WO2023225805A1 - 显示面板及显示装置 - Google Patents

显示面板及显示装置 Download PDF

Info

Publication number
WO2023225805A1
WO2023225805A1 PCT/CN2022/094512 CN2022094512W WO2023225805A1 WO 2023225805 A1 WO2023225805 A1 WO 2023225805A1 CN 2022094512 W CN2022094512 W CN 2022094512W WO 2023225805 A1 WO2023225805 A1 WO 2023225805A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
filter
refractive index
filter layer
Prior art date
Application number
PCT/CN2022/094512
Other languages
English (en)
French (fr)
Inventor
胡明
石博
谢涛峰
付健吉
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2022/094512 priority Critical patent/WO2023225805A1/zh
Priority to CN202280001366.3A priority patent/CN117461401A/zh
Publication of WO2023225805A1 publication Critical patent/WO2023225805A1/zh

Links

Images

Definitions

  • the present disclosure relates to the field of display technology, and specifically, to a display panel and a display device.
  • Display panels are an indispensable component of electronic devices such as mobile phones and computers, including liquid crystal display panels, organic electroluminescent display panels, etc. At present, people have higher and higher requirements for display effects, but the brightness of existing display panels still needs to be improved. To increase the brightness, power consumption needs to be increased.
  • the present disclosure provides a display panel and a display device.
  • a display panel including:
  • a plurality of light filter structures are provided on the light exit side of the display substrate, and one of the light-emitting devices corresponds to one of the light filter structures; at least a part of the light filter structure includes a filter layer, a lens layer and a filling layer, and the The lens layer is located on a side of the filter layer away from the display substrate, and is provided with a first light-transmitting hole that exposes at least part of the filter layer.
  • the direction of the display substrate expands; the filling layer is filled in the first light-transmitting hole, and is stacked on the surface of the filter layer away from the display substrate, and the refractive index of the filling layer is greater than the first filled hole.
  • a cover plate is provided on the side of the filter structure away from the display substrate.
  • the lens layer and the filter layer of the same filter structure are made of different materials.
  • each of the lens layers is connected to form an integrated structure.
  • the lens layer and the filter layer of the same filter structure are an integral structure.
  • the filter layer of each filter structure includes at least two filter layers of different colors; the filter layers of different colors have different refractive indexes;
  • the thickness of the lens layer of the filter structure to which the filter layer has a larger refractive index belongs is greater than that of the filter layer to which the filter layer with a smaller refractive index belongs. The thickness of the lens layer of the filter structure.
  • the filter layer includes a first filter layer, a second filter layer and a third filter layer with different colors, and the refraction of the first filter layer
  • the refractive index is greater than the refractive index of the second filter layer, and the refractive index of the second filter layer is greater than the refractive index of the third filter layer;
  • the thickness of the lens layer of the filter structure to which the first filter layer belongs is 2.5 ⁇ m-3 ⁇ m;
  • the thickness of the lens layer of the filter structure to which the second filter layer belongs is 2 ⁇ m-2.5 ⁇ m;
  • the thickness of the lens layer of the filter structure to which the third filter layer belongs is 1.5 ⁇ m-2um.
  • the filter layer of each filter structure includes at least two filter layers of different colors; the filter layers of different colors have different refractive indexes;
  • the slope angle of the side wall of the first light-transmitting hole of the filter structure to which the filter layer with a larger refractive index belongs is less than the refractive index.
  • the filter layer includes a first filter layer, a second filter layer and a third filter layer with different colors, and the refraction of the first filter layer
  • the refractive index is greater than the refractive index of the second filter layer, and the refractive index of the second filter layer is greater than the refractive index of the third filter layer;
  • the slope angle of the side wall of the first light-transmitting hole of the filter structure to which the first filter layer belongs is 45°-50°;
  • the slope angle of the side wall of the first light-transmitting hole of the filter structure to which the second filter layer belongs is 50°-55°;
  • the slope angle of the side wall of the first light-transmitting hole of the filter structure to which the third filter layer belongs is 55°-60°.
  • the filter layer of each filter structure includes at least two filter layers of different colors; the filter layers of different colors have different refractive indexes;
  • the refractive index of the filling layer of the filter structure to which the filter layer has a larger refractive index is greater than that of the filter layer with a smaller refractive index.
  • the refractive index of the filling layer of the filter structure is greater than that of the filter layer with a smaller refractive index.
  • the filter layer includes a first filter layer, a second filter layer and a third filter layer with different colors, and the refraction of the first filter layer
  • the refractive index is greater than the refractive index of the second filter layer, and the refractive index of the second filter layer is greater than the refractive index of the third filter layer;
  • the refractive index of the filling layer of the filter structure to which the first filter layer belongs is 1.83-1.87;
  • the refractive index of the filling layer of the filter structure to which the second filter layer belongs is 1.73-1.77;
  • the refractive index of the filling layer of the filter structure to which the third filter layer belongs is 1.68-1.72.
  • the display panel further includes:
  • a flat covering layer covers each of the filter structures, and the refractive index of the flat covering layer is not less than the refractive index of the filling layer.
  • the flat covering layer and at least one filling layer are an integral structure.
  • the display panel further includes:
  • the light-absorbing layer is disposed on the same surface as the filter layer and has a plurality of through holes, one of the through holes corresponds to one of the light-emitting devices; at least part of the filter layer is located on one of the through holes.
  • the display panel further includes:
  • a light-gathering layer is provided between the display substrate and the filter structure, and is used to collect at least part of the light emitted by the light-emitting device and direct it toward the first light-transmitting hole of the corresponding filter structure.
  • the light-gathering layer includes:
  • a first refractive layer is provided on the light exit side of the display substrate and has a plurality of second light-transmitting holes, one second light-transmitting hole corresponding to one of the light-emitting devices and one of the first light-transmitting holes, The side walls of the second light-transmitting hole expand in a direction away from the display substrate;
  • a second refractive layer covers the first refractive layer and fills the second light-transmitting hole; the refractive index of the second refractive layer is greater than the refractive index of the first refractive layer.
  • the display panel further includes a driving backplane and a pixel definition layer, the pixel definition layer and the light-emitting device are disposed on the same side of the driving backplane, and the The pixel definition layer is provided with range openings that define each of the light-emitting devices;
  • the orthographic projection of the opening on the driving backplane is located on the second light-transmitting hole on the driving backplane.
  • the orthographic projection of the first light-transmitting hole on the driving backplane is located within the orthographic projection of the first light-transmitting hole on the driving backplane.
  • the display panel further includes:
  • a touch electrode layer is provided on the light exit side of the display substrate, and the first refractive layer covers the touch electrode layer; the touch electrode layer is connected by a plurality of channel lines and has a plurality of meshes.
  • a mesh structure at least one of the light-emitting devices corresponds to one of the mesh holes; the width of the channel line is smaller than the distance between two adjacent second light-transmitting holes.
  • a display device including the display panel according to any one of the above.
  • FIG. 1 is a schematic cross-sectional view of one of the first types of embodiments of the display panel of the present disclosure.
  • FIG. 2 is a schematic cross-sectional view of another embodiment of the first type of embodiment of the display panel of the present disclosure.
  • FIG. 3 is a schematic cross-sectional view of yet another embodiment of the first type of embodiment of the display panel of the present disclosure.
  • FIG. 4 is a schematic cross-sectional view of the first embodiment of the second type of embodiment of the display panel of the present disclosure.
  • FIG. 5 is a schematic cross-sectional view of a second embodiment of a display panel of the present disclosure.
  • FIG. 6 is a schematic cross-sectional view of a third embodiment of the second type of embodiment of the display panel of the present disclosure.
  • FIG. 7 is a schematic cross-sectional view of a fourth embodiment of the second type of embodiment of the display panel of the present disclosure.
  • FIG. 8 is a schematic cross-sectional view of a fifth embodiment of the second type of embodiment of the display panel of the present disclosure.
  • FIG. 9 is a schematic cross-sectional view of a sixth embodiment of the second type of embodiment of the display panel of the present disclosure.
  • FIG. 10 is a schematic top view of the touch layer in an embodiment of the display panel of the present disclosure.
  • FIG. 11 is a partial cross-sectional view of a display panel according to an embodiment of the present disclosure.
  • FIG. 12 is a partial top view of a display panel according to an embodiment of the present disclosure.
  • Example embodiments will now be described more fully with reference to the accompanying drawings.
  • Example embodiments may, however, be embodied in various forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete and will fully convey the concepts of the example embodiments.
  • the same reference numerals in the drawings indicate the same or similar structures, and thus their detailed descriptions will be omitted.
  • the drawings are merely schematic illustrations of the present disclosure and are not necessarily drawn to scale.
  • row direction X and the column direction Y in this article are only two mutually perpendicular directions.
  • an organic electroluminescent display panel may include a driving backplane and multiple light-emitting devices located on one side of the driving backplane.
  • Each light-emitting device may be an organic light-emitting diode (OLED).
  • OLED organic light-emitting diode
  • the light-emitting devices can be controlled to emit light independently through the driving backplane.
  • the display panel also includes a cover made of transparent material such as glass, which can cover the side of the light-emitting device away from the driving backplane for protection. The light emitted by the light-emitting device is emitted from the cover to the air outside the display panel. middle.
  • the refractive index of the cover is greater than that of air, when light enters the air from the cover, the light whose incident angle reaches the critical angle of total reflection will be totally reflected at the interface between the cover and the air, causing part of the light to be unable to emit from the cover, causing the display
  • the light extraction efficiency of the panel is low, which affects the brightness; in this process, the greater the incident angle of the light hitting the cover, the easier it is for total reflection to occur. If you want to increase the brightness of the display panel, you need to increase the power consumption of the light-emitting device, which increases the energy consumption.
  • the embodiment of the present disclosure provides a display panel, as shown in Figures 1-3.
  • the display panel includes a display substrate PNL, a filter structure CL and a cover plate CG, wherein:
  • the display substrate PNL has a plurality of light emitting devices LD distributed in an array
  • filter structures CL There are multiple filter structures CL, and they are arranged on the light exit side of the display substrate PNL.
  • One light-emitting device LD corresponds to one filter structure CL.
  • At least part of the filter structure CL includes a filter layer CF, a lens layer Lens and a filling layer FL.
  • the lens layer Lens is located on the side of the filter layer CF away from the display substrate PNL, and is provided with a third layer exposing at least part of the filter layer CF.
  • the filter layer CF of each filter structure CL includes at least two filter layers CF of different colors.
  • the cover CG can be disposed on the side of each filter structure CL away from the display substrate PNL.
  • the display panel of the embodiment of the present disclosure if different light-emitting devices LD can emit different monochromatic lights, color display can be directly realized.
  • the color of the filter layer CF of the filter structure CL can be changed to that of the corresponding light-emitting device LD.
  • the luminescent color is the same, so that part of the ambient light can be filtered through the filter layer CF, and the reflection of ambient light inside the display substrate PNL can be reduced.
  • Thick anti-reflective coatings such as circular polarizers can be omitted, which is beneficial to reducing the display The thickness of the panel.
  • the filter layer CF can still play a role in reducing reflection of ambient light.
  • the light-emitting device LD At least part of the emitted light is totally reflected at the side wall of the first light-transmitting hole HCL, so that the filter structure CL can be used to converge the light emitted by the corresponding light-emitting device LD, so that the light emitted from the cover plate CG can be incident
  • the angle is smaller, which reduces the total reflection of light at the interface between the cover plate CG and the air, improves the light extraction efficiency, and increases the brightness without increasing power consumption.
  • the display substrate PNL can be an organic electroluminescent display substrate, or it can be a liquid crystal display substrate or other display substrate that can emit light.
  • the display substrate PNL can include Driving backplane BP, light emitting device LD and packaging layer TFE, among which:
  • the driving backplane BP has a driving circuit through which the light-emitting device LD can be driven to emit light to display images, where:
  • the driving backplane BP may include a substrate and a circuit layer located on one side of the substrate.
