WO2023228363A1 - エレベータ用ガバナシステムの検査装置および検査方法 - Google Patents

エレベータ用ガバナシステムの検査装置および検査方法 Download PDF

Info

Publication number
WO2023228363A1
WO2023228363A1 PCT/JP2022/021583 JP2022021583W WO2023228363A1 WO 2023228363 A1 WO2023228363 A1 WO 2023228363A1 JP 2022021583 W JP2022021583 W JP 2022021583W WO 2023228363 A1 WO2023228363 A1 WO 2023228363A1
Authority
WO
WIPO (PCT)
Prior art keywords
car
speed
governor system
speed signal
overspeed
Prior art date
Application number
PCT/JP2022/021583
Other languages
English (en)
French (fr)
Inventor
洋輔 久保
勇来 齊藤
康司 伊藤
秀隆 座間
徹也 中山
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2022/021583 priority Critical patent/WO2023228363A1/ja
Publication of WO2023228363A1 publication Critical patent/WO2023228363A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
    • B66B5/04Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions for detecting excessive speed
    • B66B5/06Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions for detecting excessive speed electrical

Definitions

  • the present invention relates to an inspection device and an inspection method for inspecting the operation of an elevator governor system that operates an elevator emergency stop device.
  • Elevator equipment is equipped with a governor and an emergency stop device to constantly monitor the elevator car's elevator speed and bring the elevator car to an emergency stop when it reaches a predetermined overspeed condition.
  • a governor rope connected to the cage is wound around the governor pulley.
  • the governor rope moves with the car, causing the pulley to rotate.
  • the pulley rotates, the pendulum attached to the pulley swings due to centrifugal force.
  • the pendulum activates a gripping mechanism for the governor rope, and the movement of the governor rope is restricted. This activates the emergency stop device on the car side, causing the car to come to an emergency stop.
  • Patent Document 1 As a conventional technique that operates an emergency stop device based on the speed of the car detected using a non-contact sensor without using a mechanical governor as described above, there is a technique described in Patent Document 1. It has been known.
  • the monitoring device determines that there is an abnormality in the driving situation based on speed information from the car speed detection section in the detection means that detects the position and speed of the car, it outputs an activation signal to the emergency stop device. do.
  • the position/speed detection device for a moving object described in Patent Document 1 detects the speed of the moving object based on an image taken by a camera included in the moving object. If the moving object is an elevator, the walls and pillars of the hoistway are photographed.
  • the present invention provides an elevator governor system inspection device and inspection method that can easily inspect the operation of a governor system that detects the speed of a car using a non-contact sensor.
  • an inspection device for an elevator governor system detects the speed of the car based on a non-contact sensor provided in the car and a sensor signal of the non-contact sensor, and outputs a detected speed signal. and a safety control device that operates an emergency stop device when an overspeed state of the car is determined based on the detected speed signal.
  • a simulated speed generation unit that generates a simulated speed signal that simulates the detected speed signal, and during an inspection, the safety control device determines an overspeed state of the car based on the simulated speed signal.
  • a method for inspecting an elevator governor system detects the speed of the car based on a non-contact sensor provided in the car and a sensor signal of the non-contact sensor, and detects the detected speed signal.
  • a method for inspecting the operation of a governor system comprising: a speed detection unit that outputs a speed signal, and a safety control device that operates an emergency stop device when an overspeed state of a car is determined based on the detected speed signal. , while maintaining the car in a stopped state, a simulated speed signal that simulates the detected speed signal is generated, and the safety control device determines an overspeed state of the car based on the simulated speed signal.
  • the operation of the governor system can be easily inspected without causing the car to become overspeeded.
  • FIG. 2 is a schematic diagram showing an example of an image of the exposed surface of the guide rail 7 (FIG. 1). It is a flowchart which shows the processing operation in the inspection operation mode of the safety control device of an example.
  • FIG. 1 is a schematic configuration diagram of an elevator system that is an embodiment of the present invention.
  • the elevator system includes a car 1, a non-contact sensor 2, an electric operating device 3, a link mechanism 4, and an emergency stop device 5.
  • the emergency stop device 5 is simply illustrated, and the detailed configuration of the emergency stop device 5 is omitted.
  • the emergency stop device 5 in this embodiment is based on a known technique.
  • the car 1 is suspended by a main rope (not shown) in a hoistway provided in a building, and is slidably engaged with a guide rail 7 via a guide device.
  • a main rope (not shown)
  • a drive device a hoisting machine, not shown
  • the car 1 moves up and down within the hoistway.
  • the non-contact sensor 2 is provided in the car 1. Using the non-contact sensor 2, the position of the car 1 in the hoistway is detected, and the ascending and descending speed of the car 1 is constantly detected from the detected position of the car 1. Therefore, using the non-contact sensor 2, it is possible to detect that the lifting speed of the car exceeds a predetermined overspeed.
  • the non-contact sensor 2 includes an image sensor and detects the position and speed of the car 1 based on image information of the surface state of the guide rail 7 acquired by the image sensor.
  • the electric operating device 3 is an electromagnetic operating device in the first embodiment, and is arranged at the top of the car 1.
  • the electromagnetic operating device includes a movable piece or a movable rod that is driven by, for example, a solenoid or an electromagnet.
  • the electric operating device 3 includes an electromagnet, and is in an inactive state while the electromagnet is energized.
  • the power to the electromagnet is cut off.
  • the electric operating device 3 is actuated to displace the link mechanism 4 and put the emergency stop device 5 into a braking state.
  • the link mechanism 4 includes a link shaft 40 driven by the electric actuator 3, a pull-up link 41 operatively linked to the link shaft 40, and a pull-up rod 42 connected to the pull-up link 41. 3, the pulling rods 42 disposed on the left and right sides of the car 1 are pulled up substantially simultaneously via the pulling links 41. As a result, when the brake 51 of the emergency stop device 5 attached to the pulling rod 42 is pulled up to the braking position, the brake 51 clamps the guide rail 7 .
  • the emergency stop devices 5 are arranged one on each side of the car 1.
  • the brake element 51 included in the emergency stop device 5 is movable between a braking position and a non-braking position, and clamps the guide rail 7 in the braking position.
  • a braking force is generated by the frictional force acting between the brake element 51 and the guide rail 7.
  • the emergency stop device 5 is activated when the car 1 falls into an overspeed state, and brings the car 1 to an emergency stop.
  • the elevator apparatus of this embodiment includes a so-called ropeless governor system that does not use a governor rope.
  • the ropeless governor system when the lifting speed of the car 1 exceeds the rated speed and reaches the first overspeed (for example, a speed not exceeding 1.3 times the rated speed), the traction sheave around which the main rope is wound is activated. Cut off the power to the drive device (hoisting machine) and the control device that controls this drive device.
