WO2023151127A1 - Oled显示面板及其制作方法、oled显示模组 - Google Patents

Oled显示面板及其制作方法、oled显示模组 Download PDF

Info

Publication number
WO2023151127A1
WO2023151127A1 PCT/CN2022/077472 CN2022077472W WO2023151127A1 WO 2023151127 A1 WO2023151127 A1 WO 2023151127A1 CN 2022077472 W CN2022077472 W CN 2022077472W WO 2023151127 A1 WO2023151127 A1 WO 2023151127A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting device
layer
electrode
oled
Prior art date
Application number
PCT/CN2022/077472
Other languages
English (en)
French (fr)
Inventor
施国龙
谢伟佳
李伟
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Publication of WO2023151127A1 publication Critical patent/WO2023151127A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/856Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/126Shielding, e.g. light-blocking means over the TFTs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the technical field of display devices, in particular to an OLED display panel, a manufacturing method thereof, and an OLED display module.
  • Electroluminescent diode has the advantages of simple preparation process, low cost, high luminous efficiency, easy to form flexible structure, low power consumption, high color saturation and wide viewing angle.
  • the display technology using electroluminescent diode has become a kind of important display technology.
  • OLED is a current-type light-emitting device, which mainly includes an anode, a cathode and an OLED functional layer.
  • the main working principle of OLED is: driven by the electric field formed by the anode and cathode, the OLED functional layer emits light through carrier injection and recombination.
  • a full-screen display device is realized by setting an under-screen photosensitive element, such as a camera, a light sensor, and a fingerprint sensor, under the display area.
  • the display area corresponding to the photosensitive element is called the under-screen camera (Camera under Panel, CUP) area.
  • CUP under-screen camera
  • the plurality of pixels in the CUP area in the full-screen display device of the prior art will lead to the problems of low transmittance and poor light-sensing effect in the CUP area.
  • the present application provides an OLED display panel, a manufacturing method thereof, and an OLED display module to solve the problem of low transmittance in the CUP region in the prior art.
  • an embodiment of the present application provides an OLED display panel, which has a display area and a CUP area located in the display area, the CUP area includes a plurality of pixel areas arranged at intervals, and two adjacent In the light-transmitting area between the pixel areas, the OLED display panel includes:
  • the TFT array substrate including TFTs located in the pixel area;
  • a light-emitting device layer is provided on the TFT array substrate, and the light-emitting device layer includes a first light-emitting device located in the pixel area and connected to the TFT, and located in the light-transmitting area A second light emitting device in and connected to the first light emitting device;
  • the second light-emitting device includes a first transparent electrode, a second OLED functional layer disposed on the first transparent electrode, and a second transparent electrode disposed on the second OLED functional layer.
  • the first light-emitting device includes a first electrode, a first OLED functional layer disposed on the first electrode, and a second electrode disposed on the first OLED functional layer ;
  • the first transparent electrode is connected to the first electrode; the second transparent electrode is connected to the second electrode.
  • the first transparent electrode is integrally formed with the first electrode
  • the second transparent electrode is integrally formed with the second electrode
  • the second OLED functional layer is integrally formed with the first OLED functional layer.
  • the first electrode includes a first transparent metal oxide layer, a metal layer disposed on the first transparent metal oxide layer, and a second metal layer disposed on the metal layer.
  • transparent metal oxide layer transparent metal oxide layer
  • the first transparent electrode is integrally formed with the first transparent metal oxide layer.
  • the TFT array substrate further includes a reflective unit disposed in the pixel region, and a refraction unit disposed in the light-transmitting region;
  • the refraction unit is located directly below the second light-emitting device, and is used to refract part of the light emitted by the second light-emitting device and/or part of the light from the outside to the reflection unit, and reflect the reflection unit The returned light is refracted to the outside of the OLED display panel.
  • the TFT array substrate also includes:
  • the first insulating layer is disposed on the TFT, the side of the first insulating layer is a slope, and the reflection unit is located on the slope;
  • a second insulating layer, the second insulating layer is disposed on the TFT, the reflective unit and the first insulating layer, and the refracting unit is located on the second insulating layer.
  • the TFT array substrate further includes a light-shielding layer under the TFTs, and the reflective unit is right above the light-shielding layer.
  • the embodiment of the present application also provides an OLED display module, including an OLED display panel, and a photosensitive element;
  • the OLED display panel has a display area and a CUP area located in the display area, the CUP area includes a plurality of pixel areas arranged at intervals, and a light-transmitting area located between two adjacent pixel areas, so
  • the OLED display panel includes:
  • the TFT array substrate including TFTs located in the pixel area;
  • a light-emitting device layer is provided on the TFT array substrate, and the light-emitting device layer includes a first light-emitting device located in the pixel area and connected to the TFT, and located in the light-transmitting area A second light emitting device in and connected to the first light emitting device;
  • the second light-emitting device includes a first transparent electrode, a second OLED functional layer disposed on the first transparent electrode, and a second transparent electrode disposed on the second OLED functional layer;
  • the photosensitive element is located below the CUP area.
  • the first light-emitting device includes a first electrode, a first OLED functional layer disposed on the first electrode, and a second OLED functional layer disposed on the first OLED electrode;
  • the first transparent electrode is connected to the first electrode; the second transparent electrode is connected to the second electrode.
  • the first transparent electrode is integrally formed with the first electrode
  • the second transparent electrode is integrally formed with the second electrode
  • the second OLED functional layer is integrally formed with the first OLED functional layer.
  • the first electrode includes a first transparent metal oxide layer, a metal layer disposed on the first transparent metal oxide layer, and a second metal layer disposed on the metal layer. Two transparent metal oxide layers;
  • the first transparent electrode is integrally formed with the first transparent metal oxide layer.
  • the TFT array substrate further includes a reflective unit disposed in the pixel region, and a refracting unit disposed in the light-transmitting region;
  • the refraction unit is located directly below the second light-emitting device, and is used to refract part of the light emitted by the second light-emitting device and/or part of the light from the outside to the reflection unit, and reflect the reflection unit The returned light is refracted to the outside of the OLED display panel.
  • the TFT array substrate also includes:
  • the first insulating layer is disposed on the TFT, the side of the first insulating layer is a slope, and the reflection unit is located on the slope;
  • a second insulating layer, the second insulating layer is disposed on the TFT, the reflective unit and the first insulating layer, and the refracting unit is located on the second insulating layer.
  • the TFT array substrate further includes a light-shielding layer under the TFTs, and the reflection unit is right above the light-shielding layer.
  • the embodiment of the present application also provides a method for manufacturing an OLED display panel, including:
  • a TFT array substrate has a display area and a CUP area located in the display area, the CUP area includes a plurality of pixel areas arranged at intervals, and a CUP area located between two adjacent pixel areas a light-transmitting area, the TFT array substrate includes TFTs located in the pixel area;
  • the light emitting device layer includes a first light emitting device located in the pixel region and connected to the TFT, and a first light emitting device located in the light-transmitting region and connected to the first A second light-emitting device connected to the light-emitting device; the second light-emitting device includes a first transparent electrode, a second OLED functional layer disposed on the first transparent electrode, and a second OLED functional layer disposed on the second OLED functional layer Two transparent electrodes.
  • the first light-emitting device includes a first electrode, a first OLED functional layer disposed on the first electrode, and a first OLED functional layer disposed on the first OLED functional layer.
  • second electrode ;
  • the first transparent electrode is connected to the first electrode; the second transparent electrode is connected to the second electrode.
  • the first transparent electrode is integrally formed with the first electrode
  • the second transparent electrode is integrally formed with the second electrode
