WO2023116025A1 - 有机发光二极管显示面板及显示装置 - Google Patents

有机发光二极管显示面板及显示装置 Download PDF

Info

Publication number
WO2023116025A1
WO2023116025A1 PCT/CN2022/115389 CN2022115389W WO2023116025A1 WO 2023116025 A1 WO2023116025 A1 WO 2023116025A1 CN 2022115389 W CN2022115389 W CN 2022115389W WO 2023116025 A1 WO2023116025 A1 WO 2023116025A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
transmitting
display panel
layer
emitting
Prior art date
Application number
PCT/CN2022/115389
Other languages
English (en)
French (fr)
Inventor
许传志
谢正芳
楼均辉
Original Assignee
合肥维信诺科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合肥维信诺科技有限公司 filed Critical 合肥维信诺科技有限公司
Publication of WO2023116025A1 publication Critical patent/WO2023116025A1/zh
Priority to US18/363,147 priority Critical patent/US20240023416A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/877Arrangements for extracting light from the devices comprising scattering means

Definitions

  • the embodiments of the present application relate to the field of display technology, and in particular to an organic light emitting diode display panel and a display device.
  • OLED Organic Light Emitting Diode
  • Display devices such as tablet PCs.
  • the whole or part of the OLED display panel of some display devices is set as a light-transmitting display area, and the light-transmitting display area can normally display images.
  • the size of the light-emitting sub-pixels located in the light-transmitting display area is small, and the interval between the light-emitting sub-pixels is relatively large, which affects the display effect of the light-transmitting display area.
  • embodiments of the present application provide an OLED display panel and a display device, which can effectively improve the display effect of the light-transmitting display area.
  • the first aspect of the embodiments of the present application provides an OLED display panel, the OLED display panel has a light-transmitting display area, and the light-transmitting display area includes: a base; a plurality of second light-emitting sub-pixels arranged on the base , the second light-emitting sub-pixel is set to emit light of a specific color during display; the light-transmitting film layer is set on the light-emitting side of the second light-emitting sub-pixel, and is set to transmit the colored light of the second light-emitting sub-pixel to light Scattering or light diffusion, the light-transmitting film layer at least includes a low-refractive index film layer and a high-refractive-index film layer adjacent to the low-refractive-index film layer; the refractive index of the low-refractive index film layer is lower than the The refractive index of the high-index coating.
  • a light-transmitting film layer is provided on the light-emitting side of each second light-emitting sub-pixel in the light-transmitting display area, and the light-scattering or light-transmitting light of the colored light of the second light-emitting sub-pixel is carried out through the light-transmitting film layer. Diffusion improves the light output angle of the second light-emitting sub-pixel, so that in the light-emitting display area, more light from the light emitted by the second light-emitting sub-pixel is emitted from the area between the second light-emitting sub-pixels, improving the light-emitting display area. The uniformity of light output, thereby improving the display effect of the OLED display panel in the light-transmitting display area.
  • the second aspect of the embodiments of the present application provides a display device, including the above-mentioned OLED display panel;
  • the photosensitive device is arranged directly corresponding to the light-transmitting display area of the OLED display panel.
  • the display device includes the OLED display panel of the first aspect above, the display device also has the same advantages as the OLED display panel, for details, reference may be made to the above description.
  • FIG. 1 is a cross-sectional view of a display device provided by an embodiment of the present application
  • FIG. 2 is a front view of an OLED display panel provided by an embodiment of the present application.
  • FIG. 3 is a cross-sectional view of an OLED display panel provided by an embodiment of the present application.
  • FIG. 4 is a cross-sectional view of an OLED display panel provided by an embodiment of the present application.
  • FIG. 5 is an optical path diagram of light-emitting sub-pixels of an OLED display panel provided by an embodiment of the present application
  • FIG. 6 is a cross-sectional view of an OLED display panel provided by an embodiment of the present application.
  • FIG. 7 is a cross-sectional view of an OLED display panel provided by another embodiment of the present application.
  • FIG. 8 is an optical path diagram of light-emitting sub-pixels of an OLED display panel provided in yet another embodiment of the present application.
  • FIG. 9 is a cross-sectional view of an OLED display panel provided by another embodiment of the present application.
  • FIG. 10 is a front view of an OLED display panel provided by an embodiment of the present application.
  • FIG. 11 is a front view of an OLED display panel provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of the arrangement of the first light-emitting sub-pixels and the second light-emitting sub-pixels in the third display area of the OLED display panel provided by an embodiment of the present application;
  • FIG. 13 is a cross-sectional view of an OLED display panel provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of the third anode in the OLED display panel shown in FIG. 13 .
  • the size of the light-emitting sub-pixels in the light-transmitting display area is small, and the interval between the light-emitting sub-pixels is relatively large, thereby reducing The light-emitting sub-pixel blocks the external light entering the OLED display panel.
  • the display effect of the light-transmissive display area is poor, for example, the displayed image may have a grainy feel or a screen door effect.
  • an embodiment of the present application provides an OLED display panel, which scatters or diffuses the colored light of the second light-emitting sub-pixel in the light-transmitting display area through a light-transmitting film layer, so as to improve the light output of the second light-emitting sub-pixel.
  • Angle so that in the light-transmitting display area, more light from the light emitted by the second light-emitting sub-pixel is emitted from the area between the second light-emitting sub-pixels, which improves the light uniformity of the light-emitting display area, thereby improving the OLED display panel.
  • the display effect in the light-transmitting display area is provided.
  • the display device includes an OLED display panel 100 , and the OLED display panel 100 is generally used for displaying information such as images and realizing touch functions.
  • the display device can be any device with a display function, such as a mobile phone, a tablet computer, a notebook computer, a palmtop computer, a vehicle electronic device, a wearable device, an ultra mobile personal computer (UMPC for short), a netbook or a personal computer.
  • Mobile devices such as personal digital assistants (referred to as PDAs) may also be non-mobile devices such as personal computers (referred to as PCs), televisions (televisions referred to as TVs), teller machines, or self-service machines.
  • the OLED display panel 100 has a light-transmitting display region 102 , and in the light-transmitting display region 102 , external light can pass through the OLED display panel 100 .
  • the entire surface of the OLED display panel 100 is the light-transmitting display area 102 , so as to realize the light-transmitting effect of the entire screen.
  • the OLED display panel 100 includes a main screen area 101 and a light-transmitting display area 102 , the main screen area 101 is adjacent to the light-transmitting display area 102 , and the main screen area 101 at least partially surrounds the light-transmitting display area 102 .
  • FIG. 1 the embodiment shown in FIG.
  • the main screen area 101 fully surrounds the light-transmitting display area 102 , and the main screen area 101 can also partially surround the light-transmitting display area 102 , such as a notch screen of a mobile phone.
  • the contour shape of the light-transmitting display area 102 may be any one of drop shape, circle, rectangle, ellipse, rhombus, semicircle, and semiellipse.
  • a photosensitive device is disposed on the back of the OLED display panel 100 , and the photosensitive device is disposed exactly corresponding to the light-transmitting display area 102 of the OLED display panel 100 .
  • the photosensitive device may be a camera 200 , and the camera 200 corresponds to the position of the light-transmitting display area 102 , so as to acquire external light signals passing through the light-transmitting display area 102 for imaging.
  • the photosensitive device may also be a light sensor, a light emitter, a distance sensor, an ambient light sensor, and the like.
  • the OLED display panel 100 includes an array substrate 10 , a plurality of light-emitting sub-pixels disposed on the array substrate 10 , and a pixel definition layer 30 for isolating each light-emitting sub-pixel.
  • the light-emitting sub-pixels include a plurality of second light-emitting sub-pixels 20 located in the light-transmitting display area 102 .
  • the array substrate 10 may be a thin film transistor (Thin Film Transistor, TFT for short) array substrate.
  • the array substrate 10 may include a base 11, a driving circuit layer disposed on the base 11, and a planarization layer 13 (Planarization Layer, PLN for short) covering the driving circuit layer.
  • TFT Thin Film Transistor
  • the substrate 11 may be a glass substrate, a flexible plastic substrate or a quartz substrate.
  • a plurality of gate lines arranged along the first direction and a plurality of data lines arranged along the second direction are arranged on the surface of the substrate 11, and the defined areas of the gate lines and the data lines are used to define light-emitting sub-pixels, and the first The direction intersects the second direction.
  • the gate of the thin film transistor is connected to the gate line, the source of the thin film transistor is connected to the data line, and the drain of each thin film transistor is electrically connected to its corresponding light-emitting sub-pixel.
  • the thin film transistor provides the data display signal input by the data line to the light-emitting sub-pixel corresponding to the thin film transistor under the control of the gate line.
  • the driving circuit layer includes a plurality of second pixel circuits 121 for driving the second light-emitting sub-pixel 20 to emit light, and each second pixel circuit 121 can be connected with one second light-emitting sub-pixel 20 to drive one second light-emitting sub-pixel 20 .
  • each second pixel circuit 121 is connected to a plurality of second light-emitting sub-pixels 20 to drive a plurality of second light-emitting sub-pixels 20 , for example, 2-4 second light-emitting sub-pixels 20 may be driven.
  • the second pixel circuit 121 may be a 1T pixel circuit, a 2T1C pixel circuit, a 3T1C pixel circuit, a 3T2C pixel circuit, a 4T1C pixel circuit, a 5T1C pixel circuit, a 6T1C pixel circuit, a 7T1C pixel circuit or a 7T2C pixel circuit.
  • the OLED display panel 100 includes a main screen area 101 and a light-transmitting display area 102
  • the second pixel circuit 121 is located in the main screen area 101 to avoid blocking the light passing through the light-transmitting display area 102 .