  • the drive device hovering machine
  • the control device that controls this drive device.
  • the electric operating device 3 provided in the car 1 is activated.
  • the emergency stop device 5 is actuated to bring the car 1 to an emergency stop.
  • the ropeless governor system includes a non-contact sensor 2 and a safety control device 100 (FIG. 1) that determines the overspeed state of the car 1 based on the output signal of the non-contact sensor 2. Ru.
  • a safety control device 100 is provided on a car 1, as shown in FIG.
  • the safety control device 100 measures the speed of the car 1 based on the sensor signal of the non-contact sensor 2, and when it is determined that the measured speed has reached the first overspeed, the safety control device 100 turns on the power source of the drive device (hoisting machine). and outputs a command signal to cut off the power to the control device that controls this drive device. Furthermore, when the safety control device 100 determines that the measured speed has reached the second overspeed, it outputs a command signal for driving the electric operating device 3.
  • the safety control device 100 has a function of inspecting the operation of the ropeless governor system that detects the speed of the car 1 using the non-contact sensor 2.
  • FIG. 2 is a functional block diagram showing the configuration of the ropeless governor system in this embodiment.
  • the safety control device 100 includes a speed detection section 101, a simulated speed generation section 102, an inspection mode detection section 105, an inspection mode switching section 106, an overspeed determination section 107, a drive power cutoff command section 108, and an electromagnet power supply.
  • a cutoff command section 109 is provided.
  • the safety control device 100 includes a computer system such as a microcomputer, and the computer system operates as each part by executing a predetermined program.
  • the speed detection unit 101 acquires a sensor signal from the non-contact sensor 2, and detects the speed of the car 1 by image signal processing based on the acquired sensor signal.
  • the speed detection unit 101 calculates the speed from the moving distance of the image feature amount of the surface state of the guide rail 7 in a predetermined time.
  • the speed detection unit 101 outputs a detected speed signal indicating the detected speed of the car 1 to the overspeed determination unit 107 via the inspection mode detection unit 105.
  • the inspection mode detection unit 105 connects any of the outputs of the speed detection unit 101 and the simulated speed generation unit 102 (described later) to the input of the overspeed determination unit 107.
  • the inspection mode detection section 105 connects the output of the speed detection section 101 to the input of the overspeed determination section 107.
  • the overspeed determining unit 107 determines whether the detected speed of the car 1 indicated by the detected speed signal input from the speed detecting unit 101 is equal to or higher than the first overspeed. When the overspeed determination section 107 determines that the detected speed is equal to or higher than the first overspeed, the overspeed determination section 107 sends the determination result to the drive power cutoff command section 108 .
  • the drive power cutoff command unit 108 When the drive power cutoff command unit 108 receives the determination result from the overspeed determination unit 107, it outputs a command signal to shut off the power to the hoisting machine and the control device 60.
  • the overspeed determination unit 107 determines whether the detected speed is equal to or higher than the second overspeed. When the overspeed determination section 107 determines that the detected speed is equal to or higher than the second overspeed, the overspeed determination section 107 sends the determination result to the electromagnet power cutoff command section 109 .
  • the electromagnet power cutoff command unit 109 Upon receiving the determination result from the overspeed determination unit 107, the electromagnet power cutoff command unit 109 outputs a command signal to shut off the power to the electromagnet of the electric actuator 3 (FIG. 1) in the electric emergency stop device.
  • a maintenance terminal device 200 is communicably connected to the safety control device 100.
  • the maintenance terminal device 200 is configured by a personal computer or the like.
  • the maintenance terminal device 200 uses the inspection mode command unit 201 to send a command signal to the safety control device 100 to instruct switching from the normal operation mode to the inspection operation mode. Furthermore, the maintenance terminal device 200 sends a command signal instructing the simulated speed generation unit 102, which will be described later, to start operation.
  • the inspection mode switching unit 106 in the safety control device 100 When the inspection mode switching unit 106 in the safety control device 100 receives a command signal from the maintenance terminal device 200, the inspection mode switching unit 106 instructs the inspection mode detection unit 105 to output the output of the simulated speed generation unit 102 and the input of the overspeed determination unit 107. Command the connection.
  • the inspection mode detection section 105 disconnects the output of the speed detection section 101 and the input of the overspeed determination section 107 in response to a command from the inspection mode switching section 106, and connects the output of the simulated speed generation section 102 with the overspeed determination section. It is connected to the input of section 107.
  • the simulated speed generation unit 102 generates a simulated speed signal S for testing that simulates the detected speed S, independently of the detected speed signal S output by the speed detection unit 101.
  • the simulated speed generation unit 102 generates a speed pattern in which the car 1 starts accelerating from zero speed until it reaches an overspeed state of a second overspeed or higher that activates the emergency stop device. It has a setting section 104.
  • the speed signal generation unit 103 in the simulated speed generation unit 102 generates a simulated speed signal S that simulates the detected speed signal S obtained when the car 1 travels according to this speed pattern.
  • the car 1 is maintained in a stopped state when inspecting the operation of the ropeless governor system.
  • the simulated speed generation section 102 outputs the simulated speed signal SS of the car 1 to the overspeed determination section 107 via the inspection mode detection section 105.
  • the overspeed determining unit 107 determines whether the simulated speed input from the simulated speed generating unit 102 is greater than or equal to the first overspeed.
  • the overspeed determination unit 107 determines that the simulated speed is equal to or higher than the first overspeed, it sends the determination result and the value of the simulated speed to the maintenance terminal device 200 .
  • the maintenance terminal device 200 detects that the ropeless governor system performs a predetermined operation when the speed of the car 1 reaches the first overspeed, and detects the speed of the car 1 at that time.
  • the maintenance terminal device 200 displays the determination result and the simulated speed value received from the overspeed determination section 107 using a speed display section 202 that includes a display device such as a liquid crystal display.
  • the overspeed determining unit 107 determines whether the simulated speed input from the simulated speed generating unit 102 is equal to or higher than the second overspeed.
  • the overspeed determination unit 107 determines that the simulated speed is equal to or higher than the second overspeed, it sends the determination result and the value of the simulated speed to the maintenance terminal device 200 .