  • the second OLED functional layer is integrally formed with the first OLED functional layer.
  • the OLED display panel provided by the present application has a display area and a CUP area located in the display area.
  • the CUP area includes a plurality of pixel areas arranged at intervals, and a light-transmitting window located between two adjacent pixel areas.
  • the OLED display panel includes a TFT array substrate and a light emitting device layer.
  • the TFT array substrate includes TFTs located in the pixel area.
  • the light-emitting device layer is arranged on the TFT array substrate, and the light-emitting device layer includes a first light-emitting device located in the pixel area and connected to the TFT, and a second light-emitting device located in the light-transmitting area and connected to the first light-emitting device.
  • the second light emitting device includes a first transparent electrode, a second OLED functional layer arranged on the first transparent electrode, and a second transparent electrode arranged on the second OLED functional layer. That is to say, in this application, by setting the second light-emitting device in the light-transmitting area, the second light-emitting device can not only emit light from both sides, but also connect the second light-emitting device to the first light-emitting device in the pixel area, without setting it in the light-transmitting area.
  • the driving circuit reduces the light-shielding structure, thereby increasing the transmittance of the CUP area, thereby improving the light-sensing effect of the photosensitive element.
  • FIG. 1 is a schematic diagram of an OLED display panel provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a CUP area of an OLED display panel provided by an embodiment of the present application
  • Fig. 3 is a cross-sectional view at A-A of Fig. 2 provided by an embodiment of the present application;
  • Fig. 4 is a sectional view at A-A of Fig. 2 provided by another embodiment of the present application;
  • Fig. 5a is a schematic diagram of a reflection unit of an OLED display panel provided by an embodiment of the present application.
  • Fig. 5b is a schematic diagram of a reflection unit of an OLED display panel provided by another embodiment of the present application.
  • Fig. 5c is a schematic diagram of a reflective unit of an OLED display panel provided by another embodiment of the present application.
  • FIG. 6 is a schematic diagram of an OLED display module provided by an embodiment of the present application.
  • Fig. 7 is a schematic diagram of an OLED display module provided by another embodiment of the present application.
  • FIG. 8 is a flowchart of a method for manufacturing an OLED display panel provided by an embodiment of the present application.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • a feature defined as “first” or “second” may explicitly or implicitly include one or more of said features.
  • “plurality” means two or more, unless otherwise specifically defined.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; it can be mechanically connected, or electrically connected, or can communicate with each other; it can be directly connected, or indirectly connected through an intermediary, and it can be the internal communication of two components or the interaction of two components relation. Those of ordinary skill in the art can understand the specific meanings of the above terms in this application according to specific situations.
  • a first feature being "on” or “under” a second feature may include direct contact between the first and second features, and may also include the first and second features Not in direct contact but through another characteristic contact between them.
  • “above”, “above” and “above” the first feature on the second feature include that the first feature is directly above and obliquely above the second feature, or simply means that the first feature is horizontally higher than the second feature.
  • “Below”, “beneath” and “under” the first feature to the second feature include that the first feature is directly below and obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.
  • the embodiment of the present application provides an OLED display panel 100, which has a display area 101 and a CUP area 102 located in the display area 101, the CUP area 102 includes a plurality of pixel areas 1021 arranged at intervals, and In the light-transmitting region 1022 between two adjacent pixel regions 1021, the OLED display panel 100 includes:
  • the TFT array substrate 1 includes TFT11 located in the pixel area 1021;
  • the light-emitting device layer 2 is arranged on the TFT array substrate 1, and the light-emitting device layer 2 includes a first light-emitting device 21 located in the pixel area 1021 and connected to the TFT 11, and located in the light-transmitting area 1022 and connected to the first the second light emitting device 22 connected to the light emitting device 21;
  • the second light emitting device 22 includes a first transparent electrode 221 , a second OLED functional layer 222 disposed on the first transparent electrode 221 , and a second transparent electrode 223 disposed on the second OLED functional layer 222 .
  • the CUP area 102 refers to the area corresponding to the photosensitive element 200 . Except for the CUP area 102 in the display area 101 , the remaining area is a normal display area 103 . Compared with the pixel units in the conventional display area 103 , the distance between the pixel units in the CUP area 102 is larger, so that more light can pass through the CUP area 102 , so that the photosensitive element 200 can work normally. However, since there are still multiple pixel units in the CUP area 102 , the multiple pixel units will block the light. Therefore, the transmittance of the CUP area 102 is low, and the light-sensing effect of the photosensitive element 200 is poor.
  • a plurality of pixel areas 1021 in the CUP area 102 refers to the area where the pixel units in the CUP area 102 are located, that is, one pixel area 1021 corresponds to one pixel unit, and one pixel unit includes a plurality of sub-pixels (such as three, four or six sub-pixels).
  • the TFT 11 located in the pixel area 1021 refers to the TFT 11 of a sub-pixel in the pixel area 1021 , and one TFT 11 and one first light-emitting device 21 constitute a sub-pixel.
  • the second light-emitting device 22 has a first transparent electrode 221 and a second transparent electrode 223, and the second light-emitting device 22 can not only emit light from both sides (that is, the second light-emitting device 22 can emit light upward and downward), and external light can also pass through the second light emitting device 22, which can increase the transmittance of the CUP region 102.
  • the second light-emitting device 22 is also connected to the first light-emitting device 21 in the pixel area 1021, that is, the second light-emitting device 22 is driven by the sub-pixel adjacent to the second light-emitting device 22, and does not need to be set in the light-transmitting area 1022
  • the driving circuit reduces the light-shielding structure, thereby increasing the transmittance of the CUP region 102 , and further improving the light-sensing effect of the photosensitive element 200 .
  • the number of the second light emitting device 22 can be multiple, and each second light emitting device 22 is driven by an adjacent sub-pixel, and the second light emitting device 22 located in the light-transmitting region 1022 is equivalent to a sub-pixel that can transmit light , the pixel density of the CUP area 102 can be increased, the display resolution (PPI) can be increased, and the display difference between the CUP area 102 and the conventional display area 103 can be reduced to improve the display effect.
  • PPI display resolution
  • the embodiment of the present application does not specifically limit the application of the OLED display panel 100, which may be a TV, a notebook computer, a tablet computer, a wearable display device (such as a smart bracelet, a smart watch, etc.), a mobile phone, a virtual reality device, an enhanced Any product or component with display function such as real-world equipment, vehicle display, advertising light box, etc.
  • the OLED display panel 100 may be a TV, a notebook computer, a tablet computer, a wearable display device (such as a smart bracelet, a smart watch, etc.), a mobile phone, a virtual reality device, an enhanced Any product or component with display function such as real-world equipment, vehicle display, advertising light box, etc.
  • the OLED display panel 100 further includes a pixel definition layer 3 disposed on the light emitting device layer 2, and the pixel definition layer 3 may define a region for accommodating the first light emitting device 21 ( That is, the pixel area 1021 ), and the area for accommodating the second light emitting device 22 .
  • the first light emitting device 21 includes a first electrode 211, a first OLED functional layer 212 disposed on the first electrode 211, and a first OLED functional layer 212 disposed on the first OLED functional layer 212.
  • the first transparent electrode 221 is connected to the first electrode 211; the second transparent electrode 223 is connected to the second electrode 213, so that the TFT 11 located in the pixel area 1021 can simultaneously drive the first light emitting device 21 and the second light emitting device 22, thereby achieving the same
  • the adjacent sub-pixels of the second light-emitting device 22 drive the second light-emitting device 22, without setting a driving circuit in the light-transmitting region 1022, reducing the light-shielding structure, thereby increasing the transmittance of the CUP region 102, and further improving the light-sensitive element 200. photosensitive effect.
