WO2024020805A1 - 背光模组及显示装置 - Google Patents

背光模组及显示装置 Download PDF

Info

Publication number
WO2024020805A1
WO2024020805A1 PCT/CN2022/108029 CN2022108029W WO2024020805A1 WO 2024020805 A1 WO2024020805 A1 WO 2024020805A1 CN 2022108029 W CN2022108029 W CN 2022108029W WO 2024020805 A1 WO2024020805 A1 WO 2024020805A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
backlight module
transmitting substrate
substrate
Prior art date
Application number
PCT/CN2022/108029
Other languages
English (en)
French (fr)
Inventor
孟宪芹
曲燕
彭玮婷
何伟
王维
张春芳
凌秋雨
梁蓬霞
陈小川
董学
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202280002366.5A priority Critical patent/CN117916655A/zh
Priority to PCT/CN2022/108029 priority patent/WO2024020805A1/zh
Publication of WO2024020805A1 publication Critical patent/WO2024020805A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices

Definitions

  • the present disclosure relates to the field of display technology, and specifically, to a backlight module and a display device.
  • point light sources are used as backlight sources. It is usually necessary to provide sufficient light path to uniformize the point light sources arranged in a point array into a surface light source, resulting in a thicker thickness of the final backlight module.
  • the present disclosure provides a backlight module and a display device.
  • a backlight module including a light-emitting substrate, an encapsulation layer and a first reflective layer.
  • the light-emitting substrate includes a light-transmitting substrate and a plurality of light-emitting units.
  • the plurality of light-emitting unit arrays are arranged on the light-transmitting substrate.
  • the encapsulation layer is provided on the side of the plurality of light-emitting units away from the light-transmitting substrate, and the orthographic projection of the encapsulating layer on the light-transmitting substrate at least covers the orthographic projection of the plurality of light-emitting units on the light-transmitting substrate;
  • the first reflective layer is provided on The side of the encapsulation layer away from the light-transmitting substrate, the orthographic projection of the first reflective layer on the light-transmitting substrate at least covers the orthographic projections of the plurality of light-emitting units on the light-transmitting substrate, and the first reflective layer is a Lambertian body.
  • a side of the first reflective layer close to the light-transmitting substrate is a rough surface, and the roughness of the rough surface is greater than 2 microns.
  • the first reflective layer includes a bubble-bearing reflective sheet, the first reflective layer includes a plurality of bubbles and a protective film wrapped around the plurality of bubbles, and the diameter of the bubbles is greater than 2 Micron.
  • color transfer particles of at least one color are wrapped in the encapsulation layer.
  • the encapsulation layer includes a plurality of sub-layers.
  • the plurality of sub-layers are respectively a first barrier layer, a color conversion layer and a second barrier layer.
  • the first barrier layer is disposed on the plurality of light-emitting units away from the light-transmitting substrate.
  • the color conversion layer is provided on the side of the first barrier layer away from the light-transmitting substrate, and the second barrier layer is provided on the side of the color conversion layer away from the light-transmitting substrate.
  • the color conversion layer is wrapped with color-conversion particles of at least one color. .
  • the encapsulation layer includes a plurality of sub-parts, each sub-part wraps a light-emitting unit, and each sub-part wraps at least one color of color transfer particles.
  • the first driving layer group further includes a third reflective layer
  • the second reflective layer is provided between the light-transmitting substrate and the first conductive layer
  • the orthographic projection of the third reflective layer on the light-transmitting substrate Covering the orthographic projection of the first trace on the light-transmissive substrate, the orthographic projection of the third reflective layer on the light-transmissive substrate covers the orthographic projection of the second trace on the light-transmissive substrate.
  • the first reflective layer includes a plurality of first reflective parts, each first reflective part wrapping a sub-part.
  • the material of the color transfer particles is nitride phosphor or fluoride phosphor.
  • the backlight module further includes a first driving layer group.
  • the first driving layer group includes a first conductive layer, a first insulating layer, a second conductive layer and a second insulating layer.
  • the first conductive layer is disposed on the same side of the light-transmitting substrate as the light-emitting unit.
  • the first conductive layer includes a plurality of first traces.
  • the first insulating layer is disposed on a side of the first conductive layer away from the light-transmitting substrate and is located on two adjacent third Between the traces, the first insulating layer is provided with a first opening exposing the first conductive layer; the second conductive layer is provided on a side of the first insulating layer away from the light-transmitting substrate, and the second conductive layer includes a plurality of second conductive layers. wiring, the second wiring passes through the first opening and is connected to the first wiring and is connected to the light-emitting unit; the second insulating layer is provided on the side of the second conductive layer away from the light-transmitting substrate, and is located on two adjacent second between traces.
  • the first driving layer group further includes a second reflective layer.
  • the second reflective layer is provided between the second conductive layer and the second insulating layer.
  • the second reflective layer is on the front surface of the light-transmitting substrate.
  • the projection at least partially overlaps with the orthographic projection of the first wiring on the light-transmitting substrate, and the orthographic projection of the second reflective layer on the light-transmitting substrate at least partially overlaps with the orthographic projection of the second wiring on the light-transmitting substrate.
  • both the first insulating layer and the second insulating layer are optical glue, and the transmittance of the optical glue to the light emitted from the light-emitting unit is greater than 95%.
  • the portion of the first insulating layer located between two adjacent first traces is provided with a second opening, and/or the second insulating layer is located between two adjacent second traces. part is provided with a third opening.
  • the first driving layer group further includes a third reflective layer
  • the second reflective layer is provided between the light-transmitting substrate and the first conductive layer
  • the orthographic projection of the third reflective layer on the light-transmitting substrate Covering the orthographic projection of the first trace on the light-transmissive substrate, the orthographic projection of the third reflective layer on the light-transmissive substrate covers the orthographic projection of the second trace on the light-transmissive substrate.
  • the first trace and the second trace are reflective parts, and the portion of the first insulating layer between the first traces and the portion of the second insulating layer between the second traces are The area of the light-transmitting part and the orthographic projection of the light-transmitting part on the light-transmitting substrate accounts for more than 87% of the orthogonal projection of the first driving layer group on the light-transmitting substrate.
  • the backlight module includes multiple light-emitting areas. In different light-emitting areas, the spacing between two adjacent first traces is different, and the spacing between two adjacent second traces is different. The spacing is different.
  • multiple light-emitting units are arranged into a plurality of interlaced equilateral triangle light-emitting groups.
  • Each equilateral triangle light-emitting group includes three light-emitting units, and the three light-emitting units are respectively provided at the ends of the equilateral triangle light-emitting groups.
  • Three vertices, two adjacent equilateral triangle light-emitting groups share two light-emitting units.
  • the backlight module further includes a polarizing layer and a diffusion layer.
  • the polarizing layer is located on the other side of the light-transmitting substrate away from the light-emitting unit; and the diffusion layer is located on the side of the polarizing layer away from the light-transmitting substrate.
  • a display device including the backlight module described in any one of the above.
  • FIG. 1 is a schematic structural diagram of a backlight module related to the related art.
  • FIG. 2 is a schematic structural diagram of a backlight module according to an embodiment of the present disclosure.
  • FIG. 3 is a light intensity distribution diagram at different angles of a light-emitting unit according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of the light intensity proportion distribution at different angles of the light-emitting unit according to the embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of the relationship between the size of the light-emitting unit and the backlight uniformity according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram showing the relationship between the size of the light-emitting unit and the light efficiency according to the embodiment of the present disclosure.
  • FIG. 7 is a schematic distribution diagram of multiple light-emitting units according to an embodiment of the present disclosure.
  • FIG. 8 is another structural schematic diagram of a backlight module according to an embodiment of the present disclosure.
  • FIG. 9 is another structural schematic diagram of a backlight module according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of the light transmittance of different backlight modules according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram illustrating the expandable range of a light-emitting unit according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a backlight module according to an embodiment of the present disclosure that increases the optical path by changing the light emission direction.
  • FIG. 13 is a schematic structural diagram of a backlight module according to an embodiment of the present disclosure that increases the optical path through scattering.
  • FIG. 14 is a schematic structural diagram of a color conversion layer according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of another color conversion layer according to an embodiment of the present disclosure.
  • FIG. 16 is a schematic structural diagram of another backlight module in the related art.
  • FIG. 17 is a schematic diagram comparing the spectrum of the backlight module according to the embodiment of the present disclosure and the spectrum of another backlight module in the related art.
  • FIG. 18 is a schematic structural diagram of a display device according to an embodiment of the present disclosure.
  • FIG. 19 is a schematic structural diagram of a display panel according to an embodiment of the present disclosure.
  • Example embodiments will now be described more fully with reference to the accompanying drawings.
  • Example embodiments may, however, be embodied in various forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete and will fully convey the concepts of the example embodiments.
  • the same reference numerals in the drawings indicate the same or similar structures, and thus their detailed descriptions will be omitted.
  • the drawings are merely schematic illustrations of the present disclosure and are not necessarily drawn to scale.
  • Inorganic light-emitting diodes are usually used as backlight sources (Back Light Unit, BLU).
  • Inorganic light-emitting diodes refer to light-emitting elements made of inorganic materials, where LED means inorganic light-emitting elements that are different from OLED.
  • inorganic light-emitting elements may include sub-millimeter light-emitting diodes (Mini Light Emitting Diode, English abbreviation: Mini LED) and micro-light emitting diodes (Micro Light Emitting Diode, English abbreviation: Micro LED).