  • the maintenance terminal device 200 detects that the ropeless governor system performs a predetermined operation when the speed of the car 1 reaches the second overspeed, and detects the speed of the car 1 at that time. In this case as well, the maintenance terminal device 200 displays the determination result received from the overspeed determining section 107 and the value of the simulated speed using the speed display section 202.
  • the overspeed determination section 107 does not send the determination result to the drive power cutoff command section 108 and the electromagnet power cutoff command section 109. Therefore, the car 1 will not be brought to an emergency stop. Note that the determination result may be invalidated in the drive power cutoff command section 108 and the electromagnet power cutoff command section 109.
  • FIG. 3 is a schematic diagram showing an example of an image of the exposed surface of the guide rail 7 (FIG. 1).
  • FIG. 3 shows an image I(t) at time t and an image I(t+ ⁇ t) at time t+ ⁇ t ( ⁇ t: frame period) acquired by the non-contact sensor 2 (FIGS. 1 and 2). Both are images of the exposed surface of the steel material that constitutes the guide rail 7, and show a brightness distribution pattern indicating the unevenness distribution on the exposed surface of the steel material. Note that the car 1 (FIG. 1) is descending from time t to time t+ ⁇ t.
  • an image shift d occurs between the image I(t) and the image I(t+ ⁇ t).
  • this image shift d is calculated by comparing image I(t) and image I(t+ ⁇ t) using an image correlation method.
  • the image I(t) or a part of it (for example, the part at position P in FIG. 3) is moved by a predetermined amount along the longitudinal direction of the guide rail 7 in the image frame.
  • a correlation function value between I(t) and image I(t+ ⁇ t) is calculated. The total amount of movement of the image I(t) when the correlation function value reaches the maximum value is defined as the image shift d.
  • the speed detection unit 101 outputs a detected speed signal S indicating the calculated speed v of the car 1.
  • the simulated speed generation unit 102 outputs a simulated speed signal S that simulates such a detected speed S.
  • the guide rail 7 is preferably surface-finished by polishing or the like in order to make the surface uneven.
  • the non-contact sensor 2 includes a light source that illuminates the surface of the guide rail 7. These improve the accuracy of car position measurement.
  • FIG. 4 is a flowchart showing processing operations in the inspection operation mode of the safety control device 100 of this embodiment.
  • a maintenance engineer inspects the operation of the ropeless governor system using the maintenance terminal device 200 on the car 1 in which the safety control device 100 is installed. At this time, the operation mode of the elevator system is set to maintenance operation mode. In the maintenance operation mode, a maintenance engineer manually operates a maintenance operation panel provided on the car 1, but in this embodiment, the car 1 is kept in a stopped state.
  • a maintenance engineer communicably connects the maintenance terminal device 200 to the safety control device 100 via a communication line. Next, the maintenance engineer operates the maintenance terminal device 200 to switch the operation mode of the safety control device 100 from the normal operation mode to the inspection operation mode.
  • step S1 the maintenance engineer operates the maintenance terminal device 200 while maintaining the stopped state of the car 1 to make a command to the safety control device 100. , commands the generation of a simulated speed signal.
  • step S2 the safety control device 100 uses the simulated speed generation section 102 to generate a simulated speed signal S.sub.S.
  • step S3 the safety control device 100 uses the overspeed determination unit 107 to determine whether the simulated speed of the car 1 indicated by the simulated speed signal S is equal to or higher than the first overspeed. If the safety control device 100 determines that the simulated speed is not equal to or higher than the first overspeed (NO in step S3), it re-executes the processes from step S2 onwards. Further, if the safety control device 100 determines that the simulated speed is equal to or higher than the first overspeed (YES in step S3), then it executes step S4.
  • step S4 the safety control device 100 uses the overspeed determining unit 107 to transmit first overspeed data including the value of the simulated speed determined to be equal to or higher than the first overspeed in step S3 to the maintenance terminal device 200. Output to.
  • the maintenance terminal device 200 uses the speed display unit 202 to display the first overspeed data on a display device included in the maintenance terminal device 200. Thereby, the maintenance engineer confirms that the ropeless governor system performs a predetermined operation when the speed of the car 1 reaches the first overspeed.
  • safety control device 100 then executes step S5.
  • step S5 the safety control device 100 uses the simulated speed generation section 102 to generate a simulated speed signal S.sub.S.
  • step S6 the safety control device 100 uses the overspeed determination unit 107 to determine whether the simulated speed of the car 1 indicated by the simulated speed signal S is equal to or higher than the second overspeed. If the safety control device 100 determines that the simulated speed is not equal to or higher than the second overspeed (NO in step S6), it re-executes the processes from step S5 onwards. Further, if the safety control device 100 determines that the simulated speed is equal to or higher than the second overspeed (YES in step S6), then it executes step S7.
  • step S7 the safety control device 100 uses the overspeed determining unit 107 to send the second overspeed data including the value of the simulated speed determined to be equal to or higher than the second overspeed to the maintenance terminal device 200.
  • the maintenance terminal device 200 uses the speed display section 202 to display the second overspeed data on a display device included in the maintenance terminal device 200. Thereby, the maintenance engineer confirms that the ropeless governor system performs a predetermined operation when the speed of the car 1 reaches the second overspeed.
  • step S7 the safety control device 100 ends the series of processing.
  • the operation of the ropeless governor system can be inspected by stopping the car 1 without causing the car 1 to overspeed. Therefore, the operation of a ropeless governor system that detects the speed of a car using a non-contact sensor can be easily inspected.
  • the non-contact sensor 2 may detect a barcode or a predetermined pattern that includes positional information in the height direction within the hoistway.
  • the barcode or predetermined pattern is set on the surface of a long object to be detected, such as a tape.
  • a magnetic sensor may be used as the non-contact sensor.
  • a tape-like elongated member magnetized with a pattern including positional information is used as the object to be detected.
  • the speed detection unit 101 detects the position of the car 1 by comparing image information of the surface state of the guide rail 7 stored in advance in the storage device with image information obtained from the sensor signal, and further, The speed of the car 1 may be measured by calculating the change in the detected position over time.
  • the present invention is not limited to the embodiments described above, and includes various modifications.
  • the embodiments described above are described in detail to explain the present invention in an easy-to-understand manner, and the present invention is not necessarily limited to having all the configurations described.
  • the electric operating device 3 may be provided not only in the upper part of the car 1 but also in the lower part or the side part.
  • the elevator device may have a machine room or may be a so-called machine room-less elevator.

