WO2024000995A1 - 显示面板及其制备方法和显示装置 - Google Patents

显示面板及其制备方法和显示装置 Download PDF

Info

Publication number
WO2024000995A1
WO2024000995A1 PCT/CN2022/131997 CN2022131997W WO2024000995A1 WO 2024000995 A1 WO2024000995 A1 WO 2024000995A1 CN 2022131997 W CN2022131997 W CN 2022131997W WO 2024000995 A1 WO2024000995 A1 WO 2024000995A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
side wall
emitting unit
groove
Prior art date
Application number
PCT/CN2022/131997
Other languages
English (en)
French (fr)
Inventor
文平
罗昶
张毅
李泽宇
张丛雷
石博
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2024000995A1 publication Critical patent/WO2024000995A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/856Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a display panel, a preparation method thereof, and a display device.
  • the organic light-emitting diode (English: Organic Light-Emitting Diode; abbreviation: OLED) display panel is a multi-layer film structure. After the light emerges from the light-emitting functional layer, it is reflected and refracted by the multi-layer film layers located on the light-emitting functional layer. This will cause more light loss and affect the light output of the display panel.
  • OLED Organic Light-Emitting Diode
  • Embodiments of the present disclosure provide a display panel, a preparation method thereof, and a display device, which can allow more light to emit from the display panel and improve the light emission effect of the display panel.
  • the technical solutions are as follows:
  • An embodiment of the present disclosure provides a display panel including: a driving backplane, a light-emitting functional layer and a light extraction layer, the light-emitting functional layer and the light extraction layer being located in sequence on the bearing surface of the driving backplane;
  • the light-emitting functional layer includes a plurality of light-emitting units arranged in an array;
  • the light extraction layer includes a first sub-layer and a second sub-layer, and the first sub-layer and the second sub-layer are sequentially stacked on the light-emitting functional layer.
  • the refractive index of the first sub-layer is lower than the refractive index of the second sub-layer
  • the first sub-layer has a plurality of grooves, each groove of the plurality of grooves is in contact with the plurality of grooves.
  • One of the light-emitting units is opposite, and part of the second sub-layer is located in the plurality of grooves; the boundary length of the grooves is greater than the boundary length of the light-emitting area of the corresponding one light-emitting unit.
  • At least part of the outer contour of the orthographic projection of the groove on the bearing surface is located within the orthographic projection of the corresponding light-emitting unit on the bearing surface.
  • a side wall of at least one groove among the plurality of grooves has a protrusion, and the protrusion protrudes toward the center direction of the groove, and the protrusion At least part of the orthographic projection on the carrying surface is located within the orthographic projection of the light-emitting unit on the carrying surface.
  • the orthographic projection of the light-emitting unit on the bearing surface is located within the outer contour of the orthographic projection of the groove on the bearing surface.
  • a side wall of at least one groove among the plurality of grooves has a protrusion, and the protrusion protrudes toward a center direction of the groove.
  • the maximum height of the protrusion is 1 ⁇ m to 3 ⁇ m, and the maximum width of the protrusion is 1 ⁇ m to 5 ⁇ m.
  • the shape of the cross section of the protrusion parallel to the bearing surface includes an arc shape.
  • the outer wall surface of the protrusion is a conical surface, and a larger end of the protrusion is close to the light-emitting unit.
  • the convex outer wall surface is a cylindrical surface, and the straight generatrix of the cylindrical surface is parallel to the side wall of the groove.
  • the groove has a plurality of side walls connected end to end in sequence, and each side wall of the groove has at most one of the protrusions.
  • the plurality of light-emitting units include a first light-emitting unit, and the groove corresponding to the first light-emitting unit includes a first side wall, a third side wall, and a third side wall that are connected in sequence.
  • each side wall of the groove has one protrusion; the geometric center of the protrusion located on the first side wall and the protrusion located on the second side wall
  • the connection line between the geometric center is a first connection line, and the first connection line and the extension line of the side of the third side wall close to the first light-emitting unit or the fourth side wall close to the first light-emitting unit
  • the extension lines of the sides of the unit intersect; or, the connection line between the geometric center of the protrusion on the third side wall and the geometric center of the protrusion on the fourth side wall is a second connection line, and the third connection line is The two connecting lines intersect with an extension line of the side of the first side wall close to the first light-emitting unit or an extension line of the side of the second side wall close to the first light-emitting unit.
  • the first side wall, the second side wall, the third side wall and the fourth side wall each include a straight segment; the first side wall At least one side of the wall, the second side wall, the third side wall and the fourth side wall further includes an arc segment, and a straight line between the arc segment and the side where the arc segment is located One ends of the segments are connected; the protrusions in the first side wall, the second side wall, the third side wall and the fourth side wall are respectively located at the midpoints of the corresponding linear segments.
  • the plurality of light-emitting units are arranged in a matrix in a first direction and a second direction, and the first connection line is connected to the first direction and the second direction. Both cross; and/or, the second connecting line crosses both the first direction and the second direction.
  • the plurality of light-emitting units further include: a second light-emitting unit and a third light-emitting unit, both of the second light-emitting unit and the third light-emitting unit include sequentially connected Four side walls and protrusions located on each side wall; the two opposite protrusions on the second light-emitting unit are arranged along the first straight line or the second straight line, and the opposite protrusions on the third light-emitting unit The two protrusions are arranged along the first straight line or the second straight line, the first straight line is parallel to the first direction, and the second straight line is parallel to the second direction.
  • the first side wall and the fourth side wall of the first light-emitting unit each include a straight line segment and an arc segment, and the arc segment of the first side wall Connected to the arc segment of the fourth side wall, the two connected arc segments form a rounded corner; the protrusion on the first side wall of the first light-emitting unit does not overlap with the second straight line, The protrusion on the fourth side wall of the first light-emitting unit does not overlap with the first straight line, the protrusion on the second side wall of the first light-emitting unit is located on the second straight line, and the The protrusion on the third side wall of the first light-emitting unit is located on the first straight line; or the protrusion on the first side wall of the first light-emitting unit is located on the second straight line, and the third straight line is located on the first side wall of the first light-emitting unit.
  • the protrusion on the fourth side wall of a light-emitting unit is located on the first straight line, the protrusion on the second side wall of the first light-emitting unit does not overlap with the second straight line, and the first light-emitting unit The protrusion on the third side wall of the unit does not overlap the first straight line.
  • the protrusion is frame-shaped, and the geometric center of the protrusion is the same as the geometric center of the groove.
  • the side wall of the groove has a recessed portion, the recessed portion is recessed in a direction away from the geometric center of the recess, and the recessed portion is located at least on the first A sub-layer is close to the side of the light-emitting functional layer; at least part of the orthographic projection of the recessed portion on the bearing surface is located outside the orthographic projection of the corresponding light-emitting unit on the bearing surface.
  • the shape of the orthographic projection of the recessed portion on the bearing surface includes at least one of a rectangle, a trapezoid, a triangle, and an arc.
  • the depth of the recessed portion is not greater than 5 ⁇ m.
  • the groove has a first opening and a second opening, and the first opening is located on a side of the first sub-layer close to the driving backplane, and the The second opening is located on a side of the first sub-layer away from the driving backplane, and the orthographic projection of the first opening on the bearing surface is located within the orthographic projection of the second opening on the bearing surface.
  • an angle between the side wall of the groove and the driving back plate is 40° to 80°.
  • the side wall of the groove includes a plurality of planes connected in sequence between the first opening and the second opening, and there is a gap between the two connected planes. angle.
  • the side wall of the groove is a curved surface, and the side wall of the groove is recessed in a direction away from the center of the groove.
  • the groove corresponds to the light-emitting unit one-to-one.
  • the first sub-layer is a transparent optical material layer or an ink material layer
  • the second sub-layer is a transparent optical material layer or an ink material layer
  • the display panel further includes a touch layer and an encapsulation layer, and the encapsulation layer and the touch layer are sequentially stacked on the light-emitting functional layer and the light extraction layer. between them, and the first sub-layer and the second sub-layer are sequentially stacked on the touch layer.
  • Embodiments of the present disclosure provide a method for preparing a display panel.
  • the preparation method includes: providing a driving backplane; and forming a light-emitting functional layer on the bearing surface of the driving backplane.
  • the light-emitting functional layer includes multiple elements arranged in an array.
  • a light-emitting unit forming a light extraction layer on the light-emitting functional layer, the light extraction layer including a first sub-layer and a second sub-layer, the first sub-layer and the second sub-layer are sequentially stacked on the On the light-emitting functional layer, the refractive index of the first sub-layer is lower than the refractive index of the second sub-layer, the first sub-layer has a plurality of grooves, each groove in the plurality of grooves Opposite to one of the plurality of light-emitting units, a portion of the second sub-layer is located in the plurality of grooves; the boundary length of the groove is greater than the boundary length of the light-emitting area of the corresponding one light-emitting unit. .
  • An embodiment of the present disclosure provides a display device, which includes a power supply component and a display panel as described above, and the power supply component is electrically connected to the display panel.
  • the driving backplane, the light-emitting functional layer and the light extraction layer are stacked in sequence, wherein two stacked sub-layers with different refractive indexes are provided on the light-emitting layer.
  • the first sub-layer with low refractive index has grooves, and the second sub-layer with high refractive index is partially located in the grooves to fill the grooves.
  • Figure 1 is a schematic plan view of a display panel provided by an embodiment of the present disclosure
  • Figure 2 is a schematic cross-sectional view of a display panel provided by an embodiment of the present disclosure
  • Figure 3 is a projection relationship diagram between a first sub-layer and a light-emitting unit provided by an embodiment of the present disclosure
  • Figure 4 is a schematic cross-sectional view of a display panel provided by an embodiment of the present disclosure.
  • Figure 5 is a schematic structural diagram of a light extraction layer provided by an embodiment of the present disclosure.
  • Figure 6 is a schematic structural diagram of a light extraction layer provided by an embodiment of the present disclosure.
  • Figure 7 is a schematic structural diagram of a light extraction layer provided by an embodiment of the present disclosure.
  • Figure 8 is a partial structural schematic diagram of a first sub-layer provided by an embodiment of the present disclosure.
  • Figure 9 is a partial structural schematic diagram of another first sub-layer provided by an embodiment of the present disclosure.
  • Figure 10 is a partial structural schematic diagram of another first sub-layer provided by an embodiment of the present disclosure.
  • Figure 11 is a schematic plan view of a first sub-layer provided by an embodiment of the present disclosure.
  • Figure 12 is a schematic plan view of a first sub-layer provided by an embodiment of the present disclosure.
  • Figure 13 is a schematic distribution diagram of a light-emitting unit provided by an embodiment of the present disclosure.
  • Figure 14 is a schematic structural diagram of a light-emitting unit provided by an embodiment of the present disclosure.
  • Figure 15 is a schematic distribution diagram of a light-emitting unit provided by an embodiment of the present disclosure.
  • Figure 16 is a schematic cross-sectional view of a display panel provided by an embodiment of the present disclosure.
  • Figure 17 is a schematic structural diagram of a light-emitting unit provided by an embodiment of the present disclosure.
  • Figure 18 is a schematic cross-sectional view of a display panel provided by an embodiment of the present disclosure.
  • Figure 19 is a schematic structural diagram of a light-emitting unit provided by an embodiment of the present disclosure.
  • Figure 20 is a schematic cross-sectional view of a display panel provided by an embodiment of the present disclosure.
  • Figure 21 is a partial structural schematic diagram of a first sub-layer provided by an embodiment of the present disclosure.
  • Figure 22 is a top view of a first sub-layer provided by an embodiment of the present disclosure.
  • Figure 23 is a schematic plan view of a first sub-layer provided by an embodiment of the present disclosure.
  • Figure 24 is a cross-sectional view of a first sub-layer provided by an embodiment of the present disclosure.
  • Figure 25 is a schematic plan view of a first sub-layer provided by an embodiment of the present disclosure.
  • Figure 26 is a schematic plan view of a first sub-layer provided by an embodiment of the present disclosure.
  • Figure 27 is a schematic plan view of a first sub-layer provided by an embodiment of the present disclosure.
  • Figure 28 is a schematic plan view of a first sub-layer provided by an embodiment of the present disclosure.
  • Figure 29 is a schematic plan view of a first sub-layer provided by an embodiment of the present disclosure.
  • Figure 30 is a schematic plan view of a first sub-layer provided by an embodiment of the present disclosure.
  • Figure 31 is a schematic plan view of a first sub-layer provided by an embodiment of the present disclosure.
  • Figure 32 is a schematic cross-sectional view of a display panel provided by an embodiment of the present disclosure.
  • FIG. 33 is a flow chart of a method for manufacturing a display panel provided by an embodiment of the present disclosure.
  • Words such as “connected” or “connected” are not limited to physical or mechanical connections, but may include electrical connections, whether direct or indirect.
  • “Top”, “bottom”, “left”, “right”, “top”, “bottom”, etc. are only used to express relative position relationships. When the absolute position of the described object changes, the relative position relationship may also be Change accordingly.
  • FIG. 1 is a schematic plan view of a display panel provided by an embodiment of the present disclosure.
  • the display panel includes a display area P and a non-display area Q surrounding the display area P.
  • the display area P includes a plurality of light-emitting units 21 arranged in an array. The following takes a cross-section of one of the light-emitting units as an example to illustrate the structure of the display panel.
  • FIG. 2 is a schematic cross-sectional view of a display panel provided by an embodiment of the present disclosure.
  • FIG. 2 is a schematic cross-sectional view along line AA in FIG. 1 .
  • the display panel includes: a driving backplane 10 , a light-emitting functional layer 20 and a light extraction layer 30 .
  • the light-emitting functional layer 20 and the light extraction layer 30 are located on the bearing surface of the driving backplane 10 in sequence.
  • the carrying surface refers to the surface of the driving back plate 10 used to carry other film layers.
  • the surface of the driving back plate 10 in contact with the light-emitting functional layer 20 is the carrying surface.
  • the light-emitting functional layer 20 includes a plurality of light-emitting units 21 arranged in an array.
  • the light-emitting functional layer includes a pixel defining layer 23.
  • the pixel defining layer 23 has a plurality of openings, and each opening is provided with a light-emitting unit 21.
  • the range of the openings of the pixel defining layer 23 is the outer contour range of the light-emitting unit 21.
  • the light extraction layer 30 includes a first sub-layer 31 and a second sub-layer 32.
  • the first sub-layer 31 and the second sub-layer 32 are sequentially stacked on the light-emitting functional layer 20.
  • the refraction of the first sub-layer 31 The refractive index is lower than the refractive index of the second sub-layer 32 .
  • the first sub-layer 31 has a plurality of grooves 310 (only one is shown in FIG. 2 ), the grooves 310 correspond to the light-emitting units 21 one-to-one, and part of the second sub-layer 32 is located in the plurality of grooves 310 .
  • the boundary length of the groove 310 is greater than the boundary length of the corresponding light-emitting area of the light-emitting unit 21 .
  • the boundary length of the groove refers to the circumference of the outer contour of the groove.
  • the boundary length of the light-emitting area of the light-emitting unit refers to the perimeter of the outer contour of the light-emitting area of the light-emitting unit.
  • the driving backplane 10, the light-emitting functional layer 20 and the light extraction layer 30 are stacked in sequence, wherein two stacked sub-layers with different refractive indexes are provided on the light-emitting layer.
  • the first sub-layer 31 with a low refractive index has a groove 310
  • the second sub-layer 32 with a high refractive index is partially located in the groove 310 to fill the groove 310. Referring to the arrow on the right side of FIG. 2 , the light path is shown.
  • the light when the light is irradiated obliquely from the light-emitting functional layer 20 to the interface between the side wall of the groove 310 and the second sub-layer 32 , the light is emitted from the second sub-layer with high refractive index.
  • the layer 32 is directed towards the first sub-layer 31 with a low refractive index, so reflection occurs, thereby changing the exit direction of the obliquely emitted light, so that the light can be emitted from the light exit surface of the display panel after being reflected at the interface.
  • FIG. 3 is a projection relationship diagram between a first sub-layer and a light-emitting unit provided by an embodiment of the present disclosure.