  • sub-millimeter light-emitting diodes i.e. Mini LED
  • Mini LED refer to small light-emitting diodes with a grain size between Micro LED and traditional LED.
  • the grain size of Mini LED can be between 100 and 300 microns.
  • the backlight module includes a light-emitting substrate 11.
  • the light-emitting substrate 11 includes a light-transmitting substrate 111 and a light-emitting unit 112.
  • a plurality of light-emitting units 112 are arranged in an array on one side of the light-transmitting substrate 111.
  • brush white oil between the light-emitting units 112 to form the first reflective layer 13 .
  • An encapsulation layer 12 is formed on the side of the light-emitting unit 112 and the first reflective layer 13 away from the light-transmitting substrate 111 .
  • An air gap 18 is reserved on the side of the encapsulation layer 12 away from the light-transmitting substrate 111 .
  • the air gap 18 is away from the light-transmitting substrate 111
  • a diffuser plate 19 is formed on one side of the diffuser plate 19
  • a color conversion layer is formed on the side of the diffuser plate 19 away from the light-transmitting substrate 111
  • a polarizing layer 14 is formed on the side of the color conversion layer away from the light-transmitting substrate 111.
  • the polarizing layer 14 is a cross prism sheet.
  • the diffusion layer 15 is formed on the side of the polarizing layer 14 away from the light-transmitting substrate 111 .
  • the light-emitting unit 112 arranged in an array provides emitted light.
  • the light unit uses blue Mini-LED, so the emitted light is blue light.
  • the air gap 18 and the diffusion plate 19 are used to provide sufficient optical path.
  • the light-emitting units 112 are arranged in a point array and are uniformly formed into a surface light source.
  • the color conversion layer is used to convert blue light into white light.
  • the orthogonal prism sheet is used to converge the light emitted at a large angle to a viewing angle, thereby increasing the viewing angle.
  • the diffusion sheet is used to increase the uniformity drop caused by the convergence to the product demand value again, and the reflective layer is used to reflect the reflected light of the color conversion layer 121, the diffusion plate 19 and the packaging layer 12
  • the emitted light is reused to enhance the brightness of the backlight module.
  • the thickness of the backlight module of this structure is relatively large, which is not conducive to achieving a thinner and lighter display device.
  • the backlight module includes a light-emitting substrate 11 , an encapsulation layer 12 and a first reflective layer 13 .
  • the light-emitting substrate 11 includes a light-transmitting substrate 111 and a plurality of light-emitting units 112 .
  • the plurality of light-emitting units 112 are arranged in an array. Distributed on one side of the light-transmitting substrate 111; the encapsulating layer 12 is provided on the side of the plurality of light-emitting units 112 away from the light-transmitting substrate 111.
  • the orthographic projection of the encapsulating layer 12 on the light-transmitting substrate 111 at least covers the plurality of light-emitting units 112 on the transparent substrate 111.
  • Orthographic projection on the light substrate 111; the first reflective layer 13 is provided on the side of the encapsulation layer 12 away from the light-transmissive substrate 111, and the orthographic projection of the first reflective layer 13 on the light-transmissive substrate 111 at least covers the plurality of light-emitting units 112 on the transparent substrate 111.
  • the first reflective layer 13 is Lambertian.
  • the emitted light from the light-emitting unit 112 passes through the encapsulation layer 12 and then is transmitted to the surface of the first reflective layer 13. After being reflected by the surface of the first reflective layer 13, it passes through the encapsulation layer 12 again, enters the light-transmitting substrate 111 from the encapsulation layer 12, and then passes through the light-transmitting substrate. The side of 111 away from the light emitting unit 112 emits light. Effectively utilize the thickness of the encapsulation layer 12 and the light-transmitting substrate 111 to increase the optical path and reduce the thickness of the backlight module.
  • the first reflective layer 13 is a Lambertian body.
  • This backlight module eliminates the thickness of the air gap 18 and the diffusion plate, so the total thickness of the backlight module is greatly reduced, which is beneficial to achieving a thinner and lighter display device.
  • the backlight module usually also includes a polarizing layer 14 and a diffusion layer 15.
  • the polarizing layer 14 is located on the other side of the light-transmitting substrate 111 away from the light-emitting unit 112; the diffusion layer 15 is located on the side of the polarizing layer 14 away from the light-transmitting substrate 111.
  • the polarizing layer 14 is an orthogonal prism film, and two orthogonal prism films can be integrated into one piece to meet the brightness requirements of the display device and reduce the backlight power consumption and thickness.
  • the diffusion sheet re-uniforms the light condensed by the polarizing layer 14 to meet the backlight uniformity requirements of the display device.
  • Lambertian body refers to the phenomenon when the incident energy is uniformly reflected in all directions, that is, the incident energy is centered on the incident point and reflects energy isotropically around the entire hemispheric space, which is called diffuse reflection, also known as Isotropic reflection, a perfect diffuser is called a Lambertian body.
  • the light incident on the surface of the first reflective layer 13 can be reflected back to the encapsulation layer 12 , the light-transmitting substrate 111 , the polarizing layer 14 and the diffusion layer 15 in a manner close to Lambertian scattering.
  • a plurality of light-emitting units 112 are arranged in an array on one side of the light-transmitting substrate 111.
  • the light-emitting units 112 can be mini-LEDs.
  • the luminescence of mini-LEDs is a near-Lambertian luminescence, and its luminous beam angle is Distributed within the range of ⁇ 90°, the luminous intensity of the MLED chip is shown in Equation 1:
  • the light intensity will also show a cosine distribution as the light emission angle changes. Based on this, the distribution of light intensity at different angles is shown in Figure 3. It can be found that the light intensity of mini-LED is mainly concentrated in the small angle range. The larger the emission angle, the weaker the light intensity.
  • the incident light angle when the incident light angle is less than 20°, nearly 35% of the LED light is concentrated in this range. When the incident light angle is greater than 80°, only 1.7% of the light is distributed in this area. If it is to be used as the light source of the light-emitting substrate 11, it is expected that the light intensity of the light-emitting unit 112 is uniformly distributed in the range of 0-90°. Therefore, the center light intensity of the light-emitting unit 112 is reduced and the edge light intensity is increased, achieving a bat-like light emission pattern. While improving the uniformity of light emission of the light-emitting substrate 11, the distance between adjacent light-emitting units 112 can be increased.
  • the influence of the size of the light-emitting unit 112 on the backlight light efficiency and uniformity is analyzed.
  • the triangle represents the smallest size mini-LED, for example: 05mil ⁇ 09mil
  • the circle represents the medium size mini-LED, for example: 08mil ⁇ 08mil
  • the square represents the largest size mini-LED, for example: 12mil ⁇ 12mil.
  • the light uniformity can be improved by controlling the light pattern of mini-LED.
  • the larger the size of the mini-LED the worse the light uniformity.
  • the impact of the size of the mini-LED on the light efficiency is not very obvious.
  • the mini-LED can be a mini-LED that emits blue light, and the size of the mini-LED is 05mil ⁇ 09mil.
  • the plurality of light-emitting units 112 are arranged into a plurality of interlaced equilateral triangle light-emitting groups.
  • Each equilateral triangle light-emitting group includes three light-emitting units 112 , and the three light-emitting units 112 are respectively provided at the ends of the equilateral triangle light-emitting groups.
  • two adjacent equilateral triangle light-emitting groups share two light-emitting units 112 .
  • the light-emitting units 112 are arranged in an equilateral triangle, which can reduce the number of the light-emitting units 112.
  • the distance between two adjacent light-emitting units 112 is 4.75 mm.
  • the backlight module also includes driving wires 110 , which can be electrically connected to the first electrode and the second electrode of each light-emitting unit 112 for providing electrical signals to each light-emitting unit 112 .
  • driving wires 110 can be electrically connected to the first electrode and the second electrode of each light-emitting unit 112 for providing electrical signals to each light-emitting unit 112 .
  • an insulating layer is used for filling.
  • the driving traces 110 are defined as the reflective part, the insulating layer between the driving traces 110 is the light-transmitting part, and the area of the orthogonal projection of the light-transmitting part on the light-transmitting substrate 111 occupies the orthogonal area of the first driving layer group on the light-transmitting substrate 111 More than 87% of the projection.
  • the driving traces and the insulating layer between the driving traces form a first driving layer group.
  • a first buffer layer 16 is provided between the first driving layer group and the light-transmitting substrate 111.
  • the first driving layer group The light-emitting unit 112 is provided on the same side of the light-transmitting substrate 111 .
  • the driving traces include a first conductive layer 113 and a second conductive layer 115.
  • the insulating layer includes a first insulating layer 114 and a second insulating layer 116.
  • the first conductive layer 113 and the light-emitting unit 112 are provided on the same side of the light-transmitting substrate 111.
  • the first conductive layer 113 includes a plurality of first traces; the first insulating layer 114 is provided on a side of the first conductive layer 113 away from the light-transmitting substrate 111 and is located between two adjacent first traces.
  • the insulating layer 114 is provided with a first opening exposing the first conductive layer 113; the second conductive layer 115 is provided on a side of the first insulating layer 114 away from the light-transmitting substrate 111, and the second conductive layer 115 includes a plurality of second traces 1151.
  • the second trace 1151 is connected to the first trace through the first opening and connected to the light-emitting unit 112; the second insulating layer 116 is provided on the side of the second conductive layer 115 away from the light-transmitting substrate 111 and is located adjacent to Between the two second traces 1151.
  • the first trace and the second trace 1151 form a reflective part.
  • the portion of the first insulating layer 114 located between the first traces and the portion of the second insulating layer 116 located between the second traces 1151 form the reflective portion.
  • the backlight module includes multiple light-emitting areas. In different light-emitting areas, the spacing between two adjacent first traces is different, and the spacing between two adjacent second traces 1151 is different.
  • the proportion of the reflective portion in the light-emitting area can be varied by controlling the distribution density of the first wiring and the second wiring 1151 to control the luminous flux of the light emitted by the backlight module and achieve uniform light emission.
  • the first driving layer group may also include a third reflective layer 118.
  • the third reflective layer 118 is provided between the light-transmitting substrate 111 and the first conductive layer 113.
  • the orthographic projection on the substrate 111 covers the orthographic projection of the first trace on the translucent substrate 111