Landscapes

  • Maintenance And Inspection Apparatuses For Elevators (AREA)

Abstract

非接触センサを用いて乗りかごの速度を検出するガバナシステムの動作を容易に検査することができるエレベータ用ガバナシステムの検査装置が開示される。このエレベータ用ガバナシステムの検査装置は、乗りかごに設けられる非接触センサ(2)と、非接触センサのセンサ信号に基づいて乗りかごの速度を検出し、検出速度信号を出力する速度検出部(101)を有し、検出速度信号に基づいて乗りかごの過速状態を判定すると、非常止め装置を動作させる安全制御装置(100)と、を備えるガバナシステムの動作を検査するものであって、検出速度信号を模擬する模擬速度信号を生成する模擬速度生成部(102)を備え、検査時に、安全制御装置は、模擬速度信号に基づいて乗りかごの過速状態を判定する。

Description

エレベータ用ガバナシステムの検査装置および検査方法
 本発明は、エレベータ用非常止め装置を作動させるエレベータ用ガバナシステムの動作を検査する検査装置および検査方法に関する。
 エレベータ装置には、乗りかごの昇降速度を常時監視して、所定の過速状態に陥った乗りかごを非常停止させるために、ガバナおよび非常止め装置が備えられている。ガバナのプーリには、乗りかごに結合されたガバナロープが巻き掛けられている。乗りかごが昇降すると、乗りかごとともにガバナロープが動くため、プーリが回転する。プーリが回転すると、プーリに設けられている振子が、遠心力によって振れる。乗りかごが過速状態となり振子の振れが大きくなると、振子によってガバナロープの把持機構が作動し、ガバナロープの動きが拘束される。これにより、乗りかご側の非常止め装置が作動し、乗りかごが非常停止する。
 このようなエレベータ装置では、昇降路内に長尺物であるガバナロープを敷設するため、省スペース化および低コスト化が難しい。また、ガバナロープが振れる場合、昇降路内における構造物とガバナロープとが干渉しやすくなる。
 これに対し、上述のような機械的なガバナを用いず、非接触センサを用いて検出される乗りかごの速度に基づいて非常止め装置を作動させる従来技術として、特許文献1に記載された技術が知られている。
 本従来技術では、監視装置が、乗りかごの位置と速度を検出する検出手段におけるかご速度検出部からの速度情報に基づいて運転状況に異常があると判断すると、非常止め装置に作動信号を出力する。また、特許文献1(図15)に記載される移動体の位置・速度検出装置は、移動体が備えるカメラによって撮影される画像に基づいて、移動体の速度を検出する。移動体がエレベータである場合、昇降路の壁や柱が撮影される。
国際公開第2006/073015号
 機械式ガバナの動作の検査では、プーリからガバナロープを外して、駆動装置によりプーリを回転させることにより、乗りかごを走行させずに、検査を行うことができる。しかし、非接触センサを用いて乗りかごの速度を検出するガバナシステムでは、乗りかごを加速走行させて過速状態にする必要があり、検査が煩雑になったり、検査時間が長くなったりする。
 そこで、本発明は、非接触センサを用いて乗りかごの速度を検出するガバナシステムの動作を容易に検査することができる、エレベータ用ガバナシステムの検査装置および検査方法を提供する。
 上記課題を解決するために、本発明によるエレベータ用ガバナシステムの検査装置は、乗りかごに設けられる非接触センサと、非接触センサのセンサ信号に基づいて乗りかごの速度を検出し、検出速度信号を出力する速度検出部を有し、検出速度信号に基づいて乗りかごの過速状態を判定すると、非常止め装置を動作させる安全制御装置と、を備えるガバナシステムの動作を検査するものであって、検出速度信号を模擬する模擬速度信号を生成する模擬速度生成部を備え、検査時に、安全制御装置は、模擬速度信号に基づいて乗りかごの過速状態を判定する。
 上記課題を解決するために、本発明によるエレベータ用ガバナシステムの検査方法は、乗りかごに設けられる非接触センサと、非接触センサのセンサ信号に基づいて乗りかごの速度を検出し、検出速度信号を出力する速度検出部を有し、検出速度信号に基づいて乗りかごの過速状態を判定すると、非常止め装置を動作させる安全制御装置と、を備えるガバナシステムの動作を検査する方法であって、乗りかごを、停止状態に保持しながら、検出速度信号を模擬する模擬速度信号を生成し、安全制御装置は、模擬速度信号に基づいて乗りかごの過速状態を判定する。
 本発明によれば、乗りかごを過速状態にすることなく、ガバナシステムの動作を容易に検査することができる。
 上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。
実施例であるエレベータ装置の概略構成図である。 実施例におけるロープレスガバナシステムの構成を示す機能ブロック図である。 ガイドレール7(図1)の露出表面の画像の一例を示す模式図である。 実施例の安全制御装置の検査動作モードにおける処理動作を示すフローチャートである。
 以下、本発明の実施形態について、実施例により、図面を用いながら説明する。なお、各図において、参照番号が同一のものは同一の構成要件あるいは類似の機能を備えた構成要件を示している。
 図1は、本発明の一実施例であるエレベータ装置の概略構成図である。
 図1に示すように、エレベータ装置は、乗りかご1と、非接触センサ2と、電動操作器3と、リンク機構4と、非常止め装置5とを備えている。図1では、非常止め装置5は簡略に図示し、非常止め装置5の詳細な構成については省略している。なお、本実施例における非常止め装置5は、公知技術によるものである。