  • the first transparent electrode 221 is integrally formed with the first electrode 211
  • the second transparent electrode 223 is integrally formed with the second electrode 213 . That is, the first transparent electrode 221 and the first electrode 211 are material layers fabricated simultaneously, and the second transparent electrode 223 and the second electrode 213 are integrated into a material layer fabricated simultaneously, thereby simplifying the process and ensuring that the second light emitting device 22 can pass through The sub-pixels adjacent to the second light emitting device 22 are driven.
  • the second OLED functional layer 222 is integrally formed with the first OLED functional layer 212 . That is, the second OLED functional layer 222 and the first OLED functional layer 212 are material layers produced at the same time, which can simplify the process, and can also make the emission color and brightness of the second light-emitting device 22 and the first light-emitting device 21 approach or be the same, The display uniformity of the CUP area 102 is improved.
  • the first transparent electrode 221 and the first electrode 211 can be an anode
  • the second transparent electrode 223 and the second electrode 213 can be a cathode
  • the second OLED functional layer 222 and the first OLED functional layer 212 include a hole transport layer, a light-emitting layer disposed on the hole transport layer, and an electron transport layer disposed on the light-emitting layer.
  • the second OLED functional layer 222 and the first OLED functional layer 212 may further include a hole injection layer disposed under the hole transport layer, and an electron injection layer disposed on the electron transport layer.
  • the first electrode 211 includes a first transparent metal oxide layer 2111, a metal layer 2112 disposed on the first transparent metal oxide layer 2111, and a second metal layer 2112 disposed on the metal layer 2112. Two transparent metal oxide layers 2113 .
  • the first transparent electrode 221 is integrally formed with the first transparent metal oxide layer 2111 .
  • the metal layer 2112 can reflect light, make the first light emitting device 21 in the pixel area 1021 emit light in one direction (such as upward), and can also improve the luminous efficiency of the first light emitting device 21 .
  • the first electrode 211 is a stacked multi-layer structure, which can reduce the voltage drop (IR drop).
  • the first transparent electrode 221 and the first transparent metal oxide layer 2111 are material layers produced at the same time, which can simplify the process, and can also make the first transparent electrode 221 transmit light, improve the transmittance of the CUP region 102, and further improve the photosensitive element 200. photosensitive effect.
  • the material of the first transparent electrode 221 and the first transparent metal oxide layer 2111 may be indium tin oxide (ITO). Certainly, other materials may also be used, such as indium zinc oxide, which is not limited in this application.
  • ITO indium tin oxide
  • the material of the metal layer 2112 may be silver (Ag). Of course, other materials may also be used, such as metals such as copper, aluminum, molybdenum, and titanium, which are not limited in this application.
  • the material of the second transparent metal oxide layer 2113 may be indium tin oxide. Certainly, other materials may also be used, such as indium zinc oxide, which is not limited in this application.
  • the TFT array substrate 1 further includes a reflection unit 12 disposed in the pixel area 1021 and a refraction unit 13 disposed in the light transmission area 1022 .
  • the refraction unit 13 is located directly below the second light-emitting device 22, and is used to refract part of the light emitted by the second light-emitting device 22 and/or part of the light from the outside to the reflection unit 12, and refract the light reflected by the reflection unit 12 to the reflection unit 12.
  • the exterior of the OLED display panel 100 is located directly below the second light-emitting device 22, and is used to refract part of the light emitted by the second light-emitting device 22 and/or part of the light from the outside to the reflection unit 12, and refract the light reflected by the reflection unit 12 to the reflection unit 12.
  • the refraction unit 13 in this application, it is possible to avoid setting the reflection unit 12 in the light-transmitting region 1022, thereby avoiding affecting the transmittance of the CUP region 102, and through the cooperation of the refraction unit 13 and the reflection unit 12, the downward Part of the transmitted light is reflected into the second light-emitting device 22 and emitted to the outside of the OLED display panel 100 to compensate for the light loss of the light passing through the first transparent electrode 221 and reduce the distance between the second light-emitting device 22 and the first light-emitting device 21.
  • the display difference between them can improve the display effect.
  • the refraction unit 13 will only refract a part of the light incident on the refraction unit 13, and the other part of the light will pass through the refraction unit 13 and the CUP area 102, and then go to the photosensitive element 200. Therefore, when the second light emitting device 22 is not When emitting light, the photosensitive element 200 can still receive light, so as to maintain a high information collection efficiency and maintain a good imaging effect.
  • the cross-sectional shape of the refraction unit 13 may be a triangle, such as an isosceles triangle or a right triangle.
  • the material of the refraction unit 13 can be materials such as silicone resin, polydimethylsiloxane (PDMS) or polymethyl methacrylate (PMAA), and of course, the material of the refraction unit 13 can also be other materials, and the present application does not describe it here. Do limit.
  • the reflection unit 12 may be a metal with a reflection function, such as metal such as copper or aluminum, which is not limited in this application.
  • the TFT array substrate 1 further includes: a first insulating layer 14, the first insulating layer 14 is disposed on the TFT 11, the side of the first insulating layer 14 is a slope, and the reflection unit 12 is located on the slope ;
  • the second insulating layer 15 , the second insulating layer 15 is disposed on the TFT11 , the reflective unit 12 and the first insulating layer 14 , and the refracting unit 13 is located on the second insulating layer 15 .
  • the present application sets the side surface of the first insulating layer 14 as a slope, and the slope is located in the pixel area 1021, and the reflection unit 12 is positioned on the slope so that the reflection unit 12 can be inclined toward the refraction unit 13, so as to ensure that the reflection unit 12 can reflect and refract
  • the light refracted by the unit 13 is used to compensate the light loss of the light passing through the first transparent electrode 221 .
  • the TFT array substrate 1 further includes a third insulating layer 16 disposed on the second insulating layer 15 and the refraction unit 13 .
  • the light emitting device layer 2 is disposed on the third insulating layer 16 .
  • the second insulating layer 15 and the third insulating layer 16 may serve as the flat layer 114 .
  • the TFT array substrate 1 further includes a light-shielding layer 17 under the TFTs 11 , and the reflective unit 12 is right above the light-shielding layer 17 .
  • the light-shielding layer 17 and the reflective unit 12 can block light at the same time, prevent the light from irradiating the active layer 111 in the TFT 11 , prevent the failure of the TFT 11 , and improve the reliability of the TFT 11 .
  • the refractive index of the refraction unit 13 can also be controlled according to the relative position between the refraction unit 13 and the reflection unit 12, so that all light rays refracted by the refraction unit 13 are incident on the reflection unit 12, but not incident on the TFT 11 In this way, not only the reliability of the TFT 11 can be further improved, but also the effect of compensating light loss can be improved.
  • the TFT 11 includes an active layer 111 disposed on the light shielding layer 17 , a gate insulating layer 112 disposed on the active layer 111 , and a gate insulating layer 112 disposed on the gate insulating layer 112 .
  • the aforementioned first electrode 211 is connected to the drain 116 .
  • the area of the light-shielding layer 17 is larger than that of the active layer 111 to improve the light-shielding effect.
  • the OLED display panel 100 further includes a substrate 4 on which the TFT array substrate 1 is disposed.
  • the substrate 4 can be a rigid material, such as glass; if the OLED display panel 100 is flexible, the substrate 4 can be a flexible material, for example, the substrate 4 can be an inorganic barrier layer and an organic material.
  • the material of the inorganic barrier layer may be one or a combination of silicon nitride, silicon oxide or silicon oxynitride.
  • the material of the organic buffer layer may be polyimide (PI), polyethylene terephthalate (PET) or polydimethylsiloxane (PDMS).
  • the OLED display panel 100 further includes an encapsulation layer 5 disposed on the light emitting device layer 2 , and a protective cover 6 disposed on the encapsulation layer 5 .
  • an embodiment of the present application also provides an OLED display module, including the above-mentioned OLED display panel 100, and a photosensitive element 200, the photosensitive element 200 is located in the CUP area 102 below.
  • the second light emitting device 22 has a first transparent electrode 221 and a second transparent electrode 223, the second light emitting device 22 can not only emit light from both sides, External light can also pass through the second light emitting device 22 , which can increase the transmittance of the CUP region 102 .
