012以下が好ましく、0.00120以下がより好ましい。積C×Tの下限値は、0.0010以上が好ましい。
 基材としては、上述した長尺積層基材及びその製造方法における基材と同じ基材が挙げられ、好ましい基材の態様も上述した長尺積層基材及びその製造方法における基材と同じである。
 また、基材の厚さ及び、基材の短手方向の長さである幅、及び、基材の長手方向の長さも、上述した長尺積層基材及びその製造方法における基材のそれらと同じであり、好ましい態様も上述した長尺積層基材及びその製造方法におけるそれらと同じである。
 ポリマー層は、基材の両面にそれぞれ設けられた層である。
 基材の両面に設けられた2つのポリマー層はいずれも、Fポリマーを含み、それぞれの厚さが12~40μmである層であれば、特に限定されるものではない。
 2つのポリマー層は、いずれも基材に直接接して設けられていることが好ましい。
 2つのポリマー層は、それぞれ、Fポリマーを1種のみ含んでもよく、2種以上含んでもよい。2つのポリマー層の組成は、互いに同じであってもよく、異なっていてもよい。
 Fポリマーは、その好適な態様も含めて、上述した長尺積層基材及びその製造方法におけるFポリマーと同じFポリマーが挙げられる。
 ポリマー層におけるFポリマーの含有率は、50質量%以上が好ましく、60質量%以上がより好ましい。Fポリマーの含有率の上限は、100質量%である。
 ポリマー層は、さらに、Fポリマー以外の他の樹脂を含んでもよい。他の樹脂は、熱硬化性樹脂であってもよく、熱可塑性樹脂であってもよい。
 他の樹脂としては、その好適な態様も含めて、上述した長尺積層基材及びその製造方法における他の樹脂と同じ他の樹脂が挙げられる。
 ポリマー層は、長尺積層基材の低線膨張性及び電気特性を一層向上させる観点から、さらに無機フィラーを含んでもよい。
 無機フィラーとしては、その好適な態様も含めて、上述した長尺積層基材及びその製造方法における無機フィラーと同じ無機フィラーが挙げられる。
 また、ポリマー層における無機フィラーの含有率は、その好適な範囲も含めて、上述した長尺積層基材及びその製造方法における無機フィラーと同じ範囲が挙げられる。
 ポリマー層は、上述した成分以外にも、シランカップリング剤、脱水剤、可塑剤、耐候剤、酸化防止剤、熱安定剤、滑剤、帯電防止剤、増白剤、着色剤、導電剤、離型剤、表面処理剤、難燃剤等の添加剤を含んでいてもよい。
 ポリマー層は、テトラフルオロエチレン系ポリマーの粒子、つまり、Fポリマーを含む粒子の焼結体を含む層であることが好ましい。以下、テトラフルオロエチレン系ポリマーの粒子を「F粒子」ともいう。なお、ポリマー層がF粒子の焼結体を含むか否かは、ポリマー層の断面を顕微鏡等により観察することで確認できる。
 ポリマー層がF粒子の焼結体を含む層であると、F粒子間の空隙が応力緩和層となることで、長尺積層基材におけるカールの発生が抑制されやすくなる。
 ポリマー層がF粒子を含む層である場合、ポリマー層はF粒子以外の成分を含んでもよい。F粒子以外の成分としては、前述のFポリマー以外の成分が挙げられ、具体的には、例えば、Fポリマー以外の樹脂、無機フィラー、添加剤等が挙げられる。
 F粒子のD50は、その好適な範囲も含めて、上述した長尺積層基材及びその製造方法におけるF粒子のD50と同じ範囲が挙げられる。
 F粒子の比表面積は、1~25m/gが好ましい。
 F粒子は、1種を単独で用いてもよく、2種以上を用いてもよい。
 F粒子におけるFポリマーの含有量は、その好適な範囲も含めて、上述した長尺積層基材及びその製造方法におけるF粒子におけるFポリマーの含有量と同じ範囲が挙げられる。