  • the second pixel circuit 121 is connected to the light-emitting sub-pixels in the light-transmitting display area 102 through light-transmitting wires.
  • the material of the light-transmitting wire can be indium tin oxide (ITO), indium zinc oxide (IZO), aluminum zinc oxide (AZO), gallium-doped zinc oxide (GZO), zinc tin oxide (ZTO), gallium tin oxide (GTO), At least one of fluorine-doped tin oxide (FTO), zinc oxide (ZnOx), indium oxide (InOx), polyethylenedioxythiophene-polystyrenesulfonic acid (PEDOT:PSS), graphene, and carbon nanotubes kind.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • AZO aluminum zinc oxide
  • GZO gallium-doped zinc oxide
  • ZTO zinc tin oxide
  • GTO gallium tin oxide
  • FTO fluorine-doped tin oxide
  • ZnOx zinc oxide
  • InOx indium oxide
  • PEDOT:PSS polyethylenedioxythiophene-polyst
  • the planarization layer 13 is generally located on the uppermost layer of the array substrate 10 , and the upper surface of the planarization layer 13 is a flat surface, so as to form relatively flat film layers on the planarization layer 13 .
  • the material of the planarization layer 13 may be an organic material, and the planarization layer 13 may be fabricated by a coating or sputtering process.
  • the pixel defining layer 30 can be a silicon oxide layer, a silicon nitride layer or a transparent resin layer, and the pixel defining layer 30 can be formed by plasma chemical vapor deposition (Plasma Chemical Vapor Deposition, PCVD), inkjet printing or spin coating (Spin Coating), etc. Craft making.
  • the pixel defining layer 30 is used to isolate the second light-emitting sub-pixels 20 .
  • the pixel defining layer 30 is provided with a plurality of openings, and each opening is provided with a second light-emitting sub-pixel 20, and the second light-emitting sub-pixel 20 is used to emit light of a specific color during display, for example, the second light-emitting sub-pixel 20 includes red light-emitting sub-pixels, blue light-emitting sub-pixels and green light-emitting sub-pixels.
  • the second light-emitting sub-pixel 20 includes a second anode, a second light-emitting layer on the second anode, and a second cathode on the second light-emitting layer.
  • a positive voltage to the second anode and a negative voltage to the second cathode holes generated by the second anode are injected into the second light-emitting layer, electrons generated by the second cathode are injected into the second light-emitting layer, and injected into the second light-emitting layer.
  • the second anode is a reflective anode.
  • the contour shape of the orthographic projection of the second anode on the substrate 11 is any one of the following shapes: drop shape, circle, rectangle, ellipse, rhombus, semicircle or semiellipse.
  • the material of the second anode is generally a material with a high work function in order to improve the hole injection efficiency, such as gold (Au), platinum (Pt), titanium (Ti), silver (Ag), indium tin oxide (ITO), Indium zinc oxide (IZO) or transparent conductive polymers (such as polyaniline), etc.
  • the material of the second cathode generally adopts a material with a lower work function to facilitate electron injection, and can also reduce heat generated during operation and prolong the service life of the OLED device.
  • the material of the second cathode can be a kind of metallic material such as silver (Ag), aluminum (Al), lithium (Li), magnesium (Mg), ytterbium (Yb), calcium (Ca) or indium (In), also can It is an alloy of the aforementioned metal materials, such as magnesium-silver alloy (Mg/Ag), lithium-aluminum alloy (Li/Al).
  • the light-transmitting display area 102 may further include a light-transmitting film layer 50 disposed on the light-emitting side of the second light-emitting sub-pixel 20 , and the light-transmitting film layer 50 is configured to scatter the colored light emitted by the second light-emitting sub-pixel 20 Or diffuse light.
  • the light-transmitting film layer 50 at least includes a low-refractive-index film layer 52 and a high-refractive-index film layer 51 adjacent to the low-refractive-index film layer 52, and the refractive index of the low-refractive index film layer 52 is lower than that of the high-refractive index film layer 51. Rate. As shown in FIG.
  • the setting of the high refractive index film layer 51 and the low refractive index film layer 52 makes more external light OLED display panel 100 be received by the camera 200, increasing the number of cameras 200 The amount of light collected, thereby improving the imaging effect of the camera 200.
  • the area corresponding to the second light-emitting sub-pixel 20 is a light-emitting area
  • the area between adjacent second light-emitting sub-pixels 20 in the light-transmitting display area 102 is a light-transmitting area, wherein the light transmittance of the light-emitting area is close to At 0, the light transmittance of the light-transmitting region is greater than 40%.
  • the high-refractive-index film layer 51 and the low-refractive-index film layer 52 can be produced by sputtering, coating and other processes, or they can be the second luminescent photons attached to the light-transmitting display area 102 after they are film-formed respectively. on the Pixel 20.
  • the high-refractive index film layer 51 has a first light-transmitting structure 41 corresponding to the second light-emitting sub-pixel 20 , and the orthographic projection of the first light-transmitting structure 41 on the substrate 11 covers the phase Orthographic projection of the corresponding second light-emitting sub-pixel 20 on the substrate 11 .
  • the low-refractive index film layer 52 has a second light-transmitting structure 42 corresponding to the first light-transmitting structure 41 , and the orthographic projection of the second light-transmitting structure 42 on the substrate 11 covers the corresponding first light-transmitting structure 41 on the substrate 11 orthographic projection of .
  • the refractive index of the second light-transmitting structure 42 is lower than that of the first light-transmitting structure 41 .
  • Each second light-emitting sub-pixel 20 corresponds to a first light-transmitting structure 41 and a second light-transmitting structure 42 .
  • the OLED display panel 100 may also include an encapsulation structure covering a plurality of light-emitting sub-pixels 20.
  • the encapsulation structure may be used to form the high-refractive-index film layer 51 and the low-refractive-index film layer 52 .
  • the encapsulation structure includes a first encapsulation layer 61 covering each second light-emitting sub-pixel 20 of the light-transmitting display area 102 and a second encapsulation layer 62 covering the first encapsulation layer 61 .
  • the first encapsulation layer 61 and the second encapsulation layer 62 can be fabricated by sputtering, coating and other processes.
  • the refractive index of the second encapsulation layer 62 is lower than that of the first encapsulation layer 61 , the first encapsulation layer 61 forms the high refraction index film layer 51 , and the second encapsulation layer 62 forms the low refraction index film layer 52 .
  • the light-emitting sub-pixels further include a plurality of first light-emitting sub-pixels 21 located in the main screen area 101 .
  • the first encapsulation layer 61 may only be provided in the light-transmissive display area 102
  • the second encapsulation layer 62 covers each first light-emitting sub-pixel 21 in the main screen area 101 .
  • the first encapsulation layer 61 may cover each first light-emitting sub-pixel 21 of the main screen area 101 and each second light-emitting sub-pixel 20 of the light-transmitting display area 102 .
  • the second encapsulation layer 62 is located on the first encapsulation layer 61 , and the orthographic projection of the second encapsulation layer 62 on the substrate 11 covers the orthographic projection of the second light-emitting sub-pixel 20 on the substrate 11 .
  • the driving circuit layer may further include a plurality of first pixel circuits 122 for driving the first light-emitting sub-pixel 21 to emit light, and each first pixel circuit 122 may be connected to one first light-emitting sub-pixel 21 to drive a first light-emitting sub-pixel 21. Light-emitting sub-pixels 21 .
  • each first pixel circuit 122 is connected to a plurality of first light-emitting sub-pixels 21 to drive a plurality of first light-emitting sub-pixels 21 , for example, 2-4 first light-emitting sub-pixels 21 may be driven.
  • the first pixel circuit 122 may be a 2T1C pixel circuit, a 3T1C pixel circuit, a 3T2C pixel circuit, a 4T1C pixel circuit, a 5T1C pixel circuit, a 6T1C pixel circuit, a 7T1C pixel circuit or a 7T2C pixel circuit.
  • the size of the first light-emitting sub-pixel 21 in the main screen area 101 is larger than the size of the second light-emitting sub-pixel 20 located in the light-transmitting display area 102 .
  • the range of the data voltage of the second pixel circuit 121 is different from the range of the data voltage of the first pixel circuit 122 .
  • the range of the data voltage of the second pixel circuit 121 is 3-6.5 volts
  • the range of the data voltage of the first pixel circuit 122 is 1-6.5 volts.
  • the pixel density of the second light-emitting sub-pixel 20 is equal to the pixel density of the first light-emitting sub-pixel 21 . In some other embodiments, the pixel density of the second light-emitting sub-pixel 20 is smaller than that of the first light-emitting sub-pixel 21 , so as to ensure the light transmittance of the light-transmitting display area 102 .
  • the first light-emitting sub-pixel 21 includes a red light-emitting sub-pixel, a blue light-emitting sub-pixel and a green light-emitting sub-pixel.
  • the first light-emitting sub-pixel 21 includes a first anode, a first light-emitting layer on the first anode, and a first cathode on the first light-emitting layer.
  • the electrons and holes in the light-emitting layer recombine and excite the light-emitting molecules in the first light-emitting layer, and the excited light-emitting molecules radiatively transition to make the corresponding first light-emitting sub-pixels 21 emit light.
  • the material of the first anode is generally a material with a high work function, in order to improve the hole injection efficiency, it can be gold (Au), platinum (Pt), titanium (Ti), silver (Ag), indium tin oxide (ITO), oxide Indium zinc (IZO) or transparent conductive polymers (such as polyaniline), etc.
  • the material of the first cathode generally adopts a material with a lower work function to facilitate electron injection, and can also reduce heat generated during operation and prolong the service life of the OLED device.
  • the material of the first cathode can be a kind of metal material such as silver (Ag), aluminum (Al), lithium (Li), magnesium (Mg), ytterbium (Yb), calcium (Ca) or indium (In), also can It is an alloy of the aforementioned metal materials, such as magnesium-silver alloy (Mg/Ag), lithium-aluminum alloy (Li/Al).
  • the specific materials of the first encapsulation layer 61 and the second encapsulation layer 62 are not limited, and any transparent material meeting the above-mentioned refractive index requirements may be used.
  • the first encapsulation layer 61 is a silicon oxynitride layer
  • the second encapsulation layer 62 is a lithium fluoride layer or a magnesium fluoride layer, wherein the refractive index of lithium fluoride and magnesium fluoride is 1.38
  • the refractive index of silicon oxynitride is affected by the molar ratio of nitrogen and oxygen in it, and the refractive index of silicon oxynitride varies between 1.52-2.0.