  • the substrate may have a flat plate structure, and its material may be a hard material such as glass or a soft material such as polyimide. Meanwhile, the substrate can be a single-layer or multi-layer structure.
  • the circuit layer may include a driving circuit through which the light emitting device LD can be driven to emit light.
  • the display panel can be divided into at least a display area and a peripheral area located outside the display area.
  • the area where the circuit layer is located in the display area is the pixel area
  • the area located in the peripheral area is the edge area. That is to say, the edge area Located outside the pixel area.
  • the driving circuit can include a pixel circuit located in the pixel area and a peripheral circuit located in the edge area.
  • the pixel circuit can be a 7T1C, 6T1C and other pixel circuits, as long as it can drive the light-emitting device LD to emit light. No special structure is required here. limited.
  • the number of pixel circuits can be the same as the number of light-emitting devices LD, and they are connected to each light-emitting device LD in one-to-one correspondence, so as to control each light-emitting device LD to emit light respectively.
  • nTmC means that a pixel circuit includes n transistors (indicated by the letter "T") and m capacitors (indicated by the letter "C").
  • the same pixel circuit can also be connected to multiple light-emitting devices LD and drive multiple light-emitting devices LD to emit light at the same time, which is not particularly limited here.
  • the peripheral circuit is connected to the pixel circuit and is used to input driving signals to the pixel circuit to control the light emitting device LD to emit light.
  • the peripheral circuit may include a gate drive circuit and a light emitting control circuit, and of course may also include other circuits.
  • the specific structure of the peripheral circuit is not particularly limited here.
  • the above-mentioned circuit layer may include a plurality of thin film transistors and capacitors, wherein the thin film transistor may be a top gate or bottom gate thin film transistor.
  • Each thin film transistor may include an active layer and a gate electrode.
  • the active layer of each thin film transistor may be the same.
  • the layers are arranged on the same semiconductor layer, and the gate electrodes are arranged on the same gate electrode layer to simplify the process.
  • the circuit layer may include a semiconductor layer, a first gate insulating layer, a first gate electrode layer, a second gate insulating layer, a second gate electrode layer, and are stacked sequentially in a direction away from the substrate.
  • the specific patterns of each film layer depend on the specific structure of the drive circuit and will not be discussed here. Special restrictions.
  • one side of the driving backplane BP is provided with a plurality of light-emitting devices LD and a pixel definition layer PDL used to define the range of the light-emitting devices LD.
  • the pixel definition layer PDL and the light-emitting device LD can be disposed on the second flat surface. layer away from the surface of the substrate.
  • Each light-emitting device LD is located in the display area of the display panel.
  • Each light-emitting device LD may include a first electrode ANO, a second electrode CAT, and a light-emitting layer EL located between the first electrode ANO and the second electrode CAT.
  • the electrode ANO and the second electrode CAT apply an electrical signal to excite the luminescent layer EL to emit light.
  • the light emitting device LD may be an organic light emitting diode (OLED).
  • the first electrodes ANO of each light-emitting device LD are distributed at intervals.
  • the pixel definition layer PDL is provided with openings HP exposing each first electrode ANO, that is, one opening HP exposes one first electrode ANO, and one opening HP corresponds to
  • the range is the range of a light-emitting device LD
  • the boundary of the orthographic projection of the light-emitting device LD on the driving backplane BP is the boundary of the orthographic projection of the opening HP on the driving backplane BP.
  • the orthographic projection of the light emitting device LD on the driving back plate BP is the outer boundary of the orthographic projection of the opening HP on the driving back plate BP.
  • the shape of the opening HP that is, the shape of the boundary of its orthographic projection on the driving back plate BP, can be a polygon such as a rectangle, a pentagon, a hexagon, etc., or it can be an ellipse, a sector, or other shapes, which are not modified here. The shape is specially limited.
  • the light-emitting layer EL is at least partially located within the opening HP and is stacked with the first electrode ANO.
  • the light-emitting layer EL may include a hole injection layer, a hole transport layer, a light-emitting material layer, an electron transport layer and an electron injection layer sequentially stacked in a direction away from the driving backplane BP.
  • other structures can also be used, as long as they can emit light in conjunction with the first electrode ANO and the second electrode CAT.
  • the second electrode CAT can cover the light-emitting layer EL, and the second electrode CAT can be a continuous whole-layer structure, so that each light-emitting device LD can share the same second electrode CAT.
  • the second electrode CAT can be the cathode of the light-emitting device LD, which can adopt a light-transmitting structure so that the light-emitting device LD can emit light in a direction away from the driving backplane BP.
  • the material of the second electrode CAT can be metal magnesium or silver. Or its alloy, etc., under a certain thickness, it can conduct electricity and transmit light at the same time.
  • the first electrode ANO can have an opaque structure, so that the light-emitting device LD has a top-emission structure.
  • each light-emitting device LD can emit light independently, and the light-emitting colors of different light-emitting devices LD can be different.
  • the light-emitting layer EL can include a plurality of one-to-one corresponding There are light-emitting units distributed at intervals in each opening HP. Each light-emitting unit can emit light independently, and the light-emitting colors can be different, so that color display can be directly realized.
  • each light-emitting device LD may also share at least one of a hole injection layer, a hole transport layer, an electron transport layer and an electron injection layer, but not share a luminescent material layer, that is, the luminescent material layer includes a plurality of array-distributed materials. unit, it is also possible to achieve different light-emitting colors of different light-emitting devices LD.
  • the light-emitting layer EL can also cover the pixel definition layer PDL and each first electrode ANO at the same time, that is, each light-emitting device LD can share the same light-emitting layer EL. In this case, the light-emitting color of each light-emitting device LD is the same. .
  • the encapsulation layer TFE can cover each light-emitting device LD to block external water and oxygen and prevent them from corroding the light-emitting device LD.
  • the encapsulation layer TFE can adopt a thin film encapsulation method, which can include a first inorganic layer, an organic layer and a second inorganic layer, wherein:
  • the first inorganic layer can cover each light-emitting device LD, that is, the first inorganic layer can cover the surface of the second electrode CAT away from the driving backplane BP.
  • the material of the first inorganic layer may include inorganic insulating materials such as silicon nitride and silicon oxide.
  • the organic layer may be disposed on a surface of the first inorganic layer away from the driving backplane BP, and the boundary of the organic layer may be limited to the inside of the boundary of the first inorganic layer by a barrier dam located in the peripheral region.
  • the boundary of the orthographic projection of the organic layer on the driving backplane BP can be located in the peripheral area to ensure that the organic layer can cover each light-emitting device LD.
  • the second inorganic layer can cover the organic layer and the first inorganic layer that is not covered by the organic layer, can block the intrusion of water and oxygen through the second inorganic layer, and achieve planarization through the organic layer that has fluidity before curing.
  • the material of the second inorganic layer may include inorganic insulating materials such as silicon nitride and silicon oxide.
  • the filter structure CL can be disposed on the light exit side of the display substrate PNL, that is, the side of the encapsulation layer TFE away from the driving backplane BP.
  • a light-emitting device LD corresponds to a filter structure CL, that is, the orthographic projection of a filter structure CL on the driving backplane BP is the same as the orthographic projection of a light-emitting device LD on the driving backplane BP.
  • the orthographic projections at least partially overlap, so that at least part of the light emitted by the light-emitting device LD can pass through the corresponding filter structure CL.
  • the filter structure CL can transmit monochromatic light, and different filter structures CL can transmit different colors of light. If the light-emitting devices LD emit the same color, color display can be achieved through each filter structure CL, which can also reduce reflection of ambient light. If different light-emitting devices LD can emit different colors, the filter structure CL can be used to reduce the reflection of ambient light.
  • At least part of the filter structure CL can also converge at least part of the light emitted by its corresponding light emitting device LD. That is to say, there may be a part of the filter structure CL that can only play a role in filtering, and there may be at least a part of the filter structure CL that can play a role in filtering and condensing light at the same time. Of course, in order to improve the uniformity of the brightness of the display panel property, each filter structure CL can play the role of filtering and condensing light at the same time.
  • the filter structure CL may include a filter layer CF, a lens layer Lens and a filling layer FL, where:
  • the filter layer CF is provided on the light exit side of the display substrate PNL, that is, the side of the encapsulation layer TFE away from the driving backplane BP.
  • Each filter layer CF is distributed in an array, and two adjacent filter layers CF can be arranged at intervals or in contact with each other.
  • a filter layer CF has a unique color, so that it can only transmit blue light, red light, green light or other monochromatic light.
  • Each filter layer CF includes at least two filter layers CF of different colors.
  • the filter layer CF may include a red filter layer, a green filter layer and a blue filter layer, thereby achieving the above mentioned functions. It can realize color display and reduce the reflection of ambient light.
  • each light-emitting device LD includes three light-emitting devices LD with different light-emitting colors, namely a red light-emitting device that emits red light, a red light-emitting device that emits green light, and a red light-emitting device that emits blue light.
  • the corresponding red light-emitting device is a red filter layer, which can transmit red light;
  • the filter layer corresponding to the green light-emitting device is a green filter layer CF, which can transmit green light;
  • the filter layer CF corresponding to the blue light-emitting device is Blue filter layer can transmit blue light.
  • the materials of filter layers CF of different colors are different, so the refractive index is also different.
  • the refractive index of the red filter layer can be greater than the refractive index of the green filter layer, and the refractive index of the green filter layer can be greater than the blue filter layer. refractive index.
  • the lens layer Lens can be located on the side of the filter layer CF away from the display substrate PNL.
  • the lens layer Lens is made of transparent material and can transmit light of multiple colors.
  • the lens layer Lens is provided with a first lens.
  • the light hole HCL, the first light transmission hole HCL exposes at least part of the filter layer CF.
  • a first light-transmitting hole HCL corresponds to a light-emitting device LD, that is, the orthographic projection of a light-emitting device LD on the driving backplane BP at least partially coincides with the orthographic projection of a first light-transmitting hole HCL on the driving backplane BP, so that At least part of the light emitted by the light-emitting device LD can illuminate the corresponding first light-transmitting hole HCL.
  • the range of the first light-transmitting hole HCL can be made not smaller than the range of its corresponding light-emitting device LD, that is, the orthographic projection of an opening HP on the driving backplane BP is located at a first light-transmitting hole HCL on the driving backplane BP. Within the orthographic projection on.
  • the sidewalls of the first light-transmitting hole HCL can expand in a direction away from the display substrate PNL, and the sidewalls can be surrounded by multiple planes, a circular cone, or multiple curved surfaces, as long as the first light-transmitting hole HCL
  • the size of HCL only needs to increase in the direction away from the display substrate PNL, so that the cross-section shape of the first light-transmitting hole HCL in the direction perpendicular to the substrate is an inverted trapezoid.
  • the slope angle of the side wall of the first light-transmitting hole HCL is the angle between the side wall and the filter layer CF; if the slope angle of the first light-transmitting hole HCL is If the side wall is a curved surface, its slope angle is the angle between the profile of the side wall of the first light-transmitting hole HCL in a cross-section perpendicular to the direction of the display substrate and the filter layer CF.
  • the shape of the first light-transmitting hole HCL can be the same as the shape of the corresponding light-emitting device LD, that is, the shape of the first light-transmitting hole HCL (the shape of the orthographic projection outline on the driving backplane BP) can be the same as the corresponding shape of the light-emitting device LD.
  • the shape of the opening HP is the same. For example, if the shape of the opening HP is a polygon, then the shape of the first light-transmitting hole HCL is also a polygon, and the number of sides of the polygon is the same.
  • the orthogonal projection side of the first light-transmitting hole HCL is It coincides with or is parallel to the projected side of the opening HP in a one-to-one correspondence.
  • the filling layer FL can be a transparent material that can transmit light of multiple colors, is filled in the first light-transmitting hole HCL, and is directly stacked on the filter layer CF away from the display substrate PNL
  • the refractive index of the filling layer FL is greater than the refractive index of the lens layer Lens where the first light-transmitting hole HCL is filled.
  • Part of the light emitted by the light-emitting device LD can pass through the corresponding filling layer FL and the first light-transmitting hole HCL. Total reflection occurs at the interface of the side walls, thus achieving the effect of condensing light.
  • the thickness of the filling layer FL is no greater than the depth of the first light-transmitting hole HCL that it fills.