  • each groove 310 is opposite to one light-emitting unit 21 (see the dotted line in the figure) among the plurality of light-emitting units 21 .
  • At least part of the outer contour of the orthographic projection of the groove 310 on the carrying surface is located within the orthographic projection of the corresponding light-emitting unit 21 on the carrying surface (see the dotted line in the figure).
  • the orthographic projection of the light-emitting unit 21 on the carrying surface may be the orthographic projection of the opening of the pixel defining layer 23 in the light-emitting functional layer 20 .
  • the side wall of at least one groove 310 among the plurality of grooves 310 has a protrusion 40 , and the protrusion 40 protrudes toward the center direction of the groove 310 .
  • FIG. 4 is a schematic cross-sectional view of a display panel provided by an embodiment of the present disclosure.
  • the cross-section illustrated in Figure 4 is the cross-section illustrated at NN in Figure 3 .
  • the width K of the groove of the first sub-layer 31 is not less than the length of the light-emitting unit 21 .
  • FIG. 2 is a schematic cross-sectional view taken along line MM in FIG. 4 .
  • the width of the groove of the first sub-layer 31 is smaller than the length of the light-emitting unit 21 , so that the groove 310 carries the The portion of the outer contour of the orthographic projection on the surface is located within the orthographic projection of the corresponding light-emitting unit 21 on the carrying surface.
  • part of the outer contour of the orthographic projection of the groove 310 is within the orthographic projection of the light-emitting unit 21 , that is, there is a partial area of the first sub-layer 31 directly facing the light-emitting unit 21 , so that the light-emitting unit opposite to this partial area Part of the emitted light (see the arrow on the left in Figure 2 indicating the light path) can enter the first sub-layer 31 with low refractive index corresponding to this part of the area, and then the light enters from the first sub-layer 31 with low refractive index.
  • the second sub-layer 32 with a high refractive index When the second sub-layer 32 with a high refractive index is used, refraction will occur, causing the refraction angle of the light to be smaller than the incident angle of the light, so that part of the light emitted from the edge of the light-emitting unit 21 in a direction away from the center of the light-emitting unit will be directed toward the center of the light-emitting unit. Closer, thereby further increasing the light emitted in the forward direction and improving the light extraction efficiency of the display panel.
  • the width of the groove of the first sub-layer may be less than or equal to the length of the light-emitting unit, so that the orthographic projection of the outer contour of the groove on the bearing surface is completely located on the corresponding light-emitting unit on the bearing surface. In orthographic projection.
  • the light-emitting unit 21 includes an anode layer, a light-emitting layer and a cathode layer stacked in sequence.
  • the light-emitting layer may include a hole transport layer (Hole Transport Layer, referred to as HTL), a hole injection layer (Hole Injection Layer, referred to as HIL), an electron transport layer (Electron Transport Layer, referred to as ETL), an electron injection layer (Electron Injection Layer, referred to as EIL), hole blocking layer (Hole Block Layer, referred to as HBL), electron blocking layer (Electron Blocking Layer, referred to as EBL) and luminescent material layer.
  • HTL hole transport layer
  • HIL Hole Injection Layer
  • ETL electron transport layer
  • EIL electron injection layer
  • HBL hole blocking layer
  • EBL Electrode Blocking Layer
  • luminescent material layer an electron injection layer, an electron transport layer, a hole blocking layer, a luminescent material layer, a hole transport layer, a hole injection layer and an electron blocking layer are stacked in sequence.
  • the cathode layer may be a transparent conductive layer
  • the anode layer may be a transparent conductive layer or a metal layer.
  • the transparent conductive layer may be an ITO (Indium tin oxide, indium tin oxide) layer and an IZO (Indium Zinc Oxide, indium zinc oxide) layer.
  • ITO Indium tin oxide, indium tin oxide
  • IZO Indium Zinc Oxide, indium zinc oxide
  • the metal layer may be a metal layer such as Mg, Al, Au, Pt, Cu, etc.
  • the metal layer may be a single metal layer or a stack of at least two metals.
  • the driving backplane 10 may include a base substrate and a plurality of driving circuits, and a plurality of driving circuit arrays are arranged on the base substrate.
  • Each driving circuit is connected to a corresponding light emitting unit 21 .
  • the driving circuit is electrically connected to the anode layer of the light emitting unit 21 . In this way, the light-emitting unit 21 can emit light under the driving of the connected driving circuit.
  • the driving backplane 10 may be a TFT (Thin Film Transistor, thin film transistor) substrate, and each driving circuit on the driving backplane 10 includes at least two TFTs for controlling the connected light-emitting unit 21 to emit light.
  • TFT Thin Film Transistor, thin film transistor
  • the driving circuit includes an active layer, a gate insulating layer, a gate layer, an interlayer dielectric layer and a source and drain layer that are sequentially stacked on a base substrate.
  • the light-emitting unit 21 is connected to the source and drain layers of the corresponding driving circuit.
  • the base substrate may be made of glass, quartz, plastic, etc.
  • the active layer may be made of amorphous silicon, polycrystalline silicon or metal oxide semiconductor, etc.
  • the gate insulating layer may be made of silicon oxide.
  • the material of the gate metal layer can be a single-layer metal film such as molybdenum, copper, titanium, etc., or a multi-layer metal film such as molybdenum/aluminum/molybdenum or titanium/aluminum/titanium.
  • the material for the interlayer dielectric layer can be silicon oxide or silicon nitride, etc.; the material for the source and drain metal layers can be single-layer metal films such as aluminum, molybdenum, copper, titanium, or molybdenum/aluminum/molybdenum. Or multi-layer metal films such as titanium/aluminum/titanium.
  • the driving backplane is an LTPS (Low Temperature Poly-Silicon) driving backplane.
  • LTPS Low Temperature Poly-Silicon
  • the driving backplane when among the TFTs of the driving backplane, the active layer of some TFTs is made of polysilicon, and the active layer of another part of the TFTs is made of metal oxide, the driving backplane is LTPO. (Low Temperature Polycrystalline Oxide, low temperature polycrystalline oxide) driver backplane.
  • TFT substrate structure with a single-layer gate metal layer.
  • the TFT substrate structure can also be a variety of structures such as a double-layer gate metal layer.
  • the embodiments of the present disclosure are not limited to this.
  • the groove 310 corresponds to the light-emitting unit 21 one-to-one.
  • the number of grooves 310 may be less than the number of light-emitting units 21.
  • Each groove 310 has a corresponding light-emitting unit 21, and some light-emitting units 21 do not have a corresponding groove 310.
  • the shape of the grooves can be any shape, such as rectangular, circular, elliptical, or polygonal, and the grooves can also be arranged in any manner.
  • the light-emitting units include light-emitting units of multiple colors.
  • the light-emitting units of different colors have different sizes.
  • the sizes of the grooves 310 corresponding to the light-emitting units are also different.
  • the area of the red light-emitting unit R is larger than the area of the green light-emitting unit G, and the area of the green light-emitting unit G is larger than the area of the blue light-emitting unit B.
  • the area of the groove 310 corresponding to the red light-emitting unit R is also larger than the area of the groove 310 corresponding to the green light-emitting unit G, and the area of the groove 310 corresponding to the green light-emitting unit G is also larger than that of the blue light-emitting unit.
  • B corresponds to the area of the groove 310.
  • the first sub-layer 31 is a transparent optical material layer or an ink material layer
  • the second sub-layer 32 is a transparent optical material layer or an ink material layer.
  • the transparent optical material layer may be a polyimide resin layer or an acrylic material layer
  • the ink material layer may be an acrylic material layer or an epoxy material layer.
  • the transmittance of the transparent optical material layer is not necessarily 100%.
  • the transmittance of the transparent optical material layer may also be 50% to 99%, which is not limited by the embodiments of the present disclosure.
  • the groove 310 has a first opening 311 and a second opening 312 .
  • the first opening 311 is located on a side of the first sub-layer 31 close to the driving backplane 10
  • the second opening 312 is located on the first side of the first sub-layer 31 close to the driving backplane 10 .
  • the sub-layer 31 is on a side surface away from the driving backplane 10
  • the orthographic projection of the first opening 311 on the bearing surface is located within the orthographic projection of the second opening 312 on the bearing surface. That is, the area of the opening of the groove 310 close to the driving back plate 10 is smaller than that of the opening far from the driving back plate 10 .
  • the sidewalls of groove 310 are planar. That is, the side walls of the groove 310 are inclined relative to the driving back plate 10 .
  • the angle ⁇ between the side wall of the groove 310 and the driving back plate 10 is 40° to 80°.
  • the angle between the side wall of the groove 310 and the driving back plate 10 is 60°. Setting the inclination angle of the side wall of the groove 310 to this angle allows the angle between the light and the side wall of the groove to be within a specific range when part of the light is incident on the side wall of the groove, so that total reflection of the light occurs, improving the It can also adjust the emitting direction of most of the light to be perpendicular to the light emitting surface of the display panel to improve the forward light emitting rate.
  • total reflection occurs when the angle between the light and the side wall of the groove ⁇ 90-arcsin(n2/n1).
  • the refractive index of the first sub-layer is n2, and the refractive index of the second sub-layer is n1.
  • FIG. 5 is a schematic structural diagram of a light extraction layer provided by an embodiment of the present disclosure. As shown in FIG. 5 , the side walls of the groove 310 are curved surfaces, and the side walls of the groove 310 are recessed in a direction away from the center of the groove 310 .
  • the side walls of the groove 310 may be arc surfaces.
  • FIG. 6 is a schematic structural diagram of a light extraction layer provided by an embodiment of the present disclosure. As shown in FIG. 6 , the side walls of the groove 310 are curved surfaces, and the side walls of the groove 310 protrude toward the center of the groove 310 .
  • the side walls of the groove 310 may be arc surfaces.
  • the side wall of the groove 310 is set as an arc surface. After the obliquely emitted light is reflected on the arc surface, the emitted direction of the light after reflection can also be made perpendicular to the direction perpendicular to the light emitting surface of the display panel, so as to allow more light to be emitted. The light shines forward.
  • the side wall of the groove 310 includes a plurality of planes connected in sequence between the first opening and the second opening, and there is an included angle between the two connected planes.
  • FIG. 7 is a schematic structural diagram of a light extraction layer provided by an embodiment of the present disclosure.
  • the side walls of the groove are two connected planes, and the angle between the two connected planes is an obtuse angle.
  • the side walls of the groove 310 are configured as two connected planes, so that the light rays hitting the side walls of the groove at the same angle can emerge from the display panel at different angles, thereby increasing the light emitting area of the light-emitting unit.
  • the side walls of the groove 310 can also have other structures, as long as the light emitted obliquely is reflected at the side walls of the groove 310, so that the light can be emitted in a direction perpendicular to the display panel.
  • the disclosed embodiments are not limited.
  • At least part of the orthographic projection of the protrusion 40 on the bearing surface is located within the orthographic projection of the light emitting unit 21 on the bearing surface.
  • the surface of the protrusion 40 facing the light-emitting unit 21 is in contact with the side surface of the light-emitting unit 21 . That is, the side of the protrusion 40 close to the light-emitting unit 21 and the side of the light-emitting unit 21 are located on the same plane.
  • Part of the surface of the protrusion 40 and the side of the first sub-layer 31 close to the light-emitting unit 21 are both in contact with the same surface of the same film layer.
  • part of the surface of the protrusion 40 is in contact with the side of the light-emitting unit 21 close to the first sub-layer.
  • the protrusion 40 protrudes toward the center direction of the groove 310 so that the orthographic projection of the protrusion 40 on the bearing surface is located within the orthographic projection of the corresponding light-emitting unit 21 on the bearing surface.
  • the protrusion 40 is directly opposite to the light-emitting unit 21, so that after the part of the light-emitting unit 21 opposite to the protrusion 40 emits light, the light can directly enter the first sub-layer 31 with a low refractive index, so that the light can then be When the first sub-layer 31 with a low refractive index enters the second sub-layer 32 with a high refractive index, refraction will occur.
  • At least part of the orthographic projection of the protrusion 40 on the bearing surface is located within the orthographic projection of the light-emitting unit 21 on the bearing surface, including the following two implementation methods.
  • the portion of the orthographic projection outer contour of the groove 310 on the bearing surface, except for the protrusion 40 coincides with the orthographic projection outer contour of the corresponding light-emitting unit 21 on the bearing surface.
  • the orthographic projection of the protrusion 40 on the carrying surface is completely located within the orthographic projection of the corresponding light-emitting unit 21 on the carrying surface.
  • the outer contour of the orthographic projection of the groove on the bearing surface, except for the convex part surrounds the orthographic projection of the corresponding light-emitting unit on the bearing surface. That is, the orthographic projection of the light-emitting unit on the bearing surface is located within the outer contour of the orthographic projection of the corresponding groove on the bearing surface except for the convex part. At this time, only part of the orthographic projection of the protrusion on the bearing surface is located within the orthographic projection of the corresponding light-emitting unit on the bearing surface.
  • the maximum length L of the protrusion 40 is 1 ⁇ m to 3 ⁇ m, and the maximum width h of the protrusion 40 is 1 ⁇ m to 5 ⁇ m.
  • the length of the protrusion is the maximum distance from the point on the protrusion outer wall surface on the cross-section parallel to the bearing surface to the side wall of the groove.
  • the width of the protrusion is the maximum distance of the protrusion on a cross-section parallel to the bearing surface and perpendicular to the length of the protrusion.
  • the shape of the cross section of the protrusion 40 parallel to the bearing surface includes an arc shape.
  • the shape of the cross section of the protrusion 40 parallel to the bearing surface may be a semicircle or a semiellipse.
  • the shape of the cross section of the protrusion parallel to the bearing surface can also be other shapes, such as a major arc and a minor arc, which are not limited by the embodiment of the present disclosure.
  • FIG. 8 is a partial structural diagram of a first sub-layer provided by an embodiment of the present disclosure.
  • the outer wall surface of the protrusion 40 is a conical surface, and the larger end of the protrusion 40 is coplanar with the side of the first sub-layer 31 close to the light-emitting unit 21 .
  • the cross section of the protrusion 40 parallel to the bearing surface is semicircular.
  • the outer wall surface of the protrusion 40 refers to the surface where the protrusion 40 contacts the second sub-layer 32 .
  • the protrusion 40 is arranged in a cone shape, in addition to allowing the portion of the light-emitting unit 21 opposite to the protrusion 40 to emit light directly incident into the first sub-layer 31 with a low refractive index, so that the first sub-layer 31 and the second sub-layer are The junction of the layers 32 is refracted, allowing part of the light to emit toward the periphery of the display panel; since the outer wall surface of the protrusion 40 is a conical surface, compared with the inclined surface, various directions are emitted from the second sub-layer 32 to the first sub-layer.
  • the light extraction layer After the light rays 31 are reflected by the cone surface, most of the light rays can emerge from the light extraction layer at a similar exit angle, so as to adjust the light incident on the first sub-layer 31 from all directions to a direction perpendicular to the light exit surface of the display panel. .
  • the maximum radius of the cross section of the protrusion 40 in the direction parallel to the driving backplane 10 is 1 ⁇ m to 3 ⁇ m.
  • the maximum radius of the protrusion 40 may be 1 ⁇ m to 2 ⁇ m.
  • the maximum radius of the protrusion 40 is the radius of the side of one end of the protrusion 40 facing the driving back plate 10 .
  • the maximum radius of protrusion 40 may be 2 ⁇ m.
  • Figure 9 is a partial structural schematic diagram of another first sub-layer provided by an embodiment of the present disclosure.
  • the outer wall surface of the protrusion 40 is an arc-shaped side surface of a truncated cone, and the larger end of the protrusion 40 is coplanar with the side surface of the first sub-layer 31 close to the light-emitting unit 21 .
  • the outer wall surface of the truncated cone-shaped protrusion 40 has a larger area and can provide a larger area and light reflection, so that all directions can be incident on the first sub-section.
  • the light of layer 31 is adjusted to a direction perpendicular to the light exit surface of the display panel.
  • Figure 10 is a partial structural schematic diagram of another first sub-layer provided by an embodiment of the present disclosure.
  • the outer wall surface of the protrusion 40 is a cylindrical surface, and the straight generatrix of the cylindrical surface is parallel to the side wall of the groove 310 .
  • the protrusion 40 is arranged in a cylindrical shape, in addition to allowing the portion of the light-emitting unit 21 opposite to the protrusion 40 to emit light directly incident on the first sub-layer 31 with a low refractive index, so that between the first sub-layer 31 and the second sub-layer 31
  • the junction of the layers 32 is refracted, allowing part of the light to emit toward the periphery of the display panel; since the outer wall surface of the protrusion 40 is a cylindrical surface, compared with the inclined surface, various directions are emitted from the second sub-layer 32 to the first sub-layer.
  • the light 31 can be well reflected on the outer wall surface of the protrusion 40, so that the light incident on the first sub-layer 31 from all directions can be adjusted to a direction perpendicular to the light-emitting surface of the display panel.
  • FIG. 11 is a schematic plan view of a first sub-layer provided by an embodiment of the present disclosure.
