WO2023223919A1 - 感光性樹脂組成物、フレキソ印刷原版、及びフレキソ印刷版の製造方法 - Google Patents

感光性樹脂組成物、フレキソ印刷原版、及びフレキソ印刷版の製造方法 Download PDF

Info

Publication number
WO2023223919A1
WO2023223919A1 PCT/JP2023/017607 JP2023017607W WO2023223919A1 WO 2023223919 A1 WO2023223919 A1 WO 2023223919A1 JP 2023017607 W JP2023017607 W JP 2023017607W WO 2023223919 A1 WO2023223919 A1 WO 2023223919A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
area
flexographic printing
mpa
region
Prior art date
Application number
PCT/JP2023/017607
Other languages
English (en)
French (fr)
Inventor
壮太 豊岡
秀夫 斎藤
雅大 末崎
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Publication of WO2023223919A1 publication Critical patent/WO2023223919A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C1/00Forme preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M1/00Inking and printing with a printer's forme
    • B41M1/02Letterpress printing, e.g. book printing
    • B41M1/04Flexographic printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N1/00Printing plates or foils; Materials therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders

Definitions

  • the present invention relates to a photosensitive resin composition, a flexographic printing original plate, and a method for producing a flexographic printing plate.
  • Flexographic printing is a type of letterpress printing, and because it uses a soft material such as rubber or synthetic resin for the printing plate, it has the advantage of being applicable to a variety of printing materials.
  • a uniform hardened layer is provided by performing back exposure in which the entire surface of the photosensitive resin composition layer is irradiated with ultraviolet rays through a substrate made of a film such as PET resin.
  • relief exposure is performed in which the photosensitive resin composition layer is selectively irradiated with ultraviolet rays through an arbitrary negative pattern.
  • the unexposed portions (i.e., unphotocured portions) of the photosensitive resin composition layer are dissolved or swollen in a developer and removed by applying external force such as a brush to form the desired image.
  • a relief image is formed and a flexographic printing plate is obtained.
  • Base materials for flexographic printing include plastic packages such as packaging films, and paper packages such as folding cartons and cardboard.
  • plastic packages such as packaging films
  • paper packages such as folding cartons and cardboard.
  • demand for paper packaging is increasing due to the growing worldwide movement to avoid plastic.
  • ink is more difficult to adhere to than other base materials due to the uneven shape of the surface to be printed.
  • One commonly used method for improving ink coverage is to use a plate with low hardness and increase the printing pressure to make it follow the uneven shape of the printing surface to improve ink coverage.
  • Patent Document 1 proposes a technique that achieves both solid coverage and halftone dot quality by adjusting the composite modulus of elasticity of the halftone dot portion and the solid portion.
  • Patent Document 2 proposes a technique that achieves both solid coverage and halftone dot quality by forming a multilayer structure of a hard layer and a soft layer.
  • Patent Document 3 discloses a technique that contains a water-dispersed latex, an elastomer, a polymerizable unsaturated monomer, and a photopolymerization initiator. , a flexographic printing original plate in which a water-dispersed latex is finely dispersed in a resin composition has been proposed.
  • Patent Document 4 proposes a technology that contains water-dispersed latex, millable rubber, surfactant, photopolymerizable compound, and photopolymerization initiator, and suppresses relief chipping by focusing on the structure of the photopolymerizable compound. has been done.
  • Patent Document 1 since the composite elastic modulus described in Patent Document 1 is an elastic modulus measured at room temperature, it cannot be said to be a parameter that conforms to actual printing conditions. Therefore, printing durability is not sufficient when printing under pressure.
  • the flexographic printing original plate described in Patent Document 3 improves printing durability by dispersing a phase containing water-dispersed latex and a phase containing elastomer, but the phase containing water-dispersed latex and the phase containing elastomer are both dispersed. Since it is highly flexible, it has the problem that the halftone dots tend to collapse under the influence of printing pressure.
  • the flexographic printing original plate described in Patent Document 4 has a high Shore A hardness of the photocured product, so it has low followability to uneven base materials such as paper packages, and is not suitable for printing on paper packages. .
  • the present invention has developed a flexographic printing plate and a flexographic printing plate that can print with good ink coverage even on paper packages and can achieve stable quality even when printing pressure is applied.
  • the purpose of the present invention is to provide an original plate, a method for manufacturing the flexographic printing plate, and a printing method using the flexographic printing plate.
  • the present inventors conducted extensive research to solve the above problems, and as a result, in dynamic viscoelastic mapping measurements of the surface layer of the relief layer using an atomic force microscope (hereinafter also referred to as AFM), the storage elasticity at 2,000 Hz was determined. It has been discovered that the above problem can be solved by a flexographic printing plate having at least a region (A1) where the modulus is 100 MPa or more and 500 MPa or less, and a region (B1) where the storage modulus at 2,000 Hz is 3 MPa or more and 15 MPa or less, The present invention has now been completed. That is, the present invention is as follows.
  • At least a support and a relief layer are sequentially laminated, In dynamic viscoelastic mapping measurement using AFM of a cross section obtained by cutting 1 ⁇ m from the surface layer of the surface opposite to the surface where the relief layer is in contact with the support, A region (A1) in which the storage modulus at a frequency of 2,000 Hz is 100 MPa or more and 500 MPa or less, At least a region (B1) in which the storage modulus at a frequency of 2,000 Hz is 3 MPa or more and 15 MPa or less, Flexo printing plate.
  • the area ratio of the region (A1) is 3 area% or more and 35 area% or less with respect to the total area of the cross section
  • the area ratio of the region (B1) is 35 area % or more and 65 area % or less with respect to the total area of the cross section,
  • [3] In the region (a1) obtained by performing opening processing on the region (A1) by morphological calculation,
  • the area of the region (a1') which is composed of consecutive and adjacent pixel data and has an area of 0.1 ⁇ m 2 or more and 10 ⁇ m or less per region, occupies the area of the region (a1).
  • the ratio (a1'/a1) is 90 area% or more and 100 area% or less, [1] is the flexo printing plate described in [2]. [4] The ratio (A1/B1) of the area ratio of the area (A1) to the area ratio of the area (B1) is 0.1 or more and 0.8 or less, The flexographic printing plate according to any one of [1] to [3]. [5] In the area (A1), The ratio (A1'/A1) of the area of the region (A1') having a storage modulus of 100 MPa or more and 250 MPa or less at a frequency of 2,000 Hz to the area of the region (A1) (A1'/A1) is 50 area% or more and 100 area.
  • the flexographic printing plate according to any one of [1] to [4].
  • the average value of the loss modulus at a frequency of 2,000 Hz is 50 MPa or more and 250 MPa or less, tan ⁇ ([average loss modulus]/[average storage modulus]) of the region (A1) at the frequency is 0.5 or more and 0.8 or less,
  • the average value of the loss modulus at a frequency of 2,000 Hz is 2 MPa or more and 10 MPa or less, tan ⁇ ([average loss modulus]/[average storage modulus]) of the region (B1) at the frequency is 0.4 or more and 0.7 or less;
  • the flexographic printing plate according to any one of [1] to [6].
  • the average value of the loss modulus at a frequency of 2,000 Hz is 10 MPa or more and 50 MPa or less, tan ⁇ ([average loss modulus]/[average storage modulus]) of the region (C1) at the frequency is 0.45 or more and 0.75 or less;
  • a flexographic printing method comprising the step of printing using the flexographic printing plate according to any one of [1] to [10].
  • At least a support and a photosensitive resin composition layer are sequentially laminated,
  • the photosensitive resin composition layer has a storage modulus of 100 MPa or more and 500 MPa or less at a frequency of 2,000 Hz under the following ⁇ Measurement conditions 1> (A2), and a storage modulus of 3 MPa or more at a frequency of 2,000 Hz. having at least a region (B2) of 15 MPa or less, Flexo printing original plate.
  • ⁇ Measurement conditions 1> The photosensitive resin composition layer was taken out from the laminate, molded to a thickness of 1.5 mm, and the cured product was irradiated with 3000 mJ of ultraviolet rays from the top and bottom surfaces, respectively.
  • the area ratio of the region (A2) is 3 area% or more and 30 area% or less with respect to the total area of the cross section
  • the area ratio of the region (B2) is 35 area % or more and 70 area % or less with respect to the total area of the cross section
  • the cured product is In dynamic viscoelasticity measurements at -30°C and 2.5Hz, Storage modulus G' (MPa) is 2.0 or more and 18.0 or less, The flexographic printing original plate according to [12] or [13].
  • the cured product is In dynamic viscoelasticity measurements at -30°C and 2.5Hz,
  • the storage modulus G' (MPa) and the loss modulus G'' (MPa) satisfy the following formulas (1) and (2),
  • the flexographic printing original plate according to any one of [12] to [14].
  • 2.0 ⁇ G'+G" ⁇ 25.0 Formula (1) 0.4 ⁇ G“ ⁇ 7.0 Formula (2)
  • the photosensitive resin composition layer comprises polymer particles (i) having a glass transition temperature of -45°C or higher and -10°C or lower, and a thermoplastic elastomer (ii) having a glass transition temperature of -95°C or higher and -60°C or lower.
  • the polymer particles (i) include an aromatic vinyl compound and a conjugated diene compound as monomer units constituting the polymer particles (i),
  • the thermoplastic elastomer (ii) contains an aromatic vinyl compound and a conjugated diene compound as monomer units constituting the thermoplastic elastomer (ii).
  • the flexographic printing original plate according to any one of [12] to [15]. [17]
  • the photosensitive resin composition layer is Contains a photopolymerizable compound with a number average molecular weight of 2,000 or more and 8,000 or less, The flexographic printing original plate described in [16].
  • the photosensitive resin composition layer is When the total amount of the photosensitive resin composition layer is 100% by mass, The content of the polymer particles (i) is 3% by mass or more and 30% by mass or less, The content of the thermoplastic elastomer (ii) is 25% by mass or more and 55% by mass or less, The content of a photopolymerizable compound having a number average molecular weight of 2,000 or more and 8,000 or less is 1% by mass or more and 20% by mass or less, The flexographic printing original plate described in [17].
  • the cured product has the following properties: Furthermore, it has a region (C2) in which the storage modulus at 2,000 Hz is more than 15 MPa and less than 100 MPa.
  • the flexographic printing original plate according to any one of [12] to [18].
  • the cured product has the following properties: The area ratio of the region (C2) is 20 area % or more and 40 area % or less with respect to the total area of the cross section, The flexographic printing original plate described in [19].
  • the photosensitive resin composition layer is The mass ratio of the polymer particles (i) to the thermoplastic elastomer (ii) is 0.1 or more and 1.0 or less, The flexographic printing original plate according to any one of [16] to [20].
  • the ratio (A2/B2) of the area ratio of the area (A2) to the area ratio of the area (B2) is 0.05 or more and 0.7 or less, The flexographic printing plate according to any one of [12] to [21].
  • the polymer particles (i) have monomer units constituting the polymer particles (i), With respect to 100 parts by mass of conjugated diene compound monomer units, 40 parts by mass or more and 120 parts by mass or less of aromatic vinyl compound monomer units, 25 parts by mass or more and 140 parts by mass or less of (meth)acrylic acid ester monomer units, The flexographic printing original plate according to any one of [16] to [22].
  • the polymer particles (i) have monomer units constituting the polymer particles (i), Contains a (meth)acrylic acid ester monomer unit with a number average molecular weight of 150 or more and 500 or less, The flexographic printing original plate according to any one of [16] to [23].
  • Step 1 A step of adding at least a photopolymerizable compound (iii) to an aqueous dispersion containing polymer particles (i) to obtain an aqueous dispersion containing polymer particles (i).
  • Step 2 Step of removing water from the aqueous dispersion containing the polymer particles (i) obtained in Step 1 to obtain a mixture containing the polymer particles (i) and the photopolymerizable compound (iii).
  • Step 3 A step of adding at least the thermoplastic elastomer (ii) to the mixture obtained in Step 2 to obtain a photosensitive resin composition.
  • Step 4 A step of laminating the photosensitive resin composition obtained in Step 3 on a support to obtain a flexographic printing original plate.
  • a flexographic printing plate it is possible to print with good ink coverage even on paper packages, and to achieve stable quality even under printing pressure, a flexographic printing plate, a flexographic printing original plate, the flexographic printing plate, and flexographic printing A method for producing an original plate and a printing method using the flexographic printing plate can be provided.
  • FIG. 1 is a schematic cross-sectional view of a flexographic printing plate of this embodiment.
  • This is a mapping image obtained by binarizing region (A1) in the mapping image obtained by dynamic viscoelastic mapping measurement using AFM in Example 1.
  • This is a mapping image obtained by binarizing region (B1) in the mapping image obtained by dynamic viscoelastic mapping measurement using AFM in Example 1.
  • This is a mapping image obtained by binarizing region (C1) in the mapping image obtained by dynamic viscoelastic mapping measurement using AFM in Example 1.
  • region (a1) obtained by performing opening processing on a mapping image obtained by binarizing region (A1) in the mapping image obtained by dynamic viscoelastic mapping measurement using AFM in Example 1.
  • FIG. 1 is a schematic cross-sectional view of a flexographic printing plate of this embodiment.
  • FIG. 1 is a schematic cross-sectional view of a flexographic printing original plate according to the present embodiment. It is a schematic sectional view showing other aspects of the flexographic printing original plate of this embodiment.
  • FIG. 1 is a schematic diagram showing a method for manufacturing a flexographic printing plate using the flexographic printing original plate of the present embodiment. It is a schematic diagram showing another aspect of the manufacturing method of the flexographic printing plate using the flexographic printing original plate of this embodiment.
  • the present embodiment a mode for carrying out the present invention (hereinafter referred to as "the present embodiment") will be described in detail with reference to the drawings as necessary, but the present invention is not limited thereto. Various modifications are possible without departing from the gist. Note that the flexographic printing plate of the first embodiment and the flexographic printing original plate of the second embodiment will be described below, but unless they are particularly distinguished, they will be referred to as "this embodiment”.
  • the storage modulus means the storage modulus at a frequency of 2,000 Hz, unless otherwise specified.
  • the loss elastic modulus means the loss elastic modulus at a frequency of 2,000 Hz, unless otherwise specified.
  • the storage elastic modulus at a frequency of 2,000 Hz is in a region (A1) of 100 MPa or more and 500 MPa or less, and the storage elastic modulus at a frequency of 2,000 Hz is 3 MPa or more. It has at least a region (B1) where the pressure is 15 MPa or less.
  • FIG. 1 shows a schematic cross-sectional view of the flexographic printing plate of this embodiment.
  • the flexographic printing plate of this embodiment is one in which a support and a relief layer on which a concavo-convex pattern of a flexographic printing plate is formed are sequentially laminated. A functional layer such as an adhesive layer may be provided between these layers, if necessary.
  • the structure of the flexographic printing plate of this embodiment will be explained in detail below.
  • the support used in the flexographic printing plate of this embodiment is not particularly limited, but examples include polypropylene film, polyethylene film, polyester films such as polyethylene terephthalate and polyethylene naphthalate, and polyamide films. . Among these, polyester film is preferred as the support.
  • the thickness of the support is preferably 50 ⁇ m or more and 300 ⁇ m or less.
  • an adhesive layer may be provided between the support and the relief layer for the purpose of increasing the adhesive force between the support and the relief layer.
  • the material for the adhesive layer is not particularly limited, but includes, for example, a composition having a binder polymer such as polyurethane, polyester, polyamide, or thermoplastic elastomer, and an adhesive active ingredient such as an isocyanate compound or an ethylenically unsaturated compound. It will be done.
  • a binder polymer such as polyurethane, polyester, polyamide, or thermoplastic elastomer
  • an adhesive active ingredient such as an isocyanate compound or an ethylenically unsaturated compound. It will be done.
  • the adhesive layer may contain various auxiliary additive components, such as, but not limited to, plasticizers, thermal polymerization inhibitors, ultraviolet absorbers, antihalation agents, light stabilizers, photoinitiators, and photopolymerizable monomers. , dyes, etc. can be added.
  • At least one subbing layer may be provided between the adhesive layer and the support.
  • the relief layer used in the flexographic printing plate of the first embodiment is not particularly limited, but for example, in the flexographic printing original plate described below, a layer obtained by exposing and developing a photosensitive resin composition layer can be used. Depending on the pattern to be printed, it can have any pattern such as a solid part, a floor part, a halftone part, a line part, a white part, etc.
  • the dynamic viscoelastic mapping measurement using AFM in this embodiment is a mechanical property evaluation method using AFM having nanometer-scale spatial resolution. Specifically, periodic stress is applied while the cantilever is in contact with the measurement sample, and the storage modulus and loss modulus can be obtained from the response waveform.
  • the dynamic viscoelastic mapping measurement using AFM of this embodiment can be performed as follows.
  • the flexographic printing plate is frozen at ⁇ 180° C., and the surface layer of the relief layer of the flexographic printing plate is cut by about 1 ⁇ m using an ultramicrotome (manufactured by Leica) to obtain a smooth cross section of the surface layer of the relief layer.
  • For the smooth cross section dynamic viscoelasticity mapping data was obtained for a total of 4096 points (64 vertically x 64 horizontally) in a field of view of 10 ⁇ m square in AFM-DMA mode using NanoScope V / Dimension Icon manufactured by Bruker AXS. do.
  • the measurement temperature is 25°C and the measurement frequency is 2,000Hz.
  • the measurement probe must be appropriately selected depending on the value of the storage modulus to be measured, and in this embodiment, RTESPA-150-30 and RTESPA-300-30 are used.
  • mapping data is subjected to image processing as follows. First, data points with a storage elastic modulus of 100 MPa or more and 500 MPa or less are set to "1", and other data points are set to "0" to perform binarization and extract a region (A1).
  • FIG. 2 is a mapping image in which the area (A1) of the mapping data obtained in Example 1 is binarized and data points of "1" are displayed in black.
  • the area ratio of (A1) is calculated by dividing the number of extracted data points of (A1) by the total number of measured data. By dividing the sum of the extracted storage modulus and loss modulus of (A1) by the number of extracted data points of (A1), the average value of the storage modulus and the average value of the loss modulus of (A1) can be obtained. Find each.
  • the values obtained by the above calculation method are referred to as the average value of storage modulus and the average value of loss modulus, respectively.
  • storage modulus and loss modulus it refers to data of each point of dynamic viscoelasticity mapping data.
  • FIG. 3 is a mapping image obtained by binarizing and extracting the region (B1) of the mapping data obtained in Example 1.
  • the area ratio of (B1) was calculated by dividing the number of extracted data points of (B1) by the total number of measured data. By dividing the sum of the storage modulus and loss modulus of the extracted region (B1) by the number of extracted data points of (B1), the average value of the storage modulus and the loss modulus of (B1) can be calculated. The average value was calculated.
  • FIG. 4 is a mapping image obtained by binarizing and extracting the area (C1) of the mapping data obtained in Example 1.
  • the area ratio of (C1) was calculated by dividing the number of extracted data points of (C1) by the total number of measured data. By dividing the sum of the storage modulus and loss modulus of the extracted region (C1) by the number of extracted data points of (C1), the average value of the storage modulus and the loss modulus of (C1) can be calculated. The average value was calculated.
  • the compression frequency of the plate during printing is determined by the printing speed and the size of the plate cylinder. As the printing speed increases, the frequency at which the printing plate is stressed increases, and if the plate cylinder size is large, the frequency decreases because the number of times the plate contacts the printing substrate decreases.
  • the storage elastic modulus at a frequency of 2,000 Hz has a region of 100 MPa or more and 500 MPa or less, this region functions as a core material. Thereby, even if stress is applied by increasing the printing pressure, halftone dot chipping and slurry can be suppressed.
  • the storage modulus at a frequency of 2,000 Hz is in the range of 3 MPa or more and 15 MPa or less, which allows the plate as a whole to maintain flexibility and followability to rough surfaces, and improves ink coverage on paper packages. will improve.
  • the area ratio of the region (A1) is preferably 3 area% or more and 35 area% or less, and more preferably 10 area% or more and 33 area% or less with respect to the total area of the cross section. , more preferably 15 area % or more and 30 area % or less, particularly preferably 18 area % or more and 28 area % or less.
  • the area ratio of the region (B1) is preferably 35 area % or more and 65 area % or less, and more preferably 38 area % or more and 63 area % or less with respect to the total area of the cross section. , more preferably 40 area % or more and 60 area % or less, particularly preferably 45 area % or more and 60 area % or less.
  • the ratio (A1/B1) of the area ratio of the area (A1) to the area ratio of the area (B1) in this embodiment is such that the larger the ratio of the core material is, the more chipping and slurring of halftone dots can be suppressed, and the smaller the The more it follows the printing substrate, the better the ink coverage.
  • the ratio (A1/B1) of the area ratio of the area (A1) to the area ratio of the area (B1) is preferably 0.1 or more and 0.8 or less, and 0.2 or more and 0. It is more preferably .7 or less, and even more preferably 0.3 or more and 0.6 or less.
  • the mapping data obtained by binarizing the area (A1) of this embodiment is subjected to opening processing by morphological calculation as follows.
  • the specific processing details are as follows.
  • shrinkage processing is performed as follows. The sum of the target pixel data and its 8 neighboring data is taken, and if the sum is 6 or more, the target data is set to "1", and if it is 5 or less, it is set to "0" (8 Neighborhood, shrinkage processing with threshold 3).
  • expansion processing is performed as follows. The sum of the target pixel data and its 8 neighboring data is taken, and if the sum is 3 or more, the target data is set to "1", and if it is 2 or less, it is set to "0" (8 neighborhood, dilation processing with a threshold of 3).
  • a new data point of "1" obtained by the above image processing operation is defined as an area (a1).
  • the above region (a1) is data obtained by removing small particles in the region (A1), and therefore is suitable for evaluating dispersibility.
  • FIG. 5 is a mapping image obtained by binarizing the area (a1) obtained by performing opening processing on the mapping data extracted by binarizing the area (A1) obtained in Example 1.
  • the area per area constituted by consecutively adjacent pixel data is 0.1 ⁇ m 2 or more. Thereby, it can function as a core material, and it is possible to suppress halftone dot chipping and slurring.
  • this is synonymous with the fact that the number of consecutive adjacent data points is 5 or more.
  • the area of each consecutively adjacent region (a1) is preferably 10 ⁇ m 2 or less. This makes it possible to maintain followability to the printing substrate and improve ink coverage on the paper package.
  • the area of each consecutively adjacent region (a1) of 10 ⁇ m 2 or less means that the number of consecutively adjacent data points is 409 or less. It is synonymous with.
  • the larger the ratio (a1'/a1) to the area is, the more preferable. It is preferably 90 area % or more, more preferably 95 area % or more, and even more preferably 97 area % or more.
  • the ratio may be 100 area %.
  • the above region (A1) sufficiently functions as a core material if the pressure is 100 MPa or higher.
  • the average value of the storage modulus at a frequency of 2,000 Hz is preferably 100 MPa or more, more preferably 125 MPa or more, and particularly preferably 150 MPa or more.
  • the smaller the size the better the ink coverage on the paper package.
  • the average value of the storage modulus at a frequency of 2,000 Hz is preferably 400 MPa or less, more preferably 300 MPa or less, and particularly preferably 250 MPa or less. .
  • the ratio (A1'/A1) of the area of the region (A1') to the area of the region (A1) is: From the viewpoint of increasing ink coverage on the paper package, the larger the size, the better. It is preferably 50 area % or more, more preferably 60 area % or more, and even more preferably 70 area % or more. Moreover, the ratio may be 100 area %.
  • the storage elastic modulus at a frequency of 2,000 Hz is 15 MPa or less, it can sufficiently follow the paper package and improve ink coverage on the paper package. Quality can be maintained.
  • the average value of the storage elastic modulus in the region (B1) is preferably 5 MPa or more and 15 MPa or less, more preferably 8 MPa or more and 15 MPa or less, and particularly preferably 10 MPa or more and 15 MPa or less.
  • the ratio (B1'/B1) of the area of the region (B1') to the area of the region (B1) is From the viewpoint of improving quality at the time, the larger the number, the better. It is preferably 50 area % or more, more preferably 60 area % or more, and even more preferably 70 area % or more. Moreover, the ratio may be 100 area %.
  • the average value of the loss modulus at a frequency of 2,000 Hz is preferably 50 MPa or more and 250 MPa or less, more preferably 75 MPa or more and 175 MPa or less, and 100 MPa or more and 150 MPa or less. It is particularly preferable that Further, in the above region (B1), the average value of the loss modulus at a frequency of 2,000 Hz is preferably 1 MPa or more and 10 MPa or less, more preferably 2 MPa or more and 8 MPa or less, and 2 MPa or more and 6 MPa or less. This is particularly preferred.
  • the tan ⁇ of the region (A1) is preferably 0.5 or more and 0.8 or less, more preferably 0.55 or more and 0.75 or less, and 0.6 or more and 0.7 or less. It is particularly preferable that Further, tan ⁇ of the above region (B1) is preferably 0.4 or more and 0.7 or less, more preferably 0.45 or more and 0.65 or less, and 0.5 or more and 0.6 or less. It is particularly preferable.
  • the flexographic printing plate of this embodiment further has a region (C1) in which the storage modulus at the frequency of 2,000 Hz is more than 15 MPa and less than 100 MPa.
  • a region (C1) in which the storage modulus at the frequency of 2,000 Hz is more than 15 MPa and less than 100 MPa can be suppressed, and the effects of stabilizing quality and improving printing durability during long-run printing can be obtained.
  • the area ratio of the region (C1) is preferably 25 area% or more and 55 area% or less, more preferably 30 area% or more and 50 area% or less, and 35 area% or more and 45 area% or less, based on the total area of the cross section of the relief layer. The following are more preferred.
  • the ratio (C1/B1) of the area ratio of the area (C1) to the area ratio of the area (B1) is preferably 0.3 or more and 1.0 or less, and 0.4 or more and 0. It is more preferably .9 or less, and even more preferably 0.5 or more and 0.8 or less.
  • the average value of the loss modulus at a frequency of 2,000 Hz is preferably 5 MPa or more and 50 MPa or less, and more preferably 10 MPa or more and 40 MPa or less.
  • tan ⁇ at the above frequency for region (C1) is preferably 0.45 or more and 0.75 or less, more preferably 0.5 or more and 0.7 or less, and 0.55 or more and 0.65 or less. It is particularly preferable that
  • the flexographic printing method of this embodiment preferably includes a step of printing using the above-mentioned flexographic printing plate.
  • the method is not particularly limited as long as it is a method of attaching ink to the convex portions of the relief layer of the flexographic printing plate and transferring the ink to the base material.
  • the photosensitive resin composition layer has a frequency of 2 under the following ⁇ Measurement conditions 1>. It has at least a region (A2) in which the storage modulus at 2,000 Hz is 100 MPa or more and 500 MPa or less, and a region (B2) in which the storage modulus at 2,000 Hz is 3 MPa or more and 15 MPa or less.
  • ⁇ Measurement conditions 1> The photosensitive resin composition layer was taken out from the laminate, molded to a thickness of 1.5 mm, and irradiated with 3000 mJ of ultraviolet rays from the upper and lower surfaces of the cured product. Perform dynamic viscoelastic mapping measurements using AFM.
  • the flexographic printing original plate includes an adhesive layer between the support and the photosensitive resin layer, an infrared ablation layer laminated on the photosensitive resin layer, and a cover film laminated on the infrared ablation layer. and an intermediate layer between the infrared ablation layer and the photosensitive resin layer.
  • FIG. 6 shows a schematic cross-sectional view of the flexographic printing original plate of this embodiment.
  • the flexographic printing original plate 10 of this embodiment is one in which a support 11 and a photosensitive resin composition layer 12 on which a relief layer of a flexographic printing plate is formed are laminated in order. Between and on top of each of these layers, if necessary, there is an infrared ablation layer that functions as a mask when forming the uneven pattern on the flexographic printing plate, functional layers such as adhesive layers, and a cover film that protects the infrared ablation layer. etc. may be provided.
  • the structure of the flexographic printing original plate of the second embodiment will be explained in detail.
  • the photosensitive resin composition layer of the second embodiment includes polymer particles (i) having a glass transition temperature of -50°C or higher and -10°C or lower, and a thermoplastic elastomer having a Tg of -95°C or higher and -60°C or lower. It is preferable to include at least (ii), a photopolymerizable compound (iii), and a photopolymerization initiator (iv).
  • the glass transition temperature (Tg) in this embodiment can be determined using a dynamic viscoelasticity measurement device by the method described in Examples described below. Note that for the Tg in this embodiment, when commercially available products are used as the polymer particles (i) and thermoplastic elastomer (ii), data described in catalog data or known literature can also be adopted.
  • the polymer particles (i) having the Tg of -50°C or more and -10°C or less contain an aromatic vinyl compound and a conjugated diene compound as monomer units constituting the polymer particles (i). It is preferable to do so.
  • the thermoplastic elastomer (ii) having the above-mentioned Tg of -95°C or more and -60°C or less contains an aromatic vinyl compound, a conjugated diene compound, as a monomer unit constituting the thermoplastic elastomer (ii), It is preferable to contain.
  • the polymer particles (i) and the thermoplastic elastomer (ii) can be finely dispersed, and the flexographic printing plate obtained from the flexographic printing original plate of the second embodiment has the above region (A1) and the region (B1). ), making it possible to achieve both ink coverage and print quality of halftone dots.
  • the photosensitive resin composition of the second embodiment contains a plasticizer (v), an antioxidant (vi), a cleaning aid (vii), a silicone compound (viii), other compounds, etc., as necessary. You can stay there.
  • the photosensitive resin composition layer of the second embodiment satisfies the following ⁇ Measurement Conditions 1>.
  • ⁇ Measurement conditions 1> The photosensitive resin composition layer was taken out from the laminate, molded to a thickness of 1.5 mm, and irradiated with 3000 mJ of ultraviolet rays from the top and bottom surfaces.
  • the cross section obtained by cutting 1 ⁇ m of the surface layer of the cured product In dynamic viscoelastic mapping measurement by AFM, a region (A2) where the storage modulus at 2,000 Hz is 100 MPa or more and 500 MPa or less, and a region (B2) where the storage modulus at 2,000 Hz is 3 MPa or more and 15 MPa or less, have at least This makes it possible to achieve both print quality in the solid area and halftone area of the flexographic printing plate obtained from the flexographic printing original plate of the second embodiment.
  • Dynamic viscoelastic mapping measurement using AFM can be performed as follows.
  • the photosensitive resin composition layer constituting the flexographic printing original plate is taken out from the flexographic printing original plate, molded to a thickness of 1.5 mm, and a cured product is obtained by irradiating ultraviolet rays of 3000 mJ from the top and bottom surfaces, respectively.
  • the obtained cured product of the photosensitive resin composition was frozen at -180°C, and the surface layer of the cured product of the photosensitive resin composition was cut by about 1 ⁇ m using an ultramicrotome (manufactured by Leica) to obtain a smooth cross section. put out.
  • a 10 ⁇ m square AFM image is obtained from the smooth cross section using NanoScope V/Dimension Icon manufactured by Bruker.
  • dynamic viscoelasticity mapping data for a total of 4096 points 64 vertically x 64 horizontally is acquired in the same measurement range in AFM-DMA mode.
  • the measurement temperature is 25°C and the measurement frequency is 2,000Hz.
  • the measurement probe must be appropriately selected depending on the value of the storage modulus to be measured, and in this embodiment, RTESPA-150-30 and RTESPA-300-30 are used.
  • the area (A2) in the second embodiment is the area (A1) in the first embodiment
  • the area (B2) in the second embodiment is the area (B1) in the first embodiment
  • (C2) can be applied as the region (C1) in the first embodiment.
  • the cured product may further have a region (C2) in which the storage modulus at 2,000 Hz is more than 15 MPa and less than 100 MPa in dynamic viscoelastic mapping measurement by AFM. preferable.
  • the cured product has an area ratio of the area (A2) of 3 area% or more and 30 area% or less with respect to the total area of the cross section, and the area ratio of the area (B2)
  • the area ratio of the region (C2) is 35 area% or more and 70 area% or less with respect to the total area of the cross section, and the area ratio of the region (C2) is 20 area% or more and 40 area% or less with respect to the total area of the cross section. It is preferable that
  • the ratio (A2/B2) of the area ratio of area (A2) to the area ratio of area (B2) in this embodiment is such that the larger the ratio of core material is, the more the halftone dots and slurs can be suppressed, and the smaller the ratio, the more the ratio of area ratio of area (A2) to area ratio of area (B2) is Improves followability to the base material and improves ink coverage.
  • the ratio (A2/B2) of the area ratio of the area (A2) to the area ratio of the area (B2) is preferably 0.05 or more and 1.0 or less, and 0.1 or more and 1 It is more preferably .0 or less, more preferably 0.2 or more and 0.9 or less, even more preferably 0.3 or more and 0.8 or less, and even more preferably 0.3 or more and 0.7 or less. Particularly preferred.
  • the polymer particles (i) are polymer particles in which monomers are internally crosslinked.
  • Such polymer particles are not particularly limited, but for example, a water-dispersible latex prepared by dispersing polymer particles in water as a dispersoid is prepared by emulsion polymerization, and water is removed from the obtained water-dispersible latex. Examples include those obtained by
  • the polymer particles (i) are particles with a relatively large storage modulus, they form the regions (A1) and (A2) and play the role of a core material in the photosensitive resin composition. Thereby, halftone dot chipping and slurry can be suppressed even during long-run printing or under excessive printing pressure conditions.
  • the glass transition temperature of the polymer particles (i) is preferably -50°C or more and -10°C or less.
  • the storage modulus and area ratio of the regions (A1) and (A2) tend to increase, which can suppress halftone dot chipping and slurry.
  • the Tg of the polymer particles (i) is -50°C or higher, preferably -45°C or higher, and more preferably -40°C or higher.
