WO2023231738A1 - 一种固态电极单元、制备方法、固态电池及其系统 - Google Patents

一种固态电极单元、制备方法、固态电池及其系统 Download PDF

Info

Publication number
WO2023231738A1
WO2023231738A1 PCT/CN2023/093449 CN2023093449W WO2023231738A1 WO 2023231738 A1 WO2023231738 A1 WO 2023231738A1 CN 2023093449 W CN2023093449 W CN 2023093449W WO 2023231738 A1 WO2023231738 A1 WO 2023231738A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
electrode layer
negative electrode
cathode material
positive electrode
Prior art date
Application number
PCT/CN2023/093449
Other languages
English (en)
French (fr)
Inventor
姜涛
翟喜民
孙焕丽
别晓非
高天一
包锡洋
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2023231738A1 publication Critical patent/WO2023231738A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides

Definitions

  • the invention belongs to the technical field of solid-state batteries, and specifically relates to a solid-state electrode unit, a preparation method, a battery and a system thereof.
  • the prior art discloses a positive electrode plate, a preparation method thereof, a positive electrode plate, and a solid-state battery.
  • the raw materials of the positive electrode piece include: 80-98% positive active material; 1.5-10% ion conductive agent; 0.5-5% electronic conductive agent; 0-5% auxiliary agent ;
  • the positive active material is lithium material;
  • the ion conductive agent is a halide solid electrolyte.
  • the positive electrode plate includes a current collector and the above-mentioned positive electrode piece arranged on the surface of the current collector.
  • a solid-state battery includes a positive plate, a battery separator, and a negative plate arranged in sequence. It mixes the positive electrode material with the halide solid electrolyte to obtain a solid-state battery positive electrode piece, which cannot solve the problem of unstable surface of the positive electrode material.
  • the prior art also discloses a modified lithium iron manganese phosphate cathode material and its preparation method and application.
  • the preparation method includes the following steps: 1. Mix the lithium iron manganese phosphate material with an alkaline buffer solvent to obtain a lithium iron manganese phosphate buffer. Solution; 2. Mix the lithium iron manganese phosphate buffer solution obtained in step 1 and dopamine, and centrifuge The treatment obtains a precipitate, and the obtained precipitate is calcined to obtain the modified lithium iron manganese phosphate cathode material. It coats lithium manganese iron phosphate with nitrogen-doped carbon to improve the electron conductivity and ion diffusion of the positive electrode, but it cannot improve the ion conductivity in a solid-state battery.
  • the purpose of the present invention is to provide a solid-state electrode unit and a preparation method thereof, as well as a solid-state battery and a solid-state battery system to solve the problems of unstable cathode material surface and poor rate performance of batteries using silicon negative electrodes.
  • a solid electrode unit characterized by: consisting of a positive electrode layer 1, a solid electrolyte layer 2 and a negative electrode layer 3;
  • the positive electrode layer 1 includes a composite positive electrode material and a solid electrolyte 13;
  • the composite cathode material is composed of a first cathode material 11 and a second cathode material 12; the surface of the first cathode material 11 and the surface of the second cathode material 12 are both coated with the solid electrolyte layer 2; the first cathode material 11, The particle size D50 ratio of the second cathode material 12 is 1:0.5 ⁇ 1:2;
  • the negative electrode layer 3 is composed of a first negative electrode layer 31 and a second negative electrode layer 32; the main components of the first negative electrode layer 31 are silver 311 and carbon 312; the main components of the second negative electrode layer 32 are porous silicon 321 and Solid electrolyte 13; the ratio of the thickness of the first negative electrode layer 31 to the thickness of the second negative electrode layer 32 is 1:10-1:7.
  • the molecular weight of the first cathode material 11 accounts for 10% to 40%
  • the molecular formula of the first cathode material 11 is LiMn x Fe 1-x PO 4
  • the particle size D50 range of the first cathode material 11 is 0.5 -6 ⁇ m
  • the molecular formula of the second cathode material 12 is xLi 2 MnO 3 ⁇ (1-x)LiMO 2 , where 0.1 ⁇ x ⁇ 0.9
  • the M is one or more of Ni, Co, and Mn
  • the particle size D50 of the second cathode material 12 ranges from 1 to 10 ⁇ m.
  • the solid electrolyte 13 in the positive electrode layer 1 is an oxide electrolyte or a sulfide electrolyte.
  • the oxide electrolyte includes any one or a combination of at least two of LATP, LLZO, LLTO or LAGP.
  • the sulfide electrolyte includes one or at least two combinations of LPS, LGPS, and LPSCl, preferably a sulfide electrolyte; the mass content is 10%-30%.
  • the thickness of the solid electrolyte layer 2 ranges from 1 to 20 nm, and its solid electrolyte is an oxide electrolyte, including any one or a combination of at least two of LATP, LLZO, LLTO or LAGP.
  • the mass proportion of silver 311 in the first negative electrode layer 31 is 5%-30%, the particle size D50 of silver 311 is 30-100 nm, the particle size D50 of carbon 312 is 10-50, and the thickness of the first negative electrode layer 31 is 1-10 ⁇ m; the thickness of the second negative electrode layer 32 is 10-100 ⁇ m, the mass proportion of porous silicon 321 in the second negative electrode layer 32 is 50%-90%, the particle size D50 of porous silicon 321 is less than 400nm, and the silicon grain size of porous silicon 321 is 6-12nm, and the specific surface area of porous silicon 321 is 4-14m 2 /g.
  • the solid electrolyte 13 in the negative electrode layer 3 is a sulfide electrolyte, including one or at least two combinations of LPS, LGPS, and LPSC1, and the solid electrolyte 13 accounts for 10%-50% by mass.
  • a method for preparing a solid electrode including the following steps:
  • the positive electrode layer 1 is formed on the surface of the positive electrode current collector by a wet film forming process or a dry film forming process, preferably a dry film forming process.
  • a solid-state battery characterized in that: the solid-state battery includes a solid-state electrode unit according to claim 1.
  • a solid-state battery system characterized in that: the solid-state battery system includes a solid-state battery according to claim 1.
  • the positive electrode of the present invention uses solid electrolyte-coated lithium iron manganese phosphate and lithium-rich materials, which can improve the surface conductivity of lithium iron manganese phosphate, enhance interface stability, inhibit the dissolution of Mn on the surface of lithium iron manganese phosphate, and improve the cycle life of the positive electrode.
  • the positive electrode material interface is stable and the first efficiency of the positive electrode is improved;
  • the silver carbon layer as a buffer to inhibit interface deterioration caused by silicon expansion and improve battery stability; at the same time, the silver carbon layer can make Li more uniformly deposited and improve the conductivity of silicon, improving battery power performance;
  • FIG. 1 Schematic diagram of solid electrode unit
  • Positive electrode layer 2. Solid electrolyte layer 3. Negative electrode layer 11. First positive electrode material 12. Second positive electrode material 13. Solid electrolyte 31. First negative electrode layer 32. Second negative electrode layer 311. Silver 312. Carbon 321. Porous silicon.
  • the solid electrode unit of the present invention consists of a positive electrode layer 1, a solid electrolyte layer 2 and a negative electrode layer 3.
  • the main components of the cathode layer 1 are composite cathode material and solid electrolyte 13 .
  • the composite cathode material is composed of a first cathode material 11 and a second cathode material 12 .
  • the molecular weight of the first cathode material 11 accounts for 10% to 40%
  • the molecular formula of the first cathode material 11 is LiMn x Fe 1-x PO 4
  • the particle size D50 of the first cathode material 11 ranges from 0.5 to 6 ⁇ m.
  • the surface of the first cathode material 11 is coated with the solid electrolyte layer 2 .
  • the thickness of the solid electrolyte layer 2 Range 1-20nm. All solid electrolytes in the coating solid electrolyte layer 2 are oxide electrolytes, including any one or a combination of at least two of LATP, LLZO, LLTO or LAGP.
  • the molecular formula of the second positive electrode material 12 is xLi 2 MnO 3 ⁇ (1-x)LiMO 2, , where 0.1 ⁇ x ⁇ 0.9, and the M is one or more of Ni, Co, and Mn.
