WO2023231953A1 - 全地形车 - Google Patents

全地形车 Download PDF

Info

Publication number
WO2023231953A1
WO2023231953A1 PCT/CN2023/096792 CN2023096792W WO2023231953A1 WO 2023231953 A1 WO2023231953 A1 WO 2023231953A1 CN 2023096792 W CN2023096792 W CN 2023096792W WO 2023231953 A1 WO2023231953 A1 WO 2023231953A1
Authority
WO
WIPO (PCT)
Prior art keywords
brake
terrain vehicle
operating mechanism
base station
portable device
Prior art date
Application number
PCT/CN2023/096792
Other languages
English (en)
French (fr)
Inventor
罗龙平
周良琛
王志成
付文财
程朝阳
Original Assignee
浙江春风动力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江春风动力股份有限公司 filed Critical 浙江春风动力股份有限公司
Publication of WO2023231953A1 publication Critical patent/WO2023231953A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K5/00Cycles with handlebars, equipped with three or more main road wheels

Definitions

  • the present application relates to the field of vehicles, in particular to an all-terrain vehicle.
  • An all-terrain vehicle refers to a vehicle that can travel on any terrain and can walk freely on terrain that is difficult for ordinary vehicles to maneuver. All-terrain vehicles have a variety of uses and are not limited by road conditions. Therefore, the braking requirements and structural requirements for all-terrain vehicles are relatively high.
  • the all-terrain vehicle is connected and converted through a distribution valve, thereby realizing braking of the wheels of the all-terrain vehicle by a handbrake or a foot brake.
  • this setting method requires a large number of parts for the braking system, the connections between the parts are complicated, and the cost is relatively high.
  • the purpose of this application is to provide an all-terrain vehicle that can solve at least one of the above technical problems.
  • An all-terrain vehicle includes a frame, a traveling component, a suspension component and a braking component; wherein the traveling component includes a first traveling wheel and a second traveling wheel, and the first traveling wheel is arranged in front of the second traveling wheel.
  • the first running wheel is connected to the frame through the suspension assembly
  • the second running wheel is connected to the frame through the suspension assembly
  • the braking assembly is connected to the frame through the suspension assembly.
  • the braking assembly includes a brake, a first operating mechanism and a second operating mechanism, the brake is used to brake the traveling assembly; the first operating mechanism is used to control the brake, Brake fluid is stored in the first operating mechanism; the second operating mechanism is used to control the brake; the braking assembly also includes a main pump mechanism, and brake fluid is stored in the main pump mechanism; the third operating mechanism is used to control the brake. Both an operating mechanism and the second operating mechanism can control the brake through the main pump mechanism; the first operating mechanism can input brake fluid to the main pump mechanism.
  • the brake fluid in the main pump mechanism is squeezed into the brake to control all The brake brakes the traveling assembly;
  • the second operating mechanism is connected to the main pump mechanism, and the second operating mechanism can control the brake fluid in the main pump mechanism to enter the brake, so that the brake Brake the traveling assembly.
  • Figure 1 is a schematic structural diagram of the all-terrain vehicle of the present application.
  • Figure 2 is a schematic structural diagram of the braking assembly and walking assembly of the all-terrain vehicle of the present application.
  • Figure 3 is a schematic structural diagram of the three-way mechanism of the all-terrain vehicle of the present application.
  • Figure 4 is a schematic structural diagram of another braking assembly and walking assembly of the all-terrain vehicle of the present application.
  • Figure 5 is a schematic structural diagram of the main pump mechanism of the all-terrain vehicle of the present application.
  • Figure 6 is a schematic structural diagram of the main pump mechanism of the all-terrain vehicle of the present application from another angle.
  • Figure 7 is a first structural schematic diagram of the control system of the all-terrain vehicle of the present application.
  • Figure 8 is a schematic flow chart of the application in which the all-terrain vehicle is in a vehicle-seeking state.
  • Figure 9 is a second structural schematic diagram of the control system of the all-terrain vehicle of the present application.
  • Figure 10 is a schematic flow chart of the application in which the all-terrain vehicle is in a welcoming state.
  • Figure 11 is a third structural schematic diagram of the control system of the all-terrain vehicle of the present application.
  • Figure 12 is a fourth structural schematic diagram of the control system of the all-terrain vehicle of the present application.
  • Figure 13 is a schematic flow chart of the application in which the all-terrain vehicle is in a starting state.
  • Figure 14 is a flow chart of the first controller and unlocking base station authentication of the all-terrain vehicle in this application.
  • Figure 15 is a fifth structural schematic diagram of the control system of the all-terrain vehicle of the present application.
  • Figure 16 is a sixth structural schematic diagram of the control system of the all-terrain vehicle of the present application.
  • Figure 17 is a schematic structural diagram of the first installation position of the unlocking base station of the all-terrain vehicle of the present application.
  • the all-terrain vehicle 100 includes a frame 11 , a walking component 12 , a suspension component 13 , a saddle component 14 , a body cover 15 , a power component 16 , a braking component 17 and a steering component 18 .
  • the suspension component 13 is used to connect the vehicle frame 11 and the traveling component 12 .
  • the traveling assembly 12 includes a first traveling wheel 121 and a second traveling wheel 122. The first traveling wheel 121 is connected to the frame 11 through the suspension assembly 13, and the second traveling wheel 122 is connected to the frame 11 through the suspension assembly 13.
  • the traveling assembly 12 is For the sport of ATV 100.
  • the saddle assembly 14 is at least partially disposed on the vehicle frame 11 for riding by a user and/or a passenger.
  • the body panel 15 is at least partially disposed on the vehicle frame 11 .
  • the power assembly 16 is at least partially disposed on the vehicle frame 11 .
  • the power assembly 16 is at least partially connected to the walking assembly 12 and at least partially connected to the power assembly for transmitting the power of the power assembly to the walking assembly 12 to drive the walking assembly 12 .
  • the braking assembly 17 is at least partially disposed on the frame 11 for braking the walking assembly 12 and thus the all-terrain vehicle 100 .
  • the steering assembly 18 is at least partially disposed on the frame 11 for controlling the running direction of the all-terrain vehicle 100 .
  • the front side, rear side, left side, right side, upper side and lower side as shown in Figure 1 are also defined.
  • the first running wheel 121 is disposed on the front side of the second running wheel 122.
  • the braking assembly 17 is used to brake the first traveling wheel 121 and the second traveling wheel 122 .
  • the braking assembly 17 decelerates or stops the traveling assembly 12 through hydraulic means.
  • the braking assembly 17 decelerates or stops the traveling assembly 12 by outputting brake fluid.
  • the braking assembly 17 includes a first operating mechanism 171 , a second operating mechanism 172 and a brake 173 .
  • the brake 173 is provided on the traveling assembly 12 for braking the traveling assembly 12 .
  • the first operating mechanism 171 is connected to the brake 173 and is used to control the brake 173 to brake the traveling assembly 12 .
  • the second operating mechanism 172 is also connected to the brake 173 for controlling the brake 173 to brake the traveling assembly 12 .
  • the first operating mechanism 171 may be a hand brake main pump, and the second operating mechanism 172 may be a foot brake main pump.
  • the driver can control the brake 173 to brake the traveling assembly 12 through the first operating mechanism 171 and/or the second operating mechanism 172, thereby braking the all-terrain vehicle 100.
  • the above settings can also satisfy different braking habits of drivers, thereby improving the versatility and convenience of the all-terrain vehicle 100.
  • grip portions 181 are provided on both left and right sides of the steering assembly 18 .
  • the first operating mechanism 171 is provided on the left side of the all-terrain vehicle, and the first operating mechanism 171 is provided on the left gripping portion 181 .
  • the throttle on an ATV 100 is usually set to All Terrain.
  • the driver's safety when driving can be improved.
  • the driver can control the first running wheel 121 and the second running wheel 122 through the first operating mechanism 171 .
  • Braking improves the braking stability of the first running wheel 121 and the second running wheel 122, thereby preventing the vehicle from slipping or drifting, thereby improving the driving safety of the all-terrain vehicle 100.
  • footrests 19 for supporting the driver's feet are provided on both left and right sides of the all-terrain vehicle 100 .
  • the second operating mechanism 172 can be disposed on the footrest 19 on the left or right side of the all-terrain vehicle 100 .
  • the driver can control the first running wheel 121 and the second running wheel 122 by controlling the second operating mechanism 172 with his or her feet. brake.
  • the brake 173 includes a first brake 1731 and a second brake 1732 .
  • the first brake 1731 is provided on the first traveling wheel 121 and is used to control the deceleration or stopping of the first traveling wheel 121 .
  • the second brake 1732 is provided on the second traveling wheel 122 and is used to control the deceleration or stopping of the second traveling wheel 122 .
  • the first operating mechanism 171 is connected to the first brake 1731 and the second brake 1732 respectively, thereby braking the first running wheel 121 by controlling the first brake 1731 and braking the second running wheel 122 by controlling the second brake 1732.
  • the second operating mechanism 172 is also connected to the first brake 1731 and the second brake 1732 respectively, thereby braking the first running wheel 121 by controlling the first brake 1731 and braking the second running wheel 122 by controlling the second brake 1732.
  • the brake assembly 17 may further include a distribution device 174, and the distribution device 174 may be a liquid distribution valve.
  • the first operating mechanism 171 is connected to the distribution device 174
  • the second operating mechanism 172 is connected to the distribution device 174
  • the distribution device 174 is also connected to the brake 173 .
  • the distribution device 174 is at least partially disposed between the first operating mechanism 171 and the brake 173
  • the distributing device 174 is also at least partially disposed between the second operating mechanism 172 and the brake 173 .
  • the distribution device 174 is used to distribute the brake fluid output by the first operating mechanism 171 and/or the second operating mechanism 172 into the brake 173, so that the first operating mechanism 171 and/or the second operating mechanism 172 are controlled by the distribution device 174
  • the brake 173 brakes the traveling assembly 12 .
  • the brake fluid output by the second operating mechanism 172 is transmitted to the first brake 1731 through the distribution device 174 , and another part of the brake fluid output by the second operating mechanism 172 passes through the distribution device 174
  • the second brake 1732 is transmitted to decelerate the first traveling wheel 121 and the second traveling wheel 122 synchronously, thereby realizing synchronous braking of the traveling assembly 12 .
  • the brake pipelines of the first running wheel 121 and the second running wheel 122 can be isolated through the distribution device 174, so that the first operating mechanism 171 can control the first brake 1731 and the second brake 1732 to operate at the same time.
  • the second operating mechanism 172 can control the operation of the first brake 1731 and the second brake 1732 at the same time, thereby providing the driver with multiple braking methods.
  • the brake pipelines can be prevented from interfering with each other.
  • the other braking mode can also operate, thereby improving the driving safety of the all-terrain vehicle 100.
  • the brake pipeline refers to the flow path of brake fluid in the brake assembly 17 .
  • the braking assembly 17 further includes a foot pump mechanism 178 , and the second operating mechanism 172 is connected to the distribution device 174 through the foot pump mechanism 178 .
  • the second operating mechanism 172 is used to deliver the brake fluid in the foot pump mechanism 178 to the distribution device 174 , so that the distribution device 174 brakes the traveling assembly 12 through the brake 173 .
  • the brake fluid in the foot pump mechanism 178 can be transported to the distribution device 174 through the second operating mechanism 172, thereby realizing braking of the walking assembly 12.
  • the first running wheel 121 includes a first front wheel 1211 and a second front wheel 1212 .
  • First brakes 1731 are provided on both the first front wheel 1211 and the second front wheel 1212, so that the first operating mechanism 171 or the second operating mechanism 172 controls the braking of the first front wheel 1211 and the second front wheel 1212.
  • the second running wheel 122 includes a first rear wheel 1221 and a second rear wheel 1222 .
  • a second brake 1732 is provided on the first rear wheel 1221 and/or the second rear wheel 1222, so that the first operating mechanism 171 or the second operating mechanism 172 controls the braking of the first rear wheel 1221 and/or the second rear wheel 1222. .
  • the braking assembly 17 further includes a three-way mechanism 175 , and the three-way mechanism 175 includes a third input end 1751 , a second output end 1752 , and a third output end 1753 .
  • the second output end 1752 of the three-way mechanism 175 is connected to the first brake 1731 on the first front wheel 1211
  • the third output end 1753 of the three-way mechanism 175 is connected to the first brake 1731 on the second front wheel 1212
  • the third input end 1751 of the three-way mechanism 175 is connected to the distribution device 174.
  • the brake fluid delivered by the distribution device 174 can enter the first brake 1731 on the first front wheel 1211 and the first brake 1731 on the second front wheel 1212 respectively, thereby realizing the first operating mechanism 171 or the second
  • the operating mechanism 172 brakes the first front wheel 1211 and the second front wheel 1212 simultaneously.
  • a three-way mechanism 175 can also be provided between the second brake 1732 and the distribution device 174, thereby realizing the first operating mechanism. 171 or the second operating mechanism 172 brakes the first rear wheel 1221 and the second rear wheel 1222 simultaneously.
  • the second brake 1732 is provided on the first rear wheel 1221 or the second rear wheel 1222, there is no need to provide a three-way mechanism 175 between the second brake 1732 and the distribution device 174.
  • the number of second brakes 1732 can be adjusted to meet the driver's driving needs and improve the fault tolerance of the brake assembly 17.
  • the main pump mechanism 176 is connected to the first operating mechanism 171 and the second operating mechanism 172 respectively, and the main pump mechanism 176 is also connected to the brake 173 .
  • the first operating mechanism 171 is connected to the brake 173 through the main pump mechanism 176
  • the second operating mechanism 172 is also connected to the brake 173 through the main pump mechanism 176, so that the first operating mechanism 171 controls the brake 173 to brake travel through the main pump mechanism 176. assembly 12, so that the second operating mechanism 172 also controls the brake 173 to brake the traveling assembly 12 through the main pump mechanism 176.
  • the main pump mechanism 176 includes a pump body 1761 , a piston assembly 1762 and a second reset member 1763 .