  • the smaller the Tg of the polymer particles (i) the smaller the storage modulus and area ratio of the regions (A1) and (A2) tend to be, increasing the followability to the printing substrate, Improves ink coverage on paper packages.
  • the Tg of the polymer particles (i) is -10°C or less, preferably -15°C or less, and more preferably -20°C or less.
  • the Tg of the polymer particles (i) can be determined by dynamic viscoelasticity measurement. The detailed measurement method is as described in the examples below. However, if a test piece cannot be prepared by the method described in the Examples due to the nature of the sample, Tg can also be determined by thermal analysis. Note that a commercially available product can be used as the polymer particle (i). In the case of a commercially available product, catalog data or known literature can be used for Tg.
  • the amount of the polymer particles (i) added to the photosensitive resin composition should be large from the viewpoint of increasing the area ratio of the regions (A1) and (A2) and suppressing halftone dot chipping and slurry. is preferred. Specifically, when the entire photosensitive resin composition layer is 100% by mass, the content is preferably 3% by mass or more, more preferably 10% by mass or more, and particularly preferably 15% by mass or more. On the other hand, the amount of the polymer particles (i) added to the photosensitive resin composition is determined from the viewpoint of reducing the area ratio of the regions (A1) and (A2) and improving the ink coverage on the paper package. Preferably less. Specifically, when the entire photosensitive resin composition layer is 100% by mass, the content is preferably 35% by mass or less, more preferably 33% by mass or less, and particularly preferably 30% by mass or less.
  • the monomer constituting the polymer particles (i) is not particularly limited as long as it has a polymerizable double bond, but includes, for example, monobasic acid monomers, polybasic acid monomers, conjugated dienes, Aromatic vinyl compounds, (meth)acrylic acid esters, monomers with hydroxyl groups, unsaturated dibasic acid alkyl esters, maleic anhydride, vinyl cyanide compounds, (meth)acrylamide and its derivatives, vinyl esters, vinyl ethers , vinyl halides, basic monomers having an amino group, vinylpyridine, olefins, silicon-containing ⁇ , ⁇ -ethylenically unsaturated monomers, and aryl compounds. Furthermore, the monomers constituting the polymer particles (i) may contain a reactive emulsifier used in emulsion polymerization described below.
  • the monomers constituting the above-mentioned polymer particles (i) are composed of aromatic vinyl compounds, conjugated diene compounds, and (meth)acrylic acid esters.
  • aromatic vinyl compound physical crosslinking points are formed in the polymer particles to increase the storage modulus and form regions (A1) and (A2), thereby suppressing halftone dot chipping and slurry. Can be done.
  • conjugated diene it becomes easy to design the polymer particles to have a small Tg.
  • the storage modulus of the region (A1) and the region (A2) is increased, and halftone dots are prevented from chipping. Slurs can be suppressed.
  • the (meth)acrylic acid ester By including the (meth)acrylic acid ester, it becomes easy to design the Tg of the polymer particles to a target numerical range.
  • Aromatic vinyl compounds include, but are not particularly limited to, styrene, ⁇ -methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, ethylstyrene, vinyltoluene, vinylxylene, bromostyrene, and vinylbenzyl.
  • examples include chloride, pt-butylstyrene, chlorostyrene, alkylstyrene, divinylbenzene, trivinylbenzene, and the like.
  • styrene is particularly preferred from the viewpoint of compatibility with the thermoplastic elastomer (ii).
  • the content of the aromatic vinyl compound is preferably large from the viewpoint of increasing the area ratio of regions (A1) and (A2) by increasing Tg and suppressing halftone dot slurry. It is preferably 12% by mass or more, more preferably 15% by mass or more, and even more preferably 20% by mass or more, based on the total amount of polymer particles (i). On the other hand, from the viewpoint of increasing flexibility, the smaller the number, the better. It is preferably 40% by mass or less, more preferably 35% by mass or less, and even more preferably 30% by mass or less, based on the total amount of polymer particles (i).
  • Conjugated dienes include, but are not particularly limited to, 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 2-ethyl-1,3-butadiene, and 2-methyl-1,3-butadiene.
  • Examples include butadiene, 1,3-pentadiene, chloroprene, 2-chloro-1,3-butadiene, and cyclopentadiene.
  • 1,3-butadiene is particularly preferred from the viewpoint of compatibility with the thermoplastic elastomer (ii).
  • the content of conjugated diene is preferably large from the viewpoint of increasing flexibility, and small from the viewpoint of suppressing halftone dot chipping and slurry. Considering these balances, it is preferably 25% by mass or more and 60% by mass or less, more preferably 30% by mass or more and 55% by mass or less, even more preferably 35% by mass or less, based on the total amount of polymer particles (i). It is not less than 50% by mass and not more than 50% by mass.
  • (meth)acrylic esters include, but are not limited to, methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, n-butyl (meth)acrylate, t-butyl (meth)acrylate, Isobutyl (meth)acrylate, n-amyl (meth)acrylate, isoamylhexyl (meth)acrylate, octyl (meth)acrylate, nonyl (meth)acrylate, decyl (meth)acrylate, dodecyl (meth)acrylate, octadecyl (meth)acrylate , cyclohexyl (meth)acrylate, phenyl (meth)acrylate, benzyl (meth)acrylate, 2-ethyl-hexyl (meth)acrylate, glycidyl (meth)acrylate, ethylene glycol di(meth)
  • the number average molecular weight of the (meth)acrylic ester is preferably 100 or more and 1000 or less, more preferably 150 or more and 500 or less, from the viewpoint of adjusting Tg to a target numerical range.
  • the number average molecular weight of the (meth)acrylic ester is preferably small from the viewpoint of compatibility and reactivity in the mixed solution during emulsion polymerization. It is preferably 1000 or less, more preferably 500 or less, even more preferably 400 or less, and particularly preferably 300 or less.
  • the ester portion is preferably composed of a hydrocarbon having a chain structure from the viewpoint of adjusting the Tg to a target numerical range. It may be linear or have a branched structure.
  • the content of the (meth)acrylic acid ester is preferably 10% by mass or more and 45% by mass or less, more preferably 15% by mass or more and 40% by mass or less, based on the total amount of the polymer particles (i), More preferably, it is 20% by mass or more and 36% by mass or less.
  • the monomer units constituting the polymer particles (i) include 40 parts by mass or more and 120 parts by mass or less of aromatic vinyl compound monomer units, and 25 parts by mass of aromatic vinyl compound monomer units per 100 parts by mass of conjugated diene compound monomer units. It is preferable to contain a (meth)acrylic acid ester monomer unit in an amount of not less than 140 parts by mass. Thereby, it is possible to design Tg and storage modulus within a target numerical range. From the viewpoint that it is easier to design the target numerical value range, the aromatic vinyl compound monomer unit is preferably 40 parts by mass or more and 160 parts by mass or less, and more preferably 80 parts by mass or more and 160 parts by mass or less.
  • the (meth)acrylic acid ester monomer unit is preferably 25 parts by mass or more and 140 parts by mass or less, more preferably 60 parts by mass or more and 135 parts by mass or less, and particularly preferably 65 parts by mass or more and 130 parts by mass or less.
  • monobasic acid monomers include, but are not limited to, monomers having a carboxyl group such as acrylic acid, methacrylic acid, crotonic acid, vinylbenzoic acid, and cinnamic acid; monomers having a sulfonic acid group such as styrene sulfonic acid. Examples include monomers having
  • the content of the monobasic acid monomer is preferably 1% by mass or more and 30% by mass or less, more preferably 2% by mass or more and 20% by mass or less, based on the total amount of the polymer particles (i), More preferably, the content is 3% by mass or more and 15% by mass or less, and even more preferably 5% by mass or more and 10% by mass or less.
  • Polybasic acid monomers include, but are not particularly limited to, monomers having two or more carboxyl groups such as itaconic acid, fumaric acid, maleic acid, citraconic acid, and muconic acid; monomers having acid anhydride groups; Other monomers include monomers having a polybasic acid group such as a phosphoric acid group.
  • Monomers having hydroxyl groups are not particularly limited, but examples include 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, 2-hydroxypropyl methacrylate, and 1-hydroxypropyl acrylate. , 1-hydroxypropyl methacrylate, hydroxycyclohexyl (meth)acrylate, and other ethylene monocarboxylic acid alkyl ester monomers.
  • unsaturated dibasic acid alkyl ester examples include, but are not particularly limited to, crotonic acid alkyl ester, itaconic acid alkyl ester, fumaric acid alkyl ester, maleic acid alkyl ester, and the like.
  • the vinyl cyanide compound is not particularly limited, and examples thereof include acrylonitrile, methacrylonitrile, and the like.
  • (meth)acrylamide and its derivatives include, but are not limited to, (meth)acrylamide, N-methylol (meth)acrylamide, N-alkoxy (meth)acrylamide, and the like.
  • vinyl esters include, but are not limited to, vinyl acetate, vinyl butyrate, vinyl stearate, vinyl laurate, vinyl myristate, vinyl propionate, vinyl versatate, and the like.
  • vinyl ethers include, but are not limited to, methyl vinyl ether, ethyl vinyl ether, propyl vinyl ether, butyl vinyl ether, amyl vinyl ether, hexyl vinyl ether, and the like.
  • vinyl halides include, but are not limited to, vinyl chloride, vinyl bromide, vinyl fluoride, vinylidene chloride, vinylidene fluoride, and the like.
  • the basic monomer having an amino group is not particularly limited, and examples thereof include aminoethyl (meth)acrylate, dimethylaminoethyl (meth)acrylate, diethylaminoethyl (meth)acrylate, and the like.
  • the olefin is not particularly limited, but examples include ethylene.
  • the silicon-containing ⁇ , ⁇ -ethylenically unsaturated monomer is not particularly limited, and examples thereof include vinyltrichlorosilane, vinyltriethoxysilane, and the like.
  • Aryl compounds include, but are not particularly limited to, allyl esters, diallyl phthalates, and the like.
  • monomers having three or more double bonds such as triallyl isocyanurate can also be used.
  • monomers having acidic groups such as monobasic acid monomers and polybasic acid monomers (hereinafter also simply referred to as “acidic monomers”), conjugated dienes, aromatic vinyl compounds, It is preferable to include a monomer having a hydrophobic group (hereinafter also simply referred to as “hydrophobic monomer”) such as (meth)acrylic acid ester.
  • a monomer having a hydrophobic group hereinafter also simply referred to as “hydrophobic monomer”
  • the conjugated dienes, aromatic vinyl compounds, and (meth)acrylic esters that correspond to the above hydrophobic monomers have a hydrocarbon group, and those that have a hydrophilic group such as a hydroxyl group have a (meth)acrylic acid ester. Even acrylic esters and the like are excluded from the hydrophobic monomers.
  • the content of the acidic monomer is preferably 1% by mass or more and 30% by mass or less, more preferably 2% by mass or more and 20% by mass or less, and even more preferably is 3% by mass or more and 15% by mass or less, and even more preferably 5% by mass or more and 10% by mass or less.
  • the content of the acidic monomer is 1% by mass or more, the aqueous development performance tends to be further improved. Further, by setting the content to 30% by mass or less, it is possible to prevent an increase in the amount of swelling of the water-based ink of the photosensitive resin composition, and to stabilize the quality during long-run printing.
  • the content of the monomer having a hydrophobic group is preferably 70% by mass or more and 99% by mass or less, more preferably 80% by mass or more and 98% by mass or less, and even more preferably 85% by mass or more and 97% by mass or less. It is not more than 90% by mass and even more preferably 90% by mass or less and not more than 95% by mass.
  • the polymer particles (i) have such a composition, the rubber elasticity of the photosensitive resin composition is further improved, and printing with good ink coverage on paper packages is possible.
  • the polymer constituting the polymer particles (i) is not particularly limited, but for example, Polymers having a butadiene skeleton such as polybutadiene, acrylonitrile-butadiene copolymer, styrene-butadiene copolymer, (meth)acrylate-butadiene copolymer; Polymers having an isoprene skeleton such as polyisoprene and polychloroprene; The above-mentioned butadiene A polymer in which a monomer having a carboxyl group and/or a hydroxyl group is further polymerized to a polymer having a skeleton or an isoprene skeleton; a (meth)acrylic acid ester is further polymerized to the above polymer having a butadiene skeleton or an isoprene skeleton.
  • Polymers having a butadiene skeleton such as polybutadiene, acrylonitrile-butadiene
  • Polymer A polymer obtained by further polymerizing a (meth)acrylic acid ester and a monomer having a carboxyl group and/or a hydroxyl group to the above polymer having a butadiene skeleton or an isoprene skeleton; polyurethane, vinylpyridine polymer, butyl Examples include polymers, thiocol polymers, acrylate polymers, and natural rubber.
  • the monomer having a carboxyl group means the above-mentioned monobasic acid monomer and/or polybasic acid monomer.
  • polymers having a butadiene skeleton, polymers having an isoprene skeleton, and aromatic vinyl compounds and/or (meth)acrylic esters and/or carboxyl groups are added to the polymers having a butadiene skeleton or isoprene skeleton.
  • a polymer in which a monomer having a and/or a hydroxyl group is further polymerized is preferable, and a polymer having a butadiene skeleton, an aromatic vinyl compound and/or a (meth)acrylic acid ester, and/or a carboxyl group and/or a hydroxyl group is preferable. More preferred are polymers in which monomers are further polymerized.
  • the polymer particles (i) may be used alone or in combination of two or more.
  • the average particle diameter of the polymer particles (i) is preferably 500 nm or less, more preferably 100 nm or less. When the average particle size is 500 nm or less, the aqueous developability of the flexographic printing original plate tends to be further improved.
  • the toluene gel fraction of the polymer particles (i) is preferably 60% or more and 99% or less.
  • the chipping resistance of the halftone dot area can be improved.
  • the toluene gel fraction is 99% or less, the miscibility between the polymer particles (i) and the thermoplastic elastomer (ii) tends to be good.
  • the toluene gel fraction is defined as follows. An appropriate amount of a 30% by mass dispersion of polymer particles (i) was dropped onto a Teflon (registered trademark) sheet, dried at 130°C for 30 minutes, and 0.5g of polymer particles (i) was taken out. Immerse in 30 mL of toluene at °C. Thereafter, the mixture was shaken for 3 hours using a shaker, and then filtered through a 320SUS mesh to obtain an unfiltered fraction. The mass fraction (%) obtained by dividing the mass of the rejected portion after drying at 130° C. for 1 hour by 0.5 (g) is referred to as the toluene gel fraction.
  • Method for producing polymer particles (i) Although the method for synthesizing the polymer particles (i) is not particularly limited, it is preferable to use a polymer synthesized by emulsion polymerization, for example.
  • a predetermined amount of water, an emulsifier, and other additives are charged in advance to a reaction system adjusted to a temperature that allows polymerization, and a polymerization initiator and monomer. Examples include a method of adding emulsifiers, regulators, etc. into the reaction system in a batch operation or a continuous operation. Further, predetermined amounts of seed latex, polymerization initiator, monomer, and other regulators may be added to the emulsion polymerization reaction system in advance.
  • the layer structure of the synthesized polymer particles in stages.
  • physical properties representative of the structure of each layer include hydrophilicity, glass transition point, molecular weight, crosslink density, and the like. Further, the number of stages of this layered structure is not particularly limited.
  • the emulsifier (surfactant) used during emulsion polymerization is not particularly limited, but includes, for example, a reactive emulsifier and/or a non-reactive emulsifier. Among these, it is preferable to use a reactive emulsifier.
  • the reactive emulsifier it is preferable to use a reactive emulsifier that contains a radically polymerizable double bond, a hydrophilic functional group, and a hydrophobic group in its molecular structure, and has emulsifying, dispersing, and wetting functions like general emulsifiers. .
  • the reactive emulsifier when used in an amount of 0.1 part by mass or more based on 100 parts by mass of all monomers other than the reactive emulsifier, the average particle diameter of the obtained polymer particles is 5 nm or more and 500 nm or less.
  • the following emulsifiers (surfactants) are preferred.
  • Hydrophilic functional groups possessed by the reactive emulsifier are not particularly limited, but include, for example, anionic groups such as sulfate, nitric, phosphoric, boric, and carboxyl groups; cationic groups such as amino groups; polyoxy Examples include polyoxyalkylene chain structures such as ethylene, polyoxymethylene, and polyoxypropylene; or hydroxyl groups.
  • reactive emulsifiers can be classified into anionic emulsifiers, nonionic emulsifiers, cationic emulsifiers, amphoteric emulsifiers, and the like.
  • the hydrophobic group possessed by the reactive emulsifier is not particularly limited, and examples thereof include an alkyl group, a phenyl group, and the like.
  • the radically polymerizable double bond possessed by the reactive emulsifier is not particularly limited, and examples thereof include a vinyl group, an acryloyl group, a methacryloyl group, and the like.
  • each of the radically polymerizable double bonds, hydrophilic functional groups, and hydrophobic groups in the molecular structure may contain a plurality of types.
  • commercially available surfactants can be used, and commercially available anionic surfactants include, but are not particularly limited to, Adekarya Soap SE (manufactured by ADEKA), Aqualon HS, BC, etc.
  • KH (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.), Latemul S (manufactured by Kao Co., Ltd.), Antox MS (manufactured by Nippon Nyukazai Co., Ltd.), Adekaria Soap SDX and PP (manufactured by ADEKA Co., Ltd.), Hitenol A (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) ), Eleminol RS (manufactured by Sanyo Chemical Industries, Ltd.), Spinomer (manufactured by Toyo Soda Industries, Ltd.), and the like.
  • nonionic surfactants include, but are not particularly limited to, Aqualon RN, Neugen N (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.), Adekaria Soap NE (manufactured by ADEKA Co., Ltd.), and the like. These may be used alone or in combination of two or more.
  • the amount of the reactive emulsifier used is preferably 1 part by mass or more and 20 parts by mass or less, based on 100 parts by mass of the polymer particles (i) calculated from the amount of raw materials charged.
  • the amount of the reactive emulsifier used is 1 part by mass or more, the image reproducibility of the resulting printing plate tends to improve.
  • the amount of the reactive emulsifier used is 20 parts by mass or less, the printing resistance of the resulting printing plate tends to improve.
  • non-reactive emulsifiers include, but are not limited to, anionic surfactants such as fatty acid soaps, rosin acid soaps, sulfonates, sulfates, phosphoric acid esters, polyphosphoric acid esters, and acyl salicozinates; nitrile fat and oil derivatives; Cationic surfactants such as oil derivatives, fatty acid derivatives, ⁇ -olefin derivatives; alcohol ethoxylates, alkylphenol ethoxylates, propoxylates, aliphatic alkanolamides, alkyl polyglycosides, polyoxyethylene sorbitan fatty acid esters, oxyethylene oxypropylene block copolymers
  • anionic surfactants such as fatty acid soaps, rosin acid soaps, sulfonates, sulfates, phosphoric acid esters, polyphosphoric acid esters, and acyl salicozinates
  • anionic surfactants such as fatty acid soaps
  • sulfonates are not particularly limited, but include, for example, alkyl sulfonates, alkyl sulfates, alkyl sulfosuccinates, polyoxyethylene alkyl sulfates, sulfonated fats and oils, alkyldiphenyl ether disulfonates, ⁇ -olefin sulfonic acids salts, alkyl glyceryl ether sulfonates, N-acylmethyl taurates, and the like.
  • non-reactive emulsifiers other than those mentioned above are not particularly limited, but include, for example, those described in "Surfactant Handbook (Takahashi, Namba, Koike, Kobayashi: Kogaku Tosho, 1972)" .
  • the amount of the non-reactive emulsifier used is preferably less than 1 part by mass based on 100 parts by mass of the polymer particles (i) calculated from the amount of raw materials charged.
  • the resulting printing plate has an appropriate water swelling rate, and reduces the abrasion resistance during ink adhesion and the image reproducibility after moisture absorption. It can be prevented.
  • the above polymerization initiator is not particularly limited, but includes, for example, a radical polymerization initiator.
  • the radical polymerization initiator is not particularly limited, but includes, for example, one that initiates addition polymerization of monomers by radical decomposition in the presence of heat or a reducing substance, and includes inorganic initiators and organic initiators. Either can be used.
  • the above-mentioned radical polymerization initiator is not particularly limited, but includes, for example, water-soluble or oil-soluble peroxodisulfate, peroxide, azobis compound, etc. Specifically, potassium peroxodisulfate, sodium peroxodisulfate, etc. , ammonium peroxodisulfate, hydrogen peroxide, t-butyl hydroperoxide, benzoyl peroxide, 2,2-azobisbutyronitrile, cumene hydroperoxide and the like. Moreover, as the above-mentioned radical polymerization initiator, POLYMER HANDBOOK (3rd edition), J. Brandrup and E. H.
  • redox polymerization method in which a reducing agent such as acidic sodium sulfite, ascorbic acid or its salt, erythorbic acid or its salt, or Rongalit is used in combination with a polymerization initiator.
  • a reducing agent such as acidic sodium sulfite, ascorbic acid or its salt, erythorbic acid or its salt, or Rongalit is used in combination with a polymerization initiator.
  • peroxodisulfate is suitable as a polymerization initiator.
  • the amount of the polymerization initiator used is preferably 0.1% by mass or more and 5.0% by mass or less, more preferably 0.2% by mass, based on the total amount of monomers used for polymerization of polymer particles (i). It is not less than 3.0% by mass and not more than 3.0% by mass.
  • the amount of the polymerization initiator used is 0.1% by mass or more, high stability can be obtained during synthesis of the polymer particles (i).
  • the amount of the polymerization initiator used is 5.0% by mass or less, the amount of moisture absorbed by the photosensitive resin composition can be suppressed to a practically favorable range.
  • a known chain transfer agent can be used.
  • a chain transfer agent containing elemental sulfur can be suitably used.
  • Chain transfer agents containing sulfur elements are not particularly limited, but include, for example, alkanethiols such as t-dodecylmercaptan and n-dodecylmercaptan; thioalkyl alcohols such as mercaptoethanol and mercaptopropanol; thioglycolic acid and thiopropionic acid.
  • thioalkylcarboxylic acids thiocarboxylic acid alkyl esters such as thioglycolic acid octyl ester and thiopropionic acid octyl ester; sulfides such as dimethyl sulfide and diethyl sulfide;
  • chain transfer agents include, but are not particularly limited to, halogenated hydrocarbons such as terpinolene, dipentene, t-terpinene, and carbon tetrachloride.
  • halogenated hydrocarbons such as terpinolene, dipentene, t-terpinene, and carbon tetrachloride.
  • alkanethiols are preferred because they have a high chain transfer rate and the obtained polymer has a good balance of physical properties.
  • These chain transfer agents may be used alone or in combination of two or more.
  • chain transfer agents are either mixed with the monomer and supplied to the reaction system, or added alone in a predetermined amount at a predetermined time.
  • the amount of these chain transfer agents used is preferably 0.1% by mass or more and 10% by mass or less based on the total amount of monomers used for polymerization of polymer particles (i). By setting the amount to 0.1% by mass or more, the processability when mixing the photosensitive resin composition becomes good, and by setting it to 10% by mass or less, the number average molecular weight of the polymer particles (i) increases. It can be made practically sufficient.
  • a polymerization reaction inhibitor can be used in the polymerization of the polymer particles (i), if necessary.
  • a polymerization reaction inhibitor is a compound that reduces the rate of radical polymerization when added to an emulsion polymerization system. More specifically, the polymerization reaction inhibitor is a polymerization rate retarder, a polymerization inhibitor, a chain transfer agent with low radical reinitiation reactivity, and a monomer with low radical reinitiation reactivity.
  • Polymerization reaction inhibitors are generally used to adjust the polymerization reaction rate and the physical properties of latex. These polymerization reaction inhibitors are added to the reaction system in batch or continuous operation. When a polymerization reaction inhibitor is used, the strength of the latex coating is improved and the printing durability is improved. Although the details of the reaction mechanism are unknown, it is thought that the polymerization reaction inhibitor is closely involved in the three-dimensional structure of the polymer, and it is presumed that this is effective in adjusting the physical properties of the latex coating.
  • polymerization reaction inhibitors include, but are not limited to, quinones such as o-, m-, or p-benzoquinone; nitro compounds such as nitrobenzene, o-, m-, or p-dinitrobenzene; and diphenylamine.
  • amines catechol derivatives such as tert-butylcatechol; 1,1-disubstituted vinyl compounds such as 1,1-diphenylethylene or ⁇ -methylstyrene, 2,4-diphenyl-4-methyl-1-pentene;
  • 2,4-diphenyl-4-methyl-1-pentene ( ⁇ -methylstyrene dimer) is particularly preferred from the viewpoint of reactivity.
  • These polymerization reaction inhibitors may be used alone or in combination of two or more.
  • the amount of these polymerization reaction inhibitors used is preferably 10% by mass or less based on the total amount of monomers used for polymerization of polymer particles (i). By controlling the amount to 10% by mass or less, a practically sufficient polymerization rate tends to be obtained.
  • polymerization regulators such as pH regulators and chelating agents can be added as necessary.
  • pH adjuster examples include, but are not limited to, sodium hydroxide, potassium hydroxide, ammonium hydroxide, sodium hydrogen carbonate, sodium carbonate, disodium hydrogen phosphate, and the like.
  • the chelating agent is not particularly limited, and examples thereof include sodium ethylenediaminetetraacetate and the like.
  • additives include alkali-sensitive latex, thinners such as hexametaphosphoric acid, water-soluble polymers such as polyvinyl alcohol and carboxymethyl cellulose, thickeners, various anti-aging agents, ultraviolet absorbers, preservatives, and sterilizers.
  • Additives such as antifoaming agents, antifoaming agents, dispersants such as sodium polyacrylate, waterproofing agents, metal oxides such as zinc white, crosslinking agents such as epoxy compounds, isocyanate compounds, lubricants, and water retention agents are added. It's okay.
  • the method of adding these additives is not particularly limited, and they can be added either during or after the synthesis of the polymer particles (i).
  • the polymerization temperature when producing the polymer particles (i) by emulsion polymerization is usually 60°C or higher and 120°C or lower. Alternatively, polymerization may be carried out at a lower temperature by redox polymerization or the like. Further, as a redox catalyst, a metal catalyst such as, but not limited to, divalent iron ions, trivalent iron ions, copper ions, etc. may be coexisting.
  • the thermoplastic elastomer (ii) in the second embodiment is an elastomer that exhibits rubber elasticity at room temperature (25°C), and includes, for example, a structural unit derived from a conjugated diene and/or an aromatic vinyl compound, but is not particularly limited. Examples include thermoplastic block copolymers, polybutadiene, polyacrylonitrile-butadiene, and polyurethane elastomers.
  • the thermoplastic elastomer may be a homopolymer or a copolymer. Moreover, when it is a copolymer, the thermoplastic elastomer may be a random polymer or a block polymer. Among these, thermoplastic elastomers containing at least one polymer block mainly composed of a conjugated diene and at least one polymer block mainly composed of an aromatic vinyl compound are preferred.
  • the term "mainly” means that 60% by mass or more of the polymer block is composed of a predetermined monomer.
  • thermoplastic elastomer (ii) is a flexible binder with a relatively low storage modulus, it can form the regions (B1) and (B2). This increases the followability to the printing substrate and improves ink coverage on the paper package.
  • the Tg of the thermoplastic elastomer (ii) is preferably -95°C or more and -60°C or less. Thereby, in the dynamic viscoelasticity mapping measurement using the AFM, the storage modulus near the 2,000 Hz frequency band can be made small. Thereby, the above regions (B1) and (B2) can be formed.
  • the Tg of the thermoplastic elastomer (ii) The smaller the Tg of the thermoplastic elastomer (ii), the lower the storage elastic modulus of the regions (B1) and (B2) tends to be. can be improved. From this viewpoint, the Tg of the thermoplastic elastomer (ii) is -60°C or lower, preferably -70°C or lower, and more preferably -80°C or lower. The smaller the Tg of the thermoplastic elastomer (ii), the higher the storage elastic modulus of the regions (B1) and (B2) tends to be, and chipping of halftone dots can be suppressed. From this point of view, the Tg of the thermoplastic elastomer (ii) is -95°C or higher, more preferably -90°C or higher.
  • Tg of the thermoplastic elastomer (ii) can be determined by dynamic viscoelasticity measurement. The detailed measurement method is as described in the Examples described later. Note that a commercially available product can be used as the thermoplastic elastomer (ii). In the case of a commercially available product, catalog data or known literature can be used for Tg.
  • the amount of the thermoplastic elastomer (ii) added to the photosensitive resin composition may be large from the viewpoint of increasing the area ratio of the regions (B1) and (B2) and improving ink coverage on the paper package. preferable. Specifically, when the entire photosensitive resin composition layer is 100% by mass, the content is preferably 20% by mass or more, more preferably 25% by mass or more, and particularly preferably 30% by mass or more. On the other hand, the amount of the thermoplastic elastomer (ii) added to the photosensitive resin composition is determined from the viewpoint of reducing the area ratio of the regions (B1) and (B2) and suppressing halftone dot chipping and slurry. , preferably less. Specifically, when the entire photosensitive resin composition layer is 100% by mass, the content is preferably 55% by mass or less, more preferably 50% by mass or less, and particularly preferably 45% by mass or less.
  • the mass ratio of the polymer particles (i) to the thermoplastic elastomer (ii) is preferably 0.1 or more and 1.0 or less, and 0.2 or more and 0.2 or more. It is more preferably 8 or less, and particularly preferably 0.3 or more and 0.7 or less.
  • the content of conjugated diene units is preferably 80% by mass or more, more preferably 90% by mass or more in the polymer block.
  • Conjugated dienes include, but are not particularly limited to, 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 2-methyl-1,3-pentadiene, 1,3-hexadiene, 4, Examples include monomers such as 5-diethyl-1,3-octadiene, 3-butyl-1,3-octadiene, and chloroprene. Among these, 1,3-butadiene is particularly preferred from the viewpoint of wear resistance. These monomers may be used alone or in combination of two or more.
  • the vinyl content is preferably 5 mol% or more and 50 mol% or less, more preferably 8 mol% or more and 50 mol% or less, based on the total amount of conjugated diene units, from the viewpoint of printing plate formability. , more preferably 10 mol% or more and 40 mol% or less.
  • the "vinyl content” refers to, for example, the content of 1,2-butadiene and 3,4-isoprene, although it is not particularly limited.
  • the number average molecular weight of the polymer block mainly composed of conjugated diene is preferably 20,000 or more and 250,000 or less, more preferably 30,000 or more and 200,000 or less, and 40,000 or more and 150 or less. ,000 or less is more preferable.
  • Number average molecular weight can be determined by gel permeation column chromatography (GPC). The detailed method is as described in Examples below.
  • the polymer block mainly composed of a conjugated diene may contain alkylene units.
  • the method of introducing the alkylene unit is not particularly limited, but includes a method of polymerizing using a monoolefin such as ethylene or butylene as a raw material monomer of a polymer block mainly composed of a conjugated diene, and a method of hydrogenating a conjugated diene polymer block. etc.
  • a method of hydrogenating a polymer block mainly composed of conjugated dienes is preferred.
  • the content of alkylene units is preferably 5 mol% or more and 50 mol% or less, and 10 mol% or more and 35 mol% or less, based on the total amount of monomer units constituting the polymer block. More preferably, it is 10 mol% or more and 25 mol% or less.
  • the content of alkylene units is 5 mol% or more, solvent resistance tends to be further improved.
  • the content of alkylene units is 50 mol% or less, the transparency of the photosensitive resin composition layer tends to be further improved.
  • the polymer block mainly composed of conjugated diene preferably contains alkylene units, and more preferably contains all of 1,4-butadiene units, 1,2-butadiene (vinyl) units, and butylene (alkylene) units. preferable.
  • the polymer block mainly composed of conjugated diene contains 1,4-butadiene units of 25 mol% or more and 70 mol% or less, 1,2-butadiene (vinyl) units of 0 mol% or more and 50 mol% or less, and butylene units of 10 mol% or more. It is more preferable to contain 50 mol% or less.
  • Such a polymer block can be obtained by hydrogenating a polymer block portion mainly composed of butadiene.
  • conjugated diene the vinyl content of the conjugated diene, and the content and ratio of the aromatic vinyl compound can be measured using a nuclear magnetic resonance apparatus ( 1 H-NMR).
  • aromatic vinyl compounds include, but are not limited to, styrene, t-butylstyrene, divinylbenzene, 1,1-diphenylstyrene, N,N-dimethyl-p-aminoethylstyrene, N,N-diethyl-p
  • monomers such as -aminoethylstyrene, vinylpyridine, p-methylstyrene, tertiary-butylstyrene, ⁇ -methylstyrene, and 1,1-diphenylethylene.
  • styrene is preferred because it allows a flexographic printing original plate to be molded smoothly at a relatively low temperature (hereinafter also referred to as "high moldability").
  • These monomers may be used alone or in combination of two or more.
  • the number average molecular weight of the polymer block mainly composed of aromatic vinyl compounds is preferably 100,000 or less from the viewpoint of preventing orientation in the printing plate, and from the viewpoint of chipping resistance during plate making and printing, 3,000 or more is preferable.
  • the number average molecular weight of the polymer block mainly composed of vinyl aromatic hydrocarbons is more preferably 5,000 or more and 80,000 or less, and even more preferably 5,000 or more and 60,000 or less.
  • the content of the aromatic vinyl compound in the block copolymer is preferably 13% by mass or more and 30% by mass or less, more preferably 15% by mass or more and 28% by mass or less, and 16% by mass or less, based on the total amount of the block copolymer. % or more and 25% by mass or less is more preferable.
  • the photosensitive resin composition maintains high moldability, high chipping resistance of the convex portions of the printing plate, and high printing plate hardness when ink components adhere to it. It tends to be possible.