  • the second positive electrode Material 12 particle size D50 range 1-10 ⁇ m.
  • the surface of the second cathode material 12 is coated with the solid electrolyte layer 2 .
  • the thickness of the solid electrolyte layer 2 ranges from 1 to 20 nm. All solid electrolytes in the coating solid electrolyte layer 2 are oxide electrolytes, including any one or a combination of at least two of LATP, LLZO, LLTO or LAGP.
  • the solid electrolyte 13 in the positive electrode layer 1 is an oxide electrolyte or a sulfide electrolyte.
  • the oxide electrolyte includes any one or a combination of at least two of LATP, LLZO, LLTO or LAGP.
  • the sulfide electrolyte Including one or at least two combinations of LPS, LGPS, and LPSCl, preferably a sulfide electrolyte; mass content 10%-30%.
  • the particle diameter D50 ratio of the first cathode material 11 and the second cathode material 12 is 1:0.5 ⁇ 1:2.
  • the solid electrolyte coating of the composite manganese-based cathode material can inhibit Mn dissolution due to the Young-Teller effect; at the same time, the solid electrolyte coating can build a good ion conductive path on the surface of the manganese-based material and improve the interface stability.
  • the negative electrode layer is composed of a first negative electrode layer 31 and a second negative electrode layer 32 .
  • the main components of the first negative electrode layer 31 are silver 311 and carbon 312 .
  • the mass proportion of silver in the first negative electrode layer 31 is 5%-30%.
  • the particle size D50 of the silver 311 is 30-100 nm
  • the particle size D50 of the carbon 312 is 10-50
  • the thickness of the first negative electrode layer 32 is 1-10 ⁇ m.
  • the main components of the second negative electrode layer 32 are porous silicon 321 and solid electrolyte 13.
  • the particle size D50 of the porous silicon is less than 400 nm; the silicon grain size of the porous silicon 321 is 6-12 nm, and the specific surface area of the porous silicon 321 is 4-14 m 2 /g.
  • the solid electrolyte 13 is a sulfide electrolyte, including one or a combination of at least two of LPS, LGPS, and LPSC1.
  • the thickness of the second negative electrode layer 32 is 10-100 ⁇ m.
  • the mass proportion of porous silicon 321 in the second negative electrode layer 32 is 50%-90%.
  • the solid electrolyte 13 accounts for 10%-50% by mass.
  • the thickness ratio of the first negative electrode layer 31 to the thickness of the second negative electrode layer 32 is 1:10-1:7.
  • the solid electrolyte 13 is a sulfide electrolyte, including one or at least two combinations of LPS, LGPS, and LPSC1.
  • the conductivity of the silicon anode is low, and the silver-carbon layer can deposit Li more uniformly and quickly, solving the problem of poor rate performance of batteries using silicon anodes; the volume of the silicon material itself expands greatly, affecting cycle performance, especially in solid-state batteries. , the solid-solid interface between the negative electrode layer and the solid electrolyte layer will deteriorate with volume deformation.
  • the silver carbon layer is used as a buffer layer to inhibit the interface deterioration caused by silicon expansion and improve the battery cycle stability.
  • the present invention uses solid electrolyte-coated lithium iron manganese phosphate and lithium-rich materials in the positive electrode, which stabilizes the positive electrode material interface and improves the first efficiency of the positive electrode.
  • solid electrolyte-coated lithium iron manganese phosphate and lithium-rich materials in the positive electrode, which stabilizes the positive electrode material interface and improves the first efficiency of the positive electrode.
  • a method for preparing a solid electrode including the following steps:
  • the positive electrode layer can be formed on the surface of the positive electrode current collector by a wet film forming process or a dry film forming process, preferably a dry film forming process.
  • the present invention provides a solid-state battery, which includes the solid-state electrode unit.
  • the present invention provides a solid-state battery system, which includes the solid-state battery.
  • a solid electrode unit is composed of a positive electrode layer 1, a solid electrolyte layer 2 and a negative electrode layer 3.
  • the main components of the cathode layer 1 are composite cathode material and solid electrolyte 13 .
  • the composite cathode material is composed of a first cathode material 11 and a second cathode material 12 .
  • the surfaces of the first cathode material 11 and the second cathode material 12 are both coated with the solid electrolyte layer 2 .
  • the negative electrode layer 3 is composed of a first negative electrode layer 31 and a second negative electrode layer 32 .
  • the main components of the first negative electrode layer 31 are silver 311 and carbon 312 .
  • the main components of the second negative electrode layer 32 are porous silicon 321 and solid electrolyte 13 .
  • Positive electrode layer 1 The first positive electrode material LiMnFePO 4 in the composite positive electrode material accounts for 40%, D50 is 3 ⁇ m, and the surface is coated with 5nm LATP; the second positive electrode material is 0.5Li 2 MnO 3 ⁇ 0.5LiNi0.9Mn0.1Co0.1O 2, D50 It is 6 ⁇ m, and the surface is coated with 5nm LATP; the solid electrolyte LPSCl mass content is 20%.
  • Negative electrode layer 3 The thickness of the first negative electrode layer is 5 ⁇ m, the mass proportion of silver is 20%, and the particle size D50 is 50 nm; the particle size D50 of carbon black is 30; the thickness of the second negative electrode layer is 40 ⁇ m, and the mass proportion of porous silicon is 60 %, the porous silicon particle size D50 is 100nm, the specific surface area is 8m 2 /g, the silicon grain size is 8nm; the solid electrolyte is LPS.
  • Solid electrolyte layer 2 LPSCl is selected as the solid electrolyte.
  • a solid electrode unit is composed of a positive electrode layer 1, a solid electrolyte layer 2 and a negative electrode layer 3.
  • the main components of the cathode layer 1 are composite cathode material and solid electrolyte 13 .
  • the composite cathode material is composed of a first cathode material 11 and a second cathode material 12 .
  • the surfaces of the first cathode material 11 and the second cathode material 12 are both coated with the solid electrolyte layer 2 .
  • the negative electrode layer 3 is composed of a first negative electrode layer 31 and a second negative electrode layer 32 .
  • the main components of the first negative electrode layer 31 are silver 311 and carbon 312 .
  • the main components of the second negative electrode layer 32 are porous silicon 321 and solid electrolyte 13 .
  • Positive electrode layer 1 The first positive electrode material LiMnFePO 4 in the composite positive electrode material accounts for 40%, D50 is 3 ⁇ m, and the surface is coated with 5nm LLZO; the second positive electrode material is 0.5Li 2 MnO 3 ⁇ 0.5LiNi0.9Mn0.1Co0.1O 2, D50 It is 6 ⁇ m, and the surface is coated with 5nm LLZO; the solid electrolyte LPSCl mass content is 20%.
  • Negative electrode layer 3 The thickness of the first negative electrode layer is 5 ⁇ m, the mass proportion of silver is 20%, and the particle size D50 is 50 nm; the particle size D50 of carbon black is 30; the thickness of the second negative electrode layer is 40 ⁇ m, and the mass proportion of porous silicon is 60 %, the porous silicon particle size D50 is 100nm, the specific surface area is 8m 2 /g, the silicon grain size is 8nm; the solid electrolyte is LPS.
  • Solid electrolyte layer 1 LPSCl is selected as the solid electrolyte.
  • a solid electrode unit is composed of a positive electrode layer 1, a solid electrolyte layer 2 and a negative electrode layer 3.
  • the main components of the cathode layer 1 are composite cathode material and solid electrolyte 13 .
  • the composite cathode material is composed of a first cathode material 11 and a second cathode material 12 .
  • the surfaces of the first cathode material 11 and the second cathode material 12 are both coated with the solid electrolyte layer 2 .
  • the negative electrode layer 3 is composed of a first negative electrode layer 31 and a second negative electrode layer 32 .
  • the main components of the first negative electrode layer 31 are silver 311 and carbon 312 .
  • the main components of the second negative electrode layer 32 are porous silicon 321 and solid electrolyte 13 .