 乗りかご1は、建築物に設けられる昇降路内に主ロープ(図示せず)により吊られており、ガイド装置を介してガイドレール7に摺動可能に係合している。駆動装置(巻上機:図示せず)により主ロープが摩擦駆動されると、乗りかご1は昇降路内を昇降する。
 非接触センサ2は、乗りかご1に設けられている。非接触センサ2を用いて、昇降路内における乗りかご1の位置が検出されるとともに、検出された乗りかご1の位置から乗りかご1の昇降速度が常時検出される。したがって、非接触センサ2を用いて、乗りかごの昇降速度が所定の過速度を超えたことを検出することができる。
 本実施例では、非接触センサ2は、画像センサを備え、画像センサによって取得されるガイドレール7の表面状態の画像情報に基づいて、乗りかご1の位置および速度を検出する。
 電動操作器3は、本実施例1では電磁操作器であり、乗りかご1の上部に配置される。電磁操作器は、例えば、ソレノイドもしくは電磁石によって駆動される、可動片もしくは可動杆を備えるものである。電動操作器3は、電磁石を備え、電磁石が通電中は、非作動状態である。非接触センサ2によって乗りかご1の所定の過速状態が検出されると、電磁石の電源が遮断される。これにより、電動操作器3は、作動して、リンク機構4を変位させて非常止め装置5を制動状態にする。
 リンク機構4は、電動操作器3によって駆動されるリンクシャフト40、リンクシャフト40に連動可能にリンクする引き上げリンク41、および引き上げリンク41に連結される引き上げロッド42を有しており、電動操作器3の作動に応じて引き上げリンク41を介して乗りかご1の左右に配置された引き上げロッド42を略同時に引き上げる。これにより、引き上げロッド42に取り付けられる、非常止め装置5の制動子51が、制動位置まで引き上げられると、制動子51はガイドレール7を挟持する。
 非常止め装置5は、乗りかご1の左右に一台ずつ配置される。非常止め装置5が備える制動子51は、制動位置および非制動位置の間で可動であり、制動位置においてガイドレール7を挟持する。ガイドレール7を挟持した制動子51が、乗りかご1の下降により乗りかご1に対して相対的に上昇すると、制動子51とガイドレール7との間に作用する摩擦力により制動力を生じる。これにより、非常止め装置5は、乗りかご1が過速状態に陥ったときに作動し、乗りかご1を非常停止する。
 本実施例のエレベータ装置は、ガバナロープを用いない、いわゆるロープレスガバナシステムを備える。ロープレスガバナシステムは、乗りかご1の昇降速度が定格速度を超えて第1過速度(例えば、定格速度の1.3倍を超えない速度)に達すると、主ロープが巻き掛けられるトラクションシーブを駆動する駆動装置(巻上機)の電源およびこの駆動装置を制御する制御装置の電源を遮断する。また、ロープレスガバナシステムは、乗りかご1の下降速度が第2過速度(例えば、定格速度の1.4倍を超えない速度)に達すると、乗りかご1に設けられる電動操作器3を電気的に駆動して、非常止め装置5を作動させて、乗りかご1を非常停止する。
 本実施例において、ロープレスガバナシステムは、非接触センサ2と、非接触センサ2の出力信号に基づいて、乗りかご1の過速状態を判定する安全制御装置100(図1)とから構成される。本実施例において、図1に示すように、安全制御装置100は乗りかご1上に設けられる。
 安全制御装置100は、非接触センサ2のセンサ信号に基づいて乗りかご1の速度を計測し、計測された速度が第1過速度に達したと判定すると、駆動装置(巻上機)の電源およびこの駆動装置を制御する制御装置の電源を遮断するための指令信号を出力する。また、安全制御装置100は、計測された速度が第2過速度に達したと判定すると、電動操作器3を駆動するための指令信号を出力する。
 後述するように、安全制御装置100は、非接触センサ2を用いて乗りかご1の速度を検出するロープレスガバナシステムの動作を検査する機能を備えている。
 図2は、本実施例におけるロープレスガバナシステムの構成を示す機能ブロック図である。
 安全制御装置100は、速度検出部101と、模擬速度生成部102と、検査モード検出部105と、検査モード切替部106と、過速度判定部107と、駆動電源遮断指令部108と、電磁石電源遮断指令部109とを備えている。
 本実施例において、安全制御装置100はマイクロコンピュータなどのコンピュータシステムを備え、コンピュータシステムが、所定のプログラムを実行することにより、各部として動作する。
 まず、ロープレスガバナシステムの通常動作であるガバナとしての動作について説明する。
 速度検出部101は、非接触センサ2からのセンサ信号を取得し、取得したセンサ信号に基づいて、画像信号処理により、乗りかご1の速度を検出する。
 本実施例において、後述するように、速度検出部101は、ガイドレール7の表面状態の画像特徴量の所定時間における移動距離から速度を算出する。
 速度検出部101は、乗りかご1の検出速度を示す検出速度信号を、検査モード検出部105を介して過速度判定部107へ出力する。
 なお、検査モード検出部105は、速度検出部101および後述する模擬速度生成部102の各出力のいずれかを、過速度判定部107の入力に接続する。ロープレスガバナシステムの通常動作中、検査モード検出部105は、速度検出部101の出力を、過速度判定部107の入力に接続する。
 過速度判定部107は、速度検出部101から入力する検出速度信号が示す乗りかご1の検出速度が、第1過速度以上であるかを判定する。過速度判定部107は、検出速度が第1過速度以上であると判定すると、判定結果を駆動電源遮断指令部108へ送る。
 駆動電源遮断指令部108は、過速度判定部107から判定結果を受けると、巻上機および制御装置60の電源を遮断するための指令信号を出力する。
 また、過速度判定部107は、検出速度が、第2過速度以上であるかを判定する。過速度判定部107は、検出速度が第2過速度以上であると判定すると、判定結果を電磁石電源遮断指令部109へ送る。