  • the content of vinyl aromatic hydrocarbon is 13% by mass or more, the cold flow resistance of the flexographic printing original plate tends to be further improved.
  • the photopolymerizable compound (iii) refers to a compound having a photopolymerizable reactive group.
  • Examples of photopolymerizable compounds include, but are not limited to, esters of acids such as acrylic acid, methacrylic acid, fumaric acid, and maleic acid; derivatives of acrylamide and methacrylamide; allyl esters, styrene and its derivatives; N-substituted maleimide Examples include compounds.
  • the photopolymerizable compound (iii) is a suitable component from the viewpoint of imparting photosensitivity and forming a relief layer in any pattern desired to be printed.
  • photopolymerizable compound (iii) examples include, but are not limited to, diacrylates and dimethacrylates of alkanediols such as 1,6-hexanediol and 1,9-nonanediol; or polybutadiene, polyisoprene, ethylene glycol, Diethylene glycol, propylene glycol, dipropylene glycol, polyethylene glycol, butylene glycol, dicyclopentadienyl (meth)acrylate and di(meth)acrylate; trimethylolpropane tri(meth)acrylate, dimethyloltricyclodecane di(meth) Alkyl (meth)acrylates such as acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, lauryl (meth)acrylate, stearyl (meth)acrylate, tridecyl (meth)acrylate, tetradecyl (meth)acrylate, pendad
  • the photopolymerizable compound (iii) is preferably a compound having a (meth)acryloyl group.
  • a bifunctional photopolymerizable compound having two (meth)acryloyl groups in one molecule is particularly preferred, but it is also preferable to use a monofunctional or trifunctional photopolymerizable compound in combination depending on the purpose.
  • the content of the photopolymerizable compound (iii) is preferably as high as possible in order to improve plate formability and chipping resistance, and as low as possible from the viewpoint of maintaining flexibility and improving ink coverage on paper packages.
  • the total amount of the photosensitive resin composition is 100% by mass, it is preferably 5% by mass or more and 30% by mass or less, more preferably 8% by mass or more and 25% by mass or less, and 10% by mass or more and 20% by mass or less. It is more preferably less than % by mass.
  • the photosensitive resin composition of the second embodiment preferably contains a photopolymerizable compound having a number average molecular weight of 100 or more and 1,000 or less as the photopolymerizable compound (iii).
  • a photopolymerizable compound having a number average molecular weight of 100 or more and 1,000 or less as the photopolymerizable compound (iii).
  • a low molecular weight photopolymerizable compound it is possible to form a dense crosslink when photocuring, and it is possible to increase the elastic modulus and improve the chipping resistance of halftone dots. It is more preferably 150 or more and 800 or less, and even more preferably 200 or more and 600 or less.
  • the photosensitive resin composition of the second embodiment preferably contains a photopolymerizable compound having a number average molecular weight of 2,000 or more and 8,000 or less as the photopolymerizable compound (iii).
  • a photopolymerizable compound having a number average molecular weight of 2,000 or more and 8,000 or less as the photopolymerizable compound (iii).
  • the distance between crosslinking points can be increased. This makes it possible to crosslink across each region of the phase separation structure, such as regions (A1) and (A2), (B1) and (B2) in this embodiment, and prevent the peeling phenomenon at the interface of each region. It is thought that by suppressing this, chipping resistance is improved.
  • the number average molecular weight is preferably 2,000 or more, more preferably 3,000 or more, and particularly preferably 4,000 or more.
  • the (meth)acryloyl group is modified at the end of the molecular chain.
  • the main chain of the photopolymerizable compound having a number average molecular weight of 2,000 or more and 8,000 or less is preferably a conjugated diene compound.
  • High molecular weight photopolymerizable compounds have the problem of being difficult to be compatible with other components in the photosensitive resin composition due to their high molecular weight, but since the main chain is a conjugated diene compound, polymer particles It has high compatibility with both (i) and the thermoplastic elastomer (ii), and can be uniformly dispersed and dissolved in the photosensitive resin composition.
  • regions (C1) and (C2) are formed as regions in which the polymer particles (i) with high elastic modulus and the thermoplastic elastomer (ii) with low elastic modulus are mixed. can be formed.
  • regions (C1) and (C2) are formed as regions in which the polymer particles (i) with high elastic modulus and the thermoplastic elastomer (ii) with low elastic modulus are mixed.
  • regions (C1) and (C2) are formed as regions in which the polymer particles (i) with high elastic modulus and the thermoplastic elastomer (ii) with low elastic modulus are mixed.
  • the inventors estimate that the following effects can be obtained.
  • the technical mechanism is not limited to the above. From this point of view, it is particularly preferable that the main chain structure contains polybutadiene.
  • the number average molecular weight is preferably smaller, and is preferably 8,000 or less, more preferably 7,000 or less, further preferably 6,000 or less, and particularly preferably 5,000 or less.
  • Number average molecular weight can be determined by gel permeation column chromatography (GPC). The detailed method is as described in Examples below.
  • the photopolymerizable compound having a number average molecular weight of 2,000 or more and 8,000 or less is not particularly limited, but examples include BAC-45 (manufactured by Osaka Organic Chemical Co., Ltd.) and ABU-2S (manufactured by Kyoeisha Chemical Co., Ltd.). , CN307 (manufactured by Sartomer), and CN9014NS (manufactured by Sartomer).
  • the amount of the photopolymerizable compound having a number average molecular weight of 2,000 or more and 8,000 or less in the photosensitive resin composition is determined by increasing the area ratio of the regions (C1) and (C2) during long-run printing. From the viewpoint of improving printing durability, a large number is preferable. Specifically, when the entire photosensitive resin composition layer is 100% by mass, it is preferably 1% by mass or more, more preferably 3% by mass or more, particularly preferably 5% by mass or more. On the other hand, the amount of the polymer particles (i) added to the photosensitive resin composition is determined from the viewpoint of reducing the area ratio of the regions (C1) and (C2) and improving ink coverage and halftone dot quality. , preferably less. Specifically, when the entire photosensitive resin composition layer is 100% by mass, the content is preferably 20% by mass or less, more preferably 15% by mass or less, and particularly preferably 10% by mass or less.
  • the photopolymerization initiator (iv) is a compound that absorbs light energy and generates radicals, and various known ones can be used, and various organic carbonyl compounds and especially aromatic carbonyl compounds are preferable. It is.
  • the photopolymerization initiator (iv) is a suitable component from the viewpoint of imparting photosensitivity and forming a relief layer in any pattern desired to be printed.
  • the photopolymerization initiator (iv) is not particularly limited, but includes, for example, benzophenone, 4,4-bis(diethylamino)benzophenone, t-butylanthraquinone, 2-ethylanthraquinone, 2,4-diethylthioxanthone, isopropylthioxanthone, 2 , 4-dichlorothioxanthone and other thioxanthone; diethoxyacetophenone, benzyldimethyl ketal, 2,2-dimethoxyphenylacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, benzyldimethyl ketal, 1-hydroxy Acetophenones such as cyclohexyl-phenylketone, 2-methyl-2-morpholino(4-thiomethylphenyl)propan-1-one, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone;
  • the content of the photopolymerization initiator (iv) is preferably as high as possible in order to improve plate formability and chipping resistance, and as low as possible from the viewpoint of uniformly curing the inside of the plate.
  • the total amount of the photosensitive resin composition is 100% by mass, it is preferably 0.5% by mass or more and 15.0% by mass or less, and 1.0% by mass or more and 10.0% by mass or less. More preferably, it is 1.5% by mass or more and 8.0% by mass or less.
  • the photopolymerization initiator (iv) a decomposition type photopolymerization initiator and a hydrogen abstraction type photopolymerization initiator may be used in combination. Since the image reproducibility and abrasion resistance of the printing plate are high, the amount of the hydrogen abstraction type photoinitiator in the photosensitive resin composition is preferably 1.0% by mass or less, and 0.5% by mass or less. More preferred.
  • the photosensitive resin composition of this embodiment may contain, as the plasticizer (v), a liquid compound having good compatibility with the thermoplastic elastomer (ii) described above.
  • the plasticizer (v) include, but are not limited to, liquid 1,2 (or 1,4)-polybutadiene, 1,2 (or 1, 4) - Polyisoprene, liquid acrylonitrile-butadiene copolymer, liquid styrene-butadiene copolymer, and terminally modified products thereof, naphthenic oil, paraffin oil, polystyrene with a number average molecular weight of 2,000 or less, sebacic acid ester , phthalate esters.
  • the plasticizer (v) may be used alone or in combination of two or more.
  • the plasticizer should be liquid 1, 2 (or Liquid dienes such as 1,4)-polybutadiene and 1,2 (or 1,4)-polyisoprene are preferred.
  • the liquid diene is a compound having a liquid carbon-carbon double bond, and is a copolymer having a diene component of 50% by mass or more.
  • liquid in “liquid diene” means a property that can be fluidized and deformed at room temperature and solidified into the deformed shape by cooling, and when an external force is applied.
  • the 1,2 (or 1,4)-polybutadiene of the liquid diene is not particularly limited, but examples include B1000, B2000, B3000 (manufactured by Nippon Soda), LBR-352, LBR-305, LBR-300 (manufactured by Kuraray).
  • liquid 1,2 (or 1,4)-polyisoprene is not particularly limited, but for example, LIR -30, LIR-50 (manufactured by Kuraray), etc.
  • the number average molecular weight of the plasticizer (v) is not particularly limited as long as it is liquid at 20°C, but from the viewpoint of handling of the flexographic printing original plate of the second embodiment, it is preferably 200 or more and 60,000 or less. , more preferably 300 or more and 40,000 or less, still more preferably 500 or more and 30,000 or less.
  • the content of the plasticizer (v) in the photosensitive resin composition layer is preferably large from the viewpoint of increasing flexibility, and small from the viewpoint of improving printing durability.
  • the total amount of the photosensitive resin composition is 100% by mass, it is preferably 10% by mass or more and 50% by mass, more preferably 15% by mass or more and 45% by mass or less, and even more preferably 20% by mass or more and 40% by mass or less.
  • the photosensitive resin composition of this embodiment may contain a stabilizer (vi) in order to suppress undesired reactions during storage and manufacturing.
  • the stabilizer (vi) in this embodiment also includes polymerization inhibitors, anti-aging agents, antioxidants, light stabilizers, ultraviolet absorbers, and anti-ozone agents, and is commonly used in the field of resin materials or rubber materials. You can use whatever is provided.
  • heat stabilizers such as phenol-based, phosphite-based, amine-based, thioether-based, etc., and benzophenone-based, salicylate-based, benzotriazole-based, acrylonitrile-based, and metal complex salt-based stabilizers include, but are not limited to, the following: , hindered amine-based light stabilizers, and the like.
  • heat stabilizer examples include, but are not limited to, hydroquinone, P-methoxyphenol, 2,6-di-t-butylcresol, catechol, t-butylcatechol, vitamin E, tetrakis-( Methylene-3-(3',5'-di-t-butyl-4'-hydroxyphenyl)propionate)methane, 2,5-di-t-butylhydroquinone, 2-t-butyl-6-(3-t -butyl-2-hydroxy-5-methylbenzyl)-4-methylphenylacrylate, bis(3,5-di-t-butyl-4-hydroxybenzyl) sulfide, 4,6-bis(octylthiomethyl)-o -Cresol, 2,6-di-t-butyl-4-(4,6-bis(octylthio)-1,3,5-triazin-2-ylamino)phenol, ethylenebis(oxyethylene)bis[3-(2-
  • hydroquinone, 2,6-di-t-butylcresol, 2-t-butyl-6-(3-t-butyl-2- Preferred are hydroxy-5-methylbenzyl)-4-methylphenylacrylate and bis(3,5-di-t-butyl-4-hydroxybenzyl) sulfide.
  • Examples of the light stabilizer include, but are not limited to, 2-(5-methyl-2-hydroxyphenyl)benzotriazole, 2-[2-hydroxy-3,5-bis( ⁇ , ⁇ -dimethylbenzyl)phenyl]-2H-benzotriazole, 2-(3,5)-di-t-butyl-2-hydroxyphenyl)benzotriazole, 2-ethoxy-2'-ethyloxalic acid bisanilide , 2,2'-dihydroxy-4-methoxybenzophenone, tetrakis(2,2,6,6-tetramethyl-4-piperidyl)butane-1,2,3,4-tetracarboxylate, bis(1, 2,2,6,6-pentamethyl-4-piperidyl) and the like.
  • the stabilizer (vi) preferably contains 0.05% by mass or more and 10% by mass or less, and 0.1% by mass or more and 5% by mass or less, when the total amount of the photosensitive resin composition of the present embodiment is 100% by mass.
  • the content is more preferably 0.3% by mass or more and 3% by mass or less, even more preferably 0.3% by mass or less and 3% by mass or less.
  • a light stabilizer is added to adjust the sensitivity of the resin, that is, the curing reaction rate due to photopolymerization reaction.
  • the amount of these substances added varies depending on the absorbance of the substance at a specific wavelength, so the appropriate numerical range of the amount to be added is selected depending on the material used.
  • the anti-ozone agent is preferably added in order to suppress deterioration due to ozone generated during exposure with a germicidal lamp in the plate-making process, or ozone generated during in-line corona treatment of the original film during printing. Since these stabilizers also have the function of reducing the curing sensitivity of the photosensitive resin, it is preferable to adjust the amount added together with the amount of the polymerization inhibitor.
  • the photosensitive resin composition of this embodiment may contain a cleaning aid (vii) in order to improve water developability.
  • the cleaning aid (vii) in this embodiment refers to a compound that has a hydrophilic part, such as a surfactant or a polymer having an acidic group, and is dissolved or dispersed in water or alkaline water.
  • the surfactant examples include, but are not limited to, ionic surfactants, nonionic surfactants, ionic reactive surfactants, and nonionic reactive surfactants.
  • the surfactant is not specifically limited, but for example, sodium polyoxyethylene styrenated phenyl ether sulfate, sodium polyoxyalkylene branched decyl ether sulfate, ammonium polyoxyethylene isodecyl ether sulfate, polyoxyethylene tridecyl Sodium ether sulfate, sodium polyoxyethylene lauryl ether sulfate, ammonium polyoxyethylene lauryl ether sulfate, sodium polyoxyethylene alkyl ether sulfate, ammonium polyoxyethylene oleyl cetyl ether sulfate, sodium polyoxyethylene oleyl cetyl ether sulfate, polyoxyethylene tridecyl ether Phosphate ester, polyoxyethylene alkyl (C2-
  • the surfactant commercially available products can be used, and examples of the commercially available products include, but are not particularly limited to, "Nukol series”, “Nukol NT series” (manufactured by Nippon Nyukazai Co., Ltd.) having an alkyl ether structure, and Neugen TDS. , XL, TDX, SD, DKS-NL series (manufactured by Daiichi Kogyo Seiyaku), Emulmin series, and Sunonic series (manufactured by Sanyo Chemical).
  • the "acidic group" of the polymer having an acidic group is not particularly limited, but includes, for example, a carboxyl group, a sulfonic acid group, a sulfinic acid group, a sulfuric acid group, a phosphoric acid group, a phosphonic acid group, a phosphinic acid group, a phenol group, etc. can be mentioned. Among these groups, carboxyl groups are preferred. Further, in the structure of the acidic group, the ratio of the neutralized salt generated when the acid is neutralized by an alkali metal, NH3 , etc. is preferably 30% or less, more preferably 20% or less, and even more preferably 10%. It is as follows.
  • the polymer having an acidic group is not particularly limited, and examples thereof include polymers having a polyisoprene skeleton, a polybutadiene skeleton, a polyvinyl skeleton, and a polyacrylate skeleton. Among these, polymers having a polyacrylate skeleton are preferred. Note that the skeleton of the polymer having an acidic group can be identified by IR measurement.
  • the polymer having an acidic group a commercially available product can be used, and commercially available products are not particularly limited, but for example, liquid carboxylic acid-modified acrylic polymer [Z250, manufactured by Daicel Ornex] [CB-3060, CB-3098] , CBB-3060, manufactured by Soken Kagaku], [BR-605, manufactured by Mitsubishi Rayon], [Alphon UC-3000, UC-3510 manufactured by Toagosei], and [LIR-410, manufactured by Kuraray]. Furthermore, the polymer having an acidic group can also be prepared by synthesis, for example, with reference to Toagosei Research Annual Report, TREND, 1999, No. 2, 20-26.
  • a polymer having an acidic group can be synthesized by reacting acrylic acid, a polymerization initiator such as sodium persulfate, and a chain transfer agent such as isopropyl alcohol. can do.
  • the acid value can be controlled by appropriately adjusting the reaction temperature and the amounts of the polymerization initiator and chain transfer agent added.
  • silicone compound (viii) examples include silicone oil, silane coupling agent, silane compound, silicone rubber, and silicone resin.
  • silicone oil is preferable because its components easily migrate to the surface and have a high effect of lowering surface energy.
  • the silicone compound (viii) is not particularly limited, but examples thereof include compounds having a polyalkylsiloxane in the main chain, such as polydimethylsiloxane and polydiethylsiloxane. Moreover, the silicone compound (viii) may be a compound having a polysiloxane structure in a part of the molecule. Furthermore, the silicone compound (viii) may be a compound in which a specific organic group is introduced into the polysiloxane structure.
  • compounds with organic groups introduced into the side chains of polysiloxane compounds with organic groups introduced into both ends of polysiloxane, compounds with organic groups introduced into one end of polysiloxane, and compounds with organic groups introduced into the side chains of polysiloxane.
  • a compound etc. in which organic groups are introduced at both ends can be used.
  • the organic group introduced into the polysiloxane structure is not particularly limited, but includes, for example, an amino group, a carboxyl group, a carbinol group, an aryl group, an alkyl group, a phenyl group, an alkoxycarbonyl group, an alkoxy group, and at least one aryl group.
  • Examples include substituted linear or branched alkyl groups, polyoxyalkylene groups (hereinafter also referred to as polyether groups), and the like.
  • the silicone compound (viii) has a main skeleton of polysiloxane, and has at least one terminal and/or side chain of one selected from the group consisting of an amino group, a polyether group, a carbinol group, and a phenyl group. Silicone oils having the above groups are more preferred. By using such a silicone compound (viii), the transparency of the photosensitive resin composition layer tends to be further improved. Commercial products of such silicone compounds include, but are not particularly limited to, KF-8000, KF-6000, KF-351, and KF-50 manufactured by Shin-Etsu Chemical.
  • the content of the silicone compound (viii) is preferably 0.1% by mass or more and 5.0% by mass or less, more preferably 0.5% by mass or more and 3.0% by mass or less, based on the total amount of the photosensitive resin composition layer. It is 0% by mass or less, more preferably 0.5% by mass or more and 2.0% by mass or less.
  • the silicone compound (iv) is The refractive index is preferably 1.400 or more and 1.700 or less, more preferably 1.450 or more and 1.650 or less, and still more preferably 1.500 or more and 1.600 or less.
  • the photosensitive resin composition of this embodiment may contain dyes, pigments, etc. as other compounds.
  • the above dyes and pigments are effective as a coloring means for improving visibility.
  • dyes include, but are not limited to, water-soluble basic dyes, acid dyes, direct dyes, etc., and water-insoluble sulfur dyes, oil-soluble dyes, disperse dyes, etc. .
  • anthraquinone-based, indigoid-based, and azo-based dyes are preferred, and azo-based oil-soluble dyes are more preferred.
  • pigments include, but are not limited to, natural pigments, synthetic inorganic pigments, synthetic organic pigments, etc.
  • synthetic organic pigments include azo-based, triphenylmethane-based, quinoline-based, and anthraquinone-based pigments. and phthalocyanine pigments.
  • G' When the smaller value of G'' and G'' increased or decreased, the absolute value of the complex modulus of elasticity changed little, and had poor correlation with printing. Therefore, we focused on G'+G'', which equally reflects changes in the values of both G' and G'', and found that it had a good correlation with printing. This can be said to indicate that more precise control of G' and G'' is required during printing.
  • the viscoelasticity (G' and G'') of the photosensitive resin composition layer during printing is the viscoelasticity in the region corresponding to -30°C and 2.5Hz, considering the time-temperature conversion rule. They found out.
  • the photosensitive resin composition layer constituting the flexographic printing original plate is taken out from the flexographic printing original plate, molded to a thickness of 1.5 mm, and then the photosensitive resin composition layer constituting the flexographic printing original plate is removed from the top and bottom surfaces respectively.
  • the sum of G' and G'' above, G'+G'' is 2.0 or more and 18 or less. is preferred.
  • G'+G'' is 2.0 or more, halftone dot chipping and slurry can be suppressed even when strong stress is applied to the photosensitive resin composition layer by excessively increasing the printing pressure. Furthermore, by setting the value to 18.0 or less, flexibility can be maintained and ink coverage on paper packages can be improved. From this viewpoint, the above G'+G'' is preferably 2.0 or more and 18.0 or less, more preferably 5.0 or more and 15.0 or less, and particularly preferably 8.0 or more and 13.0 or less.
  • the storage elastic modulus G' can also be controlled.
  • G' is preferably 2.0 or more and 18.0 or less, more preferably 3.0 or more and 15.0 or less, particularly preferably 4.0 or more and 12.0 or less.
  • the loss modulus G'' can also be controlled.
  • G the loss modulus
  • the larger the G" value the more easily the convex parts of the flexographic printing plate will deform, and the greater the ability to follow the printing substrate, increasing the ink coverage even on rough printing materials such as paper packages.
  • the smaller the size the easier it is to release energy to the outside when printing pressure is applied, improving printing durability.
  • G'' is preferably 2.0 or more and 15.0 or less, more preferably 2.5 or more and 13 or less, and particularly preferably 3.0 or more and 10 or less.
  • G' and G'' can be measured by dynamic viscoelasticity measurement at -30°C and 2.5 Hz by the method described in the Examples below.
  • the type A durometer hardness of the cured product of the photosensitive resin composition layer constituting the flexographic printing original plate of this embodiment is preferably 25° or more and 50° or less.
  • the type A durometer hardness of the cured product is determined by taking out the photosensitive resin composition layer from the original flexographic printing plate, molding it to a thickness of 3 mm, and laminating two cured products that have been irradiated with 3000 mJ of ultraviolet rays from the top and bottom surfaces respectively. It can be determined by measuring in accordance with K 6253-3 (2012).
  • the larger the type A durometer hardness of the cured product the more sufficient printing durability can be obtained, and the smaller the type A durometer hardness, the better the ink coverage on paper packages.
  • the angle is preferably 25° or more and 50° or less, preferably 30° or more and 45° or less, and preferably 35° or more and 43° or less.
  • the flexographic printing original plate of the second embodiment may have an infrared ablation layer for the purpose of creating an arbitrary negative pattern using a CTP (Computer to Plate) method.
  • CTP Computer to Plate
  • the infrared ablation layer can be subjected to drawing processing using infrared rays, and plays the role of a mask image when exposing and curing the photosensitive resin composition layer.
  • this infrared ablation layer is also removed at the same time.
  • the infrared ablation layer is preferably composed of a binder polymer and an infrared absorber.
  • the binder polymer is not particularly limited, but includes, for example, polyamide, polyester, and a copolymer consisting of a monovinyl-substituted aromatic hydrocarbon and a conjugated diene. Particularly preferred are copolymers comprising monovinyl-substituted aromatic hydrocarbons such as styrene, ⁇ -methylstyrene, and vinyltoluene, and conjugated dienes such as 1,3-butadiene and isoprene.
  • styrene ⁇ -methylstyrene
  • vinyltoluene conjugated dienes
  • 1,3-butadiene and isoprene 1,3-butadiene and isoprene.
  • the film thickness of the infrared ablation layer of the flexographic printing original plate of this embodiment is preferably thicker from the viewpoint of ensuring light shielding properties against ultraviolet rays during the process of exposing the flexographic printing original plate, and improves developability. From a viewpoint, the thinner the better. From this viewpoint, the thickness of the infrared ablation layer is preferably 0.1 ⁇ m or more and 20 ⁇ m or less, more preferably 0.5 ⁇ m or more and 15 ⁇ m or less, and even more preferably 1.0 ⁇ m or more and 10 ⁇ m or less.
  • the optical density of the infrared ablation layer is preferably 2 or more, more preferably 3 or more.
  • the optical density can be measured using a D200-II transmission densitometer (manufactured by Gretag Macbeth). Further, the optical density is the so-called visual perception (ISO visual), and the light to be measured is in the wavelength range of about 400 to 750 nm.
  • the infrared absorber a single substance or a compound having strong absorption characteristics in the wavelength range of 750 nm to 20,000 nm is usually used.
  • the infrared absorber is preferably one that can also serve as a non-infrared shielding substance, but the infrared absorber and the non-infrared shielding substance may be added separately.
  • the infrared absorber is preferably one that has high absorption in the infrared region and can be uniformly dispersed within the infrared ablation layer.
  • examples of such substances include, but are not limited to, inorganic pigments such as carbon black, graphite, iron oxide, chromium oxide, and copper chromite, phthalocyanine and substituted phthalocyanine derivatives, cyanine dyes, merocyan dyes, and polymethine dyes.
  • pigments such as metal thiolate dyes.
  • the non-infrared shielding substance a substance that reflects or absorbs ultraviolet rays can be used.
  • carbon black, ultraviolet absorbers, graphite, etc. are suitable, for example.
  • both the infrared absorber and the non-infrared shielding substance may be used alone or in combination of two or more.
  • the dispersant contained in the infrared ablation layer is a compound having an adsorption part that can interact with the surface functional group of the infrared absorber and a resin-compatible part that can be compatible with the binder polymer.
  • the adsorption part of the dispersant include, but are not limited to, an amino group, an amide group, a urethane group, a carboxyl group, a carbonyl group, a sulfone group, and a nitro group. Urethane groups are preferred.
  • the resin compatible portion include, but are not limited to, saturated alkyl, unsaturated alkyl, polyether, polyester, poly(meth)acrylic, and polyol.
  • the flexographic printing original plate of the second embodiment may have an intermediate layer between the photosensitive resin composition layer and the infrared ablation layer. When the unexposed portions of the photosensitive resin composition layer are washed out after exposure, this intermediate layer is also removed at the same time.
  • the intermediate layer has a function of preventing material diffusion between the photosensitive resin composition layer and the infrared ablation layer (hereinafter also referred to as "diffusion blocking function”), a function of protecting the infrared ablation layer, and a function of protecting the infrared ablation layer.
  • diffusion blocking function a function of preventing material diffusion between the photosensitive resin composition layer and the infrared ablation layer
  • Various functions can be added as necessary, such as a function of adhering the layer and the infrared ablation layer.
  • the diffusion blocking functions it is preferable to have a function of blocking atmospheric oxygen from diffusing into the photosensitive resin composition layer (hereinafter also referred to as “oxygen blocking property"). This reduces the amount of coexisting oxygen during ultraviolet curing, making it difficult to suppress the polymerization reaction. Since the interface between the unexposed area removed in the development step S4 and the exposed area forming the pattern becomes clear, it is possible to provide a stable flexographic printing plate with small variations in the size of the
  • the thickness of the intermediate layer of the flexographic printing original plate of this embodiment is preferably thicker from the viewpoint of suppressing material transfer between layers, and thinner from the viewpoint of developability. Considering these balances, the thickness of the intermediate layer is preferably 1.0 ⁇ m or more and 30 ⁇ m or less, preferably 2.0 ⁇ m or more and 20 ⁇ m or less, and more preferably 2.5 ⁇ m or more and 10 ⁇ m or less.
  • the intermediate layer may contain, but is not particularly limited to, a binder polymer, filler, crosslinking agent, silicone oil, surfactant, coating aid, or the like.
  • the binder polymer contained in the intermediate layer is not particularly limited, but includes, for example, polyester emulsion, polyurethane emulsion, polyacrylamide emulsion, polybutadiene latex, natural rubber latex, styrene-butadiene copolymer latex, acrylonitrile-butadiene copolymer latex, Water dispersibility of polyvinylidene chloride latex, polychloroprene latex, polyisoprene latex, polyurethane latex, methyl methacrylate-butadiene copolymer latex, vinylpyridine polymer latex, butyl polymer latex, thiocol polymer latex, acrylate polymer latex, etc.
  • Latex polymers polymers obtained by copolymerizing these polymers with other components such as acrylic acid or methacrylic acid, ethylene-vinyl alcohol copolymers, polyvinyl alcohol, polyvinyl acetate, polyvinyl butyral, polyvinyl pyrrolidone , polyvinyl chloride, polyvinylidene chloride, polyvinyl fluoride, polyvinylidene fluoride, polyacrylonitrile, polymethyl methacrylate, polyacetal, polycarbonate, polystyrene, polycarbonate, polyethylene, polypropylene, cellulose derivatives, polyester, polyamide, polyimide, polyurethane, silicone rubber, Examples include polymers such as butyl rubber and isoprene rubber, and copolymers thereof. These binder polymers may be used alone or in combination of two or more.
  • binder polymers that can be dispersed or dissolved in water or alkaline water are preferred from the viewpoint of good developability when developing with an aqueous developer.
  • the filler contained in the intermediate layer is not particularly limited, but examples include silica, kaolinite, dickite, halloysite, talc, pyrophyllite, saponite, hectorite, montmorillonite, beidellite, vermiculite, mica, and paragonite.
  • examples include layered silicate minerals, aluminum hydroxide, aluminum oxide, barium sulfate, potassium titanate, and the like.
  • mica, aluminum hydroxide and aluminum oxide are preferred from the viewpoint of developability and oxygen barrier properties.
  • the filler contained in the intermediate layer is not particularly limited as a commercially available product, but examples include Micromica (synthetic mica), Somasif (synthetic mica, registered trademark of Katakura Co-op Agri Co., Ltd.), and Kunipia (manufactured by Kunimine Industries Co., Ltd.). Kunimine Industries Co., Ltd. registered trademark, montmorillonite), Sumecton (Kunimine Industries Co., Ltd. registered trademark) SA (synthetic saponite); Bengel manufactured by Hojun Co., Ltd. (Hojun Co., Ltd. registered trademark, natural bentonite refined product), manufactured by Kawaken Fine Chemical Co., Ltd.
  • the flexographic printing original plate of this embodiment is preferably obtained by a method including steps 1 to 4 described below in this order.
  • Step 1 a step of adding at least a photopolymerizable compound (iii) to an aqueous dispersion containing polymer particles (i) to obtain an aqueous dispersion containing polymer particles (i);
  • Step 2 removing water from the aqueous dispersion containing the polymer particles (i) obtained in Step 1 to obtain a mixture containing the polymer particles (i) and the photopolymerizable compound (iii);
  • Step 3 Adding at least the thermoplastic elastomer (ii) to the mixture obtained in Step 2 to obtain a photosensitive resin composition;
  • Step 4 A step of laminating the photosensitive resin composition obtained in Step 3 on a support to obtain a flexographic printing original plate.
  • Step 1 of the method for producing a flexographic printing original plate of the present embodiment is not particularly limited as long as it is a step of adding at least the photopolymerizable compound (iii) to the aqueous dispersion containing the polymer particles (i).
  • the photopolymerizable compound (iii) in advance to the aqueous dispersion containing the polymer particles (i) By adding the photopolymerizable compound (iii) in advance to the aqueous dispersion containing the polymer particles (i), the area ratio and storage modulus of regions (A1) and (A2) can be increased, and the halftone dots can be increased. It is possible to suppress chips and slurs.
  • the mass ratio of the photopolymerizable compound (iii) to be added to the mass of the polymer particles (i) is preferably 0.1 or more and 0.5 or less, more preferably 0.15 or more and 0.4 or less, Particularly preferably 0.2 or more and 0.35 or less.
  • thermoplastic elastomer ii
  • photoinitiator iv
  • plasticizer v
  • stabilizer a stabilizer
  • cleaning aids vii
  • silicone compounds viii
  • other compounds may be added.
  • step 2 of the method for producing a flexographic printing original plate of the present embodiment water is removed from the aqueous dispersion containing the polymer particles (i) obtained in step 1, and the polymer particles (i) and the photopolymerizable compound are separated.
  • the process There are no particular limitations on the process as long as it is a process for obtaining a mixture containing (iii).
  • a batch dryer such as a kneader or an evaporator may be used, or a continuous dryer such as a devolatilizing extruder or a thin film distiller may be used.
  • Step 3 of the method for producing a flexographic printing original plate of the present embodiment is a step of adding at least the thermoplastic elastomer (ii) to the mixture obtained in Step 2 to obtain a photosensitive resin composition.
  • a photosensitive resin composition can be prepared by kneading a mixture containing the above components using various known kneading devices such as a kneader, a roll mill, and a screw extruder.
  • Step 4 of the method for producing a flexographic printing original plate of the present embodiment is not particularly limited as long as it is a method of laminating a photosensitive resin composition layer on a support, and can be carried out by various methods. Specifically, the following methods may be mentioned.
  • the raw material of the photosensitive resin composition which is the material of the photosensitive resin composition layer
  • a suitable solvent such as, but not limited to, chloroform, tetrachloroethylene, methyl ethyl ketone, toluene, etc.
  • a suitable solvent such as, but not limited to, chloroform, tetrachloroethylene, methyl ethyl ketone, toluene, etc.
  • a suitable solvent such as, but not limited to, chloroform, tetrachloroethylene, methyl ethyl ketone, toluene, etc.
  • a laminate of the support and the photosensitive resin composition layer can be obtained by obtaining a photo
  • an intermediate layer and an infrared ablation layer may be laminated on the photosensitive resin composition layer.
  • the components constituting the intermediate layer and the infrared ablation layer may be forcibly stirred using a stirring blade, respectively.
  • An intermediate layer, an infrared ablation layer can be formed by directly coating the photosensitive resin composition layer with the dispersion or solution.
  • cover sheet made of, for example, polyester, polypropylene, etc. may be provided on the infrared ablation layer, although it is not particularly limited.