  • each filter structure CL can be covered by a flat covering layer PLN, and the refractive index of the flat covering layer PLN is not less than the refractive index of the filling layer FL, for example, the flat covering layer PLN
  • the material of at least one filling layer FL may be the same and be an integral structure so as to be formed at the same time.
  • the flat cover layer PLN can also be made of a material different from that of each filling layer FL and formed separately.
  • the flat cover layer PLN may not be provided, but the thickness of the filling layer FL may be equal to the depth of the first light-transmitting hole HCL to achieve flattening.
  • the display panel can also be provided with a light-absorbing layer BM, which can be made of black resin or other materials, as long as it can absorb light.
  • the light-absorbing layer BM can be disposed on the same surface as the filter layer CF, and is provided with a plurality of through holes HB for light transmission.
  • One through hole HB corresponds to a light-emitting device LD, that is, one through hole HB is located on the front side of the driving backplane BP.
  • the projection is at least partially coincident with the orthographic projection of an opening HP on the drive backplane BP.
  • the orthographic projection of an opening HP on the driving backplane BP can be located within the orthographic projection of the corresponding through hole HB on the driving backplane BP.
  • each filter layer CF is located in a through hole HB.
  • each filter layer CF is disposed in each through hole HB in one-to-one correspondence, and the edge of the filter layer CF can be extended to absorb light.
  • the layer BM faces away from the surface of the display substrate PNL.
  • only the through hole HB can also be filled.
  • the light-absorbing layer BM with the through hole HB can be formed first, and then the filter layers CF of different colors can be formed respectively.
  • the light-absorbing layer BM can limit the light emission range and also play a role in reducing the reflection of ambient light.
  • the light-absorbing layer BM can also be formed by stacking two adjacent filter layers CF of different colors to absorb light.
  • the filter structure CL that only plays a role in filtering light may include a filter layer CF without providing the first light-transmitting hole HCL, the lens layer Lens, and the filling layer FL.
  • both can include a flat cover layer PLN to achieve planarization.
  • the lens layer Lens and the filter layer CF of the same filter structure CL are made of different materials, so they can be formed independently.
  • the lens layers Lens of each filter structure CL can be connected into an integrated structure, and both can be formed simultaneously through a half-tone mask process or a grayscale mask process.
  • the filter layer CF can extend to the surface of the light-absorbing layer BM away from the display substrate PNL, but the adjacent filter layers CF do not contact, thereby exposing part of the light-absorbing layer BM.
  • the lens layer Lens of the filter structure CL can be disposed on the surface of the filter layer CF away from the display substrate PNL. That is to say, the side wall of the first light-transmitting hole HCL is located inside the boundary of the filter layer CF.
  • the orthographic projection of the through hole HB on the driving backplane BP may be located within the orthographic projection of the corresponding first light-transmitting hole HCL on the driving backplane BP.
  • the lens layer Lens can be extended to the light-absorbing layer BM that is not covered by the filter layer CF, so that the various lens layers Lens are connected into one.
  • the lens layer Lens only the material of the lens layer Lens is formed and passed through the mask process Just form the first light-transmitting hole HCL.
  • the material of the lens layer Lens can be transparent materials such as optical glue, and the refractive index can be 1.5. Of course, it can also be larger or smaller.
  • the filling layer FL and the flat cover layer PLN in the first light-transmitting hole HCL can be an integrated structure and can be formed at the same time.
  • the material of the filling layer FL can be transparent materials such as optical glue, and the refractive index can be 1.7-1.75, as long as it is larger than the lens
  • the refractive index of the layer Lens can be used.
  • the lens layer Lens may also be located only on the surface of the filter layer CF away from the display substrate PNL, without contacting the light-absorbing layer BM.
  • the sidewalls of the first light-transmitting hole HCL may be aligned with the boundary of the filter layer CF or located outside the filter layer CF, as long as the sidewalls of the first light-transmitting hole HCL can detect at least part of the light emitted by the light-emitting device LD. Just total reflection.
  • the lens layer Lens and the filter layer CF of the same filter structure CL are integrated structures, so that the lens layer Lens and the filter layer CF can be integrally formed. , thus simplifying the process.
  • the refractive index of the filter layer CF in the same filter structure CL is the same as the refractive index of the lens layer Lens, and the lens layer Lens can only transmit monochromatic light.
  • the lens layer Lens is equivalent to the protrusion formed on the filter layer CF.
  • the second type of implementation is exemplarily described below through the first to fifth implementations:
  • the thickness of the lens layer Lens of each filter structure CL is the same, that is, the thickness of the above-mentioned protrusions is the same, and the depth of the first light-transmitting hole HCL is the thickness of the lens layer Lens. .
  • the slope angles of the side walls of each first light-transmitting hole HCL are also the same.
  • the material of each filling layer FL is the same as that of the flat covering layer PLN, and each filling layer FL and the flat covering layer PLN have an integrated structure.
  • the refractive index of the lens layer Lens may be 1.45-1.5, and the refractive index of the flat cover layer PLN and the filling layer FL may be 1.7-1.75.
  • the thickness of the lens layer Lens may be 1 ⁇ m-3 ⁇ m, such as 2 ⁇ m.
  • the slope angle of the side wall of the first light-transmitting hole HCL may be 40°-75°, such as 55°.
  • the refractive index of any film layer mentioned in this article is the refractive index of light that can pass through the film layer.
  • the filling layer FL can pass white light
  • its refractive index is the refractive index of white light.
  • the filter layer CF can only transmit monochromatic light, so its refractive index is the refractive index of the monochromatic light it transmits.
  • the filter layer CF includes a first filter layer CF1, a second filter layer CF2 and a third filter layer CF3 of different colors, and the refractive index of the first filter layer CF1 is greater than that of the second filter layer
  • the refractive index of CF2 is greater than the refractive index of the third filter layer CF3; for example, the first filter layer CF1 can be a red filter layer.
  • the refractive index is 1.70;
  • the second filter layer CF2 can be a green filter layer, and its refractive index relative to green light (taking the wavelength of 550nm as an example) is 1.63;
  • the third filter layer CF3 can be blue
  • the filter layer has a refractive index of 1.58 relative to blue light (taking the wavelength of 460 nm as an example); correspondingly, the refractive index of each lens layer Lens is the same as the refractive index of the filter layer CF in which it is located.
  • each filling layer FL If the refractive index of each filling layer FL is 1.85, the total reflection angles of red, green, and blue light at the side walls of the first light-transmitting hole HCL of each lens layer Lens are 66.7° (arcsin1.7/ 1.85), 61.8° (arcsin1.63/1.85) and 58.6° (arcsin1.58/1.85). It can be seen that the lens layer Lens integrated with the first filter layer CF1 has the largest total reflection angle and the weakest light gathering effect. , the improvement in light extraction efficiency is minimal; different lens layer Lens have different improvements in light extraction efficiency, which is not conducive to the white balance of the image on the display panel.
  • the inventor proposed that the difference in convergence effect of lens layers Lens with different refractive indexes can be compensated, so that the light convergence effect of each filter structure CL is consistent, so that the light extraction efficiency is improved to the same extent, which is beneficial to Improve white balance and increase brightness uniformity.
  • the lens layer Lens of the filter structure CL to which the first filter layer CF1 belongs can be defined as the first lens layer Lens1
  • the filling layer FL of the filter structure CL to which the first filter layer CF1 belongs can be defined as the first filling layer.
  • the lens layer Lens of the filter structure CL to which the third filter layer CF3 belongs is defined as the third lens layer Lens3
  • the filling layer FL of the filter structure CL to which the third filter layer CF3 belongs is defined as the third filling layer FL3.
  • the difference in light extraction efficiency can be compensated for by setting the thickness of the lens layer Lens corresponding to the filter layer CF with different refractive indexes in a differentiated manner.
  • the filter layer CF with the larger refractive index among the lens layers Lens with different refractive indexes belongs to the lens of the filter structure CL.
  • the thickness of the layer Lens is greater than the thickness of the lens layer Lens of the filter structure CL to which the filter layer CF with a smaller refractive index belongs.
  • the range of the total reflection interface can be increased, which can improve the light gathering effect, thus increasing the total reflection of light in the lens layer Lens with a larger refractive index, thereby improving the light extraction efficiency.
  • the effect is close to or the same as the lens layer Lens with a smaller refractive index, thereby improving the uniformity of the brightness of the display panel.
  • the thickness of the first lens layer Lens1 may be 2.5 ⁇ m-3 ⁇ m, that is to say, the height of the protrusions of the lens layer Lens having an integral structure with the first filter layer CF1 is 2.5 ⁇ m-3 ⁇ m.
  • the thickness of the second lens layer Lens2 is 2 ⁇ m-2.5 ⁇ m, that is to say, the height of the protrusion of the lens layer Lens, which is integrated with the second filter layer CF2, is 2 ⁇ m-2.5 ⁇ m.
  • the thickness of the third lens layer Lens3 is 1.5 ⁇ m-2um, that is to say, the height of the protrusion of the lens layer Lens, which is integrated with the third filter layer CF3, is 1.5 ⁇ m-2um.
  • the thickness h1 of the first lens layer Lens1 is greater than the thickness h2 of the second lens layer Lens2, and the thickness of the second lens layer Lens2 is greater than the thickness h3 of the third lens layer Lens3.
  • the thicknesses of the three aforementioned lens layers Lens overlap in the value range (2um and 2.5 ⁇ m), it does not mean that the thicknesses are the same, but only limits the possibility of their values, provided that they are satisfied
  • the size relationship between the three may be 2.5 ⁇ m
  • the thickness of the second lens layer Lens2 may be 2 ⁇ m
  • the thickness of the third lens layer Lens3 may be 1.5 ⁇ m.
  • the difference in light extraction efficiency can be compensated by differentially setting the slope angles of the side walls of the first light-transmitting hole HCL corresponding to the filter layers CF with different refractive indexes.
  • the filter layer CF with the larger refractive index belongs to the side wall of the first light-transmitting hole HCL of the filter structure CL.
  • the slope angle is smaller than the slope angle of the side wall of the first light-transmitting hole HCL of the filter structure CL to which the filter layer CF with a smaller refractive index belongs.
  • the slope angle of the side wall of the first light-transmitting hole HCL of the first lens layer Lens1 may be 45°-50°.
  • the slope angle of the side wall of the first light-transmitting hole HCL of the second lens layer Lens2 may be 50°-55°.
  • the slope angle of the side wall of the first light-transmitting hole HCL of the third lens layer Lens3 may be 55°-60°.
  • the slope angle ⁇ 1 of the side wall of the first light-transmitting hole HCL of the first lens layer Lens1 is smaller than the slope angle ⁇ 2 of the side wall of the first light-transmitting hole HCL of the second lens layer Lens2.
  • the slope angle ⁇ 2 of the side wall of the hole HCL is smaller than the slope angle ⁇ 3 of the side wall of the first light-transmitting hole HCL of the third lens layer Lens3.
  • the slope angles of the three aforementioned first light-transmitting holes HCL overlap in the value range (50° and 55°), it does not mean that the slope angles can be the same, but only limits the possibility of their values. , the premise is that the size relationship between the three must be satisfied.
  • the slope angle of the side wall of the first light-transmitting hole HCL of the first lens layer Lens1 may be 45°; then the slope angle of the side wall of the first light-transmitting hole HCL of the second lens layer Lens2 may be 50°;
  • the slope angle of the side wall of the first light-transmitting hole HCL of the three-lens layer Lens3 may be 55°.
  • the difference in light extraction efficiency can also be compensated for by setting the refractive index of the filling layer FL corresponding to the filter layer CF with different refractive indexes differently. Specifically, among the two filter structures CL in which the two filter layers CF with different refractive indexes are located, the refractive index of the filling layer FL of the filter structure CL to which the filter layer CF with a larger refractive index belongs is greater than the refractive index. The refractive index of the filling layer FL of the filter structure CL to which the filter layer CF with a smaller rate belongs.
  • the refractive index of the lens layer Lens remains unchanged, the greater the refractive index of the filling layer FL, the smaller the total reflection angle at the side wall of the first light-transmitting hole HCL where it is located, and the easier it is for total reflection to occur. Reflection, therefore, by increasing the refractive index of the filling layer FL in the lens layer Lens with a larger refractive index, the total reflection angle can be reduced, so that more light emitted by the light-emitting device LD can be fully reflected, thereby Improving the light-gathering effect and ultimately the light-extraction efficiency can achieve differentiation in the light-gathering effect and achieve a consistent improvement in light-extraction efficiency, thereby improving the brightness uniformity of the display panel.
  • the refractive index of the first filling layer FL1 may be 1.83-1.87, such as 1.85.
  • the refractive index of the second filling layer FL2 may be 1.73-1.77, such as 1.75.
  • the refractive index of the third filling layer FL3 may be 1.68-1.72, such as 1.7.
  • the refractive index of the first filling layer FL1 is greater than the refractive index of the second filling layer F2, and the refractive index of the second filling layer F2 is greater than the refractive index of the third filling layer F3.