  • FIG. 11 is a schematic plan view of the first sub-layer illustrated in FIG. 10 .
  • the cross section of the protrusion 40 in a direction parallel to the driving back plate 10 is semi-elliptical.
  • the cylindrical protrusion 40 of the same size (radius) has a larger area opposite the light-emitting unit 21, thereby allowing more light to directly enter the first sub-layer 31, thereby Let more light emit toward the periphery of the display panel, allowing light to be emitted evenly in all positions of the display panel, and improving the overall light emitting effect of the display panel.
  • the protrusion 40 is cylindrical, and the radius of the cylindrical protrusion 40 does not exceed 3 ⁇ m.
  • the radius of the cylindrical protrusion 40 may be 2 ⁇ m.
  • FIG. 3 there are multiple protrusions 40 , and the plurality of protrusions 40 are spaced around the geometric center of the groove 310 as the center.
  • the area of the protrusions 40 facing the light-emitting unit 21 can be increased, thereby allowing more light to directly enter the first sub-layer 31, thereby allowing more light to enter the first sub-layer 31.
  • the light emits towards the periphery of the display panel, improving the overall light emission effect of the display panel.
  • the groove 310 has a plurality of side walls connected end to end, and each side wall of the groove 310 has at most one protrusion 40 .
  • the groove 310 includes four side walls connected end to end in sequence, and two adjacent side walls are vertical. Each side wall of each groove 310 is provided with a protrusion 40 .
  • each side wall of the groove 310 allows part of the light to directly enter the first sub-layer, thereby allowing light from each side wall to emit toward the periphery of the display panel, thereby improving the overall light emission effect of the display panel.
  • FIG. 12 is a schematic plan view of a first sub-layer provided by an embodiment of the present disclosure.
  • the groove 310 includes four side walls connected end to end, and two adjacent side walls are vertical. Among them, part of the side walls of some grooves 310 may not be provided with protrusions 40, while the other part of the grooves 310 may be provided with protrusions 40 on each side wall, so as to improve the overall light emitting effect of the display panel while also ensuring that The forward light extraction rate of light.
  • FIG. 13 is a schematic distribution diagram of a light-emitting unit provided by an embodiment of the present disclosure. As shown in FIG. 13 , the orthographic projection of the light-emitting unit 21 on the bearing surface is located within the outer contour of the orthographic projection of the groove 310 on the bearing surface.
  • the side wall of at least one groove 310 among the plurality of grooves 310 has a protrusion 40 , the protrusion 40 protrudes toward the center direction of the groove 310 , and the protrusion 40 is on the bearing surface.
  • the orthographic projection of is located outside the orthographic projection of the light-emitting unit 21 on the carrying surface. In this way, the light emitted by the light emitting unit 21 can be reflected on the side walls of the groove 310, thereby increasing the front light emission of the display panel.
  • a plurality of light emitting units 21 are arranged in a matrix in the first direction X and the second direction Y.
  • FIG. 14 is a schematic structural diagram of a light-emitting unit provided by an embodiment of the present disclosure.
  • the plurality of light-emitting units 21 includes a first light-emitting unit F1
  • the groove 310 corresponding to the first light-emitting unit F1 includes a first side wall 301 , a third side wall 303 , a second side wall 302 that are connected in sequence.
  • the fourth side wall 304 and each side wall of the groove 310 have a protrusion 40 .
  • the first side wall 301 and the second side wall 302 are opposite side walls, and the third side wall 303 and the fourth side wall 304 are opposite side walls.
  • the line connecting the geometric center of the protrusion 40 located on the first side wall 301 and the geometric center of the protrusion 40 located on the second side wall 302 is the first connection line A1, and the first connection line A1 Line A1 intersects the third side wall 303 or the fourth side wall 304.
  • intersection of the first connection line A1 and the third side wall 303 means that the first connection line A1 intersects with an extension line of the side of the third side wall 303 close to the first light-emitting unit.
  • intersection of the first connection line A1 and the fourth side wall 304 means that the first connection line A1 intersects with an extension line of the side of the fourth side wall 304 close to the first light-emitting unit.
  • the line connecting the geometric center of the protrusion 40 located on the third side wall 303 and the geometric center of the protrusion located on the fourth side wall 304 is the second connection line A2.
  • the second connection line A2 intersects the first side wall 301 or the second side wall 302.
  • intersection of the second connection line A2 and the first side wall 301 means that the second connection line A2 intersects the extension line of the side of the first side wall 301 close to the first light-emitting unit.
  • intersection of the second connection line A2 and the second side wall 302 means that the second connection line A2 intersects the extension line of the side of the second side wall 302 close to the first light-emitting unit.
  • the sides of the first side wall 301 , the second side wall 302 , the third side wall 303 and the fourth side wall 304 that are close to the first light-emitting unit each include a straight segment 305 .
  • the side of at least one of the first side wall 301 , the second side wall 302 , the third side wall 303 and the fourth side wall 304 close to the first light-emitting unit further includes an arc segment 306 , and the arc segment 306 is the same as the arc segment 306 .
  • One end of the straight line segment 305 on the side where the segment 306 is located is connected.
  • the protrusions 40 in the first side wall 301 , the second side wall 302 , the third side wall 303 and the fourth side wall 304 are respectively located at the midpoints of the corresponding straight line segments 305 .
  • the first side wall 301 and the fourth side wall 304 of the first light-emitting unit each include a straight line segment and an arc segment, and the arc segment of the first side wall 301 is in contact with the fourth side wall.
  • the arc segments of the wall 304 are connected, and the two connected arc segments form a rounded corner. That is, the sides of the first side wall 301 and the fourth side wall 304 close to the first light-emitting unit include a straight line segment 305 and an arc segment 306.
  • the arc segment 306 of the first side wall 301 is the same as the arc segment of the fourth side wall 304. Segments 306 are connected to form a fillet at the intersection of first side wall 301 and fourth side wall 304 .
  • the protrusion 40 on the first side wall 301 is located at the midpoint of the straight line segment 305
  • the protrusion 40 on the fourth side wall 304 is located at the midpoint of the straight line segment 305 .
  • the protrusion of the third side wall is located at the midpoint of the straight line segment, that is, from the protrusion of the third side wall to the first side wall or the second side wall.
  • the distance is equal to half the distance between the first side wall and the second side wall.
  • the protrusion of the second side wall is located at the midpoint of the straight line segment, that is, from the protrusion of the second side wall to the third side wall or the fourth side wall.
  • the distance is equal to half the distance between the third and fourth side walls.
  • both the second side wall and the third side wall only include straight line segments, and the protrusions on the second side wall and the fourth side wall are located at the midpoints of the straight line segments.
  • the protrusions on each side wall are set at the midpoint of the straight line segment, which is beneficial to the balance of color casts.
  • the first connection line A1 crosses both the first direction X and the second direction Y; and/or the second connection line A2 crosses both the first direction X and the second direction Y.
  • the plurality of light-emitting units further include: a second light-emitting unit F2 and a third light-emitting unit F3.
  • the second light-emitting unit F2 and the third light-emitting unit F3 each include four side walls connected in sequence and protrusions 40 located on each side wall.
  • the second light-emitting unit F2 and the third light-emitting unit F3 are similar to the first light-emitting unit F1 and may also include a first side wall 301, a third side wall 303, a second side wall 302 and a fourth side wall 304 connected in sequence. , and each side wall has a protrusion 40.
  • the two opposite protrusions 40 on the second light-emitting unit F2 are arranged along the first straight line B1 or the second straight line B2, and the two opposite protrusions 40 on the third light-emitting unit F3 are arranged along the first straight line B1 or the second straight line B2.
  • the straight line B1 or the second straight line B2 is arranged, the first straight line B1 is parallel to the first direction X, and the second straight line B2 is parallel to the second direction Y.
  • the first connection line A1 intersects the second direction Y
  • the second connection line A2 intersects the first direction X.
  • the first light-emitting unit F1 is a blue light-emitting unit B
  • the second light-emitting unit F2 is a red light-emitting unit R
  • the third light-emitting unit F3 is a green light-emitting unit G.
  • the rectangular block with the largest area is the blue light-emitting unit B
  • the rectangular block with the smallest area is the green light-emitting unit G
  • the rectangular block with the middle area is the red light-emitting unit R.
  • the blue light-emitting unit B, the red light-emitting unit R and the green light-emitting unit G are all arranged in a matrix along the first direction X and the second direction Y.
  • the first connection line A1 of the blue light emitting unit intersects with the second direction Y
  • the second connection line A2 of the blue light emitting unit intersects with the first direction X.
  • the area where the first side wall 301 and the fourth side wall 304 are connected is provided with rounded corners, and the protrusion 40 is located at the midpoint of the straight line segment 305, so the first side wall 301
  • the protrusion 40 on the groove 310 is not at the midpoint of the side, but the protrusion 40 of the second side wall 302 is located at the midpoint of the side. Therefore, the protrusion 40 of the first side wall 301 of the groove 310 and the second side wall
  • the protrusions 40 of 302 are not distributed along the second direction Y.
  • the protrusion 40 on the third side wall 303 is not at the midpoint of the side, and the protrusion 40 on the fourth side wall 304 is located at the midpoint of the side. Therefore, the protrusion 40 on the third side wall 303 of the groove 310 and The protrusions 40 of the fourth side wall 304 are not distributed along the first direction X either.
  • the pixel defining layer 23 is also provided with rounded corners at positions corresponding to the rounded corners between the first side wall 301 and the fourth side wall 304 .
  • the sidewall of the pixel definition layer 23 corresponding to the first sidewall 301 of the groove 310 and the sidewall of the pixel definition layer 23 corresponding to the fourth sidewall 304 of the groove 310 are also provided with a circle between the two sidewalls. angle, so that the shape of the pixel defining layer 23 can be consistent with the shape of the light extraction layer 30 to facilitate the emission of light.
  • the protrusions of the first side wall 301 and the second side wall 302 of the red light emitting unit R are arranged along the second straight line B2, and the protrusions of the third side wall 303 of the red light emitting unit R are arranged along the second straight line B2.
  • the protrusions of the fourth side wall 304 are arranged along the first straight line B1.
  • the protrusions 40 of the first side wall 301 and the protrusions 40 of the second side wall 302 of the groove 310 are distributed along the second straight line B2
  • the protrusions 40 of the third side wall 303 of the groove 310 are distributed along the second straight line B2.
  • the protrusions 40 and the protrusions 40 of the fourth side wall 304 are distributed along the first straight line B1.
  • the protrusions of the first side wall 301 and the second side wall 302 of the green light-emitting unit G are arranged along the second straight line B2, and the protrusions of the third side wall 303 of the green light-emitting unit G are arranged along the second straight line B2.
  • the protrusions of the fourth side wall 304 are arranged along the first straight line B1.
  • the protrusions 40 of the first side wall 301 and the protrusions 40 of the second side wall 302 of the groove 310 are distributed along the second straight line B2
  • the protrusions 40 of the third side wall 303 of the groove 310 are distributed along the second straight line B2.
  • the protrusions 40 and the protrusions 40 of the fourth side wall 304 are distributed along the first straight line B1.
  • the first side wall 301 and the fourth side wall 304 of the first light-emitting unit each include a straight line segment 305 and an arc segment 306.
  • the arc segment of the first side wall 301 306 is connected to the arc segment 306 of the fourth side wall 304 .
  • the protrusion 40 on the first side wall 301 of the first light-emitting unit does not overlap with the second straight line
  • the protrusion 40 on the fourth side wall 304 of the first light-emitting unit does not overlap with the second straight line.
  • the protrusion 40 on the second side wall 302 of the first light-emitting unit is located on the second straight line
  • the protrusion 40 on the third side wall 303 of the first light-emitting unit is located on the first straight line.
  • the protrusion 40 on the first side wall 301 of the first light-emitting unit is located on the second straight line
  • the protrusion 40 on the fourth side wall 304 of the first light-emitting unit is located on the first straight line
  • the protrusion 40 on the fourth side wall 304 of the first light-emitting unit is located on the first straight line.
  • the protrusion 40 on the second side wall 302 of a light-emitting unit does not overlap the second straight line
  • the protrusion 40 on the third side wall 303 of the first light-emitting unit does not overlap the first straight line.
  • the protrusions of the second side wall without rounded corners are distributed along the same straight line as the protrusions of the second side walls in other light-emitting units; the third side wall without rounded corners is distributed along the same straight line.
  • the protrusions and the protrusions of the third side wall in other light-emitting units are distributed along the same straight line.
  • the protrusions of the first side wall with rounded corners and the protrusions of the first side walls in other light-emitting units are not in the same straight line;
  • the protrusions of the fourth side wall with rounded corners are not in the same straight line as the protrusions of the fourth side walls of other light-emitting units.
  • the bulges on the side walls are not in the same straight line.
  • the geometric centers of the plurality of protrusions 40 overlap with the geometric centers of the grooves 310 .
  • Each side wall of the groove is provided with a protrusion 40 , and the overall geometric center of the plurality of protrusions 40 overlaps with the geometric center of the groove 310 .
  • the overall geometric center of the four protrusions 40 of the red light emitting unit R overlaps with the geometric center W of the groove 310 .
  • the protrusion 40 on the first side wall 301 of the first light-emitting unit is located on the extension line of the first connection line A1 of the green light-emitting unit, and the third connection line A1 of the blue light-emitting unit
  • the protrusions 40 on the two side walls 302 are located outside the extension line of the first connection line A1 of the green light emitting unit.
  • the protrusion 40 on the fourth side wall 304 of the first light-emitting unit is located on the first straight line B1
  • the protrusion 40 on the third side wall 303 of the blue light-emitting unit is located on the first straight line B1. outside.
  • the protrusions of the second side wall without rounded corners are not in the same straight line as the protrusions of the second side walls in other light-emitting units; the protrusions of the third side wall without rounded corners are not arranged in the same straight line.
  • the protrusion is not in the same straight line as the protrusion of the third side wall in other light-emitting units.
  • the protrusions of the first side wall with rounded corners and the protrusions of the first side walls in other light-emitting units are distributed along the same straight line; the protrusions of the fourth side wall with rounded corners are distributed along the same straight line as the protrusions of the first side walls of other light-emitting units.
  • the protrusions on the four side walls are distributed along the same straight line.
  • the above two implementation methods take as an example that the intersection of the first side wall and the fourth side wall of the first light-emitting unit has rounded corners.
  • at least two of the first light-emitting unit, the second light-emitting unit and the third light-emitting unit adopt the structure of the first light-emitting unit.
  • each light-emitting unit adopts the structure of the first light-emitting unit, that is, the intersections of the first side wall and the fourth side wall of the first light-emitting unit, the second light-emitting unit, and the third light-emitting unit all have rounded corners.
  • first light-emitting unit and the second light-emitting unit have the same structure, that is, the intersections of the first side wall and the fourth side wall of the first light-emitting unit and the second light-emitting unit both have rounded corners.
  • the first light-emitting unit and the third light-emitting unit have the same structure, that is, the intersections of the first side wall and the fourth side wall of the first light-emitting unit and the third light-emitting unit both have rounded corners.
  • the shape and size of the protrusion 40 may refer to the embodiments illustrated in FIGS. 4 to 11 .
  • the maximum width h of the protrusion 40 may be 1 ⁇ m to 5 ⁇ m, and the maximum length L of the protrusion 40 may be 1 ⁇ m to 3 ⁇ m.
  • the width direction and the length direction of the protrusion 40 are perpendicular, and the width direction and the length direction of the protrusion 40 are both parallel to the bearing surface of the driving back plate 10 .
  • the maximum width h of the protrusion is 1 ⁇ m
  • the maximum length L of the protrusion is 1 ⁇ m
  • the opening length of the groove of the first sub-layer is the same as the opening length of the pixel defining layer
  • the difference between the opening length of the groove 310 of the first sub-layer in the light extraction layer and the opening length of the pixel defining layer is ⁇ 4 ⁇ m. That is, the opening length of the groove is larger or smaller than the opening length of the pixel defining layer, and the distance c between the groove 310 and the two parallel and nearest side walls of the pixel defining layer 23 is 0 to 2 ⁇ m.
  • the opening length of the groove 310 refers to the distance between two opposite side walls of the groove of the first sub-layer, for example, the distance between the first side wall and the second side wall of the groove. .
  • the opening length of the pixel defining layer refers to the spacing between two opposite sidewalls of the pixel defining layer, for example, the spacing between two sidewalls on the pixel defining layer that are parallel and close to the first side wall and parallel and close to the second side wall.