  • the orthographic projection of the third reflective layer 118 on the translucent substrate 111 covers the orthographic projection of the second trace 1151 on the translucent substrate 111 .
  • first protective layer 119 is disposed between the second insulating layers 116 .
  • the first driving layer group may also include a second reflective layer 117.
  • the second reflective layer 117 is provided between the second conductive layer 115 and the second insulating layer 116.
  • the orthographic projection of the reflective layer 117 on the light-transmissive substrate 111 and the orthographic projection of the first trace on the light-transmissive substrate 111 at least partially overlap, and the orthographic projection of the second reflective layer 117 on the light-transmissive substrate 111 overlaps with the second trace.
  • the orthographic projections of 1151 on the light-transmitting substrate 111 at least partially overlap.
  • the material of the first wiring and the second wiring 1151 is copper, and the material of the second reflective layer 117 and the third reflective layer 118 is silver.
  • the reflective layer can improve the reflectivity of the reflective part.
  • a thin ITO layer can be covered on the surface of the reflective layer.
  • the ITO layer ensures the anti-oxidation performance of the reflective part and ensures its reflectivity.
  • the reflective layer may specifically include 8nm ITO, 100nm Ag, 1um Cu, 100nm Ag and 8nm ITO sequentially arranged in a direction away from the light-transmitting substrate 111.
  • the first trace and the second trace 1151 may also be CuNi.
  • the first insulating layer 114 and the second insulating layer 116 are The second insulating layer 116 may be made of high transmittance glue material.
  • both the first insulating layer and the second insulating layer are optical glue, and the transmittance of the optical glue to the light emitted from the light-emitting unit is greater than 95%.
  • the emitted light of the mini-LED is blue light
  • the wavelength of blue light is 400nm-450nm.
  • the optical glue is 2mm thick, the transmittance of light with a wavelength of 450nm is greater than 99%.
  • the first insulation layer 114 and the second insulation layer 116 may also be hollowed out.
  • the first opening 1141 may be provided in the part of the first insulating layer 114 located between two adjacent first traces, or the part of the second insulating layer 116 located between two adjacent second traces 1151 may be provided.
  • the first opening 1141 may also be provided in the portion of the first insulating layer 114 located between two adjacent first traces, and the second insulating layer 116 may be provided in a portion located between two adjacent second traces 1151 .
  • Second opening 1161 Second opening 1161.
  • point A is the transmittance of the backlight module when the first insulating layer 114 and the second insulating layer 116 are made of adhesive materials in the related art; point B is the first insulating layer 114 and the second insulating layer 116.
  • Point C is the transmittance of the backlight module when the second opening 1161 is provided in the second insulating layer 116 in the present disclosure;
  • Point D is the transmittance of the backlight module in the present disclosure The transmittance of the backlight module when the first opening 1141 is provided in the first insulating layer 114 and the second opening 1161 is provided in the second insulating layer 116 .
  • the transmittance of the backlight module can be increased from 72% to 82%.
  • the transmittance of the backlight module can be increased to 88.0%.
  • the first opening 1141 is provided in the first insulating layer 114, and the second opening 1161 is provided in the second insulating layer 116. , the transmittance of the backlight module is increased to 88.3%.
  • the simplified model does not consider the uniformity of the MLED backlight for the time being. Only the mini-LED emits light to the air through the medium. After passing through an optical medium with a thickness of mm, the width or diameter of the area that the mini-LED can radiate is for:
  • L is the spot diameter
  • D is the distance of the light energy escaping from the waveguide
  • l is the size of the mini-LED
  • t is the distance traveled by the outgoing light.
  • the radiation range of mini-LED is from plus 90° to minus 90°.
  • the total reflection angle When the refractive index of the passing medium is different, the total reflection angle will also be different, and the L value will also change accordingly. According to Snell’s Law, calculating the characteristics of light transmission between different media, the total reflection angle can be calculated as:
  • n1 and n2 are the refractive index of the outgoing medium and the refractive index of the incoming medium, and The angle of bits going out of the medium and the angle of the bits going into the medium.
  • the refraction angle and total reflection angle can be derived from Equation 2. Then the total reflection angle for:
  • the larger the total reflection angle the larger the diameter of the coupling light spot, which can couple all the light within the total reflection angle out of the waveguide, which is more conducive to transmitting all the mini-LED light out of the medium, thereby improving Mini-LED light utilization efficiency and improve brightness.
  • the larger the total reflection angle the easier it is to make the spacing between mini-LEDs larger. Under the premise of the same brightness and uniformity, the number of mini-LEDs can be reduced.
  • the refractive index of air is 1.
  • the total reflection angle is 45.61°.
  • L is 1.12mm. If a glass substrate is used, L can reach 1.53mm. In other words, the lower the refractive index of the light-transmitting substrate 111 is, the more it can reduce the number of mini-LEDs, which is more conducive to reducing power consumption and cost.
  • optical length (OL) calculation formula is:
  • the thickness of 1.862 mm is close to the thickness of the air gap 18 in FIG. 1 , which is 2 mm. Therefore, the backlight module in this implementation can remove the thickness of the air gap 18 .
  • an encapsulation layer 12 is integrated on the side of the plurality of light-emitting units 112 away from the light-transmitting substrate 111 .
  • the encapsulation layer 12 is disposed on the surface of the light-emitting substrate 11 by using a film.
  • the encapsulation layer 12 encapsulates color transfer particles 1211 of at least one color. After the light emitted from the light-emitting unit 112 passes through the color transfer particles 1211, the color changes.
  • the encapsulation layer 12 may include a plurality of sub-layers.
  • the plurality of sub-layers are a first barrier layer 122 , a color conversion layer 121 and a second barrier layer 123 respectively.
  • the first barrier layer 122 is disposed away from the plurality of light-emitting units 112
  • the color conversion layer 121 is provided on the side of the first barrier layer 122 away from the light-transmitting substrate 111
  • the second barrier layer 123 is provided on the side of the color conversion layer 121 away from the light-transmitting substrate 111.
  • Layer 121 contains a variety of color transfer particles of different colors.
  • the color transfer particles 1211 of different colors may include red color transfer particles and green color transfer particles.
  • the light-emitting unit 112 includes a lamp bead 1121 and a protective glue 1122.
  • the protective glue 1122 covers the side of the lamp bead 1121 away from the light-transmitting substrate 111, and multiple light-emitting units 112 can be fully packaged.
  • the first barrier layer 122 is connected to the protective glue 1122 through the adhesive layer 17
  • the second barrier layer 123 is connected to the first reflective layer 13 through the adhesive layer 17 .
  • the light-emitting unit 112 is a mini-LED that emits blue light.
  • the light-emitting unit 112 emits blue outgoing light. Part of the blue outgoing light passes through red color transfer particles and green color transfer particles and is excited and converted into red light and green light. Part of the blue outgoing light is converted into red light and green light.
  • the blue emitted light passes through between the color transfer particles 1211.
  • the emitted light passes through the color conversion layer 121 and reaches the first reflective layer 13. After being reflected by the first reflective layer 13, it passes through the color conversion layer 121 again.
  • the reflected light does not encounter the color conversion particles 1211, but directly passes through the color conversion layer 121 and encounters red.
  • the color transfer particles and the green color transfer particles are converted into green light or red light, they are transmitted out of the encapsulation layer 12 .
  • the emitted light passes through the color conversion layer at least twice, so the thickness of the color conversion layer 121 can be set smaller and can be integrated into the encapsulation layer 12 .
  • the light-emitting unit can also be packaged by dispensing.
  • the packaging layer 12 includes a plurality of sub-parts 124, each sub-part 124 wraps a light-emitting unit 112, and each sub-part 124 wraps a plurality of different colors. Turning Particles 1211.
  • the first reflective layer 13 includes a plurality of first reflective parts 131 , and each first reflective part 131 wraps a sub-part 124 .
  • the material of the color transfer particles 1211 is nitride phosphor or fluoride phosphor. If it is a fluoride phosphor, the color transfer particles 1211 will also cause a certain degree of scattering, and the requirements for the scattering degree of the first reflective layer 13 are slightly lower. If quantum dot materials are used for color conversion, the scattering degree of the first reflective layer 13 is required to be higher, and it needs to be closer to Lambertian scattering to achieve uniformity requirements.
  • a first reflective layer 13 is provided on the side of the encapsulation layer 12 away from the light-transmitting substrate 111.
  • the roughness of the first reflective layer 13 is less than 1 micron, the light intensity is concentrated at the angle of specular reflection, and there is appropriate scattering.
  • the first reflection When the roughness of the layer 13 is greater than 2 microns, when the reflection of the first reflective layer 13 is close to Lambertian scattering, the scattering intensity of the light intensity at various angles is not much different.
  • a model is established in geometric optical design software to calculate the backlight transmittance and backlight uniformity of the backlight module in Figure 1 and the backlight module in the embodiment of the present disclosure when the reflective layer adopts specular reflection and Lambertian scattering reflection. If the backlight module in Figure 1 is used, the backlight transmittance is 55.4% and the backlight uniformity is 97%. If the backlight module in the embodiment of the present disclosure adopts specular reflection, the backlight transmittance is 57.5%, and the backlight uniformity is 91.1%. If Lambertian scattering reflection is used, the backlight transmittance is 57.5% and the backlight uniformity is 95%. Compared with the backlight module in Figure 1, the backlight transmittance of Lambertian scattering reflection is increased by 2.1%, and the backlight uniformity can reach 95%, meeting the uniformity requirements of the display device.
  • the side of the first reflective layer 13 close to the light-transmitting substrate 111 is a rough surface, and the roughness of the rough surface is greater than 2 microns to meet the conditions of Lambertian scattering.
  • the first reflective layer 13 may be a reflective sheet with bubbles.
  • the first reflective layer 13 includes a plurality of bubbles and a protective film wrapped around the plurality of bubbles. The diameter of the bubbles is greater than 2 microns.
  • the color conversion layer 121 provides primary scattering, and the first reflective layer 13 provides another scattering.
  • the two scatterings increase the optical path and also function as a diffusion plate.