  • the refractive index of the flat covering layer PLN and a filling layer FL can be the same and adopt an integrated structure, so that they can be formed at the same time.
  • the flat covering layer PLN can be formed with a second filling layer FL.
  • the filling layer FL2 has an integral structure, that is to say, the refractive index of the flat covering layer PLN may be the same as the refractive index of the second filling layer FL2.
  • a first light-transmitting hole HCL may be formed in the lens layer Lens, and then a first filling layer may be formed in the first light-transmitting hole HCL corresponding to the first filter layer CF1 and the second filter layer CF2.
  • layer FL1 and the third filling layer FL3 and then form a flat covering layer PLN covering the first filling layer FL1 and the second filling layer FL2.
  • the flat covering layer PLN is located in the first light-transmitting hole HCL corresponding to the second filter layer CF2. Part is the second filling layer FL2.
  • any two or three of the solutions for improving brightness uniformity in the above-mentioned second to fourth embodiments can be combined to further increase the difference in light concentration effect. , thereby improving the uniformity of brightness.
  • any two or three of the solutions for improving brightness uniformity in the above-mentioned second to fourth embodiments can be combined to further increase the difference in light concentration effect. , thereby improving the uniformity of brightness.
  • the filter layer CF with the larger refractive index among the lens layers Lens with different refractive indexes can belong to the filter structure CL.
  • the thickness of the lens layer Lens of the structure CL is greater than the thickness of the lens layer Lens of the filter structure CL to which the filter layer CF with a smaller refractive index belongs.
  • the slope angle of the side wall of the first light-transmitting hole HCL of the filter structure CL to which the filter layer CF with a larger refractive index belongs can be made smaller than the slope angle of the first light-transmitting hole HCL to which the filter layer CF with a smaller refractive index belongs.
  • the slope angle of the side wall of a light-transmitting hole HCL is the first light-transmitting hole HCL.
  • the filter with the larger refractive index among the lens layers Lens with different refractive indexes can be used.
  • the thickness of the lens layer Lens of the filter structure CL to which the optical layer CF belongs is greater than the thickness of the lens layer Lens of the filter structure CL to which the filter layer CF belongs with a smaller refractive index.
  • the refractive index of the filling layer FL of the filter structure CL to which the filter layer CF with a larger refractive index belongs can be made greater than the refractive index of the filling layer FL of the filter structure CL to which the filter layer CF with a smaller refractive index belongs.
  • the first light-transmitting hole of the filter structure CL to which the filter layer CF with a larger refractive index belongs can be The slope angle of the side wall of HCL is smaller than the slope angle of the side wall of the first light-transmitting hole HCL of the filter structure CL to which the filter layer CF with a smaller refractive index belongs.
  • the refractive index of the filling layer FL of the filter structure CL to which the filter layer CF with a larger refractive index belongs can be made greater than the refractive index of the filling layer FL of the filter structure CL to which the filter layer CF with a smaller refractive index belongs.
  • the filter with the larger refractive index among the lens layers Lens with different refractive indexes can be used.
  • the thickness of the lens layer Lens of the filter structure CL to which the optical layer CF belongs is greater than the thickness of the lens layer Lens of the filter structure CL to which the filter layer CF belongs with a smaller refractive index.
  • the slope angle of the side wall of the first light-transmitting hole HCL of the filter structure CL to which the filter layer CF with a larger refractive index belongs can be made smaller than the slope angle of the first light-transmitting hole HCL to which the filter layer CF with a smaller refractive index belongs.
  • the refractive index of the filling layer FL of the filter structure CL to which the filter layer CF with a larger refractive index belongs is greater than the refractive index of the filling layer FL of the filter structure CL to which the filter layer CF with a smaller refractive index belongs.
  • the cover plate CG can be disposed on the side of the filter structure CL away from the display substrate PNL.
  • the material can be a transparent material such as glass or acrylic, and the film layer covered by the cover plate CG can be protected.
  • the light emitted by the light-emitting device LD can be finally emitted from the interface between the cover plate CG and the air after passing through the filter structure CL, that is, it can be emitted from the surface of the cover plate CG away from the display substrate PNL.
  • the filter structure CL of the present disclosure the light can be reduced. Total reflection of light occurs at this interface.
  • a light condensing layer CO can be provided between the display substrate PNL and the filter structure CL.
  • the light condensing layer CO can absorb at least part of the light emitted by the light emitting device LD.
  • the first light-transmitting holes HCL are converged and emitted to the corresponding light filter structure CL, thereby enhancing the light-gathering effect.
  • the light-gathering layer CO can also use total reflection to achieve light-gathering.
  • the light-gathering layer CO can include a first refractive layer RL1 and a second refractive layer. Layer RL2, where:
  • the first refractive layer RL1 can be disposed on the light exit side of the display substrate PNL.
  • the first refractive layer RL1 can be disposed on the side of the encapsulation layer TFE away from the driving backplane BP, and the first refractive layer RL1 can have a plurality of second transmissive layers.
  • the light hole HRL and a second light-transmitting hole HRL correspond to a light-emitting device LD and a first light-transmitting hole HCL, thereby forming a channel for the light emitted by the light-emitting device LD to emit.
  • the orthographic projection of the opening HP defining the light-emitting device LD on the driving backplane BP can be It is located within the orthographic projection of the second light-transmitting hole HRL on the driving back plate BP, and the orthographic projection of the second light-transmitting hole HRL on the driving back plate BP is located within the orthogonal projection of the first light-transmitting hole HCL on the driving back plate BP.
  • the boundaries of the opening HP, the second light-transmitting hole HRL and the first light-transmitting hole HCL having a corresponding relationship may increase in a direction away from the driving backplane BP.
  • the boundaries of the three can also be aligned, as long as the lens layer Lens and the first refractive layer RL1 do not block the opening HP.
  • the side walls of the second light-transmitting hole HRL can expand in a direction away from the display substrate PNL, and the side walls of the second light-transmitting hole HRL can have the same form as the first light-transmitting hole HCL, or can be surrounded by multiple planes, or can be composed of one or more Surrounded by curved surfaces.
  • an opening HP and the corresponding side walls of the first light-transmitting hole HCL and the second light-transmitting hole HRL are surrounded by N planes, and N can be a positive integer such as 4, 5, or 6.
  • the second refractive layer RL2 can cover the first refractive layer RL1 and fill the second light-transmitting hole HRL.
  • the second refractive layer RL2 can play a planarizing role, that is, the surface of the second refractive layer RL2 away from the display substrate PNL is a plane, and its material can be the same as the material of the flat cover layer PLN.
  • the above-mentioned filter layer CF and light-absorbing layer BM can be disposed on the surface of the second refractive layer RL2 away from the display substrate PNL.
  • the refractive index of the second refractive layer RL2 is greater than the refractive index of the first refractive layer RL1, so that part of the light emitted by the light-emitting device LD is totally reflected at the side wall of the second light-transmitting hole HRL, and the reflected light can pass through the first
  • the light-transmitting hole HCL is emitted, the light entering the first light-transmitting hole HCL without being totally reflected by the side wall of the second light-transmitting hole HRL can be totally reflected by the side wall of the first light-transmitting hole HCL. Therefore, The light emitted by the light-emitting device LD can be fully reflected through the side walls of the second light-transmitting hole HRL and the first light-transmitting hole HCL to achieve light concentration, thereby improving light extraction efficiency.
  • the first refractive layer RL1 can be made of transparent materials such as optical glue, and its refractive index can be 1.45-1.5.
  • the second refractive layer RL2 can be made of transparent materials such as optical glue, and its refractive index can be 1.7-1.75.
  • the filter structure CL of different materials is used for the lens layer Lens and the filter layer CF.
  • the lens layer Lens can also be made of transparent materials such as optical glue, whose refractive index can be 1.5, and the materials of the filling layer FL and the flat cover layer PLN. It can be the same as the second refractive layer RL2, and the refractive index can also be 1.7-1.75.
  • the light-concentrating layer CO may also include a plurality of convex lenses capable of condensing light.
  • Each convex lens may correspond to a light-emitting device LD, and condensing light may be achieved through the convex lenses.
  • the number of light condensing layers CO may be multiple and stacked in a direction away from the display substrate PNL, and the filter structure CL may be provided on the light condensing layer CO farthest from the display substrate PNL. .
  • a display panel combined with a layer of the above-mentioned light condensing layer CO can achieve a light extraction gain of 37.2%.
  • a display panel combined with a layer of the above-mentioned light condensing layer CO can achieve a light extraction gain of 35.5%.
  • the display panel further includes a touch layer, which may be disposed on the light exit side of the display substrate PNL, for example, a touch layer.
  • the control layer can be located on the side of the packaging layer TFE away from the driving backplane BP, and is used for sensing touch operations.
  • the touch layer may include a touch electrode layer TMB, and the first refractive layer RL1 may cover the touch electrode layer TMB.
  • the first refractive layer RL1 may be used to protect the touch electrode to avoid providing a special protective layer in the touch layer.
  • a protective layer covering the touch electrode layer TMB may also be provided, and the first refractive layer RL1 is provided on the surface of the protective layer away from the display substrate PNL.
  • the touch electrode layer TMB can be a mesh structure connected by multiple channel lines Ltm, and the mesh structure has multiple meshes. TH.
  • One light-emitting device LD can correspond to one mesh TH, that is, the orthographic projection of a light-emitting device LD on the driving backplane BP is located within the orthographic projection of a mesh TH on the driving backplane BP.
  • one mesh TH may correspond to only one light-emitting device LD, and the shape of the mesh TH may be the same as the shape of the light-emitting device LD.
  • one mesh TH may also correspond to multiple light emitting devices LD.
  • the width of the channel line Ltm is smaller than the distance between two adjacent second light-transmitting holes HRL, so that the orthographic projection of the channel line Ltm on the display substrate PNL is located on the light-absorbing layer BM on the display substrate PNL.
  • the channel line Ltm can be prevented from blocking the light emitting device LD.
  • the touch layer may include a plurality of first touch electrodes Tx and a plurality of second touch electrodes Rx.
  • Each first touch electrode Tx may be spaced apart along the row direction X
  • a first touch electrode Tx may include a plurality of first electrode blocks Txc spaced apart along the column direction Y and a transfer bridge BR connecting two adjacent first electrode blocks Txc;
  • Two touch electrodes Rx may be spaced apart along the column direction Y.
  • a second touch electrode Rx includes a plurality of second electrode blocks Rxc connected in series along the row direction X; a transfer bridge BR intersects a second touch electrode Rx and Insulation settings.
  • One of the first touch electrode Tx and the second touch electrode Rx may serve as a transmitting electrode, and the other may serve as a receiving electrode.
  • the above-mentioned first electrode block Txc and second touch electrode Rx are both located on the touch electrode layer TMB, that is, the first electrode block Txc and the second touch electrode Rx are arranged in the same layer, so that they can be The process is formed simultaneously.
  • the transfer bridge BR can be located in the transfer layer, which can be located between the touch electrode layer TMB and the packaging layer TFE.
  • the touch layer may also include a buffer layer TLD and an isolation layer SEP, where:
  • the buffer layer TLD can be disposed on the surface of the packaging layer TFE away from the driving backplane BP.
  • Its material can be insulating materials such as silicon nitride and silicon oxide, and is not specifically limited here.
  • the transfer layer can be disposed on a surface of the buffer layer TLD away from the driving backplane BP, and includes a plurality of transfer bridges BR distributed in an array.
  • the transfer layer can be made of metal or other conductive materials.
  • the isolation layer SEP can cover the transfer layer, and the material of the isolation layer SEP can be insulating materials such as silicon nitride and silicon oxide, which are not specifically limited here.
  • the touch electrode layer TMB can be disposed on the surface of the isolation layer SEP away from the driving backplane BP, and includes the above-mentioned first electrode block Txc and the second touch electrode Rx.
  • the first refractive layer RL1 may cover the touch electrode layer TMB and the isolation layer SEP that is not covered by the touch electrode layer TMB.
  • the second refractive layer RL2 located in the second light-transmitting hole HRL can be in contact with the isolation layer SEP.
  • the touch layer can also adopt a self-capacitive touch structure.
  • the touch electrode layer TMB can include multiple electrode blocks distributed in an array. Each electrode block can be connected to the peripheral touch drive circuit through independent wiring. The specific structure will not be described in detail here.
  • the present disclosure also provides a display device, which may include the display panel of any of the above embodiments.
  • the display panel is a display panel according to any of the above embodiments.
  • the display device of the present disclosure can be an electronic device with a display function such as a mobile phone, a tablet computer, a television, etc., which will not be listed here.