  • Another method is to obtain a film having an infrared ablation layer by coating a predetermined cover sheet with a material constituting an infrared ablation layer, and then coating a material constituting an intermediate layer on the infrared ablation layer.
  • a cover film is obtained in which an infrared ablation layer and an intermediate layer are laminated on a cover sheet, and then this cover film is laminated on the side on which the photosensitive resin composition layer is formed of the laminate of the support and the photosensitive resin composition layer.
  • an intermediate layer and an infrared ablation layer can be formed on the photosensitive resin composition layer by press bonding.
  • the cover film and the support are usually rolled into close contact with the photosensitive resin composition layer after the photosensitive resin composition layer is formed into a sheet, and then heated and pressed after lamination to obtain a flexographic printing original plate with even better thickness accuracy.
  • the method for producing a flexographic printing plate of this embodiment is preferably obtained by a method including steps 1 and 2 described below in this order. Step 1; Step of partially selectively exposing the photosensitive resin composition layer of this embodiment through an arbitrary negative pattern to obtain a partially cured product; Step 2; Step of removing the unexposed portion of the photosensitive resin composition layer from the partially cured product obtained in Step 1.
  • Step 1> the photosensitive resin composition layer 12 is selectively exposed to light through an arbitrary negative pattern to form a relief layer 12a.
  • the light passing through the arbitrary negative pattern accelerates the curing reaction of the photosensitive resin composition layer, and the arbitrary negative pattern is transferred to the photosensitive resin composition layer with the unevenness reversed.
  • the entire surface of the flexographic printing original plate may be irradiated with ultraviolet light.
  • ultraviolet rays with a wavelength of 150 to 500 nm can be used, and ultraviolet rays with a wavelength of 300 to 400 nm can be particularly preferably used.
  • the ultraviolet light source is not particularly limited, but for example, a low-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, a metal halide lamp, a xenon lamp, a zirconium lamp, a carbon arc lamp, an ultraviolet fluorescent lamp, an LED lamp, etc. can be used.
  • Step 1 can be carried out with the plate attached to a laser cylinder, but generally the plate is removed from the laser device and irradiated using a conventional irradiation unit.
  • the exposure method at this time is not particularly limited, and can be performed using a known irradiation unit.
  • Any negative pattern may be formed by irradiating the infrared ablation layer with infrared rays, or by closely adhering a negative film onto the photosensitive resin layer.
  • the flexographic printing original plate of this embodiment has an intermediate layer such as an oxygen inhibition layer or an adhesive layer, and the amount of ultraviolet rays absorbed in the intermediate layer as an oxygen inhibition layer is large and cannot be ignored in the pattern exposure step S3, oxygen It is preferable to take into consideration in advance the amount of ultraviolet rays absorbed by the intermediate layer serving as the inhibition layer and adjust the amount of ultraviolet irradiation as appropriate.
  • Step 2 of the present embodiment is not particularly limited as long as it is a step of removing the unexposed portion of the photosensitive resin composition layer 12. Note that in this specification, removing the unexposed area is sometimes expressed as "developing.”
  • a conventionally known method can be applied. Specifically, there is no particular limitation, but for example, the flexographic printing original plate is exposed as described above, and then the unexposed areas are washed away with a solvent for solvent development or a developer for water development, or The unexposed portion can be removed by bringing the unexposed portion heated to a temperature of 0.degree. C. into contact with a predetermined absorptive layer and removing the absorbing layer. At this time, if the flexographic printing original plate has an infrared ablation layer 14 and/or an intermediate layer 13, these can be removed at the same time.
  • a water-based developer or a solvent-based developer can be used.
  • an aqueous developer it is preferable to use an aqueous developer.
  • the solvent-based developer used to develop the unexposed area with a solvent is not particularly limited, but includes, for example, esters such as heptyl acetate and 3-methoxybutyl acetate; hydrocarbons such as petroleum fractions, toluene, and decalin. and mixtures of alcohols such as propanol, butanol and pentanol with chlorinated organic solvents such as tetrachlorethylene.
  • esters such as heptyl acetate and 3-methoxybutyl acetate
  • hydrocarbons such as petroleum fractions, toluene, and decalin.
  • mixtures of alcohols such as propanol, butanol and pentanol with chlorinated organic solvents such as tetrachlorethylene.
  • the unexposed areas are washed out by jetting from a nozzle or by brushing with a brush.
  • the aqueous developer for developing the unexposed area with water may be water itself, an alkaline aqueous solution, or a neutral detergent.
  • Such an aqueous developing solution is not particularly limited, but for example, one in which a nonionic or anionic surfactant, a pH adjuster, a cleaning accelerator, etc. are blended with water can be used.
  • Surfactants include anionic surfactants, amphoteric surfactants, nonionic surfactants, and the like. These may be used alone or in combination of two or more.
  • anionic surfactants include, but are not limited to, sulfuric ester salts, higher alcohol sulfuric esters, higher alkyl ether sulfuric ester salts, sulfated olefins, alkylbenzene sulfonates, ⁇ -olefin sulfonates, and phosphoric esters. Examples include salts, dithiophosphoric acid ester salts, and the like.
  • amphoteric surfactant examples include, but are not particularly limited to, amino acid type amphoteric surfactants, betaine type amphoteric surfactants, and the like.
  • nonionic surfactants include, but are not limited to, higher alcohol ethylene oxide adducts, alkylphenol ethylene oxide adducts, fatty acid ethylene oxide adducts, polyhydric alcohol fatty acid ester ethylene oxide adducts, and higher alkylamine ethylene oxide adducts.
  • Polyethylene glycol type surfactants such as fatty acid amide ethylene oxide adducts, polypropylene glycol ethylene oxide adducts, glycerol fatty acid esters, pentaerythritol fatty acid esters, sorbitol and sorbitan fatty acid esters, alkyl esters of polyhydric alcohols, alkanolamines
  • polyhydric alcohol type surfactants such as fatty acid amides of various types.
  • the alkaline aqueous solution contains a pH adjuster.
  • the pH adjuster may be either an organic material or an inorganic material, but one that can adjust the pH to 9 or higher is preferred.
  • Examples of the pH adjuster include, but are not limited to, sodium hydroxide, sodium carbonate, potassium carbonate, sodium silicate, sodium metasilicate, sodium succinate, and the like.
  • Absorbent layers for thermal development include nonwoven materials, paper stocks, fibrous fabrics, open cell foams, and porous materials.
  • preferred absorbent layers are nonwoven fabric materials using any one of nylon, polyester, polypropylene, and polyethylene, and combinations of these nonwoven fabric materials.
  • Particularly preferred absorbent layers are nonwoven continuous webs of nylon or polyester.
  • the plate may be dried for the purpose of suppressing swelling and whitening of the plate due to the developer.
  • methods include, but are not limited to, methods such as drying with heat, air drying with an air knife, and removing the developer by absorbing the developer into a nonwoven fabric or the like.
  • drying by heat a method such as leaving the plate in an oven controlled at 40° C. to 60° C. for about 10 minutes to 120 minutes can be mentioned.
  • Post-processing exposure includes a method of irradiating the surface with light having a wavelength of 300 nm or less. If necessary, light with a wavelength longer than 300 nm may also be used for irradiation.
  • a back-exposure step of irradiating ultraviolet rays from the support side may be included as a pre-step of the manufacturing step 1 of the flexographic printing original plate.
  • the entire surface of the flexographic printing original plate 10 is exposed to ultraviolet light through the support 11 (back exposure), and the photosensitive resin composition layer 12 is cured to form a thin and uniform cured layer.
  • the exposure method at this time is not particularly limited, and the same light source and exposure unit as in the flexographic printing plate manufacturing process 1 can be used.
  • the back exposure step may be performed before the flexographic printing plate manufacturing step 1, or may be performed simultaneously as shown in FIG. 9.
  • FIG. 9 is the same as that shown in FIG. 8 except for the order of steps.
  • the pre-process of the manufacturing process 1 of the flexographic printing original plate may include an infrared irradiation step of irradiating the infrared ablation layer with infrared rays to draw a pattern.
  • the infrared irradiation step S2 the infrared ablation layer 14 is subjected to laser drawing, that is, laser ablation to produce a negative pattern 14a.
  • the cover film is first peeled off before infrared irradiation.
  • the infrared ablation layer is irradiated with infrared rays in a pattern to form an arbitrary negative pattern on the photosensitive resin composition layer.
  • the infrared irradiation step may be a step before or after the back exposure step.
  • Suitable infrared lasers include, but are not particularly limited to, ND/YAG lasers (eg, 1064 nm) or diode lasers (eg, 830 nm).
  • Laser systems suitable for CTP platemaking technology are commercially available, and, for example, a diode laser system CDI Spark (manufactured by ESKO GRAPHICS) can be used, although it is not particularly limited.
  • the laser system includes a rotating cylindrical drum holding a flexographic printing plate, an IR laser irradiation device, and a layout computer, from which image information is transmitted directly to the laser device.
  • a drying step of drying the developed flexographic printing original plate may be included as a post-process of the flexographic printing original plate manufacturing process 2. Thereby, reaction swelling and whitening caused by the developer can be suppressed.
  • the drying process is not particularly limited, but examples include drying by heat, air drying with an air knife, and a method of removing the developer by absorbing it into a nonwoven fabric or the like. In the case of drying by heat, a method such as leaving the material in an oven controlled at 40° C. to 60° C. for about 10 minutes to 120 minutes can be mentioned.
  • a post-exposure step of further exposing the relief layer side to light may be included as a subsequent step of the flexographic printing original plate manufacturing step 2 or the drying step. This makes it possible to suppress stickiness on the surface of the plate.
  • the drying process is not particularly limited, but examples include drying by heat, air drying with an air knife, and a method of removing the developer by absorbing it into a nonwoven fabric or the like. In the case of drying by heat, a method such as leaving the material in an oven controlled at 40° C. to 60° C. for about 10 minutes to 120 minutes can be mentioned.
  • the flexographic printing method of the present embodiment includes a printing plate manufacturing process of manufacturing a printing plate by the above-described flexographic printing plate manufacturing method, a printing process of printing using the flexographic printing plate obtained in the above-mentioned printing plate manufacturing process, It is preferable to include the following.
  • the printing process is not particularly limited as long as it is a method of attaching ink to the convex portions of the relief layer of the flexographic printing plate and transferring the ink to the base material.
  • Epoxy Ester 3000M manufactured by Kyoeisha Chemical Co., Ltd., trade name
  • Varifast Yellow 3150 manufactured by Orient Chemical Industry Co., Ltd., trade name
  • UV transmittance ultraviolet transmittance
  • the UV transmittance of the support was measured using an ultraviolet exposure machine AFP-1500 (manufactured by Asahi Kasei Corporation, trade name) and the transmitted intensity using a UV illuminance meter MO-2 model (manufactured by Oak Seisakusho, trade name, UV-35 filter). were measured and calculated.
  • this solution was applied onto a polyester film with a thickness of 100 ⁇ m that would become a cover sheet using a knife coater so that the coating amount after drying was 4 to 5 g/m 2 and heated at 80°C for 1 minute.
  • a film having an ultraviolet shielding layer infrared ablation layer which can be ablated with infrared rays was obtained.
  • the optical density of this film having an infrared ablation layer was measured with DM-500 (trade name, manufactured by Dainippon Screen Mfg. Co., Ltd.) and was 3 to 4.
  • the intermediate layer coating solution was applied to the side on which the infrared ablation layer was formed using a bar coater so that the film thickness after drying was 3 ⁇ m. It was applied using. Subsequently, it was dried at 100° C. for 4 minutes to obtain a cover film having an intermediate layer and an infrared ablation layer.
  • Photopolymerizable compound 1 was added to the polymer particle-containing aqueous dispersion obtained in Production Example 1 at the mass ratio as shown in Tables 2 and 3, and dried under reduced pressure at 80°C. A mixture containing polymer particles described in Items 1 to 26 was obtained. Note that the mass parts of the polymer particles listed in Tables 2 and 3 are expressed by the mass of the solid content of the polymer particles. Next, each component listed in Table 2, Table 3, and Table 4 was mixed using a pressure kneader at 140°C for 45 minutes, and the photosensitivity described in Examples 1 to 26 and Comparative Examples 1 to 7 was obtained. A resin composition was obtained. Note that the mass parts of the polymer particles listed in Table 4 are expressed in terms of the solid content mass of the polymer particles.
  • the adhesive layer of the base film (support) obtained in Production Example 3 was formed on one side of the photosensitive resin composition that was put into an extrusion molding machine and extruded from a T-shaped die.
  • a release film manufactured by Mitsubishi Chemical Corporation, Diafoil MRV100 was bonded to the side opposite to the support lamination side of the photosensitive resin composition layer, and the support and the photosensitive resin composition layer were bonded together.
  • a laminate was obtained.
  • the cover sheet of the infrared ablation layer was peeled off, and a 10 cm square solid image and a 1 cm square halftone image (AM150 line, 1 to 20% After drawing an image pattern containing a total of 20 images in % increments on the infrared ablation layer, the infrared ablation layer was exposed to 8000 mJ in an atmospheric atmosphere using an "AFP-1216" exposure machine.
  • aqueous developer containing 1% polyoxyalkylene alkyl ether (Nukol 2308: Nippon Nyukazai) and 1% potassium carbonate
  • a cleaning machine (JOW-A3-P) manufactured by JEOL.
  • the film was then washed (developed) at 40°C to remove the unexposed areas. After drying at 50° C. for 10 minutes, in order to make the surface tacky, it was post-exposed with an ultraviolet germicidal lamp or an ultraviolet chemical lamp to obtain a flexographic printing plate.
  • aqueous developer containing 1% polyoxyalkylene alkyl ether (Nukol 2308: Nippon Nyukazai) and 1% potassium carbonate, and use a cleaning machine (JOW-A3-P) manufactured by JEOL. Then, development was performed at 40° C. for 15 minutes, and the unexposed areas were removed. After drying at 50° C. for 10 minutes, the plate was post-exposed to an ultraviolet germicidal lamp or an ultraviolet chemical lamp to make the surface tacky, thereby obtaining a flexographic printing plate.
  • aqueous developer containing 1% polyoxyalkylene alkyl ether (Nukol 2308: Nippon Nyukazai) and 1% potassium carbonate
  • a cleaning machine (JOW-A3-P) manufactured by JEOL.
  • the cover sheet of the infrared ablation layer was peeled off, and a 10 cm square solid image and a 1 cm square halftone image (AM150 line, 1 to 20% After drawing an image pattern containing a total of 20 images in % increments on the infrared ablation layer, the infrared ablation layer was exposed to 8000 mJ in an atmospheric atmosphere using an "AFP-1216" exposure machine.
  • the cover sheet of the infrared ablation layer was peeled off, and a 10 cm square solid image and a 1 cm square halftone image (AM150 line, 1 to 20% After drawing an image pattern containing a total of 20 images in % increments on the infrared ablation layer, the infrared ablation layer was exposed to 8000 mJ in an atmospheric atmosphere using an "AFP-1216" exposure machine.
  • the flexographic printing plate was heated to 170° C. using a CYREL® FAST TD1000 thermal processor and brought into contact with a development medium to remove unexposed areas.
  • the development medium was a polyester nonwoven.
  • a flexographic printing plate was obtained by post-exposure with an ultraviolet germicidal lamp and an ultraviolet chemical lamp to remove surface tackiness.