  • a first cavity 1761a, a second cavity 1761b and a third cavity 1761c are formed in the pump body 1761.
  • the first cavity 1761a, the second cavity 1761b and the third cavity 1761c are arranged independently of each other, that is, the first cavity 1761a, the second cavity 1761b and the third cavity 1761c are not connected to each other.
  • the first, second, and third chambers 1761a, 1761b, and 1761c are separated by a piston assembly 1762.
  • the piston assembly 1762 is at least partially disposed in the pump body 1761, and the piston assembly 1762 is movable between the third position and the fourth position.
  • the third position refers to the position of the piston assembly 1762 when the main pump mechanism 176 is in the non-working state
  • the fourth position refers to the position of the piston assembly 1762 when the main pump mechanism 176 is in the working state.
  • the second reset member 1763 is at least partially disposed in the pump body 1761. Specifically, the second reset member 1763 is at least partially disposed in the third cavity 1761c.
  • the second return member 1763 is used to maintain the piston assembly 1762 in the third position or to make the piston assembly 1762 tend to return from the fourth position to the third position.
  • the second restoring component 1763 may be an elastic component.
  • the main pump mechanism 176 includes a first state and a second state.
  • the first operating mechanism 171 and/or the second operating mechanism 172 controls the brake 173 to brake the traveling assembly 12 through the main pump mechanism 176, that is, the main pump mechanism 176 is in the working state.
  • the first operating mechanism 171 and/or the second operating mechanism 172 do not control the main pump mechanism 176, that is, the main pump mechanism 176 is in a non-working state.
  • the piston assembly 1762 is in the third position
  • the main pump mechanism 176 is in the second state; when the piston assembly 1762 is in the fourth position, the main pump mechanism 176 is in the first state.
  • the main pump mechanism 176 also includes a first connector 1764, a second connector 1765, and a liquid storage mechanism 1766.
  • the fluid storage mechanism 1766 is used to store brake fluid.
  • the first joint 1764 and the second joint 1765 are both connected to the fluid storage mechanism 1766 for transporting the brake fluid in the fluid storage mechanism to the pump body 1761, thereby maintaining a certain amount of brake fluid in the pump body 1761.
  • the liquid storage mechanism may be an oil cup or the like.
  • the first connector 1764 is connected to the second cavity 1761b, and the second connector 1765 is connected to the third cavity 1761c.
  • a communication hole 1761d is provided between the first joint 1764 and the second cavity 1761b.
  • the main pump mechanism 176 When the main pump mechanism 176 is in the second state, the first joint 1764 and the second cavity 1761b are connected through the communication hole 1761d; A communication hole 1761d is also provided between the second joint 1765 and the third cavity 1761c. When the main pump mechanism 176 is in the second state, the second joint 1765 and the third cavity 1761c are also connected through the communication hole 1761d.
  • the joint 1765 keeps the amount of brake fluid in the third cavity 1761c constant, so that the brake fluid in the main pump mechanism 176 can meet the braking demand, thereby improving the braking effect of the brake assembly 17.
  • the piston assembly 1762 is in the third position. At this time, the piston assembly 1762 does not block the communication hole 1761d, so that the first joint 1764 delivers the brake fluid in the reservoir mechanism to In the second cavity 1761b, the second joint 1765 is used to transport the brake fluid in the fluid storage mechanism to the third cavity 1761c, so that the brake fluid in the main pump mechanism 176 can meet the braking demand, thereby improving braking. Braking effect of component 17.
  • the piston assembly 1762 When the main pump mechanism 176 is in the first state, the piston assembly 1762 is in the fourth position. At this time, the piston assembly 1762 blocks the communication hole 1761d, so that the first joint 1764 cannot deliver the brake fluid in the reservoir mechanism to the second In the cavity 1761b, the second joint 1765 cannot transport the brake fluid in the reservoir mechanism to the third cavity 1761c, thereby facilitating the first operating mechanism 171 and/or the second operating mechanism 172 to pass through the main pump mechanism 176
  • the brake 173 is controlled to brake the traveling assembly 12 .
  • the piston assembly 1762 includes a first piston 1762a and a second piston 1762b.
  • the first piston 1762a is disposed between the first cavity 1761a and the second cavity 1761b for separating the first cavity 1761a and the second cavity 1761b.
  • the second piston 1762b is disposed between the second cavity 1761b and the third cavity 1761c, and is used to separate the second cavity 1761b and the third cavity 1761c.
  • the first piston 1762a and the second piston 1762b are elastically connected. Specifically, the first piston 1762a and the second piston 1762b can be connected through the elastic member 1762c, so that the distance and space between the first piston 1762a and the second piston 1762b can be increased or decreased, thereby realizing the main pump mechanism.
  • 176 controls the brake 173 to brake the traveling assembly 12 .
  • the elastic member 1762c may be a spring or the like.
  • the main pump mechanism 176 also includes a liquid inlet hole 1766, a first liquid outlet hole 1767 and a second liquid outlet hole 1768.
  • the liquid inlet hole 1766, the first liquid outlet hole 1767, and the second liquid outlet hole 1768 are all connected to the pump body 1761.
  • the liquid inlet hole 1766 is connected to the first cavity 1761a, and the first liquid outlet hole 1767 It communicates with the second cavity 1761b, and the second liquid outlet 1768 communicates with the third cavity 1761c.
  • the first liquid outlet hole 1767 and the second liquid outlet hole 1768 constitute a liquid outlet hole, that is, the liquid outlet hole includes the first liquid outlet hole 1767 and the second liquid outlet hole 1768.
  • the pump body 1761 and the brake 173 are connected through the liquid outlet hole.
  • the liquid inlet hole 1766 is also connected to the first operating mechanism 171
  • the first liquid outlet hole 1767 is also connected to the first brake 1731
  • the second liquid outlet hole 1768 is also connected to the second brake 1732. Therefore, the brake fluid in the first operating mechanism 171 can be transported to the first cavity 1761a through the liquid inlet hole 1766.
  • the volume of the first cavity 1761a increases, thereby causing the first piston 1762a to move. Since the first piston 1762a and the second piston 1762b are connected through the elastic member 1762c, the space between the first piston 1762a and the second piston 1762b becomes smaller, that is, the space of the second cavity 1761b becomes smaller. At this time, the second cavity 1761b is squeezed. The brake fluid in the cavity 1761b is transported to the first brake 1731 through the first fluid outlet 1767, so that the first brake 1731 brakes the first running wheel 121.
  • the movement of the first piston 1762a will also drive the movement of the second piston 1762b, thereby reducing the space of the third cavity 1761c, thereby allowing the brake fluid in the third cavity 1761c to be transported to the third cavity through the second fluid outlet hole 1768.
  • the second brake 1732 allows the second brake 1732 to brake the second traveling wheel 122 .
  • the first operating mechanism 171 can independently control the brake 173 to brake the traveling assembly 12 through the main pump mechanism 176, thereby meeting the braking needs of the driver who uses the handbrake, and improving the versatility and user-friendliness of the all-terrain vehicle 100. Computer interactivity.
  • a push rod mechanism 177 is provided between the second operating mechanism 172 and the main pump mechanism 176.
  • One end of the push rod mechanism 177 is connected to the second operating mechanism 172, and the other end of the push rod mechanism 177 is connected to the piston assembly 1762.
  • the push rod mechanism 177 is at least partially disposed in the pump body 1761.
  • the push rod mechanism 177 is at least partially disposed in the first cavity 1761a.
  • the second operating mechanism 172 controls the movement of the piston assembly 1762 through the push rod mechanism 177 .
  • the push rod mechanism 177 is connected to the first piston 1762a, and the second operating mechanism 172 controls the movement of the first piston 1762a through the push rod mechanism 177.
  • the space between the first piston 1762a and the second piston 1762b becomes smaller, that is, the space of the second cavity 1761b becomes smaller.
  • the second cavity The brake fluid in 1761b is delivered to the first brake 1731 through the first fluid outlet 1767, so that the first brake 1731 brakes the first running wheel 121.
  • the movement of the first piston 1762a will also drive the movement of the second piston 1762b, thereby reducing the space of the third cavity 1761c, thereby allowing the brake fluid in the third cavity 1761c to be transported to the third cavity through the second fluid outlet hole 1768.
  • the second brake 1732 allows the second brake 1732 to brake the second traveling wheel 122 .
  • the second operating mechanism 172 can independently control the brake 173 to brake the traveling assembly 12 through the main pump mechanism 176, thereby meeting the braking needs of the driver who uses the foot brake and improving the versatility and versatility of the all-terrain vehicle 100. Human-computer interactivity.
  • the first operating mechanism 171 and the second operating mechanism 172 can simultaneously control the brake 173 to brake the traveling assembly 12 through the main pump mechanism 176 .
  • the first operating mechanism 171 The brake fluid is delivered to the first cavity 1761a through the liquid inlet 1766, thereby moving the first piston 1762a; the second operating mechanism 172 moves the first piston 1762a through the push rod mechanism 177.
  • the first operating mechanism 171 and the second operating mechanism 172 can simultaneously control the brake 173 to brake the traveling assembly 12 through the main pump mechanism 176, thereby effectively avoiding the failure of the first operating mechanism 171 or the second operating mechanism 172. potential safety hazards, thereby improving the safety of the all-terrain vehicle 100.
  • the braking effect of the braking assembly 17 can not only be improved, but also the braking needs of different drivers can be met, and the versatility and human-computer interaction of the braking assembly 17 can be improved.
  • the main pump mechanism 176 includes a first mode, a second mode, and a third mode.
  • the first mode means that when the first operating mechanism 171 is triggered, the main pump mechanism 176 is controlled by the first operating mechanism 171, so that the main pump mechanism 176 controls the brake 173 to brake the traveling assembly 12;
  • the second mode means that when When the first operating mechanism 171 and the second operating mechanism 172 are triggered, the main pump mechanism 176 is controlled by the first operating mechanism 171 and the second operating mechanism 172 at the same time, so that the main pump mechanism 176 controls the brake 173 to brake the traveling assembly 12 ;
  • the third mode means that when the second operating mechanism 172 is triggered, the main pump mechanism 176 is controlled by the second operating mechanism 172, so that the main pump mechanism 176 controls the brake 173 to brake the traveling assembly 12.
  • the brake fluid of the first operating mechanism 171 enters the main pump mechanism 176 through the inlet hole 1766.
  • the brake fluid in the main pump mechanism 176 enters the brake 173 through the liquid outlet hole, causing the brake 173 to brake the traveling assembly 12.
  • the brake fluid of the first operating mechanism 171 is transported to the first cavity 1761a through the liquid inlet 1766, thereby causing the brake fluid in the second cavity 1761b to
  • the dynamic fluid is transported to the first brake 1731 through the first fluid outlet hole 1767, so that the first brake 1731 controls the braking of the first running wheel 121;
  • the brake fluid in the third cavity 1761c is transported through the second fluid outlet hole 1768. to the second brake 1732, so that the second brake 1732 controls the braking of the second running wheel 122.
  • the first operating mechanism 171 can independently control the brake 173 to brake the traveling assembly 12 through the main pump mechanism 176, thereby meeting the braking needs of the driver who uses the handbrake, and improving the versatility and user-friendliness of the all-terrain vehicle 100. Computer interactivity.
  • the brake fluid from the first operating mechanism 171 enters the main pump mechanism through the inlet hole 1766 176.
  • the brake fluid in the first operating mechanism 171 enters through the liquid inlet hole 1766
  • the brake fluid in the main pump mechanism 176 enters the brake 173 through the fluid outlet, causing the brake 173 to brake the traveling assembly 12; at the same time, the second operating mechanism 172 controls the brake fluid in the main pump mechanism 176 to pass through.
  • the liquid outlet hole enters the brake 173, causing the brake 173 to brake the traveling assembly 12.
  • the brake fluid in the first operating mechanism 171 is delivered to the first cavity 1761a through the liquid inlet 1766 to move the first piston 1762a, and the second operating mechanism 172 is pushed through the push rod mechanism 177
  • the first piston 1762a moves, so that the brake fluid in the second cavity 1761b is transported to the first brake 1731 through the first fluid outlet 1767, so that the first brake 1731 controls the braking of the first running wheel 121;
  • the brake fluid in the cavity 1761c is delivered to the second brake 1732 through the second fluid outlet 1768, so that the second brake 1732 controls the braking of the second traveling wheel 122.
  • the first operating mechanism 171 and the second operating mechanism 172 can simultaneously control the brake 173 to brake the traveling assembly 12 through the main pump mechanism 176, thereby effectively avoiding the failure of the first operating mechanism 171 or the second operating mechanism 172. potential safety hazards, thereby improving the safety of the all-terrain vehicle 100.
  • the braking effect of the braking assembly 17 can not only be improved, but also the braking needs of different drivers can be met, and the versatility and human-computer interaction of the braking assembly 17 can be improved.
  • the second operating mechanism 172 controls the brake fluid in the main pump mechanism 176 to enter the brake 173 through the fluid outlet hole, so that The brake 173 brakes the traveling assembly 12 .
  • the second operating mechanism 172 pushes the first piston 1762a through the push rod mechanism 177, so that the brake fluid in the second cavity 1761b is transported to the first brake 1731 through the first fluid outlet hole 1767, so that The first brake 1731 controls the braking of the first running wheel 121; the brake fluid in the third cavity 1761c is transported to the second brake 1732 through the second liquid outlet hole 1768, so that the second brake 1732 controls the second running wheel 122 brake.
  • the second operating mechanism 172 can independently control the brake 173 to brake the traveling assembly 12 through the main pump mechanism 176, thereby meeting the braking needs of the driver who uses the foot brake and improving the versatility and versatility of the all-terrain vehicle 100. Human-computer interactivity.
  • the first operating mechanism 171 and/or the second operating mechanism 172 are triggered, the first operating mechanism 171 and/or the second operating mechanism 172 are allowed to control the main pump mechanism 176, This allows the brake fluid in the main pump mechanism 176 to enter the brake 173 through the fluid outlet hole, thereby causing the brake 173 to brake the traveling assembly 12 .