  • the second light-emitting device 22 is also connected to the first light-emitting device 21 in the pixel area 1021, that is, the second light-emitting device 22 is driven by the sub-pixel adjacent to the second light-emitting device 22, and does not need to be set in the light-transmitting area 1022
  • the driving circuit reduces the light-shielding structure, thereby increasing the transmittance of the CUP region 102 , and further improving the light-sensing effect of the photosensitive element 200 .
  • the number of the second light emitting device 22 can be multiple, and each second light emitting device 22 is driven by an adjacent sub-pixel, and the second light emitting device 22 located in the light-transmitting region 1022 is equivalent to a sub-pixel that can transmit light , the pixel density of the CUP area 102 can be increased, the display resolution (PPI) can be increased, and the display difference between the CUP area 102 and the conventional display area 103 can be reduced to improve the display effect.
  • PPI display resolution
  • the embodiment of the present application also provides a method for manufacturing the OLED display panel 100, including:
  • Step S1 providing a TFT array substrate 1, the TFT array substrate 1 has a display area 101 and a CUP area 102 located in the display area 101, the CUP area 102 includes a plurality of pixel areas 1021 arranged at intervals, and two adjacent pixel areas 1021 The light-transmitting region 1022 between them, the TFT array substrate 1 includes TFT11 located in the pixel region 1021;
  • Step S2 fabricating a light-emitting device layer 2 on the TFT array substrate 1, the light-emitting device layer 2 includes a first light-emitting device 21 located in the pixel area 1021 and connected to the TFT 11, and a first light-emitting device 21 located in the light-transmitting area 1022 and connected to the first light-emitting device 21
  • the connected second light emitting device 22; the second light emitting device 22 includes a first transparent electrode 221, a second OLED functional layer 222 disposed on the first transparent electrode 221, and a second transparent transparent electrode disposed on the second OLED functional layer 222 Electrode 223.
  • the second light emitting device 22 has a first transparent electrode 221 and a second transparent electrode 223, the second light emitting device 22 can not only emit light from both sides, External light can also pass through the second light emitting device 22 , which can increase the transmittance of the CUP region 102 .
  • the second light-emitting device 22 is also connected to the first light-emitting device 21 in the pixel area 1021, that is, the second light-emitting device 22 is driven by the sub-pixel adjacent to the second light-emitting device 22, and does not need to be set in the light-transmitting area 1022
  • the driving circuit reduces the light-shielding structure, thereby increasing the transmittance of the CUP region 102 , and further improving the light-sensing effect of the photosensitive element 200 .
  • the number of the second light emitting device 22 can be multiple, and each second light emitting device 22 is driven by an adjacent sub-pixel, and the second light emitting device 22 located in the light-transmitting region 1022 is equivalent to a sub-pixel that can transmit light , the pixel density of the CUP area 102 can be increased, the display resolution (PPI) can be increased, and the display difference between the CUP area 102 and the conventional display area 103 can be reduced to improve the display effect.
  • PPI display resolution
  • the first light emitting device 21 includes a first electrode 211 , a first OLED functional layer 212 disposed on the first electrode 211 , and a second electrode 213 disposed on the first OLED functional layer 212 .
  • the first transparent electrode 221 is connected to the first electrode 211; the second transparent electrode 223 is connected to the second electrode 213, so that the TFT 11 located in the pixel area 1021 can simultaneously drive the first light emitting device 21 and the second light emitting device 22, thereby achieving the same
  • the adjacent sub-pixels of the second light-emitting device 22 drive the second light-emitting device 22, without setting a driving circuit in the light-transmitting region 1022, reducing the light-shielding structure, thereby increasing the transmittance of the CUP region 102, and further improving the light-sensitive element 200. photosensitive effect.
  • the first transparent electrode 221 is integrally formed with the first electrode 211
  • the second transparent electrode 223 is integrally formed with the second electrode 213 . That is, during the manufacturing process of the light-emitting device layer 2 in step S2, the first transparent electrode 221 and the first electrode 211 are material layers fabricated simultaneously, and the second transparent electrode 223 and the second electrode 213 are integrated into a material layer fabricated simultaneously, so that This simplifies the process and ensures that the second light emitting device 22 can be driven by sub-pixels adjacent to the second light emitting device 22 .
  • the second OLED functional layer 222 and the first OLED functional layer 212 are integrally formed. That is, the second OLED functional layer 222 and the first OLED functional layer 212 are material layers produced at the same time, which can simplify the process, and can also make the emission color and brightness of the second light-emitting device 22 and the first light-emitting device 21 approach or be the same, The display uniformity of the CUP area 102 is improved.
  • the first electrode 211 includes a first transparent metal oxide layer 2111, a metal layer 2112 disposed on the first transparent metal oxide layer 2111, and a second transparent metal oxide disposed on the metal layer 2112 Layer 2113.
  • the first transparent electrode 221 is integrally formed with the first transparent metal oxide layer 2111 .
  • the metal layer 2112 can reflect light, make the first light emitting device 21 in the pixel area 1021 emit light in one direction (such as upward), and can also improve the luminous efficiency of the first light emitting device 21 .
  • the first electrode 211 is a stacked multi-layer structure, which can reduce the voltage drop (IR drop).
  • the first transparent electrode 221 and the first transparent metal oxide layer 2111 are material layers fabricated simultaneously, which can simplify the process, and can also make the first transparent electrode 221 transparent, improving The transmittance of the CUP area 102 further improves the photosensitive effect of the photosensitive element 200 .
  • the TFT array substrate 1 further includes a reflective unit 12 disposed in the pixel region 1021 , and a refraction unit 13 disposed in the light-transmitting region 1022 .
  • the refraction unit 13 is located directly below the second light-emitting device 22, and is used to refract part of the light emitted by the second light-emitting device 22 and/or part of the light from the outside to the reflection unit 12, and refract the light reflected by the reflection unit 12 to the reflection unit 12.
  • the exterior of the OLED display panel 100 is located directly below the second light-emitting device 22, and is used to refract part of the light emitted by the second light-emitting device 22 and/or part of the light from the outside to the reflection unit 12, and refract the light reflected by the reflection unit 12 to the reflection unit 12.
  • the refraction unit 13 in this application, it is possible to avoid setting the reflection unit 12 in the light-transmitting region 1022, thereby avoiding affecting the transmittance of the CUP region 102, and through the cooperation of the refraction unit 13 and the reflection unit 12, the downward Part of the transmitted light is reflected into the second light-emitting device 22 and emitted to the outside of the OLED display panel 100 to compensate for the light loss of the light passing through the first transparent electrode 221 and reduce the distance between the second light-emitting device 22 and the first light-emitting device 21.
  • the display difference between them can improve the display effect.
  • the refraction unit 13 will only refract a part of the light incident on the refraction unit 13, and the other part of the light will pass through the refraction unit 13 and the CUP area 102, and then go to the photosensitive element 200. Therefore, when the second light emitting device 22 is not When emitting light, the photosensitive element 200 can still receive light, so as to maintain a high information collection efficiency and maintain a good imaging effect.
  • the manufacturing method of the TFT array substrate 1 in step S1 includes:
  • a third insulating layer 16 is formed on the second insulating layer 15 and the refraction unit 13 .
  • each embodiment has their own emphases, and for parts not described in detail in a certain embodiment, reference may be made to relevant descriptions of other embodiments.
  • each of the above units or structures can be implemented as an independent entity, or can be combined arbitrarily as the same or several entities.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种OLED显示面板(100)及其制作方法、OLED显示模组。OLED显示面板(100)包括TFT阵列基板(1)及发光器件层(2)。TFT阵列基板(1)包括位于像素区(1021)中的TFT(11)。发光器件层(2)设于TFT阵列基板(1)上,且发光器件层(2)包括位于像素区(1021)中并与TFT(11)连接的第一发光器件(21),及位于透光区(1022)中并与第一发光器件(21)连接的第二发光器件(22)。第二发光器件(22)包括第一透明电极(221)、设于第一透明电极(221)上的第二OLED功能层(222),及设于第二OLED功能层(222)上的第二透明电极(223)。OLED显示面板(100)不需要在透光区(1022)中设置驱动电路,减少了挡光结构,从而提高CUP区(102)的透过率,进而提高感光元件(200)的感光效果。