  • FIG. 16 is a schematic cross-sectional view of a display panel provided by an embodiment of the present disclosure.
  • Figure 16 illustrates a cross-sectional view taken along the SS* section line in Figure 14.
  • the left side in Figure 16 is the S end, and the right side in Figure 16 is the S* end.
  • the opening length L1 of the groove 310 of the first sub-layer 31 is greater than the opening length L2 of the pixel defining layer 23 .
  • FIG. 17 is a schematic structural diagram of a light-emitting unit provided by an embodiment of the present disclosure.
  • a partial area of the protrusion 40 overlaps the light emitting unit 21 .
  • FIG. 18 is a schematic cross-sectional view of a display panel provided by an embodiment of the present disclosure.
  • FIG. 18 schematically shows a cross-section taken along the SS* section line in FIG. 17 .
  • the opening length L1 of the groove 310 of the first sub-layer 31 is greater than the opening length L2 of the pixel defining layer 23 , and a partial area of the protrusion 40 overlaps the light-emitting unit 21 .
  • FIG. 19 is a schematic structural diagram of a light-emitting unit provided by an embodiment of the present disclosure.
  • the protrusion 40 is completely located inside the light emitting unit 21 .
  • FIG. 20 is a schematic cross-sectional view of a display panel provided by an embodiment of the present disclosure.
  • FIG. 20 schematically shows a cross-section taken along the SS* section line in FIG. 19 .
  • the opening length L1 of the groove 310 of the first sub-layer 31 is smaller than the opening length L2 of the pixel defining layer 23 .
  • the opening length of the groove of the first sub-layer and the opening length of the pixel defining layer so that the opening length of the groove of the first sub-layer is longer than the opening length of the pixel defining layer.
  • the length may be large or small, and the distance between the control groove and the two parallel and closest sidewalls in the pixel defining layer shall not be greater than 2 ⁇ m.
  • the opening length of the groove of the first sub-layer is greater than the opening length of the pixel defining layer, and the opening of the pixel defining layer is located within the opening of the groove of the first sub-layer; for example, the opening length of the groove of the first sub-layer
  • the opening length of the groove of the first sub-layer is smaller than the opening length of the pixel defining layer, and the opening of the groove of the first sub-layer is located within the opening of the pixel defining layer.
  • the distance between the groove and the two parallel and closest sidewalls in the pixel defining layer is 0 to 2 ⁇ m.
  • Figure 21 is a partial structural schematic diagram of a first sub-layer provided by an embodiment of the present disclosure.
  • Figure 22 is a top view of a first sub-layer provided by an embodiment of the present disclosure.
  • the protrusion 40 is frame-shaped, and the geometric center O of the protrusion 40 is the same as the geometric center O of the groove 310 .
  • the frame shape may refer to a symmetrical shape with an inner hole.
  • the frame shape may be a square frame, a ring, etc.
  • the geometric center is the most central position of a figure with certain symmetry. For example, when the figure is a ring, the geometric center is the center of the ring.
  • the area of the protrusion 40 opposite to the light-emitting unit 21 can be maximized, thereby allowing more light to directly enter the first sub-layer 31 and allowing more light to be directed towards the display.
  • the light emitted from the periphery of the panel improves the overall light emitting effect of the display panel.
  • the shape of the cross section of the groove 310 in the direction parallel to the driving back plate 10 may be the same as the shape of the cross section of the protrusion 40 in the direction of the driving back plate 10 , so that the outer edge of the protrusion 40 Just connected to the side wall of the groove 310.
  • the cross section of the groove 310 and the cross section of the protrusion 40 may both be circular, that is, the protrusion 40 may be annular.
  • both the groove 310 and the protrusion 40 may be rectangular in cross-section.
  • Figure 23 is a schematic plan view of a first sub-layer provided by an embodiment of the present disclosure.
  • the sidewall of the groove 310 has a recessed portion 50 that is recessed in a direction away from the geometric center of the groove 310 .
  • the recessed portion 50 is at least located on the side of the first sub-layer 31 close to the light-emitting functional layer 20 .
  • At least part of the orthographic projection of the recessed portion 50 on the carrying surface is located outside the orthographic projection of the corresponding light-emitting unit 21 on the base substrate of the driving backplane 11 .
  • the size of the groove 310 is enlarged, so that more light emitted from the edge area of the light-emitting unit 21 can be incident on the recessed portion 50, thereby allowing more light to be reflected on the surface of the recessed portion 50.
  • the light emitting surface of the display panel emits light to improve the front light emitting rate of each light emitting unit 21 .
  • the recessed depth of the recessed portion 50 is no greater than 5 ⁇ m.
  • the depth of the recessed portion 50 refers to the length of the recessed portion 50 that is recessed away from the center of the groove 310 in a direction parallel to the base substrate.
  • Setting the recessed depth of the recessed portion 50 within the above range can prevent the recessed portion 50 from being set too large, thereby reducing the amount of light directly incident on the first sub-layer 31 from the light-emitting unit 21, thereby reducing the amount of light directed toward the display panel.
  • the light emitted from the periphery allows the display panel to emit light evenly from all positions.
  • the recess depth of the recessed portion 50 may be 1 ⁇ m to 3 ⁇ m.
  • the recessed depth of the recessed portion 50 is 2 ⁇ m.
  • the shape of the orthographic projection of the recessed portion 50 on the bearing surface includes at least one of a rectangle, a trapezoid, a triangle, and an arc.
  • the orthographic projection of the recessed portion 50 on the bearing surface is a rectangle.
  • the length of the rectangle is 1 ⁇ m to 2 ⁇ m
  • the width of the rectangle, that is, the depression depth H of the recessed portion 50 is 1 ⁇ m to 3 ⁇ m.
  • Figure 24 is a cross-sectional view of a first sub-layer provided by an embodiment of the present disclosure.
  • Figure 24 is a cross-sectional view taken along the cutting line B in Figure 23.
  • the side walls of the groove 310 can be inclined surfaces.
  • the side walls where the long sides of the rectangle are located can also be inclined surfaces.
  • the inclination angle between the side wall of the groove 310 and the driving back plate 10 is equal to the inclination angle between the side wall where the long side of the rectangle is located and the driving back plate 10 .
  • the side walls of the groove 310 are set parallel to the side walls of the recess 50 where the long side of the rectangle is located, so that the light incident on the side walls of the first sub-layer 31 is obliquely at the same angle.
  • the light incident on the side wall where the long side of the rectangle is located will emerge from the light exit surface of the display panel at the same exit angle.
  • the orthographic projection of the recessed portion 50 on the bearing surface is a trapezoid.
  • the length of the rectangle is 1 ⁇ m to 2 ⁇ m
  • the height of the rectangle, that is, the depression depth H of the recessed portion 50 is 1 ⁇ m to 3 ⁇ m.
  • the side walls of the groove 310 can be a slope.
  • the side wall where the top edge of the trapezoid is located can also be a slope, and the inclination angle between the side wall of the groove 310 and the driving back plate 10 is equal to the trapezoid. The inclination angle between the side wall where the fixed edge is located and the driving back plate 10.
  • the side wall of the groove 310 is set parallel to the side wall where the top edge of the trapezoid is located, so that the light incident on the side wall of the first sub-layer 31 obliquely at the same angle is the same as the light incident on the side wall where the top edge of the trapezoid is located.
  • the light on the side wall will emerge from the light exit surface of the display panel at the same exit angle.
  • the orthographic projection of the recessed portion 50 on the bearing surface is a triangle.
  • the triangle is an isosceles triangle.
  • the length of the base of the isosceles triangle is the same as the length of the side wall of the groove 310 .
  • the distance H from the fixed point of the isosceles triangle to the base, that is, the depression depth H of the depression 50 is 1 ⁇ m to 3 ⁇ m.
  • the orthographic projection area of the recessed portion 50 on the bearing surface is larger, allowing more light to pass through the recessed portion 50 . Reflection from the surface.
  • the opening length L3 of the groove 310 is less than the opening length L4 of the pixel defining layer (see FIG. 19 ).
  • the recessed portion 50 located on the side wall of the groove 310 may only partially protrude from the light emitting unit 21 . That is, part of the orthographic projection of the recessed portion 50 on the bearing surface is located within the orthographic projection of the corresponding light-emitting unit on the bearing surface, and the other part of the orthographic projection of the recessed portion 50 on the bearing surface is located within the orthographic projection of the corresponding light-emitting unit on the bearing surface. Outside the orthographic projection.
  • the opening length of the groove 310 is greater than the opening length of the pixel defining layer (see FIGS. 14 and 17 ). At this time, the recessed portion 50 located on the side wall of the groove 310 is also completely located outside the orthographic projection of the corresponding light-emitting unit on the carrying surface.
  • only recesses may be provided on the side walls of the groove, that is, no protrusions are provided on the side walls of the groove.
  • Figure 27 is a schematic plan view of a first sub-layer provided by an embodiment of the present disclosure.
  • the sidewall of the groove 310 has a recessed portion 50 , which is recessed in a direction away from the geometric center of the groove 310 .
  • the recessed portion 50 is at least located on the side of the first sub-layer 31 close to the light-emitting functional layer.
  • At least part of the orthographic projection of the recessed portion 50 on the carrying surface is located outside the orthographic projection of the corresponding light-emitting unit 21 on the base substrate of the driving backplane 11 .
  • the orthographic projection of the recessed portion on the base substrate is completely located outside the orthographic projection of the corresponding light-emitting unit on the base substrate.
  • a part of the recessed portion is opposite to the light-emitting unit, and the orthographic projection of the other part of the recessed portion that is not opposite to the light-emitting unit on the substrate is located at the orthogonal projection of the corresponding light-emitting unit on the substrate. outside the projection.
  • the size of the groove 310 is enlarged, so that more light emitted from the edge area of the light-emitting unit 21 can be incident on the recessed portion 50, thereby allowing more light to be reflected on the surface of the recessed portion 50, and from the display panel
  • the light emitting surface of the light emitting unit 21 is emitted, thereby improving the front light emitting rate of each light emitting unit 21 .
  • the recess depth H of the recessed portion 50 is not greater than 5 ⁇ m.
  • the depth of the recessed portion 50 refers to the length of the recessed portion 50 that is recessed away from the center of the groove 310 in a direction parallel to the base substrate.
  • Setting the recessed depth of the recessed portion 50 within the above range can prevent the recessed portion 50 from being set too large, thereby reducing the amount of light directly incident on the first sub-layer 31 from the light-emitting unit 21, thereby reducing the amount of light directed toward the display panel.
  • the light emitted from the periphery allows the display panel to emit light evenly from all positions.
  • the recess depth H of the recessed portion 50 may be 1 ⁇ m to 3 ⁇ m.
  • the recessed depth of the recessed portion 50 is 2 ⁇ m.
  • the orthographic projection of the recessed portion on the bearing surface can be a regular polygon, circle, ellipse, or any irregular closed figure.
  • the orthographic projection of the recessed portion 50 on the bearing surface is a rectangle.
  • the length of the rectangle is 1 ⁇ m to 2 ⁇ m
  • the width of the rectangle, that is, the depression depth H of the recessed portion 50 is 1 ⁇ m to 3 ⁇ m.
  • the orthographic projection of the recessed portion 50 on the bearing surface is trapezoidal.
  • the length of the rectangle is 1 ⁇ m to 2 ⁇ m, and the height of the rectangle, that is, the depression depth H of the recessed portion 50 is 1 ⁇ m to 3 ⁇ m.
  • the side walls of the groove 310 can be a slope.
  • the side wall where the top edge of the trapezoid is located can also be a slope, and the inclination angle between the side wall of the groove 310 and the driving back plate 10 is equal to the trapezoid. The inclination angle between the side wall where the fixed edge is located and the driving back plate 10.
  • the side wall of the groove 310 is set parallel to the side wall where the top edge of the trapezoid is located, so that the light incident on the side wall of the first sub-layer 31 obliquely at the same angle is the same as the light incident on the side wall where the top edge of the trapezoid is located.
  • the light on the side wall will emerge from the light exit surface of the display panel at the same exit angle.
  • the orthographic projection of the recessed portion 50 on the bearing surface is a triangle.
  • the triangle is an isosceles triangle.
  • the length of the base of the isosceles triangle is the same as the length of the side wall of the groove 310 .
  • the distance H from the fixed point of the isosceles triangle to the base, that is, the depression depth H of the depression 50 is 1 ⁇ m to 3 ⁇ m.
  • the orthographic projection area of the recessed portion 50 on the bearing surface is larger, allowing more light to pass through the recessed portion 50 . Reflection from the surface.
  • the orthographic projection of the outer contour of the groove except for the recessed portion on the bearing surface coincides with the orthographic projection of the light-emitting unit 21 on the bearing surface. That is, the orthographic projection of the outer contour of the groove except for the recessed portion on the bearing surface is the same as the range defined by the opening of the pixel defining layer 23 .
  • the outer contour of the orthographic projection of the groove 310 on the bearing surface is located outside the orthographic projection of the light emitting unit 21 on the bearing surface.
  • the width K of the groove 310 is greater than the opening length of the pixel defining layer.
  • some side walls of the grooves 310 are provided with recessed portions 50 , and other portions of the side walls of the grooves 310 are not provided with the recessed portions 50 .
  • recessed parts may not be provided in some grooves to prevent gaps between the light-emitting units. There is a problem of mixed light.
  • Figure 32 is a schematic cross-sectional view of a display panel provided by an embodiment of the present disclosure.
  • the display panel also includes a touch layer 60 and an encapsulation layer 22.
  • the encapsulation layer 22 and the touch layer 60 are sequentially stacked between the light emitting functional layer 20 and the light extraction layer 30, and the first sub-layer 31 and the second The sub-layers 32 are stacked on the touch layer 60 in sequence.
  • the touch layer 60 includes multiple touch units and multiple touch lines, multiple touch unit arrays are arranged on the packaging layer 22 , and the multiple touch lines are located on the packaging layer 22 , the touch control line is connected to at least one touch control unit, and the touch control line is used to electrically connect the connected touch control unit and the touch control integrated circuit.
  • the touch unit may be a transparent conductive layer.
  • the transparent conductive layer may be an ITO (Indium tin oxide, indium tin oxide) layer and an IZO (Indium Zinc Oxide, indium zinc oxide) layer.
  • the touch unit may be a metal mesh structure.
  • the metal mesh structure is formed by interlacing metal wires and is in a network shape.
  • the touch unit of this structure is the touch unit of the touch layer in FMLOC (Flexible Multi-Layer On Cell, touch display integration) technology.
  • the metal mesh structure is a metal wire, in order to prevent the metal mesh structure from blocking the light emitted by the light-emitting unit 21, the metal mesh structure can be distributed around the light-emitting unit 21 to ensure the display effect of the display substrate.
  • Figure 33 is a flow chart of a method for manufacturing a display panel provided by an embodiment of the present disclosure. As shown in Figure 33, the preparation method includes:
  • Step S1 Provide driver backplane.
  • the driving backplane may include a base substrate and a plurality of driving circuits, and a plurality of driving circuit arrays are arranged on the base substrate.
  • the driving backplane may be a TFT substrate, and each driving circuit on the driving backplane includes at least 2 TFTs.
  • Step S2 Form a light-emitting functional layer on the bearing surface of the driving backplane.
  • the light-emitting functional layer includes a plurality of light-emitting units arranged in an array.
  • step S3 it may also include: forming an encapsulation layer on the light-emitting functional layer, and then forming a touch layer on the encapsulation layer.
  • Step S3 Form a light extraction layer on the light-emitting functional layer.
  • step S3 the light extraction layer formed in step S3 is located on the touch layer.
  • the light extraction layer 30 includes a first sub-layer 31 and a second sub-layer 32.
  • the first sub-layer 31 and the second sub-layer 32 are sequentially stacked on the light-emitting functional layer 20.
  • the refraction of the first sub-layer 31 The first sub-layer 31 has a plurality of grooves 310 , one groove 310 is opposite to one light-emitting unit 21 , and a portion of the second sub-layer 32 is located in the groove 310 .
  • At least part of the outer contour of the orthographic projection of the groove 310 on the bearing surface is located within the orthographic projection of the corresponding light-emitting unit 21 on the bearing surface.
  • the side walls of the groove may have protrusions, and the orthographic projection of the protrusions on the base substrate of the driving backplane is located within the orthographic projection of the light-emitting unit on the base substrate of the driving backplane.
  • An embodiment of the present disclosure provides a display device.
  • the display device includes the display panel as mentioned above and a power supply component.
  • the power supply component is electrically connected to the display panel.
  • the power supply component may be a power supply, etc.
  • the display device can be any product or component with a display function such as a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a digital photo frame, a navigator, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本公开提供了一种显示面板及其制备方法和显示装置,属于显示技术领域。该显示面板包括:驱动背板、发光功能层和光取出层,发光功能层和光取出层依次位于驱动背板的承载面上;发光功能层包括阵列布置的多个发光单元;光取出层包括第一子层和第二子层,第一子层和第二子层依次层叠在发光功能层上,第一子层的折射率低于第二子层的折射率,第一子层具有多个凹槽,多个凹槽中的每个凹槽与多个发光单元中的一个发光单元相对,第二子层的部分位于多个凹槽内;凹槽的边界长度大于对应的一个发光单元的发光区域的边界长度。本公开能让更多的光线从显示面板出射,且提升显示面板的出光效果。