 電磁石電源遮断指令部109は、過速度判定部107から判定結果を受けると、電動非常止め装置における電動操作器3(図1)の電磁石の電源を遮断するための指令信号を出力する。
 次に、ロープレスガバナシステムの検査時における動作について説明する。
 保守用端末装置200が、安全制御装置100に、通信可能に接続される。なお、保守用端末装置200は、パーソナルコンピュータなどによって構成される。
 保守用端末装置200は、検査モード指令部201によって、安全制御装置100に対して、通常動作モードから検査動作モードへの切り替えを指令する指令信号を送る。また、保守用端末装置200は、後述する模擬速度生成部102に、動作開始を指令する指令信号を送る。
 安全制御装置100における検査モード切替部106は、保守用端末装置200から指令信号を受けると、検査モード検出部105に対して、模擬速度生成部102の出力と過速度判定部107の入力との接続を指令する。検査モード検出部105は、検査モード切替部106の指令に応じて、速度検出部101の出力と過速度判定部107の入力との接続を解除し、模擬速度生成部102の出力と過速度判定部107の入力とを接続する。
 模擬速度生成部102は、速度検出部101が出力する検出速度信号Sとは独立に、検出速度Sを模擬した検査用の模擬速度信号Sを生成する。
 模擬速度生成部102は、乗りかご1が、零速度から加速走行を開始して、非常止め装置を動作させる第2過速度以上の過速状態になるまでの速度パターンが予め設定される速度パターン設定部104を有する。模擬速度生成部102における速度信号生成部103は、この速度パターンに従って乗りかご1が走行する場合に得られる検出速度信号Sを模擬する模擬速度信号Sを生成する。
 なお、本実施例において、ロープレスガバナシステムの動作検査時には、乗りかご1は、停止状態が保持される。
 模擬速度生成部102は、乗りかご1の模擬速度信号Sを、検査モード検出部105を介して過速度判定部107へ出力する。
 過速度判定部107は、模擬速度生成部102から入力する模擬速度が、第1過速度以上であるかを判定する。過速度判定部107は、模擬速度が第1過速度以上であると判定すると、判定結果および模擬速度の値を保守用端末装置200へ送る。これにより、保守用端末装置200は、乗りかご1の速度が第1過速度に達するとロープレスガバナシステムが所定の動作を行うこと、並びにその際の乗りかご1の速度を検出する。
 保守用端末装置200は、液晶ディスプレイなどの表示装置を備える速度表示部202によって、過速度判定部107から受けた判定結果および模擬速度の値を表示する。
 さらに、過速度判定部107は、模擬速度生成部102から入力する模擬速度が、第2過速度以上であるかを判定する。過速度判定部107は、模擬速度が第2過速度以上であると判定すると、判定結果および模擬速度の値を保守用端末装置200へ送る。これにより、保守用端末装置200は、乗りかご1の速度が第2過速度に達するとロープレスガバナシステムが所定の動作を行うこと、並びにその際の乗りかご1の速度を検出する。この場合においても、保守用端末装置200は、速度表示部202によって、過速度判定部107から受けた判定結果および模擬速度の値を表示する。
 検査動作モードにおいて、過速度判定部107は、駆動電源遮断指令部108および電磁石電源遮断指令部109には判定結果を送らない。したがって、乗りかご1が非常停止されることはない。なお、駆動電源遮断指令部108および電磁石電源遮断指令部109において、判定結果が無効化されるようにしてもよい。
 図3は、ガイドレール7(図1)の露出表面の画像の一例を示す模式図である。
 以下、図3を用いて、速度検出部101(図2)における速度検出手段について説明する。
 図3では、非接触センサ2(図1,2)によって取得される、時刻tにおける画像I(t)と時刻t+Δt(Δt:フレーム周期)における画像I(t+Δt)を示す。いずれも、ガイドレール7を構成する鋼材の露出表面の画像であり、鋼材の露出表面における凹凸分布を示す輝度分布のパターンを示す。なお、時刻tから時刻t+Δtまでの間、乗りかご1(図1)は下降している。
 乗りかご1が移動しているため、図3に示すように、画像I(t)と画像I(t+Δt)との間では、画像のずれdが生じる。なお、図3では、乗りかご1が下降しているため、画像フレーム中で、上方向に画像のずれdが生じる。この画像のずれdは、実施例1では、画像相関法を用いて、画像I(t)と画像I(t+Δt)を比較することにより算出される。この場合、画像I(t)もしくはその一部(例えば、図3中の位置Pにおける部分)を、画像フレーム中で、ガイドレール7の長手方向に沿って所定量ずつ移動しながら、移動した画像I(t)と画像I(t+Δt)との相関関数値が算出される。相関関数値が最大値となる場合の画像I(t)の総移動量が画像のずれdとされる。
 画像のずれdは、時間Δtにおける乗りかご1の移動量(図3では下降量)に相当する。また、画像フレーム中で画像がずれる方向は、乗りかご1の移動方向(上昇、下降)を示す。したがって、画像のずれる方向に応じて画像のずれ正負を設定すれば、例えば、下方向(上昇方向)を正、上方向(下降方向)を負とすれば、Δtごとに画像のずれdを算出し、起動時のかご位置に積算すれば、現時点におけるかご位置を計測することができる。さらに、dおよびΔtにより、乗りかご1の速度vが演算される(v=(d/Δt))。
 速度検出部101は、演算された乗りかご1の速度vを示す検出速度信号Sを出力する。模擬速度生成部102は、このような検出速度Sを模擬した模擬速度信号Sを出力する。