  • bubble-free packaging between the encapsulation layer 12 and the first reflective layer 13 it is best to use bubble-free packaging between the encapsulation layer 12 and the first reflective layer 13 to reduce the optical loss caused by the difference in refractive index.
  • Mechanical pasting and defoaming can be used to achieve the above optical design requirements.
  • the deaeration time is 10 minutes at 30°C and the deaeration pressure is 3kg.
  • the first reflective layer 13 is bonded to the encapsulation layer 12, and then Degassing at the same temperature, the degassing time is 15 minutes and the pressure is 3.5kg. Then observe the area between the encapsulation layer 12 and the first reflective layer 13 around the light-emitting unit 112. This area is most likely to produce bubbles. There are no bubbles under an optical microscope, and the optical design requirements are basically met.
  • a backlight module As shown in Figure 16, a light-emitting unit 112 is provided through the side of the light guide panel 10 (Lighmm Guide Panel), and the emitted light of the light-emitting unit 112 is introduced into the light guide panel 10 as a light-emitting substrate. The light is then collected through a prism sheet to meet the backlight requirements for passive display.
  • This side-type backlight module is relatively thin and light, but cannot meet the ultra-high contrast requirements of high-end display products.
  • the color gamut of the backlight module of the present disclosure can reach 106% NTSC (CIE1931), while the color gamut of the backlight module in Figure 16 is 70 %NTSC(CIE1931).
  • the area of the triangular color gamut of the backlight module of the present disclosure is 47% larger than the area of the triangular color gamut of the backlight module in Figure 16, and is much larger than the NTSC standard color gamut and the SRGB standard color gamut.
  • the spectrum of the backlight module of the present disclosure and the spectrum of the backlight module in Figure 16 are also compared.
  • the dotted line represents the spectrum of the backlight module of the present disclosure
  • the solid line represents the backlight module in Figure 16. set of spectra.
  • the spectrum of the backlight module of the present disclosure has narrower half-peak widths of R, G, and B, that is, the color purity is higher.
  • the backlight module of the present disclosure is more in line with the requirements of high-end display devices for high color gamut and high color purity.
  • the display device includes a backplane 3 , a frame 4 , a backlight module 1 and a display panel 2 .
  • the frame 2 is provided in the backplane 1 .
  • the back plate 3 includes a bottom plate 31 and a plurality of side plates 32 fixedly connected to the bottom plate 31.
  • the frame 4 includes a first support part 41 and a plurality of second support parts 42 connected to the first support part 41.
  • the first support part 41 is parallel to
  • the bottom plate 31 and the second support portion 42 are parallel to the side plate 32 , and the orthographic projection of the first support portion 41 on the bottom plate 31 is located at the edge of the bottom plate 31 .
  • the backlight module 1 is provided between the bottom plate 31 and the first supporting part 41 .
  • the display panel is disposed on the side of the first support portion 21 away from the base plate 11 .
  • the display device can also refer to the specific structure and beneficial effects of the backlight module, which will not be described again here.
  • the display panel may include a base substrate 21 , a driving circuit layer 22 and a pixel layer 23 that are stacked in sequence.
  • a second buffer layer 24 is provided on one side of the base substrate 21 .
  • the second buffer layer 24 is away from the substrate.
  • the driving circuit layer 22 is provided on one side of the base substrate 21
  • the pixel layer 23 is provided on the side of the driving circuit layer 22 away from the base substrate 21 .
  • the base substrate 21 may be a base substrate 21 of inorganic material, or may be a base substrate 21 of organic material.
  • the material of the base substrate 21 may be glass materials such as soda-lime glass, quartz glass, sapphire glass, or may be stainless steel, aluminum, nickel, etc. metallic material.
  • the material of the base substrate 21 may be polymethyl methacrylate (PMMA), polyvinyl alcohol (Polyvinyl alcohol, PVA), polyvinyl phenol (Polyvinyl phenol, PVP), polyether sulfone (PES), polyimide, polyamide, polyacetal, polycarbonate (PC), polyethylene terephthalate (PET), Polyethylene naphthalate (PEN) or combinations thereof.
  • PMMA polymethyl methacrylate
  • PMMA polyvinyl alcohol
  • PVA polyvinyl alcohol
  • PVP polyvinyl phenol
  • PES polyether sulfone
  • polyimide polyamide
  • PC polycarbonate
  • PET polyethylene terephthalate
  • PEN Polyethylene naphthalate
  • the base substrate 21 may also be a flexible base substrate 21.
  • the material of the base substrate 21 may be polyimide (PI).
  • the base substrate 21 may also be a composite of multiple layers of materials.
  • the base substrate 21 may include a bottom film layer (Bottom Film), a pressure-sensitive adhesive layer, and a pressure-sensitive adhesive layer that are stacked in sequence. A first polyimide layer and a second polyimide layer.
  • the driving circuit layer includes a plurality of driving circuit regions. Any driver circuit area may include transistors and storage capacitors.
  • the transistor may be a thin film transistor, and the thin film transistor may be selected from a top gate thin film transistor, a bottom gate thin film transistor, or a dual gate thin film transistor.
  • the material of the active layer of the thin film transistor can be amorphous silicon semiconductor material, low temperature polysilicon semiconductor material, metal oxide semiconductor material, organic semiconductor material or other types of semiconductor materials; the thin film transistor can be an N-type thin film transistor or a P-type thin film transistor. .
  • the transistor may have a first terminal, a second terminal, and a control terminal.
  • One of the first terminal and the second terminal may be a source of the transistor and the other may be a drain of the transistor.
  • the control terminal may be a gate of the transistor. It can be understood that the source and drain of a transistor are two opposite and interchangeable concepts; when the working state of the transistor changes, for example, the direction of the current changes, the source and drain of the transistor can be interchanged.
  • the driving circuit layer 22 may include a transistor layer, an interlayer dielectric layer 225 and a source-drain metal layer 226 that are sequentially stacked on the base substrate 21 .
  • the transistor layer is provided with an active layer and a gate electrode of the transistor, and the source-drain metal layer 226 is electrically connected to the source electrode and drain electrode of the transistor.
  • the transistor layer may include an active layer 222, a gate insulating layer 223, and a gate layer 224 stacked between the base substrate 21 and the interlayer dielectric layer 225.
  • the positional relationship of each film layer can be determined according to the film layer structure of the thin film transistor.
  • the active layer 222 can be used to form an active layer of a transistor.
  • the active layer of a semiconductor includes a channel region and source and drain electrodes located on both sides of the channel region; wherein the channel region can remain Semiconductor properties, the semiconductor materials of the source and drain are partially or completely conductive.
  • the gate layer 224 may be used to form gate layer wiring such as scanning lines, may be used to form the gate of a transistor, or may be used to form part or all of the electrode plates of the storage capacitor.
  • the source-drain metal layer 226 can be used to form source-drain metal layer traces such as data traces and power traces.
  • the driving circuit layer 22 may include an active layer 222, a gate insulating layer 223, a gate layer 224, an interlayer dielectric layer 225 and a Source and drain metal layers 226.
  • the driving circuit layer 22 may also include a planarization layer 227, and the planarization layer 227 may be one layer or multiple layers according to different situations.
  • the planarization layer 227 can be provided on the side of the source-drain metal layer 226 of the driving transistor away from the base substrate 21 , and the surface of the planarization layer 227 away from the base substrate 21 is flat.
  • the planarization layer 227 is provided with a plurality of first via holes at intervals to expose the source and drain metal layers 226 of the driving transistors.
  • a pixel layer 23 may be provided on the side of the planarization layer 227 away from the base substrate 21.
  • the pixel layer 23 includes a common electrode 231.
  • the common electrode 231 is provided with a plurality of second via holes at intervals.
  • the second via holes are on the base substrate 21.
  • the orthographic projection of is located within the orthographic projection of the first via hole on the base substrate 21 .
  • a second protective layer 232 is provided on the side of the common electrode 231 away from the base substrate 21 .
  • the second protective layer 232 covers the side of the common electrode 231 away from the base substrate 21 .
  • the second protective layer 232 is provided with a second protective layer 232 from the common electrode 231 .
  • the portion of the via hole and the planarization layer 227 are provided with the first via hole, extending to the source and drain metal layer 226 of the driving transistor.
  • the second protective layer 232 partially covers the source and drain metal layer of the driving transistor near one end of the base substrate 21 226, forming an opening exposing part of the source and drain metal layer 226 of the driving transistor.
  • a plurality of pixel electrodes 233 are provided on the side of the second protective layer 232 away from the base substrate 21 .
  • the pixel electrodes 233 are provided in the openings and connected to the source and drain metal layers 226 of the driving transistors.
  • a liquid crystal layer 234 is provided on the side of the pixel electrode 233 away from the source and drain metal layer 226 of the driving transistor.
  • the liquid crystal layer 234 covers the second protective layer 232 and the source and drain metal layer 226 of the driving transistor. Since the second protective layer 232 is disposed between the pixel electrode 233 and the common electrode 231, and both the pixel electrode 233 and the common electrode 231 have driving surfaces, the liquid crystal layer 234 can be considered to be located between the pixel electrode 233 and the common electrode 231.
  • a color filter layer 235 is provided on the side of the liquid crystal layer 234 away from the base substrate, and an insulating layer 236 may be provided on a side of the color filter layer 235 away from the base substrate 21 .
  • the display device can be a traditional electronic device, such as a mobile phone, a computer, a television, or a camcorder, or it can be an emerging wearable device, such as a virtual reality device and an augmented reality device, which are not listed here.
  • Large-size display devices usually include multiple light-emitting substrates spliced together.
  • An encapsulation layer can be provided on the light-emitting sides of the multiple light-emitting substrates. The encapsulation layer covers the light-emitting sides of all light-emitting substrates.
  • the first reflective layer is located on the encapsulation layer away from the light emitting On one side of the substrate, the orthographic projection of the first reflective layer on the light-transmitting substrate may coincide with the orthographic projection of the encapsulating layer on the light-transmitting substrate.
  • multiple backlight modules can be directly spliced together to form a large backlight source according to the size of the display device.
  • the display device also includes other necessary components and components, taking a mobile phone as an example, such as a casing, a circuit board, etc. Those skilled in the art can use the display device The specific usage requirements will be supplemented accordingly and will not be repeated here.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)