  • the first encapsulation layer 61 and the second encapsulation layer 62 are made of silicon oxynitride, and the molar ratio of nitrogen and oxygen in the second encapsulation layer 62 is smaller than that in the first encapsulation layer 61. molar ratio, so that the refractive index of the second encapsulation layer 62 is lower than that of the first encapsulation layer 61 .
  • the refractive index of each position of the low-refractive index film layer 52 can be the same or different. In order to reduce the light loss when the light emitted by the second light-emitting sub-pixel 20 passes through the low-refractive index film layer 52, in one embodiment, along the OLED In the light emitting direction of the display panel 100, the refraction of the low-refractive index film layer 52 decreases first and then increases, so that the angle of the second light ray can be gradually changed in the low-refractive index film layer 52, so as to prevent the angle of the second light ray from changing abruptly and increasing loss of light energy.
  • the low-refractive-index film layer 52 includes at least three light-transmitting layers stacked, the light-transmitting layers of the same layer have the same refractive index, and the different layers The refraction of the light-transmitting layer along the light-emitting direction of the OLED display panel 100 first decreases and then increases.
  • the number of layers of the light-transmitting layer is not limited, as long as it can meet the above-mentioned requirement for changing the refractive index.
  • the low-refractive index film layer 52 includes three light-transmitting layers, and the refractive index of the middle light-transmitting layer is smaller than that of the light-transmitting layers on both sides.
  • the refractive index of the middle light-transmitting layer is smaller than that of the light-transmitting layers on both sides.
  • At least three light-transmitting layers sequentially include a first light-transmitting layer 421 , a second light-transmitting layer 422 , a third light-transmitting layer 423 , The fourth transparent layer 424 and the fifth transparent layer 425, wherein the third transparent layer 423 has the lowest refractive index, and the second transparent layer 422 and the fourth transparent layer 424 have higher refractive indices than the third transparent layer 423 , the refractive index of the first transparent layer 421 is greater than that of the second transparent layer 422 , and the refractive index of the fifth transparent layer 425 is greater than that of the fourth transparent layer 424 .
  • the second light-emitting sub-pixel 20 when the light emitted by the second light-emitting sub-pixel 20 enters the low-refractive index film layer 52, it sequentially passes through the first light-transmitting layer 421, the second light-transmitting layer 422, the third light-transmitting layer 423, and the fourth light-transmitting layer.
  • the layer 424 and the fifth light-transmitting layer 425 gradually change the angle of the second ray of light by gradually refracting the light to reduce the light energy loss of the second ray of light.
  • each light-transmitting layer is not limited, and any transparent material that satisfies the above-mentioned refractive index requirements may be used.
  • the light-transmitting layer in the middle is a lithium fluoride layer or a magnesium fluoride layer, and the light-transmitting layers on both sides are silicon oxynitride layers.
  • each light-transmitting layer is a silicon oxynitride layer, and the molar ratios of nitrogen and oxygen in the light-transmitting layers of different layers first decrease and then increase along the light emitting direction of the OLED display panel 100 .
  • the first transparent layer 421, the second transparent layer 422, the third transparent layer 423, the fourth transparent layer 424 and the fifth transparent layer 425 are oxynitride Silicon layer
  • the molar ratio of nitrogen and oxygen in the second transparent layer 422 and the fourth transparent layer 424 is greater than the molar ratio of nitrogen and oxygen in the third transparent layer 423
  • the molar ratio of nitrogen and oxygen in the first transparent layer 421 The ratio is greater than the molar ratio of nitrogen and oxygen in the second transparent layer 422
  • the molar ratio of nitrogen and oxygen in the fifth transparent layer 425 is greater than that in the fourth transparent layer 424 .
  • the light-transmitting film layer 50 can also include a high-refractive-index film layer 51 positioned on the light-emitting side of the low-refractive-index film layer 52, that is, the light-transmitting film layer 50 is provided with two layers of high-refractive index film layers 51 and the low-refractive-index film layer 52 located between the two high-refractive-index film layers 51, so that the light emitted by the second light-emitting sub-pixel 20 will not have a large change in the light output angle while diffusing, thereby further improving Light emitting uniformity of the OLED display panel 100 .
  • the refractive indices of the two high-refractive-index film layers 51 are equal, so as to ensure that the light exit angles of the light emitted by the second light-emitting sub-pixel 20 in the two high-refractive-index film layers 51 remain unchanged. Further, the light mixing effect between the second light-emitting sub-pixel 20 and the adjacent second light-emitting sub-pixel 20 is improved. In the embodiment where the OLED display panel 100 has the main screen area 101 , setting the refractive indices of the two high-refractive index film layers 51 to be equal can also ensure the consistency of the display effects of the main screen area 101 and the light-transmitting display area 102 .
  • the OLED display panel 100 further includes a third display area 103 , and the third display area 103 is located between the main screen area 101 and the light-transmitting display area 102 .
  • the third display area 103 is a transitional area between the main screen area 101 and the light-transmitting display area 102 , which can be configured as a ring or semi-ring structure adapted to the outer contour of the light-transmitting display area 102 .
  • the light-transmissive display area 102 is circular
  • the third display area 103 is a circular ring surrounding the light-transmissive display area 102 .
  • the light-transmitting display area 102 is located at the edge of the main screen area 101 and has a square shape
  • the third display area 103 is a semi-square ring around the light-transmitting display area 102 .
  • the third display area 103 includes first light-emitting sub-pixels 21 and second light-emitting sub-pixels 20 arranged in an array, and the first light-emitting sub-pixels 21 and second light-emitting sub-pixels 20 are arranged alternately. That is, in the third display area 103, there are both first light-emitting sub-pixels 21 with a larger size and second light-emitting sub-pixels 20 with a smaller size, so that the transition between the main screen area 101 and the light-transmitting display area 102 is smoother. Naturally, the display uniformity of the OLED display panel 100 is further improved.
  • the first light-emitting sub-pixels 21 and the second light-emitting sub-pixels 20 are alternately arranged.
  • the second luminescent sub-pixel column, the first luminescent sub-pixel column, the second luminescent sub-pixel column ....
  • the first light-emitting sub-pixel 21, the second light-emitting sub-pixel 20, the first light-emitting sub-pixel 21, and the second light-emitting sub-pixel 20 arranged in the manner of ...
  • the opening area of the first light-emitting sub-pixel 21 in the third display area 103 gradually decreases, so that the main screen area 101 points to In the direction of the light-transmitting display area 102, the actual light emitting area of the first light-emitting sub-pixel 21 gradually decreases.
  • the main screen area 101 and the light-transmitting display area 102 there is no obvious boundary between the main screen area 101 and the light-transmitting display area 102, so that the main screen area
  • the transition between 101 and the light-transmissive display area 102 is more natural, further optimizing the display effect of the OLED display panel 100 .
  • the third display area 103 includes third light-emitting sub-pixels 22 arranged in an array, and the third light-emitting sub-pixels 22 include third anodes 221 located on the third The third light-emitting layer on the anode 221 and the third cathode on the third light-emitting layer.
  • the holes generated by the third anode 221 are injected into the third light-emitting layer, and the electrons generated by the third cathode are injected into the third light-emitting layer.
  • the electrons and holes in the third light-emitting layer recombine and excite the light-emitting molecules in the third light-emitting layer, and the excited light-emitting molecules radiatively transition to make the corresponding third light-emitting sub-pixels 22 emit light.
  • the material of the third anode 221 is generally a material with a high work function, in order to improve the hole injection efficiency, it can be gold (Au), platinum (Pt), titanium (Ti), silver (Ag), indium tin oxide (ITO), Indium zinc oxide (IZO) or transparent conductive polymers (such as polyaniline), etc.
  • the material of the third cathode generally adopts a material with a lower work function, so as to facilitate electron injection, and also reduce heat generated during operation, and prolong the service life of the OLED device.
  • the material of the third cathode can be a kind of metallic material such as silver (Ag), aluminum (Al), lithium (Li), magnesium (Mg), ytterbium (Yb), calcium (Ca) or indium (In), also can It is an alloy of the aforementioned metal materials, such as magnesium-silver alloy (Mg/Ag), lithium-aluminum alloy (Li/Al).
  • the third anode 221 includes a non-transparent anode region 221a and a transparent anode region 221b, the non-transparent anode region 221a adopts a non-transparent anode material, and the transparent anode region 221b adopts a transparent anode Material.
  • the specific shape and relative position relationship of the non-transparent anode region 221a and the transparent anode region 221b are not limited.
  • the non-transparent anode region 221a and the transparent anode region 221b may be arranged side by side.
  • the non-transparent anode region 221a is arranged to surround the transparent anode region 221b, or the transparent anode region 221b is arranged to surround the non-transparent anode region 221a.
  • the proportion of the area of the non-transparent anode area 221a in the third anode 221 to the area of the entire third anode 221 decreases successively, and the transparent
  • the ratio of the area of the anode region 221b to the area of the entire third anode 221 increases sequentially.
  • the light transmittance of the third display area 103 gradually increases, so that the transition between the main screen area 101 and the light-transmitting display area 102 in the non-display state is more natural, Improve the integrity of the OLED display panel 100 in the non-display state.
  • a light-transmitting film layer 50 is stacked on each second light-emitting sub-pixel 20 in the light-transmitting display area 102, and the light-transmitting film layer 50 is set to emit light from the second light-emitting sub-pixel 20
  • the colored light is scattered or diffused, so that more light enters the area between the second light-emitting sub-pixels 20 and is emitted from the area between the second light-emitting sub-pixels 20, thereby improving the light output of the light-transmitting display area 102 Uniformity, so as to improve the display effect of the OLED display panel 100 in the light-transmitting display area 102 .