 なお、ガイドレール7には、表面に凹凸をつけるために、研磨などにより表面仕上げが施されていることが好ましい。また、非接触センサ2は、ガイドレール7の表面を照らす光源を備えていることが好ましい。これらにより、かご位置の計測精度が向上する。
 図4は、本実施例の安全制御装置100の検査動作モードにおける処理動作を示すフローチャートである。
 本実施例では、安全制御装置100が設けられている乗りかご1上において、保守技術者が、保守用端末装置200を用いて、ロープレスガバナシステムの動作の検査を実行する。このとき、エレベータ装置の運転モードは、保守運転モードに設定されている。保守運転モードおいて、保守技術者は、乗りかご1上に設けられる保守用操作盤を手動操作するが、本実施例では、乗りかご1は停止状態に保持される。
 保守技術者は、保守用端末装置200を、通信線を介して、安全制御装置100に通信可能に接続する。次に、保守技術者は、保守用端末装置200を操作して、安全制御装置100の動作モードを、通常動作モードから検査動作モードへ切り替える。
 安全制御装置100が処理動作を開始すると、まず、ステップS1において、保守技術者は、乗りかご1の停止状態を保持しながら、保守用端末装置200を操作して、安全制御装置100に対して、模擬速度信号の生成を指令する。
 ステップS2において、安全制御装置100は、模擬速度生成部102を用いて、模擬速度信号Sを生成する。
 次に、ステップS3において、安全制御装置100は、過速度判定部107を用いて、模擬速度信号Sが示す乗りかご1の模擬速度が、第1過速度以上であるかを判定する。安全制御装置100は、模擬速度が第1過速度以上ではないと判定すると(ステップS3のNO)、ステップS2以降の処理を再度実行する。また、安全制御装置100は、模擬速度が第1過速度以上であると判定すると(ステップS3のYES)、次に、ステップS4を実行する。
 ステップS4において、安全制御装置100は、過速度判定部107を用いて、ステップS3で第1過速度以上であると判定した模擬速度の値を含む第1過速度データを、保守用端末装置200へ出力する。保守用端末装置200は、速度表示部202を用いて、保守用端末装置200が備える表示装置に第1過速度データを表示する。これにより、保守技術者は、乗りかご1の速度が第1過速度に達するとロープレスガバナシステムが所定の動作を行うことを確認する。安全制御装置100は、ステップS4を実行後、次に、ステップS5を実行する。
 ステップS5において、安全制御装置100は、模擬速度生成部102を用いて、模擬速度信号Sを生成する。
 次に、ステップS6において、安全制御装置100は、過速度判定部107を用いて、模擬速度信号Sが示す乗りかご1の模擬速度が、第2過速度以上であるかを判定する。安全制御装置100は、模擬速度が第2過速度以上ではないと判定すると(ステップS6のNO)、ステップS5以降の処理を再度実行する。また、安全制御装置100は、模擬速度が第2過速度以上であると判定すると(ステップS6のYES)、次に、ステップS7を実行する。
 ステップS7において、安全制御装置100は、過速度判定部107を用いて、ステップS6で第2過速度以上であると判定した模擬速度の値を含む第2過速度データを、保守用端末装置200へ出力する。保守用端末装置200は、速度表示部202を用いて、保守用端末装置200が備える表示装置に第2過速度データを表示する。これにより、保守技術者は、乗りかご1の速度が第2過速度に達するとロープレスガバナシステムが所定の動作を行うことを確認する。
 安全制御装置100は、ステップS7を実行すると、安全制御装置100は、一連の処理を終了する。
 上述のように、本実施例によれば、乗りかご1を過速状態することなく、乗りかご1を停止させて、ロープレスガバナシステムの動作を検査することができる。したがって、非接触センサを用いて乗りかごの速度を検出するロープレスガバナシステムの動作を容易に検査することができる。
 なお、非接触センサ2は、昇降路内の高さ方向における位置情報を含むバーコードや所定のパターンを検出してもよい。この場合、バーコードや所定のパターンは、テープ状のような長尺状の被検出体の表面に設定される。
 また、非接触センサとして、磁気センサを用いてもよい。この場合、被検出体として、位置情報を含むパターンで磁化された、テープ状のような長尺状の部材が用いられる。
また、速度検出部101は、予め記憶装置に記憶されるガイドレール7の表面状態の画像情報と、センサ信号から得られる画像情報を照合することにより、乗りかご1の位置を検出し、さらに、検出位置の時間変化を算出することにより乗りかご1の速度を計測してもよい。
 なお、本発明は前述した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、前述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、実施例の構成の一部について、他の構成の追加・削除・置き換えをすることが可能である。
 例えば、電動操作器3は、乗りかご1の上方部のほか、下方部や側方部に設けられてもよい。また、エレベータ装置は、機械室を有してもよいし、いわゆる機械室レスエレベータでもよい。
1…乗りかご、2…非接触センサ、3…電動操作器、4…リンク機構、5…非常止め装置、7…ガイドレール、40…リンクシャフト、41…引き上げリンク、42…引き上げロッド、51…制動子、60…巻上機および制御装置、100…安全制御装置、101…速度検出部、102…模擬速度生成部、103…速度信号生成部、104…速度パターン設定部、105…検査モード検出部、106…検査モード切替部、107…過速度判定部、108…駆動電源遮断指令部、109…電磁石電源遮断指令部、200…保守用端末装置、201…検査モード指令部、202…速度表示部