  • the main pump mechanism 176 by providing the main pump mechanism 176, the number of parts of the brake assembly 17 is simplified, and the connection structure between the parts of the brake assembly 17 is reduced, thereby making the structure of the brake assembly 17 more compact. This facilitates the arrangement of the brake assembly 17, improves the space utilization of the all-terrain vehicle 100, and reduces the cost of the brake assembly 17.
  • the all-terrain vehicle 100 also includes a control system 19 , and the control system 19 includes an unlocking base station 192 and a first controller 193 . .
  • the unlocking base station 192 is at least partially disposed on the ATV 100 .
  • the unlocking base station 192 includes at least one communication module that can be paired with a portable device 200 for unlocking the all-terrain vehicle 100 .
  • the portable device 200 is a movable device, that is, the portable device 200 may be a Bluetooth key 21 or a mobile terminal, etc. And after the communication module and the portable device 200 are successfully paired, the unlocking base station 192 can transmit signals through the communication module and the portable device 200 .
  • the portable device 200 can pair with the unlocking base station 192, that is, the portable device 200 can send pairing information to the unlocking base station 192, and the unlocking base station 192 verifies the portable device through the pairing information.
  • 200 may be used to unlock the all-terrain vehicle 100 to enable communication between the portable device 200 and the unlocking base station 192 .
  • the preset range can send location information to the unlocking base station 192 through the portable device 200 to determine whether the distance between the portable device 200 and the all-terrain vehicle 100 is within the preset range.
  • the preset range can be adjusted according to actual requirements.
  • the first controller 193 is at least partially disposed on the frame 11 .
  • the first controller 193 is connected to the unlocking base station 192 .
  • the first controller 193 is used to authenticate the unlocking base station 192 to enable starting or other functions of the all-terrain vehicle 100 .
  • the first controller 193 may be a body control module (BCM), and the first controller 193 and the unlocking base station 192 may be connected through a CAN (Controller Area Network, CAN) network.
  • BCM body control module
  • CAN Controller Area Network
  • the unlocking base station 192 accepts and determines the information output by the portable device 200, and communicates with the first controller 193 Verification is performed, so that the unlocking base station 192 sends different control instructions to the first controller 193 to realize different functions of the all-terrain vehicle 100 .
  • the unlocking base station 192 may be a Key Base Station (KBS) or a vehicle-mounted wireless terminal (Telematics BOX, T-BOX).
  • the unlocking base station 192 can be actively searched for the portable device 200, or the portable device 200 can be actively searched for the unlocking base station 192, thereby meeting the needs of different scenarios and improving the versatility and replaceability of the all-terrain vehicle control system 19.
  • the portable device 200 and the unlocking base station 192 can be connected via Bluetooth. catch. Specifically, when the portable device 200 is a Bluetooth key 21, the Bluetooth key 21 is equipped with Bluetooth 5.2, so that the portable device 200 can implement a low-power power control function.
  • the all-terrain vehicle 100 at least includes at least one of a vehicle-seeking state, a welcome state, and a starting state.
  • the preset range includes a first preset range, and the first preset range can be adjusted according to actual needs. Among them, if there is no obstruction between the portable device 200 and the unlocking base station 192, the first preset range may be less than or equal to 100 meters; if there is an obstruction between the portable device 200 and the unlocking base station 192, the first preset range will increase with It changes depending on the material and thickness of the obstruction.
  • Portable device 200 can send location information to unlocking base station 192.
  • the vehicle-finding instruction can also be automatically sent to the unlocking base station 192 through the portable device 200 .
  • the unlocking base station 192 After the unlocking base station 192 receives the car-finding instruction sent by the portable device 200 and determines that the location information is less than or equal to the first preset range, the unlocking base station 192 sends the car-finding instruction to the first controller 193 through the CAN network.
  • the first controller 193 The all-terrain vehicle 100 is controlled to be in a vehicle-seeking state, thereby realizing the vehicle-seeking function of the all-terrain vehicle 100 .
  • the all-terrain vehicle 100 also includes a visual interaction module for performing visual interaction and a sound interaction module for performing sound interaction. When the all-terrain vehicle 100 is in the vehicle-seeking state, the first controller 193 can control the visual interaction module.
  • the visual interaction module may be the lights of the all-terrain vehicle 100
  • the sound interaction module may be the horn of the all-terrain vehicle 100 .
  • the portable device 200 can send a signal to the unlocking base station 192, and can determine whether the distance between the portable device 200 and the all-terrain vehicle 100 is within the first preset range according to the signal strength.
  • the signal strength includes a first preset strength.
  • the first preset intensity may be set to be greater than or equal to 0.
  • the portable device 200 can send a car search instruction to the unlocking base station 192, that is, when the first preset intensity is close to 0, the portable device 200 can also A car-finding command can be sent to the unlocking base station 192.
  • the unlocked base station 192 receives the signal sent by the portable device 200 and determines that the strength of the signal is within the first preset strength, that is, when the distance between the portable device 200 and the all-terrain vehicle 100 is less than or equal to the first preset range, the base station 192 unlocks the portable device to receive the signal.
  • the unlocking base station 192 sends the vehicle search instruction to the first controller 193 through the CAN network, and the first controller 193 controls the all-terrain vehicle 100 to be in a vehicle search state, thereby realizing the vehicle search function of the all-terrain vehicle 100 .
  • Step S101 Start.
  • Step S102 The portable device sends a car-finding instruction and location information.
  • Step S103 Unlock the base station to receive the car-finding instruction and location information.
  • Step S104 Determine whether the distance between the portable device and the all-terrain vehicle 100 is less than or equal to the first preset range according to the location information of the portable device; if yes, execute step S105; if not, return to step S102.
  • Step S105 The unlocked base station sends a car-finding instruction to the first controller.
  • Step S106 The first controller controls the all-terrain vehicle to be in a vehicle-seeking state.
  • the Bluetooth key 21 is provided with a car search button 22, and the user presses the car search button 22 to cause the Bluetooth key 21 to send a car search command to the unlocking base station. 192. That is, when the car search button 22 is triggered, the Bluetooth key 21 sends a car search command to the unlocking base station 192 .
  • the Bluetooth key 21 is also provided with a motion sensing module 23, which may be a motion sensor. When the portable device 200 is stationary, the motion sensing module 23 keeps running with low power consumption, thereby reducing the energy consumption of the portable device 200 and increasing the usage time of the portable device 200 . When the portable device 200 is physically displaced, the motion sensing module 23 emits location information.
  • the portable device 200 can perform signal transmission with the unlocking base station 192 . That is, when the portable device 200 and the unlocking base station 192 are paired successfully, the car-finding button 22 can cause the Bluetooth key 21 to send a car-finding command to the unlocking base station 192, and the motion sensing module 23 can send location information to the unlocking base station 192.
  • the portable device 200 and the unlocking base station 192 fail to pair, the portable device 200 cannot communicate with the unlocking base station 192 . Only through the pairing of the portable device 200 and the unlocking base station 192 can the portable device 200 and the unlocking base station 192 communicate, thereby improving the safety and anti-theft of the all-terrain vehicle 100 .
  • the preset range includes a second preset range
  • the second preset range is smaller than the first preset range
  • the second preset range can be determined according to actual needs. Adjustment.
  • the portable device 200 can also send location information to the unlocking base station 192 .
  • the second preset range can be set to be smaller than the first preset range; if there is an obstruction between the portable device 200 and the unlocking base station 192, the second preset range It will change depending on the material and thickness of the obstruction.
  • unlocking The base station 192 In the case of signal transmission between the unlocking base station 192 and the portable device 200, when the distance between the portable device 200 and the all-terrain vehicle 100 is less than or equal to the second preset range, that is, when the location information is less than or equal to the second preset range, unlocking The base station 192 generates a welcome instruction.
  • the unlocking base station 192 sends a welcome command to the first controller 193 through the CAN network. After receiving the welcome command, the first controller 193 controls the all-terrain vehicle 100 to be in a welcome state, thereby realizing the welcome function of the all-terrain vehicle 100 .
  • the all-terrain vehicle 100 also includes a visual interaction module for performing visual interaction and a sound interaction module for performing sound interaction.
  • the first controller 193 can control the visual interaction module. Perform corresponding visual interaction and/or control the sound interaction module to perform corresponding sound interaction.
  • the visual interaction module may be the lights of the all-terrain vehicle 100
  • the sound interaction module may be the horn of the all-terrain vehicle 100 . It can be understood that after the unlocking base station 192 receives the location information sent by the portable device 200 and the location information is less than or equal to the second preset range, the unlocking base station 192 can also cause the first controller 193 to trigger the welcome command through the CAN network, thereby causing the third A controller 193 controls the all-terrain vehicle 100 to be in a welcoming state.
  • the welcome instruction is generated by the first controller 193.
  • the welcome status can be turned on or off according to actual needs. That is, when the user does not need the welcome state, the welcome state can be turned off; when the user needs the welcome state, the welcome state can be turned on.
  • the portable device 200 can send a signal to the unlocking base station 192 and can determine whether the distance between the portable device 200 and the all-terrain vehicle 100 is within the second preset range based on the signal strength.
  • the signal strength includes a second preset strength, and the second preset strength is greater than the first preset strength.
  • the second preset intensity may be set to be greater than or equal to 0. It can be understood that, under the condition that the unlocking base station 192 and the portable device 200 can perform signal transmission, the portable device 200 can send a welcome instruction to the unlocking base station 192, that is, when the second preset intensity is close to 0, the portable device 200 can also A welcome command can be sent to the unlocking base station 192.
  • the unlocking base station 192 In the case of signal transmission between the unlocking base station 192 and the portable device 200, when the unlocking base station 192 receives the signal sent by the portable device 200, signal and determine that the signal strength is within the second preset strength, that is, when the distance between the portable device 200 and the all-terrain vehicle 100 is less than or equal to the second preset range, the unlocking base station 192 receives the welcome command sent by the portable device 200 and unlocks The base station 192 sends the welcome command to the first controller 193 through the CAN network. After receiving the welcome command, the first controller 193 controls the all-terrain vehicle 100 to be in the welcome state, thereby realizing the welcome function of the all-terrain vehicle 100 .
  • the process of opening the welcome state of the all-terrain vehicle is as follows:
  • Step S201 Start.
  • Step S202 The portable device sends location information to the unlocking base station.
  • Step S203 Unlock the base station to receive location information.
  • Step S204 Determine whether the distance between the portable device and the all-terrain vehicle is less than or equal to the second preset range according to the location information of the portable device; if yes, execute step S205; if not, return to step S202.
  • Step S205 The unlocked base station sends a welcome instruction to the first controller.
  • Step S206 The first controller controls the all-terrain vehicle to be in a welcoming state.
  • Step S207 End.
  • the preset range includes the third preset range, and the third preset range is smaller than the second preset range.
  • the design range can be adjusted according to actual needs.
  • the portable device 200 can also send location information to the unlocking base station 192 .
  • the third preset range can be set to be smaller than the second preset range; if there is an obstruction between the portable device 200 and the unlocking base station 192, the third preset range It will change depending on the material and thickness of the obstruction.
  • the control system 19 When the all-terrain vehicle 100 is in a started state, the control system 19 also includes a first start switch 194 .
  • the first start switch 194 may be provided on the portable device 200 or on the all-terrain vehicle 100 .
  • the first startup switch 194 when the first startup switch 194 is set on the portable device 200, the first startup switch 194 can communicate with the unlocking base station 192 through the portable device 200, and transmit the startup instruction sent by the first startup switch 194 through the unlocking base station 192. to the first controller 193; the first start switch 194 can also communicate with the first controller 193 through the portable device 200, thereby directly transmitting the start instruction sent by the first start switch 194 to the first controller 193.
  • the first start switch 194 and the portable device 200 can be integrated, thereby reducing the layout space of the first start switch 194 on the all-terrain vehicle 100 and improving the space utilization of the all-terrain vehicle 100 .
  • the first start switch 194 and the first A controller 193 is electrically connected.
  • the unlocking base station 192 and the portable device 200 perform signal transmission, that is, when the portable device 200 and the unlocking base station 192 are paired successfully, and the distance between the all-terrain vehicle 100 and the portable device 200 is less than or equal to the third preset
  • the range is set, that is, when the portable device 200 and the unlocking base station 192 are paired successfully and the location information sent by the portable device 200 is less than or equal to the third preset range
  • the user can send a message to the first controller 193 through the first start switch 194 Start command. After the first controller 193 receives the startup command, the first controller 193 sends authentication information to the unlocking base station 192 and performs the authentication process until the authentication is successful.