  • Positive electrode layer 1 The first positive electrode material LiMnFePO 4 in the composite positive electrode material accounts for 40%, D50 is 3 ⁇ m, and the surface is coated with 5nm LATP; the second positive electrode material is 0.3Li 2 MnO 3 ⁇ 0.7LiMO 2, D50 is 6 ⁇ m, and the surface is coated 5nm LATP; mass content of solid electrolyte LPSCl 20%.
  • Negative electrode layer 3 The thickness of the first negative electrode layer is 5 ⁇ m, the mass proportion of silver is 20%, and the particle size D50 is 50 nm; the particle size D50 of carbon black is 30; the thickness of the second negative electrode layer is 40 ⁇ m, and the mass proportion of porous silicon is 60 %, the porous silicon particle size D50 is 100nm, the specific surface area is 8m 2 /g, the silicon grain size is 8nm; the solid electrolyte is LPS.
  • Solid electrolyte layer 2 LPSCl is selected as the solid electrolyte.
  • a solid electrode unit is composed of a positive electrode layer 1, a solid electrolyte layer 2 and a negative electrode layer 3.
  • the main components of the cathode layer 1 are composite cathode material and solid electrolyte 13 .
  • the composite cathode material is composed of a first cathode material 11 and a second cathode material 12 .
  • the surfaces of the first cathode material 11 and the second cathode material 12 are both coated with the solid electrolyte layer 2 .
  • the negative electrode layer 3 is composed of a first negative electrode layer 31 and a second negative electrode layer 32 .
  • the main components of the first negative electrode layer 31 are silver 311 and carbon 312 .
  • the main components of the second negative electrode layer 32 are porous silicon 321 and solid electrolyte 13 .
  • Positive electrode layer 1 The first positive electrode material LiMnFePO 4 in the composite positive electrode material accounts for 40%, D50 is 3 ⁇ m, and the surface is coated with 5nm LATP; the second positive electrode material is 0.5Li 2 MnO 3 ⁇ 0.5LiNi0.9Mn0.1Co0.1O 2, D50 It is 6 ⁇ m, and the surface is coated with 5nm LATP; the solid electrolyte LPSCl mass content is 20%.
  • Negative electrode layer 3 The thickness of the first negative electrode layer is 5 ⁇ m, the mass proportion of silver is 20%, and the particle size D50 is 50 nm; the particle size D50 of carbon black is 30; the thickness of the second negative electrode layer is 40 ⁇ m, and the mass proportion of porous silicon is 80 %, the porous silicon particle size D50 is 100nm, the specific surface area is 8m 2 /g, the silicon grain size is 8nm; the solid electrolyte is LPS.
  • Solid electrolyte layer 2 LPSCl is selected as the solid electrolyte.
  • a solid electrode unit is composed of a positive electrode layer 1, a solid electrolyte layer 2 and a negative electrode layer 3.
  • the main components of the cathode layer 1 are composite cathode material and solid electrolyte 13 .
  • the composite cathode material is composed of a first cathode material 11 and a second cathode material 12 .
  • the surfaces of the first cathode material 11 and the second cathode material 12 are both coated with the solid electrolyte layer 2 .
  • the negative electrode layer 3 is composed of a first negative electrode layer 31 and a second negative electrode layer 32 .
  • the main components of the first negative electrode layer 31 are silver 311 and carbon 312 .
  • the main components of the second negative electrode layer 32 are porous silicon 321 and solid electrolyte 13 .
  • Positive electrode layer 1 The first positive electrode material LiMnFePO 4 in the composite positive electrode material accounts for 40%, D50 is 3 ⁇ m, and the surface is coated with 10nm LATP; the second positive electrode material is 0.5Li 2 MnO 3 ⁇ 0.5LiNi0.9Mn0.1Co0.1O 2, D50 It is 6 ⁇ m, and the surface is coated with 10nm LATP; the solid electrolyte LPSCl mass content is 20%.
  • Negative electrode layer 3 The thickness of the first negative electrode layer is 5 ⁇ m, of which the mass proportion of silver is 20%, and the particle size D50 is 50 nm; the particle size D50 of carbon black is 30; the thickness of the second negative electrode layer is 40 ⁇ m, and the mass proportion of porous silicon is 60 %, the porous silicon particle size D50 is 100nm, the specific surface area is 8m 2 /g, the silicon grain size is 8nm; the solid electrolyte is LPS.
  • Solid electrolyte layer 2 LPSCl is selected as the solid electrolyte.
  • a solid electrode unit is composed of a positive electrode layer 1, a solid electrolyte layer 2 and a negative electrode layer 3.
  • the main components of the cathode layer 1 are composite cathode material and solid electrolyte 13 .
  • the composite cathode material is composed of a first cathode material 11 and a second cathode material 12 .
  • the surfaces of the first cathode material 11 and the second cathode material 12 are both coated with the solid electrolyte layer 2 .
  • the negative electrode layer 3 is composed of a first negative electrode layer 31 and a second negative electrode layer 32 .
  • the main components of the first negative electrode layer 31 are silver 311 and carbon 312 .
  • the main components of the second negative electrode layer 32 are porous silicon 321 and solid electrolyte 13 .
  • Positive electrode layer 1 The first positive electrode material LiMnFePO 4 in the composite positive electrode material accounts for 40%, D50 is 3 ⁇ m, and the surface is coated with 5nm LATP; the second positive electrode material is 0.5Li 2 MnO 3 ⁇ 0.5LiNi0.9Mn0.1Co0.1O 2, D50 It is 6 ⁇ m, and the surface is coated with 5nm LATP; the solid electrolyte LPSCl mass content is 20%.
  • Negative electrode layer 3 The thickness of the first negative electrode layer is 3 ⁇ m, the mass proportion of silver is 20%, and the particle size D50 is 50 nm; the particle size D50 of carbon black is 30; the thickness of the second negative electrode layer is 30 ⁇ m, and the mass proportion of porous silicon is 60 %, the porous silicon particle size D50 is 100nm, the specific surface area is 8m 2 /g, the silicon grain size is 8nm; the solid electrolyte is LPS.
  • Solid electrolyte layer 2 LPSCl is selected as the solid electrolyte.
  • a solid electrode unit is composed of a positive electrode layer 1, a solid electrolyte layer 3 and a negative electrode layer 2.
  • the main components of the cathode layer 1 are composite cathode material and solid electrolyte 13 .
  • the composite cathode material is composed of a first cathode material 11 and a second cathode material 12 .
  • the surfaces of the first cathode material 11 and the second cathode material 12 are both coated with a solid electrolyte layer 13 .
  • the negative electrode layer 3 is composed of a first negative electrode layer 31 and a second negative electrode layer 32 .
  • the main components of the first negative electrode layer 31 are silver 311 and carbon 312 .
  • the main components of the second negative electrode layer 32 are porous silicon 321 and solid electrolyte 13 .
  • Positive electrode layer 1 The first positive electrode material LiMnFePO 4 in the composite positive electrode material accounts for 40%, D50 is 3 ⁇ m, and the surface is coated with 5nm LATP; the second positive electrode material is 0.5Li 2 MnO 3 ⁇ 0.5LiNi0.9Mn0.1Co0.1O 2, D50 It is 6 ⁇ m, and the surface is coated with 5nm LATP; the solid electrolyte LPSCl mass content is 20%.
  • Negative electrode layer 3 The thickness of the first negative electrode layer is 5 ⁇ m, the mass proportion of silver is 10%, and the particle size D50 is 50nm; the particle size D50 of carbon black is 30; the thickness of the second negative electrode layer is 40 ⁇ m, and the mass proportion of porous silicon is 60nm. %, the porous silicon particle size D50 is 100nm, the specific surface area is 8m 2 /g, the silicon grain size is 8nm; the solid electrolyte is LPS.
  • Solid electrolyte layer 2 LPSCl is selected as the solid electrolyte.
  • Example 2 Compared with Example 1, the difference is that the composite positive electrode material is LiMnFePO 4 and the negative electrode material is porous silicon.
  • the invention applies high specific energy composite manganese-based positive electrode materials and silicon negative electrode materials to solid-state batteries to increase the energy density of solid-state batteries and reduce costs.
  • Lithium-rich materials can effectively improve the first efficiency of lithium iron manganese phosphate positive electrode and silicon negative electrode, and improve the Coulombic efficiency of the battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及一种固态电极单元、制备方法、固态电池及其系统,固态电极单元由正极层、电解质层和负极层构成;正极层包括复合正极材料和固态电解质;复合正极材料两正极材料表面均包覆固态电解质层;负极层由两种负极层组成。本发明正极采用固态电解质包覆的磷酸锰铁锂和富锂材料,可提高磷酸锰铁锂表面导电性,增强界面稳定性,抑制磷酸锰铁锂表面Mn的溶出,提高正极循环寿命,正极材料界面稳定,同时提高正极首效;通过富锂材料提高磷酸锰铁锂正极和硅负极的首效,提高电池库伦效率;利用银碳层作为缓冲,抑制因硅膨胀导致的界面恶化,提高电池稳定性;银碳层可使Li更均匀的沉积且提高硅的导电性,提高电池功率性能;可实现低成本高能量密度。