Description

OLED显示面板及其制作方法、OLED显示模组 技术领域
本申请涉及显示器件技术领域,尤其涉及一种OLED显示面板及其制作方法、OLED显示模组。
背景技术
电致发光二极管(OLED)具有制备工艺简单、成本低、发光效率高、易形成柔性结构、低功耗、高色饱和度以及广视角等优点,利用电致发光二极管的显示技术已经成为一种重要的显示技术。
OLED是电流型发光器件,其主要包括阳极、阴极以及OLED功能层。OLED主要的工作原理是:OLED功能层在阳极和阴极形成的电场的驱动下,通过载流子注入和复合而发光。
近些年,全面屏显示装置得到了市场的广泛关注,具有广阔的应用前景。现有技术通过在显示区下方设置屏下感光元件,如摄像头,光线传感器,指纹传感器等来实现全面屏显示装置,感光元件对应的显示区称为屏下摄像头(Camera under Panel,CUP)区,但现有技术的全面屏显示装置中的CUP区中的多个像素会导致CUP区的透过率较低,感光效果较差的问题。
技术问题
本申请提供一种OLED显示面板及其制作方法、OLED显示模组,以解决现有技术的CUP区透过率较低的问题。
技术解决方案
第一方面,本申请实施例提供一种OLED显示面板,具有显示区及位于所述显示区中的CUP区,所述CUP区包括间隔设置的多个像素区,及位于相邻两个所述像素区之间的透光区,所述OLED显示面板包括:
TFT阵列基板,所述TFT阵列基板包括位于所述像素区中的TFT;
发光器件层,所述发光器件层设于所述TFT阵列基板上,且所述发光器件层包括位于所述像素区中并与所述TFT连接的第一发光器件,及位于所述透光区中并与所述第一发光器件连接的第二发光器件;
所述第二发光器件包括第一透明电极、设于所述第一透明电极上的第二OLED功能层,及设于所述第二OLED功能层上的第二透明电极。
在所述的OLED显示面板中,所述第一发光器件包括第一电极、设于所述第一电极上的第一OLED功能层,及设于所述第一OLED功能层上的第二电极;
所述第一透明电极与所述第一电极连接;所述第二透明电极与所述第二电极连接。
在所述的OLED显示面板中,所述第一透明电极与所述第一电极一体成型,所述第二透明电极与所述第二电极一体成型。
在所述的OLED显示面板中,所述第二OLED功能层与所述第一OLED功能层一体成型。
在所述的OLED显示面板中,所述第一电极包括第一透明金属氧化物层,设于所述第一透明金属氧化物层上的金属层,及设于所述金属层上的第二透明金属氧化物层;
所述第一透明电极与所述第一透明金属氧化物层一体成型。
在所述的OLED显示面板中,所述TFT阵列基板还包括设于所述像素区中的反射单元,及设于所述透光区中的折射单元;
所述折射单元位于所述第二发光器件的正下方,用于将所述第二发光器件发出的部分光线和\或外界的部分光线折射至所述反射单元上,并将所述反射单元反射回的光线折射至所述OLED显示面板外部。
在所述的OLED显示面板中,所述TFT阵列基板还包括:
第一绝缘层,所述第一绝缘层设于所述TFT上,所述第一绝缘层的侧面为斜面,所述反射单元位于所述斜面上;
第二绝缘层,所述第二绝缘层设于所述TFT、所述反射单元和所述第一绝缘层上,所述折射单元位于所述第二绝缘层上。
在所述的OLED显示面板中,所述TFT阵列基板还包括位于所述TFT下的遮光层,所述反射单元位于所述遮光层的正上方。
第二方面,本申请实施例还提供一种OLED显示模组,包括OLED显示面板,及感光元件;
所述OLED显示面板具有显示区及位于所述显示区中的CUP区,所述CUP区包括间隔设置的多个像素区,及位于相邻两个所述像素区之间的透光区,所述OLED显示面板包括:
TFT阵列基板,所述TFT阵列基板包括位于所述像素区中的TFT;
发光器件层,所述发光器件层设于所述TFT阵列基板上,且所述发光器件层包括位于所述像素区中并与所述TFT连接的第一发光器件,及位于所述透光区中并与所述第一发光器件连接的第二发光器件;
所述第二发光器件包括第一透明电极、设于所述第一透明电极上的第二OLED功能层,及设于所述第二OLED功能层上的第二透明电极;
所述感光元件位于所述CUP区的下方。
在所述的OLED显示模组中,所述第一发光器件包括第一电极、设于所述第一电极上的第一OLED功能层,及设于所述第一OLED功能层上的第二电极;
所述第一透明电极与所述第一电极连接;所述第二透明电极与所述第二电极连接。
在所述的OLED显示模组中,所述第一透明电极与所述第一电极一体成型,所述第二透明电极与所述第二电极一体成型。
在所述的OLED显示模组中,所述第二OLED功能层与所述第一OLED功能层一体成型。
在所述的OLED显示模组中,所述第一电极包括第一透明金属氧化物层,设于所述第一透明金属氧化物层上的金属层,及设于所述金属层上的第二透明金属氧化物层;
所述第一透明电极与所述第一透明金属氧化物层一体成型。
在所述的OLED显示模组中,所述TFT阵列基板还包括设于所述像素区中的反射单元,及设于所述透光区中的折射单元;
所述折射单元位于所述第二发光器件的正下方,用于将所述第二发光器件发出的部分光线和\或外界的部分光线折射至所述反射单元上,并将所述反射单元反射回的光线折射至所述OLED显示面板外部。
在所述的OLED显示模组中,所述TFT阵列基板还包括:
第一绝缘层,所述第一绝缘层设于所述TFT上,所述第一绝缘层的侧面为斜面,所述反射单元位于所述斜面上;
第二绝缘层,所述第二绝缘层设于所述TFT、所述反射单元和所述第一绝缘层上,所述折射单元位于所述第二绝缘层上。
在所述的OLED显示模组中,所述TFT阵列基板还包括位于所述TFT下的遮光层,所述反射单元位于所述遮光层的正上方。
第三方面,本申请实施例还提供一种OLED显示面板的制作方法,包括:
提供TFT阵列基板,所述TFT阵列基板具有显示区及位于所述显示区中的CUP区,所述CUP区包括间隔设置的多个像素区,及位于相邻两个所述像素区之间的透光区,所述TFT阵列基板包括位于所述像素区中的TFT;
在所述TFT阵列基板上制作发光器件层,所述发光器件层包括位于所述像素区中并与所述TFT连接的第一发光器件,及位于所述透光区中并与所述第一发光器件连接的第二发光器件;所述第二发光器件包括第一透明电极、设于所述第一透明电极上的第二OLED功能层,及设于所述第二OLED功能层上的第二透明电极。
在所述的OLED显示面板的制作方法中,所述第一发光器件包括第一电极、设于所述第一电极上的第一OLED功能层,及设于所述第一OLED功能层上的第二电极;
所述第一透明电极与所述第一电极连接;所述第二透明电极与所述第二电极连接。
在所述的OLED显示面板的制作方法中,所述第一透明电极与所述第一电极一体成型,所述第二透明电极与所述第二电极一体成型。
在所述的OLED显示面板的制作方法中,所述第二OLED功能层与所述第一OLED功能层一体成型。
有益效果
相较于现有技术,本申请提供的OLED显示面板具有显示区及位于显示区中的CUP区,CUP区包括间隔设置的多个像素区,及位于相邻两个像素区之间的透光区,OLED显示面板包括TFT阵列基板及发光器件层。TFT阵列基板包括位于像素区中的TFT。发光器件层设于TFT阵列基板上,且发光器 件层包括位于像素区中并与TFT连接的第一发光器件,及位于透光区中并与第一发光器件连接的第二发光器件。第二发光器件包括第一透明电极、设于第一透明电极上的第二OLED功能层,及设于第二OLED功能层上的第二透明电极。即本申请通过在透光区中设置第二发光器件,第二发光器件不仅可以双面出光,并且第二发光器件还与像素区中的第一发光器件连接,不需要在透光区中设置驱动电路,减少了挡光结构,从而提高CUP区的透过率,进而提高感光元件的感光效果。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一实施例提供的OLED显示面板的示意图;
图2是本申请一实施例提供的OLED显示面板的CUP区的示意图;
图3是本申请一实施例提供的图2的A-A处的截面图;
图4是本申请另一实施例提供的图2的A-A处的截面图;
图5a是本申请一实施例提供的OLED显示面板的反射单元的示意图;
图5b是本申请另一实施例提供的OLED显示面板的反射单元的示意图;
图5c是本申请又一实施例提供的OLED显示面板的反射单元的示意图;
图6是本申请一实施例提供的OLED显示模组的示意图;
图7是本申请另一实施例提供的OLED显示模组的示意图;
图8是本申请一实施例提供的OLED显示面板的制作方法的流程图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、 “宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式-和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用