  • the first controller 193 can start the all-terrain vehicle 100 . That is, the first controller 193 must meet the following conditions at the same time to start the all-terrain vehicle 100: first, the first controller 193 receives the start instruction, and second, the authentication of the first controller 193 and the unlocking base station 192 is successful.
  • the first controller 193 receives the start instruction
  • the authentication of the first controller 193 and the unlocking base station 192 is successful.
  • the portable device 200 can send a signal to the unlocking base station 192, and can determine whether the distance between the portable device 200 and the all-terrain vehicle 100 is within the third preset range according to the signal strength.
  • the signal strength includes a third preset strength, and the third preset strength is greater than the second preset strength.
  • the third preset intensity may be set to be greater than or equal to 0. It can be understood that, under the condition that the unlocking base station 192 and the portable device 200 are capable of signal transmission, the user can send a starting instruction to the first controller 193 through the first starting switch 194, that is, when the third preset intensity is close to 0 , the user can also send a starting instruction to the first controller 193 through the first starting switch 194 .
  • the unlocked base station 192 In the case of signal transmission between the unlocked base station 192 and the portable device 200, when the unlocked base station 192 receives the signal sent by the portable device 200 and determines that the strength of the signal is within the third preset strength, that is, when the portable device 200 and the all-terrain vehicle 100 When the distance is less than or equal to the third preset range, the user can send a starting instruction to the first controller 193 through the first starting switch 194 . As shown in FIG. 6 , in this embodiment, if the first start switch 194 is set on the portable device 200 , the first start switch 194 can communicate with the first controller 193 through wireless transmission, so that the first start switch 194 can communicate with the first controller 193 through wireless transmission.
  • the start switch 194 can send a start instruction to the first controller 193 . It can be understood that the first start switch 194 can also first send the start command to the unlocking base station 192 through wireless transmission, and then send the start command to the first controller 193 through the unlocking base station 192. Through the above settings, the user can remotely control the start of the all-terrain vehicle 100, thereby improving the usage efficiency of the all-terrain vehicle 100; and only when the distance between the unlocking base station 192 and the portable device 200 is less than or equal to the third preset range, the third Once started The switch 194 sends a starting command to the first controller 193, thereby improving the use efficiency of the all-terrain vehicle 100 and at the same time improving the safety and anti-theft of the all-terrain vehicle 100.
  • the first start switch 194 can communicate with the first controller 193 through electrical connection, so that The first start switch 194 can send a start instruction to the first controller 193 . It can be understood that the first start switch 194 can also first send the start command to the unlocking base station 192 through electrical connection, and then send the start command to the first controller 193 through the unlocking base station 192 .
  • Step S301 Start.
  • Step S302 The portable device sends location information to the unlocking base station.
  • Step S303 Unlock the base station to receive location information.
  • Step S304 Determine whether the distance between the portable device and the all-terrain vehicle is less than or equal to the third preset range according to the location information of the portable device; if yes, execute step S302; if not, return to step S302.
  • Step S305 The first start switch sends a start command to the first controller.
  • Step S306 The first controller receives the startup instruction and authenticates with the unlocked base station.
  • Step S307 Determine whether the authentication between the unlocked base station and the first controller is successful; if yes, execute step S308; if not, return to step S305.
  • Step S308 The first controller controls the all-terrain vehicle to start.
  • Step S309 end.
  • the authentication steps of the first controller 193 and the unlocking base station 192 are as follows:
  • S402 The first controller 193 sends authentication information to the unlocking base station 192;
  • S403 After receiving the authentication information, the unlocking base station 192 sends encrypted information to the first controller 193;
  • steps shown in the above process or the flow chart of the accompanying drawings can be executed in a computer system such as a set of computer-executable instructions, and although a logical sequence is shown in the flow chart, in the In some cases, the steps shown or described may be performed in a different order than here. For example, steps S405 and S406 may be exchanged in order.
  • pairing authentication can be performed between the unlocking base station 192 and the first controller 193 , thereby improving the safety and anti-theft of the all-terrain vehicle 100 .
  • dual anti-theft authentication of the all-terrain vehicle 100 is achieved, thereby further improving the anti-theft performance of the all-terrain vehicle 100.
  • the authentication information may be composed of 16-byte random number data.
  • the encrypted information is the encryption result of encrypting the authentication information. If the first controller 193 does not receive the encryption information from the unlocking base station 192 during the first time period, the first controller 193 sends authentication failure information to the unlocking base station 192, and the first controller 193 continues after the second time period. Send authentication information.
  • the first time period may be 50 ms, and the second time period may be 20 ms. The first time period and the second time period may also be adjusted according to actual needs.
  • the feedback result includes authentication success information and authentication failure information. The first controller 193 receives the encrypted information and matches the encrypted information with the encryption result calculated by the first controller 193 .
  • the first controller 193 sends authentication success information to the unlocking base station 192 . If the encryption result and the encryption information fail to match, the first controller 193 sends authentication failure information to the unlocking base station 192 and sends authentication information to the unlocking base station 192 again. After sending the encrypted information, the unlocking base station 192 does not receive feedback information from the first controller 193 within the third time period, then the unlocking base station 192 sends error information to the first controller 193, and the first controller 193 Continue to send authentication information after a while.
  • the third time period may be 50ms, and the third time period may be adjusted according to actual needs. In steps S405 and S406, the unlocking base station 192 is used to receive and determine feedback information.
  • the control system 19 also includes a second start switch 195.
  • the second start switch 195 is connected to the first controller 193 .
  • the all-terrain vehicle 100 includes an electric vehicle, a hybrid vehicle, or a fuel vehicle
  • the power component 16 includes a motor 172 and/or an engine 171 .
  • the power component 16 When the all-terrain vehicle 100 is an electric vehicle, the power component 16 includes a motor 172, and the first controller 193 is connected to the motor 172; when the all-terrain vehicle 100 is a hybrid vehicle, the power component 16 includes the motor 172 and the engine 171, the first controller 193 is connected to the motor 172 and the engine 171; when the all-terrain vehicle 100 is a fuel vehicle, the power component 16 includes the engine 161, and the first controller 193 is connected to the engine 171.
  • the control system 19 when the all-terrain vehicle 100 is a hybrid vehicle or a fuel vehicle, the control system 19 also includes a second controller 196 and a third controller 197.
  • the second controller 196 connects the first controller 193 and the power assembly. 16.
  • the third controller 197 is connected to the first controller 193 and to the second controller 196 .
  • the second controller 196 may be an engine 171 controller (Engine control unit, ECU), and the third controller 197 may be a relay.
  • the first controller 193 is used to provide power to the second controller 196 and the third controller 197 .
  • the second start switch 195 when the user turns on the second start switch 195, the second start switch 195 sends an ignition signal to the first controller 193, and the first controller 193 controls the third controller 197 to start, thereby causing the third controller 197 to control
  • the second controller 196 is started, thereby starting the engine 171 , that is, starting the all-terrain vehicle 100 .
  • the second start switch 195 is also used to start the motor 172 .
  • the second start switch 195 When the all-terrain vehicle 100 is in the starting state and the unlocking base station 192 and the first controller 193 are authenticated successfully, the user turns on the second start switch 195, and the second start switch 195 sends a start signal to the first controller 193.
  • the controller 193 controls the motor 172 to start, thereby starting the all-terrain vehicle 100.
  • the all-terrain vehicle 100 also includes a first state and a second state.
  • the all-terrain vehicle 100 is in the first state
  • the all-terrain vehicle 100 is in the power-on state
  • the all-terrain vehicle 100 is in the second state
  • the all-terrain vehicle 100 is in the power-off state.
  • the power-off state refers to the state where the power supply of the all-terrain vehicle 100 is normally powered.
  • the normal power refers to the positive power supply connected from the positive terminal of the power supply and is not controlled by any switch, relay, etc.; the power-on state refers to the power supply of the all-terrain vehicle 100 It is the status of the power output after being controlled by switches, relays, etc.
  • the all-terrain vehicle 100 When the all-terrain vehicle 100 is in the first state and the location information sent by the portable device 200 is less than or equal to the third preset range, or when the intensity of the signal sent by the portable device 200 is within the third preset intensity, the all-terrain vehicle 100 remains Power-on status.
  • the first controller 193 uses To determine whether the rotational speed and/or vehicle speed of the all-terrain vehicle 100 is within a preset speed range. Among them, the preset speed range can be adjusted according to the actual Adjust to actual needs.
  • the first controller 193 controls the all-terrain vehicle 100 to be in a power-off state.
  • the preset time can be adjusted according to actual needs.
  • the all-terrain vehicle 100 remains powered on.
  • the all-terrain vehicle 100 can be automatically powered off, thereby ensuring the safety and anti-theft of the all-terrain vehicle 100.
  • the unlocking base station 192 is at least partially disposed on the upper side of the frame 11 , and the unlocking base station 192 is at least partially disposed on the body cover 15 on the underside or in the body panel 15. In addition, the unlocking base station 192 is also at least partially disposed on the front side of the vehicle frame 11 .
  • the unlocking base station 192 can be set at an upper position of the all-terrain vehicle 100, thereby improving the unlocking base station 192
  • the communication effect with the portable device 200 improves the waterproofness of the unlocking base station 192.
  • the unlocking base station 192 is disposed away from the power assembly 16 , that is, the unlocking base station 192 is not disposed on the underside of the saddle assembly 18 .
  • the unlocking base station 192 can be kept away from a high-temperature position of the all-terrain vehicle 100 , even if the unlocking base station 192 is set away from the engine 171 and/or the motor 172 , thereby preventing the unlocking base station 192 from having an excessively high operating temperature, thereby improving the unlocking base station 192 work efficiency and communication effects.
  • the all-terrain vehicle 100 further includes an instrument panel 21 , and the instrument panel 21 is used to display vehicle information of the all-terrain vehicle 100 .
  • the body cover 15 includes an instrument cover 151 which is at least partially disposed on the upper side of the vehicle frame 11 .
  • the instrument panel 21 is at least partially disposed in the instrument cover 151 .
  • the all-terrain vehicle 100 includes a symmetry plane 101 perpendicular to the left-right direction (refer to FIG. 1 ), and the all-terrain vehicle 100 is basically symmetrically arranged with respect to the symmetry plane 101 .
  • the instrument cover 151 is arranged basically symmetrically about the symmetry plane 101 .
  • the unlocking base station 192 is at least partially disposed on the lower side of the instrument panel 21.
  • the unlocking base station 192 is substantially symmetrical with respect to the symmetry plane 101, and the unlocking base station 192 is at least partially disposed on the upper side of the vehicle frame 11. That is, the unlocking base station 192 is at least partially disposed on Between the instrument cover 151 and the vehicle frame 11.
  • the problem of poor communication signals caused by metal objects such as the frame 11 blocking or wrapping the unlocking base station 192 can be effectively avoided; the unlocking base station 192 can be set at an upper position of the all-terrain vehicle 100, thereby improving the unlocking base station 192
  • the communication effect with the portable device 200 improves the waterproofness of the unlocking base station 192.
  • arranging the unlocking base station 192 on the lower side of the instrument cover 151 can effectively avoid the problem that the unlocking base station 192 is placed on one side of the all-terrain vehicle 100, resulting in poor signals on the other side of the all-terrain vehicle 100, thereby improving the efficiency of the all-terrain vehicle 100. and portable device 200 communication effects.
  • the instrument cover 151 includes a first body 1511, a second body 1512 and a third body 1513.
  • the first body 1511 is connected to the second body 1512
  • the second body 1512 is connected to the third body 1513
  • the third body 1513 is connected to the vehicle frame 11.
  • the first body 1511 is at least partially disposed on the rear side of the second body 1512
  • the third body 1513 is at least partially disposed on the lower side of the second body 1512 and at least partially disposed on the first body.
  • the underside of 1511 The first body 1511 is used to fix the instrument panel 21 .
  • the second body 1512 is used to connect the first body 1511 and the third body 1513
  • the third body 1513 is used to fix the instrument cover 151 on the vehicle frame 11 .
  • the unlocking base station 192 is provided on the third body 1513 .
  • the all-terrain vehicle 100 further includes an air intake assembly 22 .
  • the air intake assembly 22 includes an air filter 221 , which is disposed on the vehicle frame 11 and in the vehicle body cover 15 .
  • the vehicle body cover 15 also includes a first cover 152 and a first mounting plate 153 .
  • the first cover 152 is provided on the upper side of the air filter 221 for shielding and covering the air filter 221 .
  • the first mounting plate 153 is at least partially disposed between the first cover 152 and the air filter 221 .
  • the first mounting plate 153 is substantially symmetrically arranged with respect to the symmetry plane 101
  • the first cover 152 is substantially symmetrically arranged with respect to the symmetry plane 101 .
  • the unlocking base station 192 is provided on the first mounting plate.
  • the unlocking base station 192 may be disposed on the front side of the first mounting plate 153 , and the unlocking base station 192 may also be disposed on the rear side of the first mounting plate 153 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Regulating Braking Force (AREA)