Description

一种固态电极单元、制备方法、固态电池及其系统 技术领域
本发明属于固态电池技术领域,具体涉及一种固态电极单元、制备方法、电池及其系统。
背景技术
目前,商用的锂离子电池因采用易燃易爆的有机电解液无法满足人们对于电池的安全性需求,且能量密度已达到极限。而通过固态电解质取代有机电解液的全固态电池有望成为目前市场上锂离子电池最安全的替代品,但如果仍采用现有的正负极体系,很难获得高能量密度的电池,且成本较高。
现有技术公开了一种正极极片及其制备方法与正极极板、固态电池。以正极极片的原料总质量为100%计,正极极片的原料包括:正极活性材料80-98%;离子导电剂1.5-10%;电子导电剂0.5-5%;助剂0-5%;正极活性材料选用锂材料;所述离子导电剂选用卤化物固态电解质。正极极板包括集流体和设置于集流体表面的上述正极极片。固态电池包括依次设置的正极极板、电池隔膜和负极极板。其将正极材料与卤化物固态电解质混合得到固态电池正极极片,无法解决正极材料表面不稳定的问题。
现有技术还公开了一种改性磷酸锰铁锂正极材料及其制备方法和应用,制备方法包括以下步骤:1、将磷酸锰铁锂材料与碱性缓冲溶剂混合,得到磷酸锰铁锂缓冲溶液;2、将步骤1得到的磷酸锰铁锂缓冲溶液和多巴胺混合,经离心 处理得到沉淀,对得到的沉淀进行煅烧处理得到所述改性磷酸锰铁锂正极材料。其通过氮掺杂碳包覆磷酸锰铁锂,提高正极电子导电性和离子扩散性,但如果在固态电池中无法起到提高离子电导的作用。
发明内容
本发明的目的就在于提供一种固态电极单元及其制备方法,还提供一种固态电池及固态电池系统,以解决正极材料表面不稳定,采用硅负极的电池倍率性能差的问题。
本发明的目的是通过以下技术方案实现的:
一种固态电极单元,其特征在于:由正极层1、固态电解质层2和负极层3构成;
所述正极层1包括复合正极材料和固态电解质13;
所述复合正极材料由第一正极材料11和第二正极材料12组成;所述第一正极材料11表面和第二正极材料12表面均包覆固态电解质层2;所述第一正极材料11、第二正极材料12粒径D50比值为1:0.5~1:2;
所述负极层3由第一负极层31和第二负极层32组成;所述第一负极层31主要成分由银311和碳312构成;所述第二负极层32主要成分为多孔硅321和固态电解质13;所述第一负极层31厚度与第二负极层32厚度比值为1:10-1:7。
进一步地,所述复合正极材料中,第一正极材料11分子量占比10%~40%,第一正极材料11分子式为LiMnxFe1-xPO4,第一正极材料11粒径D50范围0.5-6μm;所述第二正极材料12分子式为xLi2MnO3·(1-x)LiMO2,其中0.1≤x≤0.9, 所述M为Ni、Co、Mn中的一种或多种,第二正极材料12粒径D50范围1-10μm。
进一步地,所述正极层1中固态电解质13为氧化物电解质或硫化物电解质,所述氧化物电解质,包括LATP、LLZO、LLTO或LAGP中的任意一种或至少两种的组合,所述硫化物电解质,包括LPS、LGPS、LPSCl中的一种或至少两种组合,优选为硫化物电解质;质量含量10%-30%。
进一步地,所述固态电解质层2厚度范围1-20nm,其固态电解质为氧化物电解质,包括LATP、LLZO、LLTO或LAGP中的任意一种或至少两种的组合。
进一步地,所述第一负极层31中银311的质量占比为5%-30%,银311粒径D50为30-100nm,碳312粒径D50为10-50,第一负极层31厚度为1-10μm;所述第二负极层32厚度为10-100μm,第二负极层32中多孔硅321质量占比50%-90%,多孔硅321粒度D50小于400nm,多孔硅321硅晶粒尺寸为6-12nm,多孔硅321比表面积为4-14m2/g。
进一步地,所述负极层3中固态电解质13为硫化物电解质,包括LPS、LGPS、LPSCl中的一种或至少两种组合,固态电解质13质量占比10%-50%。
一种固态电极的制备方法,包括以下步骤:
S1、将第一正极材料11与第二正极材料12充分混合形成复合正极材料;
S2、将复合正极材料与固态电解质13混合后在正极集流体上形成正极层1;
S3、将多孔硅321与固态电解质13充分混合后涂于负极集流体形成第一负极层31;
S4、将银粉与碳粉充分混合后涂于第一负极层31上形成负极层3;
S5、制备固态电解质层2;
S6、将正极层1、固态电解质层2、负极层3组装到一起形成固态电极单元。
进一步地,步骤S2中,在正极集流体表面形成正极层1的方式可以为湿法成膜工艺或干法成膜工艺,优选为干法成膜工艺。
一种固态电池,其特征在于:所述固态电池包含权利要求1所述的一种固态电极单元。
一种固态电池系统,其特征在于:所述固态电池系统包含权利要求1所述的一种固态电池。
与现有技术相比,本发明的有益效果是:
1、本发明正极采用固态电解质包覆的磷酸锰铁锂和富锂材料,可提高磷酸锰铁锂表面导电性,增强界面稳定性,抑制磷酸锰铁锂表面Mn的溶出,提高正极循环寿命,正极材料界面稳定,同时提高正极首效;
2、通过富锂材料提高磷酸锰铁锂正极和硅负极的首效,提高电池库伦效率;
3、利用银碳层作为缓冲,抑制因硅膨胀导致的界面恶化,提高电池稳定性;同时银碳层可以使Li更均匀的沉积且提高硅的导电性,提高电池功率性能;
4、采用低成本、高比能的磷酸锰铁锂、硅等材料,实现低成本高能量密度固态电池。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1固态电极单元示意图;
图2固态电极单元的制备方法。
图中,1.正极层 2.固态电解质层 3.负极层 11.第一正极材料 12.第二正极材料 13.固态电解质 31.第一负极层 32.第二负极层 311.银 312.碳 321.多孔硅。
具体实施方式
下面结合实施例对本发明作进一步说明:
下面结合附图和实施例对本发明作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部结构。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。同时,在本发明的描述中,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