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种有机发光二极管显示面板及显示装置,涉及显示技术领域,用于解决OLED显示面板的透光显示区显示效果差的技术问题,该有机发光二极管显示面板的透光显示区(102)包括:基底(11);多个第二发光子像素(20),设置在基底(11)上,第二发光子像素(20)设置为显示时发射特定颜色的光;透光膜层(50),设置在第二发光子像素(20)的出光侧,设置为将第二发光子像素(20)的色光进行光线散射或者光线扩散,透光膜层(50)至少包括低折射率膜层(52)和与低折射率膜层(52)相邻的高折射率膜层(51)。透光膜层(50)对第二发光子像素(20)的色光进行光线散射或者扩散,使第二发光子像素(20)发出的光线中有更多的光线由第二发光子像素(20)之间的区域发出,提高透光显示区的出光均匀性。

Description

有机发光二极管显示面板及显示装置
本申请要求于2021年12月21日提交中国专利局、申请号为202111569163.8、申请名称为“OLED显示面板及显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及显示技术领域,尤其涉及一种有机发光二极管显示面板及显示装置。
背景技术
有机发光二极管(Organic Light Emitting Diode,简称OLED)作为一种电流驱动型发光器件,因其具有自发光、快速响应、宽视角和可制作在柔性基板上等多种特点,被广泛用于手机、平板电脑等显示装置中。
为了满足不同的需求,有些显示装置的OLED显示面板整体或者局部设置为透光显示区,且透光显示区能够正常显示图像。
然而,为了保证OLED显示面板在透光显示区的透光率,位于透光显示区的发光子像素的尺寸较小,发光子像素之间的间隔较大,影响透光显示区的显示效果。
发明内容
鉴于上述问题,本申请实施例提供一种OLED显示面板及显示装置,能够有效提高透光显示区的显示效果。
为了实现上述目的,本申请实施例提供如下技术方案:
本申请实施例的第一方面提供一种OLED显示面板,所述OLED显示面板具有透光显示区,所述透光显示区包括:基底;多个第二发光子像素,设置在所述基底上,所述第二发光子像素设置为显示时发射特定颜色的光;透光膜层,设置在所述第二发光子像素的出光侧,设置为将所述第二发光子像素的色光进行光线散射或者光线扩散,所述透光膜层至少包括低折射率膜层和与所述低折射率膜层相邻的高折射率膜层;所述低折射率膜层的折射率低于所述高折射率膜层的折射率。
本申请实施例提供的OLED显示面板中,在透光显示区的各第二发光子像素的出光侧设置透光膜层,通过透光膜层对第二发光子像素的色光进行光线散射或者光线扩散,提高第二发光子像素的出光角度,从而在透光显示区,第二发光子像素发出的光线中有更多的光线由第二发光子像素之间的区域发出,提高透光显示区的出光均匀性,进而提高OLED显示面板在透光显示区的显示效果。
本申请实施例的第二方面提供一种显示装置,包括如上所述的OLED显示面板;
感光器件,与所述OLED显示面板的透光显示区正对应设置。
由于显示装置包括上述第一方面的OLED显示面板,因此,该显示装置也具有与OLED显示面板相同的优点,具体可以参考上文描述。
附图说明
图1为本申请一实施例提供的显示装置的剖视图;
图2为本申请一实施例提供的OLED显示面板的主视图;
图3为本申请一实施例提供的OLED显示面板的剖视图;
图4为本申请一实施例提供的OLED显示面板的剖视图;
图5为本申请一实施例提供的OLED显示面板的发光子像素的光路图;
图6为本申请一实施例提供的OLED显示面板的剖视图;
图7为本申请另一实施例提供的OLED显示面板的剖视图;
图8为本申请再一实施例提供的OLED显示面板的发光子像素的光路图;
图9为本申请又一实施例提供的OLED显示面板的剖视图;
图10为本申请一实施例提供的OLED显示面板的主视图;
图11为本申请一实施例提供的OLED显示面板的主视图;
图12为本申请一实施例提供的OLED显示面板的第三显示区中第一发光子像素和第二发光子像素的排布示意图;
图13为本申请一实施例提供的OLED显示面板的剖视图;
图14为图13所示的OLED显示面板中第三阳极的结构示意图。
具体实施方式
正如背景技术中所述,相关技术中,为了提高OLED显示面板的透光显示区的透光率,透光显示区的发光子像素尺寸较小,发光子像素之间的间隔较大,从而减少发光子像素对进入OLED显示面板的外界光的阻挡。然而,由于发光子像素之间的间隔较大,导致透光显示区的显示效果较差,例如显示的图像会有颗粒感或者出现纱窗效应。
针对上述技术问题,本申请实施例提供了一种OLED显示面板,通过透光膜层对透光显示区的第二发光子像素的色光进行光线散射或者光线扩散,提高第二发光子像素的出光角度,从而在透光显示区,第二发光子像素发出的光线中有更多的光线由第二发光子像素之间的区域发出,提高透光显示区的出光均匀性,进而提高OLED显示面板在透光显示区的显示效果。
为了使本申请实施例的上述目的、特征和优点能够更加明显易懂,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其它实施例,均属于本申请保护的范围。
参照图1所示,本申请实施例提供的显示装置包括OLED显示面板100,OLED显示面板100通常用于进行图像等信息显示,以及实现触控功能。显示装置可以为任意具有显示功能的装置,例如可以为手机、平板电脑、笔记本电脑、掌上电脑、车载电子设备、可穿戴设备、超级移动个人计算机(ultra mobile personal computer,简称UMPC)、上网本或者个人数字助理(personal digital assistant,简称PDA)等移动设备,还可以为个人计算机(personal computer,简称PC)、电视机(television,简称TV)、柜员机或者自助机等非移 动设备等。
如图2和图3所示,OLED显示面板100具有透光显示区102,在透光显示区102,外界光线能够穿过OLED显示面板100。在一些实施例中,OLED显示面板100的整面均为透光显示区102,从而实现整屏的透光效果。在另一些实施例中,OLED显示面板100包括主屏区101和透光显示区102,主屏区101与透光显示区102邻接,主屏区101至少部分包围透光显示区102。例如在图2所示实施例中,主屏区101全包围透光显示区102,主屏区101也可以半包围透光显示区102,例如手机的刘海屏。作为示例,透光显示区102的轮廓形状可以为水滴形、圆形、矩形、椭圆形、菱形、半圆形、半椭圆形中的任意一种。
作为示例,如图1所示,OLED显示面板100的背面设置有感光器件,感光器件与OLED显示面板100的透光显示区102正对应设置。例如,感光器件可以为摄像头200,摄像头200与透光显示区102位置对应,从而获取穿过透光显示区102的外界光信号进行成像。在其他实施例中,感光器件还可以为光线感应器、光线发射器、距离传感器、环境光传感器等。
参考图3,OLED显示面板100包括阵列基板10、设置于阵列基板10上的多个发光子像素以及用于将各发光子像素进行隔离的像素限定层30。发光子像素包括位于透光显示区102的多个第二发光子像素20。
阵列基板10可以为薄膜晶体管(Thin Film Transistor,简称TFT)阵列基板。作为示例,阵列基板10可以包括基底11、设置在基底11上的驱动电路层,以及覆盖驱动电路层的平坦化层13(Planarization Layer,简称PLN)。
基底11可以为玻璃基底、柔性塑料基底或石英基底。基底11的表面上设置有沿第一方向排列的多条栅极线,以及沿第二方向排列的多条数据线,栅极线与数据线的限定区域中用于定义发光子像素,第一方向与第二方向交叉。薄膜晶体管的栅极与栅极线连接,薄膜晶体管的源极与数据线连接,每个薄膜晶体管的漏极与其对应的发光子像素电连接。在显示过程中,薄膜晶体管在栅极线的控制下,将数据线输入的数据显示信号提供给与薄膜晶体管对应的发光子像素中。
驱动电路层包括多个驱动第二发光子像素20发光的第二像素电路121,每个第二像素电路121可以与一个第二发光子像素20连接以驱动一个第二发光子像素20。或者,每个第二像素电路121与多个第二发光子像素20连接以驱动多个第二发光子像素20,例如可以驱动2-4个第二发光子像素20。作为示例,第二像素电路121可以为1T像素电路、2T1C像素电路、3T1C像素电路、3T2C像素电路、4T1C像素电路、5T1C像素电路、6T1C像素电路、7T1C像素电路或7T2C像素电路。