Abstract

本申请公开了一种全地形车,包括行走组件和制动组件;制动组件包括:主泵机构、制动器、第一操纵机构和第二操纵机构,制动器用于制动行走组件;第一操纵机构用于控制制动器,第一操纵机构中存储有制动液;第二操纵机构用于控制制动器;第一操纵机构和第二操纵机构均能够通过主泵机构控制制动器;第一操纵机构能够向主泵机构输入制动液,在第一操纵机构的制动液进入主泵机构之后,挤压主泵机构中的制动液进入制动器,以控制制动器制动行走组件;第二操纵机构与主泵机构连接,第二操纵机构能够控制主泵机构中的制动液进入制动器,使制动器制动行走组件。通过设置主泵机构,简化制动组件的零部件数量,且减少制动组件的零部件之间的连接结构。

Description

全地形车
相关申请
本申请要求2022年5月30日申请,申请号为202210605865.5,发明名称为“全地形车”和2022年8月5日申请,申请号为202210941971.0,发明名称为“全地形车”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及车辆领域,尤其是指一种全地形车。
背景技术
全地形车是指可以在任何地形上行驶的车辆,在普通车辆难以机动的地形上行走自如。全地形车的车型具有多种用途,且不受道路条件的限制,因此,对于全地形车的制动要求和结构要求较高。
现有技术中,全地形车是通过分配阀的连接转换,从而实现手刹或脚刹对全地形车的车轮的制动。但这种设置方式对于制动系统来说,零部件数量较多,零部件之间的连接复杂,成本相对较高。
发明内容
为了解决现有技术的不足,本申请的目的在于提供一种能够解决以上至少一个技术问题的全地形车。
为实现上述目的,本申请采用如下的技术方案:
全地形车,包括车架、行走组件、悬架组件和制动组件;其中,行走组件包括第一行走轮和第二行走轮,所述第一行走轮设置在所述第二行走轮的前侧,所述第一行走轮通过所述悬架组件连接至所述车架,所述第二行走轮通过所述悬架组件连接至所述车架;所述制动组件由所述车架支撑,用于制动所述行走组件;所述制动组件包括制动器、第一操纵机构和第二操纵机构,制动器用于制动所述行走组件;第一操纵机构用于控制所述制动器,所述第一操纵机构中存储有制动液;第二操纵机构用于控制所述制动器;所述制动组件还包括主泵机构,所述主泵机构中存储有制动液;所述第一操纵机构和所述第二操纵机构均能够通过所述主泵机构控制所述制动器;所述第一操纵机构能够向所述主泵机构输入制动液,在所述第一操纵机构的制动液进入所述主泵机构之后,挤压所述主泵机构中的制动液进入所述制动器,以控制所 述制动器制动所述行走组件;所述第二操纵机构与所述主泵机构连接,所述第二操纵机构能够控制所述主泵机构中的制动液进入所述制动器,使所述制动器制动所述行走组件。
本申请提供的全地形车可以通过设置主泵机构,简化制动组件的零部件数量,且减少制动组件的零部件之间的连接结构,从而使制动组件的结构更加紧凑,便于制动组件的布置,提高全地形车的空间利用率,降低制动组件的成本。
附图说明
图1为本申请全地形车的结构示意图。
图2为本申请全地形车的制动组件、行走组件的结构示意图。
图3为本申请全地形车的三通机构的结构示意图。
图4为本申请全地形车的另一种制动组件、行走组件的结构示意图。
图5为本申请全地形车的主泵机构的结构示意图。
图6为本申请全地形车的主泵机构的另一角度的结构示意图。
图7为本申请全地形车的控制系统的第一种结构示意图。
图8为本申请全地形车处于寻车状态的流程示意图。
图9为本申请全地形车的控制系统的第二种结构示意图。
图10为本申请全地形车处于迎宾状态的流程示意图。
图11为本申请全地形车的控制系统的第三种结构示意图。
图12为本申请全地形车的控制系统的第四种结构示意图。
图13为本申请全地形车处于启动状态的流程示意图。
图14为本申请全地形车的第一控制器和解锁基站认证的流程图。
图15为本申请全地形车的控制系统的第五种结构示意图。
图16为本申请全地形车的控制系统的第六种结构示意图。
图17为本申请全地形车的解锁基站的第一种安装位置的结构示意图。
图18为本申请全地形车的解锁基站的第二种安装位置的结构示意图。
具体实施方式
为了使本领域的人员更好地理解本申请方案,下面将结合本申请实施方式中的附图,对本申请具体实施方式中的技术方案进行清楚、完整地描述。
如图1所示,全地形车100包括车架11、行走组件12、悬架组件13、鞍座组件14、车身覆盖件15、动力组件16、制动组件17及转向组件18。悬架组件13用于连接车架11和行走组件12。行走组件12包括第一行走轮121和第二行走轮122,第一行走轮121通过悬架组件13连接车架11,第二行走轮122通过悬架组件13连接车架11,行走组件12用于全地形车100的运动。鞍座组件14至少部分设置在车架11上,可供使用者和/或乘客的骑乘。车身覆盖件15至少部分设置在车架11上。动力组件16至少部分设置在车架11上,动力组件16至少部分连接行走组件12且至少部分连接动力组件,用于传递动力组件的动力至行走组件12,从而驱动行走组件12。制动组件17至少部分设置在车架11上,用于制动行走组件12,从而制动全地形车100。转向组件18至少部分设置在车架11上,用于控制全地形车100的运行方向。为了清楚地说明本实用新型的技术方案,还定义了如图1所示的前侧、后侧、左侧、右侧、上侧、下侧。
作为一种实现方式,根据全地形车100的前后方向,第一行走轮121设置在第二行走轮122的前侧。制动组件17用于制动第一行走轮121和第二行走轮122。其中,制动组件17通过液压的方式使行走组件12减速或停止。在本实施方式中,制动组件17通过输出制动液的方式使行走组件12减速或停止。
如图2所示,具体的,制动组件17包括第一操纵机构171、第二操纵机构172和制动器173。制动器173设置在行走组件12上,用于制动行走组件12。第一操纵机构171连接制动器173,用于控制制动器173制动行走组件12。第二操纵机构172也连接制动器173,用于控制制动器173制动行走组件12。其中,第一操纵机构171可以是手刹主泵,第二操纵机构172可以是脚刹主泵。通过上述设置,可以使驾驶者通过第一操纵机构171和/或第二操纵机构172控制制动器173制动行走组件12,从而制动全地形车100。此外,通过上述设置还可以满足驾驶者不同的制动习惯,从而提高全地形车100的通用性和便捷性。
如图1和图2所示,作为一种实现方式,转向组件18的左右两侧上均设置有握持部181。第一操纵机构171设置在全地形车的左侧,且第一操纵机构171设置在左侧的握持部181上。全地形车100上的油门通常设置在全地 形车100的右侧,通过将第一操纵机构171设置在全地形车100的左侧,从而可以提高驾驶者驾驶时的安全性。此外,通过在制动组件17中设置第一操纵机构171,使得全地形车100在制动过程中,驾驶者能够通过第一操纵机构171实现对第一行走轮121和第二行走轮122的制动,提高第一行走轮121和第二行走轮122的制动稳定性,从而防止车辆产生侧滑或是跑偏的情况,进而提高全地形车100的行车安全性。
如图1所示,作为一种实现方式,全地形车100的左右两侧均设置有用于支撑驾驶者脚部的脚踏部19。第二操纵机构172可以设置在全地形车100左侧或右侧的脚踏部19上,驾驶者能够通过脚部操控第二操纵机构172实现对第一行走轮121和第二行走轮122的制动。通过上述设置,可以满足倾向于使用脚部制动的驾驶者的制动需求,从而使驾驶者能够根据自身需求或喜好选择对行走组件12的制动方式。
如图2所示,作为一种实现方式,制动器173包括第一制动器1731和第二制动器1732。第一制动器1731设置在第一行走轮121上,用于控制第一行走轮121的减速或停止。第二制动器1732设置在第二行走轮122上,用于控制第二行走轮122的减速或停止。具体的,第一操纵机构171分别连接第一制动器1731和第二制动器1732,从而通过控制第一制动器1731制动第一行走轮121,通过控制第二制动器1732制动第二行走轮122。具体的,第二操纵机构172也分别连接第一制动器1731和第二制动器1732,从而通过控制第一制动器1731制动第一行走轮121,通过控制第二制动器1732制动第二行走轮122。
作为一种实现方式,制动组件17还可以包括分配装置174,分配装置174可以是液体分配阀。第一操纵机构171与分配装置174连接,第二操纵机构172与分配装置174连接,分配装置174还与制动器173连接。其中,分配装置174至少部分设置在第一操纵机构171和制动器173之间,分配装置174还至少部分设置在第二操纵机构172和制动器173之间。分配装置174用于将第一操纵机构171和/或第二操纵机构172输出的制动液分配至制动器173中,从而使第一操纵机构171和/或第二操纵机构172通过分配装置174控制制动器173制动行走组件12。
具体的,当驾驶者操控第一操纵机构171的情况下,第一操纵机构171输出的其中一部分制动液经过分配装置174传递至第一制动器1731,第一操纵机构171输出的另一部分制动液经过分配装置174传递第二制动器1732,从而使第一行走轮121和第二行走轮122同步减速,进而实现行走组件12的同步制动。当驾驶者操控第二操纵机构172的情况下,第二操纵机构172输出的制动液经过分配装置174传递至第一制动器1731,第二操纵机构172输出的另一部分制动液经过分配装置174传递第二制动器1732,从而使第一行走轮121和第二行走轮122同步减速,进而实现行走组件12的同步制动。通过上述设置,可以通过分配装置174将第一行走轮121和第二行走轮122的制动管路相隔离,使第一操纵机构171能够同时控制第一制动器1731和第二制动器1732工作,使第二操纵机构172能够同时控制第一制动器1731和第二制动器1732工作,从而为驾驶者提供多种制动方式。同时,通过上述设置,可以使制动管路互不干扰,在一种制动方式失效的情况下,另一种制动方式也能够运行,从而能够提升全地形车100行驶的安全性。其中,制动管路指制动液在制动组件17中的流动路径。
如图2所示,作为一种实现方式,制动组件17还包括脚泵机构178,第二操纵机构172通过脚泵机构178连接分配装置174。第二操纵机构172用于将脚泵机构178中的制动液输送至分配装置174,从而使分配装置174通过制动器173制动行走组件12。通过上述设置,可以通过第二操纵机构172将脚泵机构178中的制动液输送至分配装置174,进而实现对行走组件12的制动。
如图1和图2所示,具体的,第一行走轮121包括第一前轮1211和第二前轮1212。第一前轮1211和第二前轮1212上均设置有第一制动器1731,从而使第一操纵机构171或第二操纵机构172控制第一前轮1211和第二前轮1212制动。第二行走轮122包括第一后轮1221和第二后轮1222。第一后轮1221和/或第二后轮1222上设置有第二制动器1732,从而使第一操纵机构171或第二操纵机构172控制第一后轮1221和/或第二后轮1222制动。
如图2和图3所示,在本实施方式中,制动组件17还包括三通机构175,三通机构175包括第三输入端1751、第二输出端1752和第三输出端1753。三通机构175的第二输出端1752连接第一前轮1211上的第一制动器1731, 三通机构175的第三输出端1753连接第二前轮1212上的第一制动器1731,三通机构175的第三输入端1751连接分配装置174。通过上述设置,可以使分配装置174输送的制动液分别进入第一前轮1211上的第一制动器1731和第二前轮1212上的第一制动器1731,从而实现第一操纵机构171或第二操纵机构172对第一前轮1211和第二前轮1212的同时制动。
可以理解的,当第一后轮1221和第二后轮1222上均设置有第二制动器1732时,第二制动器1732和分配装置174之间也可以设置有三通机构175,从而实现第一操纵机构171或第二操纵机构172对第一后轮1221和第二后轮1222的同时制动。当第一后轮1221或第二后轮1222上设置有第二制动器1732时,第二制动器1732和分配装置174之间无需设置三通机构175。通过上述设置,可以调整第二制动器1732的数量,从而满足驾驶者的驾驶需求,并提高制动组件17的容错性。
如图4所示,作为一种实现方式,制动组件17还可以包括主泵机构176,主泵机构176中存储有制动液,即此时制动组件17不需要设置分配装置174和脚泵机构178,从而以主泵机构176代替分配装置174和脚泵机构178的功能,进而节省制动组件17的零部件数量,简化制动组件17的结构,且减少制动组件17的零部件之间的连接结构,使制动组件17的结构更加紧凑,便于制动组件17的布置,提高全地形车100的空间利用率,降低制动组件17的成本。主泵机构176分别连接第一操纵机构171和第二操纵机构172,主泵机构176还连接制动器173。具体的,第一操纵机构171通过主泵机构176连接制动器173,第二操纵机构172也通过主泵机构176连接制动器173,从而使第一操纵机构171通过主泵机构176控制制动器173制动行走组件12,使第二操纵机构172也通过主泵机构176控制制动器173制动行走组件12。通过上述设置,可以通过设置主泵机构176,使第一操纵机构171单独控制制动器173制动行走组件12,或使第二操纵机构172单独控制制动器173制动行走组件12,或使第一操纵机构171和第二操纵机构172同时控制制动器173制动行走组件12,从而为驾驶者提供多种制动方式。同时,通过上述设置,可以使制动管路互不干扰,在一种制动方式失效的情况下,另一种制动方式也能够运行,从而能够提升全地形车100行驶的安全性。
如图5和图6所示,具体的,主泵机构176包括泵体1761、活塞组件1762和第二复位件1763。泵体1761内形成有第一腔体1761a、第二腔体1761b和第三腔体1761c。第一腔体1761a、第二腔体1761b和第三腔体1761c互相独立设置,即第一腔体1761a、第二腔体1761b和第三腔体1761c互不连通。第一腔体1761a、第二腔体1761b和第三腔体1761c通过活塞组件1762分隔。活塞组件1762至少部分设置在泵体1761中,且活塞组件1762能够在第三位置和第四位置之间移动。其中,第三位置指主泵机构176处于未工作状态时活塞组件1762的位置,第四位置指主泵机构176处于工作状态时活塞组件1762的位置。第二复位件1763至少部分设置在泵体1761中,具体的,第二复位件1763至少部分设置在第三腔体1761c中。第二复位件1763用于将活塞组件1762保持在第三位置或使活塞组件1762具有从第四位置回复至第三位置的趋势。其中,第二复位件1763可以是一种具有弹性的部件。在本实施方式中,主泵机构176包括第一状态和第二状态。当主泵机构176处于第一状态时,第一操纵机构171和/或第二操纵机构172通过主泵机构176控制制动器173制动行走组件12,即主泵机构176处于工作状态。当主泵机构176处于第二状态时,第一操纵机构171和/或第二操纵机构172不控制主泵机构176,即主泵机构176处于未工作状态。当活塞组件1762处于第三位置时,主泵机构176处于第二状态;当活塞组件1762处于第四位置时,主泵机构176处于第一状态。
具体的,主泵机构176还包括第一接头1764、第二接头1765和储液机构1766。储液机构1766用于储存制动液。第一接头1764和第二接头1765均连接储液机构1766,用于将储液机构中的制动液输送至泵体1761中,从而使泵体1761中的制动液保持一定的量。其中,储液机构可以是油杯等。第一接头1764和第二腔体1761b连通,第二接头1765和第三腔体1761c连通。在本实施方式中,第一接头1764和第二腔体1761b之间设置有连通孔1761d,当主泵机构176处于第二状态时,第一接头1764和第二腔体1761b通过连通孔1761d连通;第二接头1765和第三腔体1761c之间也设置有连通孔1761d,当主泵机构176处于第二状态时,第二接头1765和第三腔体1761c也通过连通孔1761d连通。通过上述设置,可以当主泵机构176处于第二状态时,通过第一接头1764使第二腔体1761b中的制动液的量保持一定,可以通过第二 接头1765使第三腔体1761c中的制动液的量保持一定,从而便于主泵机构176中的制动液满足制动需求,进而提高制动组件17的制动效果。其中,当主泵机构176处于第二状态时,活塞组件1762处于第三位置,此时,活塞组件1762未堵住连通孔1761d,从而使第一接头1764将储液机构中的制动液输送至第二腔体1761b中,使第二接头1765将储液机构中的制动液输送至第三腔体1761c中,从而便于主泵机构176中的制动液满足制动需求,进而提高制动组件17的制动效果。当主泵机构176处于第一状态时,活塞组件1762处于第四位置,此时,活塞组件1762堵住连通孔1761d,从而使第一接头1764不能将储液机构中的制动液输送至第二腔体1761b中,使第二接头1765不能将储液机构中的制动液输送至第三腔体1761c中,从而便于使第一操纵机构171和/或第二操纵机构172通过主泵机构176控制制动器173制动行走组件12。