 2つのポリマー層それぞれの厚さは、12~40μmであり、積層基材の寸法安定性の観点から、16~36μmが好ましく、20~33μmがより好ましい。
 2つのポリマー層のうち、一方のポリマー層の厚さは、他方のポリマー層の厚さの0.9~1.1倍である。
 2つのポリマー層の合計厚さは、基材の厚さの1.8~3.0倍であり、長尺積層基材のカール発生を抑制する観点から、1.8~2.4倍がより好ましい。
 長尺積層基材の合計厚さである積層厚さは、36μm以上であり、積層基材の寸法安定性の観点から、50μm以上が好ましく、75μm以上がより好ましい。長尺積層基材の合計厚さは、130μm以下であり、同様の観点から、120μm以下が好ましく、100μm以下がより好ましい。
 長尺積層基材の短手方向の長さである幅は、積層基材の寸法安定性の観点から、500~1250mmが好ましい。
 長尺積層基材の長手方向の長さは、100~1000mが好ましく、200~1000mがより好ましい。
 長尺積層基材の長手方向の長さは、長尺積層基材の幅の50倍以上が好ましく、100倍以上がより好ましい。長尺積層基材の長手方向の長さは、長尺積層基材の幅の1000倍以下が好ましい。
 長尺シートロールから長尺積層基材を500mm巻き出して切り取った積層基材片を水平面に静置したとき、積層基材片における水平面からの浮き上がり高さは、1cm以下であることが好ましく、0.5cm以下であることがより好ましい。浮き上がり高さが上記範囲であることにより、上記範囲より高い場合に比べて、積層基材片を用いて金属張積層体を製造したときにおける金属箔のシワの発生が抑制される。
 上記浮き上がり高さは、水平面に静置した積層基材片の浮き上がりのうち、水平面から最も離れた位置における水平面からの高さをいう。また、積層基材片の幅は、長尺積層基材の幅と同じである。
<長尺シートロールの製造方法>
 一実施形態に係る長尺シートロールの製造方法は、厚さ12~50μmの基材と、前記基材の両面にそれぞれ設けられ、Fポリマーを含み、それぞれの厚さが12~40μmである2つのポリマー層と、を有し、前記2つのポリマー層の合計厚さが前記基材の厚さの1.8~3.0倍であり、前記2つのポリマー層のうち一方のポリマー層の厚さが他方のポリマー層の厚さの0.9~1.1倍である、長尺積層基材を準備することと、円筒状の巻芯の外周面に前記長尺積層基材を巻き付けることと、を有し、前記巻芯の外径における曲率Cmm-1と前記長尺積層基材の合計厚さTmmとの積C×Tの値が0.0015未満である。
 長尺積層基材を準備する方法については、特に限定されず、長尺積層基材を製造してもよく、完成した長尺積層基材をそのまま用いてもよい。
 長尺積層基材の製造方法は、特に限定されず、F粒子と液状分散媒とを含む組成物を基材の両面に塗工し熱処理する方法(以下「方法B1」ともいう)であってもよく、Fポリマーを含むフィルムを基材の両面にそれぞれ貼り合わせる方法であってもよい。
 長尺積層基材は、方法B1により製造されることが好ましい。方法B1により製造されることで、形成される2つのポリマー層がF粒子の焼結体を含む層となり、長尺積層基材におけるカールの発生が抑制されやすくなる。
 以下、方法B1の一例について説明する。