在OLED显示面板100包括主屏区101和透光显示区102的实施例中,为了提高透光显示区102的透光率,如图3所示,与透光显示区102中的发光子像素相连的第二像素电路121位于主屏区101,以避免对经过透光显示区102的光线进行遮挡。为进一步提高透光显示区102的透光度,第二像素电路121通过透光导线与透光显示区102中的发光子像素相连。透光导线的材质可以为氧化铟锡(ITO)、氧化铟锌(IZO)、氧化铝锌(AZO)、掺镓氧化锌(GZO)、氧化锌锡(ZTO)、氧化镓锡(GTO)、掺氟氧化锡(FTO)、锌氧化物(ZnOx)、铟氧化物(InOx)、聚乙撑二氧噻吩-聚苯乙烯磺酸(PEDOT:PSS)、石墨烯和碳纳米管中的至少一种。
平坦化层13一般位于阵列基板10的最上层,且平坦化层13的上表面为平坦表面,以便于在平坦化层13上形成较为平整的各膜层。示例性地,平坦化层13的材料可以为有机材料,平坦化层13可以采用涂布或者溅射工艺制作。
像素限定层30可以为氧化硅层、氮化硅层或者透明树脂层,像素限定层30可以通过等离子化学气相沉积(Plasma Chemical Vapor Deposition,PCVD)法、喷墨打印或者旋涂(Spin Coating)等工艺制作。
如图3所示,像素限定层30用于将各第二发光子像素20隔离。或者,像素限定层30中设置有多个开口,每个开口内设置有一个第二发光子像素20,第二发光子像素20用于显示时发射特定颜色的光,例如,第二发光子像素20包括红色发光子像素、蓝色发光子像素和绿色发光子像素。
作为示例,第二发光子像素20包括第二阳极、位于第二阳极上的第二发光层以及位于第二发光层上的第二阴极。通过对第二阳极施加正电压,对第二阴极施加负电压,第二阳极产生的空穴注入到第二发光层中,第二阴极产生的电子注入到第二发光层中,注入到第二发光层中的电子和空穴复合并激发第二发光层中的发光分子,被激发的发光分子辐射跃迁使得相应的第二发光子像素20发光。在一些实施例中,第二阳极为反射阳极。第二阳极在基底11上的正投影的轮廓形状为如下任一种形状:水滴形、圆形、矩形、椭圆形、菱形、半圆形或半椭圆形。第二阳极的材料一般为功函数高的材料,以便提高空穴注入效率,例如可为金(Au)、铂(Pt)、钛(Ti)、银(Ag)、氧化铟锡(ITO)、氧化铟锌(IZO)或透明导电聚合物(如聚苯胺)等。
第二阴极的材料一般采用功函数较低的材料,以便电子注入,另外还可以减少工作中产生的热量,延长OLED器件的使用寿命。第二阴极的材料可以为银(Ag)、铝(Al)、锂(Li)、镁(Mg)、镱(Yb)、钙(Ca)或铟(In)等金属材料的一种,还可以为前述金属材料的合金,如镁银合金(Mg/Ag)、锂铝合金(Li/Al)。
参考图4,透光显示区102还可以包括设置于第二发光子像素20的出光侧的透光膜层50,透光膜层50设置为将第二发光子像素20发射的色光进行光线散射或者光线扩散。透光膜层50至少包括低折射率膜层52和与低折射率膜层52相邻的高折射率膜层51,低折射率膜层52的折射率低于高折射率膜层51的折射率。如图5所示,将第二发光子像素20上的A点发出的光进入高折射率膜层51中时的光线记为光线一,进入低折射率膜层52中时的光线记为光线二,光线由高折射率膜层51进入低折射率膜层52时,折射角会增大,从而使得光线二相较于光线一更加发散,使得更多地光线进入第二发光子像素20之间的区域,并由第二发光子像素20之间的区域发出,进而提高透光显示区102的出光均匀性,以提高OLED显示面板100在透光显示区102的显示效果。
在OLED显示面板100的背面设置有摄像头200的实施例中,高折射率膜层51和低折射率膜层52的设置,使得更多的外界光OLED显示面板100被摄像头200接收,增加摄像头200的采光量,进而提高摄像头200的成像效果。作为示例,与第二发光子像素20对应的区域为发光区域,透光显示区102中相邻第二发光子像素20之间的区域为透光区域,其中,发光区域的光透过率接近于0,透光区域的光透过率大于40%。
示例性地,高折射率膜层51和低折射率膜层52可采用溅射、涂布等工艺制作,也可以是两者分别制作成膜后贴于透光显示区102的第二发光子像素20上。在一个实施例中, 如图3所示,高折射率膜层51具有与第二发光子像素20对应的第一透光结构41,第一透光结构41在基底11上的正投影覆盖相对应的第二发光子像素20在基底11上的正投影。低折射率膜层52具有与第一透光结构41对应的第二透光结构42,第二透光结构42在基底11上的正投影覆盖相对应的第一透光结构41在基底11上的正投影。在同一第二发光子像素20,第二透光结构42的折射率低于第一透光结构41的折射率。每个第二发光子像素20均对应一个第一透光结构41和一个第二透光结构42。
示例性地,OLED显示面板100还可以包括覆盖多个发光子像素20的封装结构,为了简化OLED显示面板100的制造工艺,可以利用封装结构形成高折射率膜层51和低折射率膜层52。如图6所示,封装结构包括覆盖透光显示区102的各第二发光子像素20的第一封装层61以及覆盖第一封装层61的第二封装层62。第一封装层61和第二封装层62可采用溅射、涂布等工艺制作。第二封装层62的折射率低于第一封装层61的折射率,第一封装层61形成高折射率膜层51,第二封装层62形成低折射率膜层52。
在OLED显示面板100具有主屏区101的实施例中,发光子像素还包括位于主屏区101的多个第一发光子像素21。第一封装层61可以如图6所示仅设置在透光显示区102,第二封装层62覆盖主屏区101的各第一发光子像素21。
在另一可选的实施例中,如图7所示,第一封装层61可以覆盖主屏区101的各第一发光子像素21,以及透光显示区102的各第二发光子像素20。第二封装层62位于第一封装层61上,且第二封装层62在基底11上的正投影覆盖第二发光子像素20在基底11上的正投影。
继续参考图3,驱动电路层还可以包括多个驱动第一发光子像素21发光的第一像素电路122,每个第一像素电路122可以与一个第一发光子像素21连接以驱动一个第一发光子像素21。或者,每个第一像素电路122与多个第一发光子像素21连接以驱动多个第一发光子像素21,例如可以驱动2-4个第一发光子像素21。作为示例,第一像素电路122可以为2T1C像素电路、3T1C像素电路、3T2C像素电路、4T1C像素电路、5T1C像素电路、6T1C像素电路、7T1C像素电路或7T2C像素电路。
为了提高透光显示区102的透光率,与位于透光显示区102的第二发光子像素20的尺寸相比,主屏区101的第一发光子像素21的尺寸较大。为了保证透光显示区102与主屏区101的发光亮度一致性,在一个实施例中,第二像素电路121的数据电压的范围与第一像素电路122的数据电压的范围不同。示例性地,第二像素电路121的数据电压的范围为3~6.5伏特,第一像素电路122的数据电压的范围为1~6.5伏特。
在一些实施例中,第二发光子像素20的像素密度与第一发光子像素21的像素密度相等。在另一些实施例中,第二发光子像素20的像素密度小于所述第一发光子像素21的像素密度,以保证透光显示区102的透光率。
作为示例,第一发光子像素21包括红色发光子像素、蓝色发光子像素和绿色发光子像素。第一发光子像素21包括第一阳极、位于第一阳极上的第一发光层以及位于第一发光层上的第一阴极。通过对第一阳极施加正电压,对第一阴极施加负电压,第一阳极产生的空穴注入到第一发光层中,第一阴极产生的电子注入到第一发光层中,注入到第一发光层中的电子和空穴复合并激发第一发光层中的发光分子,被激发的发光分子辐射跃迁使得相应的第一发光子像素21发光。第一阳极的材料一般为功函数高的材料,以便提高空穴 注入效率,可为金(Au)、铂(Pt)、钛(Ti)、银(Ag)、氧化铟锡(ITO)、氧化铟锌(IZO)或透明导电聚合物(如聚苯胺)等。第一阴极的材料一般采用功函数较低的材料,以便电子注入,另外还可以减少工作中产生的热量,延长OLED器件的使用寿命。第一阴极的材料可以为银(Ag)、铝(Al)、锂(Li)、镁(Mg)、镱(Yb)、钙(Ca)或铟(In)等金属材料的一种,还可以为前述金属材料的合金,如镁银合金(Mg/Ag)、锂铝合金(Li/Al)。