Abstract

一种背光模组,包括发光单元(112),其出射光经过封装层(12)后传输至第一反射层(13)表面,经第一反射层(13)表面反射后再次经过封装层(12),从封装层(12)进入透光基板(111),再从透光基板(111)的远离发光单元(112)的一侧出光。有效利用封装层(12)和透光基板(111)的厚度增大光程,降低背光模组的厚度。第一反射层(13)为朗伯体,第一反射层(13)靠近透光基板(111)的一侧和远离透光基板(111)的一侧,对传输至其表面的出射光进行散射匀光,再次增大光程,还可以起到扩散板的作用。背光模组的总厚度大大减薄,有利于实现显示装置的轻薄化。还提供了包括背光模组的显示装置。

Description

背光模组及显示装置 技术领域
本公开涉及显示技术领域,具体而言,涉及一种背光模组及显示装置。
背景技术
随着液晶显示技术的不断发展,大尺寸且超薄化的显示装置越来越受使用者的喜爱。随着显示装置正朝着轻薄化的发展,对背光模组的厚度的要求也越来越高。
在现有的背光模组中,采用点光源作为背光源,通常需要提供足够光程,将点状阵列排布的点光源均匀化成面光源,从而导致最终形成的背光模组的厚度较厚。
需要说明的是,在上述背景技术部分公开的信息仅用于加强对本公开的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本公开提供一种背光模组及显示装置。
根据本公开的一个方面,提供一种背光模组,包括发光基板、封装层和第一反射层,发光基板包括透光基板和多个发光单元,多个发光单元阵列排布于透光基板的一侧;封装层设于多个发光单元远离透光基板的一侧,封装层在透光基板上的正投影至少覆盖多个发光单元在透光基板上的正投影;第一反射层设于封装层远离透光基板的一侧,第一反射层在透光基板上的正投影至少覆盖多个发光单元在透光基板上的正投影,第一反射层为朗伯体。
在本公开的一个实施例中,第一反射层靠近透光基板的一面为粗糙面,所粗糙面的粗糙度大于2微米。
在本公开的一个实施例中,第一反射层包括子,第一反射层为带泡 反射片,第一反射层包括多个气泡以及包裹于多个气泡外的保护膜,气泡的直径大于2微米。
在本公开的一个实施例中,封装层内包裹至少一种颜色的色转粒子。
在本公开的一个实施例中,封装层包括多个子层,多个子层分别为第一阻隔层、颜色转换层和第二阻隔层,第一阻隔层设于多个发光单元远离透光基板的一侧,颜色转换层设于第一阻隔层远离透光基板的一侧,第二阻隔层设于颜色转换层远离透光基板的一侧,颜色转换层内包裹至少一种颜色的色转粒子。
在本公开的一个实施例中,封装层包括多个子部,每个子部分别包裹一个发光单元,每个子部内包裹至少一种颜色的色转粒子。
在本公开的一个实施例中,第一驱动层组还包括第三反射层,第二反射层设于透光基板与第一导电层之间,第三反射层在透光基板上的正投影覆盖第一走线在透光基板上的正投影,第三反射层在透光基板上的正投影覆盖第二走线在透光基板上的正投影。
在本公开的一个实施例中,第一反射层包括多个第一反射部,每个第一反射部包裹一个子部。
在本公开的一个实施例中,色转粒子的材料为氮化物荧光粉或者氟化物荧光粉。
在本公开的一个实施例中,背光模组还包括第一驱动层组,第一驱动层组包括第一导电层、第一绝缘层、第二导电层和第二绝缘层,第一导电层与发光单元设于透光基板的同一侧,第一导电层包括多条第一走线;第一绝缘层包括设于第一导电层远离透光基板的一侧,且位于相邻两条第一走线之间,第一绝缘层上设有露出第一导电层的第一开口;第二导电层设于第一绝缘层远离透光基板的一侧,第二导电层包括多条第二走线,第二走线穿过第一开口与第一走线连接,且连接发光单元;第二绝缘层设于第二导电层远离透光基板的一侧,且位于相邻两条第二走线之间。
在本公开的一个实施例中,第一驱动层组还包括第二反射层,第二反射层设于第二导电层与第二绝缘层之间,第二反射层在透光基板上的正投影与第一走线在透光基板上的正投影至少部分交叠,第二反射层在 透光基板上的正投影与第二走线在透光基板上的正投影至少部分交叠。
在本公开的一个实施例中,第一绝缘层和第二绝缘层均为光学胶,光学胶对发光单元的出射光线的透过率大于95%。
在本公开的一个实施例中,第一绝缘层位于相邻两条第一走线之间的部分设有第二开口,和/或第二绝缘层位于相邻两条第二走线之间的部分设有第三开口。
在本公开的一个实施例中,第一驱动层组还包括第三反射层,第二反射层设于透光基板与第一导电层之间,第三反射层在透光基板上的正投影覆盖第一走线在透光基板上的正投影,第三反射层在透光基板上的正投影覆盖第二走线在透光基板上的正投影。
在本公开的一个实施例中,第一走线和第二走线为反光部,第一绝缘层位于第一走线之间的部分以及第二绝缘层位于第二走线之间的部分为透光部,透光部在透光基板上的正投影的面积占第一驱动层组在透光基板上的正投影的87%以上。
在本公开的一个实施例中,在背光模组包括多个发光区域,在不同发光区域中,相邻两条第一走线之间的间距不同,相邻两条第二走线之间的间距不同。
在本公开的一个实施例中,多个发光单元排布为多个相互交错的正三角形发光组,每个正三角形发光组包括三个发光单元,三个发光单元分别设于正三角形发光组的三个顶点,相邻两个正三角形发光组共用两个发光单元。
在本公开的一个实施例中,背光模组还包括偏光层和扩散层,偏光层设于透光基板远离发光单元的另一侧;扩散层设于偏光层远离透光基板的一侧。
根据本公开的另一个方面,提供一种显示装置,包括上面任一项所述的背光模组。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为相关技术中涉及的一种背光模组的结构示意图。
图2为本公开实施例涉及的背光模组的结构示意图。
图3为本公开实施例涉及的发光单元在不同角度的光强分布图。
图4为本公开实施例涉及的发光单元在不同角度的光强占比分布示意图。
图5为本公开实施例涉及的发光单元的尺寸与背光均匀度的关系示意图。
图6为本公开实施例涉及的发光单元的尺寸与光效的关系示意图。
图7为本公开实施例涉及的多个发光单元的分布示意图。
图8为本公开实施例涉及的背光模组另一种结构示意图。
图9为本公开实施例涉及的背光模组又一种结构示意图。
图10为本公开实施例涉及的不同背光模组的透光率的示意图。
图11为本公开实施例涉及的发光单元可扩展范围的原理示意图。
图12为本公开实施例涉及的背光模组通过改变出光方向增大光程的结构示意图。
图13为本公开实施例涉及的背光模组通过散射增大光程的结构示意图。
图14为本公开实施例涉及的一种颜色转换层的结构示意图。
图15为本公开实施例涉及的另一种颜色转换层的结构示意图。
图16为相关技术中涉及的另一种背光模组的结构示意图。
图17为本公开实施例涉及的背光模组的光谱与相关技术中另一种背光模组的光谱的对比示意图。
图18为本公开实施例涉及的显示装置的结构示意图。
图19为本公开实施例涉及的显示面板的结构示意图。
图中:1-背光模组,10-导光板,11-发光基板,110-驱动走线,111- 透光基板,112-发光单元,1121-灯珠,1122-保护胶,113-第一导电层,1131-第一走线,114-第一绝缘层,1141-第二开口,115-第二导电层,1151-第二走线,116-第二绝缘层,1161-第三开口,117-第二反射层,118-第三反射层,119-第一保护层;12-封装层,121-颜色转换层,1211-色转粒子,122-第一阻隔层,123-第二阻隔层,124-子部,13-第一反射层,131-第一反射部,14-偏光层,15-扩散层,16-第一缓冲层,17-粘接层,18-空气间隙,19-扩散板;2-显示面板,21-衬底基板,22-驱动电路层,222-有源层,223-栅极绝缘层,224-栅极层,225-层间电介质层,226-源漏金属层,227-平坦化层,23-像素层,231-公共电极,232-第二保护层,233-像素电极,234-液晶层,235-彩膜层,236-绝缘层,24-第二缓冲层,3-背板,31-底板,32-侧板,4-框架,41-第一支撑部,42-第二支撑部。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本公开将全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。此外,附图仅为本公开的示意性图解,并非一定是按比例绘制。
虽然本说明书中使用相对性的用语,例如“上”“下”来描述图标的一个组件对于另一组件的相对关系,但是这些术语用于本说明书中仅出于方便,例如根据附图中所述的示例的方向。能理解的是,如果将图标的装置翻转使其上下颠倒,则所叙述在“上”的组件将会成为在“下”的组件。当某结构在其它结构“上”时,有可能是指某结构一体形成于其它结构上,或指某结构“直接”设置在其它结构上,或指某结构通过另一结构“间接”设置在其它结构上。
用语“一个”、“一”、“该”、“所述”和“至少一个”用以表示存在一个或多个要素/组成部分/等;用语“包括”和“具有”用以表示开放式的包括在内的意思并且是指除了列出的要素/组成部分/等之外还可存在另外的要素/组成部分/等;用语“第一”、“第二”和“第三”等 仅作为标记使用,不是对其对象的数量限制。
被动式显示都需要一个光源,为显示做背光。通常使用无机发光二极管作为背光源(Back Light Unit,BLU)。无机发光二极管是指利用无机材料制成的发光元件,其中,LED表示有别于OLED的无机发光元件。具体地,无机发光元件可以包括次毫米发光二极管(Mini Light Emitting Diode,英文缩写为Mini LED)和微型发光二极管(Micro Light Emitting Diode,英文缩写为Micro LED)。其中,次毫米发光二极管(即Mini LED)表示晶粒尺寸在Micro LED与传统LED之间的小型发光二极管,通常,Mini LED的晶粒尺寸可以在100~300微米之间。
相关技术中,背光模组如图1所示,背光模组包括发光基板11,发光基板11包括透光基板111和发光单元112,多个发光单元112阵列排布于透光基板111的一侧,在发光单元112之间刷入白油,形成第一反射层13。在发光单元112和第一反射层13远离透光基板111的一侧形成封装层12,在封装层12远离透光基板111的一侧预留空气间隙18,在空气间隙18远离透光基板111的一侧形成扩散板19,在扩散板19远离透光基板111的一侧形成色转换层,在色转换层远离透光基板111的一侧形成偏光层14,偏光层14为正交棱镜片,在偏光层14远离透光基板111的一侧形成扩散层15。
其中:阵列排布的发光单元112是提供出射光,光单元采用蓝色的Mini-LED,因此出射光都是蓝色的光,空气间隙18和扩散板19用于提供足够的光程,将点状阵列排布发光单元112均匀化为面光源,发色转换层用于将蓝色的光转换成白光,正交棱镜片用于将大角度出射的光收束至可视角度,增大可视角度的亮度,扩散片用于将收束后的带来的均匀度下降再次提升至产品需求值,反射层用于将颜色转换层121、扩散板19及封装层12的反射光再反射为出射光再次利用,以提升背光模组的亮度。该结构的背光模组的厚度较大,不利于实现显示装置的轻薄化。
基于此,本公开实施方式提供一种背光模组。如图2至图17所示,该背光模组包括发光基板11、封装层12和第一反射层13,发光基板11包括透光基板111和多个发光单元112,多个发光单元112阵列排布于透光基板111的一侧;封装层12设于多个发光单元112远离透光基板111 的一侧,封装层12在透光基板111上的正投影至少覆盖多个发光单元112在透光基板111上的正投影;第一反射层13设于封装层12远离透光基板111的一侧,第一反射层13在透光基板111上的正投影至少覆盖多个发光单元112在透光基板111上的正投影,第一反射层13为朗伯体。