 方法B1においては、例えば、まずバックロールの外周面に、基材における第2の面(以下「面B2」ともいう)を接触させながら基材を搬送し、F粒子と液状分散媒とを含有する組成物を基材における第1の面(以下「面B1」ともいう)に塗工し熱処理することで、面B1に層(以下「層B1」ともいう)を形成する。次に、バックロールの外周面に層B1を接触させながら基材を搬送し、前記組成物を面B2に塗工し熱処理することで、面B2に層(以下「層B2」ともいう)を形成する。それにより、基材と、層B1が熱処理された層でありFポリマーを含むポリマー層と、層B2でありFポリマーを含むポリマー層と、を含む長尺積層基材を得る。
 以下、層B1が熱処理されたポリマー層を「P-B1層」、層B2であるポリマー層を「P-B2層」ともいう。
 基材の表面に塗工する組成物は、F粒子と液状分散媒とを含有する。
 組成物及び組成物におけるF粒子のそれぞれの詳細は、その好適な態様も含めて、上述した長尺積層基材及びその製造方法におけるそれらと同じである。
 F粒子以外の成分(Fポリマー以外の樹脂、無機フィラー、添加剤等)を含むポリマー層を形成する場合、組成物は、上記F粒子以外の成分を含んでもよい。
 Fポリマー以外の樹脂、及び無機フィラーの詳細についても、前述の通りであるため、説明を省略する。
 液状分散媒としては、その好適な態様も含めて、上述した長尺積層基材及びその製造方法における液状分散媒と同じ態様である。
 液状分散媒は、F粒子の分散安定性を向上する観点から、さらにノニオン性界面活性剤を含むことが好ましい。
 ノニオン性界面活性剤としては、その好適な態様も含めて、上述した長尺積層基材及びその製造方法におけるノニオン性界面活性剤と同じ態様である。
 液状分散媒の含有量、組成物における固形分濃度、及び組成物の粘度のそれぞれの態様は、その好適な態様も含めて、上述した長尺積層基材及びその製造方法におけるそれらと同じ態様である。
 組成物は、さらに、チキソ性付与剤、粘度調節剤、消泡剤、脱水剤、可塑剤、耐候剤、酸化防止剤、熱安定剤、滑剤、帯電防止剤、増白剤、着色剤、導電剤、離型剤、表面処理剤、難燃剤、導電性フィラーをはじめとする各種フィラー等の添加剤を含有してもよい。
 組成物の粘度を上記範囲に調整する目的で、組成物の液状分散媒に増粘剤を含有させてもよい。
 増粘剤としては、ウレタン系増粘剤、ポリアクリル系増粘剤、ポリアマイド系増粘剤、セルロース系増粘剤、ベントナイト等の粘土鉱物等の増粘剤などが挙げられる。
 液状分散媒が増粘剤を含む場合、液状分散媒中の増粘剤の含有率としては、0.1~5質量%の範囲が挙げられる。
 組成物は、F粒子、及び並びに必要に応じて他の樹脂、無機フィラー、液状分散媒、添加剤等を混合することで得られる。混合の順は特に制限はなく、また混合の方法も一括混合でも複数回に分割して混合してもよい。
 組成物を得るための混合の装置としては、上述した長尺積層基材及びその製造方法における装置が挙げられる。
 組成物を基材の塗工面に塗工する方法及び条件としては、上述した長尺積層基材及びその製造方法における塗工する方法及び条件が挙げられる。
 基材の塗工面に組成物を塗工して形成される組成物層を熱処理する方法及び条件としては、上述した長尺積層基材及びその製造方法における熱処理する方法及び条件が挙げられる。
 具体的には、基材の面B1に形成された組成物層を熱処理して層B1を形成する工程における熱処理は、乾燥処理のみでもよく、焼成処理のみでもよく、乾燥処理と乾燥処理後に行われる焼成処理との両方を含む熱処理でもよい。つまり、層B1は、組成物層が乾燥処理を経てF粒子が焼成されていない状態の層でもよく、F粒子が焼成された焼結体を含むP-B1層でもよい。