第一封装层61和第二封装层62的具体材料不限,可以采用任意满足上述的折射率要求的透明材料。例如,在一个实施例中,第一封装层61为氮氧化硅层,第二封装层62为氟化锂层或氟化镁层,其中,氟化锂和氟化镁的折射率为1.38,氮氧化硅的折射率受其中的氮和氧的摩尔比影响,氮氧化硅的折射率在1.52-2.0之间变化。
由于氮氧化硅自身即有比较大的折射率调节梯度,氮氧化硅中氮和氧的摩尔比越大,该氮氧化硅的折射率越大。因此,在另一实施例中,第一封装层61和第二封装层62的材质均为氮氧化硅,第二封装层62中氮和氧的摩尔比小于第一封装层61中氮和氧的摩尔比,从而使得第二封装层62的折射率低于第一封装层61的折射率。
低折射率膜层52各个位置的折射率可以相同,也可以不同,为了降低第二发光子像素20发出的光穿过低折射率膜层52时的光损失,在一个实施例中,沿OLED显示面板100的出光方向,低折射率膜层52的折射率先减小后增大,这样,可以使得光线二在低折射率膜层52内逐步地改变角度,避免光线二的角度发生突变而增加光能量的损失。
为了实现低折射率膜层52的折射率的变化,在一个实施例中,低折射率膜层52包括层叠设置的至少三层透光层,同一层的透光层的折射率相等,不同层的透光层沿OLED显示面板100的出光方向折射率先减小后增大。
透光层的层数不限,能够满足上述的折射率变化需求即可。例如,在一个实施例中,低折射率膜层52包括三层透光层,位于中间的透光层的折射率小于两侧的透光层的折射率。在另一个实施例中,如图8所示,至少三层透光层沿OLED显示面板100的出光方向依次包括第一透光层421、第二透光层422、第三透光层423、第四透光层424和第五透光层425,其中,第三透光层423的折射率最低,第二透光层422和第四透光层424的折射率均大于第三透光层423的折射率,第一透光层421的折射率大于第二透光层422的折射率,第五透光层425的折射率大于第四透光层424的折射率。参照图8,第二发光子像素20发出的光在进入低折射率膜层52时,依次经过第一透光层421、第二透光层422、第三透光层423、第四透光层424和第五透光层425,通过对光线的逐步折射,使得光线二的角度逐步改变,以减少光线二的光能量损失。
各透光层的具体材料不限,可以采用任意满足上述的折射率要求的透明材料。在低折射率膜层52包括三层透光层的实施例中,位于中间的透光层为氟化锂层或氟化镁层,位于两侧的透光层为氮氧化硅层。在另一些实施例中,各透光层均为氮氧化硅层,不同层的透光层中氮和氧的摩尔比沿OLED显示面板100的出光方向先减小后增大。例如,在图8所示的实施例中,第一透光层421、第二透光层422、第三透光层423、第四透光层424和第五透光层425均为氮氧化硅层,第二透光层422和第四透光层424中氮和氧的摩尔比大于第三透光层423中氮和氧的摩尔比,第一透光层421中氮和氧的摩尔比大于第二透光层422中氮和氧的摩尔比,第五透光层425中氮和氧的摩尔比大于第四透光层424中氮和氧的摩尔比。
如图9所示,透光膜层50还可以包括位于低折射率膜层52的出光一侧的高折射率膜层51,即,透光膜层50设置有两层高折射率膜层51以及位于两层高折射率膜层51之间的低折射率膜层52,从而使得第二发光子像素20发出的光在扩散的同时,不会有较大的出光角度的变化,从而进一步提高OLED显示面板100的出光均匀性。
示例性地,两个高折射率膜层51的折射率相等,从而保证第二发光子像素20发出的光在两个高折射率膜层51中的出光角度不变。进而改善第二发光子像素20与相邻第二发光子像素20之间的混光效果。在OLED显示面板100具有主屏区101的实施例中,将两个高折射率膜层51的折射率设置为相等,还能够保证主屏区101和透光显示区102显示效果的一致性。
在一个可选的实施例中,如图10所示,OLED显示面板100还包括第三显示区103,第三显示区103位于主屏区101与透光显示区102之间。第三显示区103为主屏区101与透光显示区102之间的过渡区域,其可以设置为与透光显示区102的外轮廓适配的环形或者半环形结构。例如,在图10所示的实施例中,透光显示区102为圆形,第三显示区103为围绕透光显示区102设置的圆环形。再例如,在图11所示的实施例中,透光显示区102位于主屏区101的边缘并呈方形,第三显示区103为围绕透光显示区102设置的半方环形。
在一实施例中,第三显示区103中包括阵列式排布的第一发光子像素21与第二发光子像素20,第一发光子像素21与第二发光子像素20交错排布。即,在第三显示区103中,既有尺寸较大的第一发光子像素21,又有尺寸较小的第二发光子像素20,从而使得主屏区101与透光显示区102的过渡更加自然,进一步提高OLED显示面板100的显示均匀性。
第一发光子像素21与第二发光子像素20交错排布,例如在一些实施例中,如图12所示,在主屏区101指向透光显示区102的方向上,按第一发光子像素列、第二发光子像素列、第一发光子像素列、第二发光子像素列...的方式排布。在另一些实施例中,在每一排和/或每一列发光子像素中,均按第一发光子像素21、第二发光子像素20、第一发光子像素21、第二发光子像素20...的方式排布。
在一个示例性地的实施例中,在主屏区101指向透光显示区102的方向上,第三显示区103中第一发光子像素21的开口面积逐渐减小,从而使得在主屏区101指向透光显示区102的方向上,第一发光子像素21的实际出光面积逐渐减小,在显示状态下,主屏区101与透光显示区102之间不会存在明显的分界,从而使得主屏区101和透光显示区102之间的过渡更加自然,进一步优化OLED显示面板100的显示效果。
在另一实施例中,如图13和图14所示,第三显示区103中包括阵列式排布的第三发光子像素22,第三发光子像素22包括第三阳极221、位于第三阳极221上的第三发光层以及位于第三发光层上的第三阴极。通过对第三阳极221施加正电压,对第三阴极施加负电压,第三阳极221产生的空穴注入到第三发光层中,第三阴极产生的电子注入到第三发光层中,注入到第三发光层中的电子和空穴复合并激发第三发光层中的发光分子,被激发的发光分子辐射跃迁使得相应的第三发光子像素22发光。第三阳极221的材料一般为功函数高的材料,以便提高空穴注入效率,可为金(Au)、铂(Pt)、钛(Ti)、银(Ag)、氧化铟锡(ITO)、氧化铟锌(IZO)或透明导电聚合物(如聚苯胺)等。第三阴极的材料一般采用功函数较低的材料,以便电子注入,另外还可以减少工作中产生的热量,延长OLED器件的使用寿命。第三阴极的材料可以为银(Ag)、铝(Al)、锂(Li)、镁(Mg)、镱(Yb)、钙(Ca)或铟(In)等金 属材料的一种,还可以为前述金属材料的合金,如镁银合金(Mg/Ag)、锂铝合金(Li/Al)。
在一个示例性地的实施例中,如图14所示,第三阳极221包括非透明阳极区221a与透明阳极区221b,非透明阳极区221a采用非透明阳极材料,透明阳极区221b采用透明阳极材料。其中,非透明阳极区221a与透明阳极区221b的具体形状和相对位置关系不做限制。例如,非透明阳极区221a与透明阳极区221b可以为并排设置。再例如,非透明阳极区221a包围透明阳极区221b设置,或者透明阳极区221b包围非透明阳极区221a设置。
在从主屏区101指向透光显示区102的方向上的第三发光子像素22中,第三阳极221中的非透明阳极区221a的面积占整个第三阳极221面积的比例依次减小,透明阳极区221b的面积占整个第三阳极221面积的比例依次增加。如此,使得从主屏区101指向透光显示区102的方向上,第三显示区103的透光率逐渐增大,使得主屏区101和透光显示区102在非显示状态下的过渡更加自然,提高OLED显示面板100在非显示状态下的整体性。
本申请实施例提供的OLED显示面板100中,在透光显示区102的各第二发光子像素20上层叠设置透光膜层50,透光膜层50设置为将第二发光子像素20发射的色光进行光线散射或者光线扩散,从而使得更多地光线进入第二发光子像素20之间的区域,并由第二发光子像素20之间的区域发出,进而提高透光显示区102的出光均匀性,以提高OLED显示面板100在透光显示区102的显示效果。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (20)