发光单元112的出射光经过封装层12后传输至第一反射层13表面,经第一反射层13表面反射后再次经过封装层12,从封装层12进入透光基板111,再从透光基板111的远离发光单元112的一侧出光。有效利用封装层12和透光基板111的厚度增大光程,降低背光模组的厚度。第一反射层13为朗伯体,第一反射层13靠近透光基板111的一侧和远离透光基板111的一侧,对传输至其表面的出射光进行散射匀光,再次增大光程,还可以起到扩散板的作用。该背光模组省去了空气间隙18和扩散板的厚度,因此背光模组的总厚度大大减薄,有利于实现显示装置的轻薄化。
背光模组通常还包括偏光层14和扩散层15,偏光层14设于透光基板111远离发光单元112的另一侧;扩散层15设于偏光层14远离透光基板111的一侧。偏光层14为正交的棱镜膜,可以将两片正交的棱镜膜集成到一片上,以达成显示装置对亮度的要求,降低背光功耗和厚度。扩散片将经偏光层14收束后的光再均匀化,达成显示装置对背光均匀度的要求。
需要说明的是,朗伯体是指当入射能量在所有方向均匀反射,即入射能量以入射点为中心,在整个半球空间内向四周各向同性的反射能量的现象,称为漫反射,也称各向同性反射,一个完全的漫射体称为朗伯体。使入射到第一反射层13表面的光都能接近郎伯散射的方式反射回封装层12、透光基板111、偏光层14和扩散层15。
如图2所示,多个发光单元112阵列排布于透光基板111的一侧,发光单元112可以为mini-LED,mini-LED的发光是一种近朗伯体发光,其发光光束角在±90°范围内分布,MLED芯片的发光强度为式1所示:
I i=I 0cosθ(1)
即光强也会随着出光角度的变化呈现余弦式分布,基于此,光强在不同角度的分布如图3所示。可以发现,mini-LED的光强主要集中在小 角度范围,发射角度越大,光强越弱。
如图4所示,当入射光角度小于20°时,LED发光的接近35%都集中在此范围,当入射光角度大于80°时,只有1.7%的光分布在这个区域。如果要作为发光基板11的光源,希望发光单元112在0-90°范围内,光强都是均匀分布的。因此设置发光单元112的中心光强降低,边缘光强提高,实现类似蝙蝠型出光光型,在提升发光基板11发光均匀度的同时,可以增大相邻发光单元112之间的间距。
如图5和图6所示,分析发光单元112的尺寸对背光光效和均匀度的影响。任选三种常用的mini-LED的尺寸,计算不同尺寸mini-LED对不同间距的发光基板11的最终光效和均匀度的影响,三角形表示最小号规格的mini-LED,比如:05mil×09mil,圆形表示中号规格的mini-LED,比如:08mil×08mil,正方形表示最大号规格的mini-LED,比如:12mil×12mil。从图5和图6可以看出,mini-LED的横纵向尺寸是2倍时,光效会有一点点提升,但是均匀度随着尺寸的增大反而有降低,主要归因于发光产生的热点,热点导致背光均匀度的下降。因此mini-LED的尺寸对均匀度和光效并没有明显的影响。
综上,可以通过控制mini-LED的出光光型,实现出光均匀度的提升。但是,mini-LED的尺寸越大,出光均匀度越差,另外,mini-LED的尺寸对光效的影响并不十分明显。具体地,mini-LED可以为发蓝光的mini-LED,mini-LED的尺寸为05mil×09mil。
如图7所示,多个发光单元112排布为多个相互交错的正三角形发光组,每个正三角形发光组包括三个发光单元112,三个发光单元112分别设于正三角形发光组的三个顶点,相邻两个正三角形发光组共用两个发光单元112。发光单元112之间为正三角形排布,可以降低发光单元112的数量,相邻两个发光单元112之间的距离为4.75mm。
背光模组还包括驱动走线110,驱动走线110可以电连接至各个发光单元112的第一电极和第二电极,用于给各个发光单元112提供电信号。为了防止与第一电极和第二电极的驱动走线110短路,且降低寄生电容,采用绝缘层进行填平。
因为发光基板11是向远离透光基板111的一侧出光,因此所有的出 射光线都会经过发光单元112的驱动走线110,所以驱动走线110的开口率希望越大越好,导电率需满足电学要求的同时,其反射率也要满足光学要求。定义驱动走线110为反光部,驱动走线110之间的绝缘层为透光部,透光部在透光基板111上的正投影的面积占第一驱动层组在透光基板111的正投影的87%以上。
如图8所示,驱动走线和驱动走线之间的绝缘层组成第一驱动层组,第一驱动层组与透光基板111之间设有第一缓冲层16,第一驱动层组与发光单元112设于透光基板111的同一侧。驱动走线包括第一导电层113和第二导电层115,绝缘层包括第一绝缘层114和第二绝缘层116,第一导电层113与发光单元112设于透光基板111的同一侧,第一导电层113包括多条第一走线;第一绝缘层114包括设于第一导电层113远离透光基板111的一侧,且位于相邻两条第一走线之间,第一绝缘层114上设有露出第一导电层113的第一开口;第二导电层115设于第一绝缘层114远离透光基板111的一侧,第二导电层115包括多条第二走线1151,第二走线1151穿过第一开口与第一走线连接,且连接发光单元112;第二绝缘层116设于第二导电层115远离透光基板111的一侧,且位于相邻两条第二走线1151之间。
第一走线和第二走线1151组成反光部。第一绝缘层114位于第一走线之间的部分,以及第二绝缘层116位于第二走线1151之间的部分组成反光部。在背光模组包括多个发光区域,在不同发光区域中,相邻两条第一走线之间的间距不同,相邻两条第二走线1151之间的间距不同。可以通过控制第一走线和第二走线1151的分布密度来不同发光区域反光部的占比,达到调控背光模组的出射光线的光通量,达到均匀出光的目的。
为了增强反射部的反射效果,第一驱动层组还可以包括第三反射层118,第三反射层118设于透光基板111与第一导电层113之间,第三反射层118在透光基板111上的正投影覆盖第一走线在透光基板111上的正投影,第三反射层118在透光基板111上的正投影覆盖第二走线1151在透光基板111上的正投影。
此外,第一导电层113与第一绝缘层114之间、第一绝缘层114与 第二导电层115之间、第二导电层115与第三反射层118之间以及第三反射层118与第二绝缘层116之间均设有第一保护层119。
如图9所示,在图8的基础上,第一驱动层组还可以包括第二反射层117,第二反射层117设于第二导电层115与第二绝缘层116之间,第二反射层117在透光基板111上的正投影与第一走线在透光基板111上的正投影至少部分交叠,第二反射层117在透光基板111上的正投影与第二走线1151在透光基板111上的正投影至少部分交叠。
需要说明的是,第一走线和第二走线1151的材质为铜,第二反射层117和第三反射层118的材质为银。反射层可以提高反射部的反射率。为了防止反射层被氧化,可以在反射层的表面都覆盖一层薄的ITO层,ITO层保证反射部抗氧化性能,且能确保其反射率。反射层具体可以包括沿远离透光基板111的方向依次设置的8nm ITO、100nm Ag、1um Cu、100nm Ag和8nm ITO。在其他实施例中,第一走线和第二走线1151也可以采用CuNi。
再次参见图8和图9,为了提升透过率,降低背光模组的功耗,同时减少第一绝缘层114和第二绝缘层116对色坐标和色偏的影响,第一绝缘层114和第二绝缘层116可以采用高透过率的胶材。具体第一绝缘层和第二绝缘层均为光学胶,光学胶对发光单元的出射光线的透过率大于95%。本实施例中,mini-LED的出射光线为蓝光,蓝光的波长为400nm-450nm,该光学胶为2mm厚度时,对波长为450nm的光的透过率大于99%
还可以对第一绝缘层114和第二绝缘层116进行镂空处理。具体可以是在第一绝缘层114位于相邻两条第一走线之间的部分设第一开口1141,或第二绝缘层116位于相邻两条第二走线1151之间的部分设第二开口1161。也可以在在第一绝缘层114位于相邻两条第一走线之间的部分设第一开口1141,并且在第二绝缘层116位于相邻两条第二走线1151之间的部分设第二开口1161。
如图10所示,A点为第一绝缘层114和第二绝缘层116采用相关技术中胶材时,背光模组的透过率;B点为第一绝缘层114和第二绝缘层116采用高透过率胶材时,背光模组的透过率;C点为本公开中在第二 绝缘层116设第二开口1161时,背光模组的透过率;D点为本公开中在第一绝缘层114设第一开口1141,且在第二绝缘层116设第二开口1161时,背光模组的透过率。可以看到的是,第一绝缘层114和第二绝缘层116采用高透过率胶材时,可将背光模组的透过率从72%提升到82%。第二绝缘层116设第二开口1161时,可将背光模组的透过率提升至88.0%,在第一绝缘层114设第一开口1141,且在第二绝缘层116设第二开口1161时,提升背光模组的透过率至88.3%。
另外,如何将mini-LED出光尽可能取出,也是降低功耗,提升亮度的核心。如图11所示,简化模型,暂时不考虑MLED背光的均匀性,只mini-LED通过介质出光至空气,单通过一个厚度为mm的光学介质后,mini-LED可辐射的面积的宽度或者直径为:
Figure PCTCN2022108029-appb-000001
其中,L为光斑直径,D为光能逸出波导的距离,l为mini-LED的尺寸,
Figure PCTCN2022108029-appb-000002
为出光角度,t为出射光线经过的距离。
mini-LED的辐射范围在正90°至负90°内,传输介质为折射率n=1.52,厚度为0.7mm的玻璃,如发光单元112采用尺寸为100微米的mini-LED,出射光线从玻璃耦出到空气,需要
Figure PCTCN2022108029-appb-000003
Figure PCTCN2022108029-appb-000004
等于41°时,由公式2可以计算得到L=0.969mm。
当选用经过介质的折射率不同时,全反射角也会不同,L值也会随之变化。根据Snell’s Law,计算不同介质之间光传输的特性,可以计算得到全反射角为:
Figure PCTCN2022108029-appb-000005
其中n1和n2为传出介质的折射率和传入介质的折射率,
Figure PCTCN2022108029-appb-000006
Figure PCTCN2022108029-appb-000007
位传出介质的角度和传入介质的角度。通过公式2可以推导折射角和全反射角。那么全反射角
Figure PCTCN2022108029-appb-000008
为:
Figure PCTCN2022108029-appb-000009
可以理解的是,传输介质和空气之间的折射率差越小,全反射角越小。
由公式2可以算得,全反射角越大,耦出光斑的直径也越大,可以将满足全反射角以内的光都耦出波导,越有利于将mini-LED发光都透射 出介质,从而提升mini-LED出光的利用效率,并提升亮度。同时,全反射角越大,mini-LED之间的间距也更容易做的更大,在同等亮度和均匀度前提下,可以减小mini-LED的数量。
空气折射率为1,选用折射率为1.40的透光基板111时,全反射角为45.61°,通过式2计算可以得到L为1.12mm,如果采用玻璃基板,则L就可达到1.53mm。换言之,折射率越低的透光基板111,越能减少mini-LED的数量,更有利于降低功耗和成本。
如图12所示,mini-LED的出射光线先经过封装层12,被反射层反射,再经过封装层12,再通过透明基板,再到基板上表面出光。有效利用封装和基板的厚度增大光程,降低背光模组的厚度。考虑MLED两次经过封装层12和透光基板111,MLED背光的基板以下的最小厚度为0.3×2+0.7=1.3mm,
考虑mini-LED的朗伯光源属性,光程(Optical Length,OL)计算公式为:
Figure PCTCN2022108029-appb-000010