作为一种实现方式,活塞组件1762包括第一活塞1762a和第二活塞1762b。第一活塞1762a设置在第一腔体1761a和第二腔体1761b之间,用于分隔第一腔体1761a和第二腔体1761b。第二活塞1762b设置在第二腔体1761b和第三腔体1761c之间,用于分隔第二腔体1761b和第三腔体1761c。第一活塞1762a和第二活塞1762b弹性连接。具体的,第一活塞1762a和第二活塞1762b之间可以通过弹性件1762c连接,从而使第一活塞1762a和第二活塞1762b之间的距离和空间可以增大或减小,进而实现主泵机构176控制制动器173制动行走组件12。其中,弹性件1762c可以是弹簧等。
作为一种实现方式,主泵机构176还包括进液孔1766、第一出液孔1767和第二出液孔1768。进液孔1766、第一出液孔1767、第二出液孔1768均连通泵体1761。具体的,当主泵机构176处于第一状态或第二状态时,即主泵机构176不管是处于工作状态还是未工作状态时,进液孔1766连通第一腔体1761a,第一出液孔1767连通第二腔体1761b,第二出液孔1768连通第三腔体1761c。
作为一种实现方式,第一出液孔1767和第二出液孔1768构成出液孔,即出液孔包括第一出液孔1767和第二出液孔1768。泵体1761和制动器173通过出液孔连通。具体的,进液孔1766还连通第一操纵机构171,第一出液孔1767还连通第一制动器1731,第二出液孔1768还连通第二制动器1732, 从而使第一操纵机构171中的制动液可以通过进液孔1766输送至第一腔体1761a中。此时,由于第一腔体1761a中的制动液增加,使第一腔体1761a的体积增大,从而使第一活塞1762a移动。由于第一活塞1762a和第二活塞1762b通过弹性件1762c连接,第一活塞1762a和第二活塞1762b之间的空间变小,即第二腔体1761b的空间变小,此时,挤压第二腔体1761b中的制动液通过第一出液孔1767输送至第一制动器1731,从而使第一制动器1731制动第一行走轮121。第一活塞1762a的移动也会带动第二活塞1762b的移动,从而使第三腔体1761c的空间减小,进而使第三腔体1761c中的制动液通过第二出液孔1768输送至第二制动器1732,使第二制动器1732制动第二行走轮122。通过上述设置,可以使第一操纵机构171通过主泵机构176单独控制制动器173制动行走组件12,从而满足使用手刹制动的驾驶者的制动需求,提高全地形车100的通用性和人机交互性。
作为一种实现方式,第二操纵机构172和主泵机构176之间设置有推杆机构177,推杆机构177的一端连接第二操纵机构172,推杆机构177的另一端连接活塞组件1762,且推杆机构177至少部分设置在泵体1761中。具体的,推杆机构177至少部分设置在第一腔体1761a中。第二操纵机构172通过推杆机构177控制活塞组件1762移动。在本实施方式中,推杆机构177连接第一活塞1762a,第二操纵机构172通过推杆机构177控制第一活塞1762a移动。由于第一活塞1762a和第二活塞1762b通过弹性件1762c连接,第一活塞1762a和第二活塞1762b之间的空间变小,即第二腔体1761b的空间变小,此时,第二腔体1761b中的制动液通过第一出液孔1767输送至第一制动器1731,从而使第一制动器1731制动第一行走轮121。第一活塞1762a的移动也会带动第二活塞1762b的移动,从而使第三腔体1761c的空间减小,进而使第三腔体1761c中的制动液通过第二出液孔1768输送至第二制动器1732,使第二制动器1732制动第二行走轮122。通过上述设置,可以使第二操纵机构172通过主泵机构176单独控制制动器173制动行走组件12,从而满足使用脚刹制动的驾驶者的制动需求,提高全地形车100的通用性和人机交互性。
作为一种实现方式,第一操纵机构171和第二操纵机构172可以同时通过主泵机构176控制制动器173制动行走组件12。具体的,第一操纵机构171 的制动液通过进液孔1766输送至第一腔体1761a中,从而使第一活塞1762a移动;第二操纵机构172通过推杆机构177使第一活塞1762a移动。通过上述设置,可以使第一操纵机构171和第二操纵机构172通过主泵机构176同时控制制动器173制动行走组件12,从而有效避免由于第一操纵机构171或第二操纵机构172失效导致的安全隐患,进而提高全地形车100的安全性。此外,通过上述设置,不仅可以提高制动组件17的制动效果,还可以满足不同驾驶者的制动需求,提高制动组件17的通用性和人机交互性。
作为一种实现方式,主泵机构176包括第一模式、第二模式和第三模式。其中,第一模式指在第一操纵机构171被触发的情况下,主泵机构176受第一操纵机构171控制,从而使主泵机构176控制制动器173制动行走组件12;第二模式指在第一操纵机构171和第二操纵机构172被触发的情况下,主泵机构176同时受第一操纵机构171和第二操纵机构172控制,从而使主泵机构176控制制动器173制动行走组件12;第三模式指在第二操纵机构172被触发的情况下,主泵机构176受第二操纵机构172控制,从而使主泵机构176控制制动器173制动行走组件12。
具体的,当主泵机构176处于第一模式时,即在第一操纵机构171被触发的情况下,第一操纵机构171的制动液通过进液孔1766进入主泵机构176,在第一操纵机构171的制动液通过进液孔1766进入主泵机构176之后,主泵机构176中的制动液通过出液孔进入制动器173,使制动器173制动行走组件12。在本实施方式中,在第一操纵机构171被触发的情况下,第一操纵机构171的制动液通过进液孔1766输送至第一腔体1761a,从而使第二腔体1761b中的制动液通过第一出液孔1767输送至第一制动器1731,以使第一制动器1731控制第一行走轮121制动;使第三腔体1761c中的制动液通过第二出液孔1768输送至第二制动器1732,以使第二制动器1732控制第二行走轮122制动。通过上述设置,可以使第一操纵机构171通过主泵机构176单独控制制动器173制动行走组件12,从而满足使用手刹制动的驾驶者的制动需求,提高全地形车100的通用性和人机交互性。
具体的,当主泵机构176处于第二模式时,即在第一操纵机构171和第二操纵机构172被触发的情况下,第一操纵机构171的制动液通过进液孔1766进入主泵机构176,在第一操纵机构171的制动液通过进液孔1766进入 主泵机构176之后,主泵机构176中的制动液通过出液孔进入制动器173,使制动器173制动行走组件12;同时,第二操纵机构172控制主泵机构176中的制动液通过出液孔进入制动器173,使制动器173制动行走组件12。在本实施方式中,第一操纵机构171中的制动液通过进液孔1766输送至第一腔体1761a中,以使第一活塞1762a移动,且第二操纵机构172通过推杆机构177推动第一活塞1762a移动,从而使第二腔体1761b中的制动液通过第一出液孔1767输送至第一制动器1731,以使第一制动器1731控制第一行走轮121制动;使第三腔体1761c中的制动液通过第二出液孔1768输送至第二制动器1732,以使第二制动器1732控制第二行走轮122制动。通过上述设置,可以使第一操纵机构171和第二操纵机构172通过主泵机构176同时控制制动器173制动行走组件12,从而有效避免由于第一操纵机构171或第二操纵机构172失效导致的安全隐患,进而提高全地形车100的安全性。此外,通过上述设置,不仅可以提高制动组件17的制动效果,还可以满足不同驾驶者的制动需求,提高制动组件17的通用性和人机交互性。
具体的,当主泵机构176处于第三模式时,即在第二操纵机构172被触发的情况下,第二操纵机构172控制主泵机构176中的制动液通过出液孔进入制动器173,使制动器173制动行走组件12。在本实施方式中,第二操纵机构172通过推杆机构177推动第一活塞1762a,从而使第二腔体1761b中的制动液通过第一出液孔1767输送至第一制动器1731,以使第一制动器1731控制第一行走轮121制动;使第三腔体1761c中的制动液通过第二出液孔1768输送至第二制动器1732,以使第二制动器1732控制第二行走轮122制动。通过上述设置,可以使第二操纵机构172通过主泵机构176单独控制制动器173制动行走组件12,从而满足使用脚刹制动的驾驶者的制动需求,提高全地形车100的通用性和人机交互性。
在本实施方式中,通过上述设置,在第一操纵机构171和/或第二操纵机构172被触发的情况下,使第一操纵机构171和/或第二操纵机构172控制主泵机构176,以使主泵机构176中的制动液通过出液孔进入制动器173,从而使制动器173制动行走组件12。
此外,通过设置主泵机构176,简化制动组件17的零部件数量,且减少制动组件17的零部件之间的连接结构,从而使制动组件17的结构更加紧凑, 便于制动组件17的布置,提高全地形车100的空间利用率,降低制动组件17的成本。
如图7,作为一种实现方式,全地形车100还包括控制系统19,控制系统19包括解锁基站192和第一控制器193。。解锁基站192至少部分设置全地形车100上。解锁基站192包括至少一个通信模块,通信模块能够和便携式设备200配对,便携式设备200用于解锁全地形车100。便携式设备200为可移动装置,即便携式设备200可以是蓝牙钥匙21,也可以是移动终端等。并在通信模块和便携式设备200配对成功后,解锁基站192能够通过通信模块和便携式设备200进行信号传输。具体的,当便携式设备200和解锁基站192处于预设范围时,便携式设备200可以和解锁基站192进行配对,即便携式设备200可以发送配对信息至解锁基站192,解锁基站192通过配对信息验证便携式设备200是否可用于解锁全地形车100,从而实现便携式设备200和解锁基站192之间的通信。
其中,预设范围可以通过便携式设备200发送位置信息至解锁基站192,从而确定便携式设备200和全地形车100的距离是否处于预设范围内,预设范围可以根据实际要求进行调整。第一控制器193至少部分设置在车架11上,第一控制器193连接解锁基站192,第一控制器193用于认证解锁基站192,从而实现全地形车100的启动或其他功能。具体的,第一控制器193可以是车身控制器(body control module,BCM),第一控制器193和解锁基站192可以通过CAN(控制器局域网,Controller Area Network,CAN)网络进行连接。在本实施方式中,便携式设备200和解锁基站192配对成功后,即便携式设备200和解锁基站192进行信号传输后,解锁基站192接受并判断便携式设备200输出的信息,并和第一控制器193进行验证,从而使解锁基站192向第一控制器193发送不同的控制指令,实现全地形车100的不同功能。在本实施方式中,解锁基站192可以是钥匙基站(Key Base Station,KBS),也可以是车载无线终端(Telematics BOX,T-BOX)。通过上述设置,可以使解锁基站192主动搜寻便携式设备200,或者,可以使便携式设备200主动搜寻解锁基站192,从而满足不同场景的需求,提高全地形车控制系统19的通用性和替换性。便携式设备200和解锁基站192之间可以通过蓝牙连 接。具体的,当便携式设备200为蓝牙钥匙21时,蓝牙钥匙21具备蓝牙5.2,从而使便携式设备200可以实现低功耗功率控制功能。
作为一种实现方式,全地形车100至少包括寻车状态、迎宾状态和启动状态其中至少之一。
作为一种实现方式,当全地形车100处于寻车状态时,预设范围包括第一预设范围,第一预设范围可以根据实际需求进行调整。其中,若便携式设备200和解锁基站192之间没有遮挡物,第一预设范围可以是小于等于100米;若便携式设备200和解锁基站192之间存在遮挡物,第一预设范围会随着遮挡物的材质、厚度等而改变。便携式设备200能够发送位置信息至解锁基站192。在解锁基站192和便携式设备200进行信号传输的情况下,当便携式设备200和全地形车100的距离小于或等于第一预设范围时,即当位置信息小于或等于第一预设范围时,使用者可以控制便携式设备200发送寻车指令至解锁基站192,即寻车指令需要使用者通过按键等形式控制便携式设备200发送至解锁基站192。可以理解的,当便携式设备200和全地形车100的距离小于或等于第一预设范围时,寻车指令也可以通过便携式设备200自动发送至解锁基站192。解锁基站192接收便携式设备200发送的寻车指令,且确定位置信息小于或等于第一预设范围后,解锁基站192通过CAN网络将寻车指令发送至第一控制器193,第一控制器193控制全地形车100处于寻车状态,从而实现全地形车100的寻车功能。具体的,全地形车100还包括用于执行视觉交互的视觉交互模块和用于执行声音交互的声音交互模块,当全地形车100处于寻车状态时,第一控制器193可以控制视觉交互模块执行相应的视觉交互和/或控制声音交互模块执行相应的声音交互。在本实施方式中,视觉交互模块可以是全地形车100的车灯,声音交互模块可以是全地形车100的喇叭。便携式设备200能够发送信号至解锁基站192,并能够根据的信号强度确定便携式设备200离全地形车100的距离是否在第一预设范围内。具体的,信号强度包括第一预设强度。其中,第一预设强度可以设置为大于等于0。可以理解的,在满足解锁基站192和便携式设备200能够进行信号传输的情况下,便携式设备200就可以发送寻车指令至解锁基站192,即在第一预设强度接近0时,便携式设备200也可以发送寻车指令至解锁基站192。在解锁基站192和便携式设备200进行信号传输的情况下,当解锁 基站192接收便携式设备200发送的信号并确定信号的强度处于第一预设强度内,即当便携式设备200和全地形车100的距离小于或等于第一预设范围时,解锁基站192接收便携式设备200发送的寻车指令,解锁基站192通过CAN网络将寻车指令发送至第一控制器193,第一控制器193控制全地形车100处于寻车状态,从而实现全地形车100的寻车功能。
如图8所示,全地形车寻车状态的开启流程如下:
步骤S101:开始。
步骤S102:便携式设备发送寻车指令和位置信息。
步骤S103:解锁基站接收寻车指令和位置信息。
步骤S104:根据便携式设备的位置信息判断便携式设备与全地形车100的距离是否小于或等于第一预设范围;若是,执行步骤S105,若否,返回步骤S102。
步骤S105:解锁基站发送寻车指令至第一控制器。
步骤S106:第一控制器控制全地形车处于寻车状态。
步骤S107:结束。
如图9所示,具体的,当便携式设备200为蓝牙钥匙21时,蓝牙钥匙21上设置有寻车按键22,使用者通过按动寻车按键22使蓝牙钥匙21发送寻车指令至解锁基站192。即在寻车按键22被触发的情况下,蓝牙钥匙21发送寻车指令至解锁基站192。蓝牙钥匙21上还设置有运动传感模块23,运动传感模块23可以是运动传感器。在便携式设备200静止时,运动传感模块23保持低功耗运行,从而降低便携式设备200的能耗,提高便携式设备200的使用时间。在便携式设备200发生物理位移时,运动传感模块23发出位置信息。在本实施方式中,当便携式设备200和解锁基站192配对成功后,便携式设备200可以和解锁基站192进行信号传输。即当便携式设备200和解锁基站192配对成功后,寻车按键22可以使蓝牙钥匙21发送寻车指令至解锁基站192,运动传感模块23可以发送位置信息至解锁基站192中。当便携式设备200和解锁基站192配对失败,则便携式设备200无法和解锁基站192进行通信。通过便携式设备200和解锁基站192的配对,才可以使便携式设备200和解锁基站192进行通信,从而可以提高全地形车100的安全性和防盗性。
作为一种实现方式,当全地形车100处于迎宾状态时,预设范围包括第二预设范围,第二预设范围小于第一预设范围,且第二预设范围可以根据实际需求进行调整。此时,便携式设备200也能够发送位置信息至解锁基站192。其中,若便携式设备200和解锁基站192之间没有遮挡物,第二预设范围可以设置为小于第一预设范围;若便携式设备200和解锁基站192之间存在遮挡物,第二预设范围会随着遮挡物的材质、厚度等而改变。在解锁基站192和便携式设备200进行信号传输的情况下,当便携式设备200和全地形车100的距离小于或等于第二预设范围时,即位置信息小于或等于第二预设范围时,解锁基站192生成迎宾指令。解锁基站192通过CAN网络发送迎宾指令至第一控制器193,第一控制器193接收到迎宾指令后控制全地形车100处于迎宾状态,从而实现全地形车100的迎宾功能。具体的,全地形车100还包括用于执行视觉交互的视觉交互模块和用于执行声音交互的声音交互模块,当全地形车100处于迎宾状态时,第一控制器193可以控制视觉交互模块执行相应的视觉交互和/或控制声音交互模块执行相应的声音交互。在本实施方式中,视觉交互模块可以是全地形车100的车灯,声音交互模块可以是全地形车100的喇叭。可以理解的,解锁基站192接收便携式设备200发送的位置信息,位置信息小于或等于第二预设范围后,解锁基站192也可以通过CAN网络使第一控制器193触发迎宾指令,从而使第一控制器193控制全地形车100处于迎宾状态。此时,迎宾指令由第一控制器193生成。具体的,迎宾状态可以根据实际需求进行开启或关闭。即当使用者不需要迎宾状态时,可以关闭迎宾状态;当使用者需要迎宾状态时,可以开启迎宾状态。通过上述设置,可以满足不同使用者的需求,实现全地形车100的多样化设计。