Description

显示面板及其制备方法和显示装置
本申请要求于2022年6月29日提交的申请号为202210763493.9、发明名称为“显示面板及其制备方法和显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及显示技术领域,特别涉及一种显示面板及其制备方法和显示装置。
背景技术
有机发光二极管(英文:Organic Light-Emitting Diode;简称:OLED)显示面板是一种多层膜结构,光线从发光功能层出射后,经过位于发光功能层上的多层膜层的反射和折射,会让光损失较多,影响到显示面板的出光效果。
发明内容
本公开实施例提供了一种显示面板及其制备方法和显示装置,能让更多的光线从显示面板出射,且提升显示面板的出光效果。所述技术方案如下:
本公开实施例提供了一种所述显示面板包括:驱动背板、发光功能层和光取出层,所述发光功能层和所述光取出层依次位于所述驱动背板的承载面上;所述发光功能层包括阵列布置的多个发光单元;所述光取出层包括第一子层和第二子层,所述第一子层和所述第二子层依次层叠在所述发光功能层上,所述第一子层的折射率低于所述第二子层的折射率,所述第一子层具有多个凹槽,所述多个凹槽中的每个凹槽与所述多个发光单元中的一个发光单元相对,所述第二子层的部分位于所述多个凹槽内;所述凹槽的边界长度大于对应的一个发光单元的发光区域的边界长度。
在本公开实施例的一种实现方式中,所述凹槽在所述承载面上的正投影的外轮廓的至少部分,位于对应的发光单元在所述承载面上的正投影内。
在本公开实施例的一种实现方式中,所述多个凹槽中的至少一个凹槽的侧壁具有凸起,所述凸起向所述凹槽的中心方向凸出,所述凸起在所述承载面上 的正投影的至少部分位于所述发光单元在所述承载面上的正投影内。
在本公开实施例的一种实现方式中,所述发光单元在所述承载面上的正投影,位于所述凹槽在所述承载面上的正投影的外轮廓内。
在本公开实施例的一种实现方式中,所述多个凹槽中的至少一个凹槽的侧壁具有凸起,所述凸起向所述凹槽的中心方向凸出。
在本公开实施例的另一种实现方式中,所述凸起的最大高度为1μm至3μm,所述凸起的最大宽度为1μm至5μm。
在本公开实施例的另一种实现方式中,所述凸起的平行于所述承载面的截面的形状包括弧形。
在本公开实施例的另一种实现方式中,所述凸起的外壁面为圆锥面,所述凸起的尺寸较大的一端靠近所述发光单元。
在本公开实施例的另一种实现方式中,所述凸起的外壁面为柱面,所述柱面的直母线与所述凹槽的侧壁平行。
在本公开实施例的另一种实现方式中,所述凸起有多个,多个所述凸起以所述凹槽的几何中心为中心环绕间隔分布。
在本公开实施例的另一种实现方式中,所述凹槽具有依次首尾相连的多个侧壁,所述凹槽的各侧壁具有至多一个所述凸起。
在本公开实施例的另一种实现方式中,所述多个发光单元包括第一发光单元,所述第一发光单元对应的凹槽包括依次相连的第一侧壁、第三侧壁、第二侧壁和第四侧壁,所述凹槽的各侧壁均具有一个所述凸起;位于所述第一侧壁的凸起的几何中心与位于所述第二侧壁的凸起的几何中心的连线为第一连接线,所述第一连接线与所述第三侧壁靠近所述第一发光单元的侧边的延长线或所述第四侧壁靠近所述第一发光单元的侧边的延长线相交;或者,位于所述第三侧壁的凸起的几何中心与位于所述第四侧壁的凸起的几何中心的连线为第二连接线,所述第二连接线与所述第一侧壁靠近所述第一发光单元的侧边的延长线或所述第二侧壁靠近所述第一发光单元的侧边的延长线相交。
在本公开实施例的另一种实现方式中,所述第一侧壁、所述第二侧壁、所述第三侧壁和所述第四侧壁均包括直线段;所述第一侧壁、所述第二侧壁、所述第三侧壁和所述第四侧壁中的至少一个侧边还包括弧线段,所述弧线段与所述弧线段所在侧边的直线段的一端相连;所述第一侧壁、所述第二侧壁、所述 第三侧壁和所述第四侧壁中的凸起分别位于对应的所述直线段的中点。
在本公开实施例的另一种实现方式中,所述多个发光单元在第一方向和第二方向上矩阵排布,所述第一连接线与所述第一方向和所述第二方向均交叉;和/或,所述第二连接线与所述第一方向和所述第二方向均交叉。
在本公开实施例的另一种实现方式中,所述多个发光单元还包括:第二发光单元和第三发光单元,所述第二发光单元和所述第三发光单元均包括依次相连的四个侧壁和位于各侧壁上的凸起;所述第二发光单元上相对的两个所述凸起沿第一直线或第二直线排布,所述第三发光单元上相对的两个所述凸起沿所述第一直线或所述第二直线排布,所述第一直线与所述第一方向平行,所述第二直线与所述第二方向平行。
在本公开实施例的另一种实现方式中,所述第一发光单元的第一侧壁和第四侧壁均包括一个直线段和一个弧线段,所述第一侧壁的弧线段与所述第四侧壁的弧线段相连,相连的两个所述弧线段形成圆角;所述第一发光单元的第一侧壁上的凸起与所述第二直线不重叠,所述第一发光单元的第四侧壁上的凸起与所述第一直线不重叠,所述第一发光单元的第二侧壁上的凸起位于所述第二直线上,所述第一发光单元的第三侧壁上的凸起位于所述第一直线上;或者,所述第一发光单元的第一侧壁上的凸起位于所述第二直线上,所述第一发光单元的第四侧壁上的凸起位于所述第一直线上,所述第一发光单元的第二侧壁上的凸起与所述第二直线不重叠,所述第一发光单元的第三侧壁上的凸起与所述第一直线不重叠。
在本公开实施例的另一种实现方式中,所述凸起呈框状,所述凸起的几何中心与所述凹槽的几何中心相同。
在本公开实施例的另一种实现方式中,所述凹槽的侧壁具有凹陷部,所述凹陷部朝远离所述凹槽的几何中心的方向凹陷,所述凹陷部至少位于所述第一子层靠近所述发光功能层的侧面;所述凹陷部在所述承载面上的正投影的至少部分,位于对应的所述发光单元在所述承载面上的正投影外。
在本公开实施例的另一种实现方式中,所述凹陷部在所述承载面上的正投影的形状包括矩形、梯形、三角形和弧形中的至少一种。
在本公开实施例的另一种实现方式中,所述凹陷部的凹陷深度不大于5μm。
在本公开实施例的另一种实现方式中,所述凹槽具有第一开口和第二开口, 所述第一开口位于所述第一子层靠近所述驱动背板的一侧面,所述第二开口位于所述第一子层远离所述驱动背板的一侧面,所述第一开口在所述承载面上的正投影位于所述第二开口在所述承载面上的正投影内。
在本公开实施例的另一种实现方式中,所述凹槽的侧壁与所述驱动背板的夹角为40°至80°。
在本公开实施例的另一种实现方式中,所述凹槽的侧壁包括依次连接在所述第一开口和所述第二开口之间的多个平面,相连的两个平面之间具有夹角。
在本公开实施例的另一种实现方式中,所述凹槽的侧壁为曲面,所述凹槽的侧壁朝远离所述凹槽的中心的方向凹陷。
在本公开实施例的另一种实现方式中,所述凹槽与所述发光单元一一对应。
在本公开实施例的另一种实现方式中,所述第一子层为透明光学材料层或者油墨材料层,所述第二子层为透明光学材料层或者油墨材料层。
在本公开实施例的另一种实现方式中,所述显示面板还包括触控层和封装层,所述封装层和所述触控层依次层叠在所述发光功能层和所述光取出层之间,且所述第一子层和所述第二子层依次层叠在所述触控层上。
本公开实施例提供了一种显示面板的制备方法,所述制备方法包括:提供驱动背板;在所述驱动背板的承载面上形成发光功能层,所述发光功能层包括阵列布置的多个发光单元;在所述发光功能层上形成光取出层,所述光取出层包括第一子层和第二子层,所述第一子层和所述第二子层依次层叠在所述发光功能层上,所述第一子层的折射率低于所述第二子层的折射率,所述第一子层具有多个凹槽,所述多个凹槽中的每个凹槽与所述多个发光单元中的一个发光单元相对,所述第二子层的部分位于所述多个凹槽内;所述凹槽的边界长度大于对应的一个发光单元的发光区域的边界长度。
本公开实施例提供了一种显示装置,所述显示装置包括供电组件和如前文所述的显示面板,所述供电组件与所述显示面板电连接。
本公开实施例提供的技术方案带来的有益效果至少包括:
本公开实施例提供的显示面板中,驱动背板、发光功能层和光取出层依次层叠,其中,在发光层上设置两层折射率不同且层叠的子层。折射率低的第一子层具有凹槽,折射率高的第二子层部分位于凹槽中,以填充凹槽。这样当光线从发光功能层斜向照射到凹槽的侧壁与第二子层的交界面时,由于光线是从 高折射率的第二子层射向低折射率的第一子层,因此会发生反射,从而改变斜向出射的光线的出射方向,能使光线在交界面反射后从显示面板的出光面出射,以提升正向出光率。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例提供的一种显示面板的平面示意图;
图2是本公开实施例提供的一种显示面板的截面示意图;
图3是本公开实施例提供的一种第一子层与发光单元的投影关系图;
图4是本公开实施例提供的一种显示面板的截面示意图;
图5是本公开实施例提供的一种光取出层的结构示意图;
图6是本公开实施例提供的一种光取出层的结构示意图;
图7是本公开实施例提供的一种光取出层的结构示意图;
图8是本公开实施例提供的一种第一子层的部分结构示意图;
图9是本公开实施例提供的另一种第一子层的部分结构示意图;
图10是本公开实施例提供的另一种第一子层的部分结构示意图;
图11是本公开实施例提供的一种第一子层的平面示意图;
图12是本公开实施例提供的一种第一子层的平面示意图;
图13是本公开实施例提供的一种发光单元的分布示意图;
图14是本公开实施例提供的一种发光单元的结构示意图;
图15是本公开实施例提供的一种发光单元的分布示意图;
图16是本公开实施例提供的一种显示面板的截面示意图;
图17是本公开实施例提供的一种发光单元的结构示意图;
图18是本公开实施例提供的一种显示面板的截面示意图;
图19是本公开实施例提供的一种发光单元的结构示意图;
图20是本公开实施例提供的一种显示面板的截面示意图;
图21是本公开实施例提供的一种第一子层的部分结构示意图;
图22是本公开实施例提供的一种第一子层的俯视图;
图23是本公开实施例提供的一种第一子层的平面示意图;
图24是本公开实施例提供的一种第一子层的截面图;
图25是本公开实施例提供的一种第一子层的平面示意图;
图26是本公开实施例提供的一种第一子层的平面示意图;
图27是本公开实施例提供的一种第一子层的平面示意图;
图28是本公开实施例提供的一种第一子层的平面示意图;
图29是本公开实施例提供的一种第一子层的平面示意图;
图30是本公开实施例提供的一种第一子层的平面示意图;
图31是本公开实施例提供的一种第一子层的平面示意图;
图32是本公开实施例提供的一种显示面板的截面示意图;
图33是本公开实施例提供了一种显示面板的制备方法的流程图。
图中各标记说明如下:
10、驱动背板;
20、发光功能层;21、发光单元;22、封装层;23、像素限定层;
30、光取出层;31、第一子层;310、凹槽;311、第一开口;312、第二开口;32、第二子层;301、第一侧壁;302、第二侧壁;303、第三侧壁;304、第四侧壁;305、直线段;306、弧线段;
40、凸起;
50、凹陷部;
60、触控层;
O、直母线;A1、第一连接线;A2、第二连接线;X、第一方向;Y、第二方向;B1、第一直线;B2、第二直线;F1、第一发光单元;F2、第二发光单元;F3、第三发光单元。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开实施方式作进一步地详细描述。
除非另作定义,此处使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开专利申请说明书以及权利要 求书中使用的“第一”、“第二”、“第三”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或者物件及其等同,并不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”、“顶”、“底”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则所述相对位置关系也可能相应地改变。
图1是本公开实施例提供的一种显示面板的平面示意图。如图1所示,显示面板包括:显示区域P和围绕显示区域P的非显示区域Q,在显示区域P中包括阵列布置的多个发光单元21。以下以其中一个发光单元处的截面为例对显示面板的结构说明。
图2是本公开实施例提供的一种显示面板的截面示意图。图2是图1中的AA处示意的截面图。如图2所示,显示面板包括:驱动背板10、发光功能层20和光取出层30,发光功能层20和光取出层30依次位于驱动背板10的承载面上。
其中,承载面是指驱动背板10用于承载其他膜层的表面,例如,驱动背板上形成有发光功能层时,驱动背板10与发光功能层20接触的表面即为承载面。
如图2所示,发光功能层20包括阵列布置的多个发光单元21。其中,发光功能层包括像素限定层23,像素限定层23中具有多个开口,每个开口中设有一个发光单元21,像素限定层23的开口的范围即为发光单元21的外轮廓范围。
如图2所示,光取出层30包括第一子层31和第二子层32,第一子层31和第二子层32依次层叠在发光功能层20上,第一子层31的折射率低于第二子层32的折射率。第一子层31具有多个凹槽310(图2中仅示出了一个),凹槽310与发光单元21一一对应,第二子层32的部分位于多个凹槽310内。
其中,凹槽310的边界长度大于对应的一个发光单元21的发光区域的边界长度。凹槽的边界长度是指凹槽的外轮廓的周长。发光单元的发光区域的边界长度是指发光单元的发光区域的外轮廓的周长。
本公开实施例提供的显示面板中,驱动背板10、发光功能层20和光取出层 30依次层叠,其中,在发光层上设置两层折射率不同且层叠的子层。折射率低的第一子层31具有凹槽310,折射率高的第二子层32部分位于凹槽310中,以填充凹槽310。参见图2中右侧箭头示意光路,这样当光线从发光功能层20斜向照射到凹槽310的侧壁与第二子层32的交界面时,由于光线是从高折射率的第二子层32射向低折射率的第一子层31,因此会发生反射,从而改变斜向出射的光线的出射方向,能使光线在交界面反射后从显示面板的出光面出射。
图3是本公开实施例提供的一种第一子层与发光单元的投影关系图。如图3所示,每个凹槽310与多个发光单元21中的一个发光单元21(参见图中虚线)相对。凹槽310在承载面上的正投影的外轮廓的至少部分(参见图中实线),位于对应的发光单元21在承载面上的正投影(参见图中虚线)内。这里,发光单元21在承载面上的正投影可以为发光功能层20中像素限定层23的开口的正投影。
可选地,如图2、3所示,多个凹槽310中的至少一个凹槽310的侧壁具有凸起40,凸起40向凹槽310的中心方向凸出。
图4是本公开实施例提供的一种显示面板的截面示意图。图4中示意的截面为图3中NN处示意的截面图。如图4所示,在凹槽310中未设置凸起40的区域,在NN截面线的方向上,第一子层31的凹槽的宽度K不小于发光单元21的长度。
图2是图4中的MM处示意的截面图。如图2所示,在凹槽310中设置凸起40的区域,在MM截面线的方向上,第一子层31的凹槽的宽度小于发光单元21的长度,以使得凹槽310在承载面上的正投影的外轮廓的部分位于对应的发光单元21在承载面上的正投影内。
上述实现方式中,凹槽310的正投影的外轮廓存在部分在发光单元21的正投影内,即第一子层31存在部分区域和发光单元21正对,这样与该部分区域相对的发光单元发出的部分光线(参见图2中左侧箭头示意光路),可以进入到该部分区域对应的低折射率的第一子层31中,待光线再从低折射率的第一子层31进入到高折射率的第二子层32时,会发生折射,使光线折射角度小于光线的入射角度,从而让发光单元21边缘位置向远离发光单元中心的方向出射的部分光线,朝发光单元中心的方向靠近,从而进一步增加了正向出射的光线,提升显示面板的出光效率。
在其他一些实现方式中,第一子层的凹槽的宽度可以小于或等于发光单元的长度,以使得凹槽在承载面上的正投影的外轮廓完全位于对应的发光单元在承载面上的正投影内。
其中,发光单元21包括依次层叠的阳极层、发光层和阴极层。
示例性地,发光层包括可以包括空穴传输层(Hole Transport Layer,简称HTL)、空穴注入层(Hole Injection Layer,简称HIL)、电子传输层(Electron Transport Layer,简称ETL)、电子注入层(Electron Injection Layer,简称EIL)、空穴阻挡层(Hole Block Layer,简称HBL)、电子阻挡层(Electron Blocking Layer,简称EBL)和发光材料层。电子注入层、电子传输层、空穴阻挡层、发光材料层、空穴传输层、空穴注入层和电子阻挡层依次层叠。
可选地,阴极层可以是透明导电层,阳极层可以是透明导电层或金属层。
例如,透明导电层可以是ITO(Indium tin oxide,氧化铟锡)层和IZO(Indium Zinc Oxide,氧化铟锌)层。
例如,金属层可以是Mg、Al、Au、Pt、Cu等金属层。金属层可以为单金属层或者由至少两种金属层叠。
其中,驱动背板10可以包括衬底基板和多个驱动电路,多个驱动电路阵列布置在衬底基板上。每个驱动电路与对应的一个发光单元21连接。例如,驱动电路与发光单元21的阳极层电连接。这样,发光单元21就可以在所连接的驱动电路的驱动下发光。
本公开实施例中,驱动背板10可以为TFT(Thin Film Transistor,薄膜晶体管)基板,驱动背板10上的每个驱动电路至少包括2个TFT,用于控制所连接的发光单元21发光。
示例性地,驱动电路包括依次层叠在衬底基板上的有源层、栅极绝缘层、栅极层、层间介电层和源漏极层。发光单元21与对应的驱动电路的源漏极层连接。
示例性地,衬底基板的制作材料可以是玻璃、石英、塑料等;有源层的制作材料可以是非晶硅、多晶硅或金属氧化物半导体等;栅极绝缘层的制作材料可以是硅氧化物或硅氮化物,硅氮氧化物等;栅极金属层的制作材料可以是钼、铜、钛等单层金属薄膜,也可以是钼/铝/钼或钛/铝/钛等多层金属薄膜;层间介电层的制作材料可以是硅氧化物或硅氮化物等;源漏金属层的制作材料可以是 铝、钼、铜、钛等单层金属薄膜,也可以是钼/铝/钼或钛/铝/钛等多层金属薄膜。