  1. 一种有机发光二极管显示面板,所述有机发光二极管显示面板具有透光显示区,所述透光显示区包括:
    基底;
    多个第二发光子像素,设置在所述基底上,所述第二发光子像素设置为显示时发射特定颜色的光;
    透光膜层,设置在所述第二发光子像素的出光侧,设置为将所述第二发光子像素的色光进行光线散射或者光线扩散,所述透光膜层至少包括低折射率膜层和与所述低折射率膜层相邻的高折射率膜层;所述低折射率膜层的折射率低于所述高折射率膜层的折射率。
  2. 根据权利要求1所述的有机发光二极管显示面板,其中,所述高折射率膜层具有与所述第二发光子像素对应的第一透光结构,所述第一透光结构在所述基底上的正投影覆盖相对应的所述第二发光子像素在所述基底上的正投影;
    所述低折射率膜层具有与所述第一透光结构对应的第二透光结构,所述第二透光结构在所述基底上的正投影覆盖相对应的所述第一透光结构在所述基底上的正投影。
  3. 根据权利要求1所述的有机发光二极管显示面板,其中,所述有机发光二极管显示面板包括覆盖所述透光显示区的各所述第二发光子像素的第一封装层以及覆盖所述第一封装层的第二封装层,所述第一封装层形成所述高折射率膜层,所述第二封装层形成所述低折射率膜层。
  4. 根据权利要求3所述的有机发光二极管显示面板,其中,所述有机发光二极管显示面板具有主屏区,所述第一封装层或所述第二封装层覆盖所述主屏区的各第一发光子像素。
  5. 根据权利要求3所述的有机发光二极管显示面板,其中,所述第一封装层为氮氧化硅层,所述第二封装层为氟化锂层或氟化镁层;
    或者,所述第一封装层和所述第二封装层的材质均为氮氧化硅,所述第二封装层中氮和氧的摩尔比小于所述第一封装层中氮和氧的摩尔比。
  6. 根据权利要求1所述的有机发光二极管显示面板,其中,沿所述有机发光二极管显示面板的出光方向,所述低折射率膜层的折射率先减小后增大。
  7. 根据权利要求6所述的有机发光二极管显示面板,其中,所述低折射率膜层包括层叠设置的至少三层透光层;
    同一层的所述透光层的折射率相等;
    不同层的所述透光层沿所述有机发光二极管显示面板的出光方向折射率先减小后增大。
  8. 根据权利要求7所述的有机发光二极管显示面板,其中,所述低折射率膜层包括三层所述透光层,位于中间的所述透光层为氟化锂层或氟化镁层,位于两侧的所述透光层为氮氧化硅层;或者,
    所述透光层均为氮氧化硅层,不同层的所述透光层中氮和氧的摩尔比沿所述有机发光二极管显示面板的出光方向先减小后增大。
  9. 根据权利要求1至8任一项所述的有机发光二极管显示面板,其中,与所述第二发光子像素对应的区域为发光区域,所述透光显示区中相邻所述第二发光子像素之间的区域为透光区域;所述透光区域的光透过率大于40%。
  10. 根据权利要求1至8任一项所述的有机发光二极管显示面板,其中,所述第二发光子像素包括第二阳极、位于所述第二阳极上的第二发光层以及位于所述第二发光层上的第二阴极,所述第二阳极为反射阳极,所述第二阳极在所述基底上的正投影的轮廓形状为如下任一种形状:水滴形、圆形、矩形、椭圆形、菱形、半圆形或半椭圆形。
  11. 根据权利要求1至8任一项所述的有机发光二极管显示面板,还包括主屏区,所述主屏区包括多个第一发光子像素;所述第一发光子像素包括第一阳极、位于所述第一阳极上的第一发光层以及位于第一发光层上的第一阴极。
  12. 根据权利要求1至8任一项所述的有机发光二极管显示面板,其中,第二像素电路的数据电压的范围与第一像素电路的数据电压的范围不同。
  13. 根据权利要求12所述的有机发光二极管显示面板,其中,所述第二像素电路的数据电压的范围为3~6.5伏特,所述第一像素电路的数据电压的范围为1~6.5伏特。
  14. 根据权利要求1至8任一项所述的有机发光二极管显示面板,其中,所述有机发光二极管显示面板,还包括主屏区,所述主屏区包括多个第一发光子像素;所述第二发光子像素的像素密度小于或等于所述第一发光子像素的像素密度。
  15. 根据权利要求1至8任一项所述的有机发光二极管显示面板,还包括:
    主屏区,所述主屏区包括多个第一发光子像素;
    第三显示区;所述第三显示区位于所述主屏区与所述透光显示区之间。
  16. 根据权利要求15所述的有机发光二极管显示面板,其中,所述第三显示区中包括阵列式排布的第一发光子像素与第二发光子像素,所述第一发光子像素与所述第二发光子像素交错排布。
  17. 根据权利要求16所述的有机发光二极管显示面板,其中,在所述主屏区指向所述透光显示区的方向上,所述第三显示区中的第一发光子像素的开口面积逐渐减小。
  18. 根据权利要求15所述的有机发光二极管显示面板,其中,所述第三显示区中包括阵列式排布的第三发光子像素,所述第三发光子像素包括第三阳极、位于所述第三阳极上的第三发光层以及位于所述第三发光层上的第三阴极;所述第三阳极包括非透明阳极区与透明阳极区;在从所述主屏区指向所述透光显示区的方向上的所述第三发光子像素中,所述第三阳极中的非透明阳极区的面积占整个第三阳极面积的比例依次减小、透明阳极区的面积占整个第三阳极面积的比例依次增加。
  19. 根据权利要求1至8任一项所述的有机发光二极管显示面板,其中,所述透光显示区的轮廓形状为如下任一种形状:水滴形、圆形、矩形、椭圆形、菱形、半圆形或半椭圆形。
  20. 一种显示装置,其中,包括如权利要求1至19任一项所述的有机发光二极管显示面板;
    感光器件,与所述有机发光二极管显示面板的透光显示区正对应设置,所述感光器件包括下述至少之一:摄像头、光线感应器、光线发射器、距离传感器、环境光传感器。
PCT/CN2022/115389 2021-12-21 2022-08-29 有机发光二极管显示面板及显示装置 WO2023116025A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/363,147 US20240023416A1 (en) 2021-12-21 2023-08-01 Organic light emitting diode display panel and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111569163.8A CN114256437B (zh) 2021-12-21 2021-12-21 Oled显示面板及显示装置
CN202111569163.8 2021-12-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/363,147 Continuation US20240023416A1 (en) 2021-12-21 2023-08-01 Organic light emitting diode display panel and display device