如果传输介质的折射率均为1.5,则光程为0.795+1.067=1.862mm。1.862mm的厚度接近于图1中的空气间隙18的厚度2mm,因此本实施中的背光模组可以去掉空气间隙18的厚度。
如图13所示,多个发光单元112远离透光基板111的一侧集成有封装层12,采用贴膜的方式将封装层12设于发光基板11的表面。封装层12包裹至少一种颜色的色转粒子1211。发光单元112的出射光线在经过色转粒子1211后,颜色发生变化。
如图14所示,封装层12可以包括多个子层,多个子层分别为第一阻隔层122、颜色转换层121和第二阻隔层123,第一阻隔层122设于多个发光单元112远离透光基板111的一侧,颜色转换层121设于第一阻隔层122远离透光基板111的一侧,第二阻隔层123设于颜色转换层121远离透光基板111的一侧,颜色转换层121内包裹多种不同颜色的色转粒子。颜色不同的色转粒子1211可以包括红色色转粒子和绿色色转粒子。
需要说明的是,发光单元112包括灯珠1121和保护胶1122,保护胶1122覆盖灯珠1121远离透光基板111的一侧,可以对多个发光单元 112进行整面封装。第一阻隔层122通过粘接层17与保护胶1122连接,第二阻隔层123通过粘接层17与第一反射层13连接。
前面提到发光单元112为发蓝光的mini-LED,发光单元112发出蓝色出射光线,部分蓝色出射光线经过红色色转粒子和绿色色转粒子,被激发转换成红色光线和绿色光线,部分蓝色出射光线从色转粒子1211之间透过。出射光线经过颜色转换层121到达第一反射层13,经过第一反射层13反射后再次经过颜色转换层121,反射光线没有遇到色转粒子1211,直接透过颜色转换层121,碰到红色色转粒子和绿色色转粒子后,转换成绿色光线或者红色光线透射出封装层12。出射光线至少两次透过色转换层,所以颜色转换层121的厚度可以设置的较小,因此可以集成到封装层12里。
也可以对发光单元进行点胶式的封装,如图15所示,封装层12包括多个子部124,每个子部124分别包裹一个发光单元112,每个子部124内包裹多种不同颜色的色转粒子1211。第一反射层13包括多个第一反射部131,每个第一反射部131包裹一个子部124。
需要说明的是,色转粒子1211的材料为氮化物荧光粉或者氟化物荧光粉。如果是氟化物荧光粉,色转粒子1211也会带来一定程度的散射,对第一反射层13的散射度的要求稍低。如果选用量子点材料进行色转换,则对第一反射层13的散射度有较高要求,需越接近朗伯散射,才能达成均匀度要求。
封装层12远离透光基板111的一侧设有第一反射层13,当第一反射层13的粗糙度小于1微米时,光强集中在镜面反射的角度,存在适当散射,当第一反射层13的粗糙度大于2微米时,第一反射层13的反射接近朗伯散射时,光强在各个角度的散射强度相差不大。
在几何光学设计软件中建立模型,分别计算图1中背光模组,以及本公开实施例中背光模组的反射层采用镜面反射和朗伯散射反射时的背光透过率和背光均匀度。如果采用图1中的背光模组,背光透过率为55.4%,背光均匀度为97%。本公开实施例中的背光模组,如果采用镜面反射,背光透过率为57.5%,背光均匀度为91.1%。如果采用朗伯散射反射,背光透过率为57.5%,背光均匀度为95%。朗伯散射反射相较 于图1中背光模组,背光透过率提升2.1%,背光均匀度可以达到95%,满足显示装置的均匀度要求。
在本实施例中,第一反射层13靠近透光基板111的一面为粗糙面,所粗糙面的粗糙度大于2微米,才能满足朗伯散射的条件。具体地,第一反射层13可以为带泡反射片,第一反射层13包括多个气泡以及包裹于多个气泡外的保护膜,气泡的直径大于2微米。
颜色转换层121提供一次散射,第一反射层13提供再一次的散射,两次散射增大光程同时,还起到扩散板的作用。
封装层12与第一反射层13之间最好是无泡的封装,以减少折射率差带来的光学损失。可以采用机械贴和退泡的方式实现以上的光学设计要求。封装层12与第一反射层13进行贴合时,在30℃时脱泡时间10min,脱泡压力3kg脱泡贴合后,再将第一反射层13贴合到封装层12上,再进行同等温度下脱泡,脱泡时间为15min,压力为3.5kg。之后观察封装层12与第一反射层13之间位于发光单元112周边的区域,该区域最易产生气泡的,光学显微镜下无气泡,基本保证光学设计要求。
相关技术中示出了一种背光模组,如图16所示,通过导光板10(Lighmm Guide Panel)的侧边设置发光单元112,将发光单元112的出射光线引入导光板10作为发光基板,再通过棱镜片收光,达成被动式显示的背光要求。这种侧入式的背光模组较为轻薄,但是无法实现高端显示产品超高对比度的要求。
将本公开背光模组的色域与图16中背光模组的色域进行对比,本公开背光模组的色域可以达到106%NTSC(CIE1931),图16中背光模组的色域为70%NTSC(CIE1931)。CIE1976的色域坐标系中,本公开背光模组的三角形色域的面积比图16中背光模组的三角形色域的面积高47%,并且远大于NTSC标准色域和SRGB标准色域。
如图17所示,也对本公开背光模组的光谱和图16中背光模组的光谱也做了对比,其中,虚线表示本公开的背光模组的光谱,实线表示图16中的背光模组的光谱。本公开背光模组的光谱相较于图16中背光模组的光谱,R、G、B的半峰宽更窄,即色纯度更高。
显然,本公开的背光模组更符合高端显示装置对高色域和高色纯度 的要求。
本公开实施方式还提供一种显示装置。如图18所示,该显示装置包括背板3、框架4、背光模组1和显示面板2,框架2设于背板1内。背板3包括底板31以及与底板31固定连接的多个侧板32,框架4包括第一支撑部41和第一支撑部41连接的多个第二支撑部42,第一支撑部41平行于底板31,第二支撑部42平行于侧板32,第一支撑部41在底板31上的正投影位于底板31的边缘。背光模组1设于底板31与第一支撑部41之间。显示面板设于第一支撑部21远离底板11的一侧。
该显示装置同样可参考背光模组的具体结构和有益效果,在此不再进行赘述。
下面对本公开的显示面板进行具体说明。如图19所示,显示面板可以包括依次层叠设置的衬底基板21、驱动电路层22和像素层23,衬底基板21的一侧设有第二缓冲层24,第二缓冲层24远离衬底基板21的一侧设驱动电路层22,像素层23设于驱动电路层22远离衬底基板21的一侧。
衬底基板21可以为无机材料的衬底基板21,也可以为有机材料的衬底基板21。举例而言,在本公开的一种实施方式中,衬底基板21的材料可以为钠钙玻璃(soda-lime glass)、石英玻璃、蓝宝石玻璃等玻璃材料,或者可以为不锈钢、铝、镍等金属材料。
在本公开的另一种实施方式中,衬底基板21的材料可以为聚甲基丙烯酸甲酯(Polymethyl methacrylate,PMMA)、聚乙烯醇(Polyvinyl alcohol,PVA)、聚乙烯基苯酚(Polyvinyl phenol,PVP)、聚醚砜(Polyether sulfone,PES)、聚酰亚胺、聚酰胺、聚缩醛、聚碳酸酯(Poly carbonate,PC)、聚对苯二甲酸乙二酯(Polyethylene terephthalate,PET)、聚萘二甲酸乙二酯(Polyethylene naphthalate,PEN)或其组合。
在本公开的另一种实施方式中,衬底基板21也可以为柔性衬底基板21,例如衬底基板21的材料可以为聚酰亚胺(polyimide,PI)。衬底基板21还可以为多层材料的复合,举例而言,在本公开的一种实施方式中,衬底基板21可以包括依次层叠设置的底膜层(Bottom Film)、压敏胶层、第一聚酰亚胺层和第二聚酰亚胺层。
驱动电路层包括多个驱动电路区。任意一个驱动电路区可以包括晶体管和存储电容。晶体管可以为薄膜晶体管,薄膜晶体管可以选自顶栅型薄膜晶体管、底栅型薄膜晶体管或者双栅型薄膜晶体管。
薄膜晶体管的有源层的材料可以为非晶硅半导体材料、低温多晶硅半导体材料、金属氧化物半导体材料、有机半导体材料或者其他类型的半导体材料;薄膜晶体管可以为N型薄膜晶体管或者P型薄膜晶体管。
晶体管可以具有第一端、第二端和控制端,第一端和第二端中的一个可以为晶体管的源极且另一个可以为晶体管的漏极,控制端可以为晶体管的栅极。可以理解的是,晶体管的源极和漏极为两个相对且可以相互转换的概念;当晶体管的工作状态改变时,例如电流方向改变时,晶体管的源极和漏极可以互换。
在本公开中,驱动电路层22可以包括依次层叠于衬底基板21的晶体管层、层间电介质层225和源漏金属层226。其中,晶体管层中设置有晶体管的有源层和栅极,源漏金属层226与晶体管的源极和漏极电连接。可选地,晶体管层可以包括层叠于衬底基板21和层间电介质层225之间的有源层222、栅极绝缘层223、栅极层224。其中,各个膜层的位置关系可以根据薄膜晶体管的膜层结构确定。
在一些实施方式中,有源层222可以用于形成晶体管的有源层,半导体的有源层包括沟道区和位于沟道区两侧的源极、漏极;其中,沟道区可以保持半导体特性,源极和漏极的半导体材料被局部或者全部导体化。栅极层224可以用于形成扫描走线等栅极层走线,也可以用于形成晶体管的栅极,还可以用于形成存储电容的部分或者全部电极板。源漏金属层226可以用于形成数据走线、电源走线等源漏金属层走线。
以顶栅型薄膜晶体管为例,在本公开的一些实施方式中,驱动电路层22可以包括依次层叠设置的有源层222、栅极绝缘层223、栅极层224、层间电介质层225和源漏金属层226。
驱动电路层22还可以包括平坦化层227,根据不同情况,平坦化层227可以设为一层或者多层。平坦化层227可以设于驱动晶体管的源漏金属层226远离衬底基板21的一侧,且平坦化层227远离衬底基板21的表面为平面。平坦化层227间隔设有露出驱动晶体管的源漏金属层226 的多个第一过孔。
平坦化层227远离衬底基板21的一侧可以设有像素层23,像素层23包括公共电极231,公共电极231间隔设有多个第二过孔,第二过孔在衬底基板21上的正投影位于第一过孔在衬底基板21上的正投影内。
公共电极231远离衬底基板21的一侧设有第二保护层232,第二保护层232覆盖公共电极231远离衬底基板21的一侧,第二保护层232自公共电极231设有第二过孔的部位及平坦化层227设有第一过孔的部位,延伸至驱动晶体管的源漏金属层226,第二保护层232靠近衬底基板21的一端部分覆盖驱动晶体管的源漏金属层226,形成露出部分驱动晶体管的源漏金属层226的开口。第二保护层232远离衬底基板21的一侧设有多个像素电极233,像素电极233设于开口内且与驱动晶体管的源漏金属层226连接。
在像素电极233远离驱动晶体管的源漏金属层226的一侧设有液晶层234,液晶层234覆盖第二保护层232和驱动晶体管的源漏金属层226。因像素电极233和公共电极231之间设有第二保护层232,像素电极233和公共电极231都具有驱动面,所以可认为液晶层234位于像素电极233和公共电极231之间。液晶层234远离衬底基板的一侧设有彩膜层235,可以在彩膜层235远离衬底基板21的一侧设置绝缘层236。
显示装置可以是传统电子设备,例如:手机、电脑、电视和摄录放影机,也可以是新兴的穿戴设备,例如:虚拟现实设备和增强现实设备,在此不一一进行列举。大尺寸的的显示装置通常包括拼接在一起的多个发光基板,可以在多个发光基板的出光侧设置封装层,封装层覆盖所有发光基板的出光侧,第一反射层设于封装层远离发光基板的一侧,第一反射层在透光基板上的正投影可以与封装层在透光基板上的正投影重合。在其他可实现方式中,也可以根据显示装置的尺寸,将多个背光模组直接拼接在一起,组成一个大的背光源。
需要说明的是,该显示装置除了背光模组和显示面板以外,还包括其他必要的部件和组成,以手机为例,具体例如外壳、电路板,等等,本领域技术人员可根据该显示装置的具体使用要求进行相应地补充,在此不再赘述。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由所附的权利要求指出。