 具体的には、基材の面B1に層B1が形成された後に基材の面B2に形成された組成物層を熱処理して層B2を形成する工程における熱処理は、焼成処理のみでもよく、乾燥処理と乾燥処理後に行われる焼成処理との両方を含む熱処理でもよい。基材の面B2に形成された組成物層が少なくとも熱処理を経ることにより、基材の面B2に、層B2であるP-B2層が形成される。
 また、層B1を形成する工程において焼成処理を経ていない場合、つまり、層B1のF粒子が焼成されていない場合、層B2を形成する工程における焼成処理において層B1も焼成され、F粒子が焼成された焼結体を含むP-B1層が得られる。
 巻芯の外周面に長尺積層基材を巻き付ける方法は特に限定されるものではない。
 長尺積層基材を巻芯の外周面に巻き付ける際の巻き付け張力は、長尺積層基材の積層厚さに応じて調整すればよく、例えば30~200Nが挙げられ、長尺シートロール端部の巻きずれを抑制する観点から50~200Nが好ましい。
 長尺積層基材を巻芯の外周面に巻き付ける際に長尺積層基材にかかる巻き付け応力は、1~3MPaが好ましく、1.5~2.5MPaがより好ましく、1.7~2.3MPaがさらに好ましい。巻き付け応力が上記範囲であることにより、上記範囲よりも小さい場合に比べて、長尺積層基材が巻芯の軸方向にずれながら巻き取られる巻きずれが抑制される。また、巻き付け応力が上記範囲であることにより、上記範囲よりも大きい場合に比べて、ロールシートから巻き出した長尺積層基材におけるカールが抑制される。
 上記巻き付け応力は、測定した巻き付け張力を長尺積層基材の断面積で除した値である。
 本実施形態の長尺シートロールは、例えば、プリント配線基板作製用の金属張積層体の作製に用いられる。
 金属張積層体の詳細については、上述した長尺積層基材及びその製造方法における金属張積層体と同じである。
 以下、実施例によって本開示の実施形態を詳細に説明するが、本開示の実施形態はこれらに限定されない。
A1.各成分及び各部材の準備(その1)
 以下の材料及び部材を準備した
[Fポリマー]
 Fポリマー1:TFE単位、NAH単位、及びPPVE単位を、この順に98.0モル%、0.1モル%、1.9モル%含むPFA系ポリマー(融点:300℃)
 Fポリマー2:TFE単位及びPPVE単位を、この順に97.5モル%、2.5モル%含むPFA系ポリマー(融点:305℃)
 なお、Fポリマー1は、カルボニル基含有基を、主鎖炭素数1×10個あたり、1000個有し、Fポリマー2は、カルボニル基含有基を、主鎖炭素数1×10個あたり、40個有する。
[F粒子]
 F粒子1:Fポリマー1からなる、D50が2.1μmの粒子
 F粒子2:Fポリマー2からなる、D50が1.8μmの粒子
[界面活性剤]
 界面活性剤1:ノニオン性界面活性剤、ポリエーテル変性ポリジメチルシロキサン、品名:BYK-3450、ビックケミー・ジャパン株式会社製
[増粘剤]
 増粘剤1:ヒドロキシメチルセルロース、品名:HEC-1、住友精化株式会社製
[基材]
 ポリイミドフィルム1:厚さが34μm、幅が520mm、長手方向の長さが500m、ガラス転移点が245℃、320℃における引張弾性率が0.3GPaの芳香族性ポリイミドフィルム
A2.組成物の製造(組成物A1~A3)
 ポットに、表1に示すF粒子と界面活性剤1と増粘剤1と水とを表1に示す添加量(質量部)で投入し、ジルコニアボールを投入した。その後、150rpmにて1時間、ポットを転がし、表1に示す組成物A1~A3を調製した。
 得られた組成物について、前述の方法により、組成物の粘度及び液状分散媒の表面張力を測定した結果を併せて表1に示す。