可以理解的,便携式设备200能够发送信号至解锁基站192,并能够根据的信号强度确定便携式设备200离全地形车100的距离是否在第二预设范围内。具体的,信号强度包括第二预设强度,第二预设强度大于第一预设强度。其中,第二预设强度可以设置为大于等于0。可以理解的,在满足解锁基站192和便携式设备200能够进行信号传输的情况下,便携式设备200就可以发送迎宾指令至解锁基站192,即在第二预设强度接近0时,便携式设备200也可以发送迎宾指令至解锁基站192。在解锁基站192和便携式设备200进行信号传输的情况下,当解锁基站192接收便携式设备200发送的信 号并确定信号的强度处于第二预设强度内,即当便携式设备200和全地形车100的距离小于或等于第二预设范围时,解锁基站192接收便携式设备200发送的迎宾指令,解锁基站192通过CAN网络将迎宾指令发送至第一控制器193,第一控制器193接收到迎宾指令后控制全地形车100处于迎宾状态,从而实现全地形车100的迎宾功能。
如图10所示,全地形车迎宾状态的开启流程如下:
步骤S201:开始。
步骤S202:便携式设备发送位置信息至解锁基站。
步骤S203:解锁基站接收位置信息。
步骤S204:根据便携式设备的位置信息判断便携式设备与全地形车的距离是否小于或等于第二预设范围;若是,执行步骤S205,若否,返回步骤S202。
步骤S205:解锁基站发送迎宾指令至第一控制器。
步骤S206:第一控制器控制全地形车处于迎宾状态。
步骤S207:结束。
如图11、图12所示,作为一种实现方式,当全地形车100处于启动状态时,预设范围包括第三预设范围,第三预设范围小于第二预设范围,第三预设范围可以根据实际需求进行调整。此时,便携式设备200也能够发送位置信息至解锁基站192。其中,若便携式设备200和解锁基站192之间没有遮挡物,第三预设范围可以设置为小于第二预设范围;若便携式设备200和解锁基站192之间存在遮挡物,第三预设范围会随着遮挡物的材质、厚度等而改变。当全地形车100处于启动状态时,控制系统19还包括第一启动开关194。第一启动开关194可以设置在便携式设备200上,也可以设置在全地形车100上。具体的,当第一启动开关194设置在便携式设备200上时,第一启动开关194可以通过便携式设备200和解锁基站192进行通信,并通过解锁基站192将第一启动开关194发送的启动指令传递至第一控制器193;第一启动开关194也可以通过便携式设备200和第一控制器193进行通信,从而将第一启动开关194发送的启动指令直接传递至第一控制器193。通过上述设置,可以将第一启动开关194和便携式设备200集成化,从而减少第一启动开关194在全地形车100上的布置空间,提高全地形车100的空间利用率。当第一启动开关194设置在全地形车100上时,第一启动开关194和第 一控制器193电性连接。在本实施方式中,在解锁基站192和便携式设备200进行信号传输的情况下,即当便携式设备200和解锁基站192配对成功,且全地形车100和便携式设备200的距离小于或等于第三预设范围时,即当便携式设备200和解锁基站192配对成功,且便携式设备200发送的位置信息小于或等于第三预设范围时,使用者可以通过第一启动开关194向第一控制器193发出启动指令。当第一控制器193接收启动指令后,第一控制器193向解锁基站192发送认证信息并进行认证流程,直至认证成功。当第一控制器193和解锁基站192认证成功后,第一控制器193可以实现全地形车100的启动。即第一控制器193需同时满足以下条件才可实现全地形车100的启动:一为第一控制器193接收到启动指令,二为第一控制器193和解锁基站192的认证成功。通过上述设置,可以实现全地形车100的无钥匙启动,从而提高全地形车100的工作效率。
便携式设备200能够发送信号至解锁基站192,并能够根据的信号强度确定便携式设备200离全地形车100的距离是否在第三预设范围内。具体的,信号强度包括第三预设强度,第三预设强度大于第二预设强度。其中,第三预设强度可以设置为大于等于0。可以理解的,在满足解锁基站192和便携式设备200能够进行信号传输的情况下,使用者可以通过第一启动开关194向第一控制器193发出启动指令,即在第三预设强度接近0时,使用者也可以通过第一启动开关194向第一控制器193发出启动指令。在解锁基站192和便携式设备200进行信号传输的情况下,当解锁基站192接收便携式设备200发送的信号并确定信号的强度处于第三预设强度内,即当便携式设备200和全地形车100的距离小于或等于第三预设范围时,使用者可以通过第一启动开关194向第一控制器193发出启动指令。如图6所示,在本实施方式中,若第一启动开关194设置在便携式设备200上时,第一启动开关194可以通过无线传输的方式和第一控制器193进行通信,从而使第一启动开关194可以发送启动指令至第一控制器193中。可以理解的,第一启动开关194也可以先通过无线传输将启动指令发送至解锁基站192中,再通过解锁基站192将启动指令发送至第一控制器193中。通过上述设置,使用者可以通过远程控制全地形车100启动,从而便于提高全地形车100的使用效率;且仅当解锁基站192和便携式设备200的距离小于或等于第三预设范围时,第一启动 开关194发送启动指令至第一控制器193,从而可以在提高全地形车100的使用效率的同时,提高全地形车100的安全性和防盗性。
如图12所示,在本实施方式中,若第一启动开关194设置在全地形车100上时,第一启动开关194可以通过电性连接的方式和第一控制器193进行通信,从而使第一启动开关194可以发送启动指令至第一控制器193中。可以理解的,第一启动开关194也可以先通过电性连接的方式将启动指令发送至解锁基站192中,再通过解锁基站192将启动指令发送至第一控制器193中。
如图13所示,全地形车启动的流程如下:
步骤S301:开始。
步骤S302:便携式设备发送位置信息至解锁基站。
步骤S303:解锁基站接收位置信息。
步骤S304:根据便携式设备的位置信息判断便携式设备与全地形车的距离是否小于或等于第三预设范围;若是,执行步骤,若否,返回步骤S302。
步骤S305:第一启动开关发送启动指令至第一控制器。
步骤S306:第一控制器接收启动指令,并和解锁基站进行认证。
步骤S307:判断解锁基站与第一控制器之间是否认证成功;若是执行步骤S308,若否返回步骤S305。
步骤S308:第一控制器控制全地形车启动。
步骤S309:结束。
如图14所示,在本实施方式中,第一控制器193和解锁基站192的认证步骤如下:
S401:开始。
S402:第一控制器193发送认证信息至解锁基站192;S403:解锁基站192接收认证信息后发送加密信息至第一控制器193;
S404:第一控制器193接收加密信息后,发送反馈信息至解锁基站192;
S405:若反馈信息为认证成功时,第一控制器193执行上电操作并结束认证流程;
S406:若反馈信息为认证失败时,第一控制器193结束认证流程。
S407:结束。
需要说明的是,在上述流程中或者附图的流程图中示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。例如,步骤S405和步骤S406可以交换顺序。
通过上述步骤,可以使解锁基站192和第一控制器193之间进行配对认证,从而提高全地形车100的安全性和防盗性。此外,通过便携式设备200和解锁基站192的配对、解锁基站192和第一控制器193的配对,实现全地形车100的双重防盗认证,从而进一步地提高全地形车100的防盗性。
具体的,步骤S402中,认证信息可以由16字节的随机数的数据组成。步骤S403中,加密信息是对认证信息进行加密后的加密结果。若在第一时间段中,第一控制器193未收到解锁基站192的加密信息,第一控制器193发送认证失败信息至解锁基站192,且第一控制器193在第二时间段后继续发送认证信息。其中,第一时间段可以是50ms,第二时间段可以是20ms,第一时间段和第二时间段也可以根据实际需求进行调整。步骤S404中,反馈结果包括认证成功信息和认证失败信息。第一控制器193接收加密信息并将加密信息与第一控制器193计算的加密结果进行匹配。若加密结果和加密信息匹配成功,第一控制器193发送认证成功信息至解锁基站192。若加密结果和加密信息匹配失败,第一控制器193发送认证失败信息至解锁基站192,并再次发送认证信息至解锁基站192。解锁基站192在发送加密信息后,在第三时间段内未收到第一控制器193的反馈信息,则解锁基站192发送错误信息至第一控制器193,第一控制器193在第二时间段后继续发送认证信息。第三时间段可以是50ms,且第三时间段可以根据实际需求进行调整。步骤S405和步骤S406中,解锁基站192用于接收并判断反馈信息。
如图15和图16所示,作为一种实现方式,当全地形车100处于启动状态,且解锁基站192和第一控制器193认证成功时,控制系统19还包括第二启动开关195。第二启动开关195连接第一控制器193。具体的,全地形车100包括电动车或混动车或燃油车,动力组件16包括电机172和/或发动机171。当全地形车100为电动车时,动力组件16包括电机172,第一控制器193连接电机172;当全地形车100为混动车时,动力组件16包括电机172 和发动机171,第一控制器193连接电机172和发动机171;当全地形车100为燃油车时,动力组件16包括发动机161,第一控制器193连接发动机171。
在本实施方式中,当全地形车100为混动车或燃油车时,控制系统19还包括第二控制器196和第三控制器197,第二控制器196连接第一控制器193和动力组件16,第三控制器197连接第一控制器193且连接第二控制器196。其中,第二控制器196可以是发动机171控制器(Engine control unit,ECU),第三控制器197可以是继电器。当全地形车100处于启动状态,且解锁基站192和第一控制器193认证成功时,第一控制器193用于为第二控制器196和第三控制器197提供电力。此时,当使用者开启第二启动开关195时,第二启动开关195发送点火信号至第一控制器193,第一控制器193控制第三控制器197启动,从而使第三控制器197控制第二控制器196启动,进而实现发动机171的启动,即实现全地形车100的启动。当全地形车为混动车或电动车时,第二启动开关195还用于启动电机172。当全地形车100处于启动状态,且解锁基站192和第一控制器193认证成功时,使用者开启第二启动开关195,第二启动开关195发送启动信号至第一控制器193,第一控制器193控制电机172启动,从而全地形车100的启动。
作为一种实现方式,全地形车100还包括第一状态和第二状态。当全地形车100处于第一状态时,全地形车100处于上电状态;当全地形车100处于第二状态时,全地形车100处于下电状态。当全地形车100处于寻车状态或迎宾状态时,全地形车100处于第二状态。当全地形车100处于启动状态,且解锁基站192和第一控制器193认证成功时,全地形车100处于第一状态。其中,下电状态指全地形车100的供电为常电的状态,常电是指从电源正极接出来且不受任何开关、继电器等控制的正电源;上电状态指全地形车100的供电为通过开关、继电器等控制后输出的电源的状态。
当全地形车100处于第一状态,便携式设备200发送的位置信息小于或等于第三预设范围时,或便携式设备200发送的信号的强度处于第三预设强度内时,全地形车100保持上电状态。当全地形车100处于第一状态,便携式设备200发送的位置信息大于第三预设范围时,或便携式设备200发送的信号的强度未处于第三预设强度内时,第一控制器193用于确定全地形车100的转速和/或车速是否处于预设速度范围内。其中,预设速度范围可以根据实 际需求进行调整。若全地形车100的转速和/或车速处于预设速度范围内,且位置信息大于第三预设范围的时间超过预设时间时,或若全地形车100的转速和/或车速处于预设速度范围内,且便携式设备200发送的信号的强度未处于第三预设强度内的时间超过预设时间时,第一控制器193控制全地形车100处于下电状态。其中,预设时间可以根据实际需求进行调整。若全地形车100的转速和/或车速不处于预设速度范围内,或第三位置信息大于第三预设范围的时间未超过预设时间时,或便携式设备200发送的信号的强度未处于第三预设强度内的时间未超过预设时间时,全地形车100保持上电状态。通过上述设置,在使用者离开全地形车100后,若使用者忘记关闭全地形车100的电源时,可以使全地形车100实现自动下电,从而保证全地形车100的安全性和防盗性。
如图17和图18所示,作为一种实现方式,沿全地形车100的上下方向,解锁基站192至少部分设置在车架11的上侧,且解锁基站192至少部分设置在车身覆盖件15的下侧或车身覆盖件15中。此外,解锁基站192还至少部分设置在车架11的前侧。通过上述设置,可以有效避免由于车架11等金属物遮挡或包裹解锁基站192导致通信信号较差的问题;可以将解锁基站192设置在全地形车100的较上侧位置,从而提高解锁基站192和便携式设备200的通信效果,提高解锁基站192的防水性。具体的,解锁基站192远离动力组件16设置,即解锁基站192不设置在鞍座组件18的下侧。通过上述设置,可以使解锁基站192远离全地形车100的温度较高位置,即使解锁基站192远离发动机171和/或电机172设置,从而防止解锁基站192的工作温度过高,进而提高解锁基站192的工作效率和通信效果。
如图17所示,作为一种实现方式,全地形车100还包括仪表盘21,仪表盘21用于显示全地形车100的车辆信息。车身覆盖件15包括仪表罩151,仪表罩151至少部分设置在车架11的上侧。仪表盘21至少部分设置在仪表罩151中。具体的,全地形车100包括垂直于左右方向的对称面101(参照图1),全地形车100关于对称面101基本对称设置。仪表罩151关于对称面101基本对称设置。沿全地形车100的上下方向,解锁基站192至少部分设置在仪表盘21的下侧,解锁基站192关于对称面101基本对称设置,且解锁基站192至少部分设置在车架11的上侧。即解锁基站192至少部分设置在 仪表罩151和车架11之间。通过上述设置,可以有效避免由于车架11等金属物遮挡或包裹解锁基站192导致通信信号较差的问题;可以将解锁基站192设置在全地形车100的较上侧位置,从而提高解锁基站192和便携式设备200的通信效果,提高解锁基站192的防水性。此外,将解锁基站192设置在仪表罩151的下侧,可以有效避免解锁基站192放置在全地形车100的一侧导致全地形车100的另一侧信号差的问题,从而提高全地形车100和便携式设备200的通信效果。具体的,仪表罩151包括第一主体1511、第二主体1512和第三主体1513。第一主体1511和第二主体1512连接,第二主体1512和第三主体1513连接,第三主体1513连接车架11。沿全地形车100的上下和前后方向,第一主体1511至少部分设置在第二主体1512的后侧,第三主体1513至少部分设置在第二主体1512的下侧且至少部分设置在第一主体1511的下侧。第一主体1511用于固定仪表盘21。第二主体1512用于连接第一主体1511和第三主体1513,第三主体1513用于将仪表罩151固定在车架11上。在本实施方式中,解锁基站192设置在第三主体1513上。
如图18所示,作为一种实现方式,全地形车100还包括进气组件22。进气组件22包括空滤器221,空滤器221设置在车架11上且设置在车身覆盖件15中。具体的,车身覆盖件15还包括第一覆盖件152和第一安装板153。第一覆盖件152设置在空滤器221的上侧,用于遮挡并覆盖空滤器221。第一安装板153至少部分设置在第一覆盖件152和空滤器221之间。第一安装板153关于对称面101基本对称设置,第一覆盖件152关于对称面101基本对称设置。解锁基站192设置在第一安装板上。在本实施方式中,解锁基站192可以设置在第一安装板153的前侧,解锁基站192也可以设置在第一安装板153的后侧。通过上述设置,可以有效避免由于车架11等金属物遮挡或包裹解锁基站192导致通信信号较差的问题;可以将解锁基站192设置在全地形车100的较上侧位置,从而提高解锁基站192和便携式设备200的通信效果,提高解锁基站192的防水性。
应当理解的是,对于本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本申请所附权利要求的保护范围。