Claims (18)

  1. 一种背光模组,其中,包括:
    发光基板,包括透光基板和多个发光单元,多个所述发光单元阵列排布于所述透光基板的一侧;
    封装层,设于多个所述发光单元远离所述透光基板的一侧,所述封装层在所述透光基板上的正投影至少覆盖所述多个发光单元在所述透光基板上的正投影;
    第一反射层,设于所述封装层远离所述透光基板的一侧,所述第一反射层在所述透光基板上的正投影至少覆盖所述多个发光单元在所述透光基板上的正投影,所述第一反射层为朗伯体。
  2. 根据权利要求1所述的背光模组,其中,所述第一反射层靠近所述透光基板的一面为粗糙面,所粗糙面的粗糙度大于2微米。
  3. 根据权利要求2所述的背光模组,其中,所述第一反射层为带泡反射片,所述第一反射层包括多个气泡以及包裹于多个所述气泡外的保护膜,所述气泡的直径大于2微米。
  4. 根据权利要求1所述的背光模组,其中,所述封装层内包裹至少一种颜色的色转粒子。
  5. 根据权利要求4所述的背光模组,其中,所述封装层包括多个子层,所述多个子层分别为第一阻隔层、颜色转换层和第二阻隔层,所述第一阻隔层设于多个所述发光单元远离所述透光基板的一侧,所述颜色转换层设于所述第一阻隔层远离所述透光基板的一侧,所述第二阻隔层设于所述颜色转换层远离所述透光基板的一侧,所述颜色转换层内包裹至少一种颜色的色转粒子。
  6. 根据权利要求1所述的背光模组,其中,所述封装层包括多个子部,每个所述子部分别包裹一个所述发光单元,每个所述子部内包裹至少一种颜色的色转粒子。
  7. 根据权利要求6所述的背光模组,其中,所述第一反射层包括多个第一反射部,每个所述第一反射部包裹一个所述子部。
  8. 根据权利要求4至7任一项所述的背光模组,其中,所述色转粒子的材料为氮化物荧光粉或者氟化物荧光粉。
  9. 根据权利要求1所述的背光模组,其中,所述背光模组还包括第一驱动层组,所述第一驱动层组包括:
    第一导电层,与所述发光单元设于所述透光基板的同一侧,所述第一导电层包括多条第一走线;
    第一绝缘层,包括设于所述第一导电层远离所述透光基板的一侧,且位于相邻两条第一走线之间,所述第一绝缘层上设有露出所述第一导电层的第一开口;
    第二导电层,设于所述第一绝缘层远离所述透光基板的一侧,所述第二导电层包括多条第二走线,所述第二走线穿过第一开口与所述第一走线连接,且连接所述发光单元;
    第二绝缘层,设于所述第二导电层远离所述透光基板的一侧,且位于相邻两条第二走线之间。
  10. 根据权利要求9所述的背光模组,其中,所述第一驱动层组还包括第二反射层,所述第二反射层设于所述第二导电层与所述第二绝缘层之间,所述第二反射层在所述透光基板上的正投影与所述第一走线在所述透光基板上的正投影至少部分交叠,所述第二反射层在所述透光基板上的正投影与所述第二走线在所述透光基板上的正投影至少部分交叠。
  11. 根据权利要求9所述的背光模组,其中,所述第一绝缘层和所述第二绝缘层均为光学胶,所述光学胶对所述发光单元的出射光线的透过率大于95%。
  12. 根据权利要求9所述的背光模组,其中,所述第一绝缘层位于相邻两条所述第一走线之间的部分设有第二开口,和/或所述第二绝缘层位于相邻两条第二走线之间的部分设有第三开口。
  13. 根据权利要求12所述的背光模组,其中,所述第一驱动层组还包括第三反射层,所述第二反射层设于所述透光基板与所述第一导电层之间,所述第三反射层在所述透光基板上的正投影覆盖所述第一走线在所述透光基板上的正投影,所述第三反射层在所述透光基板上的正投影覆盖所述第二走线在所述透光基板上的正投影。
  14. 根据权利要求9所述的背光模组,其中,所述第一走线和所述第二走线为反光部,第一绝缘层位于第一走线之间的部分以及第二绝缘 层位于第二走线之间的部分为透光部,所述透光部在所述透光基板上的正投影的面积占所述第一驱动层组在所述透光基板上的正投影的87%以上。
  15. 根据权利要求14所述的背光模组,其中,在所述背光模组包括多个发光区域,在不同所述发光区域中,相邻两条所述第一走线之间的间距不同,相邻两条所述第二走线之间的间距不同。
  16. 根据权利要求1所述的背光模组,其中,多个所述发光单元排布为多个相互交错的正三角形发光组,每个所述正三角形发光组包括三个发光单元,三个所述发光单元分别设于所述正三角形发光组的三个顶点,相邻两个所述正三角形发光组共用两个发光单元。
  17. 根据权利要求1所述的背光模组,其中,所述背光模组还包括:
    偏光层,设于所述透光基板远离所述发光单元的另一侧;
    扩散层,设于所述偏光层远离所述透光基板的一侧。
  18. 一种显示装置,其中,包括权利要求1至17任一项所述的背光模组。
PCT/CN2022/108029 2022-07-26 2022-07-26 背光模组及显示装置 WO2024020805A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280002366.5A CN117916655A (zh) 2022-07-26 2022-07-26 背光模组及显示装置
PCT/CN2022/108029 WO2024020805A1 (zh) 2022-07-26 2022-07-26 背光模组及显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/108029 WO2024020805A1 (zh) 2022-07-26 2022-07-26 背光模组及显示装置

Publications (1)

Publication Number Publication Date
WO2024020805A1 true WO2024020805A1 (zh) 2024-02-01

Family

ID=89704749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108029 WO2024020805A1 (zh) 2022-07-26 2022-07-26 背光模组及显示装置

Country Status (2)

Country Link
CN (1) CN117916655A (zh)
WO (1) WO2024020805A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060146530A1 (en) * 2004-12-30 2006-07-06 Samsung Electro-Mechanics Co., Ltd. Led backlight apparatus
CN111505868A (zh) * 2020-05-11 2020-08-07 Tcl华星光电技术有限公司 背光模组和显示面板
CN111722433A (zh) * 2019-03-22 2020-09-29 中强光电股份有限公司 光源模块与显示装置
CN112259571A (zh) * 2020-10-22 2021-01-22 武汉华星光电技术有限公司 柔性背板及显示装置
WO2021248375A1 (zh) * 2020-06-10 2021-12-16 重庆康佳光电技术研究院有限公司 一种显示背板及其制备方法
WO2022140886A1 (zh) * 2020-12-28 2022-07-07 京东方科技集团股份有限公司 发光基板及其制备方法、发光模组、显示模组
US20220228722A1 (en) * 2019-07-01 2022-07-21 Dai Nippon Printing Co., Ltd. Diffusion member, stacked body, diffusion member set, led backlight, and displaying apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060146530A1 (en) * 2004-12-30 2006-07-06 Samsung Electro-Mechanics Co., Ltd. Led backlight apparatus
CN111722433A (zh) * 2019-03-22 2020-09-29 中强光电股份有限公司 光源模块与显示装置
TW202036058A (zh) * 2019-03-22 2020-10-01 中強光電股份有限公司 光源模組與顯示裝置
US20220228722A1 (en) * 2019-07-01 2022-07-21 Dai Nippon Printing Co., Ltd. Diffusion member, stacked body, diffusion member set, led backlight, and displaying apparatus
CN111505868A (zh) * 2020-05-11 2020-08-07 Tcl华星光电技术有限公司 背光模组和显示面板
WO2021248375A1 (zh) * 2020-06-10 2021-12-16 重庆康佳光电技术研究院有限公司 一种显示背板及其制备方法
CN112259571A (zh) * 2020-10-22 2021-01-22 武汉华星光电技术有限公司 柔性背板及显示装置
WO2022140886A1 (zh) * 2020-12-28 2022-07-07 京东方科技集团股份有限公司 发光基板及其制备方法、发光模组、显示模组

Also Published As

Publication number Publication date
CN117916655A (zh) 2024-04-19

Similar Documents

Publication Publication Date Title
WO2020258864A1 (zh) 色彩转化组件及其制作方法、显示面板
US11953779B2 (en) Backlight module, method for designing the same, and display device
KR20130005792A (ko) 백라이트 유닛
CN111752045A (zh) 背光模组及显示装置
KR20150037680A (ko) 광원 모듈 및 이를 구비한 백라이트 유닛
WO2023108724A1 (zh) 显示面板及电子装置
CN114355658A (zh) 混接显示装置及拼接显示装置
KR20210003330A (ko) 백라이트 유닛 및 이를 포함하는 표시 장치
KR20200107010A (ko) 백라이트 유닛 및 이를 포함하는 표시 장치
WO2024020805A1 (zh) 背光模组及显示装置
WO2024000995A1 (zh) 显示面板及其制备方法和显示装置
US20240160057A1 (en) Spliced display panel and spliced display device
CN111916434A (zh) 一种显示装置
KR20200145915A (ko) 광원 부재 및 이를 포함하는 표시 장치
US20240053635A1 (en) Display panel and display device
TWI782351B (zh) 顯示面板
WO2023010344A1 (zh) Led芯片、显示面板及制备方法、电子设备
KR20200005096A (ko) 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법
KR20150025437A (ko) 광원 모듈 및 이를 구비한 백라이트 유닛
KR20210100796A (ko) 표시패널 및 이의 제조 방법
CN111158191A (zh) 背光模组及显示装置
KR101771463B1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치
US20210384379A1 (en) Display panel
US11640967B2 (en) Micro light-emitting device display apparatus
TWI814386B (zh) 顯示裝置及其製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280002366.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22952270

Country of ref document: EP

Kind code of ref document: A1