请参阅图1至图7,本申请实施例提供一种OLED显示面板100,具有显示区101及位于显示区101中的CUP区102,CUP区102包括间隔设置的多个像素区1021,及位于相邻两个像素区1021之间的透光区1022,OLED显示面板100包括:
TFT(薄膜晶体管)阵列基板1,TFT阵列基板1包括位于像素区1021中的TFT11;
发光器件层2,发光器件层2设于TFT阵列基板1上,且发光器件层2包括位于像素区1021中并与TFT11连接的第一发光器件21,及位于透光区1022中并与第一发光器件21连接的第二发光器件22;
第二发光器件22包括第一透明电极221、设于第一透明电极221上的第二OLED功能层222,及设于第二OLED功能层222上的第二透明电极223。
需要说明的是,CUP区102指的是感光元件200对应的区域。显示区101中除了CUP区102,其余区域为常规显示区103。相比于常规显示区103中的多个像素单元,CUP区102中的多个像素单元之间的间距更大,以便于CUP区102透过更多的光,使感光元件200能够正常工作。但是由于CUP区102中还是存在多个像素单元,多个像素单元会遮挡光线,因此,CUP区102的透过率较低,感光元件200的感光效果较差。
CUP区102中的多个像素区1021指的是CUP区102中的像素单元所在的区域,即一个像素区1021对应一个像素单元,一个像素单元包含多个子像素(例如三个、四个或六个子像素)。位于像素区1021中的TFT11指的是像素区1021中一个子像素的TFT11,则一个TFT11和一个第一发光器件21构成一个子像素。本申请通过在透光区1022中设置第二发光器件22,第二发光器件22具有第一透明电极221和第二透明电极223,第二发光器件22不仅可以双面出光(即第二发光器件22可以向上和向下出光),外界光线也能穿过第二发光器件22,可以提高CUP区102的透过率。并且第二发光器件22还与像素区1021中的第一发光器件21连接,即第二发光器件22通过与第二发光器件22相邻的子像素进行驱动,不需要在透光区1022中设置驱动电路,减少了挡光结构,从而提高CUP区102的透过率,进而提高感光元件200的感光 效果。
此外,第二发光器件22的数量可以为多个,每个第二发光器件22通过相邻的子像素进行驱动,位于透光区1022中的第二发光器件22相当于是可以透光的子像素,可以增加CUP区102的像素密度,提高显示分辨率(PPI),减小CUP区102与常规显示区103之间的显示差异,以提高显示效果。
本申请实施例对于OLED显示面板100的适用不做具体限制,其可以是电视机、笔记本电脑、平板电脑、可穿戴显示设备(如智能手环、智能手表等)、手机、虚拟现实设备、增强现实设备、车载显示、广告灯箱等任何具有显示功能的产品或部件。
在一些实施例中,请参阅图3和图4,OLED显示面板100还包括设于发光器件层2上的像素定义层3,像素定义层3中可以限定出容纳第一发光器件21的区域(即像素区1021),及容纳第二发光器件22的区域。
在一些实施例中,请参阅图3和图4,第一发光器件21包括第一电极211、设于第一电极211上的第一OLED功能层212,及设于第一OLED功能层212上的第二电极213。第一透明电极221与第一电极211连接;第二透明电极223与第二电极213连接,使位于像素区1021中的TFT11可以同时驱动第一发光器件21和第二发光器件22,从而实现与第二发光器件22相邻的子像素驱动第二发光器件22,不需要在透光区1022中设置驱动电路,减少了挡光结构,从而提高CUP区102的透过率,进而提高感光元件200的感光效果。
在该实施例中,第一透明电极221与第一电极211一体成型,第二透明电极223与第二电极213一体成型。即第一透明电极221与第一电极211为同时制作的材料层,第二透明电极223与第二电极213一体为同时制作的材料层,从而可以简化工艺,并确保第二发光器件22可以通过与第二发光器件22相邻的子像素进行驱动。
在该实施例中,第二OLED功能层222与第一OLED功能层212一体成型。即第二OLED功能层222与第一OLED功能层212为同时制作的材料层,可以简化工艺,并且还可以使第二发光器件22和第一发光器件21的发光颜色和亮度趋近或相同,提高CUP区102的显示均匀性。
在该实施例中,第一透明电极221与第一电极211可以为阳极,第二透明 电极223与第二电极213可以为阴极。第二OLED功能层222与第一OLED功能层212包括空穴传输层、设于空穴传输层上的发光层,及设于发光层上的空穴传输层的电子传输层。
此外,为了提高发光效率,第二OLED功能层222与第一OLED功能层212还可以包括设于空穴传输层下的空穴注入层,及设于电子传输层上的电子注入层。
在该实施例中,请参阅图3,第一电极211包括第一透明金属氧化物层2111,设于第一透明金属氧化物层2111上的金属层2112,及设于金属层2112上的第二透明金属氧化物层2113。第一透明电极221与第一透明金属氧化物层2111一体成型。该金属层2112可以反射光线,使像素区1021中的第一发光器件21朝一个方向(如上方)出光,还可以提高第一发光器件21的发光效率。并且第一电极211为堆叠的多层结构,可以降低电压降(IR drop)。第一透明电极221与第一透明金属氧化物层2111为同时制作的材料层,可以简化工艺,还能使第一透明电极221透光,提高CUP区102的透过率,进而提高感光元件200的感光效果。
在该实施例中,第一透明电极221与第一透明金属氧化物层2111的材料可以为氧化铟锡(ITO)。当然,也可以为其他材料,例如氧化铟锌,本申请在此不做限制。
金属层2112的材料可以为银(Ag)。当然,也可以为其他材料,例如铜、铝、钼、钛等金属,本申请在此不做限制。
第二透明金属氧化物层2113的材料可以氧化铟锡。当然,也可以为其他材料,例如氧化铟锌,本申请在此不做限制。
在一些实施例中,请参阅图4和图7,TFT阵列基板1还包括设于像素区1021中的反射单元12,及设于透光区1022中的折射单元13。折射单元13位于第二发光器件22的正下方,用于将第二发光器件22发出的部分光线和\或外界的部分光线折射至反射单元12上,并将反射单元12反射回的光线折射至OLED显示面板100外部。即本申请通过设置折射单元13,可以避免将反射单元12设置在透光区1022中,从而避免影响CUP区102的透过率,并且通过折射单元13和反射单元12的配合,可以将向下传播的部分光线再反射至第 二发光器件22中,并射向OLED显示面板100外部,以补偿光线穿过第一透明电极221的光损失,减少第二发光器件22与第一发光器件21之间的显示差异,提高显示效果。
此外,折射单元13只会将射入至折射单元13上的一部分光线进行折射,另一部分光线会穿过折射单元13及CUP区102,射向感光元件200,因此,当第二发光器件22不发光时,感光元件200还是可以接收到光线,以维持较高的信息采集效率,可保持良好的成像效果。
在该实施例中,请参阅图5a至图5c,折射单元13的截面形状可以为三角形,例如等腰三角形或直角三角形。当然,也可以为其他能够折射的形状,例如椭圆形或半椭圆形等形状,本申请在此不做限制。折射单元13的材料可以为硅树脂、聚二甲基硅氧烷(PDMS)或聚甲基丙烯酸甲酯(PMAA)等材料,当然,折射单元13的材料还可以其他材料,本申请在此不做限制。
反射单元12可以为具有反射功能的金属,例如铜或铝等金属,本申请在此不做限制。
在该实施例中,请参阅图4,TFT阵列基板1还包括:第一绝缘层14,第一绝缘层14设于TFT11上,第一绝缘层14的侧面为斜面,反射单元12位于斜面上;第二绝缘层15,第二绝缘层15设于TFT11、反射单元12和第一绝缘层14上,折射单元13位于第二绝缘层15上。即本申请通过将第一绝缘层14的侧面设置为斜面,且该斜面位于像素区1021中,反射单元12位于斜面上可以使反射单元12朝折射单元13倾斜设置,确保反射单元12能够反射折射单元13折射的光线,以补偿光线穿过第一透明电极221的光损失。
此外,TFT阵列基板1还包括第三绝缘层16,第三绝缘层16设于第二绝缘层15和折射单元13上。发光器件层2设于第三绝缘层16上。并且第二绝缘层15和第三绝缘层16可以作为平坦层114。
在该实施例中,请参阅图4,TFT阵列基板1还包括位于TFT11下的遮光层17,反射单元12位于遮光层17的正上方。该遮光层17和反射单元12可以同时阻挡光线,防止光线照射至TFT11中的有源层111上,防止TFT11失效,提高TFT11的可靠性。