 
A3.長尺積層基材の製造及び測定(例A1~A7)
 図2に示す塗工部を有する装置を用い、基材12として上記ポリイミドフィルム1を用いて、ポリイミドフィルム1の両面にポリマー層を形成した。
 具体的には、まず、外周面におけるRzjisが表2に示す値であるバックロール20の外周面に、接触面圧が表2に示す値となるように、ポリイミドフィルム1の第2の面を接触させた。そして、ポリイミドフィルム1を搬送しながら、ポリイミドフィルム1の第1の面に、表2に示す組成物をスロットダイコート法で塗布し、通風乾燥炉(炉温150℃)に3分間で通過させ、水を除去して乾燥被膜である第1の層を形成した。
 次に、バックロール20の外周面に第1の層を接触させながらポリイミドフィルム1を搬送し、ポリイミドフィルム1の第2の面に組成物を塗布し、通風乾燥炉(炉温150℃)に3分間で通過させ、水を除去して第2の乾燥被膜を形成した。第2の乾燥被膜の形成に用いたバックロール20、接触面圧、搬送速度、組成物の種類、及び組成物の塗工条件は、第1の層の形成に用いたバックロール20、接触面圧、搬送速度、組成物の種類、及び組成物の塗工条件と同じである。
 次いで、両面に乾燥被膜が形成されたポリイミドフィルム1を、遠赤外線炉(炉内入口、出口付近の炉温度300℃、中心付近の炉温度340℃)に20分間で通過させて、組成物に含まれるF粒子を溶融焼成させF粒子の焼結体を形成した。
 これにより、ポリイミドフィルム1の両面にFポリマーを含むポリマー層を形成し、第1の層の焼結体であるP-A1層(厚さ:33μm)、ポリイミドフィルム1である基材(厚さ:34μm)、及び第2の乾燥被膜の焼結体であるP-A2層(厚さ:33μm)がこの順に直接形成され、幅が520mm、長手方向の長さが500mの長尺積層基材を得た。
 以上のようにして、例A1~A7の長尺積層基材を得た。
 得られた長尺積層基材における2つのポリマー層の露出面について、それぞれ10箇所ずつ、前述の白色光干渉方式による測定及びSdqの算出を行い、平均することで、P-A1層におけるSdq及びP-A2層におけるSdqを求めた。結果を表2に示す。
 円筒状の巻芯(材質:ABS樹脂、外径:152mm、曲率:0.033mm-1、軸方向長さ:520mm、厚さ:8mm)に、得られた長尺積層基材を、で巻き付けて、ロールシートとした。
A4.長尺積層基材の評価(銅箔剥離評価)
 例A1~A7におけるロールシートから、長尺積層基材を100m巻き出して切断した後、さらに長尺積層基材を1m巻き出し切断して得られる520mm×1000mmの積層基材の両面の全面にスパッタで銅を付着させ、硫酸銅めっきによってそれぞれの銅厚さを12μmとし、銅張積層体を得た。その後、5cm角に切り出した銅張積層体を、260℃のはんだ槽の溶融はんだに浮かべ、10秒後に取り出して目視で外観を確認し、下記評価基準により銅箔隔離評価を行った。結果を表2に示す。
<評価基準>
 A :銅の浮き及び剥離は見られない
 B :微小な銅の浮きが見られる
 C :完全に銅が剥離した部位が見られる。