示例性地,当驱动背板的各TFT的有源层的制作材料均为多晶硅时,该种驱动背板是LTPS(Low Temperature Poly-Silicon,低温多晶硅)驱动背板。
示例性地,当驱动背板的各TFT的中,一部分TFT的有源层中的制作材料为多晶硅,另一部分TFT的有源层的制作材料为金属氧化物时,该种驱动背板是LTPO(Low Temperature Polycrystalline Oxide,低温多晶氧化物)驱动背板。
需要说明的是,示例中仅举出了具有单层栅极金属层的TFT基板结构,TFT基板结构还可以是双层栅极金属层等多种结构,本公开实施例对此不做限制。
可选地,如图3所示,凹槽310与发光单元21一一对应。在其他实现方式中,凹槽310的数量可以少于发光单元21的数量,每个凹槽310有与之对应的一个发光单元21,部分发光单元21则没有与之对应的凹槽310。
本公开实施例中,凹槽的形状可以是任意形状,例如矩形、圆形、椭圆形或者多边形等,且凹槽的排列方式也可以采用任意方式排列。
在一些示例中,发光单元包括多种颜色的发光单元,不同颜色的发光单元的尺寸不同,相应地,与发光单元对应的各凹槽310的尺寸也不同。
例如,红光发光单元R的面积大于绿光发光单元G的面积,绿光发光单元G的面积大于蓝光发光单元B的面积。其中,与红光发光单元R对应的凹槽310的面积也大于与绿光发光单元G对应的凹槽310的面积,与绿光发光单元G对应的凹槽310的面积也大于与蓝光发光单元B对应的凹槽310的面积。
可选地,第一子层31为透明光学材料层或者油墨材料层,第二子层32为透明光学材料层或者油墨材料层。
其中,透明光学材料层可以是聚酰亚胺类树脂层或亚克力材料层,油墨材料层可以是亚克力材料层或环氧类材料层。
需要说明的是,透明光学材料层的透光度不一定是100%,透明光学材料层的透光度也可以是50%至99%,本公开实施例不做限制。
可选地,如图2所示,凹槽310具有第一开口311和第二开口312,第一开口311位于第一子层31靠近驱动背板10的一侧面,第二开口312位于第一子层31远离驱动背板10的一侧面,第一开口311在承载面上的正投影位于第二开口312在承载面上的正投影内。也即是,凹槽310靠近驱动背板10的开口比 远离驱动背板10的开口的面积小。
在一些实现方式中,如图2所示,凹槽310的侧壁为平面。也即是,凹槽310的侧壁相对于驱动背板10是倾斜的。
这样当光线从发光单元21斜向照射到凹槽310的侧壁与第二子层32的交界面时,由于光线是从高折射率的第二子层32射向低折射率的第一子层31,光线在交界处会发生反射,从而改变斜向出射的光线的出射角度。由于凹槽310的侧壁是倾斜的,这样斜向出射的光线在凹槽310的侧壁上反射后,能使光线反射后的出射方向更容易趋向垂直于显示面板的出光面的方向,让更多的光线正向出光。
示例性地,如图2所示,凹槽310的侧壁与驱动背板10的夹角α为40°至80°。
通过将凹槽310的侧壁和驱动背板10的夹角限制在上述角度范围内,能避免侧壁的倾斜角度设置过大或过小,而起不到将光线的出射方向控制在垂直于显示面板的出光面的方向的作用。
例如,凹槽310的侧壁与驱动背板10之间的夹角是60°。将凹槽310的侧壁的倾角设置为该角度,能让部分光线入射到凹槽的侧壁时,光线与凹槽的侧壁的夹角在特定范围内,以让光线发生全反射,提高出光率,且还能将绝大部分光线的出射方向调整成垂直于显示面板的出光面的方向,以提升光线正向出光率。
其中,光线与凹槽的侧壁的夹角θ≤90-arcsin(n2/n1)时,发生全反射。第一子层的折射率为n2,第二子层的折射率为n1。
在另外一些实现方式中,图5是本公开实施例提供的一种光取出层的结构示意图。如图5所示,凹槽310的侧壁为曲面,且凹槽310的侧壁朝远离凹槽310的中心的方向凹陷。
示例性地,如图5所示,凹槽310的侧壁可以是圆弧面。
在另外一些实现方式中,图6是本公开实施例提供的一种光取出层的结构示意图。如图6所示,凹槽310的侧壁为曲面,且凹槽310的侧壁朝凹槽310的中心的方向突出。
示例性地,如图6所示,凹槽310的侧壁可以是圆弧面。
将凹槽310的侧壁设置为圆弧面,斜向出射的光线在圆弧面上反射后,同 样能使光线反射后的出射方向趋向垂直于显示面板的出光面的方向,以让更多的光线正向出光。
可选地,凹槽310的侧壁包括依次连接在所述第一开口和所述第二开口之间的多个平面,相连的两个平面之间具有夹角。
示例性地,图7是本公开实施例提供的一种光取出层的结构示意图。如图7所示,凹槽的侧壁为两个相连的平面,相连的两个平面之间的夹角为钝角。
将凹槽310的侧壁设置为两个相连的平面,让同样角度射向凹槽的侧壁的光线,能以不同的角度从显示面板出射,以增大发光单元的出光面积。
需要说明的是,凹槽310的侧壁还可以是其他结构,只要满足斜向出射的光线在凹槽310的侧壁处反射后,促使光线能沿着垂直于显示面板的方向出光即可,本公开实施例不做限制。
可选地,如图2、3所示,凸起40在承载面上的正投影的至少部分位于发光单元21在承载面上的正投影内。
其中,凸起40朝向发光单元21的表面与发光单元21的侧面相接触。即凸起40靠近发光单元21的侧面与发光单元21的侧面位于同一平面。
其中,凸起40的部分表面和第一子层31靠近发光单元21的侧面均与同一膜层的同一表面接触。例如,当第一子层31直接位于发光功能层20上时,凸起40的部分表面与发光单元21靠近第一子层的侧面接触。
本公开实施例中,凸起40向凹槽310的中心方向凸出,以使凸起40在承载面上的正投影位于对应的发光单元21在承载面上的正投影内。
上述实现方式中,相较于未设置凸起40的侧壁,在凹槽310的侧壁上设置凸起40能增大凹槽310的侧壁的反射面积,从而进一步提升正向出光。同时,凸起40是和发光单元21正对的,以使得发光单元21与凸起40相对的部分发出光线后,光线可以直接从入射到低折射率的第一子层31中,这样光线再从低折射率的第一子层31进入到高折射率的第二子层32时,会发生折射,参见图2中示意的光路,让部分光线朝着显示面板的周边出射,不仅让更多光线从显示面板出射,还能让显示面板各位置均匀出光,提升显示面板的整面出光效果。
本公开实施例中,凸起40在承载面上的正投影的至少部分位于发光单元21在承载面上的正投影内,包括以下两种实现方式。
在第一种实现方式中,参见图3,凹槽310在承载面上的正投影的外轮廓中除了凸起40的部分,与对应的发光单元21在承载面上的正投影的外轮廓重合,此时,凸起40在承载面上的正投影完全位于对应的发光单元21在承载面上的正投影内。
在第二种实现方式中,凹槽在承载面上的正投影的外轮廓中除了凸起的部分,包围对应的发光单元在承载面上的正投影。即发光单元在承载面上的正投影,位于对应的凹槽在承载面上的正投影的外轮廓中除了凸起的部分内。此时,凸起在承载面上的正投影只有部分位于对应的发光单元在承载面上的正投影内。
可选地,如图3所示,凸起40的最大长度L为1μm至3μm,凸起40的最大宽度h为1μm至5μm。
其中,凸起的长度是凸起的外壁面在平行于承载面的截面上的点至凹槽侧壁的最大距离。
凸起的宽度是凸起在平行于承载面的截面上,垂直于凸起的长度方向上的最大距离。
可选地,凸起40的平行于承载面的截面的形状包括弧形。
示例性地,凸起40的平行于承载面的截面的形状可以是半圆形或半椭圆形。
需要说明的是,凸起的平行于承载面的截面的形状还可以是其他形状,例如,优弧和劣弧,本公开实施例不做限制。
在一些实现方式中,图8是本公开实施例提供的一种第一子层的部分结构示意图。如图8所示,凸起40的外壁面为圆锥面,凸起40的尺寸较大的一端与第一子层31靠近发光单元21的侧面共面。如图2所示,凸起40的平行于承载面的截面为半圆形。
其中,凸起40的外壁面是指:凸起40与第二子层32接触的表面。
将凸起40设置呈圆锥状,除了能让发光单元21与凸起40相对的部分发出光线直接从入射到低折射率的第一子层31中,以在第一子层31和第二子层32的交界处折射,让部分光线朝着显示面板的周边出射外;由于凸起40的外壁面为圆锥面,相较于斜面,各种方位从第二子层32射向第一子层31的光线经圆锥面反射后,绝大部分光线均能以相似的出射角度从光取出层出射,以将各个方位入射到第一子层31的光线调整为垂直于显示面板的出光面的方向。
可选地,如图3所示,凸起40在平行于驱动背板10方向上的截面的最大半径为1μm至3μm。
将凸起40的尺寸设置在上述范围内,可以避免凸起40的尺寸设置过大,而缩小凹槽310的尺寸,减少正向出光的光线量;还可以避免凸起40的尺寸设置过小,而不能有效提升光线正向出光率。
示例性地,如图3所示,凸起40的最大半径可以是1μm至2μm。其中,凸起40的最大半径是凸起40朝向驱动背板10的一端的侧面的半径。例如,凸起40的最大半径可以是2μm。
图9是本公开实施例提供的另一种第一子层的部分结构示意图。如图9所示,凸起40的外壁面为圆台的弧形侧面,凸起40的尺寸较大的一端与第一子层31靠近发光单元21的侧面共面。
由于凸起40为圆台状,相较于圆锥状的凸起40,圆台状的凸起40的外壁面的面积更大,能提供更大的面积与光线反射,将各个方位入射到第一子层31的光线调整为垂直于显示面板的出光面的方向。
图10是本公开实施例提供的另一种第一子层的部分结构示意图。如图10所示,凸起40的外壁面为柱面,柱面的直母线与凹槽310的侧壁平行。
将凸起40设置呈圆柱状,除了能让发光单元21与凸起40相对的部分发出光线直接从入射到低折射率的第一子层31中,以在第一子层31和第二子层32的交界处折射,让部分光线朝着显示面板的周边出射外;由于凸起40的外壁面为圆柱面,相较于斜面,各种方位从第二子层32射向第一子层31的光线均能良好地在凸起40的外壁面反射,以将各个方位入射到第一子层31的光线调整为垂直于显示面板的出光面的方向。
图11是本公开实施例提供的一种第一子层的平面示意图。图11是图10示意的第一子层的平面示意图。如图11所示,凸起40在平行于驱动背板10方向上的截面为半椭圆状。相较于将凸起40设置为圆锥,相同尺寸(半径)的圆柱状的凸起40与发光单元21相对的面积更大,从而能让更多的光线直接入射到第一子层31,从而让更多的光线朝着显示面板的周边出射,让显示面板各位置均匀出光,提升显示面板的整面出光效果。
可选地,凸起40为圆柱状,圆柱状的凸起40的半径不超过3μm。示例性地,圆柱状的凸起40的半径可以是2μm。
将凸起40的尺寸设置在上述范围内,可以避免凸起40的尺寸设置过大,而缩小凹槽310的尺寸,减少正向出光的光线量;还可以避免凸起40的尺寸设置过小,而不能有效提升光线正向出光率。
在本公开实施例的一些实现方式中,如图3所示,凸起40有多个,多个凸起40以凹槽310的几何中心为中心环绕间隔分布。
通过在凹槽310的侧壁设置有多个凸起40,能增大凸起40与发光单元21相对的面积,从而能让更多的光线直接入射到第一子层31,从而让更多的光线朝着显示面板的周边出射,提升显示面板的整面出光效果。
可选地,凹槽310具有多个依次首尾相连的侧壁,凹槽310的各侧壁具有至多一个凸起40。
示例性地,如图3所示,凹槽310包括四个依次首尾相连的侧壁,且相邻的两个侧壁垂直。其中,每个凹槽310的每个侧壁上均设有一个凸起40。
这样能保证凹槽310的各个侧壁均能让部分光线直接入射到第一子层,从而让各个侧壁均有光线朝着显示面板的周边出射,提升显示面板的整面出光效果。
示例性地,图12是本公开实施例提供的一种第一子层的平面示意图。如图12所示,凹槽310包括四个依次首尾相连的侧壁,且相邻的两个侧壁垂直。其中,一部分凹槽310的部分侧壁可以不设置凸起40,而另一部分凹槽310的各个侧壁均设置有凸起40,以满足提升显示面板的整面出光效果的同时,还能保证光线的正向出光率。
需要说明的是,凹槽310中也可以存在部分凹槽310的侧壁上不设置凸起40,只要满足显示面板的整面出光效果符合要求即可,本公开实施例不做限制。
图13是本公开实施例提供的一种发光单元的分布示意图。如图13所示,发光单元21在承载面上的正投影,位于凹槽310在承载面上的正投影的外轮廓内。
示例性地,如图13所示,多个凹槽310中的至少一个凹槽310的侧壁具有凸起40,凸起40向凹槽310的中心方向凸出,凸起40在承载面上的正投影位于发光单元21在承载面上的正投影外。这样发光单元21发出的光均可以在凹 槽310的侧壁上反射,从而增大显示面板的正面出光。
可选地,如图13所示,多个发光单元21在第一方向X和第二方向Y上矩阵排布。
图14是本公开实施例提供的一种发光单元的结构示意图。如图14所示,多个发光单元21包括第一发光单元F1,第一发光单元F1对应的凹槽310包括依次相连的第一侧壁301、第三侧壁303、第二侧壁302和第四侧壁304,凹槽310的各侧壁均具有一个凸起40。
其中,第一侧壁301和第二侧壁302为相对的侧壁,第三侧壁303和第四侧壁304为相对的侧壁。
示例性地,如图14所示,位于第一侧壁301的凸起40的几何中心与位于第二侧壁302的凸起40的几何中心的连线为第一连接线A1,第一连接线A1与第三侧壁303或第四侧壁304相交。
其中,第一连接线A1与第三侧壁303相交是指:第一连接线A1与第三侧壁303靠近第一发光单元的侧边的延长线相交。第一连接线A1与第四侧壁304相交是指:第一连接线A1与第四侧壁304靠近第一发光单元的侧边的延长线相交。
示例性地,如图14所示,位于第三侧壁303的凸起40的几何中心与位于第四侧壁304的凸起的几何中心的连线为第二连接线A2,第二连接线A2与第一侧壁301或第二侧壁302相交。
其中,第二连接线A2与第一侧壁301相交是指:第二连接线A2与第一侧壁301靠近第一发光单元的侧边的延长线相交。第二连接线A2与第二侧壁302相交是指:第二连接线A2与第二侧壁302靠近第一发光单元的侧边的延长线相交。
可选地,第一侧壁301、第二侧壁302、第三侧壁303和第四侧壁304的靠近第一发光单元的侧边均包括直线段305。
第一侧壁301、第二侧壁302、第三侧壁303和第四侧壁304中的至少一个的靠近第一发光单元的侧边还包括弧线段306,弧线段306与弧线段306所在侧边的直线段305的一端相连。第一侧壁301、第二侧壁302、第三侧壁303和第四侧壁304中的凸起40分别位于对应的直线段305的中点。
示例性地,如图14所示,第一发光单元的第一侧壁301和第四侧壁304均 包括一个直线段和一个弧线段,第一侧壁301的弧线段与第四侧壁304的弧线段相连,相连的两个弧线段形成圆角。即第一侧壁301和第四侧壁304的靠近第一发光单元的侧边包括直线段305和弧线段306,第一侧壁301的弧线段306与第四侧壁304的弧线段306相连,以在第一侧壁301和第四侧壁304的交界处形成圆角。
如图14所示,第一侧壁301上的凸起40位于直线段305的中点,第四侧壁304上的凸起40位于直线段305的中点。
示例性地,如图14所示,在第一发光单元中,第三侧壁的凸起位于直线段的中点,即第三侧壁的凸起至第一侧壁或第二侧壁的距离等于第一侧壁和第二侧壁的间距的二分之一。
示例性地,如图14所示,在第一发光单元中,第二侧壁的凸起位于直线段的中点,即第二侧壁的凸起至第三侧壁或第四侧壁的距离等于第三侧壁和第四侧壁的间距的二分之一。
上述实现方式中,第二侧壁和第三侧壁均只包括直线段,且第二侧壁和第四侧壁上的凸起均位于直线段的中点。这样让各个侧壁上的凸起均设置在直线段的中点,有利于色偏平衡。
如图13所示,第一连接线A1与第一方向X和第二方向Y均交叉;和/或第二连接线A2与第一方向X和第二方向Y均交叉。
这样让发光单元矩阵分布,能合理控制多个发光单元的布置位置和间距,保证显示面板的发光效果。
可选地,如图13所示,多个发光单元还包括:第二发光单元F2和第三发光单元F3。
如图13所示,第二发光单元F2和第三发光单元F3均包括依次相连的四个侧壁和位于各侧壁上的凸起40。
其中,第二发光单元F2和第三发光单元F3与第一发光单元F1类似,同样可以包括依次相连的第一侧壁301、第三侧壁303、第二侧壁302和第四侧壁304,且各侧壁均具有一个凸起40。
如图13所示,第二发光单F2元上相对的两个凸起40沿第一直线B1或第二直线B2排布,第三发光单元F3上相对的两个凸起40沿第一直线B1或第二直线B2排布,第一直线B1与第一方向X平行,第二直线B2与第二方向Y平 行。
如图13所示,第一连接线A1与第二方向Y相交,第二连接线A2与第一方向X相交。
本公开实施例中,第一发光单元F1为蓝光发光单元B,第二发光单元F2为红光发光单元R,第三发光单元F3为绿光发光单元G。
图13中面积最大矩形块为蓝色发光单元B,面积最小的矩形块为绿光发光单元G,面积居中的矩形块为红光发光单元R。其中,蓝光发光单元B、红光发光单元R和绿光发光单元G均沿第一方向X和第二方向Y矩阵排布。
如图13所示,蓝光发光单元的第一连接线A1与第二方向Y相交,蓝光发光单元的第二连接线A2与第一方向X相交。
结合图13、14,蓝光发光单元中,第一侧壁301和第四侧壁304相连的区域设有圆角,且凸起40是位于直线段305的中点的,因而第一侧壁301上的凸起40不在侧边的中点,而第二侧壁302的凸起40则位于侧边的中点,因此,凹槽310的第一侧壁301的凸起40和第二侧壁302的凸起40不是沿第二方向Y分布的。且第三侧壁303上的凸起40不在侧边的中点,第四侧壁304的凸起40位于侧边的中点,因此,凹槽310的第三侧壁303的凸起40和第四侧壁304的凸起40也不是沿第一方向X分布的。
本公开实施例中,如图14所示,蓝光发光单元中,像素限定层23对应第一侧壁301和第四侧壁304之间的圆角的位置也设有圆角。像素限定层23中与凹槽310的第一侧壁301对应的侧壁和像素限定层23中与凹槽310的第四侧壁304对应的侧壁,两个侧壁之间也设有圆角,这样让像素限定层23的形状能与光取出层30的形状保持一致,以便于光线的出射。
如图13所示,红光发光单元R上第一侧壁301的凸起和第二侧壁302的凸起沿第二直线B2排布,红光发光单元R上第三侧壁303的凸起和第四侧壁304的凸起沿第一直线B1排布。
在红光发光单元中,第一侧壁301、第二侧壁302、第三侧壁303和第四侧壁304的侧边均没有设置弧线段。因此,在红光发光单元中,凹槽310的第一侧壁301的凸起40和第二侧壁302的凸起40沿第二直线B2分布,凹槽310的第三侧壁303的凸起40和第四侧壁304的凸起40沿第一直线B1分布的。