此外,还可以根据折射单元13和反射单元12之间的相对位置,控制折射 单元13的折射率,使折射单元13所折射的光线全部射入至反射单元12上,而不会射入至TFT11中,不仅可以进一步提高TFT11的可靠性,还可以提高补偿光损失的效果。
在该实施例中,请参阅图3和图4,TFT11包括设于遮光层17上的有源层111,设于有源层111上的栅绝缘层112、设于栅绝缘层112上的栅极113、设于栅绝缘层112和栅极113上的平坦层114,及设于平坦层114上的源极115和漏极116,源极115和漏极116均与有源层111连接。上述的第一电极211与漏极116连接。
此外,遮光层17的面积大于有源层111的面积,以提高遮光效果。
在一些实施例中,请参阅图3和图4,OLED显示面板100还包括衬底4,TFT阵列基板1设于衬底4上。若OLED显示面板100为刚性的,则衬底4可以为刚性材料,例如玻璃,若OLED显示面板100为柔性的,则衬底4可以为柔性材料,例如衬底4可以为无机阻挡层和有机缓冲层堆叠设置的结构。无机阻挡层的材料可以为氮化硅、氧化硅或氮氧化硅中的一种或多种的组合。有机缓冲层的材料可以为聚酰亚胺(PI)、聚对苯二甲酸乙二醇酯(PET)或聚二甲基硅氧烷(PDMS)。
在一些实施例中,请参阅图3和图4,OLED显示面板100还包括设于发光器件层2上的封装层5,及设于封装层5上的保护盖板6。
请参阅图6和图7,基于上述的OLED显示面板100,本申请实施例还提供一种OLED显示模组,包括上述的OLED显示面板100,及感光元件200,感光元件200位于CUP区102的下方。
需要说明的是,本申请通过在透光区1022中设置第二发光器件22,第二发光器件22具有第一透明电极221和第二透明电极223,第二发光器件22不仅可以双面出光,外界光线也能穿过第二发光器件22,可以提高CUP区102的透过率。并且第二发光器件22还与像素区1021中的第一发光器件21连接,即第二发光器件22通过与第二发光器件22相邻的子像素进行驱动,不需要在透光区1022中设置驱动电路,减少了挡光结构,从而提高CUP区102的透过率,进而提高感光元件200的感光效果。
此外,第二发光器件22的数量可以为多个,每个第二发光器件22通过相邻的子像素进行驱动,位于透光区1022中的第二发光器件22相当于是可以透光的子像素,可以增加CUP区102的像素密度,提高显示分辨率(PPI),减小CUP区102与常规显示区103之间的显示差异,以提高显示效果。
请参阅图8,基于上述的OLED显示面板100,本申请实施例还提供一种OLED显示面板100的制作方法,包括:
步骤S1、提供TFT阵列基板1,TFT阵列基板1具有显示区101及位于显示区101中的CUP区102,CUP区102包括间隔设置的多个像素区1021,及位于相邻两个像素区1021之间的透光区1022,TFT阵列基板1包括位于像素区1021中的TFT11;
步骤S2、在TFT阵列基板1上制作发光器件层2,发光器件层2包括位于像素区1021中并与TFT11连接的第一发光器件21,及位于透光区1022中并与第一发光器件21连接的第二发光器件22;第二发光器件22包括第一透明电极221、设于第一透明电极221上的第二OLED功能层222,及设于第二OLED功能层222上的第二透明电极223。
需要说明的是,本申请通过在透光区1022中设置第二发光器件22,第二发光器件22具有第一透明电极221和第二透明电极223,第二发光器件22不仅可以双面出光,外界光线也能穿过第二发光器件22,可以提高CUP区102的透过率。并且第二发光器件22还与像素区1021中的第一发光器件21连接,即第二发光器件22通过与第二发光器件22相邻的子像素进行驱动,不需要在透光区1022中设置驱动电路,减少了挡光结构,从而提高CUP区102的透过率,进而提高感光元件200的感光效果。
此外,第二发光器件22的数量可以为多个,每个第二发光器件22通过相邻的子像素进行驱动,位于透光区1022中的第二发光器件22相当于是可以透光的子像素,可以增加CUP区102的像素密度,提高显示分辨率(PPI),减小CUP区102与常规显示区103之间的显示差异,以提高显示效果。
在一些实施例中,第一发光器件21包括第一电极211、设于第一电极211上的第一OLED功能层212,及设于第一OLED功能层212上的第二电极213。 第一透明电极221与第一电极211连接;第二透明电极223与第二电极213连接,使位于像素区1021中的TFT11可以同时驱动第一发光器件21和第二发光器件22,从而实现与第二发光器件22相邻的子像素驱动第二发光器件22,不需要在透光区1022中设置驱动电路,减少了挡光结构,从而提高CUP区102的透过率,进而提高感光元件200的感光效果。
在该实施例中,第一透明电极221与第一电极211一体成型,第二透明电极223与第二电极213一体成型。即步骤S2中发光器件层2的制作过程中,第一透明电极221与第一电极211为同时制作的材料层,第二透明电极223与第二电极213一体为同时制作的材料层,从而可以简化工艺,并确保第二发光器件22可以通过与第二发光器件22相邻的子像素进行驱动。
在该实施例中,即步骤S2中发光器件层2的制作过程中,第二OLED功能层222与第一OLED功能层212一体成型。即第二OLED功能层222与第一OLED功能层212为同时制作的材料层,可以简化工艺,并且还可以使第二发光器件22和第一发光器件21的发光颜色和亮度趋近或相同,提高CUP区102的显示均匀性。
在该实施例中,第一电极211包括第一透明金属氧化物层2111,设于第一透明金属氧化物层2111上的金属层2112,及设于金属层2112上的第二透明金属氧化物层2113。第一透明电极221与第一透明金属氧化物层2111一体成型。该金属层2112可以反射光线,使像素区1021中的第一发光器件21朝一个方向(如上方)出光,还可以提高第一发光器件21的发光效率。并且第一电极211为堆叠的多层结构,可以降低电压降(IR drop)。即步骤S2中发光器件层2的制作过程中,第一透明电极221与第一透明金属氧化物层2111为同时制作的材料层,可以简化工艺,还能使第一透明电极221透光,提高CUP区102的透过率,进而提高感光元件200的感光效果。
在一些实施例中,TFT阵列基板1还包括设于像素区1021中的反射单元12,及设于透光区1022中的折射单元13。折射单元13位于第二发光器件22的正下方,用于将第二发光器件22发出的部分光线和\或外界的部分光线折射至反射单元12上,并将反射单元12反射回的光线折射至OLED显示面板100外部。即本申请通过设置折射单元13,可以避免将反射单元12设置在透光区 1022中,从而避免影响CUP区102的透过率,并且通过折射单元13和反射单元12的配合,可以将向下传播的部分光线再反射至第二发光器件22中,并射向OLED显示面板100外部,以补偿光线穿过第一透明电极221的光损失,减少第二发光器件22与第一发光器件21之间的显示差异,提高显示效果。
此外,折射单元13只会将射入至折射单元13上的一部分光线进行折射,另一部分光线会穿过折射单元13及CUP区102,射向感光元件200,因此,当第二发光器件22不发光时,感光元件200还是可以接收到光线,以维持较高的信息采集效率,可保持良好的成像效果。
在该实施例中,步骤S1中TFT阵列基板1的制作方法包括:
在TFT11上制作第一绝缘层14,并对第一绝缘层14图案化处理,使第一绝缘层14的侧面为斜面,且该斜面位于像素区1021中;
在斜面上制作反射单元12;
在TFT11、反射单元12和第一绝缘层14上制作第二绝缘层15;
在第二绝缘层15上制作折射单元13,使折射单元13位于第二发光器件22的正下方;
在第二绝缘层15和折射单元13上制作第三绝缘层16。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。具体实施时,以上各个单元或结构可以作为独立的实体来实现,也可以进行任意组合,作为同一或若干个实体来实现,以上各个单元或结构的具体实施可参见前面的方法实施例,在此不再赘述。
以上对本申请实施例所提供的一种OLED显示面板及其制作方法、OLED显示模组进行了详细介绍,本文中应用了具体个例对本申请实施例的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请实施例的技术方案及其核心思想;本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例的技术方案的范围。