 
 上記例において、例A1~A3は実施例であり、例A4~A7は比較例である。表2に示されるように、例A1~A3では、Sdqが5μm/mm以下であり、Sdqが5μm/mmを超える例A4~A7に比べて金属箔の剥離が抑制されている。
 なお、例A4及び例A7においては、組成物の塗工時に、スティックスリップ現象が発生していることが確認された。
B1.各成分及び各部材の準備(その2)
 以下の材料及び部材を準備した。
[Fポリマー]
 Fポリマー1:TFE単位、NAH単位、及びPPVE単位を、この順に98.0モル%、0.1モル%、1.9モル%含むPFA系ポリマー(融点:300℃)
 なお、Fポリマー1は、カルボニル基含有基を、主鎖炭素数1×10個あたり、1000個有する。
[F粒子]
 F粒子1:Fポリマー1からなる、D50が2.1μmの粒子
[界面活性剤]
 界面活性剤1:ノニオン性界面活性剤、ポリエーテル変性ポリジメチルシロキサン、品名:BYK-3450、ビックケミー・ジャパン株式会社製
[増粘剤]
 増粘剤1:ヒドロキシメチルセルロース、品名:HEC-1、住友精化株式会社製
[基材]
 ポリイミドフィルム1:厚さが34μm、幅が520mm、長手方向の長さが500m、ガラス転移点が245℃、320℃における引張弾性率が0.3GPaの芳香族性ポリイミドフィルム
 ポリイミドフィルム2:厚さが17μm、幅が520mm、長手方向の長さが500m、ガラス転移点が245℃、320℃における引張弾性率が0.3GPaの芳香族性ポリイミドフィルム
[巻芯]
 巻芯1:材質がABS樹脂、外径が168mm、曲率が0.0119mm-1、軸方向長さが520mm、厚さが8mmの円筒状の巻芯
 巻芯2:材質がABS樹脂、外径が92mm、曲率が0.0217mm-1、軸方向長さが520mm、厚さが8mmの円筒状の巻芯
B2.組成物の製造
 ポットに、F粒子1の50質量部と界面活性剤1の2.5質量部と増粘剤1の0.5質量部と水の47質量部とを投入し、ジルコニアボールを投入した。その後、150rpmにて1時間、ポットを転がし、組成物を調製した。
B3.長尺積層基材の製造(長尺積層基材1~2)
 バックロールの外周面にポリイミドフィルム1の面B2を接触させ、ポリイミドフィルム1を搬送しながら、ポリイミドフィルム1の面B1に上記組成物をスロットダイコート法で塗布し、通風乾燥炉(炉温150℃)に3分間で通過させ、水を除去して乾燥被膜である層B1を形成した。
 次に、バックロールの外周面に層B1を接触させながらポリイミドフィルム1を搬送し、ポリイミドフィルム1の面B2に組成物を塗布し、通風乾燥炉(炉温150℃)に3分間で通過させ、水を除去して乾燥被膜B2を形成した。
 次いで、両面に乾燥被膜が形成されたポリイミドフィルム1を、遠赤外線炉(炉内入口、出口付近の炉温度300℃、中心付近の炉温度340℃)に20分間で通過させて、組成物に含まれるF粒子を溶融焼成させF粒子の焼結体を形成した。
 これにより、ポリイミドフィルム1の両面にFポリマーを含むポリマー層を形成し、層B1の焼結体であるP-B1層(厚さ:33μm)、ポリイミドフィルム1である基材(厚さ:34μm)、及び乾燥被膜B2の焼結体であるP-B2層(厚さ:33μm)がこの順に直接形成され、積層厚さが100μmである長尺積層基材を得た。
 以上のようにして、長尺積層基材1を得た。
 ポリイミドフィルム1の代わりにポリイミドフィルム2を用い、P-B1層及びP-B2層の厚さをそれぞれ16.5μmとした以外は、長尺積層基材1と同様にして、積層厚さが50μmである長尺積層基材2を得た。
B4.長尺シートロールの製造及び測定(例B1~B5)
 表3に示す巻芯に、表3に示す長尺積層基材を、表3に示す巻き付け張力で巻き付け、長尺シートロールを製造した。巻き付けの際に長尺積層基材にかかった巻き付け応力、及び積C×Tを併せて表3に示す。
 例B1~B5における長尺シートロールから、長尺積層基材を450m巻き出して切断した後、さらに長尺積層基材を500mm巻き出し切断して得られる520mm×500mmの積層基材片を水平面に静置した。積層基材片における水平面からの浮き上がり高さを測定し、下記基準でカールの評価を行った。結果を表3に示す。
 A:浮き上がり高さが0.5cm以下
 B:浮き上がり高さが0.5cm超え1cm以下
 C:浮き上がり高さが1cm超
 例B1~B5における長尺シートロール端部の巻きずれを鋼尺で測定した。具体的には、長尺積層基材の幅方向端部のうち、巻芯の軸方向先端から最も離れた距離を「巻きずれ」とし、下記基準で巻きずれの評価を行った。結果を表3に示す。
 A:巻きずれが1cm未満
 B:巻きずれが1cm以上2cm未満
 C:巻きずれが2cm以上
B5.長尺シートロールの評価(銅箔シワ評価)
 例B1~B5における長尺シートロールから連続的に巻き出しながら搬送した長尺積層基材と、併せて別の繰り出し部から巻き出された銅箔と、を加熱された2本のロールの間に圧力をかけながら通して積層した。そのまま連続的に巻き取り、銅張積層体の長尺体を製造した。その外観を目視で評価し、下記基準で銅箔シワ評価を行った。結果を表3に示す。
 A:銅張積層体の長尺体の外観に銅箔のシワなどが見られない
 B:銅張積層体の長尺体の幅方向端部に銅箔のシワが見られる
 C:銅張積層体の幅方向中央部に、長尺積層基材のカールに由来する銅箔の折れシワが見られる