本发明固态电极单元,由正极层1、固态电解质层2和负极层3构成。
所述正极层1主要成分为复合正极材料和固态电解质13。
所述复合正极材料由第一正极材料11和第二正极材料12组成。
其中,第一正极材料11分子量占比10%~40%,第一正极材料11分子式为LiMnxFe1-xPO4,第一正极材料11粒径D50范围0.5-6μm。
所述第一正极材料11表面包覆固态电解质层2。所述固态电解质层2厚度 范围1-20nm。所述包覆固态电解质层2所有固态电解质为氧化物电解质,包括LATP、LLZO、LLTO或LAGP中的任意一种或至少两种的组合。
所述第二正极材料12分子式为xLi2MnO3·(1-x)LiMO2,,其中0.1≤x≤0.9,所述M为Ni、Co、Mn中的一种或多种,第二正极材料12粒径D50范围1-10μm。
所述第二正极材料12表面包覆固态电解质层2。所述固态电解质层2厚度范围1-20nm。所述包覆固态电解质层2所有固态电解质为氧化物电解质,包括LATP、LLZO、LLTO或LAGP中的任意一种或至少两种的组合。
所述正极层1中固态电解质13为氧化物电解质或硫化物电解质,所述氧化物电解质,包括LATP、LLZO、LLTO或LAGP中的任意一种或至少两种的组合,所述硫化物电解质,包括LPS、LGPS、LPSCl中的一种或至少两种组合,优选为硫化物电解质;质量含量10%-30%。
所述第一正极材料11、第二正极材料12粒径D50比值为1:0.5~1:2。
本发明中,固态电解质包覆复合锰基正极材料,可以抑制由于杨-特勒效应引起的Mn溶出;同时固态电解质包覆可以在锰基材料表面构建良好的离子导电通路并且提高界面稳定性。提高电极循环寿命和倍率性能;磷酸锰铁锂成本较低、富锂正极材料具有高的比容量,二者混用可以在实现高能量密度的同时减低成本。
所述负极层由第一负极层31和第二负极层32组成。
所述第一负极层31主要成分由银311和碳312构成。其中,所述第一负极层31中银的质量占比为5%-30%。所述银311粒径D50为30-100nm,碳312粒径D50为10-50,第一负极层32厚度为1-10μm。
所述第二负极层32主要成分为多孔硅321和固态电解质13,多孔硅粒度D50小于400nm;多孔硅321硅晶粒尺寸为6-12nm,多孔硅321比表面积为4-14m2/g。所述固态电解质13为硫化物电解质,包括LPS、LGPS、LPSCl中的一种或至少两种组合。
所述第二负极层32厚度为10-100μm。所述第二负极层32中多孔硅321质量占比50%-90%。所述固态电解质13质量占比10%-50%。
所述第一负极层31厚度与第二负极层32厚度比值为1:10-1:7。
所述负极层4中,固态电解质13为硫化物电解质,包括LPS、LGPS、LPSCl中的一种或至少两种组合。
硅负极导电性较低,银碳层可以使Li的更均匀且快速的沉积,解决采用硅负极的电池倍率性能差的问题;硅材料自身体积膨胀较大,影响循环性能,尤其在固态电池中,负极层和固态电解质层之间的固固界面会随着体积形变恶化,采用银碳层作为缓冲层,抑制因硅膨胀导致的界面恶化,提高电池循环稳定性。
本发明在正极采用固态电解质包覆的磷酸锰铁锂和富锂材料,正极材料界面稳定,同时提高正极首效。通过在负极层与固态电解质层间构建AgC缓冲层,有效提高界面稳定性和导电性。
一种固态电极的制备方法,包括以下步骤:
S1、将第一正极材料11与第二正极材料12充分混合形成复合正极材料;
S2、将复合正极材料与固态电解质13混合后在正极集流体上形成正极层1;
S3、将多孔硅321与固态电解质13充分混合后涂于负极集流体形成第一负极层31;
S4、将银粉与碳粉充分混合后涂于第一负极层上形成负极层3;
S5、制备固态电解质层2;
S6、将正极层1、固态电解质层2、负极层3组装到一起形成固态电极单元。
步骤S2中,在正极集流体表面形成正极层的方式可以为湿法成膜工艺或干法成膜工艺,优选为干法成膜工艺。
本发明提供一种固态电池,所述固态电池包含所述固态电极单元。
本发明提供一种固态电池系统,所述固态电池系统包含所述固态电池。
实施例1
一种固态电极单元,由正极层1、固态电解质层2和负极层3构成。
所述正极层1主要成分为复合正极材料和固态电解质13。
所述复合正极材料由第一正极材料11和第二正极材12料组成。所述第一正极材料11和第二正极材料12表面均包覆固态电解质层2。
所述负极层3由第一负极层31和第二负极层32组成。
所述第一负极层31主要成分由银311和碳312构成。所述第二负极层32主要成分为多孔硅321和固态电解质13。
正极层1:复合正极材料中第一正极材料LiMnFePO4占比40%,D50为3μm,表面包覆5nm LATP;第二正极材料0.5Li2MnO3·0.5LiNi0.9Mn0.1Co0.1O2,D50为6μm,表面包覆5nm LATP;固态电解质LPSCl质量含量20%。
负极层3:第一负极层厚度为5μm,其中银的质量占比为20%,粒径D50为50nm;炭黑粒径D50为30;第二负极层厚度为40μm,多孔硅质量占比60%,多孔硅粒度D50为100nm,比表面积为8m2/g,硅晶粒尺寸为8nm;固态电解质为LPS。
固态电解质层2:固态电解质选用LPSCl。
实施例2
一种固态电极单元,由正极层1、固态电解质层2和负极层3构成。
所述正极层1主要成分为复合正极材料和固态电解质13。
所述复合正极材料由第一正极材料11和第二正极材料12组成。所述第一正极材料11和第二正极材料12表面均包覆固态电解质层2。
所述负极层3由第一负极层31和第二负极层32组成。
所述第一负极层31主要成分由银311和碳312构成。所述第二负极层32主要成分为多孔硅321和固态电解质13。
正极层1:复合正极材料中第一正极材料LiMnFePO4占比40%,D50为3μm,表面包覆5nm LLZO;第二正极材料0.5Li2MnO3·0.5LiNi0.9Mn0.1Co0.1O2,D50为6μm,表面包覆5nm LLZO;固态电解质LPSCl质量含量20%。