Claims (20)

  1. 一种OLED显示面板,其中,具有显示区及位于所述显示区中的CUP区,所述CUP区包括间隔设置的多个像素区,及位于相邻两个所述像素区之间的透光区,所述OLED显示面板包括:
    TFT阵列基板,所述TFT阵列基板包括位于所述像素区中的TFT;
    发光器件层,所述发光器件层设于所述TFT阵列基板上,且所述发光器件层包括位于所述像素区中并与所述TFT连接的第一发光器件,及位于所述透光区中并与所述第一发光器件连接的第二发光器件;
    所述第二发光器件包括第一透明电极、设于所述第一透明电极上的第二OLED功能层,及设于所述第二OLED功能层上的第二透明电极。
  2. 根据权利要求1所述的OLED显示面板,其中,所述第一发光器件包括第一电极、设于所述第一电极上的第一OLED功能层,及设于所述第一OLED功能层上的第二电极;
    所述第一透明电极与所述第一电极连接;所述第二透明电极与所述第二电极连接。
  3. 根据权利要求2所述的OLED显示面板,其中,所述第一透明电极与所述第一电极一体成型,所述第二透明电极与所述第二电极一体成型。
  4. 根据权利要求3所述的OLED显示面板,其中,所述第二OLED功能层与所述第一OLED功能层一体成型。
  5. 根据权利要求2所述的OLED显示面板,其中,所述第一电极包括第一透明金属氧化物层,设于所述第一透明金属氧化物层上的金属层,及设于所述金属层上的第二透明金属氧化物层;
    所述第一透明电极与所述第一透明金属氧化物层一体成型。
  6. 根据权利要求1所述的OLED显示面板,其中,所述TFT阵列基板还包括设于所述像素区中的反射单元,及设于所述透光区中的折射单元;
    所述折射单元位于所述第二发光器件的正下方,用于将所述第二发光器件发出的部分光线和\或外界的部分光线折射至所述反射单元上,并将所述反射单元反射回的光线折射至所述OLED显示面板外部。
  7. 根据权利要求6所述的OLED显示面板,其中,所述TFT阵列基板还 包括:
    第一绝缘层,所述第一绝缘层设于所述TFT上,所述第一绝缘层的侧面为斜面,所述反射单元位于所述斜面上;
    第二绝缘层,所述第二绝缘层设于所述TFT、所述反射单元和所述第一绝缘层上,所述折射单元位于所述第二绝缘层上。
  8. 根据权利要求7所述的OLED显示面板,其中,所述TFT阵列基板还包括位于所述TFT下的遮光层,所述反射单元位于所述遮光层的正上方。
  9. 一种OLED显示模组,其中,包括OLED显示面板,及感光元件;
    所述OLED显示面板具有显示区及位于所述显示区中的CUP区,所述CUP区包括间隔设置的多个像素区,及位于相邻两个所述像素区之间的透光区,所述OLED显示面板包括:
    TFT阵列基板,所述TFT阵列基板包括位于所述像素区中的TFT;
    发光器件层,所述发光器件层设于所述TFT阵列基板上,且所述发光器件层包括位于所述像素区中并与所述TFT连接的第一发光器件,及位于所述透光区中并与所述第一发光器件连接的第二发光器件;
    所述第二发光器件包括第一透明电极、设于所述第一透明电极上的第二OLED功能层,及设于所述第二OLED功能层上的第二透明电极;
    所述感光元件位于所述CUP区的下方。
  10. 根据权利要求9所述的OLED显示模组,其中,所述第一发光器件包括第一电极、设于所述第一电极上的第一OLED功能层,及设于所述第一OLED功能层上的第二电极;
    所述第一透明电极与所述第一电极连接;所述第二透明电极与所述第二电极连接。
  11. 根据权利要求10所述的OLED显示模组,其中,所述第一透明电极与所述第一电极一体成型,所述第二透明电极与所述第二电极一体成型。
  12. 根据权利要求11所述的OLED显示模组,其中,所述第二OLED功能层与所述第一OLED功能层一体成型。
  13. 根据权利要求10所述的OLED显示模组,其中,所述第一电极包括第一透明金属氧化物层,设于所述第一透明金属氧化物层上的金属层,及设于 所述金属层上的第二透明金属氧化物层;
    所述第一透明电极与所述第一透明金属氧化物层一体成型。
  14. 根据权利要求9所述的OLED显示模组,其中,所述TFT阵列基板还包括设于所述像素区中的反射单元,及设于所述透光区中的折射单元;
    所述折射单元位于所述第二发光器件的正下方,用于将所述第二发光器件发出的部分光线和\或外界的部分光线折射至所述反射单元上,并将所述反射单元反射回的光线折射至所述OLED显示面板外部。
  15. 根据权利要求14所述的OLED显示模组,其中,所述TFT阵列基板还包括:
    第一绝缘层,所述第一绝缘层设于所述TFT上,所述第一绝缘层的侧面为斜面,所述反射单元位于所述斜面上;
    第二绝缘层,所述第二绝缘层设于所述TFT、所述反射单元和所述第一绝缘层上,所述折射单元位于所述第二绝缘层上。
  16. 根据权利要求15所述的OLED显示模组,其中,所述TFT阵列基板还包括位于所述TFT下的遮光层,所述反射单元位于所述遮光层的正上方。
  17. 一种OLED显示面板的制作方法,其中,包括:
    提供TFT阵列基板,所述TFT阵列基板具有显示区及位于所述显示区中的CUP区,所述CUP区包括间隔设置的多个像素区,及位于相邻两个所述像素区之间的透光区,所述TFT阵列基板包括位于所述像素区中的TFT;
    在所述TFT阵列基板上制作发光器件层,所述发光器件层包括位于所述像素区中并与所述TFT连接的第一发光器件,及位于所述透光区中并与所述第一发光器件连接的第二发光器件;所述第二发光器件包括第一透明电极、设于所述第一透明电极上的第二OLED功能层,及设于所述第二OLED功能层上的第二透明电极。
  18. 根据权利要求17所述的OLED显示面板的制作方法,其中,所述第一发光器件包括第一电极、设于所述第一电极上的第一OLED功能层,及设于所述第一OLED功能层上的第二电极;
    所述第一透明电极与所述第一电极连接;所述第二透明电极与所述第二电极连接。
  19. 根据权利要求18所述的OLED显示面板的制作方法,其中,所述第一透明电极与所述第一电极一体成型,所述第二透明电极与所述第二电极一体成型。
  20. 根据权利要求19所述的OLED显示面板的制作方法,其中,所述第二OLED功能层与所述第一OLED功能层一体成型。
PCT/CN2022/077472 2022-02-09 2022-02-23 Oled显示面板及其制作方法、oled显示模组 WO2023151127A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210122710.6 2022-02-09
CN202210122710.6A CN114551540A (zh) 2022-02-09 2022-02-09 Oled显示面板及其制作方法、oled显示模组

Publications (1)

Publication Number Publication Date
WO2023151127A1 true WO2023151127A1 (zh) 2023-08-17

Family

ID=81673642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/077472 WO2023151127A1 (zh) 2022-02-09 2022-02-23 Oled显示面板及其制作方法、oled显示模组

Country Status (2)

Country Link
CN (1) CN114551540A (zh)
WO (1) WO2023151127A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160071884A (ko) * 2014-12-12 2016-06-22 엘지디스플레이 주식회사 투명 유기 발광 디스플레이 패널
CN109801950A (zh) * 2019-01-31 2019-05-24 厦门天马微电子有限公司 显示面板、显示装置及显示面板的制作方法
CN210200763U (zh) * 2019-07-31 2020-03-27 昆山国显光电有限公司 透光显示面板、显示面板及显示装置
CN111430414A (zh) * 2020-03-31 2020-07-17 京东方科技集团股份有限公司 Oled显示面板及制备方法、显示装置
CN111554727A (zh) * 2020-06-01 2020-08-18 合肥维信诺科技有限公司 显示面板和显示装置
CN111725266A (zh) * 2020-06-01 2020-09-29 武汉华星光电半导体显示技术有限公司 一种显示面板、显示装置以及显示面板的制作方法
CN111833720A (zh) * 2020-01-13 2020-10-27 昆山国显光电有限公司 一种显示面板及显示装置
CN113270562A (zh) * 2021-06-25 2021-08-17 京东方科技集团股份有限公司 显示面板和显示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160071884A (ko) * 2014-12-12 2016-06-22 엘지디스플레이 주식회사 투명 유기 발광 디스플레이 패널
CN109801950A (zh) * 2019-01-31 2019-05-24 厦门天马微电子有限公司 显示面板、显示装置及显示面板的制作方法
CN210200763U (zh) * 2019-07-31 2020-03-27 昆山国显光电有限公司 透光显示面板、显示面板及显示装置
CN111833720A (zh) * 2020-01-13 2020-10-27 昆山国显光电有限公司 一种显示面板及显示装置
CN111430414A (zh) * 2020-03-31 2020-07-17 京东方科技集团股份有限公司 Oled显示面板及制备方法、显示装置
CN111554727A (zh) * 2020-06-01 2020-08-18 合肥维信诺科技有限公司 显示面板和显示装置
CN111725266A (zh) * 2020-06-01 2020-09-29 武汉华星光电半导体显示技术有限公司 一种显示面板、显示装置以及显示面板的制作方法
CN113270562A (zh) * 2021-06-25 2021-08-17 京东方科技集团股份有限公司 显示面板和显示装置

Also Published As

Publication number Publication date
CN114551540A (zh) 2022-05-27

Similar Documents

Publication Publication Date Title
US11342390B2 (en) Display panel, display device and a method for manufacturing a display panel
CN108986678B (zh) 一种显示面板及其制作方法、显示装置
US20230097697A1 (en) Organic light-emitting display panel and organic light-emitting display device
US10854850B2 (en) Organic light-emitting diode display device
US20220352292A1 (en) Display substrate and display device
US10651427B2 (en) Organic light emitting diode display device
WO2020108372A1 (zh) 显示面板及终端
CN113690223B (zh) 显示面板及显示装置
WO2019192399A1 (zh) 显示基板及其制备方法、显示面板及装置
US20230045968A1 (en) Display substrate and display apparatus
US11985874B2 (en) Display substrate and display device
CN114005861A (zh) 显示基板以及显示装置
CN106847861B (zh) 底发光型oled显示单元及其制作方法
CN213071143U (zh) 显示面板及电子设备
CN111554727A (zh) 显示面板和显示装置
US20230337494A1 (en) Display panel and display apparatus
US20220376029A1 (en) Display substrate and display device
WO2022247180A1 (zh) 显示面板及显示装置
CN113053966B (zh) 显示面板、亮度补偿方法和显示装置
US20230284511A1 (en) Display panel and display device
JP2020085939A (ja) 表示装置
WO2023151127A1 (zh) Oled显示面板及其制作方法、oled显示模组
CN112310328B (zh) 一种发光面板及发光装置
KR20220072109A (ko) 표시 장치
CN218160383U (zh) 显示面板及显示装置