  • a photosensitive resin composition sheet having a photosensitive resin composition layer was obtained. Thereafter, the entire surface of the photosensitive resin composition sheet was exposed to ultraviolet rays of 3000 mJ/cm 2 from both sides using an "AFP-1216" exposure machine. Subsequently, the cured product was cut into small pieces of 1 cm square, which were ultrasonically cleaned with ethanol for 1 hour, and then vacuum dried for 2 hours. Finally, the cured product was frozen at ⁇ 180° C., and the surface layer was cut by approximately 1 ⁇ m using an ultramicrotome (manufactured by Leica) to obtain a smooth cross section, and the smooth cross section of the cured product was used as a measurement sample.
  • an ultramicrotome manufactured by Leica
  • the sum of the area ratios of each region listed in Tables 5 to 8 does not necessarily equal 100%. If there is a data point where the storage modulus is less than 3 MPa or more than 500 MPa, the sum of the area ratios of each region will not be 100%. For example, in Comparative Example 2 listed in Table 6, the sum of area (B1) and area (C1) is 47%, but the storage elastic modulus of the remaining data points exceeds 500 MPa, so each area has a The sum was not 100%.
  • the above binarization process and opening process can be performed using known software such as ImageJ, Excel, Open Source Computer Vision Library (OpenCV), etc.
  • Tg glass transition temperature
  • thermoplastic elastomer with a thickness of 1.0 mm was produced by sandwiching a thermoplastic elastomer between release films and applying a pressure of 200 kg/ cm2 for 4 minutes at 160°C using a press machine using a 1.0 mm spacer. I got a sheet of The release film of the obtained sample was peeled off, and the sample was shaped into a circle with a diameter of 8 mm using a hole punch.
  • the glass transition temperature Tg can also be measured by DSC in accordance with JIS K 6240 (2011). Specifically, 20 mg of the target compound was weighed, placed on an aluminum sample plate, placed in a differential scanning calorimeter (DSC7000X, manufactured by Hitachi High-Tech Science Co., Ltd.), and the temperature was lowered to -140°C at a cooling rate of 10°C/min. After that, it was held for 1 minute. Thereafter, the temperature was raised to (Tg+40°C) at a heating rate of 20°C/min, and a DSC curve was obtained. The glass transition temperature (Tg) was determined from the temperature at the inflection point of the obtained DSC curve.
  • DSC7000X differential scanning calorimeter
  • Tg The results of the above Tg measurements are shown in Tables 1 to 4. Note that commercially available products can be used as the polymer particles and thermoplastic elastomer. In the case of a commercially available product, the Tg can be determined from catalog data of the commercially available product or known literature. The unit of Tg is Celsius (°C).
  • Sample preparation 10 g of tetrahydrofuran was added to 0.5 g of the object to be measured, and the mixture was allowed to stand for 2 hours while applying ultrasound to dissolve. Subsequently, the mixture was filtered using a polytetrafluoroethylene membrane filter (pore size: 3 ⁇ m, manufactured by ADVANTEC), and the filtrate was used as a measurement sample.
  • the photosensitive resin composition was sandwiched between mold release films, and a pressure of 200 kg/cm 2 was applied for 4 minutes at 120°C using a press machine using a 1.5 mm spacer to make a photosensitive resin composition with a thickness of 1.5 mm.
  • a photosensitive resin composition sheet having a photosensitive resin composition layer was obtained. Thereafter, the entire surface of the photosensitive resin composition sheet was exposed to ultraviolet rays of 3000 mJ/cm 2 from both sides using an "AFP-1216" exposure machine.
  • the release film of the obtained sample was peeled off, and the cured product with a thickness of 1.5 mm was molded into a circle with a diameter of 8 mm using a hole punch.
  • the dynamic viscoelasticity of the cured product of the photosensitive resin composition was measured using the following equipment and measurement conditions.
  • Device Discovery Hybrid Rheometer 2 (manufactured by TA Instruments, trademark) Measurement plate: Parallel plate with a diameter of 8 mm Normal stress: 5N Sensitivity: 0.1N Strain in rotational direction: 0.1% Measurement temperature: -30°C Measurement frequency: 2.5Hz
  • Flexo printing machine AI-3 type flexo printing machine (manufactured by Iyo Kikai)
  • Printing material NPi foam paper (manufactured by Nippon Paper Industries, trademark)
  • Ink Indigo process PR-1003 (manufactured by Sakata Inx Co., Ltd.)
  • Printing speed 200m/min Printing room temperature: 23 degrees Printing room relative humidity: 50%
  • halftone image rate halftone density/solid area density
  • eXact manufactured by Xrite
  • the printed area of the printed material with halftone dots with a halftone image ratio of 10% was observed using a microscope (manufactured by Keyence, VHX-1000) at a magnification of 40 times with a field of view of 5 mm square.
  • the number of halftone dots causing halftone dots was measured and evaluated based on the following evaluation criteria. In addition, if it is 3 or more in the following evaluation criteria, it can be used practically without any problem.
  • ⁇ Ink coverage evaluation> The ink density of the solid area of the printed matter obtained in the above ⁇ Printing Test> was measured using eXact (manufactured by Xrite). The average value of 7 measurements was taken as the ink density. In the following evaluation criteria, if it is 3 or more, it can be used without any practical problems. 5: The ink density of the solid area is 0.95 or more. 4: The ink density of the solid area is 0.9 or more and less than 0.95. 3: The ink density of the solid area is 0.85 or more and less than 0.9. 2: The ink density of the solid area is 0.8 or more and less than 0.85. 1: The ink density in the solid area is less than 0.8.
  • Adekariasoap SE1025 ( ⁇ -sulfo(1-nonylphenoxy)methyl-2-(2-propenyloxy)ethoxy-poly(oxy-1,2-ethanediyl) ammonium salt, manufactured by ADEKA ⁇ monobasic acid monomer)
  • MAA Methacrylic acid, manufactured by Mitsubishi Chemical Company
  • BA Butyl acrylate (Mw128), manufactured by Mitsubishi Chemical Corporation 2-EHA: 2-ethylhexyl acrylate (Mw184), manufactured by Mitsubishi Chemical Corporation LA: Lauryl acrylate (Mw240), manufactured by Osaka Organic Chemical Co., Ltd.
  • ISTA Isostearyl acrylate (Mw324), manufactured by Osaka Organic Chemical Co., Ltd.
  • MPE400A Methoxypolyethylene glycol acrylate (Mw470), manufactured by Osaka Organic Chemical Company
  • ⁇ Polymer particle (i)> LX111NF: Polybutadiene latex (Tg - 82°C), manufactured by Zeon Corporation SX1503A: Acrylonitrile butadiene copolymer latex (Tg - 26°C), manufactured by Nippon Zeon ⁇ Thermoplastic elastomer (ii)>
  • TR2827 Styrene-butadiene block copolymer (Tg-88°C), manufactured by JSR TR2787: Styrene-butadiene block copolymer (Tg-86°C), manufactured by JSR T-315: Styrene-butadiene block copolymer ( Tg - 69°C), Asahi Kasei Co., Ltd.
  • BR1220 Polybutadiene rubber (Tg - 102°C), Nippon Zeon Co., Ltd. ⁇ Photopolymerizable compound (iii)> 1.9ND: 1.9-nonanediol dimethacrylate, manufactured by Kyoeisha Chemical Co., Ltd. 1.6HX-A: 1.6-hexanediol acrylate, manufactured by Kyoeisha Chemical Co., Ltd. DCP-A: Dimethyloltricyclodecane diacrylate, manufactured by Kyoeisha Chemical Co., Ltd. TMP: Trimethylolpropane trimethacrylate, manufactured by Kyoeisha Chemical Co., Ltd.
  • the present invention has industrial applicability as a flexographic printing plate for obtaining printed matter.

Abstract

本開示は、少なくとも、支持体と、レリーフ層とが順次積層されており、前記レリーフ層が前記支持体と接している面と反対側の面の表層から1μmを切削して得られる断面のAFMによる動的粘弾性マッピング測定において、周波数が2,000Hzにおける貯蔵弾性率が、100MPa以上500MPa以下である領域(A1)と、周波数が2,000Hzにおける貯蔵弾性率が、3MPa以上15MPa以下である領域(B1)と、を少なくとも有する、フレキソ印刷版、を提供する。

Description

感光性樹脂組成物、フレキソ印刷原版、及びフレキソ印刷版の製造方法
 本発明は、感光性樹脂組成物、フレキソ印刷原版及びフレキソ印刷版の製造方法に関する。
 フレキソ印刷は、凸版印刷の一種であり、印刷版にゴムや合成樹脂等の柔らかい材質を用いていることから、種々の被刷体に適用可能であるという利点を有している。
 フレキソ印刷版の製造は、例えば、以下のように行われる。まず、PET樹脂等のフィルムよりなる基板を通して、紫外線を感光性樹脂組成物層の全面に照射するバック露光を行うことによって、均一な硬化層を設ける。次に、任意のネガパターンを介して、感光性樹脂組成物層に対して選択的に紫外線を照射するレリーフ露光を行う。その後、感光性樹脂組成物層における露光されていない部分(すなわち、光硬化されていない部分)を、現像液で溶解あるいは膨潤させてブラシ等の外力を加えることにより除去し、所望の画像であるレリーフ画像を形成し、フレキソ印刷版を得る。
 最近では、作業環境改善や地球環境の保全の観点から、有機溶剤の使用を減らそうという動きがある。そのため、前述のフレキソ印刷版の製造工程における未硬化部分の除去するために、水を主成分とする現像液(水現像液)の使用が増えつつあり、それによりレリーフ像を形成する水現像版の使用が増えつつある。
 フレキソ印刷の基材としては、包装フィルム等のプラスチック製パッケージと、紙器や段ボール等の紙パッケージが挙げられる。中でも、紙パッケージは、世界的に高まる脱プラスチックの動きを受けて需要が高まっている。
 しかしながら、表面が粗い紙パッケージの印刷は、被印刷面の凹凸形状に由来して、他の基材に比べてインキが乗りにくいという課題がある。インキ乗りを向上させる一つの方法として、硬度が低い版を用い、印圧を上げることで被印刷面の凹凸形状に追従させてインキ乗りを向上させる方法が一般的に用いられている。
 しかし、硬度が低い版を形成するためには樹脂の架橋度を低く抑える必要があるため、フレキソ印刷版の機械特性が損なわれるおそれがある。また、印圧を上げることでフレキソ印刷版に対して応力が強く印加される。その結果、網点等の微小パターンが倒れたり欠けたりすることで印刷不良が発生するおそれがある。
 これに対し、例えば、特許文献1には、網点部分とべた部分の複合弾性率を調整することで、べた乗りと網点品質とを両立する技術が提案されている。
 また、特許文献2には、硬質層と軟質層を多層構造にすることで、べた乗りと網点品質とを両立する技術が提案されている。
 一方で、水現像可能な樹脂組成物で、耐刷性を向上させる技術としては、例えば特許文献3には、水分散ラテックス、エラストマー、重合性不飽和単量体、光重合開始剤を含有し、水分散ラテックスが樹脂組成物中に微分散しているフレキソ印刷原版が提案されている。
 また、特許文献4には、水分散ラテックス、ミラブルゴム、界面活性剤、光重合性化合物、光重合開始剤を含有し、光重合性化合物の構造に着目することでレリーフの欠けを抑える技術が提案されている。
WO2021/039106号公報 WO2017/135118号公報 WO2017/057086号公報 WO2019/130784号公報
 しかしながら、特許文献1に記載の複合弾性率は、室温で測定される弾性率であるため、実際の印刷条件に即したパラメータとは言えない。そのため、印圧がかかった状態での印刷においては、耐刷性が十分でない。
 また、特許文献2に記載の印刷版は、多層構造になっているため、層間で剥離が生じて印刷版に欠けが生じるおそれがある。また、多層構造であるため、コストが高いことも問題点として挙げられる。
 特許文献3に記載のフレキソ印刷原版は、水分散ラテックスを含む相とエラストマーを含む相とを分散させることで耐刷性を向上させているが、水分散ラテックスを含む相もエラストマーを含む相も柔軟性が高いため、印圧の影響を受けて網点が倒れやすいという問題点を有している。
 特許文献4に記載のフレキソ印刷原版は、光硬化物のShoreA硬度が高いことから、紙パッケージのような凹凸のある基材に対しての追従性が低く、紙パッケージの印刷には適していない。
 そこで本発明においては、かかる従来技術の問題点を鑑み、紙パッケージに対してもインキ乗りが良好な印刷が可能で、印圧がかかった状態でも安定した品質を実現できるフレキソ印刷版、フレキソ印刷原版、当該フレキソ印刷版並びにフレキソ印刷原版の製造方法、及び当該フレキソ印刷版を用いた印刷方法を提供することを目的とする。
 本発明者らは、上記課題を解決するため鋭意研究を行った結果、レリーフ層表層の原子間力顕微鏡(以下、AFMとも称する。)による動的粘弾性マッピング測定において、2,000Hzにおける貯蔵弾性率が100MPa以上500MPa以下である領域(A1)と、2,000Hzにおける貯蔵弾性率が3MPa以上15MPa以下である領域(B1)と、を少なくとも有するフレキソ印刷版により、上記課題を解決できることを見出し、本発明を完成させるに至った。
 すなわち、本発明は以下のとおりである。
〔1〕
 少なくとも、支持体と、レリーフ層とが順次積層されており、
 前記レリーフ層が前記支持体と接している面と反対側の面の表層から1μmを切削して得られる断面のAFMによる動的粘弾性マッピング測定において、
 周波数が2,000Hzにおける貯蔵弾性率が、100MPa以上500MPa以下である領域(A1)と、
 周波数が2,000Hzにおける貯蔵弾性率が、3MPa以上15MPa以下である領域(B1)と、を少なくとも有する、
 フレキソ印刷版。
〔2〕
 前記領域(A1)の面積率が、前記断面の総面積に対して3面積%以上35面積%以下であり、
 前記領域(B1)の面積率が、前記断面の総面積に対して35面積%以上65面積%以下である、
 〔1〕に記載のフレキソ印刷版。
〔3〕
 前記領域(A1)をモルフォロジー演算によるオープニング処理を施して得られる領域(a1)において、
 連続して隣接しているピクセルデータから構成される、1領域あたりの面積が0.1μm以上10μm以下である領域(a1′)の面積が、前記領域(a1)の面積に対して占める割合(a1′/a1)が、90面積%以上100面積%以下である、
 〔1〕は〔2〕に記載のフレキソ印刷版。
〔4〕
 前記領域(B1)の面積率に対する前記領域(A1)の面積率の比率(A1/B1)が、0.1以上0.8以下である、
 〔1〕~〔3〕のいずれかに記載のフレキソ印刷版。
〔5〕
 前記領域(A1)において、
 周波数が2,000Hzにおける貯蔵弾性率が100MPa以上250MPa以下である領域(A1′)の面積が前記領域(A1)の面積に対して占める割合(A1′/A1)が、50面積%以上100面積%以下である、
 〔1〕~〔4〕のいずれかに記載のフレキソ印刷版。
〔6〕
 前記領域(B1)のうち、
 周波数が2,000Hzにおける貯蔵弾性率が10MPa以上15MPa以下である領域(B1′)の面積が、前記領域(B1)の面積に対して占める割合(B1′/B1)が、50面積%以上100面積%以下である、
 〔1〕~〔5〕のいずれかに記載のフレキソ印刷版。
〔7〕
 前記領域(A1)において、周波数が2,000Hzにおける損失弾性率の平均値が、50MPa以上250MPa以下であり、
 前記周波数における前記領域(A1)のtanδ([損失弾性率の平均値]/[貯蔵弾性率の平均値])が、0.5以上0.8以下であり、
 前記領域(B1)において、周波数が2,000Hzにおける損失弾性率の平均値が、2MPa以上10MPa以下であり、
 前記周波数における前記領域(B1)のtanδ([損失弾性率の平均値]/[貯蔵弾性率の平均値])が、0.4以上0.7以下である、
 〔1〕~〔6〕のいずれかに記載のフレキソ印刷版。
〔8〕
 前記AFMによる動的粘弾性マッピング測定において、
 周波数が2,000Hzにおける貯蔵弾性率が、15MPa超過100MPa未満である領域(C1)をさらに有し、
 前記領域(C1)の面積率が、前記断面の総面積に対して25面積%以上55面積%以下である、
 〔1〕~〔7〕のいずれかに記載のフレキソ印刷版。
〔9〕
 前記領域(B1)の面積率に対する前記領域(C1)の面積率の比率(C1/B1)が、0.3以上1.0以下である、
 〔8〕に記載のフレキソ印刷版。
〔10〕
 前記領域(C1)において、周波数が2,000Hzにおける損失弾性率の平均値が、10MPa以上50MPa以下であり、
 前記周波数における前記領域(C1)のtanδ([損失弾性率の平均値]/[貯蔵弾性率の平均値])が0.45以上0.75以下である、
 〔8〕又は〔9〕に記載のフレキソ印刷版。
〔11〕
 〔1〕~〔10〕のいずれかに記載のフレキソ印刷版を用いて印刷をする工程を備えるフレキソ印刷方法。
〔12〕
 少なくとも、支持体と、感光性樹脂組成物層とが順次積層されており、
 前記感光性樹脂組成物層が、下記の<測定条件1>において、周波数が2,000Hzの貯蔵弾性率が100MPa以上500MPa以下である領域(A2)と、2,000Hzの貯蔵弾性率が3MPa以上15MPa以下である領域(B2)と、を少なくとも有する、
 フレキソ印刷原版。
<測定条件1>
 前記感光性樹脂組成物層を前記積層体から取り出し、1.5mm厚に成形し、上面及び下面から、それぞれに3000mJの紫外線を照射した硬化物の、表層1μmを切削して得られた断面のAFMによる動的粘弾性マッピング測定を行う。
〔13〕
 前記領域(A2)の面積率が、前記断面の総面積に対して3面積%以上30面積%以下であり、
 前記領域(B2)の面積率が、前記断面の総面積に対して35面積%以上70面積%以下である、
 〔12〕に記載のフレキソ印刷原版。
〔14〕
 前記硬化物は、
 -30℃、2.5Hzにおける動的粘弾性測定において、
 貯蔵弾性率G’(MPa)が、2.0以上18.0以下である、
 〔12〕又は〔13〕に記載のフレキソ印刷原版。
〔15〕
 前記硬化物は、
 -30℃、2.5Hzにおける動的粘弾性測定において、
 貯蔵弾性率G’(MPa)と、損失弾性率G”(MPa)とが下記式(1)及び(2)を満たす、
 〔12〕~〔14〕のいずれかに記載のフレキソ印刷原版。
 2.0≦G‘+G“≦25.0 式(1)
 0.4≦G“≦7.0   式(2)
〔16〕
 前記感光性樹脂組成物層は、ガラス転移温度が-45℃以上-10℃以下である重合体粒子(i)と、ガラス転移温度が-95℃以上-60℃以下である熱可塑性エラストマー(ii)と、光重合性化合物(iii)と、光重合開始剤(iv)と、を少なくとも含み、
 前記重合体粒子(i)は、該重合体粒子(i)を構成する単量体単位として、芳香族ビニル化合物と、共役ジエン化合物と、を、含み、
 前記熱可塑性エラストマー(ii)は、該熱可塑性エラストマー(ii)を構成する単量体単位として、芳香族ビニル化合物と、共役ジエン化合物とを、含む、
 〔12〕~〔15〕のいずれかに記載のフレキソ印刷原版。
〔17〕
 前記感光性樹脂組成物層は、
 数平均分子量が2,000以上8,000以下の光重合性化合物を含む、
 〔16〕に記載のフレキソ印刷原版。
〔18〕
 前記感光性樹脂組成物層は、
 前記感光性樹脂組成物層の総量を100質量%としたとき、
 前記重合体粒子(i)の含有量が、3質量%以上30質量%以下であり、
 前記熱可塑性エラストマー(ii)の含有量が、25質量%以上55質量%以下であり、
 数平均分子量が2,000以上8,000以下の光重合性化合物の含有量が、1質量%以上20質量%以下である、
 〔17〕に記載のフレキソ印刷原版。
〔19〕
 前記硬化物は、AFMによる動的粘弾性マッピング測定において、
 さらに2,000Hzにおける貯蔵弾性率が15MPa超過100MPa未満である領域(C2)を有する、
 〔12〕~〔18〕のいずれかに記載のフレキソ印刷原版。
〔20〕
 前記硬化物は、AFMによる動的粘弾性マッピング測定において、
 前記領域(C2)の面積率が、前記断面の総面積に対して20面積%以上40面積%以下である、
 〔19〕に記載のフレキソ印刷原版。
〔21〕
 前記感光性樹脂組成物層は、
 前記熱可塑性エラストマー(ii)に対する前記重合体粒子(i)の質量比が0.1以上1.0以下である、
 〔16〕~〔20〕のいずれかに記載のフレキソ印刷原版。
〔22〕
 前記領域(B2)の面積率に対する前記領域(A2)の面積率の比率(A2/B2)が、0.05以上0.7以下である、
 〔12〕~〔21〕のいずれかに記載のフレキソ印刷版。
〔23〕
 前記重合体粒子(i)が、該重合体粒子(i)を構成する単量体単位として、
 100質量部の共役ジエン化合物単量体単位に対し、40質量部以上120質量部以下の芳香族ビニル化合物単量体単位と、
 25質量部以上140質量部以下の(メタ)アクリル酸エステル単量体単位と、を含む、
 〔16〕~〔22〕のいずれかに記載のフレキソ印刷原版。
〔24〕
 前記重合体粒子(i)は、該重合体粒子(i)を構成する単量体単位として、
 数平均分子量が150以上500以下の(メタ)アクリル酸エステル単量体単位を含む、
 〔16〕~〔23〕のいずれかに記載のフレキソ印刷原版。
〔25〕
 以下の工程1~4をこの順に含む、〔12〕~〔24〕のいずれかに記載のフレキソ印刷原版の製造方法:
 工程1;重合体粒子(i)含有水分散液に、少なくとも光重合性化合物(iii)を添加して重合体粒子(i)含有水分散液を得る工程。
 工程2;工程1で得られた、前記重合体粒子(i)含有水分散液から水を除去し、重合体粒子(i)と光重合性化合物(iii)を含む混合物を得る工程。
 工程3;工程2で得られた、前記混合物に、少なくとも、熱可塑性エラストマー(ii)を添加して、感光性樹脂組成物を得る工程。
 工程4;工程3で得られた、前記感光性樹脂組成物を支持体上に積層してフレキソ印刷原版を得る工程。
〔26〕
 以下の工程1、2をこの順に含む、〔1〕~〔11〕のいずれかに記載のフレキソ印刷版の製造方法。
 工程1;〔12〕~〔24〕のいずれかに記載の感光性樹脂組成物層を、ネガパターンを介して、部分選択的に露光して部分硬化物を得る工程、
 工程2;工程1で得られた前記部分硬化物から、感光性樹脂組成物層の未露光部分を取り除く工程。
〔27〕
 〔26〕に記載のフレキソ印刷版の製造方法により印刷版を製造する印刷版製造工程と、
 前記印刷版製造工程で得られたフレキソ印刷版を用いて印刷する印刷工程と、を備える、
 印刷方法。
 本発明によれば、紙パッケージに対してもインキ乗りが良好な印刷が可能で、印圧がかかった状態でも安定した品質を実現できるフレキソ印刷版、フレキソ印刷原版、当該フレキソ印刷版並びにフレキソ印刷原版の製造方法、及び当該フレキソ印刷版を用いた印刷方法を提供することができる。
本実施形態のフレキソ印刷版の概略断面図である。 実施例1のAFMによる動的粘弾性マッピング測定によって得られたマッピング像において、領域(A1)を二値化したマッピング像である。 実施例1のAFMによる動的粘弾性マッピング測定によって得られたマッピング像において、領域(B1)を二値化したマッピング像である。 実施例1のAFMによる動的粘弾性マッピング測定によって得られたマッピング像において、領域(C1)を二値化したマッピング像である。 実施例1のAFMによる動的粘弾性マッピング測定によって得られたマッピング像において、領域(A1)を二値化したマッピング像をオープニング処理することによって得られた領域(a1)のマッピング像である。 本実施形態のフレキソ印刷原版の概略断面図である。 本実施形態のフレキソ印刷原版の他の態様を示す概略断面図である。 本実施形態のフレキソ印刷原版を用いたフレキソ印刷版の製造方法を示す概略図である。 本実施形態のフレキソ印刷原版を用いたフレキソ印刷版の製造方法の他の態様を示す概略図である。
 以下、必要に応じて図面を参照しつつ、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明するが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。なお、以下、第1実施形態のフレキソ印刷版と、第2実施形態のフレキソ印刷原版について記載するが、これらを特に区別しないときは、「本実施形態」という。
 本実施形態において、貯蔵弾性率とは、別段の記載がない限り、周波数が2,000Hzにおける貯蔵弾性率を意味する。また、損失弾性率とは、別段の記載がない限り、周波数が2,000Hzにおける損失弾性率を意味する。
〔第1実施形態:フレキソ印刷版〕
 第1実施形態のフレキソ印刷版は、支持体と、レリーフ層とが、順次積層されており、該レリーフ層が上記支持体と接している面と反対側の面の表層から1μmを切削して得られる断面についてのAFMによる動的粘弾性マッピング測定において、周波数が2,000Hzにおける貯蔵弾性率が、100MPa以上500MPa以下である領域(A1)と、周波数が2,000Hzにおける貯蔵弾性率が3MPa以上15MPa以下である領域(B1)と、を少なくとも有する。
 図1に、本実施形態のフレキソ印刷版の概略断面図を示す。本実施形態のフレキソ印刷版は、支持体と、フレキソ印刷版の凹凸パターンが形成されたレリーフ層と、が順次積層されたものである。これら各層の間には、必要に応じて、接着剤層等の機能層が設けられていてもよい。以下、本実施形態のフレキソ印刷版の構成について詳説する。
(支持体)
 本実施形態のフレキソ印刷版に用いる支持体としては、特に限定されるものではないが、例えば、ポリプロピレンフィルム、ポリエチレンフィルム、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステルフィルム、及び、ポリアミドフィルム等が挙げられる。このなかでも、支持体としてはポリエステルフィルムが好ましい。
 また、支持体の厚みは、好ましくは50μm以上300μm以下である。
 さらに、支持体とレリーフ層との間の接着力を高める目的で、支持体とレリーフ層との間には接着剤層を設けてもよい。
 接着剤層の材料としては、特に限定されないが、例えば、ポリウレタン、ポリエステル、ポリアミド、熱可塑性エラストマー等のバインダーポリマーと、イソシアネート化合物やエチレン性不飽和化合物等の接着有効成分とを有する組成物が挙げられる。
 さらに、接着剤層には、種々の補助添加成分、特に限定されないが、例えば、可塑剤、熱重合防止剤、紫外線吸収剤、ハレーション防止剤、光安定剤、光重合開始剤、光重合性モノマー、染料等を添加することができる。
 また、接着剤層と支持体との間の接着力をさらに高める目的で、接着剤層と支持体の間には少なくとも1層以上の下引き層を設けてもよい。
(レリーフ層)
 第1実施形態のフレキソ印刷版に用いるレリーフ層としては、特に限定されないが、例えば、後述するフレキソ印刷原版において、感光性樹脂組成物層を露光・現像して得られる層を用いることができる。印刷する図柄に応じて、べた部、フロア部、網点部、線部、白抜き部等、任意のパターンを有することができる。
(AFMによる動的粘弾性マッピング測定)
 本実施形態のAFMによる動的粘弾性マッピング測定とは、ナノメートルスケールの空間分解能を有するAFMを用いた機械特性評価方法である。具体的には、カンチレバーを測定試料に接した状態で、周期的な応力を印加し、その応答波形から貯蔵弾性率と損失弾性率を得ることができる。
 本実施形態のAFMによる動的粘弾性マッピング測定は、次のように測定することができる。
  フレキソ印刷版を-180℃で凍結させ、該フレキソ印刷版のレリーフ層の表層をウルトラミクロトーム(Leica社製)で1μm程度切削して該レリーフ層表層の平滑断面を出す。該平滑断面に対し、Bruker AXS社製のNanoScope V / Dimension Iconを用い、AFM-DMAモードで、10μm角の視野範囲で縦64×横64の合計4096点の動的粘弾性のマッピングデータを取得する。測定温度は25℃で、測定周波数は2,000Hzとする。測定プローブは、測定する貯蔵弾性率の数値によって適切に選択する必要があり、本実施形態においては、RTESPA-150-30及びRTESPA-300-30を用いる。
 得られたマッピングデータは、次のように画像処理を行う。まず、貯蔵弾性率100MPa以上500MPa以下のデータ点を“1”とし、それ以外のデータ点を“0”とすることで二値化し、領域(A1)を抽出する。図2は、実施例1で得られたマッピングデータの領域(A1)を二値化し、“1”のデータ点を黒で表示したマッピング像である。
 抽出した(A1)のデータ点数を測定全データ数で割ることで、(A1)の面積率を算出する。抽出した(A1)の貯蔵弾性率、損失弾性率のそれぞれの和を、抽出した(A1)のデータ点数で割ることで、(A1)の貯蔵弾性率の平均値、及び損失弾性率の平均値をそれぞれ求める。
 本実施形態においては、上記の算出方法により得られる値を、それぞれ貯蔵弾性率の平均値、及び損失弾性率の平均値と称する。単に、貯蔵弾性率、及び損失弾性率、と称す場合は、動的粘弾性のマッピングデータの1点1点のデータを指す。
 上記領域(A1)を抽出した操作と同様にして、貯蔵弾性率が3MPa以上15MPa以下のデータ点を“1”とし、それ以外のデータ点を“0”とすることで二値化し、領域(B1)を抽出した。図3は、実施例1で得られたマッピングデータの領域(B1)を二値化して抽出したマッピング像である。
 抽出した(B1)のデータ点数を測定全データ数で割ることで、(B1)の面積率を算出した。抽出した(B1)の領域の貯蔵弾性率、損失弾性率のそれぞれの和を、抽出した(B1)のデータ点数で割ることで、(B1)の貯蔵弾性率の平均値、及び損失弾性率の平均値を求めた。
 同様に、貯蔵弾性率が15MPa超過100MPa未満のデータ点とそれ以外のデータ点で二値化することで、領域(C1)を抽出した。図4は、実施例1で得られたマッピングデータの領域(C1)を二値化して抽出したマッピング像である。
 抽出した(C1)のデータ点数を測定全データ数で割ることで、(C1)の面積率を算出した。抽出した(C1)の領域の貯蔵弾性率、損失弾性率のそれぞれの和を、抽出した(C1)のデータ点数で割ることで、(C1)の貯蔵弾性率の平均値、及び損失弾性率の平均値を求めた。
 第1実施形態のフレキソ印刷版は、領域(A1)を有していることで、過印圧条件でも網点の欠けやスラーがなく、ロングラン印刷でも安定した網点品質を提供することができうる。この技術的メカニズムは詳細には明らかではないが、発明者らは下記のように推測している。
 印刷時の版の圧縮周波数は、印刷速度、版胴の大きさによって決定される。印刷速度が大きくなれば、印刷版が応力を受ける周波数は大きくなり、版胴の大きさが大きい場合には、版が印刷基材と接触する回数が減るので周波数は小さくなる。発明者らは、紙パッケージの印刷現場で広く用いられている周波数の条件が2,000Hz前後であると推定し、この測定周波数における動的粘弾性が印刷品質や耐刷性と相関がある傾向を見出した。