负极层3:第一负极层厚度为5μm,其中银的质量占比为20%,粒径D50为50nm;炭黑粒径D50为30;第二负极层厚度为40μm,多孔硅质量占比60%,多孔硅粒度D50为100nm,比表面积为8m2/g,硅晶粒尺寸为8nm;固态电解质为LPS。
固态电解质层1:固态电解质选用LPSCl。
实施例3
一种固态电极单元,由正极层1、固态电解质层2和负极层3构成。
所述正极层1主要成分为复合正极材料和固态电解质13。
所述复合正极材料由第一正极材料11和第二正极材料12组成。所述第一正极材料11和第二正极材料12表面均包覆固态电解质层2。
所述负极层3由第一负极层31和第二负极层32组成。
所述第一负极层31主要成分由银311和碳312构成。所述第二负极层32主要成分为多孔硅321和固态电解质13。
正极层1:复合正极材料中第一正极材料LiMnFePO4占比40%,D50为3μm,表面包覆5nm LATP;第二正极材料0.3Li2MnO3·0.7LiMO2,D50为6μm,表面包覆5nm LATP;固态电解质LPSCl质量含量20%。
负极层3:第一负极层厚度为5μm,其中银的质量占比为20%,粒径D50为50nm;炭黑粒径D50为30;第二负极层厚度为40μm,多孔硅质量占比60%,多孔硅粒度D50为100nm,比表面积为8m2/g,硅晶粒尺寸为8nm;固态电解质为LPS。
固态电解质层2:固态电解质选用LPSCl。
实施例4
一种固态电极单元,由正极层1、固态电解质层2和负极层3构成。
所述正极层1主要成分为复合正极材料和固态电解质13。
所述复合正极材料由第一正极材料11和第二正极材料12组成。所述第一正极材料11和第二正极材料12表面均包覆固态电解质层2。
所述负极层3由第一负极层31和第二负极层32组成。
所述第一负极层31主要成分由银311和碳312构成。所述第二负极层32主要成分为多孔硅321和固态电解质13。
正极层1:复合正极材料中第一正极材料LiMnFePO4占比40%,D50为3μm,表面包覆5nm LATP;第二正极材料0.5Li2MnO3·0.5LiNi0.9Mn0.1Co0.1O2,D50为6μm,表面包覆5nm LATP;固态电解质LPSCl质量含量20%。
负极层3:第一负极层厚度为5μm,其中银的质量占比为20%,粒径D50为50nm;炭黑粒径D50为30;第二负极层厚度为40μm,多孔硅质量占比80%,多孔硅粒度D50为100nm,比表面积为8m2/g,硅晶粒尺寸为8nm;固态电解质为LPS。
固态电解质层2:固态电解质选用LPSCl。
实施例5
一种固态电极单元,由正极层1、固态电解质层2和负极层3构成。
所述正极层1主要成分为复合正极材料和固态电解质13。
所述复合正极材料由第一正极材料11和第二正极材料12组成。所述第一正极材料11和第二正极材料12表面均包覆固态电解质层2。
所述负极层3由第一负极层31和第二负极层32组成。
所述第一负极层31主要成分由银311和碳312构成。所述第二负极层32主要成分为多孔硅321和固态电解质13。
正极层1:复合正极材料中第一正极材料LiMnFePO4占比40%,D50为3μm,表面包覆10nm LATP;第二正极材料0.5Li2MnO3·0.5LiNi0.9Mn0.1Co0.1O2,D50为6μm,表面包覆10nm LATP;固态电解质LPSCl质量含量20%。
负极层3:第一负极层厚度为5μm,其中中银的质量占比为20%,粒径D50为50nm;炭黑粒径D50为30;第二负极层厚度为40μm,多孔硅质量占比60%,多孔硅粒度D50为100nm,比表面积为8m2/g,硅晶粒尺寸为8nm;固态电解质为LPS。
固态电解质层2:固态电解质选用LPSCl。
实施例6
一种固态电极单元,由正极层1、固态电解质层2和负极层3构成。
所述正极层1主要成分为复合正极材料和固态电解质13。
所述复合正极材料由第一正极材料11和第二正极材料12组成。所述第一正极材料11和第二正极材料12表面均包覆固态电解质层2。
所述负极层3由第一负极层31和第二负极层32组成。
所述第一负极层31主要成分由银311和碳312构成。所述第二负极层32主要成分为多孔硅321和固态电解质13。
正极层1:复合正极材料中第一正极材料LiMnFePO4占比40%,D50为3μm,表面包覆5nm LATP;第二正极材料0.5Li2MnO3·0.5LiNi0.9Mn0.1Co0.1O2,D50为6μm,表面包覆5nm LATP;固态电解质LPSCl质量含量20%。
负极层3:第一负极层厚度为3μm,其中银的质量占比为20%,粒径D50为50nm;炭黑粒径D50为30;第二负极层厚度为30μm,多孔硅质量占比60%,多孔硅粒度D50为100nm,比表面积为8m2/g,硅晶粒尺寸为8nm;固态电解质为LPS。
固态电解质层2:固态电解质选用LPSCl。
实施例7
一种固态电极单元,由正极层1、固态电解质层3和负极层2构成。
所述正极层1主要成分为复合正极材料和固态电解质13。
所述复合正极材料由第一正极材料11和第二正极材料12组成。所述第一正极材料11和第二正极材料12表面均包覆固态电解质层13。
所述负极层3由第一负极层31和第二负极层32组成。
所述第一负极层31主要成分由银311和碳312构成。所述第二负极层32主要成分为多孔硅321和固态电解质13。
正极层1:复合正极材料中第一正极材料LiMnFePO4占比40%,D50为3μm,表面包覆5nm LATP;第二正极材料0.5Li2MnO3·0.5LiNi0.9Mn0.1Co0.1O2,D50为6μm,表面包覆5nm LATP;固态电解质LPSCl质量含量20%。
负极层3:第一负极层厚度为5μm,其中银的质量占比为10%,粒径D50为50nm;炭黑粒径D50为30;第二负极层厚度为40μm,多孔硅质量占比60%,多孔硅粒度D50为100nm,比表面积为8m2/g,硅晶粒尺寸为8nm;固态电解质为LPS。
固态电解质层2:固态电解质选用LPSCl。
对比例1
与实施例1相比,区别在于复合正极材料为LiMnFePO4,负极材料为多孔硅。
实施例1-实施例7以及对比例的固态电极单元性能对比见表1。
表1