Claims (7)

  1.  乗りかごに設けられる非接触センサと、非接触センサのセンサ信号に基づいて前記乗りかごの速度を検出し、検出速度信号を出力する速度検出部を有し、前記検出速度信号に基づいて前記乗りかごの過速状態を判定すると、非常止め装置を動作させる安全制御装置と、を備えるガバナシステムの動作を検査するエレベータ用ガバナシステムの検査装置において、
     前記検出速度信号を模擬する模擬速度信号を生成する模擬速度生成部を備え、
     検査時に、前記安全制御装置は、前記模擬速度信号に基づいて前記乗りかごの前記過速状態を判定することを特徴とするエレベータ用ガバナシステムの検査装置。
  2.  請求項1に記載のエレベータ用ガバナシステムの検査装置において、
     前記検査時には、前記乗りかごは、停止状態が保持されることを特徴とするエレベータ用ガバナシステムの検査装置。
  3.  請求項1に記載のエレベータ用ガバナシステムの検査装置において、
     前記模擬速度信号は、前記乗りかごが、零速度から前記非常止め装置が動作する前記過速状態になるまで走行する場合に得られる前記検出速度信号を模擬することを特徴とするエレベータ用ガバナシステムの検査装置。
  4.  請求項1に記載のエレベータ用ガバナシステムの検査装置において、
     前記安全制御装置は、前記模擬速度生成部を備えることを特徴とするエレベータ用ガバナシステムの検査装置。
  5.  請求項1に記載のエレベータ用ガバナシステムの検査装置において、
     前記安全制御装置は、前記検出速度信号を入力として、前記乗りかごの前記過速状態を判定する過速度判定部を有し、
     前記検査時には、前記過速度判定部の前記入力を、前記検出速度信号から前記模擬速度信号に切り替えることを特徴とするエレベータ用ガバナシステムの検査装置。
  6.  請求項1に記載のエレベータ用ガバナシステムの検査装置において、
     前記速度検出部は、前記非接触センサによって取得されるガイドレールの表面状態の画像情報に基づいて、前記乗りかご速度を検出することを特徴とするエレベータ用ガバナシステムの検査装置。
  7.  乗りかごに設けられる非接触センサと、前記非接触センサのセンサ信号に基づいて前記乗りかごの速度を検出し、検出速度信号を出力する速度検出部を有し、前記検出速度信号に基づいて前記乗りかごの過速状態を判定すると、非常止め装置を動作させる安全制御装置と、を備えるガバナシステムの動作を検査するエレベータ用ガバナシステムの検査方法において、
     前記乗りかごを、停止状態に保持しながら、前記検出速度信号を模擬する模擬速度信号を生成し、
     前記安全制御装置は、前記模擬速度信号に基づいて前記乗りかごの前記過速状態を判定することを特徴とするエレベータ用ガバナシステムの検査方法。
PCT/JP2022/021583 2022-05-26 2022-05-26 エレベータ用ガバナシステムの検査装置および検査方法 WO2023228363A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/021583 WO2023228363A1 (ja) 2022-05-26 2022-05-26 エレベータ用ガバナシステムの検査装置および検査方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/021583 WO2023228363A1 (ja) 2022-05-26 2022-05-26 エレベータ用ガバナシステムの検査装置および検査方法

Publications (1)

Publication Number Publication Date
WO2023228363A1 true WO2023228363A1 (ja) 2023-11-30

Family

ID=88918726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021583 WO2023228363A1 (ja) 2022-05-26 2022-05-26 エレベータ用ガバナシステムの検査装置および検査方法

Country Status (1)

Country Link
WO (1) WO2023228363A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006073015A1 (ja) * 2005-01-04 2006-07-13 Mitsubishi Denki Kabushiki Kaisha エレベータのボルト検出装置及びエレベータ装置、並びに移動体の位置・速度検出装置
JP2009280337A (ja) * 2008-05-21 2009-12-03 Hitachi Ltd エレベーターかごの速度検出装置の検査方法。
JP2010001083A (ja) * 2008-06-18 2010-01-07 Hitachi Ltd エレベーター非常止め装置の検査システムおよび検査方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006073015A1 (ja) * 2005-01-04 2006-07-13 Mitsubishi Denki Kabushiki Kaisha エレベータのボルト検出装置及びエレベータ装置、並びに移動体の位置・速度検出装置
JP2009280337A (ja) * 2008-05-21 2009-12-03 Hitachi Ltd エレベーターかごの速度検出装置の検査方法。
JP2010001083A (ja) * 2008-06-18 2010-01-07 Hitachi Ltd エレベーター非常止め装置の検査システムおよび検査方法

Similar Documents

Publication Publication Date Title
US20100154527A1 (en) Elevator Brake Condition Testing
WO2005105650A1 (ja) エレベータ装置
EP2660181A1 (en) Elevator apparatus with overspeed detection device and car position detection.
CN106966251A (zh) 方法和电梯
JP7212201B2 (ja) エレベータ装置
JP5538751B2 (ja) エレベーターの制御装置
JP2005263371A (ja) エレベータの制御装置
WO2005115898A1 (ja) エレベータ制御装置
WO2023228363A1 (ja) エレベータ用ガバナシステムの検査装置および検査方法
WO2023228362A1 (ja) エレベータ用ガバナシステムの検査装置および検査方法
JP7185858B2 (ja) エレベータ用ロープテスタ装置及びエレベータシステム
JP5356458B2 (ja) エレベータ装置
CN113825716B (zh) 电梯的紧急停止装置、以及电梯的紧急停止装置的检修装置
WO2023079733A1 (ja) エレベータ用ガバナシステムの動作試験装置および動作試験方法
WO2005092766A1 (ja) エレベータ制御装置
WO2023079734A1 (ja) エレベータ用ガバナシステムの動作試験方法および動作試験装置
JP2012006759A (ja) エレベータの戸開走行防止装置の点検方法ならびにエレベータ監視装置
KR100898205B1 (ko) 엘리베이터 장치
JP2010052875A (ja) エレベーターのブレーキの制動力および保持力の点検方法
US20220380175A1 (en) Elevator systems
US20220063955A1 (en) Elevator systems
WO2022259417A1 (ja) かご位置検出装置、並びにそれを用いるエレベータの安全装置
KR100904800B1 (ko) 엘리베이터 장치
JP6578066B2 (ja) エレベータ制御装置
KR100742055B1 (ko) 엘리베이터 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22942958

Country of ref document: EP

Kind code of ref document: A1