 
 上記例において、例B1~B4は実施例であり、例B5は比較例である。表3に示されるように、例B1~B4では、積C×Tが0.0015以上である例B5に比べて、カールの発生が抑制され、カールに起因する金属箔のシワが抑制されている。
 2022年6月3日に出願された日本国特許出願第2022-090871号及び2022年6月3日に出願された日本国特許出願第2022-090872号の開示は、その全体が参照により本明細書に取り込まれる。また、本明細書に記載された全ての文献、特許出願及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
10 長尺積層基材
12 基材
14、16 ポリマー層
14S、16S 露出面
20 バックロール
22 塗工部材
26 組成物層
100 長尺シートロール
120 巻芯

Claims (15)

  1.  厚さ12~50μmの基材と、前記基材の両面にそれぞれ設けられ、テトラフルオロエチレン系ポリマーを含み、それぞれの厚さが12~40μmであり、ISO25178-2:2012に基づいて前記基材と反対側の面を測定して得られる二乗平均平方根勾配Sdqの値が5μm/mm以下である、2つのポリマー層と、を有する、長尺積層基材。
  2.  前記基材は、ポリイミド、液晶ポリエステル、及びポリテトラフルオロエチレンからなる群より選択される少なくとも一種を含む、請求項1に記載の長尺積層基材。
  3.  前記2つのポリマー層は、前記テトラフルオロエチレン系ポリマーの粒子の焼結体を含む層である、請求項1に記載の長尺積層基材。
  4.  前記2つのポリマー層の合計厚さは、前記基材の厚さの1.8~3.0倍であり、かつ、前記2つのポリマー層のうち一方のポリマー層の厚さは、他方のポリマー層の厚さの0.9~1.1倍である、請求項1に記載の長尺積層基材。
  5.  前記テトラフルオロエチレン系ポリマーは、融点が260~320℃であるテトラフルオロエチレン系ポリマーである、請求項1に記載の長尺積層基材。
  6.  外周面の十点平均粗さRzjisが0.5~10μmであるバックロールの外周面に、接触面圧が100~3000kPaとなるように、厚さ12~50μmである長尺の基材における第2の面を接触させながら前記基材を搬送し、テトラフルオロエチレン系ポリマーの粒子と液状分散媒とを含有する組成物を前記基材における第1の面に塗工し熱処理することで、前記第1の面に第1の層を形成することと、前記バックロールの外周面に、接触面圧が100~3000kPaとなるように前記第1の層を接触させながら前記基材を搬送し、前記組成物を前記第2の面に塗工し熱処理することで、前記第2の面に第2の層を形成することと、を有し、前記基材と、前記テトラフルオロエチレン系ポリマーを含み、厚さが12~40μmである第1のポリマー層と、前記テトラフルオロエチレン系ポリマーを含み、厚さが12~40μmである第2のポリマー層と、を含む長尺積層基材を得る、長尺積層基材の製造方法。
  7.  前記バックロールの外周面の十点平均粗さRzjisは、0.5~8μmである、請求項6に記載の製造方法。
  8.  前記接触面圧は、250~2000kPaである、請求項6に記載の製造方法。
  9.  前記液状分散媒の表面張力は、20~30mN/mである、請求項6に記載の製造方法。
  10.  円筒状の巻芯と、前記巻芯の外周面に巻き付けられた長尺積層基材と、を有し、前記長尺積層基材は、厚さ12~50μmの基材と、前記基材の両面にそれぞれ設けられ、テトラフルオロエチレン系ポリマーを含み、それぞれの厚さが12~40μmである、2つのポリマー層と、を有し、前記2つのポリマー層の合計厚さが前記基材の厚さの1.8~3.0倍であり、前記2つのポリマー層のうち一方のポリマー層の厚さが他方のポリマー層の厚さの0.9~1.1倍であり、前記巻芯の外径における曲率Cmm-1と前記長尺積層基材の合計厚さTmmとの積C×Tの値が0.0015未満である、長尺シートロール。
  11.  前記2つのポリマー層は、前記テトラフルオロエチレン系ポリマーの粒子の焼結体を含む層である、請求項10に記載の長尺シートロール。
  12.  前記テトラフルオロエチレン系ポリマーは、融点が260~320℃であるテトラフルオロエチレン系ポリマーである、請求項10に記載の長尺シートロール。
  13.  前記長尺積層基材を500mm巻き出して切り取った積層基材片を水平面に静置したとき、前記積層基材片における前記水平面からの浮き上がり高さが1cm以下である、請求項10に記載の長尺シートロール。
  14.  厚さ12~50μmの基材と、前記基材の両面にそれぞれ設けられ、テトラフルオロエチレン系ポリマーを含み、それぞれの厚さが12~40μmである、2つのポリマー層と、を有し、前記2つのポリマー層の合計厚さが前記基材の厚さの1.8~3.0倍であり、前記2つのポリマー層のうち一方のポリマー層の厚さが他方のポリマー層の厚さの0.9~1.1倍である、長尺積層基材を準備することと、円筒状の巻芯の外周面に前記長尺積層基材を巻き付けることと、を有し、前記巻芯の外径における曲率Cmm-1と前記長尺積層基材の合計厚さTmmとの積C×Tの値が0.0015未満である、長尺シートロールの製造方法。
  15.  前記巻芯の外周面に前記長尺積層基材を巻き付ける際の巻き付け応力は、1~3MPaである、請求項14に記載の製造方法。
PCT/JP2023/020373 2022-06-03 2023-05-31 長尺積層基材、長尺シートロール、及びそれらの製造方法 WO2023234377A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022090872 2022-06-03
JP2022-090872 2022-06-03
JP2022-090871 2022-06-03
JP2022090871 2022-06-03