本发明将高比能的复合锰基正极材料和硅负极材料应用在固态电池,提高固态电池能量密度,降低成本。通过富锂材料可以有效提高磷酸锰铁锂正极和硅负极的首效,提高电池库伦效率。
注意,上述仅为本发明的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由所附的权利要求范围决定。

Claims (10)

  1. 一种固态电极单元,其特征在于:由正极层(1)、固态电解质层(2)和负极层(3)构成;
    所述正极层(1)主要成分为复合正极材料和固态电解质(13);
    所述复合正极材料由第一正极材料(11)和第二正极材料(12)组成;所述第一正极材料(11)表面和第二正极材料(12)表面均包覆固态电解质层(2);所述第一正极材料(11)、第二正极材料(12)粒径D50比值为1:0.5~1:2;
    所述负极层(3)由第一负极层(31)和第二负极层(32)组成;所述第一负极层(31)主要成分由银(311)和碳(312)构成;所述第二负极层(32)主要成分为多孔硅(321)和固态电解质(13);所述第一负极层(31)厚度与第二负极层(32)厚度比值为1:10-1:7。
  2. 根据权利要求1所述的一种固态电极单元,其特征在于:所述复合正极材料中,第一正极材料(11)分子量占比10%~40%,第一正极材料(11)分子式为LiMnxFe1-xPO4,第一正极材料(11)粒径D50范围0.5-6μm;所述第二正极材料(12)分子式为xLi2MnO3·(1-x)LiMO2,其中0.1≤x≤0.9,所述M为Ni、Co、Mn中的一种或多种,第二正极材料(12)粒径D50范围1-10μm。
  3. 根据权利要求1所述的一种固态电极单元,其特征在于:所述正极层(1)中,固态电解质(13)为氧化物电解质或硫化物电解质;所述氧化物电解质,包括LATP、LLZO、LLTO或LAGP中的任意一种或至少两种的组合;所述硫化物电解质,包括LPS、LGPS、LPSCl中的一种或至少两种组合,质量含量10%-30%。
  4. 根据权利要求1所述的一种固态电极单元,其特征在于:所述固态电解质层(2)厚度范围1-20nm,其固态电解质为氧化物电解质,包括LATP、LLZO、LLTO或LAGP中的任意一种或至少两种的组合。
  5. 根据权利要求1所述的一种固态电极单元,其特征在于:所述第一负极层中(31)银(311)的质量占比为5%-30%,银(311粒径D50为30-100nm,碳(312)粒径D50为10-50,第一负极层(31)厚度为1-10μm;所述第二负极层(32)厚度为10-100μm,第二负极层(32)中多孔硅(321)质量占比50%-90%,多孔硅(321)粒度D50小于400nm,多孔硅(321)硅晶粒尺寸为6-12nm,多孔硅(321)比表面积为4-14m2/g。
  6. 根据权利要求1所述的一种固态电极单元,其特征在于:所述负极层(3)中固态电解质(13)为硫化物电解质,包括LPS、LGPS、LPSCl中的一种或至少两种组合,固态电解质(13)质量占比10%-50%。
  7. 一种固态电极的制备方法,包括以下步骤:
    S1、将第一正极材料(11)与第二正极材料(12)充分混合形成复合正极材料;
    S2、将复合正极材料与固态电解质(13)混合后在正极集流体上形成正极层1;
    S3、将多孔硅(321)与固态电解质(13)充分混合后涂于负极集流体形成第一负极层31;
    S4、将银粉与碳粉充分混合后涂于第一负极层(31)上形成负极层(3);
    S5、制备固态电解质层(2);
    S6、将正极层(1)、固态电解质层(2)、负极层(3)组装到一起形成固态电极单元。
  8. 根据权利要求7所述的一种固态电极的制备方法,其特征在于:步骤S2中,在正极集流体表面形成正极层的方式可以为湿法成膜工艺或干法成膜工艺, 优选为干法成膜工艺。
  9. 一种固态电池,其特征在于:所述固态电池包含权利要求1所述的一种固态电极单元。
  10. 一种固态电池系统,其特征在于:所述固态电池系统包含权利要求1所述的一种固态电池。
PCT/CN2023/093449 2022-06-02 2023-05-11 一种固态电极单元、制备方法、固态电池及其系统 WO2023231738A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210624342.5A CN115084638A (zh) 2022-06-02 2022-06-02 一种固态电极单元、制备方法、固态电池及其系统
CN202210624342.5 2022-06-02