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示面板及显示装置。显示面板包括显示基板(PNL)、滤光结构(CL)和盖板(CG)。显示基板(PNL)具有阵列分布的多个发光器件(LD)。滤光结构(CL)设于显示基板(PNL)一侧;至少一部分滤光结构(CL)包括滤光层(CF)、透镜层(Lens)和填充层(FL),透镜层(Lens)位于滤光层(CF)远离显示基板(PNL)的一侧,且设有第一透光孔(HCL),第一透光孔(HCL)的侧壁沿远离显示基板(PNL)的方向扩张;填充层(FL)填充于第一透光孔(HCL)内,填充层(FL)的折射率大于其填充的第一透光孔(HCL)所处的透镜层(Lens)的折射率。盖板(CG)设于滤光结构(CL)远离显示基板(PNL)的一侧。显示面板用于在不增大功耗的前提下,提高亮度。

Description

显示面板及显示装置 技术领域
本公开涉及显示技术领域,具体而言,涉及一种显示面板及显示装置。
背景技术
显示面板是手机、电脑等电子设备不可或缺的组成部分,其包括液晶显示面板、有机电致发光显示面板等。目前,人们对显示效果的要求越来越高,但是现有显示面板的亮度仍有待提高,若要提高亮度,则需要增大功耗。
需要说明的是,在上述背景技术部分公开的信息仅用于加强对本公开的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本公开提供一种显示面板及显示装置。
根据本公开的一个方面,提供一种显示面板,包括:
显示基板,具有阵列分布的多个发光器件;
多个滤光结构,设于所述显示基板的出光侧,一所述发光器件与一所述滤光结构对应;至少一部分所述滤光结构包括滤光层、透镜层和填充层,所述透镜层位于所述滤光层远离所述显示基板的一侧,且设有露出所述滤光层的至少部分区域的第一透光孔,所述第一透光孔的侧壁沿远离所述显示基板的方向扩张;所述填充层填充于所述第一透光孔内,且层叠于所述滤光层远离所述显示基板的表面,所述填充层的折射率大于其填充的第一透光孔所处的透镜层的折射率;
盖板,设于所述滤光结构远离所述显示基板的一侧。
在本公开的一种示例性实施方式中,同一所述滤光结构的透镜层和滤光层的材料不同。
在本公开的一种示例性实施方式中,各所述透镜层连接为一体结构。
在本公开的一种示例性实施方式中,同一所述滤光结构的透镜层和滤光层为一体结构。
在本公开的一种示例性实施方式中,各所述滤光结构的滤光层中包括至少两种不同颜色的滤光层;不同颜色的所述滤光层的折射率不同;
在两个折射率不同的滤光层所处的两个所述滤光结构中,折射率较大的滤光层所属滤光结构的透镜层的厚度,大于折射率较小的滤光层所属滤光结构的透镜层的厚度。
在本公开的一种示例性实施方式中,所述滤光层中包括颜色不同的第一滤光层、第二滤光层和第三滤光层,且所述第一滤光层的折射率大于所述第二滤光层的折射率,所述第二滤光层的折射率大于所述第三滤光层的折射率;
所述第一滤光层所属滤光结构的透镜层的厚度为2.5μm-3μm;
所述第二滤光层所属滤光结构的透镜层的厚度为2μm-2.5μm;
所述第三滤光层所属滤光结构的透镜层的厚度为1.5μm-2um。
在本公开的一种示例性实施方式中,各所述滤光结构的滤光层中包括至少两种不同颜色的滤光层;不同颜色的所述滤光层的折射率不同;
在两个折射率不同的滤光层所处的两个所述滤光结构中,折射率较大的滤光层所属滤光结构的第一透光孔的侧壁的坡度角,小于折射率较小的滤光层所属滤光结构的第一透光孔的侧壁的坡度角。
在本公开的一种示例性实施方式中,所述滤光层中包括颜色不同的第一滤光层、第二滤光层和第三滤光层,且所述第一滤光层的折射率大于所述第二滤光层的折射率,所述第二滤光层的折射率大于所述第三滤光层的折射率;
所述第一滤光层所属滤光结构的第一透光孔的侧壁的坡度角为45°-50°;
所述第二滤光层所属滤光结构的第一透光孔的侧壁的坡度角为50°-55°;
所述第三滤光层所属滤光结构的第一透光孔的侧壁的坡度角为55°-60°。
在本公开的一种示例性实施方式中,各所述滤光结构的滤光层中包 括至少两种不同颜色的滤光层;不同颜色的所述滤光层的折射率不同;
在两个折射率不同的滤光层所处的两个所述滤光结构中,折射率较大的滤光层所属滤光结构的填充层的折射率,大于折射率较小的滤光层所属滤光结构的填充层的折射率。
在本公开的一种示例性实施方式中,所述滤光层中包括颜色不同的第一滤光层、第二滤光层和第三滤光层,且所述第一滤光层的折射率大于所述第二滤光层的折射率,所述第二滤光层的折射率大于所述第三滤光层的折射率;
所述第一滤光层所属滤光结构的填充层的折射率为1.83-1.87;
所述第二滤光层所属滤光结构的填充层的折射率为1.73-1.77;
所述第三滤光层所属滤光结构的填充层的折射率为1.68-1.72。
在本公开的一种示例性实施方式中,所述显示面板还包括:
平坦覆盖层,覆盖各所述滤光结构,且所述平坦覆盖层的折射率不小于所述填充层的折射率。
在本公开的一种示例性实施方式中,所述平坦覆盖层与至少一个所述填充层为一体结构。
在本公开的一种示例性实施方式中,所述显示面板还包括:
吸光层,与所述滤光层设于同一表面,且具有多个通孔,一所述通孔与一所述发光器件对应;一所述滤光层的至少部分区域位于一所述通孔内。
在本公开的一种示例性实施方式中,所述显示面板还包括:
聚光层,设于所述显示基板和所述滤光结构之间,用于将所述发光器件发出的至少部分光线汇聚并射向对应的滤光结构的第一透光孔。
在本公开的一种示例性实施方式中,所述聚光层包括:
第一折射层,设于所述显示基板的出光侧,且具有多个第二透光孔,一所述第二透光孔与一所述发光器件和一所述第一透光孔对应,所述第二透光孔的侧壁沿远离所述显示基板的方向扩张;
第二折射层,覆盖所述第一折射层,且填充所述第二透光孔;所述第二折射层的折射率大于所述第一折射层的折射率。
在本公开的一种示例性实施方式中,所述显示面板还包括驱动背板 和像素定义层,所述像素定义层与所述发光器件设于所述驱动背板的同一侧,且所述像素定义层设有限定各所述发光器件的范围开口;
在一所述开口及其对应的第一透光孔和第二透光孔中,所述开口在所述驱动背板上的正投影位于所述第二透光孔在所述驱动背板上的正投影以内,所述第二透光孔在所述驱动背板上的正投影位于所述第一透光孔在驱动背板上的正投影以内。
在本公开的一种示例性实施方式中,所述显示面板还包括:
触控电极层,设于所述显示基板的出光侧,所述第一折射层覆盖所述触控电极层;所述触控电极层为由多个通道线连接成的具有多个网孔的网状结构;至少一所述发光器件与一所述网孔对应;所述通道线的宽度小于相邻两所述第二透光孔之间的距离。
根据本公开的一个方面,提供一种显示装置,包括上述任意一项所述的显示面板。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开显示面板的第一类实施方式中一实施方式的截面示意图。
图2为本公开显示面板的第一类实施方式中另一实施方式的截面示意图。
图3为本公开显示面板的第一类实施方式中再一实施方式的截面示意图。
图4为本公开显示面板的第二类实施方式中第一实施方式的截面示意图。
图5为本公开显示面板的第二类实施方式中第二实施方式的截面示意图。
图6为本公开显示面板的第二类实施方式中第三实施方式的截面示意图。
图7为本公开显示面板的第二类实施方式中第四实施方式的截面示意图。
图8为本公开显示面板的第二类实施方式中第五实施方式的截面示意图。
图9为本公开显示面板的第二类实施方式中第六实施方式的截面示意图。
图10为本公开显示面板一实施方式中触控层的俯视示意图。
图11为本公开显示面板一实施方式的局部截面示意图。
图12为本公开显示面板一实施方式的局部俯视图。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本公开将全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。此外,附图仅为本公开的示意性图解,并非一定是按比例绘制。
用语“一个”、“一”、“该”、“所述”和“至少一个”用以表示存在一个或多个要素/组成部分/等;用语“包括”和“具有”用以表示开放式的包括在内的意思并且是指除了列出的要素/组成部分/等之外还可存在另外的要素/组成部分/等;用语“第一”、“第二”和“第三”等仅作为标记使用,不是对其对象的数量限制。
本文中的行方向X和列方向Y仅为两个相互垂直的方向,在本公开的附图中,行方向X可以是横向,列方向Y可以是纵向,但并不限于此,若显示面板发生旋转,则行方向X和列方向Y的实际朝向可能发生变化。
相关技术中,有机电致发光显示面板可包括驱动背板和位于驱动背板一侧的多个发光器件,各发光器件可以是有机发光二极管(OLED),通过驱动背板控制发光器件独立发光可实现图像显示。同时,显示面板还包括玻璃等透明材质的盖板,其可覆盖于发光器件远离驱动背板的一侧,用于起到保护作用,发光器件发射的光线从盖板出射至显示面板外的空气中。由于盖板的折射率大于空气,在光线由盖板进入空气时,入射角达到全反射临界角的光线,会在盖板和空气界面发生全反射,导致部分光线无法从盖板出射,使得显示面板的出光效率低,影响亮度;在此过程中,照射至盖板的光线的入射角越大,越容易发生全反射。若要提高显示面板的亮度,则需要增大发光器件的功耗,使能耗增大
本公开实施方式提供了一种显示面板,如图1-图3所示,该显示面板包括显示基板PNL、滤光结构CL和盖板CG,其中:
显示基板PNL具有阵列分布的多个发光器件LD;
多个滤光结构CL的数量为多个,且设于显示基板PNL的出光侧,一发光器件LD与一滤光结构CL对应。至少一部分滤光结构CL包括滤光层CF、透镜层Lens和填充层FL,透镜层Lens位于滤光层CF远离显示基板PNL的一侧,且设有露出滤光层CF的至少部分区域的第一透光孔HCL,第一透光孔HCL的侧壁沿远离显示基板PNL的方向扩张;填充层FL填充于第一透光孔HCL内,且层叠于滤光层CF远离显示基板PNL的表面,填充层FL的折射率大于其填充的第一透光孔HCL所处的透镜层Lens的折射率。各滤光结构CL的滤光层CF中包括至少两种不同颜色的滤光层CF。盖板CG可设于各滤光结构CL远离显示基板PNL的一侧。
本公开实施方式的显示面板,若不同的发光器件LD可以发出不同的单色光,则可以直接实现彩色显示,此时,滤光结构CL的滤光层CF的颜色可与其对应的发光器件LD的发光颜色相同,从而可通过滤光层CF滤除部分环境光,降低显示基板PNL内部对环境光的反射,可省去圆偏光片等厚度较大的降反膜层,有利于减小显示面板的厚度。
若各发光器件LD的发光颜色相同,则可通过不同颜色的滤光层CF实现彩色显示,当然,此时,滤光层CF仍然可以起到降低对环境光的反射的作用。
由于填充层FL的折射率大于其填充的第一透光孔HCL所处的透镜层Lens的折射率,且第一透光孔HCL的侧壁沿远离显示基板PNL的方向扩张,使得发光器件LD发出的至少部分光线在第一透光孔HCL的侧壁处发生全反射,从而可利用滤光结构CL使对应的发光器件LD发出的光线汇聚,使从盖板CG向外出射的光线的入射角更小,减少在盖板CG和空气界面发生全反射的光线,提高出光效率,在不增大功耗的情况下,提高亮度。
下面对本公开显示面板进行详细说明:
如图1-图3所示,显示基板PNL可以是有机电致发光显示基板,也可以是液晶显示基板或其它可以发光的显示基板,以有机电致发光显示基板为例,显示基板PNL可包括驱动背板BP、发光器件LD和封装层TFE,其中:
驱动背板BP具有驱动电路,通过驱动电路可驱动发光器件LD发光,以显示图像,其中:
驱动背板BP可包括衬底和位于衬底一侧的电路层,衬底可为平板结构,且其材料可以是玻璃等硬质材料,也可以是聚酰亚胺等软质材料。同时,衬底可以是单层或多层结构。
电路层可包括驱动电路,通过驱动电路可驱动发光器件LD发光。举例而言,显示面板可至少划分为显示区和位于显示区外的外围区,相应的,电路层位于显示区的区域为像素区,位于外围区的区域为边缘区,也就是说,边缘区位于像素区外。驱动电路可包括位于像素区内的像素电路和位于边缘区内的外围电路,其中,像素电路可以是7T1C、6T1C等像素电路,只要能驱动发光器件LD发光即可,在此不对其结构做特殊限定。像素电路的数量可与发光器件LD的数量相同,且一一对应地与各发光器件LD连接,以便分别控制各个发光器件LD发光。其中,nTmC表示一个像素电路包括n个晶体管(用字母“T”表示)和m个电容(用字母“C”表示)。当然,同一像素电路也可连接多个发光器件LD, 同时驱动多个发光器件LD发光,在此不做特殊限定。
外围电路与像素电路连接,用于向像素电路输入驱动信号,以便控制发光器件LD发光。外围电路可包括栅极驱动电路和发光控制电路,当然,还可包括其它电路,在此不对外围电路的具体结构做特殊限定。
上述的电路层可包括多个薄膜晶体管和电容,其中,薄膜晶体管可以是顶栅或底栅型薄膜晶体管,每个薄膜晶体管均可包括有源层和栅极,各薄膜晶体管的有源层同层设置于同一半导体层,栅极同层设置于同一栅极层,以便简化工艺。
以顶栅型薄膜晶体管为例,电路层可包括沿背离衬底的方向依次堆叠设置的半导体层、第一栅绝缘层、第一栅极层、第二栅绝缘层、第二栅极层、层间介质层、第一源漏层、钝化层、第一平坦层、第二源漏层和第二平坦层,各膜层的具体图案视驱动电路的具体构成而定,在此不做特殊限定。
如图1所示,驱动背板BP一侧设有多个发光器件LD以及用于限定发光器件LD的范围的像素定义层PDL,例如:像素定义层PDL和发光器件LD可设于第二平坦层远离衬底的表面。各发光器件LD位于显示面板的显示区,每个发光器件LD均可包括第一电极ANO、第二电极CAT以及位于第一电极ANO和第二电极CAT之间的发光层EL,通过向第一电极ANO和第二电极CAT施加电信号,可激发发光层EL发光。发光器件LD可以是有机发光二极管(OLED)。
如图1所示,各个发光器件LD的第一电极ANO间隔分布,像素定义层PDL设有露出各第一电极ANO的开口HP,即一个开口HP露出一个第一电极ANO,一个开口HP对应的范围即为一个发光器件LD的范围,发光器件LD在驱动背板BP上的正投影的边界即为该开口HP在驱动背板BP上的正投影的边界。若开口HP的侧壁为沿远离驱动背板BP的方向扩张的坡面,则发光器件LD在驱动背板BP上的正投影即为该开口HP在驱动背板BP上的正投影的外边界。开口HP的形状,即其在驱动背板BP上的正投影的边界的形状,可以是矩形、五边形、六边形等多边形,也可以是椭圆形、扇形或其它形状,在此不对其形状做特殊限定。