如图13所示,绿光发光单元G上第一侧壁301的凸起和第二侧壁302的凸 起沿第二直线B2排布,绿光发光单元G上第三侧壁303的凸起和第四侧壁304的凸起沿第一直线B1排布。
在绿光发光单元中,第一侧壁301、第二侧壁302、第三侧壁303和第四侧壁304的侧边均没有设置弧线段。因此,在绿光发光单元中,凹槽310的第一侧壁301的凸起40和第二侧壁302的凸起40沿第二直线B2分布,凹槽310的第三侧壁303的凸起40和第四侧壁304的凸起40沿第一直线B1分布的。
可选地,如图13、14所示,第一发光单元的第一侧壁301和第四侧壁304均包括一个直线段305和一个弧线段306,第一侧壁301的弧线段306与第四侧壁304的弧线段306相连。
在一种实现方式中,如图13所示,第一发光单元的第一侧壁301上的凸起40与第二直线不重叠,第一发光单元的第四侧壁304上的凸起40与第一直线不重叠,第一发光单元的第二侧壁302上的凸起40位于第二直线上,第一发光单元的第三侧壁303上的凸起40位于第一直线上。
如图13所示,第一发光单元的第一侧壁301上的凸起40位于第二直线上,第一发光单元的第四侧壁304上的凸起40位于第一直线上,第一发光单元的第二侧壁302上的凸起40与第二直线不重叠,第一发光单元的第三侧壁303上的凸起40与第一直线不重叠。
上述实现方式中,第一发光单元中,没有设置圆角的第二侧壁的凸起和其他发光单元中的第二侧壁的凸起沿同一直线分布;没有设置圆角的第三侧壁的凸起和其他发光单元中的第三侧壁的凸起沿同一直线分布。而设有圆角的第一侧壁的凸起和其他发光单元中的第一侧壁的凸起不在同一直线;设有圆角的第四侧壁的凸起和其他发光单元中的第四侧壁的凸起不在同一直线。
可选地,如图13所示,至少部分发光单元中,多个凸起40的几何中心和凹槽310的几何中心重叠。凹槽的每个侧壁上均设有一个凸起40,多个凸起40整体的几何中心与凹槽310的几何中心重叠。
示例性地,如图13所示,红光发光单元R的四个凸起40整体的几何中心和凹槽310的几何中心W重叠。
在另外一种实现方式中,如图15所示,第一发光单元的第一侧壁301上的凸起40位于绿光发光单元的第一连接线A1的延长线上,蓝光发光单元的第二 侧壁302上的凸起40位于绿光发光单元的第一连接线A1的延长线之外。
如图15所示,第一发光单元的第四侧壁304上的凸起40位于第一直线B1上,蓝光发光单元的第三侧壁303上的凸起40位于第一直线B1之外。
上述实现方式中,第一发光单元中,没有设置圆角的第二侧壁的凸起和其他发光单元中的第二侧壁的凸起不在同一直线;没有设置圆角的第三侧壁的凸起和其他发光单元中的第三侧壁的凸起不在同一直线。而设有圆角的第一侧壁的凸起和其他发光单元中的第一侧壁的凸起沿同一直线分布;设有圆角的第四侧壁的凸起和其他发光单元中的第四侧壁的凸起沿同一直线分布。
需要说明的是,上述两种实现方式均以第一发光单元的第一侧壁和第四侧壁交界处具有圆角为例。在其他实施例中,第一发光单元、第二发光单元和第三发光单元中的至少两种发光单元都采用第一发光单元的结构。
例如,每个发光单元都采用第一发光单元的结构,即第一发光单元、第二发光单元、第三发光单元的第一侧壁和第四侧壁交界处均具有圆角。
例如,第一发光单元和第二发光单元的结构相同,即第一发光单元和第二发光单元的第一侧壁和第四侧壁交界处均具有圆角。
例如,第一发光单元和第三发光单元的结构相同,即第一发光单元和第三发光单元的第一侧壁和第四侧壁交界处均具有圆角。
需要说明的是,凸起40在承载面上的正投影位于发光单元21在承载面上的正投影外的情况下,凸起40的形状、尺寸均可以参考图4至11示意的实施例。
示例性地,如图14所示,凸起40的最大宽度h可以是1μm至5μm,凸起40的最大长度L可以是1μm至3μm。凸起40的宽度方向和长度方向垂直,且凸起40的宽度方向和长度方向均平行于驱动背板10的承载面。
在本公开的一种实现方式中,凸起的最大宽度h是1μm,凸起的最大长度L是1μm,且第一子层的凹槽的开口长度与像素限定层的开口长度相同,这样就使得凸起与发光单元具有相互重叠的部分,也即是凸起在承载面上的正投影位于像素限定层的开口在承载面上的正投影内。此时显示面板的功耗收益最大。
可选地,光取出层中第一子层的凹槽310的开口长度与像素限定层的开口长度的差值为±4μm。即凹槽的开口长度比像素限定层的开口长度大或者小, 且凹槽310与像素限定层23中相互平行且相距最近的两个侧壁的间距c为0至2μm。
以第一子层为例,凹槽310的开口长度是指第一子层的凹槽的相对两个侧壁的间距,例如,凹槽的第一侧壁和第二侧壁之间的间距。
像素限定层的开口长度是指像素限定层的相对两个侧壁的间距,例如,像素限定层上平行且靠近第一侧壁和平行且靠近第二侧壁的两个侧壁的间距。
图16是本公开实施例提供的一种显示面板的截面示意图。图16示意的是沿着图14中SS*剖面线截取的截面图,图16中左侧为S端,图16中右侧为S*端。如图16所示,第一子层31的凹槽310的开口长度L1大于像素限定层23的开口长度L2。
图17是本公开实施例提供的一种发光单元的结构示意图。图17中凸起40的部分区域与发光单元21重叠。图18是本公开实施例提供的一种显示面板的截面示意图。图18示意的是沿着图17中SS*剖面线截取的截面图。如图18所示,第一子层31的凹槽310的开口长度L1大于像素限定层23的开口长度L2,且凸起40的部分区域与发光单元21重叠。
图19是本公开实施例提供的一种发光单元的结构示意图。图19中凸起40完全位于发光单元21内。图20是本公开实施例提供的一种显示面板的截面示意图。图20示意的是沿着图19中SS*剖面线截取的截面图。如图20所示,第一子层31的凹槽310的开口长度L1小于像素限定层23的开口长度L2。
需要说明的是,若需调整显示面板的视角,可以调整第一子层的凹槽的开口长度与像素限定层的开口长度,让第一子层的凹槽的开口长度比像素限定层的开口长度大或者小,且控制凹槽与像素限定层中相互平行且相距最近的两个侧壁的间距不大于2μm。
例如,第一子层的凹槽的开口长度比像素限定层的开口长度大,像素限定层的开口位于第一子层的凹槽的开口内;例如,第一子层的凹槽的开口长度比像素限定层的开口长度小,第一子层的凹槽的开口位于像素限定层的开口内。两种实现方式中,凹槽与像素限定层中相互平行且相距最近的两个侧壁的间距为0至2μm。
图21是本公开实施例提供的一种第一子层的部分结构示意图。图22是本公开实施例提供的一种第一子层的俯视图。如图21、22所示,凸起40呈框状,凸起40的几何中心O与凹槽310的几何中心O相同。
其中,框状可以是指具有内孔的对称形状,例如,框状可以是方形框、圆环等。几何中心是具有一定对称性的图形的最中心的位置,例如,图形为圆环时,几何中心为圆环的圆心。
通过将凸起40设置呈框状,能最大程度增大凸起40与发光单元21相对的面积,从而能让更多的光线直接入射到第一子层31,让更多的光线朝着显示面板的周边出射,提升显示面板的整面出光效果。
本公开实施例中,凹槽310在平行于驱动背板10的方向上的截面的形状可以与凸起40在驱动背板10的方向上的截面的形状相同,以使凸起40的外边缘恰好与凹槽310的侧壁相连。
示例性地,凹槽310的截面和凸起40的截面均可以是圆形,即凸起40呈圆环状。
示例性地,如图22所示,凹槽310的截面和凸起40的截面均可以是矩形。
图23是本公开实施例提供的一种第一子层的平面示意图。如图23所示,凹槽310的侧壁具有凹陷部50,凹陷部50朝远离凹槽310的几何中心的方向凹陷,凹陷部50至少位于第一子层31靠近发光功能层20的侧面。
如图23所示,凹陷部50在承载面上的正投影的至少部分,位于对应的发光单元21在驱动背板11的衬底基板上的正投影外。
通过设置凹陷部50当于扩大了凹槽310的尺寸,让发光单元21边缘区域发出的光线可以更多地入射到凹陷部50,从而让更多的光线在凹陷部50的表面处反射,从显示面板的出光面出射,提升各个发光单元21的正面出光率。
可选地,凹陷部50的凹陷深度不大于5μm。其中,凹陷部50的凹陷深度是指在平行于衬底基板的方向上,凹陷部50朝着远离凹槽310的中心方向凹陷的长度。
将凹陷部50的凹陷深度设置在上述范围内,可以避免凹陷部50的凹陷深度设置过大,而减少了发光单元21直接入射到第一子层31的光线的量,从而减少朝着显示面板的周边出射的光线,让显示面板各位置均匀出光。
本公开实施例中,凹陷部50的凹陷深度可以是1μm至3μm。例如,凹陷部50的凹陷深度是2μm。
可选地,凹陷部50在承载面上的正投影的形状包括矩形、梯形、三角形和弧形中的至少一种。
示例性地,如图23所示,凹陷部50在承载面上的正投影为矩形。其中,矩形的长度为1μm至2μm,矩形的宽度即凹陷部50的凹陷深度H为1μm至3μm。
图24是本公开实施例提供的一种第一子层的截面图。图24是沿图23中B处剖切线剖切得到的截面图,如图24所示,凹槽310的侧壁可以是斜面,相应地,矩形的长边所在的侧壁也可以是斜面,且凹槽310的侧壁与驱动背板10之间的倾角等于矩形的长边所在的侧壁与驱动背板10之间的倾角。
如图24所示,将凹槽310的侧壁设置为平行于矩形的长边所在的凹陷部50的侧壁,就使得以同样角度斜向入射到第一子层31的侧壁上的光线和入射到矩形的长边所在的侧壁上的光线,会以同样的出射角度从显示面板的出光面出射。
示例性地,如图25所示,凹陷部50在承载面上的正投影为梯形。其中,矩形的长度为1μm至2μm,矩形的高即凹陷部50的凹陷深度H为1μm至3μm。
在上述实现方式中,凹槽310的侧壁可以是斜面,相应地,梯形的顶边所在的侧壁也可以是斜面,且凹槽310的侧壁与驱动背板10之间的倾角等于梯形的定边所在的侧壁与驱动背板10之间的倾角。
这样将凹槽310的侧壁设置为平行于梯形的顶边所在的侧壁,就使得以同样角度斜向入射到第一子层31的侧壁上的光线和入射到梯形的顶边所在的侧壁上的光线,会以同样的出射角度从显示面板的出光面出射。
示例性地,如图26所示,凹陷部50在承载面上的正投影为三角形。其中,三角形为等腰三角形,在平行于驱动背板10方向上,等腰三角形的底边的长度与凹槽310的侧壁的长度相同。且等腰三角形的定点到底边的距离即凹陷部50的凹陷深度H为1μm至3μm。
相较于凹陷部50的正投影为矩形或梯形,凹陷部50的正投影为三角形时,凹陷部50在承载面上的正投影的面积更大,能让更多的光线在凹陷部50的表面处反射。
图23至26仅示意了,凹槽310的开口长度L3与像素限定层的开口长度L4的差值为0的情况。此时凹陷部50在承载面上的正投影完全位于对应的发光单元在承载面上的正投影外。
在其他一些实现方式中,凹槽310的开口长度L3小于像素限定层的开口长度L4(参见图19)。此时,位于凹槽310的侧壁上的凹陷部50可以仅部分突出于发光单元21。即凹陷部50在承载面上的正投影的一部分位于对应的发光单元在承载面上的正投影内,凹陷部50在承载面上的正投影的另一部分位于对应的发光单元在承载面上的正投影外。
在另外一些实现方式中,凹槽310的开口长度大于像素限定层的开口长度(参见图14、17)。此时,位于凹槽310的侧壁上的凹陷部50也完全位于对应的发光单元在承载面上的正投影外。
可选地,在凹槽的侧壁上可以仅设置有凹陷部,即凹槽的侧壁上未设置凸起。
图27是本公开实施例提供的一种第一子层的平面示意图。如图27所示,凹槽310的侧壁具有凹陷部50,凹陷部50朝远离凹槽310的几何中心的方向凹陷,凹陷部50至少位于第一子层31靠近发光功能层的侧面。
如图27所示,凹陷部50在承载面上的正投影的至少部分,位于对应的发光单元21在驱动背板11的衬底基板上的正投影外。
在一些实现方式中,凹陷部在衬底基板上的正投影完全位于对应的发光单元在衬底基板上的正投影外。
在另一些实现方式中,凹陷部存在部分区域与发光单元相对,而凹陷部中不与发光单元相对的另外一部分在衬底基板上的正投影则位于对应的发光单元在衬底基板上的正投影外。
通过设置凹陷部50扩大了凹槽310的尺寸,让发光单元21边缘区域发出的光线可以更多地入射到凹陷部50,从而让更多的光线在凹陷部50的表面处反射,从显示面板的出光面出射,提升各个发光单元21的正面出光率。
可选地,凹陷部50的凹陷深度H不大于5μm。其中,凹陷部50的凹陷深度是指在平行于衬底基板的方向上,凹陷部50朝着远离凹槽310的中心方向凹陷的长度。
将凹陷部50的凹陷深度设置在上述范围内,可以避免凹陷部50的凹陷深度设置过大,而减少了发光单元21直接入射到第一子层31的光线的量,从而减少朝着显示面板的周边出射的光线,让显示面板各位置均匀出光。
本公开实施例中,凹陷部50的凹陷深度H可以是1μm至3μm。例如,凹陷部50的凹陷深度是2μm。
可选地,凹陷部在承载面上的正投影可以是规则的多边形、圆形和椭圆形,也可以是任意不规则的封闭图形。
示例性地,如图27所示,凹陷部50在承载面上的正投影为矩形。其中,矩形的长度为1μm至2μm,矩形的宽度即凹陷部50的凹陷深度H为1μm至3μm。
示例性地,如图28所示,凹陷部50在承载面上的正投影为梯形。其中,矩形的长度为1μm至2μm,矩形的高即凹陷部50的凹陷深度H为1μm至3μm。
在上述实现方式中,凹槽310的侧壁可以是斜面,相应地,梯形的顶边所在的侧壁也可以是斜面,且凹槽310的侧壁与驱动背板10之间的倾角等于梯形的定边所在的侧壁与驱动背板10之间的倾角。
这样将凹槽310的侧壁设置为平行于梯形的顶边所在的侧壁,就使得以同样角度斜向入射到第一子层31的侧壁上的光线和入射到梯形的顶边所在的侧壁上的光线,会以同样的出射角度从显示面板的出光面出射。
示例性地,如图29所示,凹陷部50在承载面上的正投影为三角形。其中,三角形为等腰三角形,在平行于驱动背板10方向上,等腰三角形的底边的长度与凹槽310的侧壁的长度相同。且等腰三角形的定点到底边的距离即凹陷部50的凹陷深度H为1μm至3μm。
相较于凹陷部50的正投影为矩形或梯形,凹陷部50的正投影为三角形时,凹陷部50在承载面上的正投影的面积更大,能让更多的光线在凹陷部50的表面处反射。
上述实现方式中,凹槽上除了凹陷部的外轮廓在承载面上的正投影与发光单元21在承载面上的正投影重合。即凹槽上除了凹陷部的外轮廓在承载面上的正投影与像素限定层23的开口限定的范围相同。
在其他一些实现方式中,如图30所示,凹槽310在承载面上的正投影的外 轮廓位于发光单元21在承载面上的正投影外。其中,凹槽310的宽度K大于像素限定层的开口长度。
在另外一些实现方式中,如图31所示,部分凹槽310的侧壁设有凹陷部50,另外一部分凹槽310的侧壁没有设置凹陷部50。在设置足量凹陷部,让更多的光线在凹陷部50的表面处反射,提升发光单元21的正面出光率的前提下,可以在部分凹槽中不设置凹陷部,防止各发光单元之间出现混光的问题。
图32是本公开实施例提供的一种显示面板的截面示意图。如图32所示,显示面板还包括触控层60和封装层22,封装层22和触控层60依次层叠在发光功能层20和光取出层30之间,且第一子层31和第二子层32依次层叠在触控层60上。
在本公开的一些实现方式中,触控层60包括多个触控单元和多根触控线,多个触控单元阵列排布于封装层22上,多根触控线位于封装层22上,触控线与至少一个触控单元相连,且触控线用于将所连接的触控单元与触控集成电路电连接。
示例性地,触控单元可以是透明导电层,例如,透明导电层可以是ITO(Indium tin oxide,氧化铟锡)层和IZO(Indium Zinc Oxide,氧化铟锌)层。
示例性地,触控单元可以是金属网状结构。其中,金属网状结构由金属丝交织形成且呈网络状。该种结构的触控单元为FMLOC(Flexible Multi-Layer On Cell,触控显示一体化)技术中的触摸层的触控单元。
由于金属网状结构是金属丝,为避免金属网状结构遮挡发光单元21的发出的光线,金属网状结构可以采用围绕发光单元21的方式分布,以保证显示基板的显示效果。
图33是本公开实施例提供了一种显示面板的制备方法的流程图,如图33所示,该制备方法包括:
步骤S1:提供驱动背板。
其中,驱动背板可以包括衬底基板和多个驱动电路,多个驱动电路阵列排布于衬底基板上。
本公开实施例中,驱动背板可以为TFT基板,驱动背板上的每个驱动电路 至少包括2个TFT。
步骤S2:在驱动背板的承载面上形成发光功能层。
其中,发光功能层包括阵列布置的多个发光单元。
可选地,在步骤S3之前还可以包括:在发光功能层上形成封装层,然后在封装层上形成触控层。
步骤S3:在发光功能层上形成光取出层。
在前述步骤中如形成有触控层,则步骤S3中形成的光取出层位于触控层上。
如图2所示,光取出层30包括第一子层31和第二子层32,第一子层31和第二子层32依次层叠在发光功能层20上,第一子层31的折射率低于第二子层32的折射率,第一子层31具有多个凹槽310,一个凹槽310与一个发光单元21相对,第二子层32的部分位于凹槽310内。
其中,凹槽310在承载面上的正投影的外轮廓的至少部分,位于对应的发光单元21在承载面上的正投影内。
本公开实施例中,凹槽的侧壁可以具有凸起,凸起在驱动背板的衬底基板上的正投影位于发光单元在驱动背板的衬底基板上的正投影内。
其中,凸起布置数量、形状,以及凸起与凹槽的位置关系可以参见前述图1至图11示意的实施例。
本公开实施例提供了一种显示装置,该显示装置包括如前文的显示面板和供电组件,供电组件与显示面板电连接。其中,供电组件可以是电源等。
该显示装置可以为手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
以上,并非对本公开作任何形式上的限制,虽然本公开已通过实施例揭露如上,然而并非用以限定本公开,任何熟悉本专业的技术人员,在不脱离本公开技术方案范围内,当可利用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本公开技术方案的内容,依据本公开的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本公开技术方案的范围内。