 具体的には、周波数が2,000Hzにおける貯蔵弾性率が100MPa以上500MPa以下の領域を有していることで、この領域が芯材として機能する。これにより、印圧を上げることで応力が印加されても、網点の欠けやスラーを抑制できる。
 また、周波数が2,000Hzにおける貯蔵弾性率が3MPa以上15MPa以下の領域を有していることで、版全体として柔軟性と粗面への追従性を維持することができ、紙パッケージに対するインキ乗りが向上する。
 上記領域(A1)の面積率は、大きいほど芯材としての効果が大きくなり、網点の欠けやスラーを抑制することができる。一方で、領域(A1)の面積率が小さいほど、印刷基材への追従性が高まり、紙パッケージに対するインキ乗りが向上する。
 以上の観点から、領域(A1)の面積率は、上記断面の総面積に対して3面積%以上35面積%以下であることが好ましく、10面積%以上33面積%以下であることがより好ましく、15面積%以上30面積%以下であることがさらに好ましく、18面積%以上28面積%以下であることが特に好ましい。
 上記領域(B1)の面積率は、大きいほど印刷基材への追従性が高まり、インキ乗りが向上する。一方で、領域(B1)の面積率が小さいほど、網点の欠けやスラーを抑制できる。
 以上の観点から、領域(B1)の面積率は、上記断面の総面積に対して35面積%以上65面積%以下であることが好ましく、38面積%以上63面積%以下であることがより好ましく、40面積%以上60面積%以下であることがさらに好ましく、45面積%以上60面積%以下が特に好ましい。
 本実施形態の上記領域(B1)の面積率に対する上記領域(A1)の面積率の比率(A1/B1)は、大きいほど芯材の割合が多いので網点の欠けやスラーを抑制でき、小さいほど印刷基材への追従性が高まり、インキ乗りが向上する。
 以上の観点から、上記領域(B1)の面積率に対する上記領域(A1)の面積率の比率(A1/B1)は、0.1以上0.8以下であることが好ましく、0.2以上0.7以下がより好ましく、0.3以上0.6以下であることがさらに好ましい。
 本実施形態の領域(A1)を二値化したマッピングデータは、次のようにしてモルフォロジー演算によるオープニング処理を行う。具体的な処理内容については以下の通りである。
 まず、次のように収縮処理を行う。対象となるピクセルデータと、その8近傍のデータの和を取り、その和が6以上である場合には、対象データを“1”とし、5以下である場合には“0”とする(8近傍、閾値3での収縮処理)。
 続いて、次のように膨張処理を行う。対象となるピクセルデータと、その8近傍のデータの和を取り、その和が3以上である場合には、対象データを“1”とし、2以下である場合には“0”とする(8近傍、閾値3での膨張処理)。
 本実施形態では、上記の画像処理操作により得られた新たな“1”のデータ点を領域(a1)と定義する。上記領域(a1)は、領域(A1)の小粒子を除去したデータであるため、分散性を評価するのに適している。
 なお、図5は、実施例1で得られた領域(A1)を二値化して抽出したマッピングデータをオープニング処理することで得られた、領域(a1)を二値化したマッピング像である。
 本実施形態のフレキソ印刷版においては、上記領域(a1)において、連続して隣接しているピクセルデータから構成される、1領域あたりの面積は、0.1μm以上であることが好ましい。これにより、芯材として機能することができ、網点の欠けやスラーを抑制できる。なお、本実施形態においては、連続して隣接しているデータ数が5点以上であることと同義である。
 一方で、上記領域(a1)の連続して隣接している1領域あたりの面積は、10μm以下であることが好ましい。これにより、印刷基材への追従性を維持でき、紙パッケージに対するインキ乗りを向上できる。なお、本実施形態においては、上記領域(a1)の連続して隣接している1領域あたりの面積が10μm以下であることは、連続して隣接しているデータ数が409点以下であることと同義である。
 上記領域(a1)において、連続して隣接しているピクセルデータから構成される、1領域あたりの面積が0.1μm以上10μm以下である領域(a1′)の面積が、領域(a1)の面積に対して占める割合(a1′/a1)は、上記観点から、大きいほど好ましい。90面積%以上が好ましく、95面積%以上がより好ましく、97面積%以上がさらに好ましい。また、該割合は100面積%であってもよい。
 上記領域(A1)は、100MPa以上であれば芯材としての役割を十分に発揮する。かかる観点から、上記領域(A1)において、周波数が2,000Hzにおける貯蔵弾性率の平均値は、100MPa以上であることが好ましく、125MPa以上であることがより好ましく、150MPa以上であることが特に好ましい。
 一方で、小さいほど紙パッケージに対するインキ乗りを向上できる。かかる観点から、上記領域(A1)において、周波数が2,000Hzにおける貯蔵弾性率の平均値は、400MPa以下であることが好ましく、300MPa以下であることがより好ましく、250MPa以下であることが特に好ましい。
 また、特に好ましい領域である100MPa以上250MPa以下である領域を、領域(A1′)としたとき、領域(A1)の面積に対する領域(A1′)の面積が占める割合(A1′/A1)は、紙パッケージに対するインキ乗りを高める観点から、大きいほうが好ましい。50面積%以上が好ましく、60面積%以上がより好ましく、70面積%以上がさらに好ましい。また、該割合は100面積%であってもよい。
 上記領域(B1)は、周波数が2,000Hzにおける貯蔵弾性率が15MPa以下であれば紙パッケージに対して十分に追従でき、紙パッケージに対するインキ乗りを向上できる一方で、大きいほどロングラン印刷時の印刷品質を維持することができる。かかる観点から、上記領域(B1)の貯蔵弾性率の平均値は、5MPa以上15MPa以下であることが好ましく、8MPa以上15MPa以下であることがより好ましく、10MPa以上15MPa以下であることが特に好ましい。
 特に好ましい領域である10MPa以上15MPa以下である領域を、領域(B1′)としたとき、領域(B1)の面積に対する領域(B1′)の面積が占める割合(B1′/B1)は、ロングラン印刷時の品質向上の観点から、大きいほうが好ましい。50面積%以上が好ましく、60面積%以上がより好ましく、70面積%以上がさらに好ましい。また、該割合は100面積%であってもよい。
 本実施形態のフレキソ印刷版の、周波数が2,000Hzにおける損失弾性率は、大きいほど変形しやすく印刷基材への追従性が高まることで、紙パッケージに対するインキ乗りが向上する。一方、小さいほど印圧をかけたときのエネルギーを外部に放出しやすく、耐刷性が向上する。
 かかる観点から、上記領域(A1)において、周波数が2,000Hzにおける損失弾性率の平均値は、50MPa以上250MPa以下であることが好ましく、75MPa以上175MPa以下であることがより好ましく、100MPa以上150MPa以下であることが特に好ましい。
 また、上記領域(B1)において、周波数が2,000Hzにおける損失弾性率の平均値は、1MPa以上10MPa以下であることが好ましく、2MPa以上8MPa以下であることがより好ましく、2MPa以上6MPa以下であることが特に好ましい。
 本実施形態のフレキソ印刷版の2,000Hzにおけるtanδ([損失弾性率の平均値]/[貯蔵弾性率の平均値])は、大きいほど粘性項の寄与が大きくなるため、変形しやすく印刷基材への追従性が高まることで紙パッケージに対するインキ乗りが向上する。一方、小さいほど弾性項の寄与が大きくなるため、印圧をかけたときのエネルギーを外部に放出しやすく、耐刷性が向上する。
 かかる観点から、上記領域(A1)のtanδは、0.5以上0.8以下であることが好ましく、0.55以上0.75以下であることがより好ましく、0.6以上0.7以下であることが特に好ましい。
 また、上記領域(B1)のtanδは、0.4以上0.7以下であることが好ましく、0.45以上0.65以下であることがより好ましく、0.5以上0.6以下であることが特に好ましい。
 本実施形態のフレキソ印刷版は、上記周波数が2,000Hzにおける貯蔵弾性率が、15MPa超過100MPa未満である領域(C1)をさらに有していることが好ましい。これにより、領域(A1)と領域(B1)との間の弾性率の急峻な差による局所的な応力集中を抑制でき、ロングラン印刷時の品質安定化と耐刷性向上の効果が得られる。
 かかる観点から、領域(C1)の面積率は、大きいほどロングラン印刷時の品質安定化と耐刷性向上の効果が得られる一方で、小さいほど領域(A1)と領域(B1)が相対的に大きくなるため、網点品質とべた品質を両立することができる。領域(C1)の面積率は、上記レリーフ層の断面の総面積に対して25面積%以上55面積%以下が好ましく、30面積%以上50面積%以下がより好ましく、35面積%以上45面積%以下がさらに好ましい。
 本実施形態の上記領域(B1)の面積率に対する上記領域(C1)の面積率の比率(C1/B1)は、大きいほどロングラン印刷時の品質安定化と耐刷性向上効果が得られる一方で、小さいほど印刷基材への追従性が高まり、紙パッケージに対するインキ乗りが向上する。
 以上の観点から、上記領域(B1)の面積率に対する上記領域(C1)の面積率の比率(C1/B1)は、0.3以上1.0以下であることが好ましく、0.4以上0.9以下がより好ましく、0.5以上0.8以下であることがさらに好ましい。
 本実施形態の上記領域(C1)においては、周波数が2,000Hzにおける損失弾性率の平均値が、5MPa以上50MPa以下であることが好ましく、10MPa以上40MPa以下であることがより好ましい。
 また、領域(C1)についての上記周波数におけるtanδは、0.45以上0.75以下であることが好ましく、0.5以上0.7以下であることより好ましく、0.55以上0.65以下であることが特に好ましい。
〔フレキソ印刷方法〕
 本実施形態のフレキソ印刷方法は、上記フレキソ印刷版を用いて印刷をする工程を備えていることが好ましい。該フレキソ印刷版のレリーフ層の凸部に対してインキを付着させ、そのインキを基材に転写させる方法であれば、特に限定されない。
〔第2実施形態:フレキソ印刷原版〕
 第2実施形態のフレキソ印刷原版は、少なくとも、支持体と、感光性樹脂組成物層が順次積層されており、上記感光性樹脂組成物層が、下記の<測定条件1>において、周波数が2,000Hzにおける貯蔵弾性率が100MPa以上500MPa以下である領域(A2)と、2,000Hzにおける貯蔵弾性率が3MPa以上15MPa以下である領域(B2)と、を少なくとも有する。
<測定条件1>
 上記感光性樹脂組成物層を上記積層体から取り出し、1.5mm厚に成形し、上面及び下面から、それぞれに3000mJの紫外線を照射した硬化物の、表層1μmを切削して得られた断面に対するAFMによる動的粘弾性マッピング測定を行う。
 上記フレキソ印刷原版は、上記支持体と上記感光性樹脂層との間に接着剤層と、上記感光性樹脂層上に積層された赤外線アブレーション層と、該赤外線アブレーション層上に積層されたカバーフィルムと、該赤外線アブレーション層と感光性樹脂層との間に中間層と、をさらに有していてもよい。
 図6に、本実施形態のフレキソ印刷原版の概略断面図を示す。本実施形態のフレキソ印刷原版10は、支持体11と、フレキソ印刷版のレリーフ層が形成される感光性樹脂組成物層12と、が順次積層されたものである。これら各層の間や上部には、必要に応じて、フレキソ印刷版の凹凸パターン形成時にマスクとして機能する赤外線アブレーション層や、接着剤層等の機能層、赤外線アブレーション層の保護を目的としたカバーフィルム等が設けられていてもよい。以下、第2実施形態のフレキソ印刷原版の構成について詳説する。
(支持体)
 第2実施形態のフレキソ印刷原版に用いる支持体としては、第1実施形態と同様のものを使用すればよい。
(感光性樹脂組成物)
 第2実施形態の感光性樹脂組成物層は、ガラス転移温度が-50℃以上-10℃以下である重合体粒子(i)と、Tgが-95℃以上-60℃以下である熱可塑性エラストマー(ii)と、光重合性化合物(iii)と、光重合開始剤(iv)と、を少なくとも含むことが好ましい。
 本実施形態におけるガラス転移温度(Tg)は、動的粘弾性測定装置を用いて、後述する実施例に記載の方法で求めることができる。
 なお、本実施形態におけるTgは、上記重合体粒子(i)や熱可塑性エラストマー(ii)として市販品を用いる場合、カタログデータや公知文献に記載のデータを採用することもできる。
 上記Tgが-50℃以上-10℃以下である重合体粒子(i)は、該重合体粒子(i)を構成する単量体単位として、芳香族ビニル化合物と、共役ジエン化合物と、を含有することが好ましい。
 また、上記Tgが-95℃以上-60℃以下である熱可塑性エラストマー(ii)は、該熱可塑性エラストマー(ii)を構成する単量体単位として、芳香族ビニル化合物と、共役ジエン化合物と、を、含有することが好ましい。
 これにより、重合体粒子(i)と熱可塑性エラストマー(ii)とを微分散させることができ、第2実施形態のフレキソ印刷原版から得られるフレキソ印刷版が、上記領域(A1)及び領域(B1)を有するように設計でき、インキ乗りと網点部の印刷品質の両立が可能になる。
 第2実施形態の感光性樹脂組成物は、必要に応じて、可塑剤(v)、酸化防止剤(vi)、洗浄助剤(vii)、シリコーン化合物(viii)、その他の化合物等を含んでいてもよい。
 第2実施形態の感光性樹脂組成物層は、下記の<測定条件1>を満たす。
<測定条件1>
 上記感光性樹脂組成物層を上記積層体から取り出し、1.5mm厚に成形し、上面及び下面から、それぞれに3000mJの紫外線を照射した硬化物の、表層1μmを切削して得られた断面のAFMによる動的粘弾性マッピング測定において、2,000Hzにおける貯蔵弾性率が100MPa以上500MPa以下である領域(A2)と、2,000Hzにおける貯蔵弾性率が3MPa以上15MPa以下である領域(B2)と、を少なくとも有する。
 これにより、第2実施形態のフレキソ印刷原版から得られるフレキソ印刷版のべた部と網点部の印刷品質の両立が可能になる。
(AFMによる動的粘弾性マッピング測定)
 第2実施形態のAFMによる動的粘弾性マッピング測定は次のように測定することができる。
 フレキソ印刷原版を構成する感光性樹脂組成物層を、フレキソ印刷原版から取り出し、1.5mm厚に成形し、上面及び下面からそれぞれ3000mJの紫外線を照射することで硬化物を得る。
 次に、得られた感光性樹脂組成物の硬化物を-180℃で凍結させ、該感光性樹脂組成物の硬化物の表層をウルトラミクロトーム(Leica社製)で1μm程度切削して平滑断面を出す。該平滑断面に対し、Bruker社製のNanoScope V / Dimension Iconを用い、10μm角のAFM像を得る。次に、同じ測定範囲でAFM-DMAモードで縦64×横64の合計4096点の動的粘弾性のマッピングデータを取得する。測定温度は25℃で、測定周波数は2,000Hzとする。測定プローブは、測定する貯蔵弾性率の数値によって適切に選択する必要があるが、本実施形態においては、RTESPA-150-30及びRTESPA-300-30を用いる。
 第2実施形態のAFMによる動的粘弾性マッピング測定の詳説は、第1実施形態の動的粘弾性マッピング測定に関する記載を適用することできる。第2実施形態の領域(A2)は、第1実施形態における領域(A1)として、第2実施形態の領域(B2)は、第1実施形態における領域(B1)として、第2実施形態の領域(C2)は、第1実施形態における領域(C1)として、適用することができる。
 そのため、第1実施形態と同様の理由により、上記硬化物は、AFMによる動的粘弾性マッピング測定において、さらに2,000Hzにおける貯蔵弾性率が15MPa超過100MPa未満である領域(C2)を有することが好ましい。
 また、上記硬化物はAFMによる動的粘弾性マッピング測定において、上記領域(A2)の面積率が、上記断面の総面積に対して3面積%以上30面積%以下であり、上記領域(B2)の面積率が、上記断面の総面積に対して35面積%以上70面積%以下であり、上記領域(C2)の面積率が、上記断面の総面積に対して20面積%以上40面積%以下であることが好ましい。
 本実施形態の領域(B2)の面積率に対する領域(A2)の面積率の比率(A2/B2)は、大きいほど芯材の割合が多いので網点の欠けやスラーを抑制でき、小さいほど印刷基材への追従性が高まり、インキ乗りが向上する。
 以上の観点から、上記領域(B2)の面積率に対する上記領域(A2)の面積率の比率(A2/B2)は、0.05以上1.0以下であることが好ましく、0.1以上1.0以下であることがより好ましく、0.2以上0.9以下がさらに好ましく、0.3以上0.8以下であることがよりさらに好ましく、0.3以上0.7以下であることが特に好ましい。
 以下、第2実施形態の感光性樹脂組成物の構成について詳説する。
<重合体粒子(i)>
 重合体粒子(i)は、単量体が内部架橋した重合体粒子である。このような重合体粒子としては、特に限定されないが、例えば、乳化重合により、重合体粒子を分散質として水中に分散した水分散性ラテックスを調製し、得られた水分散性ラテックスから水を取り除いて得られるものが挙げられる。
 上記重合体粒子(i)は、比較的貯蔵弾性率が大きい粒子であるため、上記領域(A1)及び(A2)を形成して、感光性樹脂組成物の中で芯材の役割を担う。これにより、ロングラン印刷時や過印圧条件でも網点の欠けやスラーを抑制することができる。
 上記重合体粒子(i)のガラス転移温度は、-50℃以上―10℃以下であることが好ましい。これにより、上記AFMによる動的粘弾性マッピング測定において、2,000Hzの周波数帯近傍にtanδのピークが現れることで、同周波数帯で貯蔵弾性率を大きくすることができ、上記領域(A1)及び(A2)を形成することができる。
 上記重合体粒子(i)のTgは、大きいほど上記領域(A1)及び(A2)の貯蔵弾性率及び面積率が大きくなる傾向にあり、網点の欠けやスラーを抑制できる。かかる観点から、上記重合体粒子(i)のTgは、-50℃以上であり、-45℃以上が好ましく、-40℃以上がさらに好ましい。
 一方で、上記重合体粒子(i)のTgは、小さいほど上記領域(A1)及び(A2)の貯蔵弾性率及び面積率が小さくなる傾向にあり、印刷基材への追従性を高めて、紙パッケージに対するインキ乗りを向上できる。かかる観点から、上記重合体粒子(i)のTgは、-10℃以下であり、-15℃以下が好ましく、-20℃以下がさらに好ましい。
 上記重合体粒子(i)のTgは、動的粘弾性測定により求めることができる。詳細な測定方法は、後述する実施例に記載のとおりである。但し、サンプルの性質によって実施例記載の方法で試験片を作成することができない場合は、Tgは熱分析によっても求めることができる。
 なお、重合体粒子(i)は、市販品を用いることができる。市販品の場合には、Tgはカタログデータや、公知文献を採用することができる。
 感光性樹脂組成物における上記重合体粒子(i)の添加量は、上記領域(A1)及び(A2)の面積率を大きくして、網点の欠けやスラーを抑制する観点からは、多いことが好ましい。具体的には、上記感光性樹脂組成物層全体を100質量%としたとき、3質量%以上が好ましく、10質量%以上がより好ましく、15質量%以上が特に好ましい。
 一方で、感光性樹脂組成物における上記重合体粒子(i)の添加量は、上記領域(A1)及び(A2)の面積率を小さくして、紙パッケージに対するインキ乗りを向上させる観点からは、少ないことが好ましい。具体的には、上記感光性樹脂組成物層全体を100質量%としたとき、35質量%以下が好ましく、33質量%以下がより好ましく、30質量%以下が特に好ましい。
 重合体粒子(i)を構成する単量体としては、重合性二重結合を有するものであれば特に限定されないが、例えば、一塩基酸単量体、多塩基酸単量体、共役ジエン、芳香族ビニル化合物、(メタ)アクリル酸エステル、水酸基を有する単量体、不飽和二塩基酸アルキルエステル、無水マレイン酸、シアン化ビニル化合物、(メタ)アクリルアミド及びその誘導体、ビニルエステル類、ビニルエーテル類、ハロゲン化ビニル類、アミノ基を有する塩基性単量体、ビニルピリジン、オレフィン、ケイ素含有α,β-エチレン性不飽和単量体、アリール化合物等が挙げられる。また、重合体粒子(i)を構成する単量体には、後述する乳化重合において用いる反応性乳化剤が含まれていてもよい。
 上記の重合体粒子(i)を構成する単量体の中でも、芳香族ビニル化合物、共役ジエン化合物、(メタ)アクリル酸エステルで構成されることが好ましい。
 芳香族ビニル化合物を含むことにより、重合体粒子中に物理架橋点を形成することで貯蔵弾性率を高めて領域(A1)及び(A2)を形成でき、網点の欠けやスラーを抑制することができる。
 共役ジエンを含むことにより、重合体粒子のTgを小さくする設計が容易となる。また、共役ジエンの不飽和結合を介して感光性樹脂組成物中の光重合性化合物と反応することで、領域(A1)及び領域(A2)の貯蔵弾性率を高めて、網点の欠けやスラーを抑制することができる。
 (メタ)アクリル酸エステルを含むことにより、重合体粒子のTgを狙いの数値範囲に設計することが容易となる。
 芳香族ビニル化合物としては、特に限定されないが、例えば、スチレン、α-メチルスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、エチルスチレン、ビニルトルエン、ビニルキシレン、ブロモスチレン、ビニルベンジルクロリド、p-t-ブチルスチレン、クロロスチレン、アルキルスチレン、ジビニルベンゼン、トリビニルベンゼン等が挙げられる。
 上記芳香族ビニル化合物の中でも、熱可塑性エラストマー(ii)との相溶性の観点から、スチレンが特に好ましい。
 芳香族ビニル化合物の含有量は、Tgを高めることで領域(A1)及び(A2)の面積率を大きくし、網点のスラーを抑制する観点からは多い方が好ましい。重合体粒子(i)の総量に対して、好ましくは12質量%以上であり、より好ましくは15質量%以上であり、さらに好ましくは20質量%以上である。一方、柔軟性を高める観点からは少ないほうが好ましい。重合体粒子(i)の総量に対して、好ましくは40質量%以下であり、より好ましくは35質量%以下であり、さらに好ましくは30質量%以下である。
 共役ジエンとしては、特に限定されないが、例えば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、2-エチル-1,3-ブタジエン、2-メチル-1,3-ブタジエン、1,3-ペンタジエン、クロロプレン、2-クロル-1,3-ブタジエン、シクロペンタジエン等が挙げられる。
 上記芳香族ビニル化合物の中でも、熱可塑性エラストマー(ii)との相溶性の観点から、1,3-ブタジエンが特に好ましい。
 共役ジエンの含有量は、柔軟性を高める観点からは多いほうが好ましく、網点の欠けやスラー抑制の観点からは少ない方が好ましい。これらのバランスを考慮すると、重合体粒子(i)の総量に対して、好ましくは25質量%以上60質量%以下であり、より好ましくは30質量%以上55質量%以下であり、さらに好ましくは35質量%以上50質量%以下である。
 (メタ)アクリル酸エステルとしては、特に限定されないが、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、n-アミル(メタ)アクリレート、イソアミルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ドデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、2-エチル-ヘキシル(メタ)アクリレート、グリシジル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、1,4-ブチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、1,5-ペンタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、アリール(メタ)アクリレート、ビス(4-アクリロキシポリエトキシフェニル)プロパン、メトキシポリエチリングリコール(メタ)アクリレート、β-(メタ)アクリロイルオキシエチルハイドロジェンフタレート、β-(メタ)アクリロイルオキシエチルハイドロジェンサクシネート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、ステアリル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、2-ヒドロキシ-1,3-ジ(メタ)アクリロキシプロパン、2,2-ビス[4-((メタ)アクリロキシエトキシ)フェニル]プロパン、2,2-ビス[4-((メタ)アクリロキシ-ジエトキシ)フェニル]プロパン、2,2-ビス[4-((メタ)アクリロキシ-ポリエトキシ)フェニル]プロパン、イソボルニル(メタ)アクリレート等が挙げられる。
 (メタ)アクリル酸エステルの数平均分子量は、Tgを狙いの数値範囲に調整する観点から、100以上1000以下であることが好ましく、150以上500以下であることがより好ましい。
 一方で、(メタ)アクリル酸エステルの数平均分子量は、乳化重合時の混合液中での相溶性と反応性の観点から、数平均分子量は小さいほうが好ましい。1000以下が好ましく、500以下がより好ましく、400以下がさらに好ましく、300以下が特に好ましい。
 (メタ)アクリル酸エステルは、Tgを狙いの数値範囲に調整する観点から、エステル部分は、鎖状構造の炭化水素で構成されていることが好ましい。直鎖状であっても分岐構造を有していてもよい。
 (メタ)アクリル酸エステルの含有量は、重合体粒子(i)の総量に対して、好ましくは10質量%以上45質量%以下であり、より好ましくは15質量%以上40質量%以下であり、さらに好ましくは20質量%以上36質量%以下である。
 上記重合体粒子(i)を構成する単量体単位は、100質量部の共役ジエン化合物単量体単位に対し、40質量部以上120質量部以下の芳香族ビニル化合物単量体単位と、25質量部以上140質量部以下の(メタ)アクリル酸エステル単量体単位を含むことが好ましい。これにより、Tgと貯蔵弾性率を狙いの数値範囲に設計することができる。
 より狙いの数値範囲に設計しやすいという観点から、芳香族ビニル化合物単量体単位は、40質量部以上160質量部以下が好ましく、80質量部以上160質量部以下がより好ましい。また、(メタ)アクリル酸エステル単量体単位は、25質量部以上140質量部以下が好ましく、60質量部以上135質量部以下がより好ましく、65質量部以上130質量部以下が特に好ましい。
 一塩基酸単量体としては、特に限定されないが、例えば、アクリル酸、メタクリル酸、クロトン酸、ビニル安息香酸、桂皮酸等のカルボキシル基を有する単量体;スチレンスルホン酸等のスルホン酸基を有する単量体が挙げられる。
 一塩基酸単量体の含有量は、重合体粒子(i)の総量に対して、好ましくは1質量%以上30質量%以下であり、より好ましくは2質量%以上20質量%以下であり、さらに好ましくは3質量%以上15質量%以下であり、よりさらに好ましくは5質量%以上10質量%以下である。
 多塩基酸単量体としては、特に限定されないが、例えば、イタコン酸、フマル酸、マレイン酸、シトラコン酸、ムコン酸等の2以上のカルボキシル基を有する単量体;酸無水物基を有する単量体;その他、リン酸基の多塩基酸基を有する単量体が挙げられる。
 水酸基を有する単量体としては、特に限定されないが、例えば、アクリル酸2-ヒドロキシエチル、メタクリル酸2-ヒドロキシエチル、アクリル酸2-ヒドロキシプロピル、メタクリル酸2-ヒドロキシプロピル、アクリル酸1-ヒドロキシプロピル、メタクリル酸1-ヒドロキシプロピル、ヒドロキシシクロヘキシル(メタ)アクリレート等のエチレン系モノカルボン酸アルキルエステル単量体が挙げられる。
 不飽和二塩基酸アルキルエステルとしては、特に限定されないが、例えば、クロトン酸アルキルエステル、イタコン酸アルキルエステル、フマル酸アルキルエステル、マレイン酸アルキルエステル等が挙げられる。
 シアン化ビニル化合物としては、特に限定されないが、例えば、アクリロニトリル、メタクリロニトリル等が挙げられる。
 (メタ)アクリルアミド及びその誘導体としては、特に限定されないが、例えば、(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-アルコキシ(メタ)アクリルアミド等が挙げられる。
 ビニルエステル類としては、特に限定されないが、例えば、酢酸ビニル、ビニルブチレート、ビニルステアレート、ビニルラウレート、ビニルミリステート、ビニルプロピオネート、バーサティク酸ビニル等が挙げられる。
 ビニルエーテル類としては、特に限定されないが、例えば、メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル、ブチルビニルエーテル、アミルビニルエーテル、ヘキシルビニルエーテル等が挙げられる。
 ハロゲン化ビニル類としては、特に限定されないが、例えば、塩化ビニル、臭化ビニル、フッ化ビニル、塩化ビニリデン、フッ化ビニリデン等が挙げられる。
 アミノ基を有する塩基性単量体としては、特に限定されないが、例えば、アミノエチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート等が挙げられる。
 オレフィンとしては、特に限定されないが、例えば、エチレン等が挙げられる。
 ケイ素含有α,β-エチレン性不飽和単量体としては、特に限定されないが、例えば、ビニルトリクロルシラン、ビニルトリエトキシシラン等が挙げられる。
 アリール化合物としては、特に限定されないが、例えば、アリルエステル、ジアリルフタレート等が挙げられる。
 その他、トリアリルイソシアヌレート等の3個以上の二重結合を有する単量体も使用できる。
 これらの単量体は、1種のみを単独で用いてもよいし、2種以上を混合して用いてもよい。そのなかでも、一塩基酸単量体、多塩基酸単量体等の酸性基を有する単量体(以下、単に「酸性単量体」ともいう。)と、共役ジエン、芳香族ビニル化合物、(メタ)アクリル酸エステル等の疎水性基を有する単量体(以下、単に「疎水性単量体」ともいう)とを含むことが好ましい。なお、上記疎水性単量体に該当する共役ジエン、芳香族ビニル化合物、(メタ)アクリル酸エステルは、炭化水素基を有するものであり、水酸基等の親水性基を有するものは、(メタ)アクリル酸エステル等であっても疎水性単量体から除かれる。
 酸性単量体の含有量は、重合体粒子(i)の総量に対して、好ましくは1質量%以上30質量%以下であり、より好ましくは2質量%以上20質量%以下であり、さらに好ましくは3質量%以上15質量%以下であり、よりさらに好ましくは5質量%以上10質量%以下である。酸性単量体の含有量が1質量%以上とすることによって水系現像性能がより向上する傾向にある。また、30質量%以下とすることによって感光性樹脂組成物の水性インキの膨潤量の増加を防止し、ロングラン印刷時の品質を安定化することができる。
 また、疎水性基を有する単量体の含有量は、好ましくは70質量%以上99質量%以下であり、より好ましくは80質量%以上98質量%以下であり、さらに好ましくは85質量%以上97質量%以下であり、よりさらに好ましくは90質量%以上95質量%以下である。重合体粒子(i)がこのような組成を有することにより、感光樹脂組成物のゴム弾性がより向上し、紙パッケージに対するインキ乗りが良好な印刷が可能になる。
 上記重合体粒子(i)を構成する重合体としては、特に限定されないが、例えば、
 ポリブタジエン、アクリロニトリル-ブタジエン共重合体、スチレン-ブタジエン共重合体、(メタ)アクリレート-ブタジエン共重合体等のブタジエン骨格を有する重合体;ポリイソプレン、ポリクロロプレン等のイソプレン骨格を有する重合体;上記ブタジエン骨格又はイソプレン骨格を有する重合体に、カルボキシル基及び/又は水酸基を有する単量体がさらに重合した重合体;上記ブタジエン骨格又はイソプレン骨格を有する重合体に、(メタ)アクリル酸エステルがさらに重合した重合体;上記ブタジエン骨格又はイソプレン骨格を有する重合体に、(メタ)アクリル酸エステルと、カルボキシル基及び/又は水酸基を有する単量体とがさらに重合した重合体;ポリウレタン、ビニルピリジン重合体、ブチル重合体、チオコール重合体、アクリレート重合体、天然ゴムが挙げられる。
 なお、ここで、カルボキシル基を有する単量体とは、上記一塩基酸単量体及び/又は多塩基酸単量体を意味する。
 このなかでも、ブタジエン骨格を有する重合体、イソプレン骨格を有する重合体、及び、上記ブタジエン骨格又はイソプレン骨格を有する重合体に、芳香族ビニル化合物及び/又は(メタ)アクリル酸エステル及び/又はカルボキシル基及び/又は水酸基を有する単量体がさらに重合した重合体が好ましく、ブタジエン骨格を有する重合体に、芳香族ビニル化合物及び/又は(メタ)アクリル酸エステル及び/又はカルボキシル基及び/又は水酸基を有する単量体がさらに重合した重合体がより好ましい。重合体粒子(i)は、1種単独で用いても、2種以上を併用してもよい。
 重合体粒子(i)の平均粒径は、好ましくは500nm以下であり、より好ましくは100nm以下である。平均粒径が500nm以下であることにより、フレキソ印刷原版の水系現像性がより向上する傾向にある。
 また、重合体粒子(i)のトルエンゲル分率は、60%以上99%以下が好ましい。トルエンゲル分率が60%以上であると、網点部の耐欠け性を向上させることができる。トルエンゲル分率が99%以下であると、重合体粒子(i)と熱可塑性エラストマー(ii)との混合性が良好なものとなる傾向にある。 
 ここで、トルエンゲル分率とは、以下のように定義される。
 重合体粒子(i)の30質量%の分散液を、テフロン(登録商標)シートの上に適量垂らし、130℃で30分間乾燥させて重合体粒子(i)を0.5g取り、これを25℃のトルエン30mLに浸漬させる。その後、振とう器を用いて3時間振とうさせた後に320SUSメッシュで濾過して不通過分を得る。該不通過分を130℃1時間乾燥させた後の質量を0.5(g)で除することにより得られる質量分率(%)をトルエンゲル分率という。
(重合体粒子(i)の製造方法)
 重合体粒子(i)の合成方法は、特に限定されないが、例えば、乳化重合で合成された重合体であることが好ましい。重合体粒子(i)の乳化重合方法としては、重合可能な温度に調整された反応系に、あらかじめ所定量の水、乳化剤、その他添加剤を仕込み、この系に重合開始剤及び単量体、乳化剤、調整剤等を、回分操作あるいは連続操作で反応系内に添加する方法が挙げられる。また、乳化重合の反応系には所定量のシードラテックス、重合開始剤、単量体、その他の調整剤をあらかじめ仕込んでおいてもよい。
 また、単量体、乳化剤、その他の添加剤、調整剤を反応系へ添加する方法を工夫することによって、合成される重合体粒子の層構造を段階的に変えることも可能である。この場合、各層の構造を代表する物性としては、親水性、ガラス転移点、分子量、架橋密度等が挙げられる。また、この層構造の段階数は特に限定されない。
 以下、上記の単量体以外の各成分について説明する。
 乳化重合時に使用される乳化剤(界面活性剤)としては、特に限定されないが、例えば、反応性乳化剤及び/又は非反応性乳化剤が挙げられる。このなかでも、反応性乳化剤を用いることが好ましい。
 反応性乳化剤としては、分子構造中にラジカル重合性の二重結合、親水性官能基及び疎水性基を含み、一般の乳化剤と同様に、乳化、分散、及び湿潤機能を持つ反応性乳化剤が好ましい。このなかでも、当該反応性乳化剤以外の全単量体100質量部に対して反応性乳化剤を0.1質量部以上用いた場合に、得られる重合体粒子の平均粒径が5nm以上500nm以下となる乳化剤(界面活性剤)が好ましい。
 反応性乳化剤が有する親水性官能基としては、特に限定されないが、例えば、硫酸基、硝酸基、燐酸基、ホウ酸基、カルボキシル基等のアニオン性基;アミノ基等のカチオン性基;ポリオキシエチレン、ポリオキシメチレン、ポリオキシプロピレン等のポリオキシアルキレン鎖構造等;又は水酸基等が挙げられる。これら親水性官能基の種類により、反応性乳化剤はアニオン性乳化剤、ノニオン性乳化剤、カチオン性乳化剤、又は両性乳化剤等に分類できる。
 反応性乳化剤が有する疎水性基としては、特に限定されないが、例えば、アルキル基、フェニル基等が挙げられる。また、反応性乳化剤が有するラジカル重合性の二重結合としては、特に限定されないが、例えば、ビニル基、アクリロイル基、あるいはメタアクリロイル基等が挙げられる。また、分子構造中のラジカル重合性の二重結合、親水性官能基及び疎水性基は、各々、複数の種類が含まれていてもよい。
 反応性乳化剤は、市販されている界面活性剤を使用することができ、市販のアニオン界面活性剤としては、特に限定されないが、例えば、アデカリアソープSE(ADEKA社製)、アクアロンHSやBCやKH(第一工業製薬社製)、ラテムルS(花王社製)、アントックスMS(日本乳化剤社製)、アデカリアソープSDXやPP(ADEKA社製)、ハイテノールA(第一工業製薬社製)、エレミノールRS(三洋化成工業社製)、スピノマー(東洋曹達工業社製)等を挙げられる。また、市販の非イオン界面活性剤としては、特に限定されないが、例えば、アクアロンRNやノイゲンN(第一工業製薬社製)、アデカリアソープNE(ADEKA社製)等が挙げられる。これらは、1種のみを単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 反応性乳化剤の使用量は、原料の仕込み量から算出される重合体粒子(i)100質量部に対して、1質量部以上20質量部以下が好ましい。反応性乳化剤の使用量が1質量部以上であると、得られる印刷版の画像再現性が向上する傾向にある。また、反応性乳化剤の使用量が20質量部以下であると、得られる印刷版の耐印刷性が向上する傾向にある。
 非反応性乳化剤としては、特に限定されないが、例えば、脂肪酸せっけん、ロジン酸せっけん、スルホン酸塩、サルフェート、リン酸エステル、ポリリン酸エステル、サリコジン酸アシル等のアニオン界面活性剤;ニトリル化油脂誘導体、油脂誘導体、脂肪酸誘導体、α-オレフィン誘導体等のカチオン界面活性剤;アルコールエトキシレート、アルキルフェノールエトキシレート、プロポキシレート、脂肪族アルカノールアミド、アルキルポリグリコシド、ポリオキシエチレンソルビタン脂肪酸エステル、オキシエチレンオキシプロピレンブロックコポリマー等のノニオン界面活性剤が挙げられる。これらは、1種類のみを単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 上記スルホン酸塩としては、特に限定されないが、例えば、アルキルスルホン酸塩、アルキル硫酸塩、アルキルスルホコハク酸塩、ポリオキシエチレンアルキル硫酸塩、スルホン化油脂、アルキルジフェニルエーテルジスルホン酸塩、α-オレフィンスルホン酸塩、アルキルグリセリルエーテルスルホン酸塩、N-アシルメチルタウリン酸塩等が挙げられる。また、上記以外の非反応性乳化剤の例としては、特に限定されないが、例えば、「界面活性剤ハンドブック(高橋、難波、小池、小林:工学図書、1972)」に記載されているものが挙げられる。
 非反応性乳化剤の使用量は、原料の仕込み量から算出される重合体粒子(i)100質量部に対して、1質量部未満が好ましい。非反応性乳化剤の使用量が1質量部未満であることによって、得られる印刷版が適切な水膨潤率を有し、インキ付着時の耐摩耗性の低下及び吸湿後の画像再現性の低下を防ぐことができる。
 上記重合開始剤としては、特に限定されないが、例えば、ラジカル重合開始剤が挙げられる。ラジカル重合開始剤としては、特に限定されないが、例えば、熱又は還元性物質の存在下でラジカル分解して、単量体の付加重合を開始させるものであり、無機系開始剤及び有機系開始剤のいずれも使用できる。
 上記ラジカル重合開始剤としては、特に限定されないが、例えば、水溶性又は油溶性のペルオキソ二硫酸塩、過酸化物、アゾビス化合物等が挙げられ、具体的にはペルオキソ二硫酸カリウム、ペルオキソ二硫酸ナトリウム、ペルオキソ二硫酸アンモニウム、過酸化水素、t-ブチルヒドロペルオキシド、過酸化ベンゾイル、2,2-アゾビスブチロニトリル、クメンハイドロパーオキサイド等が挙げられる。また、上記ラジカル重合開始剤としては、POLYMER HANDBOOK (3rd edition)、J.Brandrup及びE.H.Immergut著、John Willy&Sons刊(1989)に記載されている化合物も使用することができる。また、酸性亜硫酸ナトリウム、アスコルビン酸やその塩、エリソルビン酸やその塩、ロンガリット等の還元剤を重合開始剤に組み合わせて用いる、いわゆるレドックス重合法を採用することもできる。これらの中で、ペルオキソ二硫酸塩が重合開始剤として好適である。