发光层EL至少部分位于开口HP内,且与第一电极ANO堆叠设置。发光层EL可包括沿远离驱动背板BP的方向依次层叠的空穴注入层、空穴传输层、发光材料层、电子传输层和电子注入层。当然,也可以采用其它结构,只要能与第一电极ANO和第二电极CAT配合发光即可。
第二电极CAT可覆盖发光层EL,第二电极CAT可以是连续的整层结构,使得各个发光器件LD可共用同一第二电极CAT。同时,第二电极CAT可为发光器件LD的阴极,其可采用透光结构,使得发光器件LD可向远离驱动背板BP的方向发光,例如,第二电极CAT的材料可以采用金属镁、银或其合金等,在一定厚度下,可以在导电的同时透光。同时,第一电极ANO则可为不透光的结构,使得发光器件LD为顶发射结构。
在本公开的一些实施方式中,如图1所示,每个发光器件LD可独立发光,且不同发光器件LD的发光颜色可以不同,具体而言,发光层EL可以包括多个一一对应地设于各开口HP内的间隔分布的发光单元,每个发光单元可独立发光,且发光颜色可以不同,从而可直接实现彩色显示。或者,各个发光器件LD也可以共用空穴注入层、空穴传输层、电子传输层和电子注入层中的至少一层,但不共用发光材料层,即发光材料层包括多个阵列分布的材料单元,同样可以实现不同的发光器件LD的发光颜色不同。
在本公开的其它实施方式中,发光层EL也可以同时覆盖像素定义层PDL和各第一电极ANO,即各发光器件LD可共用同一发光层EL,此时,各发光器件LD的发光颜色相同。
如图1所示,封装层TFE可覆盖各发光器件LD,用于阻隔外界的水、氧,防止其对发光器件LD造成侵蚀。举例而言,封装层TFE可采用薄膜封装的方式,其可包括第一无机层、有机层和第二无机层,其中:
第一无机层可覆盖各个发光器件LD,即第一无机层可覆盖于第二电极CAT远离驱动背板BP的表面。第一无机层的材料可以包括氮化硅、氧化硅等无机绝缘材料。
有机层可设于第一无机层远离驱动背板BP的表面,且可通过位于外围区的阻挡坝将有机层的边界限定于第一无机层的边界的内侧。同时, 有机层在驱动背板BP上的正投影的边界可位于外围区,确保有机层能覆盖各发光器件LD。
第二无机层可覆盖有机层和未被有机层覆盖的第一无机层,可通过第二无机层阻挡水氧侵入,通过在固化前具有流动性的有机层实现平坦化。第二无机层的材料可以包括氮化硅、氧化硅等无机绝缘材料。
如图1所示,滤光结构CL可设于显示基板PNL的出光侧,即封装层TFE远离驱动背板BP的一侧。滤光结构CL的数量为多个,且一发光器件LD与一滤光结构CL对应,即一滤光结构CL在驱动背板BP上的正投影与一发光器件LD在驱动背板BP上的正投影至少部分重合,以使发光器件LD发出的至少部分光线可通过对应的滤光结构CL。
滤光结构CL可以透光单色光,不同的滤光结构CL透过的光线的颜色可以不同。若各发光器件LD的发光颜色相同,则通过各滤光结构CL可实现彩色显示,也可以起到降低对环境光的反射的作用。若不同的发光器件LD的发光颜色可以不同,则可通过滤光结构CL起到降低对环境光反射的作用。
至少一部分滤光结构CL还可使其对应的发光器件LD发出的至少部分光线汇聚。也就是说,可以存在一部分滤光结构CL仅能起到滤光的作用,还存在至少一部分滤光结构CL可以同时起到滤光和聚光的作用,当然,为了提高显示面板的亮度的均匀性,可以使每个滤光结构CL均可以同时起到滤光和聚光的作用。
下面对具有滤光和聚光作用的滤光结构CL进行详细说明:
如图1所示,至少一部分滤光结构CL可包括滤光层CF、透镜层Lens和填充层FL,其中:
滤光层CF设于显示基板PNL的出光侧,即封装层TFE远离驱动背板BP的一侧。各滤光层CF阵列分布,相邻两滤光层CF可以间隔设置,也可以接触。一滤光层CF的颜色唯一,使其仅能透过蓝光、红光、绿光或其它单色光。
各滤光层CF中包括至少两种不同颜色的滤光层CF,例如,滤光层CF可包括红色滤光层、绿色滤光层和蓝色滤光层,从而可以起到上文提 到的实现彩色显示和降低对环境光的反射的作用。举例而言,各发光器件LD中包括三种发光颜色不同的发光器件LD,即发红光的红色发光器件、发绿光的红色发光器件和发蓝光的红色发光器件,相应的,对应红色发光器件的滤光层CF为红色滤光层,可透过红光;对应绿色发光器件的滤光层为绿色滤光层CF,可透过绿光;对应蓝色发光器件的滤光层CF为蓝色滤光层,可透过蓝光。
不同颜色的滤光层CF的材料不同,因而折射率也不同,例如,红色滤光层的折射率可大于绿色滤光层的折射率,绿色滤光层的折射率可大于蓝色滤光层的折射率。
如图1和图12所示,透镜层Lens可位于滤光层CF远离显示基板PNL的一侧,透镜层Lens为透明材质,可透过多个颜色的光线,透镜层Lens设有第一透光孔HCL,第一透光孔HCL露出滤光层CF的至少部分区域。
一第一透光孔HCL与一发光器件LD对应,即一发光器件LD在驱动背板BP上的正投影与一第一透光孔HCL在驱动背板BP上的正投影至少部分重合,使得发光器件LD发出的至少部分光线能照射至对应的第一透光孔HCL内。进一步的,可使第一透光孔HCL的范围不小于其对应的发光器件LD的范围,即一开口HP在驱动背板BP上的正投影位于一第一透光孔HCL在驱动背板BP上的正投影以内。
第一透光孔HCL的侧壁可沿远离显示基板PNL的方向扩张,其侧壁可以由多个平面围成,也可以是圆台面,或者由多个曲面围成,只要第一透光孔HCL的尺寸沿远离显示基板PNL的方向增大即可,使得第一透光孔HCL沿垂直于衬底的方向的截面的形状为倒梯形。
若第一透光孔HCL的侧壁由多个平面围成,则第一透光孔HCL的侧壁的坡度角为侧壁与滤光层CF的夹角;若第一透光孔HCL的侧壁为曲面,则其坡度角为第一透光孔HCL的侧壁在垂直于显示基板的方向的截面中的轮廓与滤光层CF的夹角。进一步的,第一透光孔HCL的形状可与对应的发光器件LD的形状相同,即第一透光孔HCL的形状(在驱动背板BP上的正投影的轮廓的形状)可与对应的开口HP的形状相同,例如,开口HP的形状为多边形,则第一透光孔HCL的形状也为多边形, 且多边形的侧边的数量相同,该第一透光孔HCL的正投影的侧边和开口HP的投影的侧边一一对应的重合或平行。
如图1和图7所示,填充层FL可为透明材质,其可透过多个颜色的光线,且填充于第一透光孔HCL内,并直接堆叠于滤光层CF远离显示基板PNL的表面,填充层FL的折射率大于其填充的第一透光孔HCL所处的透镜层Lens的折射率,发光器件LD发出的部分光线可在对应的填充层FL和第一透光孔HCL的侧壁的界面发生全反射,从而起到聚光的效果。此外,填充层FL的厚度不大于其填充的第一透光孔HCL的深度。
如图1和图7所示,为了实现平坦化,可通过平坦覆盖层PLN覆盖各滤光结构CL,且平坦覆盖层PLN的折射率不小于填充层FL的折射率,例如,平坦覆盖层PLN可与至少一个填充层FL的材料相同,且为一体结构,以便同时形成。当然,平坦覆盖层PLN也可以采用不同于各填充层FL的材料,且单独形成。此外,也可以不设置平坦覆盖层PLN,而通过使填充层FL的厚度与第一透光孔HCL的深度相同实现平坦化。
此外,如图1所示,显示面板中还可以设置吸光层BM,其可以采用黑色的树脂等材料,只要能吸收光线即可。吸光层BM可与滤光层CF设于同一表面,且设有多个用于透光的通孔HB,一通孔HB与一发光器件LD对应,即一通孔HB在驱动背板BP上的正投影与一开口HP在驱动背板BP上的正投影至少部分重合。进一步的,为了避免吸光层BM遮挡发光器件LD,可使一开口HP在驱动背板BP上的正投影位于对应的通孔HB在驱动背板BP上的正投影以内。
如图1所示,一滤光层CF的至少部分区域位于一通孔HB内,例如,各滤光层CF一一对应的设置各通孔HB内,且滤光层CF的边缘可以延伸至吸光层BM背离显示基板PNL的表面,当然,也可以仅填充通孔HB。在制造时,可先形成具有通孔HB的吸光层BM,再分别形成不同颜色的滤光层CF。通过吸光层BM可以限定出光范围,也可以起到降低对环境光的反射的作用。
当然,吸光层BM还可利用相邻的两种颜色不同的滤光层CF堆叠形成,从而吸收光线。
仅起到滤光作用的滤光结构CL可包括滤光层CF,而不设置第一透光孔HCL,也不设置透镜层Lens和填充层FL。但若仅起到滤光作用的滤光结构CL和可以滤光和聚光的滤光结构CL同时存在于一实施方式,则二者均可以包括平坦覆盖层PLN,以便实现平坦化。
下面对滤光结构CL的不同形式进行示例性说明:
如图1-图3所示,在本公开的第一类实施方式中,同一滤光结构CL的透镜层Lens和滤光层CF的材料不同,因而二者可以分别独立形成。各个滤光结构CL的透镜层Lens可连接为一体结构,二者可以通过半色调掩膜工艺或灰阶掩膜工艺同时形成。
在一些实施方式中,针对一个滤光结构CL,滤光层CF可延伸至吸光层BM远离显示基板PNL的表面,但相邻的滤光层CF不接触,从而露出部分吸光层BM。滤光结构CL的透镜层Lens可设于其滤光层CF远离显示基板PNL的表面,也就是说,第一透光孔HCL的侧壁位于滤光层CF的边界的内侧。同时,通孔HB在驱动背板BP上的正投影可位于对应的第一透光孔HCL在驱动背板BP上的正投影以内。此外,透镜层Lens可以延伸至未被滤光层CF覆盖的吸光层BM上,使得各个透镜层Lens连为一体,在形成透镜层Lens时,只要形成透镜层Lens的材料,并通过掩膜工艺形成第一透光孔HCL即可。
透镜层Lens的材料可以是光学胶等透明材料,折射率可为1.5,当然,也可以更大或更小。第一透光孔HCL中的填充层FL与平坦覆盖层PLN可为一体结构,从而可以同时形成,填充层FL的材料可以是光学胶等透明材料,折射率可为1.7-1.75,只要大于透镜层Lens的折射率即可。
在第一类实施方式的其它实施方式中,透镜层Lens也可以仅位于滤光层CF远离显示基板PNL的表面,而不与吸光层BM接触。此外,第一透光孔HCL的侧壁可以与滤光层CF的边界对齐或位于滤光层CF的外侧,只要第一透光孔HCL的侧壁能对发光器件LD发出的至少部分光线进行全反射即可。
如图4-图7所示,在本公开的第二类实施方式中,同一滤光结构CL的透镜层Lens和滤光层CF为一体结构,使得透镜层Lens和滤光层CF可以一体成型,从而简化工艺,相应的,同一滤光结构CL中的滤光层CF的折射率和透镜层Lens的折射率相同,透镜层Lens仅能透过单色光。此时,透镜层Lens相当于滤光层CF上形成的凸起。
下面通过第一至第五实施方式,对第二类实施方式进行示例性说明:
如图4所示,在第一实施方式中,各滤光结构CL的透镜层Lens的厚度相同,即上述的凸起的厚度相同,第一透光孔HCL的深度即为透镜层Lens的厚度。同时,各第一透光孔HCL的侧壁的坡度角也相同。各填充层FL的材料均与平坦覆盖层PLN相同,且各填充层FL与平坦覆盖层PLN为一体结构。
透镜层Lens的折射率可为1.45-1.5,平坦覆盖层PLN和填充层FL的折射率可为1.7-1.75。透镜层Lens的厚度可为1μm-3μm,例如2μm。第一透光孔HCL的侧壁的坡度角可为40°-75°,例如55°。
需要说明的是,本文中提到的任意膜层的折射率,是针对能通过该膜层的光线的折射率,例如,填充层FL可以通过白光,则其折射率是针对白光的折射率,而滤光层CF仅能透过单色光,则其折射率是针对其透过的单色光的折射率。
发明人发现,在各滤光结构CL的填充层FL的折射率相同的情况下,透镜层Lens的折射率越大,全反射角(光线在第一透光孔HCL的侧壁发生全反射的临界角)越大,越不易发生全反射,不同折射率的透镜层Lens对光线的汇聚作用不同,且透镜层Lens的折射率越小,对光线的汇聚作用越大,越有利于提升出光效率,有利于改善白平衡。
举例而言,滤光层CF中包括颜色不同的第一滤光层CF1、第二滤光层CF2和第三滤光层CF3,且第一滤光层CF1的折射率大于第二滤光层CF2的折射率,第二滤光层CF2的折射率大于第三滤光层CF3的折射率;例如,第一滤光层CF1可为红色滤光层,其相对于红光(以波长为620nm为例)的折射率为1.70;第二滤光层CF2可为绿色滤光层,其相对于绿光(以波长550nm为例)的折射率为1.63;第三滤光层CF3可为蓝色滤光层,其相对于蓝光(以波长为460nm为例)折射率为1.58; 相应的,各透镜层Lens的折射率与其所处的滤光层CF的折射率相同。若各填充层FL的折射率为1.85,则红、绿、蓝三色光在各透镜层Lens的第一透光孔HCL的侧壁发生全发射的全反射角分别为66.7°(arcsin1.7/1.85)、61.8°(arcsin1.63/1.85)和58.6°(arcsin1.58/1.85),可以看出,与第一滤光层CF1一体的透镜层Lens的全反射角最大,聚光效果最弱,对出光效率的提升幅度最小;不同透镜层Lens对出光效率的提升不同,这样不利于显示面板的图像的白平衡。
发明人基于上述分析提出:可针对折射率不同的透镜层Lens,对汇聚作用的不同进行补偿,从而使各滤光结构CL对光线的汇聚作用一致,从而是出光效率的提升程度一致,有利于改善白平衡,提高亮度的均匀性。
下面将在第二类实施方式的第二至第五实施方式中进行详细说明:
为了便于描述,可将第一滤光层CF1所属滤光结构CL的透镜层Lens定义为第一透镜层Lens1,第一滤光层CF1所属滤光结构CL的填充层FL定义为第一填充层FL1;将第二滤光层CF2所属滤光结构CL的透镜层Lens定义为第二透镜层Lens2,将第二滤光层CF2所属滤光结构CL的填充层FL定义为第二填充层FL2;将第三滤光层CF3所属滤光结构CL的透镜层Lens定义为第三透镜层Lens3,将第三滤光层CF3所属滤光结构CL的填充层FL定义为第三填充层FL3。
如图5所示,在第二实施方式中,可通过使折射率不同的滤光层CF对应的透镜层Lens的厚度进行差异化的设置,弥补出光效率的差异。具体来说,在两个折射率不同的滤光层CF所处的两个滤光结构CL中,不同折射率的透镜层Lens中折射率较大的滤光层CF所属滤光结构CL的透镜层Lens的厚度,大于折射率较小的滤光层CF所属滤光结构CL的透镜层Lens的厚度。可通过增厚折射率较大的透镜层Lens,提高全反射界面的范围,可提升聚光作用,从而增加在折射率较大的透镜层Lens发生全反射的光线,使其对出光效率的提升与折射率较小的透镜层Lens的效果接近或相同,从而提高显示面板的亮度的均匀性。