Publications (1)

Publication Number Publication Date
WO2023116025A1 true WO2023116025A1 (zh) 2023-06-29

Family

ID=80793583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115389 WO2023116025A1 (zh) 2021-12-21 2022-08-29 有机发光二极管显示面板及显示装置

Country Status (3)

Country Link
US (1) US20240023416A1 (zh)
CN (1) CN114256437B (zh)
WO (1) WO2023116025A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114256437B (zh) * 2021-12-21 2023-07-18 合肥维信诺科技有限公司 Oled显示面板及显示装置
CN114779542A (zh) * 2022-04-18 2022-07-22 Oppo广东移动通信有限公司 电子设备、显示装置及其像素排列结构
CN115020610B (zh) * 2022-06-07 2023-10-31 武汉华星光电半导体显示技术有限公司 显示面板及显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060250084A1 (en) * 2005-05-04 2006-11-09 Eastman Kodak Company OLED device with improved light output
CN109148723A (zh) * 2018-08-30 2019-01-04 上海天马微电子有限公司 一种显示面板及其制备方法
US20200058904A1 (en) * 2018-08-20 2020-02-20 Lg Display Co., Ltd. Light emitting display apparatus
CN111276515A (zh) * 2020-02-07 2020-06-12 武汉华星光电半导体显示技术有限公司 Oled显示面板及其制备方法
CN111584571A (zh) * 2020-05-13 2020-08-25 武汉华星光电半导体显示技术有限公司 屏下摄像头显示面板及其制备方法
CN112382648A (zh) * 2020-11-13 2021-02-19 京东方科技集团股份有限公司 一种显示面板、显示装置以及制作方法
CN114256437A (zh) * 2021-12-21 2022-03-29 合肥维信诺科技有限公司 Oled显示面板及显示装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106601932B (zh) * 2016-12-30 2020-10-23 上海天马有机发光显示技术有限公司 一种有机发光显示器件和装置
CN110767710B (zh) * 2019-02-28 2022-04-15 云谷(固安)科技有限公司 显示基板、显示面板及显示装置
CN110767712B (zh) * 2019-02-28 2021-01-26 云谷(固安)科技有限公司 Oled阵列基板、显示面板和显示装置
CN110112184B (zh) * 2019-04-17 2021-09-03 武汉华星光电半导体显示技术有限公司 显示面板和电子设备
CN210052743U (zh) * 2019-06-28 2020-02-11 昆山国显光电有限公司 显示基板、显示面板及显示装置
CN210723032U (zh) * 2019-10-28 2020-06-09 昆山国显光电有限公司 透明显示面板、显示装置及其显示面板
CN110890477B (zh) * 2019-11-29 2022-04-19 昆山国显光电有限公司 透光显示面板及其制作方法、显示面板
KR20210080990A (ko) * 2019-12-23 2021-07-01 엘지디스플레이 주식회사 표시장치와 그 픽셀 어레이 기판
CN111341820B (zh) * 2020-03-12 2022-10-14 昆山国显光电有限公司 显示面板及显示装置
CN111430414A (zh) * 2020-03-31 2020-07-17 京东方科技集团股份有限公司 Oled显示面板及制备方法、显示装置
CN112002748B (zh) * 2020-08-31 2022-05-17 武汉天马微电子有限公司 显示面板及显示装置
CN113013353B (zh) * 2021-02-07 2023-06-20 京东方科技集团股份有限公司 有机电致发光器件及显示面板
CN113066846B (zh) * 2021-03-25 2022-10-28 昆山国显光电有限公司 显示面板及电子设备
CN113764602A (zh) * 2021-09-29 2021-12-07 京东方科技集团股份有限公司 显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060250084A1 (en) * 2005-05-04 2006-11-09 Eastman Kodak Company OLED device with improved light output
US20200058904A1 (en) * 2018-08-20 2020-02-20 Lg Display Co., Ltd. Light emitting display apparatus
CN109148723A (zh) * 2018-08-30 2019-01-04 上海天马微电子有限公司 一种显示面板及其制备方法
CN111276515A (zh) * 2020-02-07 2020-06-12 武汉华星光电半导体显示技术有限公司 Oled显示面板及其制备方法
CN111584571A (zh) * 2020-05-13 2020-08-25 武汉华星光电半导体显示技术有限公司 屏下摄像头显示面板及其制备方法
CN112382648A (zh) * 2020-11-13 2021-02-19 京东方科技集团股份有限公司 一种显示面板、显示装置以及制作方法
CN114256437A (zh) * 2021-12-21 2022-03-29 合肥维信诺科技有限公司 Oled显示面板及显示装置

Also Published As

Publication number Publication date
CN114256437A (zh) 2022-03-29
CN114256437B (zh) 2023-07-18
US20240023416A1 (en) 2024-01-18

Similar Documents

Publication Publication Date Title
WO2023116025A1 (zh) 有机发光二极管显示面板及显示装置
KR102631253B1 (ko) 플렉서블 디스플레이 장치
US10854850B2 (en) Organic light-emitting diode display device
TWI552332B (zh) 有機發光裝置、以及包含其之影像顯示系統
US11387425B2 (en) Display panel, display apparatus, and methods for making the same
US20230422584A1 (en) Oled display panel and display device
US11233103B2 (en) Organic light-emitting display apparatus
CN111952481B (zh) 显示面板及电子设备
JP2023529037A (ja) 表示基板及び表示装置
US20220376029A1 (en) Display substrate and display device
CN106847861B (zh) 底发光型oled显示单元及其制作方法
WO2021258849A1 (zh) 显示面板及显示装置
CN111430445A (zh) 一种显示基板及其制备方法、显示装置
TW202029514A (zh) 顯示裝置
WO2024032395A1 (zh) 显示面板及其制备方法、显示装置
KR102365036B1 (ko) 유기 발광 표시 장치
WO2024000995A1 (zh) 显示面板及其制备方法和显示装置
CN218851231U (zh) 显示面板及显示装置
CN101051649A (zh) 有机电激发光显示装置、光电装置及其形成方法
US20220199948A1 (en) Display device and method of manufacturing the same
WO2023028933A1 (zh) 显示面板和显示装置
CN117616901A (zh) 一种显示面板、显示装置
CN112310328B (zh) 一种发光面板及发光装置
CN111025695A (zh) 显示面板、显示装置及显示面板的制作方法
WO2023245447A1 (zh) 显示面板及显示装置