 重合開始剤の使用量は、重合体粒子(i)の重合に用いられる単量体全量に対して、好ましくは0.1質量%以上5.0質量%以下であり、より好ましくは0.2質量%以上3.0質量%以下である。重合開始剤の使用量が0.1質量%以上であると、重合体粒子(i)の合成時に高い安定性が得られる。また、重合開始剤の使用量が5.0質量%以下であると感光性樹脂組成物の吸湿量を、実用上良好な範囲に抑制することができる。
 重合体粒子(i)の重合工程においては、公知の連鎖移動剤を用いることができる。連鎖移動剤としては、硫黄元素を含む連鎖移動剤を好適に用いることができる。硫黄元素を含む連鎖移動剤としては、特に限定されないが、例えば、t-ドデシルメルカプタン、n-ドデシルメルカプタン等のアルカンチオール;メルカプトエタノール、メルカプトプロパノール等のチオアルキルアルコール;チオグリコール酸、チオプロピオン酸等のチオアルキルカルボン酸;チオグリコール酸オクチルエステル、チオプロピオン酸オクチルエステル等のチオカルボン酸アルキルエステル;ジメチルスルフィド、ジエチルスルフィド等のスルフィド;が挙げられる。
 その他の連鎖移動剤としては、特に限定されないが、例えば、ターピノーレン、ジペンテン、t-テルピネン及び四塩化炭素等のハロゲン化炭化水素を挙げることができる。これらの連鎖移動剤中で、連鎖移動速度が大きく、また得られる重合物の物性バランスが良好であることから、アルカンチオールが好ましい。これらの連鎖移動剤は、1種のみを単独で用いてもよく、2種以上を混合して用いてもよい。
 これらの連鎖移動剤は単量体に混合して反応系に供給するか、単独で所定の時期に所定量添加される。これらの連鎖移動剤の使用量は、重合体粒子(i)の重合に用いられる単量体全量に対して、好ましくは0.1質量%以上10質量%以下である。0.1質量%以上とすることにより、感光性樹脂組成物の混合を行う際の加工性が良好なものとなり、10質量%以下とすることにより、重合体粒子(i)の数平均分子量を実用上十分なものとすることができる。
 重合体粒子(i)の重合には、必要に応じて重合反応抑制剤を用いることができる。重合反応抑制剤とは、乳化重合系に添加することにより、ラジカル重合速度を低下させる化合物である。重合反応抑制剤とは、より具体的には、重合速度遅延剤、重合禁止剤、ラジカル再開始反応性が低い連鎖移動剤、及びラジカル再開始反応性が低い単量体である。重合反応抑制剤は、一般に、重合反応速度の調整及びラテックス物性の調整に用いられる。これらの重合反応抑制剤は回分操作あるいは連続操作で反応系に添加される。重合反応抑制剤を用いた場合、ラテックス被膜の強度が向上し、耐刷性が向上する。反応メカニズムの詳細は不明であるが、重合反応抑制剤は重合体の立体構造に密接に関与していると考えられ、このことによりラテックス被膜の物性の調整に効果があるものと推定される。
 重合反応抑制剤としては、特に限定されないが、例えば、o-,m-,あるいはp-ベンゾキノン等のキノン類;ニトロベンゼン、o-,m-,あるいはp-ジニトロベンゼン等のニトロ化合物;ジフェニルアミンのようなアミン類;第三ブチルカテコールのようなカテコール誘導体;1,1-ジフェニルエチレンあるいはα-メチルスチレン、2,4-ジフェニル-4-メチル-1-ペンテン等の1,1-ジ置換ビニル化合物;2,4-ジフェニル-4-メチル-2-ペンテン、シクロヘキセン等の1,2-ジ置換ビニル化合物;等が挙げられる。この他にも、「POLYMER HANDBOOK 3rd Ed.(J.Brandup,E.H.Immergut:John Wiley & Sons,1989)」、「改訂高分子合成の化学(大津:化学同人、1979)」に重合禁止剤あるいは重合抑制剤として記載されている化合物が挙げられる。
 これらの中でも、2,4-ジフェニル-4-メチル-1-ペンテン(α-メチルスチレンダイマー)が反応性の観点から特に好ましい。これらの重合反応抑制剤は、1種のみを単独で用いてもよく、2種以上を混合して用いてもよい。
 これらの重合反応抑制剤の使用量は、重合体粒子(i)の重合に用いられる単量体全量に対して、好ましくは10質量%以下である。10質量%以下とすることにより、実用上十分な重合速度が得られる傾向にある。
 重合体粒子(i)の合成の際には、必要に応じて、pH調整剤やキレート剤等の各種重合調整剤を添加することができる。
 pH調整剤としては、特に限定されないが、例えば、水酸化ナトリウム、水酸化カリウム、水酸化アンモニウム、炭酸水素ナトリウム、炭酸ナトリウム、リン酸水素二ナトリウム等が挙げられる。
 また、キレート剤としては、特に限定されないが、例えば、エチレンジアミン四酢酸ナトリウム等の等が挙げられる。
 さらに、その他の添加剤としては、アルカリ感応ラテックス、ヘキサメタリン酸等の減粘剤、ポリビニルアルコール、カルボキシメチルセルロース等の水溶性高分子、増粘剤、各種老化防止剤、紫外線吸収剤、防腐剤、殺菌剤、消泡剤、ポリアクリル酸ナトリウム等の分散剤、耐水化剤、亜鉛華等の金属酸化物、エポキシ化合物等の架橋剤、イソシアネート系化合物、滑剤、保水剤等の各種添加剤を添加してもよい。
 これらの添加剤の添加方法は特に限定されず、重合体粒子(i)の合成時、合成後に関わらず添加することができる。
 重合体粒子(i)を乳化重合により作製する場合における重合温度は、通常60℃以上120℃以下である。また、レドックス重合法等により、より低い温度で重合を行ってもよい。さらに酸化還元触媒として、金属触媒、特に限定されないが、例えば、2価の鉄イオン、3価の鉄イオン、銅イオン等を共存させてもよい。
<熱可塑性エラストマー(ii)>
 第2実施形態における熱可塑性エラストマー(ii)とは、常温(25℃)においてゴム弾性を示すエラストマーであり、特に限定されないが、例えば、共役ジエン及び/又は芳香族ビニル化合物に由来する構成単位を有する熱可塑性ブロック共重合体、ポリブタジエン、ポリアクリロニトリル-ブタジエン、ポリウレタン系エラストマー等が挙げられる。熱可塑性エラストマーは、単独重合体でも共重合体でもよい。また、共重合体である場合には、熱可塑性エラストマーは、ランダム重合体でも、ブロック重合体でもよい。このなかでも、共役ジエンを主体とする少なくとも1個の重合体ブロックと、芳香族ビニル化合物を主体とする少なくとも1個の重合体ブロックとを含有する熱可塑性エラストマーが好ましい。
 本明細書を通じて用いられる「主体とする」という用語は、重合体ブロック中の60質量%以上が所定のモノマーにより構成されていることを意味する。
 上記熱可塑性エラストマー(ii)は、比較的貯蔵弾性率が小さい柔軟な結合剤であるため、上記領域(B1)及び(B2)を形成することができる。これにより、印刷基材への追従性が高まり、紙パッケージに対するインキ乗りが向上する。
 上記熱可塑性エラストマー(ii)のTgは、-95℃以上―60℃以下であることが好ましい。これにより、上記AFMによる動的粘弾性マッピング測定において、2,000Hzの周波数帯近傍の貯蔵弾性率を小さくすることができる。これにより、上記領域(B1)及び(B2)を形成することができる。
 上記熱可塑性エラストマー(ii)のTgは、小さいほど上記領域(B1)及び(B2)の貯蔵弾性率が小さくなる傾向にあり、印刷基材への追従性を高めて、紙パッケージに対するインキ乗りを向上させることができる。かかる観点から、上記熱可塑性エラストマー(ii)のTgは、-60℃以下であり、-70℃以下が好ましく、-80℃以下がさらに好ましい。
 上記熱可塑性エラストマー(ii)のTgは、小さいほど上記領域(B1)及び(B2)の貯蔵弾性率が大きくなる傾向にあり、網点の欠けを抑制させることができる。かかる観点から、上記熱可塑性エラストマー(ii)のTgは、-95℃以上であり、-90℃以上がより好ましい。
 熱可塑性エラストマー(ii)のTgは、動的粘弾性測定により求めることができる。詳細な測定方法は後述する実施例に記載のとおりである。
 なお、熱可塑性エラストマー(ii)は、市販品を用いることができる。市販品の場合には、Tgはカタログデータや、公知文献を採用することができる。
 感光性樹脂組成物における上記熱可塑性エラストマー(ii)の添加量は、上記領域(B1)及び(B2)の面積率を大きくして、紙パッケージに対するインキ乗りを向上させる観点からは、多いことが好ましい。具体的には、上記感光性樹脂組成物層全体を100質量%としたとき、20質量%以上が好ましく、25質量%以上がより好ましく、30質量%以上が特に好ましい。
 一方で、感光性樹脂組成物における上記熱可塑性エラストマー(ii)の添加量は、上記領域(B1)及び(B2)の面積率を小さくして、網点の欠けやスラーを抑制する観点からは、少ないことが好ましい。具体的には、上記感光性樹脂組成物層全体を100質量%としたとき、55質量%以下が好ましく、50質量%以下がより好ましく、45質量%以下が特に好ましい。
 上記感光性樹脂組成物層は、上記熱可塑性エラストマー(ii)に対する、上記重合体粒子(i)の質量比は、0.1以上1.0以下であることが好ましく、0.2以上0.8以下であることがより好ましく、0.3以上0.7以下であることが特に好ましい。
 これにより、上記領域(B2)の面積率に対する上記領域(A2)の面積率の比率(A2/B2)を狙いの数値範囲に設計することができ、柔軟性を維持したまま網点の欠けやスラーを抑制できる。
 共役ジエンを主体とする重合体ブロックにおいて、共役ジエン単位の含有量は、当該重合体ブロック中の80質量%以上が好ましく、90質量%以上がより好ましい。
 共役ジエンとしては、特に限定されないが、例えば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、2-メチル-1,3-ペンタジエン、1,3-ヘキサジエン、4,5-ジエチル-1,3-オクタジエン、3-ブチル-1,3-オクタジエン、クロロプレン等の単量体が挙げられる。このなかでも、特に1,3-ブタジエンが耐磨耗性の観点から好ましい。これらの単量体は、1種のみを単独で用いても、2種以上を併用してもよい。
 共役ジエンを主体とする重合体ブロックにおいて、ビニル含有量は印刷版形成性の観点から、共役ジエン単位の総量に対して、5mol%以上50mol%以下が好ましく、8mol%以上50mol%以下がより好ましく、10mol%以上~40mol%以下がさらに好ましい。ここで、「ビニル含有量」とは、特に限定されないが、例えば、1,2-ブタジエンや3,4-イソプレンの含有量をいう。
 共役ジエンを主体とする重合体ブロックの数平均分子量は、耐刷性の観点から、20,000以上250,000以下が好ましく、30,000以上200,000以下がより好ましく、40,000以上150,000以下がさらに好ましい。
 数平均分子量は、ゲル浸透カラムクロマトグラフィー(GPC)によって求めることができる。詳細な方法は、後述する実施例に記載のとおりである。
 共役ジエンを主体とする重合体ブロックは、アルキレン単位を含有してもよい。当該アルキレン単位の導入方法は特に限定されないが、共役ジエンを主体とする重合体ブロックの原料モノマーとしてエチレンやブチレン等のモノオレフィンを用いて重合する方法や、共役ジエン重合体ブロックを水素添加する方法等が挙げられる。特に、入手しやすさの観点から、共役ジエンを主体とする重合体ブロックを水素添加する方法が好ましい。
 共役ジエンを主体とする重合体ブロックにおいて、アルキレン単位の含有量は、重合体ブロックを構成する単量体単位の総量に対して、5mol%以上50mol%以下が好ましく、10mol%以上35mol%以下がより好ましく、10mol%以上25mol%以下がさらに好ましい。アルキレン単位の含有量が5mol%以上であることにより耐溶剤性がより向上する傾向にある。また、アルキレン単位の含有量が50mol%以下であることにより、感光性樹脂組成物層の透明性がより向上する傾向にある。
 共役ジエンを主体とする重合体ブロックは、アルキレン単位を含有することが好ましく、1,4-ブタジエン単位、1,2-ブタジエン(ビニル)単位及びブチレン(アルキレン)単位のすべてを含有することがより好ましい。この際、共役ジエンを主体とする重合体ブロックは、1,4-ブタジエン単位25mol%以上70mol%以下と、1,2-ブタジエン(ビニル)単位0mol%以上50mol%以下と、ブチレン単位10mol%以上50mol%以下と、を含有することがさらに好ましい。このような重合体ブロックは、ブタジエンを主体とする重合体ブロック部を水素添加することにより得ることができる。
 なお、共役ジエン、共役ジエンのビニル含有量及び芳香族ビニル化合物の含有量や比率は、核磁気共鳴装置(H-NMR)を用いて測定することができる。
 芳香族ビニル化合物としては、特に限定されないが、例えば、スチレン、t-ブチルスチレン、ジビニルベンゼン、1,1-ジフェニルスチレン、N,N-ジメチル-p-アミノエチルスチレン、N,N-ジエチル-p-アミノエチルスチレン、ビニルピリジン、p-メチルスチレン、第三級ブチルスチレン、α-メチルスチレン、1,1-ジフェニルエチレン等の単量体が挙げられる。特に、フレキソ印刷原版を比較的低温で平滑に成型できることから(以下、「高成型性」ともいう)、スチレンが好ましい。これらの単量体は、1種のみを単独で用いても、2種以上を併用してもよい。
 芳香族ビニル化合物を主体とする重合体ブロックの数平均分子量は、印刷版に配向性を出さないようにする観点から100,000以下が好ましく、製版時や印刷時の耐欠け性の観点から、3,000以上が好ましい。ビニル芳香族炭化水素を主体とする重合体ブロックの数平均分子量は、5,000以上80,000以下がより好ましく、5,000以上60,000以下がさらに好ましい。
 ブロック共重合体中の芳香族ビニル化合物の含有量は、ブロック共重合体の総量に対して、13質量%以上30質量%以下が好ましく、15質量%以上28質量%以下がより好ましく、16質量%以上25質量%以下がさらに好ましい。芳香族ビニル化合物の含有量が30質量%以下であることにより、感光性樹脂組成物の高成型性、印刷版の凸部の高い耐カケ性及びインキ成分が付着したとき印刷版硬度を高く維持できる傾向にある。一方、ビニル芳香族炭化水素の含有量が13質量%以上であることにより、フレキソ印刷原版の耐コールドフロー性がより向上する傾向にある。
<光重合性化合物(iii)>
 光重合性化合物(iii)とは、光重合可能な反応性基を有している化合物のことを指す。光重合性化合物としては、特に限定されないが、例えば、アクリル酸、メタクリル酸、フマル酸、マレイン酸等の酸のエステル類;アクリルアミドやメタクリルアミドの誘導体;アリルエステル、スチレン及びその誘導体;N置換マレイミド化合物等が挙げられる。
 光重合性化合物(iii)は感光性を持たせて任意の印刷したいパターンにレリーフ層を形成する観点からは、好適な構成要素である。
 光重合性化合物(iii)としては、特に限定されないが、例えば、1,6-ヘキサンジオール、1,9-ノナンジオール等のアルカンジオールのジアクリレート及びジメタクリレート;あるいはポリブタジエン、ポリイソプレン、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリエチレングリコール、ブチレングリコール、ジシクロペンタジエニルの(メタ)アクリレート及びジ(メタ)アクリレート;トリメチロールプロパントリ(メタ)アクリレート、ジメチロールトリシクロデカンジ(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、トリデシル(メタ)アクリレート、テトラデシル(メタ)アクリレート、ペンダデシル(メタ)アクリレート等のアルキル(メタ)アクリレート;イソボロニル(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、ペンタエリトリットテトラ(メタ)アクリレート、N,N’-ヘキサメチレンビスアクリルアミド及びメタクリルアミド、スチレン、ビニルトルエン、ジビニルベンゼン、ジアクリルフタレート、トリアリルシアヌレート、フマル酸ジエチルエステル、フマル酸ジブチルエステル、フマル酸ジオクチルエステル、フマル酸ジステアリルエステル、フマル酸ブチルオクチルエステル、フマル酸ジフェニルエステル、フマル酸ジベンジルエステル、マレイン酸ジブチルエステル、マレイン酸ジオクチルエステル、フマル酸ビス(3-フェニルプロピル)エステル、フマル酸ジラウリルエステル、フマル酸ジベヘニルエステル、N-ラウリルマレイミド等を挙げることができる。これらは1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 光重合性化合物(iii)は、反応性の観点から、(メタ)アクリロイル基を有する化合物が好ましい。一分子中に(メタ)アクリロイル基を2個有する二官能の光重合性化合物が特に好ましいが、目的に応じて単官能、三官能光重合性化合物を併用することも好ましい。
 光重合性化合物(iii)の含有量は、版形成性や耐欠け性を高めるためには多いほど好ましく、柔軟性を維持して紙パッケージに対するインキ乗りを向上させる観点からは少ない方が好ましい。以上のバランスを考慮すると、感光性樹脂組成物の全量を100質量%としたとき、5質量%以上30質量%以下が好ましく、8質量%以上25質量%以下がより好ましく、10質量%以上20質量%以下がさらに好ましい。
 第2実施形態の感光性樹脂組成物は、光重合性化合物(iii)として、数平均分子量が100以上1,000以下の光重合性化合物を含むことが好ましい。このように低分子量の光重合性化合物を含むことで、光硬化させた際に密な架橋を形成することができ、弾性率を高めて網点の耐欠け性を高めることができる。150以上800以下がより好ましく、200以上600以下がさらに好ましい。
 また、第2実施形態の感光性樹脂組成物は、光重合性化合物(iii)として、数平均分子量が2,000以上8,000以下の光重合性化合物を含むことが好ましい。このように高分子量の光重合性化合物を含むことで、光硬化させた際に架橋密度を高めずに樹脂組成物全体を架橋することが可能となり、柔軟性を維持したまま耐欠け性を高めることができる。これは詳細には明らかではなく、発明者らは下記のように推測している。ただし、その技術的メカニズムは下記により何ら限定されるものではない。
 まず、数平均分子量が2,000以上であることによって、架橋点間距離を大きくすることできる。これにより、本実施形態における領域(A1)及び(A2)、(B1)及び(B2)のような相分離構造の各領域をまたいで架橋することが可能となり、各領域界面での剥離現象を抑制することで耐欠け性が向上すると考えられる。
 かかる観点から、数平均分子量は2,000以上が好ましく、3,000以上がより好ましく、4,000以上が特に好ましい。
 また、架橋点間距離を長くする観点から、(メタ)アクリロイル基は、分子鎖の末端に修飾されていることが好ましい。
 上記の数平均分子量が2,000以上8,000以下の光重合性化合物は、主鎖が共役ジエン化合物であることが好ましい。高分子量の光重合性化合物は、その分子量の高さゆえ、感光性樹脂組成物中の他成分と相溶しにくいという課題があるが、主鎖が共役ジエン化合物であることで、重合体粒子(i)と熱可塑性エラストマー(ii)のいずれに対しても相溶性が高く、感光性樹脂組成物中に均一に分散、相溶することができる。さらに、一種の相溶化剤のように振る舞うことで、弾性率の高い重合体粒子(i)と弾性率の低い熱可塑性エラストマー(ii)が混ざり合った領域として、領域(C1)及び(C2)を形成することができる。これにより、領域(A1)と領域(B1)との間の弾性率の急峻な差による局所的な応力集中が起こることを抑制することができ、ロングラン印刷時の品質安定化と耐刷性向上の効果が得られると発明者らは推測している。ただし、その技術的メカニズムは上記により何ら限定されるものではない。
 かかる観点から、主鎖の構造には、ポリブタジエンを含むことが特に好ましい。
 また、相溶性の観点から数平均分子量は小さいほうが好ましく、数平均分子量8,000以下が好ましく、7,000以下がより好ましく、6,000以下がさらに好ましく、5,000以下が特に好ましい。
 数平均分子量は、ゲル浸透カラムクロマトグラフィー(GPC)によって求めることができる。詳細な方法は、後述する実施例に記載のとおりである。
 上記の数平均分子量が2,000以上8,000以下の光重合性化合物としては、特に限定されないが、例えば、BAC-45(大阪有機化学社製)や、ABU-2S(共栄社化学社製)、CN307(サートマー社製)や、CN9014NS(サートマー社製)等が挙げられる。
 感光性樹脂組成物における上記数平均分子量が2,000以上8,000以下の光重合性化合物の添加量は、上記領域(C1)及び(C2)の面積率を大きくして、ロングラン印刷時の耐刷性を向上させる観点からは、多いことが好ましい。具体的には、上記感光性樹脂組成物層全体を100質量%としたとき、1質量%以上が好ましく、3質量%以上がより好ましく、5質量%以上が特に好ましい。
 一方で、感光性樹脂組成物における上記重合体粒子(i)の添加量は、上記領域(C1)及び(C2)の面積率を小さくして、インキ乗りや網点品質を向上させる観点からは、少ないことが好ましい。具体的には、上記感光性樹脂組成物層全体を100質量%としたとき、20質量%以下が好ましく、15質量%以下がより好ましく、10質量%以下が特に好ましい。
<光重合開始剤(iv)>
 光重合開始剤(iv)とは、光のエネルギーを吸収し、ラジカルを発生する化合物であり、公知の各種のものを用いることができ、各種の有機カルボニル化合物や、特に芳香族カルボニル化合物が好適である。
 光重合開始剤(iv)は感光性を持たせて任意の印刷したいパターンにレリーフ層を形成する観点からは、好適な構成要素である。
 光重合開始剤(iv)としては、特に限定されないが、例えば、ベンゾフェノン、4,4-ビス(ジエチルアミノ)ベンゾフェノン、t-ブチルアントラキノン、2-エチルアントラキノン、2,4-ジエチルチオキサントン、イソプロピルチオキサントン、2,4-ジクロロチオキサントン等のチオキサントン類;ジエトキシアセトフェノン、ベンジルジメチルケタール、2,2-ジメトキシフェニルアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ベンジルジメチルケタール、1-ヒドロキシシクロヘキシル-フェニルケトン、2-メチル-2-モルホリノ(4-チオメチルフェニル)プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン等のアセトフェノン類;ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル等のベンゾインエーテル類;2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド等のアシルホスフィンオキサイド類;メチルベンゾイルホルメート;1,7-ビスアクリジニルヘプタン;9-フェニルアクリジン;2,6-ジ-t-ブチル-p-クレゾール;等が挙げられる。これらは1種のみを単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 光重合開始剤(iv)の含有量は、版形成性や耐欠け性を高めるためには多いほど好ましく、版内部まで均一に硬化させる観点からは少ない方が好ましい。以上のバランスを考慮すると、感光性樹脂組成物の全量を100質量%としたとき、0.5質量%以上15.0質量%以下が好ましく、1.0質量%以上10.0質量%以下がより好ましく、1.5質量%以上8.0質量%以下がさらに好ましい。
 また、光重合開始剤(iv)としては、崩壊型光重合開始剤及び水素引抜き型光重合開始剤を併用してもよい。印刷版の画像再現性や耐磨耗性が高いことから、感光性樹脂組成物中の水素引抜き型光重合開始剤の量は、1.0質量%以下が好ましく、0.5質量%以下がより好ましい。
<可塑剤(v)>
 本実施形態の感光性樹脂組成物は、可塑剤(v)として、上述した熱可塑性エラストマー(ii)と相溶性が良好な液状化合物を含有させてもよい。 
 可塑剤(v)としては、以下に限定されるものではないが、例えば、重量平均分子量500以上60000以下の、液状の1,2(又は1,4)-ポリブタジエン、1,2(又は1,4)-ポリイソプレン、液状アクリルニトリル-ブタジエン共重合体、液状スチレン-ブタジエン共重合体、さらにはこれらの末端変性品、ナフテン油、パラフィン油、数平均分子量2,000以下のポリスチレン、セバチン酸エステル、フタル酸エステルが挙げられる。 
 可塑剤(v)は、1種のみを単独で用いてもよく、2種以上を併用してもよい。 
 特に、上述した熱可塑性エラストマー(ii)としてスチレン-ブタジエン-スチレン共重合体を用いる場合、可塑剤としては、スチレン-ブタジエン-スチレン共重合体との混合性の観点から、液状1,2(又は1,4)-ポリブタジエン、1,2(又は1,4)-ポリイソプレン等の液状ジエンが好適である。液状ジエンとは液状の炭素・炭素二重結合を有する化合物であり、ジエン成分が50質量%以上の共重合体であるものとする。ここで、本明細書中、「液状ジエン」の「液状」とは、室温で流動変形し、かつ冷却により変形された形状に固化できるという性質を有する性状を意味し、外力を加えたときに、その外力に応じて瞬時に変形し、かつ外力を除いたときには、短時間に元の形状を回復する性質を有するエラストマーに対応する用語である。
 上記液状ジエンの1,2(又は1,4)-ポリブタジエンとしては、特に限定されないが、例えば、B1000、B2000、B3000(日本曹達製)、LBR-352、LBR-305、LBR-300(クラレ製)、POLYVEST110、130(EVONIK製)、Ricon152、Ricon153、Ricon156(サートマー製)等が挙げられ、上記液状の1,2(又は1,4)-ポリイソプレンとしては、特に限定されないが、例えば、LIR-30、LIR-50(クラレ製)等が挙げられる。
 可塑剤(v)の数平均分子量については、20℃において液状である限り、特に限定されないが、第2実施形態のフレキソ印刷原版の取扱性の観点から、好ましくは200以上60,000以下であり、より好ましくは300以上40,000以下であり、さらに好ましくは500以上30,000以下である。
 感光性樹脂組成物層における可塑剤(v)の含有量は、柔軟性を高める観点からは多いほうが好ましく、耐刷性を向上させる観点からは少ない方が好ましい。感光性樹脂組成物の全量を100質量%としたとき、10質量%以上50質量%が好ましく、15質量%以上45質量%以下がより好ましく、20質量%以上40質量%以下がさらに好ましい。
<安定剤(vi)>
 本実施形態の感光性樹脂組成物は、保管時や製造時の望まない反応を抑制するために、安定剤(vi)を含んでもよい。本実施形態の安定剤(vi)とは、重合禁止剤、老化防止剤、酸化防止剤、光安定剤、紫外線吸収剤、耐オゾン剤の意も含み、樹脂材料又はゴム材料の分野において通常使用されるものを用いることができる。
 具体的には、以下に限定されるものではないが、フェノール系、ホスファイト系、アミン系、チオエーテル系等の熱安定剤と、ベンゾフェノン系、サルチレート系、ベンゾトリアゾール系、アクリロニトリル系、金属錯塩系、ヒンダートアミン系の光安定剤等が挙げられる。
 上記熱安定剤としては、以下に限定されるものではないが、例えば、ハイドロキノン、P-メトキシフェノール、2,6-ジ-t-ブチルクレゾール、カテコール、t-ブチルカテコール、ビタミンE、テトラキス-(メチレン-3-(3',5'-ジ-t-ブチル-4'-ヒドロキシフェニル)プロピオネート)メタン、2,5-ジ-t-ブチルハイドロキノン、2-t-ブチル-6-(3-t-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート、ビス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)スルフィド、4,6-ビス(オクチルチオメチル)-o-クレゾール、2,6-ジ-t-ブチル-4-(4,6-ビス(オクチルチオ)-1,3,5-トリアジンー2-イルアミノ)フェノール、エチレレビス(オキシエチレン)ビス[3-(5-t-ブチル-4-ヒドロキシ-m-トリル)プロピオネート]、トリス(2,4-ジ―t-ブチルフェニル)ホスファイト等が挙げられる。中でも、光反応性を維持しつつ、高い熱安定性を実現できる材料として、ハイドロキノン、2,6-ジ-t-ブチルクレゾール、2-t-ブチル-6-(3-t-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート、ビス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)スルフィドが好ましい。
 上記光安定剤としては、以下に限定されるものではないが、例えば、2-(5-メチル-2-ヒドロキシフェニル)ベンゾトリアゾ-ル、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2H-ベンゾトリアゾール、2-(3,5)-ジ-t-ブチル-2-ヒドロキシフェニル)ベンゾトリアゾ-ル、2-エトキシ-2'-エチルオキザリックアシッドビスアニリド、2,2'-ジヒドロキシ-4-メトキシベンゾフェノン、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)ブタン-1,2,3,4-テトラカルボキシレート、セバシン酸ビス(1,2,2,6,6-ペンタメチルー4-ピペリジル)等が挙げられる。
 上記安定剤(vi)は、本実施形態の感光性樹脂組成物の全量を100質量%としたとき、0.05質量%以上10質量%以下含有することが好ましく、0.1質量%以上5質量%以下含有することがより好ましく、0.3質量%以上3質量%以下含有することがさらに好ましい。 
 感光性樹脂組成物中において、安定剤(vi)を0.05質量%以上含有することにより、樹脂混練時において、熱による予定していない重合反応を防ぐことができる。これにより、現像性の低下を防止することができる。また、10質量%以下であることにより、露光による硬化速度の低下を防止することができ、またはレリーフ形成時において微小なサイズの画像を形成することが可能となる。 
 光安定剤は、樹脂の感度、つまり光重合反応による硬化反応速度を調整するために添加する。これらの添加量についてはその物質の特定波長に対する吸光度により添加量が異なるため、適正な添加量の数値範囲は使用する材料によって選択する。 
 上記耐オゾン剤は、製版工程における殺菌灯での露光時に発生するオゾン、又は印刷において原反フィルムをインラインでコロナ処理する際に発生するオゾンによる劣化を抑制するために添加することが好ましい。これらの安定剤は、感光性樹脂の硬化感度を低下させる機能もあるため、添加量は重合禁止剤の量と合わせて調整することが好ましい。
<洗浄助剤(vii)>
 本実施形態の感光性樹脂組成物は、水現像性を高めるために、洗浄助剤(vii)を含有してもよい。本実施形態における洗浄助剤(vii)とは、界面活性剤、酸性基を有する重合体等の親水部を有していて水又はアルカリ水に溶解又は分散する化合物のことを指す。
 界面活性剤としては、特に限定されないが、例えば、イオン性界面活性剤、非イオン性界面活性剤、イオン性反応性界面活性剤、非イオン性反応性界面活性剤等を挙げることができる。
 界面活性剤としては、具体的には、特に限定されないが、例えば、ポリオキシエチレンスチレン化フェニルエーテル硫酸ナトリウム、ポリオキシアルキレン分岐デシルエーテル硫酸ナトリウム、ポリオキシエチレンイソデシルエーテル硫酸アンモニウム、ポリオキシエチレントリデシルエーテル硫酸ナトリウム、ポリオキシエチレンラウリルエーテル硫酸ナトリウム、ポリオキシエチレンラウリルエーテル硫酸アンモニウム、ポリオキシエチレンアルキルエーテル硫酸ナトリウム、ポリオキシエチレンオレイルセチルエーテル硫酸アンモニウム、ポリオキシエチレンオレイルセチルエーテル硫酸ナトリウム、ポリオキシエチレントリデシルエーテルリン酸エステル、ポリオキシエチレンアルキル(C2~C16)エーテルリン酸エステル、ポリオキシエチレンアルキル(C2~C16)エーテルリン酸エステル・モノエタノールアミン塩、アルキル(C2~C16)リン酸エステルナトリウム、アルキル(C2~16)リン酸エステル・モノエタノールアミン塩、ラウリルスルホコハク酸ジナトリウム、ポリオキシエチレンスルホコハク酸ラウリルジナトリウム、ポリオキシエチレンアルキル(C2~C20)スルホコハク酸ジナトリウム、直鎖アルキルベンゼンスルホン酸ナトリウム、直鎖アルキルベンゼンスルホン酸、アルファーオレフィンスルホン酸ナトリウム、フェノールスルホン酸、ジオクチルスルホコハク酸ナトリウム、ラウリル硫酸ナトリウム、高級脂肪酸カリウム塩等のアニオン系界面活性剤;アルキル(C8~C20)トリメチルアンモニウムクロライド、アルキル(C8~C20)ジメチルエチルアンモニウムクロライド、ジデシルジメチルアンモニウムクロライド、ラウリルジメチルベンジルアンモニウムクロライド、ステアリルジメチルヒドロキシエチルアンモニウムパラトルエンスルホネート、ステアリルジメチルアミノプロピルアミド、トリブチルベンジルアンモニウムクロライド、ラウリルジメチルアミノ酢酸ベタイン、ラウリル酸アミドプロピルベタイン、ヤシ油脂肪酸アミドプロピルベタイン、オクタン酸アミドプロピルベタイン、ラウリルジメチルアミンオキサイド等のイオン性界面活性剤;
ポリオキシアルキレントリデシルエーテル、ポリオキシエチレンイソデシルエーテル、ポリオキシアルキレンラウリルエーテル、ポリオキシアルキレンアルキルエーテル、ポリオキシアルキレンエーテルとポリエーテルポリオールの混合物、ポリエーテルポリオール、ポリオキシエチレンスルホン化フェニルエーテル、ポリオキシエチレンナフチルエーテル、フェノキシエタノール、ポリオキシエチレンフェニルエーテル、ポリオキシエチレンポリオキシプロピレングリコール、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンオレイルセチルエーテル、ポリオキシレチレンオレイン酸エステル、ポリオキシエチレンジステアリル酸エステル、イソステアリン酸ポリオキシエチレングリセリル、ポリオキシエチレン硬化ひまし油、ヤシ油脂肪酸ジエタノールアミド、ポリオキシエチレンアルキルアミン、ソルビタントリオレート、ソルビタンセスキオレート、ソルビタンモノオレート、ソルビタンモノココレート、ソルビタンモノカプレート、ポリオキシエチレンソルビタンモノココエート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタンモノオレート、オクチルポリグリコシド、ブチルポリグリコシド、ショ糖安息香酸エステル、ショ糖酢酸エステル、ショ糖脂肪酸エステルの非イオン性界面活性剤;ポリオキシエチレン-1-(アリルオキシメチル)アルキルエーテル硫酸アンモニウム、ポリオキシエチレンノニルプロペニルフェニルエーテル硫酸アンモニウム等のアニオン系反応性界面活性剤;ポリオキシエチレンノニルプロペニルフェニルエーテル等の非イオン性反応性界面活性剤;等が挙げられる。これらは単独で用いてもよいし、2種以上を組み合わせてもよい。
 界面活性剤は、市販品を用いることができ、市販品としては、特に限定されないが、例えば、アルキルエーテル構造を有する「ニューコールシリーズ」、「ニューコールNTシリーズ」(日本乳化剤製)、ノイゲンTDS、XL、TDX、SD、DKS-NLシリーズ(第一工業製薬製)、エマルミンシリーズ、サンノニックシリーズ(三洋化成製)等が挙げられる。 またポリオキシエチレン多環フェニルエーテル構造を有する「ニューコール7XXシリーズ」(日本乳化剤製)、ノイゲンEA-167(第一工業製薬)等も挙げられる。
 酸性基を有する重合体の「酸性基」としては、特に限定されないが、例えば、カルボキシル基、スルホン酸基、スルフィン酸基、硫酸基、リン酸基、ホスホン酸基、ホスフィン酸基、フェノール基等が挙げられる。これらの基の中ではカルボキシル基が好ましい。また、酸性基の構造における、アルカリ金属、NH等によって酸が中和される際に生成する中和塩の比率は、好ましくは30%以下、より好ましくは20%以下、さらに好ましくは10%以下である。中和塩の比率が30%以下であることにより、耐水性を高く保つことができる傾向にある。
 酸性基を有する重合体は、特に限定されないが、例えば、ポリイソプレン骨格、ポリブタジエン骨格、ポリビニル骨格、及びポリアクリレート骨格を有するポリマーが挙げられる。これらの中で、ポリアクリレート骨格を有するポリマーが好ましい。なお、酸性基を有する重合体の骨格は、IR測定することにより同定することができる。
 酸性基を有する重合体は、市販品を用いることができ、市販品としては、特に限定されないが、例えば、液状カルボン酸変性アクリルポリマー[Z250、ダイセル・オルネクス製][CB-3060、CB-3098、CBB-3060、綜研化学製]、[BR-605、三菱レーヨン製]、[アルフォンUC-3000、UC-3510東亜合成製]、[LIR-410,クラレ製]等が挙げられる。
 また、酸性基を有する重合体は、合成することによって調製することもでき、例えば、東亜合成研究年報、TREND,1999,第2号,20~26を参照して調製することができる。具体的には、特に限定されないが、例えば、酸性基を有する重合体は、アクリル酸と、過硫酸ナトリウム等の重合開始剤と、イソプロピルアルコール等の連鎖移動剤とを、反応させることによって、合成することができる。反応温度、重合開始剤及び連鎖移動剤の添加量を適宜調整することによって、酸価を制御することができる。
<シリコーン化合物(viii)>
 シリコーン化合物(viii)としては、シリコーンオイル、シランカップリング剤、シラン化合物、シリコーンゴム、シリコーン樹脂等が挙げられる。中でも、シリコーンオイルは表面に成分が移行しやすく、表面エネルギーを下げる効果が高いため好ましい。
 シリコーン化合物(viii)としては、特に限定されないが、例えば、ポリジメチルシロキサン、ポリジエチルシロキサン等のポリアルキルシロキサンを主鎖に有する化合物が挙げられる。また、シリコーン化合物(viii)は、ポリシロキサン構造を分子中の一部に有する化合物であってもよい。さらに、シリコーン化合物(viii)は、ポリシロキサン構造に特定の有機基を導入した化合物であってもよい。具体的には、ポリシロキサンの側鎖に有機基を導入した化合物、ポリシロキサンの両末端に有機基を導入した化合物、ポリシロキサンの片末端に有機基を導入した化合物、ポリシロキサンの側鎖と末端の両方に有機基を導入した化合物等を用いることができる。
 ポリシロキサン構造に導入する有機基としては、特に限定されないが、例えば、アミノ基、カルボキシル基、カルビノール基、アリール基、アルキル基、フェニル基、アルコキシカルボニル基、アルコキシ基、少なくとも1つのアリール基で置換された直鎖状あるいは分岐状アルキル基、ポリオキシアルキレン基(以下、ポリエーテル基ともいう)等が挙げられる。
 このなかでも、シリコーン化合物(viii)としては、ポリシロキサンを主骨格とし、少なくとも一つの末端及びまたは側鎖にアミノ基、ポリエーテル基、カルビノール基、フェニル基からなる群より選択される1種以上の基を有するシリコーンオイルがより好ましい。このようなシリコーン化合物(viii)を用いることにより、感光性樹脂組成物層の透明性がより向上する傾向にある。なお、このようなシリコーン化合物の市販品としては、特に限定されないが、例えば、信越化学製のKF-8000、KF-6000、KF-351、KF-50等が挙げられる。
 シリコーン化合物(viii)の含有量は、感光性樹脂組成物層の総量に対して、好ましくは0.1質量%以上5.0質量%以下であり、より好ましくは0.5質量%以上3.0質量%以下であり、さらに好ましくは0.5質量%以上2.0質量%以下である。
 特に、上述した熱可塑性エラストマー(ii)として芳香族ビニル-共役ジエン-芳香族ビニルブロック共重合体を用いる場合、感光性樹脂組成物層の透明性を向上させる観点から、シリコーン化合物(iv)の屈折率は、1.400以上1.700以下が好ましく、より好ましくは1.450以上1.650以下であり、さらに好ましくは1.500以上1.600以下である。
 <その他の化合物>
 本実施形態の感光性樹脂組成物は、その他の化合物として、染料・顔料等を含んでいてもよい。上記染料・顔料は、視認性向上のための着色手段として有効である。
 染料としては、以下に限定されるものではないが、例えば、水溶性である塩基性染料、酸性染料、直接染料等や、非水溶性である硫化染料、油溶染料、分散染料等が挙げられる。特にアントラキノン系、インジゴイド系、アゾ系構造の染料が好ましく、アゾ系油溶染料等がより好ましい。