Publications (1)

Publication Number Publication Date
WO2023234377A1 true WO2023234377A1 (ja) 2023-12-07

Family

ID=89024953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/020373 WO2023234377A1 (ja) 2022-06-03 2023-05-31 長尺積層基材、長尺シートロール、及びそれらの製造方法

Country Status (2)

Country Link
TW (1) TW202413110A (ja)
WO (1) WO2023234377A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5056996A (en) * 1989-09-08 1991-10-15 Ionics, Incorporated Apparatus for manufacturing continuous, supported polymeric sheets from polymerizable liquid starting materials
JPH1055120A (ja) * 1996-05-10 1998-02-24 Ntn Corp 分離爪
JP2008012683A (ja) * 2006-07-03 2008-01-24 Nippon Pillar Packing Co Ltd 銅張基板、プリント基板、及び銅張基板の製造方法
WO2016200176A1 (ko) * 2015-06-09 2016-12-15 주식회사 엘지화학 유기전자장치
JP2017100066A (ja) * 2015-11-30 2017-06-08 日本ゼオン株式会社 塗工フィルム及び塗工フィルムの製造方法
WO2021039735A1 (ja) * 2019-08-27 2021-03-04 Agc株式会社 フィルム、フィルムの製造方法、金属張積層体、及び被覆金属導体
KR20210051939A (ko) * 2019-10-31 2021-05-10 동우 화인켐 주식회사 연성 금속 적층체 및 이의 제조방법
WO2021241547A1 (ja) * 2020-05-28 2021-12-02 Agc株式会社 分散液の製造方法
WO2021251288A1 (ja) * 2020-06-11 2021-12-16 三井金属鉱業株式会社 両面銅張積層板
JP2022035805A (ja) * 2020-08-21 2022-03-04 Agc株式会社 積層板の製造方法及び積層板

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5056996A (en) * 1989-09-08 1991-10-15 Ionics, Incorporated Apparatus for manufacturing continuous, supported polymeric sheets from polymerizable liquid starting materials
JPH1055120A (ja) * 1996-05-10 1998-02-24 Ntn Corp 分離爪
JP2008012683A (ja) * 2006-07-03 2008-01-24 Nippon Pillar Packing Co Ltd 銅張基板、プリント基板、及び銅張基板の製造方法
WO2016200176A1 (ko) * 2015-06-09 2016-12-15 주식회사 엘지화학 유기전자장치
JP2017100066A (ja) * 2015-11-30 2017-06-08 日本ゼオン株式会社 塗工フィルム及び塗工フィルムの製造方法
WO2021039735A1 (ja) * 2019-08-27 2021-03-04 Agc株式会社 フィルム、フィルムの製造方法、金属張積層体、及び被覆金属導体
KR20210051939A (ko) * 2019-10-31 2021-05-10 동우 화인켐 주식회사 연성 금속 적층체 및 이의 제조방법
WO2021241547A1 (ja) * 2020-05-28 2021-12-02 Agc株式会社 分散液の製造方法
WO2021251288A1 (ja) * 2020-06-11 2021-12-16 三井金属鉱業株式会社 両面銅張積層板
JP2022035805A (ja) * 2020-08-21 2022-03-04 Agc株式会社 積層板の製造方法及び積層板

Also Published As

Publication number Publication date
TW202413110A (zh) 2024-04-01

Similar Documents

Publication Publication Date Title
JP4930724B2 (ja) 銅張り積層基板
JP6590568B2 (ja) 絶縁性フィルム、絶縁性フィルムの製造方法、および金属張積層板の製造方法
TWI408200B (zh) 新穎之聚醯亞胺膜、使用其所得之黏著膜、及可撓性金屬貼合積層板
TWI447201B (zh) Then the film
US8338560B2 (en) Polyimide film and use thereof
CN112236302B (zh) 带树脂的金属箔的制造方法、带树脂的金属箔、层叠体及印刷基板
CN112703107B (zh) 层叠体、印刷基板及其制造方法
JP2008016603A (ja) フレキシブルプリント配線板用基板及びその製造方法
TW202010636A (zh) 附樹脂之金屬箔
JP7484917B2 (ja) 積層体の製造方法及び積層体
KR20230010621A (ko) 열 용융성 테트라플루오로에틸렌계 폴리머를 포함하는 층을 갖는 적층체의 제조 방법
WO2023234377A1 (ja) 長尺積層基材、長尺シートロール、及びそれらの製造方法
JP2021075030A (ja) 積層体、積層体の製造方法、シート、及びプリント回路基板
US20220157487A1 (en) Film, method for producing film, metal-clad laminate, and coated metal conductor
JP7476721B2 (ja) 積層板の製造方法及び積層板
JP7468520B2 (ja) 液状組成物
CN115397672A (zh) 多层膜、其制造方法、覆金属层叠体和印刷布线基板的制造方法
JP6774285B2 (ja) 金属張積層板
CN115003506B (zh) 多层膜及其制造方法
JP6776087B2 (ja) 金属張積層板の製造方法及び回路基板の製造方法
JP2006321981A (ja) 接着シート、金属積層シートおよびプリント配線板
WO2022050163A1 (ja) 積層フィルムの製造方法及び積層フィルム
JP2006316232A (ja) 接着フィルムおよびその製造方法
TW202103934A (zh) 積層體、印刷基板之製造方法、印刷基板及天線
JP2008130784A (ja) 多層回路基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23816134

Country of ref document: EP

Kind code of ref document: A1