Claims (29)

  1. 一种显示面板,其特征在于,所述显示面板包括:驱动背板(10)、发光功能层(20)和光取出层(30),所述发光功能层(20)和所述光取出层(30)依次位于所述驱动背板(10)的承载面上;
    所述发光功能层(20)包括阵列布置的多个发光单元(21);
    所述光取出层(30)包括第一子层(31)和第二子层(32),所述第一子层(31)和所述第二子层(32)依次层叠在所述发光功能层(20)上,所述第一子层(31)的折射率低于所述第二子层(32)的折射率,所述第一子层(31)具有多个凹槽(310),所述多个凹槽中的每个凹槽(310)与所述多个发光单元(21)中的一个发光单元(21)相对,所述第二子层(32)的部分位于所述多个凹槽(310)内;
    所述凹槽(310)的边界长度大于对应的一个发光单元(21)的发光区域的边界长度。
  2. 根据权利要求1所述的显示面板,其特征在于,所述凹槽(310)在所述承载面上的正投影的外轮廓的至少部分,位于对应的发光单元(21)在所述承载面上的正投影内。
  3. 根据权利要求2所述的显示面板,其特征在于,所述多个凹槽(310)中的至少一个凹槽(310)的侧壁具有凸起(40),所述凸起(40)向所述凹槽(310)的中心方向凸出,所述凸起(40)在所述承载面上的正投影的至少部分位于所述发光单元(21)在所述承载面上的正投影内。
  4. 根据权利要求1所述的显示面板,其特征在于,所述发光单元(21)在所述承载面上的正投影,位于所述凹槽(310)在所述承载面上的正投影的外轮廓内。
  5. 根据权利要求4所述的显示面板,其特征在于,所述多个凹槽(310)中的至少一个凹槽(310)的侧壁具有凸起(40),所述凸起(40)向所述凹槽(310) 的中心方向凸出。
  6. 根据权利要求3或5所述的显示面板,其特征在于,所述凸起(40)向所述凹槽(310)的最大高度为1μm至3μm,所述凸起(40)的最大宽度为1μm至5μm。
  7. 根据权利要求3或5所述的显示面板,其特征在于,所述凸起(40)的平行于所述承载面的截面的形状包括弧形。
  8. 根据权利要求3或5所述的显示面板,其特征在于,所述凸起(40)的外壁面为圆锥面,所述凸起(40)的尺寸较大的一端靠近所述发光单元(21)。
  9. 根据权利要求3或5所述的显示面板,其特征在于,所述凸起(40)的外壁面为柱面,所述柱面的直母线与所述凹槽(310)的侧壁平行。
  10. 根据权利要求3、5至9任一项所述的显示面板,其特征在于,所述凸起(40)有多个,多个所述凸起(40)以所述凹槽(310)的几何中心为中心环绕间隔分布。
  11. 根据权利要求10所述的显示面板,其特征在于,所述凹槽(310)具有依次首尾相连的多个侧壁,所述凹槽(310)的各侧壁具有至多一个所述凸起(40)。
  12. 根据权利要求11所述的显示面板,其特征在于,所述多个发光单元(21)包括第一发光单元,所述第一发光单元对应的凹槽(310)包括依次相连的第一侧壁(301)、第三侧壁(303)、第二侧壁(302)和第四侧壁(304),所述凹槽(310)的各侧壁均具有一个所述凸起(40);
    位于所述第一侧壁(301)的凸起(40)的几何中心与位于所述第二侧壁(302)的凸起的几何中心的连线为第一连接线(A1),所述第一连接线(A1)与所述第三侧壁(303)靠近所述第一发光单元的侧边的延长线或所述第四侧壁(304) 靠近所述第一发光单元的侧边的延长线相交;或者,
    位于所述第三侧壁(303)的凸起(40)的几何中心与位于所述第四侧壁(304)的凸起的几何中心的连线为第二连接线(A2),所述第二连接线(A2)与所述第一侧壁(301)靠近第一发光单元的侧边的延长线或所述第二侧壁(302)靠近第一发光单元的侧边的延长线相交。
  13. 根据权利要求12所述的显示面板,其特征在于,所述第一侧壁(301)、所述第二侧壁(302)、所述第三侧壁(303)和所述第四侧壁(304)均包括直线段(305);
    所述第一侧壁(301)、所述第二侧壁(302)、所述第三侧壁(303)和所述第四侧壁(304)中的至少一个侧边还包括弧线段(306),所述弧线段(306)与所述弧线段(306)所在侧边的直线段(305)的一端相连;
    所述第一侧壁(301)、所述第二侧壁(302)、所述第三侧壁(303)和所述第四侧壁(304)中的凸起(40)分别位于对应的所述直线段(305)的中点。
  14. 根据权利要求12所述的显示面板,其特征在于,所述多个发光单元(21)在第一方向(X)和第二方向(Y)上矩阵排布,所述第一连接线(A1)与所述第一方向(X)和所述第二方向(Y)均交叉;和/或,所述第二连接线(A2)与所述第一方向(X)和所述第二方向(Y)均交叉。
  15. 根据权利要求14所述的显示面板,其特征在于,所述多个发光单元(21)还包括:第二发光单元(F2)和第三发光单元(F3),所述第二发光单元(F2)和所述第三发光单元(F3)均包括依次相连的四个侧壁和位于各侧壁上的凸起(40);
    所述第二发光单元(F2)上相对的两个所述凸起(40)沿第一直线(B1)或第二直线(B2)排布,所述第三发光单元(F3)上相对的两个所述凸起(40)沿所述第一直线(B1)或所述第二直线(B2)排布,所述第一直线(B1)与所述第一方向(X)平行,所述第二直线(B2)与所述第二方向(Y)平行。
  16. 根据权利要求15所述的显示面板,其特征在于,所述第一发光单元(F1) 的第一侧壁(301)和第四侧壁(304)均包括一个直线段(305)和一个弧线段(306),所述第一侧壁(301)的弧线段(306)与所述第四侧壁(304)的弧线段(306)相连,相连的两个所述弧线段(306)形成圆角;
    所述第一发光单元(F1)的第一侧壁(301)上的凸起(40)与所述第二直线(B2)不重叠,所述第一发光单元(F1)的第四侧壁(304)上的凸起(40)与所述第一直线(B1)不重叠,所述第一发光单元(F1)的第二侧壁(302)上的凸起(40)位于所述第二直线(B2)上,所述第一发光单元(F1)的第三侧壁(303)上的凸起(40)位于所述第一直线(B1)上;或者,
    所述第一发光单元(F1)的第一侧壁(301)上的凸起(40)位于所述第二直线(B2)上,所述第一发光单元(F1)的第四侧壁(304)上的凸起(40)位于所述第一直线(B1)上,所述第一发光单元(F1)的第二侧壁(302)上的凸起(40)与所述第二直线(B2)不重叠,所述第一发光单元(F1)的第三侧壁(303)上的凸起(40)与所述第一直线(B1)不重叠。
  17. 根据权利要求3、5至9任一项所述的显示面板,其特征在于,所述凸起(40)呈框状,所述凸起(40)的几何中心与所述凹槽(310)的几何中心相同。
  18. 根据权利要求1至17任一项所述的显示面板,其特征在于,所述凹槽(310)的侧壁具有凹陷部(50),所述凹陷部(50)朝远离所述凹槽(310)的几何中心的方向凹陷,所述凹陷部(50)至少位于所述第一子层(31)靠近所述发光功能层(20)的侧面;
    所述凹陷部(50)在所述承载面上的正投影的至少部分,位于对应的所述发光单元(21)在所述承载面上的正投影外。
  19. 根据权利要求18所述的显示面板,其特征在于,所述凹陷部(50)在所述承载面上的正投影的形状包括矩形、梯形、三角形和弧形中的至少一种。
  20. 根据权利要求19所述的显示面板,其特征在于,所述凹陷部(50)的凹陷深度不大于5μm。
  21. 根据权利要求1至20任一项所述显示面板,其特征在于,所述凹槽(310)具有第一开口(311)和第二开口(312),所述第一开口(311)位于所述第一子层(31)靠近所述驱动背板(10)的一侧面,所述第二开口(312)位于所述第一子层(31)远离所述驱动背板(10)的一侧面,所述第一开口(311)在所述承载面上的正投影位于所述第二开口(312)在所述承载面上的正投影内。
  22. 根据权利要求21所述的显示面板,其特征在于,所述凹槽(310)的侧壁与所述驱动背板(10)的夹角为40°至80°。
  23. 根据权利要求21所述的显示面板,其特征在于,所述凹槽(310)的侧壁包括依次连接在所述第一开口(311)和所述第二开口(312)之间的多个平面,相连的两个平面之间具有夹角。
  24. 根据权利要求21所述的显示面板,其特征在于,所述凹槽(310)的侧壁为曲面,所述凹槽(310)的侧壁朝远离所述凹槽(310)的中心的方向凹陷。
  25. 根据权利要求1至24任一项所述的显示面板,其特征在于,所述凹槽(310)与所述发光单元(21)一一对应。
  26. 根据权利要求1至24任一项所述的显示面板,其特征在于,所述第一子层(31)为透明光学材料层或者油墨材料层,所述第二子层(32)为透明光学材料层或者油墨材料层。
  27. 根据权利要求1至24任一项所述的显示面板,其特征在于,所述显示面板还包括触控层(60)和封装层(22),所述封装层(22)和所述触控层(60)依次层叠在所述发光功能层(20)和所述光取出层(30)之间,且所述第一子层(31)和所述第二子层(32)依次层叠在所述触控层(60)上。
  28. 一种显示面板的制备方法,其特征在于,所述制备方法包括:
    提供驱动背板;
    在所述驱动背板的承载面上形成发光功能层,所述发光功能层包括阵列布置的多个发光单元;
    在所述发光功能层上形成光取出层,所述光取出层包括第一子层和第二子层,所述第一子层和所述第二子层依次层叠在所述发光功能层上,所述第一子层的折射率低于所述第二子层的折射率,所述第一子层具有多个凹槽,所述多个凹槽中的每个凹槽与所述多个发光单元中的一个发光单元相对,所述第二子层的部分位于所述多个凹槽内;所述凹槽的边界长度大于对应的一个发光单元的发光区域的边界长度。
  29. 一种显示装置,其特征在于,所述显示装置包括供电组件和如权利要求1至27任一项所述的显示面板,所述供电组件与所述显示面板电连接。
PCT/CN2022/131997 2022-06-29 2022-11-15 显示面板及其制备方法和显示装置 WO2024000995A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210763493.9A CN115132947A (zh) 2022-06-29 2022-06-29 显示面板及其制备方法和显示装置
CN202210763493.9 2022-06-29

Publications (1)

Publication Number Publication Date
WO2024000995A1 true WO2024000995A1 (zh) 2024-01-04

Family

ID=83381587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/131997 WO2024000995A1 (zh) 2022-06-29 2022-11-15 显示面板及其制备方法和显示装置

Country Status (2)

Country Link
CN (1) CN115132947A (zh)
WO (1) WO2024000995A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115132947A (zh) * 2022-06-29 2022-09-30 京东方科技集团股份有限公司 显示面板及其制备方法和显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140062292A1 (en) * 2012-09-04 2014-03-06 Samsung Display Co., Ltd. Organic light-emitting display device and method of manufacturing the same
CN111834544A (zh) * 2020-06-30 2020-10-27 湖北长江新型显示产业创新中心有限公司 显示面板和显示装置
CN111834545A (zh) * 2020-06-30 2020-10-27 湖北长江新型显示产业创新中心有限公司 显示面板和显示装置
CN114023898A (zh) * 2021-10-20 2022-02-08 武汉华星光电半导体显示技术有限公司 一种显示面板
CN114284454A (zh) * 2021-12-23 2022-04-05 云谷(固安)科技有限公司 显示面板及显示装置
CN115132947A (zh) * 2022-06-29 2022-09-30 京东方科技集团股份有限公司 显示面板及其制备方法和显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140062292A1 (en) * 2012-09-04 2014-03-06 Samsung Display Co., Ltd. Organic light-emitting display device and method of manufacturing the same
CN111834544A (zh) * 2020-06-30 2020-10-27 湖北长江新型显示产业创新中心有限公司 显示面板和显示装置
CN111834545A (zh) * 2020-06-30 2020-10-27 湖北长江新型显示产业创新中心有限公司 显示面板和显示装置
CN114023898A (zh) * 2021-10-20 2022-02-08 武汉华星光电半导体显示技术有限公司 一种显示面板
CN114284454A (zh) * 2021-12-23 2022-04-05 云谷(固安)科技有限公司 显示面板及显示装置
CN115132947A (zh) * 2022-06-29 2022-09-30 京东方科技集团股份有限公司 显示面板及其制备方法和显示装置

Also Published As

Publication number Publication date
CN115132947A (zh) 2022-09-30

Similar Documents

Publication Publication Date Title
CN106941113B (zh) 一种oled显示面板及其制备方法、显示装置
US12035573B2 (en) Organic light-emitting display panel and organic light-emitting display device including sub-microlenses
WO2023116025A1 (zh) 有机发光二极管显示面板及显示装置
WO2024000995A1 (zh) 显示面板及其制备方法和显示装置
US11991915B2 (en) Display panel and display device
WO2024149114A1 (zh) 显示面板和显示装置
WO2024093583A1 (zh) 显示基板及其制备方法、显示面板和显示装置
WO2024017343A1 (zh) 显示面板及其制作方法、显示装置
WO2023065206A1 (zh) 显示基板以及显示装置
WO2022217880A1 (zh) 显示面板及其显示装置
CN215342609U (zh) 显示基板及显示装置
CN218244274U (zh) 显示面板和显示装置
TWI797915B (zh) 鏡面顯示器
WO2024021092A1 (zh) 显示面板及显示装置
WO2023206127A1 (zh) 显示装置及显示面板
US20240215367A1 (en) Display substrate and display device
WO2023151127A1 (zh) Oled显示面板及其制作方法、oled显示模组
WO2023273383A1 (zh) 一种显示面板及显示装置
WO2023039792A1 (zh) 显示面板和显示装置
WO2024065421A1 (zh) 显示面板及其制备方法、显示装置
US12041812B2 (en) Display panel and method of manufacturing the same, and display device
US20230420621A1 (en) Display panel and display device
WO2023231802A1 (zh) 触控结构、触控显示面板以及显示装置
WO2023137663A1 (zh) 显示基板和显示装置
US20240224757A1 (en) Display apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22949076

Country of ref document: EP

Kind code of ref document: A1