Publications (1)

Publication Number Publication Date
WO2023231738A1 true WO2023231738A1 (zh) 2023-12-07

Family

ID=83249595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/093449 WO2023231738A1 (zh) 2022-06-02 2023-05-11 一种固态电极单元、制备方法、固态电池及其系统

Country Status (2)

Country Link
CN (1) CN115084638A (zh)
WO (1) WO2023231738A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117936742A (zh) * 2024-01-25 2024-04-26 星恒电源股份有限公司 改性磷酸锰铁锂正极材料及其制备方法与正极片和电池
CN118335893A (zh) * 2024-05-09 2024-07-12 蜂巢能源科技股份有限公司 全固态双极单元结构及其制备系统、方法和电池

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115084638A (zh) * 2022-06-02 2022-09-20 中国第一汽车股份有限公司 一种固态电极单元、制备方法、固态电池及其系统
WO2024096594A1 (ko) * 2022-11-02 2024-05-10 주식회사 엘지에너지솔루션 전고체 리튬이온 이차전지

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170141498A (ko) * 2016-06-15 2017-12-26 한국생산기술연구원 전고체 리튬이차전지 및 그의 제조방법
CN111009682A (zh) * 2020-03-06 2020-04-14 清陶(昆山)能源发展有限公司 一种全固态电池及其制备方法
CN111092261A (zh) * 2019-12-12 2020-05-01 中国第一汽车股份有限公司 一种固态电池电极单元
US20200243914A1 (en) * 2019-01-30 2020-07-30 Panasonic Intellectual Property Management Co., Ltd. Solid-state battery and method of manufacture thereof
WO2022108262A1 (ko) * 2020-11-17 2022-05-27 삼성에스디아이주식회사 전고체 이차전지
CN115084638A (zh) * 2022-06-02 2022-09-20 中国第一汽车股份有限公司 一种固态电极单元、制备方法、固态电池及其系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170141498A (ko) * 2016-06-15 2017-12-26 한국생산기술연구원 전고체 리튬이차전지 및 그의 제조방법
US20200243914A1 (en) * 2019-01-30 2020-07-30 Panasonic Intellectual Property Management Co., Ltd. Solid-state battery and method of manufacture thereof
CN111092261A (zh) * 2019-12-12 2020-05-01 中国第一汽车股份有限公司 一种固态电池电极单元
CN111009682A (zh) * 2020-03-06 2020-04-14 清陶(昆山)能源发展有限公司 一种全固态电池及其制备方法
WO2022108262A1 (ko) * 2020-11-17 2022-05-27 삼성에스디아이주식회사 전고체 이차전지
CN115084638A (zh) * 2022-06-02 2022-09-20 中国第一汽车股份有限公司 一种固态电极单元、制备方法、固态电池及其系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117936742A (zh) * 2024-01-25 2024-04-26 星恒电源股份有限公司 改性磷酸锰铁锂正极材料及其制备方法与正极片和电池
CN118335893A (zh) * 2024-05-09 2024-07-12 蜂巢能源科技股份有限公司 全固态双极单元结构及其制备系统、方法和电池

Also Published As

Publication number Publication date
CN115084638A (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
WO2023231738A1 (zh) 一种固态电极单元、制备方法、固态电池及其系统
CN111276690B (zh) 一种低孔隙率正极极片、其制备方法及其在固态锂金属电池中的应用
WO2022267538A1 (zh) 钠离子电池的负极极片、电化学装置及电子设备
CN109786817B (zh) 固态锂电池及其应用和制备无纺布增强的固态电解质膜的方法
WO2021223655A1 (zh) 一种正极片、制备方法及包含其的锂离子电池
CN111969214A (zh) 一种异型结构的正极片及包括该正极片的锂离子电池
Zhang et al. High sulfur loading lithium–sulfur batteries based on a upper current collector electrode with lithium-ion conductive polymers
WO2022088610A1 (zh) 一种锂离子电容器及其制备方法和用途
CN112133887A (zh) 准固态电池极片及其制备方法和应用
CN114514643B (zh) 包括具有改进的粘合强度的底涂层的集流体及其制造方法
WO2024113407A1 (zh) 正极片及其制备方法和钠离子电池
CN112164776A (zh) 一种复合包覆的全固态电池正极材料及其制备方法和全固态电池
CN111540868A (zh) 一种二维二氧化锰修饰聚丙烯隔膜的制备方法和应用
JP2020514948A (ja) 全固体リチウムイオン蓄電池およびその製造方法
WO2024021277A1 (zh) 一种三元正极材料及其制备方法、正极片和电池
US20180226635A1 (en) Lithium ion battery positive electrode composition and preparation method thereof
WO2024213126A1 (zh) 一种二次电池、其制备方法及应用
WO2022237091A1 (zh) 复合负极材料及其制备方法、负极材料及锂离子电池
JP2019533277A (ja) リチウムイオン電池の新規なケイ素/グラフェン・アノード用の導電性ポリマーバインダー
CN116391273A (zh) 电极组件和包括该电极组件的电池单元
KR102561483B1 (ko) 전고체 전지용 전극 및 이의 제조 방법
CN111640933B (zh) 二氧化锰/碳纳米管泡沫材料、锌锰电池、其制法与应用
JP2020035682A (ja) 非水電解質二次電池及び非水電解質二次電池の製造方法
CN111900458A (zh) 一种复合固态电解质及其制备方法
WO2023134234A1 (zh) 正极复合材料、其制备方法、正极以及锂离子二次电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23814923

Country of ref document: EP

Kind code of ref document: A1