举例而言,第一透镜层Lens1的厚度可为2.5μm-3μm,也就是说,与第一滤光层CF1为一体结构的透镜层Lens凸起的高度为2.5μm-3μm。 第二透镜层Lens2的厚度为2μm-2.5μm,也就是说,与第二滤光层CF2为一体结构的透镜层Lens凸起的高度为2μm-2.5μm。第三透镜层Lens3的厚度为1.5μm-2um,也就是说,与第三滤光层CF3为一体结构的透镜层Lens凸起的高度为1.5μm-2um。
第一透镜层Lens1的厚度h1大于第二透镜层Lens2的厚度h2,第二透镜层Lens2的厚度大于第三透镜层Lens3的厚度h3。
其中,前述的三种透镜层Lens的厚度虽然在取值范围上存在重合点(2um和2.5μm),但并不意味着厚度相同,而只是限定了其取值的可能性,前提是要满足三者的大小关系。例如,第一透镜层Lens1的厚度可为2.5μm,第二透镜层Lens2的厚度可为2μm,第三透镜层Lens3的厚度为1.5μm。
如图6所示,在第三实施方式中,可通过使折射率不同的滤光层CF对应的第一透光孔HCL的侧壁的坡度角进行差异化的设置,弥补出光效率的差异。具体来说,在两个折射率不同的滤光层CF所处的两个滤光结构CL中,折射率较大的滤光层CF所属滤光结构CL的第一透光孔HCL的侧壁的坡度角,小于折射率较小的滤光层CF所属滤光结构CL的第一透光孔HCL的侧壁的坡度角。滤光层CF的折射率越大,则对应的第一透光孔HCL的侧壁则更加平缓,由于第一透光孔HCL的侧壁是向远离显示基板PNL的方向扩张的,侧壁越平缓,发光器件LD发出的照射至侧壁的光线的入射角越大,越容易达到全反射角,聚光效果越好,从而可提升出光效率。由此,可以实现聚光效果的差异化,并使出光效率的提升程度一致,从而提高显示面板的亮度的均匀性。
举例而言,第一透镜层Lens1的第一透光孔HCL的侧壁的坡度角可为45°-50°。第二透镜层Lens2的第一透光孔HCL的侧壁的坡度角可为50°-55°。第三透镜层Lens3的第一透光孔HCL的侧壁的坡度角可为55°-60°。第一透镜层Lens1的第一透光孔HCL的侧壁的坡度角α1小于第二透镜层Lens2的第一透光孔HCL的侧壁的坡度角α2,第二透镜层Lens2的第一透光孔HCL的侧壁的坡度角α2小于第三透镜层Lens3的第一透光孔HCL的侧壁的坡度角α3。
前述的三种第一透光孔HCL的坡度角虽然在取值范围上存在重合 点(50°和55°),但并不意味着坡度角可以相同,而只是限定了其取值的可能性,前提是要满足三者的大小关系。例如,第一透镜层Lens1的第一透光孔HCL的侧壁的坡度角可为45°;则第二透镜层Lens2的第一透光孔HCL的侧壁的坡度角可为50°;第三透镜层Lens3的第一透光孔HCL的侧壁的坡度角可为55°。
如图7所示,在第四实施方式中,还可通过使折射率不同的滤光层CF对应的填充层FL的折射率进行差异化的设置,弥补出光效率的差异。具体来说,在两个折射率不同的滤光层CF所处的两个滤光结构CL中,折射率较大的滤光层CF所属滤光结构CL的填充层FL的折射率,大于折射率较小的滤光层CF所属滤光结构CL的填充层FL的折射率。在透镜层Lens的折射率不变的情况下,填充层FL的折射率越大,其所处的第一透光孔HCL的侧壁处发生全反射的全反射角越小,越容易发生全反射,因此,通过使折射率较大的透镜层Lens内的填充层FL的折射率也相应增大,可以减小全反射角,使发光器件LD发出的更多的光线可以发生全反射,从而提升聚光效果,最终提高出光效率,由此,可以实现聚光效果的差异化,并使出光效率的提升程度一致,从而提高显示面板的亮度的均匀性。
举例而言,第一填充层FL1的折射率可为1.83-1.87,例如1.85。第二填充层FL2的折射率可为1.73-1.77,例如1.75。第三填充层FL3的折射率可为1.68-1.72,例如1.7。第一填充层FL1的折射率大于第二填充层F2的折射率,第二填充层F2的折射率大于第三填充层F3的折射率。
进一步的,如图7所示,为了简化工艺,可以使平坦覆盖层PLN与一种填充层FL的折射率相同,且采用一体结构,从而可以同时形成,例如:平坦覆盖层PLN可与第二填充层FL2为一体结构,也就是说,平坦覆盖层PLN的折射率可与第二填充层FL2的折射率相同。
在形成各填充层FL前,可先在透镜层Lens形成第一透光孔HCL,再在对应第一滤光层CF1和第二滤光层CF2的第一透光孔HCL中形成第一填充层FL1和第三填充层FL3,再形成覆盖第一填充层FL1和第二填充层FL2的平坦覆盖层PLN,平坦覆盖层PLN位于对应第二滤光层CF2的第一透光孔HCL中的部分即为第二填充层FL2。
此外,在本公开的其它实施方式中,对于上述第二至第四实施方式中提高亮度均匀性的方案中的任意两个,或者三个,可以进行结合,可以进一步增大聚光效果的差异,从而提高亮度的均匀性。举例而言:
在一些实施方式中,在两个折射率不同的滤光层CF所处的两个滤光结构CL中,可以使不同折射率的透镜层Lens中折射率较大的滤光层CF所属滤光结构CL的透镜层Lens的厚度,大于折射率较小的滤光层CF所属滤光结构CL的透镜层Lens的厚度。同时,还可以使折射率较大的滤光层CF所属滤光结构CL的第一透光孔HCL的侧壁的坡度角,小于折射率较小的滤光层CF所属滤光结构CL的第一透光孔HCL的侧壁的坡度角。
如图8所示,在一些实施方式中,在两个折射率不同的滤光层CF所处的两个滤光结构CL中,可以使不同折射率的透镜层Lens中折射率较大的滤光层CF所属滤光结构CL的透镜层Lens的厚度,大于折射率较小的滤光层CF所属滤光结构CL的透镜层Lens的厚度。同时,还可以使折射率较大的滤光层CF所属滤光结构CL的填充层FL的折射率,大于折射率较小的滤光层CF所属滤光结构CL的填充层FL的折射率。
在一些实施方式中,在两个折射率不同的滤光层CF所处的两个滤光结构CL中,可以使折射率较大的滤光层CF所属滤光结构CL的第一透光孔HCL的侧壁的坡度角,小于折射率较小的滤光层CF所属滤光结构CL的第一透光孔HCL的侧壁的坡度角。同时,还可以使折射率较大的滤光层CF所属滤光结构CL的填充层FL的折射率,大于折射率较小的滤光层CF所属滤光结构CL的填充层FL的折射率。
如图9所示,在一些实施方式中,在两个折射率不同的滤光层CF所处的两个滤光结构CL中,可以使不同折射率的透镜层Lens中折射率较大的滤光层CF所属滤光结构CL的透镜层Lens的厚度,大于折射率较小的滤光层CF所属滤光结构CL的透镜层Lens的厚度。同时,还可以使折射率较大的滤光层CF所属滤光结构CL的第一透光孔HCL的侧壁的坡度角,小于折射率较小的滤光层CF所属滤光结构CL的第一透光孔HCL的侧壁的坡度角。此外,折射率较大的滤光层CF所属滤光结构CL的填充层FL的折射率,大于折射率较小的滤光层CF所属滤光结构 CL的填充层FL的折射率。
如图1所示,盖板CG可设于滤光结构CL远离显示基板PNL的一侧,其材料可为玻璃或亚克力等透明材质,通过盖板CG可对其覆盖的膜层进行保护。发光器件LD发出的光线可在经过滤光结构CL后,最终由盖板CG和空气的界面出射,即由盖板CG远离显示基板PNL的表面出射,通过本公开的滤光结构CL,可以减少在该界面发生全反射的光线。
进一步的,如图2-图9所示,为了增大出光效率,可在显示基板PNL和滤光结构CL之间设置聚光层CO,聚光层CO可将发光器件LD发出的至少部分光线汇聚并射向对应的滤光结构CL的第一透光孔HCL,从而增强聚光效果。
如图2-图9所示,在本公开的一些实施方式中,聚光层CO也可利用全反射实现聚光,具体而言,聚光层CO可包括第一折射层RL1和第二折射层RL2,其中:
第一折射层RL1可设于显示基板PNL的出光侧,例如,第一折射层RL1可设于封装层TFE远离驱动背板BP的一侧,且第一折射层RL1可具有多个第二透光孔HRL,一第二透光孔HRL与一发光器件LD和一第一透光孔HCL对应,从而可形成供发光器件LD发出的光线出射的通道。
如图12所示,对于一发光器件LD及其对应的第一透光孔HCL和第二透光孔HRL而言,可使限定该发光器件LD的开口HP在驱动背板BP上的正投影位于该第二透光孔HRL在驱动背板BP上的正投影以内,而第二透光孔HRL在驱动背板BP上的正投影位于第一透光孔HCL在驱动背板BP上的正投影以内,也就是说,存在对应关系的开口HP、第二透光孔HRL和第一透光孔HCL的三者的边界可以沿远离驱动背板BP的方向增大。当然,三者的边界也可以对齐,只要透镜层Lens和第一折射层RL1不遮挡开口HP即可。
同时,第二透光孔HRL的侧壁可沿远离显示基板PNL的方向扩张,其侧壁的形式可与第一透光孔HCL相同,也可以是多个平面围成,或者由一个或多个曲面围成。举例而言,一开口HP及其对应的第一透光孔HCL和第二透光孔HRL的侧壁均由N个平面围成,N可以是4、5、6 等正整数。
第二折射层RL2可覆盖第一折射层RL1,且填充第二透光孔HRL。第二折射层RL2可起到平坦化的作用,即第二折射层RL2远离显示基板PNL的表面为平面,其材料可与平坦覆盖层PLN的材料相同。上文中的滤光层CF和吸光层BM可设于第二折射层RL2远离显示基板PNL的表面。
第二折射层RL2的折射率大于第一折射层RL1的折射率,使得发光器件LD发出的部分光线在第二透光孔HRL的侧壁处发生全反射,且反射后的光线可以经由第一透光孔HCL出射,对于未经第二透光孔HRL的侧壁全反射,而进入第一透光孔HCL的光线,可在第一透光孔HCL的侧壁发生全反射,由此,可通过第二透光孔HRL和第一透光孔HCL的侧壁对发光器件LD发出的光线进行全反射,实现聚光,以提高出光效率。
举例而言,第一折射层RL1可采用光学胶等透明材料,其折射率可为1.45-1.5,第二折射层RL2可采用光学胶等透明材料,其折射率可为1.7-1.75。此外,对于透镜层Lens和滤光层CF采用不同材料的滤光结构CL,其透镜层Lens也可采用光学胶等透明材料,其折射率可为1.5,填充层FL和平坦覆盖层PLN的材料可与第二折射层RL2相同,折射率也可为1.7-1.75。
在本公开的其它实施方式中,聚光层CO也可包括多个可以聚光的凸透镜,每个凸透镜可与一发光器件LD对应,可通过凸透镜实现聚光。
此外,在本公开的显示面板中,聚光层CO的数量可以是多个,且沿远离显示基板PNL的方向堆叠,滤光结构CL可设于距离显示基板PNL最远的聚光层CO上。
通过实验验证,在第一类实施方式的基础上,结合一层上述的聚光层CO的显示面板,出光增益可达到37.2%。在第二类实施方式的第一实施方式的基础上,结合一层上述的聚光层CO的显示面板,出光增益可达到35.5%。
此外,如图3-图7以及图10和图11所示,在本公开的一些实施方 式中,显示面板还包括触控层,其可其可设于显示基板PNL的出光侧,例如,触控层可设于封装层TFE远离驱动背板BP的一侧,且用于感应触控操作。
触控层可包括触控电极层TMB,第一折射层RL1可覆盖触控电极层TMB,可利用第一折射层RL1对触控电极进行保护,避免在触控层中设置专门的保护层。当然,在本公开的一些实施方式中,也可以设置覆盖触控电极层TMB的保护层,第一折射层RL1设于保护层远离显示基板PNL的表面。同时,为了提高透光率,减少触控电极层TMB对发光器件LD的遮挡,触控电极层TMB可为由多个通道线Ltm连接成的网状结构,该网状结构具有多个网孔TH。一个发光器件LD可与一个网孔TH对应,即一发光器件LD在驱动背板BP上的正投影位于一网孔TH在驱动背板BP上的正投影内。在本公开的一些实施方式中,一个网孔TH可仅与一个发光器件LD对应,且网孔TH的形状可与发光器件LD的形状相同。当然,在本公开的其它实施方式中,一个网孔TH也可以与多个发光器件LD对应。
如图3-图7所示,通道线Ltm的宽度小于相邻两第二透光孔HRL之间的距离,使得通道线Ltm在显示基板PNL上的正投影位于吸光层BM在显示基板PNL上的正投影以内,从而可以避免通道线Ltm遮挡发光器件LD。
以触控层TPS采用互容式触控结构为例,如图10所示,触控层可包括多个第一触控电极Tx和多个第二触控电极Rx,各第一触控电极Tx可沿行方向X间隔分布,一第一触控电极Tx可包括沿列方向Y间隔分布的多个第一电极块Txc以及连接相邻两第一电极块Txc的转接桥BR;各第二触控电极Rx可沿列方向Y间隔分布,一第二触控电极Rx包括沿行方向X串联的多个第二电极块Rxc;一转接桥BR与一第二触控电极Rx交叉且绝缘设置。第一触控电极Tx和第二触控电极Rx中的一个可作为发射电极,另一个作为接收电极。
如图11所示,上述的第一电极块Txc和第二触控电极Rx均位于触控电极层TMB,即第一电极块Txc和第二触控电极Rx同层设置,从而可通过相同的工艺同时形成。转接桥BR则可位于转接层,其可位于触 控电极层TMB和封装层TFE之间。此外,触控层还可包括缓冲层TLD和隔离层SEP,其中:
如图3-图7所示,缓冲层TLD可设于封装层TFE远离驱动背板BP的表面,其材料可以采用氮化硅、氧化硅等绝缘材料,在此不做特殊限定。转接层可设于缓冲层TLD远离驱动背板BP的表面,且包括多个阵列分布的转接桥BR。转接层可采用金属或其它导电材料。
隔离层SEP可覆盖转接层,且隔离层SEP的材料可采用氮化硅、氧化硅等绝缘材料,在此不做特殊限定。触控电极层TMB可设于隔离层SEP远离驱动背板BP的表面,且包括上述的第一电极块Txc和第二触控电极Rx。第一折射层RL1可覆盖触控电极层TMB和未被触控电极层TMB覆盖的隔离层SEP。同时,由于第一折射层RL1具有第二透光孔HRL,因而位于第二透光孔HRL内的第二折射层RL2可与隔离层SEP接触。
此外,触控层也可以采用自容式触控结构,触控电极层TMB可包括多个阵列分布的电极块,每个电极块均可通过独立的走线与外围的触控驱动电路连接,具体结构在此不再详述。
本公开还提供一种显示装置,该显示装置可包括上述任意实施方式的显示面板。该显示面板为上述任意实施方式的显示面板,其具体结构和有益效果可参考上文中显示面板的实施方式,在此不再赘述。本公开的显示装置可以是手机、平板电脑、电视等具有显示功能的电子设备,在此不再一一列举。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由所附的权利要求指出。