Claims (32)

  1. 一种全地形车,包括:
    车架;
    行走组件,包括第一行走轮和第二行走轮,所述第一行走轮设置在所述第二行走轮的前侧;
    悬架组件,所述第一行走轮通过所述悬架组件连接至所述车架,所述第二行走轮通过所述悬架组件连接至所述车架;
    制动组件,所述制动组件由所述车架支撑,用于制动所述行走组件;
    所述制动组件包括:
    制动器,用于制动所述行走组件;
    第一操纵机构,用于控制所述制动器,所述第一操纵机构中存储有制动液;
    第二操纵机构,用于控制所述制动器;及
    主泵机构,所述主泵机构中存储有制动液;
    其中,所述第一操纵机构和所述第二操纵机构均能够通过所述主泵机构控制所述制动器;所述第一操纵机构能够向所述主泵机构输入制动液,在所述第一操纵机构的制动液进入所述主泵机构之后,挤压所述主泵机构中的制动液进入所述制动器,以控制所述制动器制动所述行走组件;所述第二操纵机构与所述主泵机构连接,所述第二操纵机构能够控制所述主泵机构中的制动液进入所述制动器,使所述制动器制动所述行走组件。
  2. 根据权利要求1所述的全地形车,其中,所述主泵机构包括进液孔和出液孔,所述第一操纵机构与所述进液孔连接,所述制动器与所述出液孔连接;在所述第一操纵机构被触发的情况下,所述第一操纵机构的制动液通过所述进液孔进入所述主泵机构。
  3. 根据权利要求2所述的全地形车,其中,所述主泵机构包括泵体,所述泵体内形成有第一腔体、第二腔体和第三腔体;所述第一腔体、所述第二腔体和所述第三腔体互相独立设置。
  4. 根据权利要求3所述的全地形车,其中,所述进液孔连通所述第一腔体和所述第一操纵机构;在所述第一操纵机构被触发的情况下,所述第一操纵机构中的制动液通过所述进液孔输送至所述第一腔体中,使所述主泵机构控制所述制动器制动所述行走组件。
  5. 根据权利要求4所述的全地形车,其中,所述出液孔包括第一出液孔和第二出液孔,所述第一出液孔连通所述第二腔体和所述制动器,所述第二出液孔连通所述第三腔体和所述制动器。
  6. 根据权利要求5所述的全地形车,其中,所述主泵机构还包括第一活塞、第二活塞和弹性件,所述第一活塞和所述第二活塞通过弹性件连接;所述第一活塞设置在所述第一腔体和所述第二腔体之间,所述第二活塞设置在所述第二腔体和所述第三腔体之间。
  7. 根据权利要求6所述的全地形车,其中,
    所述制动器包括第一制动器和第二制动器,所述第一出液孔与所述第一制动器连接,所述第二出液孔与所述第二制动器连接;在所述第一操纵机构被触发的情况下,所述第一操纵机构的制动液进入第一腔体,在所述第一操纵结构被触发的情况下,所述第一操纵机构的制动液进入第一腔体,所述第一活塞移动使得所述第二腔体的制动液通过所述第一出液孔进入所述第二制动器,所述第二活塞移动,使得所述第三腔体的制动液通过所述第二出液孔进入所述第二制动器。
  8. 根据权利要求3所述的全地形车,其中,所述主泵机构还包括储液机构、第一接头和第二接头,所述第一接头用于将所述储液机构中的制动液输送至所述第二腔体中,所述第二接头用于将所述储液机构中的制动液输送至所述第三腔体中。
  9. 根据权利要求2所述的全地形车,其中,在所述第一操纵机构被触发和所述第二操纵机构被触发的情况下,所述主泵机构中的制动液通过所述出液孔进入所述制动器,使所述制动器制动所述行走组件。
  10. 根据权利要求2所述的全地形车,其中,所述第二操纵机构和所述主泵机构之间设置有推杆机构,所述第二操纵机构通过所述推杆机构控制所述主泵机构。
  11. 根据权利要求1所述的全地形车,其中,所述全地形车包括动力组件和控制系统,所述动力组件由所述车架支撑;所述控制系统包括:
    解锁基站,设置在所述车架上,所述解锁基站包括至少一个通信模块,所述通信模块能够与便携式设备配对并在所述通信模块与所述便携式设备配对成功后,所述解锁基站能够通过所述通信模块与所述便携式设备进行信号传输;
    第一控制器,所述第一控制器设置在所述车架上,并连接所述解锁基站;
    第一启动开关,所述第一启动开关连接所述第一控制器,并在被触发的情况下向所述第一控制器传输启动指令;
    在所述解锁基站与所述便携式设备进行信号传输的情况下,若所述便携式设备离所述全地形车的距离在第一预设范围内,且所述第一启动开关向所述第一控制器传输所述启动指令,所述第一控制器控制所述全地形车上电。
  12. 根据权利要求11所述的全地形车,其中,当所述便携式设备和所述解锁基站配对后,所述解锁基站接收所述便携式设备发送的位置信息,并能够根据所述位置信息确定所述便携式设备离所述全地形车的距离是否在所述第一预设范围内;或者,当所述便携式设备和所述解锁基站配对后,所述解锁基站接收所述便携式设备发送的信号强度,并能够根据所述信号强度确定所述便携式设备离所述全地形车的距离是否在第一预设范围内。
  13. 根据权利要求11所述的全地形车,其中,所述第一启动开关设置在所述便携式设备上。
  14. 根据权利要求11所述的全地形车,其中,所述第一启动开关设置在所述全地形车上。
  15. 根据权利要求11所述的全地形车,其中,在所述解锁基站与所述便携式设备进行信号传输的情况下,若所述第一启动开关向所述第一控制器传输所述启动指令,所述第一控制器接收所述启动指令并和所述解锁基站进行认证;若认证成功,所述第一控制器控制所述全地形车上电。
  16. 根据权利要求15所述的全地形车,其中,所述控制系统还包括第二启动开关,所述第二启动开关连接所述第一控制器;当所述第一控制器和所述解锁基站认证成功时,所述第二启动开关控制所述第一控制器,以使所述第一控制器控制所述动力组件启动。
  17. 根据权利要求12所述的全地形车,其中,所述全地形车还包括第一状态和第二状态;当所述全地形车处于所述第一状态时,所述解锁基站接收所述便携式设备发送的所述位置信息;若所述位置信息大于所述第一预设范围,且所述全地形车的转速或车速处于预设速度范围时,所述第一控制器控制所述全地形车处于所述第二状态。
  18. 根据权利要求11所述的全地形车,其中,所述解锁基站远离所述动力组件设置,所述解锁基站位于所述车架的前侧。
  19. 根据权利要求11所述的全地形车,其中,在所述解锁基站与所述便携式设备进行信号传输的情况下,若所述便携式设备离所述全地形车的距离在第二预设范围内,所述解锁基站接收所述便携式设备发送的寻车指令,并将所述寻车指令发送至所述第一控制器,以使所述全地形车处于寻车状态,其中,所述第二预设范围大于所述第一预设范围。
  20. 根据权利要求19所述的全地形车,其中,在所述解锁基站与所述便携式设备进行信号传输的情况下,若所述便携式设备离所述全地形车的距离在第三预设范围内,所述解锁基站发送迎宾指令至所述第一控制器,以使所述全地形车处于迎宾状态,其中,所述第三预设范围大于所述第一预设范围且小于所述第二预设范围。
  21. 根据权利要求20所述的全地形车,其中,所述第一控制器接收到迎宾指令后能够控制所述全地形车执行灯光形式和者声音形式中的至少之一进行交互。
  22. 根据权利要求20所述的全地形车,其中,所述解锁基站通过CAN网络发送所述迎宾指令至所述解锁基站。
  23. 根据权利要求1所述的全地形车,其中,所述全地形车还包括:
    分配装置,所述分配装置分别连接所述第一制动器和所述第二制动器;
    第一操纵机构,所述第一操纵机构通过所述分配装置分别连接所述第一制动器和所述第二制动器;
    第二操纵机构,所述第二操纵机构通过所述分配装置分别连接所述第一制动器和所述第二制动器;
    其中,在所述第一操纵机构被触发的情况下,所述分配装置分别控制所述第一制动器和所述第二制动器,以使所述第一制动器制动所述第一行走轮、所述第二制动器制动所述第二行走轮;
    在所述第二操纵机构被触发的情况下,所述分配装置分别控制所述第一制动器和所述第二制动器,以使所述第一制动器制动所述第一行走轮、所述第二制动器制动所述第二行走轮。
  24. 根据权利要求23所述的全地形车,其中,所述分配装置包括第一输入端、第二输入端和第一输出端,所述第一操纵机构连接所述第一输入端,所述第二操纵机构连接所述第二输入端,所述第一输出端分别连接所述第一制动器和所述第二制动器。
  25. 根据权利要求24所述的全地形车,其中,所述分配装置包括阀体,所述阀体形成有第一腔室和第二腔室,所述第二腔室连通所述第一输出端,所述第一腔室连通所述第一输入端。
  26. 根据权利要求25所述的全地形车,其中,所述第一腔室和所述第二腔室互相独立设置。
  27. 根据权利要求25所述的全地形车,其中,所述阀体还包括第三腔室和回流孔;在所述第一操纵机构未被触发的情况下,所述第三腔室连通所述第二输入端,所述第三腔室通过所述回流孔连通所述第二腔室。
  28. 根据权利要求27所述的全地形车,其中,所述分配装置还包括第一活塞,所述第一活塞至少部分设置在所述第一腔室中,所述第一活塞还至少部分设置在所述第二腔室中。
  29. 根据权利要求28所述的全地形车,其中,所述第一活塞包括第一位置和第二位置;当所述第一活塞处于所述第一位置时,所述第二操纵机构通过所述分配装置控制所述第一制动器和所述第二制动器;当所述第一活塞处于所述第二位置时,所述第一操纵机构通过所述分配装置控制所述第一制动器和所述第二制动器。
  30. 根据权利要求29所述的全地形车,其中,当所述第一活塞处于所述第二位置时,所述回流孔被所述第一活塞堵住,所述第三腔室和所述第二腔室处于分隔状态。
  31. 根据权利要求29所述的全地形车,其中,所述分配装置还包括复位件,所述复位件至少部分设置在所述阀体中;所述复位件将所述第一活塞保持在所述第一位置,或使所述第一活塞具有从所述第二位置回复至所述第一位置的趋势。
  32. 根据权利要求23所述的全地形车,其中,所述全地形车包括转向组件,所述转向组件的左右两侧上均设置有握持部,所述第一操纵机构设置在左侧的所述握持部上。
PCT/CN2023/096792 2022-05-30 2023-05-29 全地形车 WO2023231953A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210605865 2022-05-30
CN202210605865.5 2022-05-30
CN202210941971 2022-08-05
CN202210941971.0 2022-08-05

Publications (1)

Publication Number Publication Date
WO2023231953A1 true WO2023231953A1 (zh) 2023-12-07

Family

ID=89026934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/096792 WO2023231953A1 (zh) 2022-05-30 2023-05-29 全地形车

Country Status (1)

Country Link
WO (1) WO2023231953A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006168418A (ja) * 2004-12-13 2006-06-29 Nissan Motor Co Ltd ブレーキ制御装置
CN204713063U (zh) * 2015-06-04 2015-10-21 长安大学 一种全地形车制动装置
CN205365566U (zh) * 2015-12-08 2016-07-06 上海汇众汽车制造有限公司 机电制动助力装置
CN206954211U (zh) * 2017-05-25 2018-02-02 浙江飞神车业有限公司 一种全地形车液压制动器装置
CN109094546A (zh) * 2018-09-17 2018-12-28 奇瑞汽车股份有限公司 汽车制动系统及其控制方法
CN213354447U (zh) * 2020-07-09 2021-06-04 赛格威科技有限公司 全地形车

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006168418A (ja) * 2004-12-13 2006-06-29 Nissan Motor Co Ltd ブレーキ制御装置
CN204713063U (zh) * 2015-06-04 2015-10-21 长安大学 一种全地形车制动装置
CN205365566U (zh) * 2015-12-08 2016-07-06 上海汇众汽车制造有限公司 机电制动助力装置
CN206954211U (zh) * 2017-05-25 2018-02-02 浙江飞神车业有限公司 一种全地形车液压制动器装置
CN109094546A (zh) * 2018-09-17 2018-12-28 奇瑞汽车股份有限公司 汽车制动系统及其控制方法
CN213354447U (zh) * 2020-07-09 2021-06-04 赛格威科技有限公司 全地形车

Similar Documents

Publication Publication Date Title
CN102892651B (zh) 制动装置
US10059154B2 (en) Traveling device
US20140305715A1 (en) Automobile
JP3245713B2 (ja) 自動車用乗り逃げ防止装置
KR20030005018A (ko) 차량용 원격 제어 잠금 작동장치
EP3623271B1 (en) Control method, vehicle frame, power driving assembly and vehicle
JP2018509328A (ja) 車両及び制御方法
KR20140042218A (ko) 연료전지 차량의 충전 안전 제어 시스템 및 방법
CN110194148A (zh) 车辆的驾驶辅助装置
CN102673555B (zh) 具有传感转向装置的电动汽车及利用它的转向控制方法
WO2023231953A1 (zh) 全地形车
JP2002240758A (ja) 軽車両における遠隔ロック操作装置
JP7247786B2 (ja) 自動運転車両
JP2023508399A (ja) 車両に音声コマンドを伝達するための方法及びシステム
JP2009202669A (ja) 鞍乗り型車両の盗難防止装置
CN201800701U (zh) 基于FlexRay总线的电子制动系统
CN217778860U (zh) 摩托车
CN217778859U (zh) 摩托车
US11338822B2 (en) Vehicle and stop switch apparatus
WO2021157025A1 (ja) 鞍乗型車両、通信ユニット、制御方法及び記憶媒体
CN117184293A (zh) 摩托车
KR101406585B1 (ko) 가속페달 장치의 답력 능동 조절방법
JP2022048452A (ja) 車両制御装置
CN217477472U (zh) 摩托车
KR101616618B1 (ko) 전기자동차

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23815134

Country of ref document: EP

Kind code of ref document: A1