Claims (18)

  1. 一种显示面板,其中,包括:
    显示基板,具有阵列分布的多个发光器件;
    多个滤光结构,设于所述显示基板的出光侧,一所述发光器件与一所述滤光结构对应;至少一部分所述滤光结构包括滤光层、透镜层和填充层,所述透镜层位于所述滤光层远离所述显示基板的一侧,且设有露出所述滤光层的至少部分区域的第一透光孔,所述第一透光孔的侧壁沿远离所述显示基板的方向扩张;所述填充层填充于所述第一透光孔内,且层叠于所述滤光层远离所述显示基板的表面,所述填充层的折射率大于其填充的第一透光孔所处的透镜层的折射率;
    盖板,设于所述滤光结构远离所述显示基板的一侧。
  2. 根据权利要求1所述的显示面板,其中,同一所述滤光结构的透镜层和滤光层的材料不同。
  3. 根据权利要求2所述的显示面板,其中,各所述透镜层连接为一体结构。
  4. 根据权利要求1所述的显示面板,其中,同一所述滤光结构的透镜层和滤光层为一体结构。
  5. 根据权利要求4所述的显示面板,其中,各所述滤光结构的滤光层中包括至少两种不同颜色的滤光层;不同颜色的所述滤光层的折射率不同;
    在两个折射率不同的滤光层所处的两个所述滤光结构中,折射率较大的滤光层所属滤光结构的透镜层的厚度,大于折射率较小的滤光层所属滤光结构的透镜层的厚度。
  6. 根据权利要求5所述的显示面板,其中,所述滤光层中包括颜色不同的第一滤光层、第二滤光层和第三滤光层,且所述第一滤光层的折射率大于所述第二滤光层的折射率,所述第二滤光层的折射率大于所述第三滤光层的折射率;
    所述第一滤光层所属滤光结构的透镜层的厚度为2.5μm-3μm;
    所述第二滤光层所属滤光结构的透镜层的厚度为2μm-2.5μm;
    所述第三滤光层所属滤光结构的透镜层的厚度为1.5μm-2um。
  7. 根据权利要求4所述的显示面板,其中,各所述滤光结构的滤光层中包括至少两种不同颜色的滤光层;不同颜色的所述滤光层的折射率不同;
    在两个折射率不同的滤光层所处的两个所述滤光结构中,折射率较大的滤光层所属滤光结构的第一透光孔的侧壁的坡度角,小于折射率较小的滤光层所属滤光结构的第一透光孔的侧壁的坡度角。
  8. 根据权利要求7所述的显示面板,其中,所述滤光层中包括颜色不同的第一滤光层、第二滤光层和第三滤光层,且所述第一滤光层的折射率大于所述第二滤光层的折射率,所述第二滤光层的折射率大于所述第三滤光层的折射率;
    所述第一滤光层所属滤光结构的第一透光孔的侧壁的坡度角为45°-50°;
    所述第二滤光层所属滤光结构的第一透光孔的侧壁的坡度角为50°-55°;
    所述第三滤光层所属滤光结构的第一透光孔的侧壁的坡度角为55°-60°。
  9. 根据权利要求4所述的显示面板,其中,各所述滤光结构的滤光层中包括至少两种不同颜色的滤光层;不同颜色的所述滤光层的折射率不同;
    在两个折射率不同的滤光层所处的两个所述滤光结构中,折射率较大的滤光层所属滤光结构的填充层的折射率,大于折射率较小的滤光层所属滤光结构的填充层的折射率。
  10. 根据权利要求9所述的显示面板,其中,所述滤光层中包括颜色不同的第一滤光层、第二滤光层和第三滤光层,且所述第一滤光层的折射率大于所述第二滤光层的折射率,所述第二滤光层的折射率大于所述第三滤光层的折射率;
    所述第一滤光层所属滤光结构的填充层的折射率为1.83-1.87;
    所述第二滤光层所属滤光结构的填充层的折射率为1.73-1.77;
    所述第三滤光层所属滤光结构的填充层的折射率为1.68-1.72。
  11. 根据权利要求1-10任一项所述的显示面板,其中,所述显示面 板还包括:
    平坦覆盖层,覆盖各所述滤光结构,且所述平坦覆盖层的折射率不小于所述填充层的折射率。
  12. 根据权利要求11所述的显示面板,其中,所述平坦覆盖层与至少一个所述填充层为一体结构。
  13. 根据权利要求1-10任一项所述的显示面板,其中,所述显示面板还包括:
    吸光层,与所述滤光层设于同一表面,且具有多个通孔,一所述通孔与一所述发光器件对应;一所述滤光层的至少部分区域位于一所述通孔内。
  14. 根据权利要求1-13任一项所述的显示面板,其中,所述显示面板还包括:
    聚光层,设于所述显示基板和所述滤光结构之间,用于将所述发光器件发出的至少部分光线汇聚并射向对应的滤光结构的第一透光孔。
  15. 根据权利要求14所述的显示面板,其中,所述聚光层包括:
    第一折射层,设于所述显示基板的出光侧,且具有多个第二透光孔,一所述第二透光孔与一所述发光器件和一所述第一透光孔对应,所述第二透光孔的侧壁沿远离所述显示基板的方向扩张;
    第二折射层,覆盖所述第一折射层,且填充所述第二透光孔;所述第二折射层的折射率大于所述第一折射层的折射率。
  16. 根据权利要求15所述的显示面板,其中,所述显示面板还包括驱动背板和像素定义层,所述像素定义层与所述发光器件设于所述驱动背板的同一侧,且所述像素定义层设有限定各所述发光器件的范围开口;
    在一所述开口及其对应的第一透光孔和第二透光孔中,所述开口在所述驱动背板上的正投影位于所述第二透光孔在所述驱动背板上的正投影以内,所述第二透光孔在所述驱动背板上的正投影位于所述第一透光孔在驱动背板上的正投影以内。
  17. 根据权利要求15所述的显示面板,其中,所述显示面板还包括:
    触控电极层,设于所述显示基板的出光侧,所述第一折射层覆盖所述触控电极层;所述触控电极层为由多个通道线连接成的具有多个网孔 的网状结构;至少一所述发光器件与一所述网孔对应;所述通道线的宽度小于相邻两所述第二透光孔之间的距离。
  18. 一种显示装置,其中,包括权利要求1-17任一项所述的显示面板。
PCT/CN2022/094512 2022-05-23 2022-05-23 显示面板及显示装置 WO2023225805A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/094512 WO2023225805A1 (zh) 2022-05-23 2022-05-23 显示面板及显示装置
CN202280001366.3A CN117461401A (zh) 2022-05-23 2022-05-23 显示面板及显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/094512 WO2023225805A1 (zh) 2022-05-23 2022-05-23 显示面板及显示装置

Publications (1)

Publication Number Publication Date
WO2023225805A1 true WO2023225805A1 (zh) 2023-11-30

Family

ID=88918161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/094512 WO2023225805A1 (zh) 2022-05-23 2022-05-23 显示面板及显示装置

Country Status (2)

Country Link
CN (1) CN117461401A (zh)
WO (1) WO2023225805A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040080938A1 (en) * 2001-12-14 2004-04-29 Digital Optics International Corporation Uniform illumination system
CN104020600A (zh) * 2014-05-27 2014-09-03 京东方科技集团股份有限公司 显示面板和显示装置
KR20190097914A (ko) * 2018-02-13 2019-08-21 동우 화인켐 주식회사 컬러필터 및 이를 포함하는 표시 장치
CN111653683A (zh) * 2020-06-16 2020-09-11 京东方科技集团股份有限公司 显示面板和显示装置
CN112840744A (zh) * 2018-10-16 2021-05-25 索尼公司 显示装置
CN114203929A (zh) * 2021-12-09 2022-03-18 武汉华星光电半导体显示技术有限公司 显示面板及移动终端
CN114518661A (zh) * 2020-11-19 2022-05-20 京东方科技集团股份有限公司 一种显示面板及其制作方法、显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040080938A1 (en) * 2001-12-14 2004-04-29 Digital Optics International Corporation Uniform illumination system
CN104020600A (zh) * 2014-05-27 2014-09-03 京东方科技集团股份有限公司 显示面板和显示装置
KR20190097914A (ko) * 2018-02-13 2019-08-21 동우 화인켐 주식회사 컬러필터 및 이를 포함하는 표시 장치
CN112840744A (zh) * 2018-10-16 2021-05-25 索尼公司 显示装置
CN111653683A (zh) * 2020-06-16 2020-09-11 京东方科技集团股份有限公司 显示面板和显示装置
CN114518661A (zh) * 2020-11-19 2022-05-20 京东方科技集团股份有限公司 一种显示面板及其制作方法、显示装置
CN114203929A (zh) * 2021-12-09 2022-03-18 武汉华星光电半导体显示技术有限公司 显示面板及移动终端

Also Published As

Publication number Publication date
CN117461401A (zh) 2024-01-26

Similar Documents

Publication Publication Date Title
KR102476117B1 (ko) 유기발광 표시장치
CN113629208B (zh) 显示面板及显示装置
CN111564571B (zh) Oled显示面板及显示装置
CN113224250B (zh) 显示面板以及显示装置
CN111628107B (zh) 显示面板
WO2020211206A1 (zh) 显示面板和电子设备
US20220069261A1 (en) Display panel and display device
CN114242913B (zh) 显示面板及电子装置
KR102237117B1 (ko) 유기 발광 표시 장치
CN113078193B (zh) 一种显示面板和显示装置
CN113920549A (zh) 显示面板及显示装置
WO2023225805A1 (zh) 显示面板及显示装置
KR20210100796A (ko) 표시패널 및 이의 제조 방법
CN218831214U (zh) 显示基板、显示面板
CN115207076A (zh) 显示基板、显示面板
CN115064567A (zh) 一种显示面板、显示面板的制作方法及显示装置
CN115172623A (zh) 显示面板及其制备方法和显示装置
CN115036342A (zh) 一种显示基板、显示面板
WO2023205966A1 (zh) 显示装置、显示面板及其制造方法
WO2023197165A1 (zh) 显示面板及显示装置
WO2023115346A1 (zh) 显示装置、显示面板及其制造方法
US20230076282A1 (en) Display panel and display apparatus
CN114967210B (zh) 一种反射显示模组及其制备方法
WO2024065615A1 (zh) 显示面板及其制备方法、显示装置及其驱动方法
WO2024020805A1 (zh) 背光模组及显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280001366.3

Country of ref document: CN