 顔料としては、以下に限定されるものではないが、例えば、天然顔料、合成無機顔料、合成有機顔料等が挙げられ、合成有機顔料としては、アゾ系、トリフェニルメタン系、キノリン系、アントラキノン系、フタロシアニン系の顔料が挙げられる。
(動的粘弾性測定)
 本発明者らが鋭意検討した結果、網点の印刷品質を高める観点から、フレキソ印刷版を構成する感光性樹脂組成物層における、低温・低周波数領域の貯蔵弾性率(G’)と損失弾性率(G”)に着目し、特にG’とG”の和を制御することが重要であることを見出した。
 一般的に、フレキソ印刷版の静止時における硬度と相関のある複素弾性率Gは|G|={(G’)+(G”)1/2と表される。G’とG”のうち、より値が小さい方の値が増減した際には、複素弾性率の絶対値としては変化が小さく、印刷との相関が乏しかった。そこで、G’とG”のどちらの値の変化も平等に反映するG’+G”に着目したところ、印刷との相関が良好であることが分かった。これは、印刷時には、G’とG’’のより精密な制御が必要であることを表しているといえる。
 フレキソ印刷版の凸部は、被印刷体に接触した際に応力がかかるが、静止時に比べて印刷時は加わる応力の周期が短い。印刷時における感光性樹脂組成物層の粘弾性(G’及びG’’)は、時間-温度換算則を考慮すると、-30℃、2.5Hzに対応する領域の粘弾性であることを発明者らは見出した。
 上述したように、印刷時における耐欠け性を高めるためには、フレキソ印刷原版を構成する感光性樹脂組成物層を、フレキソ印刷原版から取り出し、1.5mm厚に成形し、上面及び下面からそれぞれ3000mJの紫外線を照射した硬化物における、-30℃、2.5Hzでの動的粘弾性測定において、上記G’とG”の和であるG’+G”が2.0以上18以下であることが好ましい。
 G’+G”が2.0以上であることで、過剰に印圧を高めて感光性樹脂組成物層に強い応力が加わった場合でも、網点の欠けやスラーを抑制できる。
 また、18.0以下であることで、柔軟性を維持することができ、紙パッケージに対するインキ乗りを向上できる。
 かかる観点から、上記G’+G”は、2.0以上18.0以下が好ましく、5.0以上15.0以下がより好ましく、8.0以上13.0以下が特に好ましい。
 印刷時のべた品質を向上するためには、貯蔵弾性率G’も制御できていることが好ましい。
 G‘の値は、小さいほどフレキソ印刷版の凸部が変形しやすく、印刷基材への追従性が高まることで、紙パッケージのような粗い被印刷体に対しても、インキ乗りを高められる。一方、大きいほど網点の変形が起こりにくく網点の印刷品質が向上する。
 かかる観点から、G‘は2.0以上18.0以下が好ましく、3.0以上15.0以下がより好ましく、4.0以上12.0以下が特に好ましい。
 また、ロングラン印刷時の印刷品質を向上するためには、損失弾性率G’’も制御できていることが好ましい。
 G”の値は、大きいほどフレキソ印刷版の凸部が変形しやすく、印刷基材への追従性が高まることで、紙パッケージのような粗い被印刷体に対しても、インキ乗りを高められる。一方、小さいほど印圧をかけたときのエネルギーを外部に放出しやすく、耐刷性が向上する。
 かかる観点から、G”は2.0以上15.0以下が好ましく、2.5以上13以下がより好ましく、3.0以上10以下が特に好ましい。
 -30℃、2.5Hzの動的粘弾性測定による、G’及びG”の測定方法は、後述する実施例に記載する方法により測定できる。
 本実施形態のフレキソ印刷原版を構成する感光性樹脂組成物層の硬化物のタイプAデュロメータ硬さは、25°以上50°以下であることが好ましい。
  上記硬化物のタイプAデュロメータ硬さは、フレキソ印刷原版から感光性樹脂組成物層を取り出し、3mm厚に成形し、上面及び下面からそれぞれ3000mJの紫外線を照射した硬化物を2枚積層させ、JIS K 6253-3(2012)に準拠して測定することで求めることができる。
 上記硬化物のタイプAデュロメータ硬さは、大きいほど十分な耐刷性が得られ、小さいほど紙パッケージに対するインキ乗りが向上する傾向がある。
 かかる観点から、25°以上50°以下であることが好ましく、30°以上45°以下であることが好ましく、35°以上43°以下であることが好ましい。
(赤外線アブレーション層)
 第2実施形態のフレキソ印刷原版は、任意のネガパターンをCTP(Computerto Plate)方式で作成することを目的に、赤外線アブレーション層を有していてもよい。
 赤外線アブレーション層は、赤外線によって描画加工が可能であり、感光性樹脂組成物層を露光硬化させる際にマスク画像の役割を果たす。露光が終了してから感光性樹脂組成物層の未露光部を洗い出しする際に、この赤外線アブレーション層も同時に除去される。
 赤外線アブレーション層は、バインダーポリマーと赤外線吸収剤とで構成されることが好ましい。
 バインダーポリマーとしては、特に限定されないが、例えば、ポリアミド、ポリエステル、及び、モノビニル置換芳香族炭化水素と共役ジエンとからなる共重合体等が挙げられる。特に、スチレン、α-メチルスチレン、ビニルトルエン等のモノビニル置換芳香族炭化水素と、1,3-ブタジエン、イソプレン等の共役ジエンとからなる共重合体が好ましい。このようなバインダーポリマーを用いて赤外線アブレーション層を構成することにより、中間層との親和性が高く、密着性が良好となる。
 本実施形態のフレキソ印刷原版の赤外線アブレーション層の膜厚は、フレキソ印刷原版に対して露光処理を行う工程の際の紫外線に対する遮光性を確保する観点からは厚い方がよく、現像性を高くする観点からは薄い方がよい。このような観点から、赤外線アブレーション層の膜厚は、0.1μm以上20μm以下が好ましく、0.5μm以上15μm以下がより好ましく、1.0μm以上10μm以下がさらに好ましい。
 赤外線アブレーション層の非赤外線遮蔽効果としては、赤外線アブレーション層の光学濃度が2以上となることが好ましく、光学濃度が3以上となることがより好ましい。光学濃度は、D200-II透過濃度計(GretagMacbeth社製)を用いて測定できる。また、光学濃度はいわゆる視感(ISO visual)であり、測定対象の光は400~750nm程度の波長領域である。
 赤外線吸収剤としては通常750nm~20000nmの範囲の波長に強い吸収特性を有する単体又は化合物が用いられる。赤外線吸収剤は非赤外線の遮蔽物質を兼ねられるものが好ましいが、赤外線吸収剤と非赤外線の遮蔽物質を個別に添加してもよい。
 赤外線吸収剤としては、赤外領域の吸収性が高く、赤外線アブレーション層内に均一分散可能なものが好ましい。このような物質としては、特に限定されないが、例えば、カーボンブラック、グラファイト、酸化鉄、酸化クロム、亜クロム酸銅等の無機顔料や、フタロシアニン及び置換フタロシアニン誘導体、シアニン染料、メロシアン染料及びポリメチン染料、金属チオレート染料等の色素類が挙げられる。
 非赤外線の遮蔽物質としては、紫外光線を反射又は吸収する物質が使用できる。特に限定されないが、例えば、カーボンブラック、紫外線吸収剤、グラファイト等が好適である。なお、赤外線吸収剤、非赤外線の遮蔽物質共に、1種のみを単独で用いてもよく、2種以上を混合して用いてもよい。
 赤外線アブレーション層に含有される分散剤とは、赤外線吸収剤の表面官能基と相互作用しうる吸着部と、バインダーポリマーと相溶し得る樹脂相溶部を有する化合物である。
 分散剤の吸着部としては、以下に限定されるものではないが、例えば、アミノ基、アミド基、ウレタン基、カルボキシル基、カルボニル基、スルホン基、ニトロ基が挙げられ、アミノ基、アミド基、ウレタン基が好ましい。
 樹脂相溶部としては、以下に限定されるものではないが、例えば、飽和アルキル、不飽和アルキル、ポリエーテル、ポリエステル、ポリ(メタ)アクリル、ポリオールが挙げられる。
(中間層)
 第2実施形態のフレキソ印刷原版は、感光性樹脂組成物層と、赤外線アブレーション層との間に、中間層を有していてもよい。露光が終了してから感光性樹脂組成物層の未露光部を洗い出しする際に、この中間層も同時に除去される。
 中間層には、感光性樹脂組成物層と赤外線アブレーション層との間の物質拡散を防ぐ機能(以下、「拡散遮断機能」ともいう。)、赤外線アブレーション層を保護する機能、感光性樹脂組成物層と赤外線アブレーション層を接着する機能等、必要に応じて様々な機能を付与することできる。拡散遮断機能の中でも、大気中の酸素が感光性樹脂組成物層へ拡散することを遮断する機能(以下、「酸素遮断性」ともいう。)を有することが好ましい。これにより、紫外線硬化時に酸素の共存量を減少させることで、重合反応が抑制されにくくなる。そして、現像工程S4で除去される未露光部と、パターンを形成する露光部の界面が明瞭になることで、形成されるレリーフ画像の大きさのばらつきが小さく、安定したフレキソ印刷版を提供できる。
 本実施形態のフレキソ印刷原版の中間層の厚みは、層間での物質移動を抑止する観点からは厚いほうよく、現像性の観点からは薄いほうがよい。これらのバランスを考慮すると、中間層の厚みは1.0μm以上30μm以下が好ましく、2.0μm以上20μm以下が好ましく、2.5μm以上10μm以下がさらに好ましい。
 中間層は、特に限定されないが、バインダーポリマー、フィラー、架橋剤、シリコーンオイル、界面活性剤又は塗布助剤等を含んでいてもよい。
 中間層に含まれるバインダーポリマーとしては、特に限定されないが、例えば、ポリエステルエマルション、ポリウレタンエマルション、ポリアクリルアミドエマルション、ポリブタジエンラテックス、天然ゴムラテックス、スチレン-ブタジエン共重合体ラテックス、アクリロニトリル-ブタジエン共重合体ラテックス、ポリ塩化ビニリデンラテックス、ポリクロロプレンラテックス、ポリイソプレンラテックス、ポリウレタンラテックス、メチルメタクリレート-ブタジエン共重合体ラテックス、ビニルピリジン重合体ラテックス、ブチル重合体ラテックス、チオコール重合体ラテックス、アクリレート重合体ラテックス等の水分散性ラテックス重合体や、これらの重合体にアクリル酸やメタクリル酸等の他の成分を共重合して得られる重合体、エチレン-ビニルアルコール共重合体、ポリビニルアルコール、ポリ酢酸ビニル、ポリビニルブチラール、ポリビニルピロリドン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリフッ化ビニル、ポリフッ化ビニリデン、ポリアクリロニトリル、ポリメチルメタクリレート、ポリアセタール、ポリカーボネート、ポリスチレン、ポリカーボネート、ポリエチレン、ポリプロピレン、セルロース誘導体、ポリエステル、ポリアミド、ポリイミド、ポリウレタン、シリコーンゴム、ブチルゴム、及びイソプレンゴム等のポリマー、及びその共重合体が挙げられる。これらのバインダーポリマーは、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 これらのバインダーポリマーの中でも、水系現像液で現像する場合には、現像性が良好になるという観点から、水あるいはアルカリ水に分散又は溶解するバインダーポリマーが好ましい。
 中間層に含まれるフィラーとしては、特に限定されないが、例えば、シリカ、カオリナイト、ディッカイト、ハロイサイト、タルク、パイロフィライト、サポナイト、ヘクトライト、モンモリロナイト、バイデライト、バーミキュライト、雲母(マイカ)、パラゴナイト等の層状ケイ酸塩鉱物、水酸化アルミニウム、酸化アルミニウム、硫酸バリウム、チタン酸カリウム等が挙げられる。これらの化合物の中でも、現像性と酸素遮断性の観点から、雲母、水酸化アルミニウムや酸化アルミニウムが好ましい。
 中間層に含まれるフィラーは、市販品としては、特に限定されないが、例えば、ミクロマイカ(合成雲母)、及びソマシフ(片倉コープアグリ株式会社登録商標、合成雲母)、クニミネ工業株式会社製のクニピア(クニミネ工業株式会社登録商標、モンモリロナイト)、スメクトン(クニミネ工業株式会社登録商標)SA(合成サポナイト);株式会社ホージュン製のベンゲル(株式会社ホージュン登録商標、天然ベントナイト精製品)、川研ファインケミカル株式会社製のアルミゾルF-1000、F-3000、5N、10N、キンセイマテック社製の板状アルミナ粉体セラフ00610、02025、02050、05025、05070、07070、10030、大塚化学社製のティスモD、ティスモN等が挙げられる。
〔フレキソ印刷原版の製造方法〕
 本実施形態のフレキソ印刷原版は、以下に記載の工程1~4をこの順に含む方法によって得ることが好ましい。
 工程1;重合体粒子(i)含有水分散液に、少なくとも、光重合性化合物(iii)を添加して重合体粒子(i)含有水分散液を得る工程、
 工程2;工程1で得られた、上記重合体粒子(i)含有水分散液から水を除去し、重合体粒子(i)と光重合性化合物(iii)を含む混合物を得る工程、
 工程3;工程2で得られた、上記混合物に、少なくとも、熱可塑性エラストマー(ii)を添加して、感光性樹脂組成物を得る工程、
 工程4;工程3で得られた、上記感光性樹脂組成物を支持体上に積層してフレキソ印刷原版を得る工程。
 (フレキソ印刷原版の製造方法:工程1)
 本実施形態のフレキソ印刷原版の製造方法の工程1は、重合体粒子(i)含有水分散液に、少なくとも、光重合性化合物(iii)を添加する工程であれば特に限定されない。
 重合体粒子(i)含有水分散液に、予め光重合性化合物(iii)を添加することにより、領域(A1)及び(A2)の面積率並びに貯蔵弾性率を大きくすることができ、網点の欠けやスラーを抑制できる。
 重合体粒子(i)の質量に対して、添加される光重合性化合物(iii)の質量比は、0.1以上0.5以下が好ましく、0.15以上0.4以下がより好ましく、0.2以上0.35以下が特に好ましい。
 重合体粒子(i)含有水分散液に対して、光重合性化合物(iii)以外にも、熱可塑性エラストマー(ii)、光重合開始剤(iv)、可塑剤(v)、安定剤(vi)、洗浄助剤(vii)、シリコーン化合物(viii)、その他の化合物を添加してもよい。
 重合体粒子(i)含有水分散液に上記成分をあらかじめ混合することで、後述する感光性樹脂組成物を得る工程(工程3)において、各成分を均一に分散させることができ、印刷版としたときの物性差を生じさせないため、好ましい。
 (フレキソ印刷原版の製造方法:工程2)
 本実施形態のフレキソ印刷原版の製造方法の工程2は、工程1で得られた、上記重合体粒子(i)含有水分散液から水を除去し、重合体粒子(i)と光重合性化合物(iii)を含む混合物を得る工程であれば、特に限定されない。
 水を取り除く方法としては、ニーダー、エバポレーター等のバッチ式乾燥機を用いてもよいし、脱揮押し出し機、薄膜蒸留機等の連続式乾燥機を用いてもよい。
 (フレキソ印刷原版の製造方法:工程3)
 本実施形態のフレキソ印刷原版の製造方法の工程3は、工程2で得られた、上記混合物に、少なくとも、熱可塑性エラストマー(ii)を添加して、感光性樹脂組成物を得る工程であれば特に限定されない。
 工程2で得られた、上記混合物に対して、熱可塑性エラストマー(ii)以外にも、光重合性化合物(iii)、光重合開始剤(iv)、可塑剤(v)、安定剤(vi)、洗浄助剤(vii)、シリコーン化合物(viii)、その他の化合物を添加してもよい。
 上記成分を添加した混合物を、ニーダー、ロールミル、スクリュー押出機等、各種公知の混練装置を用いて混練することにより、感光性樹脂組成物を調製することができる。
 (フレキソ印刷原版の製造方法:工程4)
 本実施形態のフレキソ印刷原版の製造方法の工程4は、支持体上に、感光性樹脂組成物層積層する方法であれば特に限定されず、種々の方法で実施することができる。具体的には、以下の方法が挙げられる。
 まず、感光性樹脂組成物層の材料である感光性樹脂組成物の原料を適当な溶媒、特に限定されないが、例えば、クロロホルム、テトラクロルエチレン、メチルエチルケトン、トルエン等の溶剤に溶解させて混合し、型枠の中に流延して溶剤を蒸発させることにより板状にする方法や、溶剤を用いず、ニーダー、ロールミル、スクリュー押出機等で混練後、カレンダーロールやプレス等により所望の厚さに成型する方法により感光性樹脂組成物層を得、これに支持体を貼り合わせることにより、支持体と感光性樹脂組成物層の積層体が得られる。
 必要に応じて、感光性樹脂組成物層上に、中間層、赤外線アブレーション層を積層させてもよい。中間層、赤外線アブレーション層を感光性樹脂組成物層の表面に設けるには、特に限定されないが、例えば、中間層を構成する成分、赤外線アブレーション層を構成する成分を、各々、撹拌羽根によって強制撹拌や超音波撹拌で適当な溶剤に分散又は溶解させたり、押し出し機やニーダーを用いて予備混練してから適当な溶剤に分散又は溶解させたりすることにより所定の分散液又は溶液を得た後、その分散液又は溶液を直接感光性樹脂組成物層にコーティングすることにより、中間層、赤外線アブレーション層を形成することができる。
 また、赤外線アブレーション層の上には、特に限定されないが、例えば、ポリエステル、ポリプロピレン等からなるカバーシートを設けてもよい。
 他の方法としては、所定のカバーシートに、赤外線アブレーション層を構成する材料をコーティングして赤外線アブレーション層を有するフィルムを得た後、赤外線アブレーション層上に中間層を構成する材料をコーティングして、カバーシート上に赤外線アブレーション層と中間層の積層されたカバーフィルムを得、その後、このカバーフィルムを、支持体と感光性樹脂組成物層の積層体の感光性樹脂組成物層形成面側にラミネート又はプレス圧着することにより、感光性樹脂組成物層上に中間層、赤外線アブレーション層を形成することができる。
 カバーフィルムや支持体は通常感光性樹脂組成物層のシート成形後、ロールラミネートにより感光性樹脂組成物層に密着させ、ラミネート後加熱プレスすると一層厚み精度のよいフレキソ印刷原版を得ることができる。
〔フレキソ印刷版の製造方法〕
 本実施形態のフレキソ印刷版の製造方法は、以下に記載の工程1、2をこの順に含む方法によって得ることが好ましい。
工程1;本実施形態の感光性樹脂組成物層を、任意のネガパターンを通して、部分選択的に露光して部分硬化物を得る工程、
工程2;工程1で得られた部分硬化物から、感光性樹脂組成物層の未露光部分を取り除く工程。
<フレキソ印刷版の製造方法:工程1>
 本実施形態の工程1は、任意のネガパターンを介して、感光性樹脂組成物層12に選択的に露光を行い、レリーフ層12aを形成する。
 この際、任意のネガパターンを通過した光が感光性樹脂組成物層の硬化反応を促進し、任意のネガパターンが、凹凸が反転して、感光性樹脂組成物層に転写される。なお、紫外線の照射は、フレキソ印刷原版の全面に照射してもよい。
 紫外線としては、波長150~500nmの紫外線を使用でき、特に300~400nmの紫外線を好ましく使用できる。
 また、紫外線の光源としては、特に限定されないが、例えば、低圧水銀灯、高圧水銀灯、超高圧水銀灯、メタルハライドランプ、キセノンランプ、ジルコニウムランプ、カーボンアーク灯、紫外線用蛍光灯、LEDランプ等を使用できる。
 工程1は、版をレーザーシリンダに取り付けた状態で行うことができるが、一般的には版をレーザー装置から取り外し、慣用の照射ユニットを用いて照射する。この際の露光方法は、特に限定されず、公知の照射ユニットを使用して行うことができる。
 任意のネガパターンは、赤外線アブレーション層に対して赤外線を照射することで形成してもよいし、感光性樹脂層の上にネガフィルムを密着させることで形成してもよい。
 本実施形態のフレキソ印刷原版が酸素阻害層や接着剤層等の中間層を有し、かつ酸素阻害層としての中間層における紫外線の吸収量が多く、パターン露光工程S3において無視できない場合は、酸素阻害層としての中間層により吸収される紫外線量を予め勘案して適宜紫外線照射量を調整することが好ましい。
<フレキソ印刷版の製造方法:工程2>
 本実施形態の工程2は、感光性樹脂組成物層12の未露光部を除去する工程であれば、特に限定されない。なお、本明細書では、未露光部を除去することを「現像する」と表現することもある。
 現像方法としては、従来公知の方法を適用できる。具体的には、特に限定されないが、例えば、上記のようにフレキソ印刷原版を露光し、その後、未露光部分を溶剤現像用の溶剤又は水現像用の現像液で洗い流したり、あるいは40℃~200℃に加熱された未露光部分を吸収可能な所定の吸収層に接触させ、吸収層を除去したりすることで未露光部分を除去することができる。
 このとき、フレキソ印刷原版に赤外線アブレーション層14及び/又は中間層13を有する場合、これらを同時に除去することができる。
 現像工程S4においては、水系の現像液や溶剤系の現像液を用いることができる。このなかでも、環境調和の観点から、水系の現像液を用いることが好ましい。
 未露光部を溶剤現像するために用いられる溶剤系の現像液としては、特に限定されないが、例えば、ヘプチルアセテート、3-メトキシブチルアセテート等のエステル類;石油留分、トルエン、デカリン等の炭化水素類;やテトラクロルエチレン等の塩素系有機溶剤にプロパノール、ブタノール、ペンタノール等のアルコール類を混合したもの;が挙げられる。未露光部の洗い出しは、ノズルからの噴射によって行われるか、またはブラシによるブラッシングで行われる。
 未露光部を水現像するため水系の現像液としては、水そのものであってもよいし、アルカリ性水溶液又は中性洗剤であってもよい。このような水系の現像液としては、特に限定されないが、例えば、水に対して、ノニオン性、アニオン性等の界面活性剤、pH調整剤、及び洗浄促進剤等を配合したものが使用できる。
 界面活性剤とは、アニオン系界面活性剤、両性界面活性剤、ノニオン系界面活性剤等が挙げられる。これらは、1種のみを単独で用いてもよく、2種以上を混合して使用してもよい。
 アニオン系界面活性剤としては、特に限定されないが、例えば、硫酸エステル塩、高級アルコール硫酸エステル、高級アルキルエーテル硫酸エステル塩、硫酸化オレフィン、アルキルベンゼンスルホン酸塩、α-オレフィンスルホン酸塩、リン酸エステル塩、ジチオリン酸エステル塩等が挙げられる。
 両性界面活性剤としては、特に限定されないが、例えば、アミノ酸型両性界面活性剤、ベタイン型両性界面活性剤等が挙げられる。
 ノニオン系界面活性剤としては、特に限定されないが、例えば、高級アルコールエチレンオキサイド付加物、アルキルフェノールエチレンオキサイド付加物、脂肪酸エチレンオキサイド付加物、多価アルコール脂肪酸エステルエチレンオキサイド付加物、高級アルキルアミンエチレンオキサイド付加物、脂肪酸アミドエチレンオキサイド付加物、ポリプロピレングリコールエチレンオキサイド付加物等のポリエチレングリコール型界面活性剤やグリセロール脂肪酸エステル、ペンタエリスリトール脂肪酸エステル、ソルビトール、及びソルビタンの脂肪酸エステル、多価アルコールのアルキルエステル、アルカノールアミン類の脂肪酸アミド等の多価アルコール型界面活性剤等が挙げられる。
 また、アルカリ性水溶液には、pH調整剤が含有される。
 pH調整剤としては、有機材料、無機材料のいずれでもよいが、pHを9以上に調整できるものが好ましい。pH調整剤としては、特に限定されないが、例えば、水酸化ナトリウム、炭酸ナトリウム、炭酸カリウム、珪酸ナトリウム、メタ珪酸ナトリウム、琥珀酸ナトリウム等が挙げられる。
 現像は熱によって行うこともできる。熱現像の場合は溶剤を使用しないがその代わり、感光性樹脂組成物層、及び中間層を、画像様露光の後で吸収性材料と接触させて40℃~200℃にて加熱することで未露光部分を除去する。熱現像の吸収層としては、不織布材料、紙素材、繊維織物、連続気泡発泡体、及び多孔質材料が挙げられる。このなかでも、好ましい吸収層としては、ナイロン、ポリエステル、ポリプロピレン、及びポリエチレンのうちのいずれかを用いた不織布材料、並びにこれらの不織布材料の組み合わせである。特に好ましい吸収層としては、ナイロン又はポリエステルの不織布連続ウェブである。
 必要に応じて、現像液による版の膨潤や白化を抑えることを目的に版を乾燥させる処理を行ってもよい。特に限定されないが、例えば、熱による乾燥、エアーナイフによる風乾、不織布等に現像液を吸収させて取り除く方法等が挙げられる。熱による乾燥の場合、40℃~60℃に温調されたオーブンに10分~120分程度、版を放置する方法等が挙げられる。
 その後に、必要に応じて後露光処理することによって、フレキソ印刷版100が製造される。後処理露光としては、表面に波長300nm以下の光を照射する方法が挙げられる。必要に応じて、300nmよりも長波長の光も併用して照射してもよい。
<フレキソ印刷版の製造方法:バック露光工程>
 必要に応じて、上記フレキソ印刷原版の製造工程1の前工程として、支持体側から紫外線照射するバック露光工程を含んでいてもよい。バック露光工程S1では、フレキソ印刷原版10の支持体11を通して全面に紫外線露光を施し(バック露光)、感光性樹脂組成物層12を硬化させて薄い均一な硬化層とする。この際の露光方法は、特に限定されず、上記フレキソ印刷版製造工程1と同様の光源、並びに露光ユニットを用いることができる。
 なお、バック露光工程は、上記フレキソ印刷版製造工程1の前に行っても、図9に示すように同時に行ってもよい。なお、図9においては、工程の順序以外は図8に示すものと同様である。
<フレキソ印刷版の製造方法:赤外線照射工程>
 赤外線アブレーション層を有するフレキソ印刷原版を用いる場合、上記フレキソ印刷原版の製造工程1の前工程として、赤外線アブレーション層に赤外線を照射してパターンを描画加工する赤外線照射工程を含んでいてもよい。赤外線照射工程S2では、赤外線アブレーション層14をレーザー描画すなわちレーザーアブレーションしてネガパターン14aを作製する。フレキソ印刷原版10が赤外線アブレーション層14上にカバーフィルムを有している場合には、赤外線照射前にまずカバーフィルムを剥離する。その後、赤外線アブレーション層に赤外線をパターン照射して、感光性樹脂組成物層上に任意のネガパターンを形成する。赤外線照射工程は、バック露光工程の前工程であっても後工程であってもよい。
 好適な赤外線レーザーとしては、特に限定されないが、例えば、ND/YAGレーザー(例えば、1064nm)又はダイオードレーザー(例えば、830nm)が挙げられる。CTP製版技術に適当なレーザーシステムは市販されており、特に限定されないが、例えば、ダイオードレーザーシステムCDI Spark(ESKO GRAPHICS社)を使用できる。このレーザーシステムは、フレキソ印刷原版を保持する回転円筒ドラム、IRレーザーの照射装置、及びレイアウトコンピュータを含み、画像情報は、レイアウトコンピュータからレーザー装置に直接送信される。
<フレキソ印刷版の製造方法:乾燥工程>
 必要に応じて、上記フレキソ印刷原版の製造工程2の後工程として、現像後のフレキソ印刷原版を乾燥させる乾燥工程を含んでいてもよい。これにより、現像液による反応膨潤や白化を抑えることができる。乾燥工程は、特に限定されないが、例えば、熱による乾燥、エアーナイフによる風乾、不織布等に現像液を吸収させて取り除く方法等が挙げられる。熱による乾燥の場合、40℃~60℃に温調されたオーブンに10分~120分程度放置する方法等が挙げられる。
<フレキソ印刷版の製造方法:後露光工程>
 必要に応じて、上記フレキソ印刷原版の製造工程2、あるいは上記乾燥工程の後工程として、レリーフ層側からさらに露光する後露光工程を含んでいてもよい。これにより、版表面のべたつきを抑えることができる。乾燥工程は、特に限定されないが、例えば、熱による乾燥、エアーナイフによる風乾、不織布等に現像液を吸収させて取り除く方法等が挙げられる。熱による乾燥の場合、40℃~60℃に温調されたオーブンに10分~120分程度放置する方法等が挙げられる。
〔フレキソ印刷方法〕
 本実施形態のフレキソ印刷方法は、上記のフレキソ印刷版の製造方法により印刷版を製造する印刷版製造工程と、上記印刷版製造工程で得られたフレキソ印刷版を用いて印刷する印刷工程と、を備えることが好ましい。該印刷工程としては、該フレキソ印刷版のレリーフ層の凸部に対してインキを付着させ、そのインキを基材に転写させる方法であれば、特に限定されない。
 以下、具体的な実施例及び比較例を挙げて本発明を詳細に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。
〔製造例1:合成例1~16の重合体粒子(i)の合成〕
 まず、撹拌装置と温度調節用ジャケットを取り付けた耐圧反応容器に、表1に記載した初期仕込みを投入し、内温を80℃に昇温した。次に、表1に記載した油性混合液を5時間、表1に記載した水性混合液を6時間かけて一定の流速で添加した。
 ついで、80℃の温度をそのまま1時間保って、重合反応を完了した。その後、冷却し、水酸化ナトリウムを加えてpHを7に調整した後、スチームストリッピング法により未反応の単量体を除去し、200メッシュの金網で濾過し、最終的には、ろ液の固形分濃度が40質量%になるように調整して、合成例1~16の重合体粒子含有水分散液を得た。
〔製造例2:ベースフィルム(支持体)の作製〕
 支持体(ベースフィルム)にコートする接着剤層用の溶液として、スチレンと1,3-ブタジエンのブロック共重合体であるタフプレン912(旭化成株式会社製、商品名)を55質量部、パラフィンオイル(平均炭素数33、平均分子量470、15℃における密度0.868)を38質量部、1,9-ノナンジオールジアクリレートを2.5質量部、2,2-ジメトキシ-フェニルアセトフェノンを1.5質量部、エポキシエステル3000M(共栄社化学株式会社製、商品名)を3質量部、及びバリファストイエロー3150(オリエント化学工業製、商品名)を1.5質量部の割合で、トルエンに溶解させ固形分25%の溶液を得た。
 その後、ナイフコーターを用いて厚さ100μmポリエステルフィルムの片側に紫外線透過率(UV透過率)10%となるように塗布し、80℃で1分間乾燥して、接着剤層を有する支持体(ベースフィルム)を得た。支持体のUV透過率は、紫外線露光機AFP-1500(旭化成株式会社製、商品名)を用い、UV照度計MO-2型機(オーク製作所製、商品名、UV-35フィルター)で透過強度を測定し計算した。
〔製造例3:赤外線アブレーション層を有するフィルムの作製)
 スチレンと1,3-ブタジエンのブロック共重合体であるアサフレックス810(旭化成株式会社製、商品名)65質量%と、赤外線感受性物質としてカーボンブラック35質量%をニーダーで混練し、ペレット状に断裁した後、このペレット90質量部と、1,6-ヘキサンジオールアジペート10質量部の割合で、酢酸エチル/酢酸ブチル/プロピレングリコールモノメチルエーテルアセテート=50/30/20の質量比で調製した混合溶剤に超音波を利用して溶解し、固形分12質量%の均一な溶液を調製した。
 次にこの溶液を、100μmの厚みのカバーシートとなるポリエステルフィルム上に、乾燥後の塗布量が4~5g/mとなるようにナイフコ-タ-を用いて塗布し、80℃で1分間乾燥して、赤外線で切除可能な紫外線遮蔽層(赤外線アブレーション層)を有するフィルムを得た。この赤外線アブレーション層を有するフィルムの光学濃度をDM-500(大日本スクリーン製造株式会社製、商品名)で測定したところ、3~4であった。
〔製造例4:赤外線アブレーション層及び中間層を有するフィルムの作製〕
 エタノール/蒸留水=10/90の質量比で調製した溶液に、水溶性ポリアミド樹脂であるAQナイロンT70(東レ社製)95質量%、及びポリエーテル変性シリコーンオイルであるKF-351A(信越化学社製)5質量%を加えて攪拌し、中間層塗工液を作製した。
 次いで、上記製造例4で作製した赤外線アブレーション層を有するフィルム上であって、赤外線アブレーション層形成面側に、中間層塗工液を、乾燥後の膜厚が3μmとなるようにバーコ-タ-を用いて塗布した。続けて、100℃で4分間乾燥し、中間層と赤外線アブレーション層とを有するカバーフィルムを得た。
〔製造例5:フレキソ印刷原版の作製〕
 製造例1で得られた重合体粒子含有水分散液に対し、表2、表3に記載した通りの質量比で、光重合性化合物1を添加し、80℃で減圧乾燥し、実施例1~26に記載の重合体粒子含有混合物を得た。なお、表2、表3に記載した重合体粒子の質量部数は、重合体粒子の固形分の質量で記載している。
 次に、表2、表3、表4に記載の各成分を、加圧ニーダーを用いて140℃で45分かけて混合し、実施例1~26、比較例1~7に記載の感光性樹脂組成物を得た。なお、表4に記載した重合体粒子の質量部数は、重合体粒子の固形分質量で記載している。
 次に、押し出し成型機に投入し、T型ダイスから押し出し成型された感光性樹脂組成物の片方の面に、上記製造例3で得られたベースフィルム(支持体)の粘着剤層が形成された面を貼り合わせ、感光性樹脂組成物層の支持体積層側とは反対の面に離型フィルム(三菱化学社製、ダイアホイルMRV100)を貼り合わせて、支持体と感光性樹脂組成物層の積層体を得た。
(実施例1~21、23~26、比較例1~7のフレキソ印刷原版の製造)
 上記支持体と感光性樹脂組成物層の積層体の離型フィルムをはがし、上記製造例4で得た赤外線アブレーション層を有するカバーフィルムを、赤外線アブレーション層が感光性樹脂組成物層に接するようにラミネートして、フレキソ印刷原版を得た。
(実施例22のフレキソ印刷原版の製造)
 上記支持体と感光性樹脂組成物層の積層体の離型フィルムをはがし、上記製造例5で得た赤外線アブレーション層及び中間層を有するカバーフィルムを、中間層が感光性樹脂組成物層に接するようにラミネートして、フレキソ印刷原版を得た。
〔製造例6:フレキソ印刷版の製造〕
(実施例1~23、比較例1~6のフレキソ印刷版の製造)
 フレキソ印刷原版の支持体(接着剤がコートされたPET)の側から、硬化後のパターン高さ(RD)が0.5mm程度となるように、紫外線露光機「AFP-1216」(旭化成社製、商品名)を用いて露光した。
 次に、赤外線アブレーション層のカバーシートを剥がし、CDI Spark4260(ESKO GRAPHIC社製、商品名)を用いて、10cm四方のべた画像と、1cm四方の網点画像(AM150線、1~20%まで1%刻みで計20画像)を含む画像パターンを赤外線アブレーション層に描画した後、赤外線アブレーション層の側から「AFP-1216」露光機を用いて大気雰囲気下で8000mJ露光した。
 露光後、ポリオキシアルキレンアルキルエーテル(ニューコール2308:日本乳化剤製)1%、炭酸カリウム1%の水溶液(水系現像液)を調製し、日本電子精機製洗浄機(JOW-A3-P)を用いて、40℃で洗浄(現像)し、未露光部を除去した。50℃で10分間乾燥後、表面のタック性を取るために、紫外線殺菌ランプ、紫外線ケミカルランプで後露光して、フレキソ印刷版を得た。
 (実施例24のフレキソ印刷版の製造)
 フレキソ印刷原版の赤外線アブレーション層のカバーシートを剥がし、CDI Crystal4835(ESKO GRAPHIC社製、商品名)を用いて、10cm四方のべた画像と、1cm四方の網点画像(AM150線、1~20%まで1%刻みで計20画像)を含む画像パターンを赤外線アブレーション層に描画した後、XPS Crystal4835(ESKO GRAPHIC社製、商品名)を用いて、Main UV Power Densityは311mW/cm、Back UV Power Densityは27mW/cm、パス回数は4回、pixel timeは20秒に設定し、赤外線アブレーション側と支持体側に両面同時に露光した。
 露光後、ポリオキシアルキレンアルキルエーテル(ニューコール2308:日本乳化剤製)1%、炭酸カリウム1%の水溶液(水系現像液)を調製し、日本電子精機製洗浄機(JOW-A3-P)を用いて、40℃で15分間現像を行い、未露光部を除去した。50℃で10分間乾燥後、表面のタック性を取るために紫外線殺菌ランプ、紫外線ケミカルランプで後露光して、フレキソ印刷版を得た。
(実施例25のフレキソ印刷版の製造)
 フレキソ印刷原版の支持体(接着剤がコートされたPET)の側から、硬化後のパターン高さ(RD)が0.5mm程度となるように、紫外線露光機「AFP-1216」を用いて露光した。
 次に、赤外線アブレーション層のカバーシートを剥がし、CDI Spark4260(ESKO GRAPHIC社製、商品名)を用いて、10cm四方のべた画像と、1cm四方の網点画像(AM150線、1~20%まで1%刻みで計20画像)を含む画像パターンを赤外線アブレーション層に描画した後、赤外線アブレーション層の側から「AFP-1216」露光機を用いて大気雰囲気下で8000mJ露光した。
 露光後、3-メトキシブチルアセテートを現像液として、「AFP-1500」現像機(旭化成社製、商品名)の回転するドラムに、上述したバック露光を行った側に両面テープを貼り付けて固定を行い、液温30℃で10分間現像を行い、60℃で2時間乾燥させた。表面のタック性を取るために紫外線殺菌ランプ、紫外線ケミカルランプで後露光して、フレキソ印刷版を得た。
(実施例26のフレキソ印刷版の製造)
 フレキソ印刷原版の支持体(接着剤がコートされたPET)の側から、硬化後のパターン高さ(RD)が0.5mm程度となるように、紫外線露光機「AFP-1216」を用いて露光した。
 次に、赤外線アブレーション層のカバーシートを剥がし、CDI Spark4260(ESKO GRAPHIC社製、商品名)を用いて、10cm四方のべた画像と、1cm四方の網点画像(AM150線、1~20%まで1%刻みで計20画像)を含む画像パターンを赤外線アブレーション層に描画した後、赤外線アブレーション層の側から「AFP-1216」露光機を用いて大気雰囲気下で8000mJ露光した。
 露光後、CYREL(登録商標)FAST  TD1000熱プロセッサにより、フレキソ印刷原版を170℃まで加熱し、現像媒体と接触させることで、未露光部を除去した。現像媒体は、ポリエステル不織であった。
 表面のタック性を取るために紫外線殺菌ランプ、紫外線ケミカルランプで後露光して、フレキソ印刷版を得た。
〔物性の測定〕
 <AFMによる動的粘弾性マッピング測定>
1.フレキソ印刷版からの試料の調製
 上記製造例6で得られたフレキソ印刷版を、1cm四方の小片として切り出し、エタノールで1時間超音波洗浄し、その後2時間真空乾燥した。
 次に、該フレキソ印刷版を-180℃で凍結させ、表層をウルトラミクロトーム(Leica社製)で1μm程度切削して平滑断面を出し、該フレキソ印刷版の平滑断面を測定試料とした。
2.フレキソ印刷原版からの試料の調製
 まず、アセトン等の溶媒を用いて上記製造例5で得られたフレキソ印刷原版を構成する赤外線アブレーション層を不織布で拭き取った後、得られた支持体と感光性樹脂組成物層の積層体に対して、プレス機で120℃の条件で50kg/cmの圧力を4分間かけることで、支持体からはみ出した感光性樹脂組成物層を回収した。
 次に、感光性樹脂組成物を離型フィルムで挟み、1.5mmのスペーサーを用いてプレス機で120℃の条件で200kg/cmの圧力を4分間かけることで、厚み1.5mmの感光性樹脂組成物層を有する感光性樹脂組成物シートを得た。その後、「AFP-1216」露光機を用いて、感光性樹脂組成物シートの両面から各3000mJ/cmの紫外線で全面露光した。
 続いて、該硬化物を1cm四方の小片として切り出し、エタノールで1時間超音波洗浄し、その後2時間真空乾燥した。
 最後に、該硬化物を-180℃で凍結させ、表層をウルトラミクロトーム(Leica社製)で1μm程度切削して平滑断面を出し、該硬化物の平滑断面を測定試料とした。
3.装置、測定条件等
 下記の装置、測定条件でAFMによる動的粘弾性マッピング測定を実施し、マッピングデータを得た。
 装置    :NanoScope V / Dimension Icon(Bruker AXS社製)
 測定プローブ:RTESPA-150-30(実施例4,6,7,9,12,15,17,18,24,25,26、並びに比較例1,3,4,6,7で使用)
       RTESPA-300-30(上記以外の実施例並びに比較例で使用)
 測定周波数 :2,000Hz
 測定雰囲気 :23℃、大気雰囲気下
 測定視野  :10μm×10μm
 測定点数  :4096点(縦64×横64)/1視野
        5視野/1実施例
 測定モード :AFM-DMAモード
 ポアソン比 :0.5
4.各領域の抽出及び特性値の算出
 貯蔵弾性率100MPa以上500MPa以下のデータ点を“1”とし、それ以外のデータ点を“0”とすることで二値化し、領域(A1)並びに(A2)を抽出した。
 次に、抽出した(A1)並びに(A2)のデータ点数をそれぞれ測定全データ数で割ることで、(A1)並びに(A2)の面積率を算出した。
 最後に、抽出した(A1)並びに(A2)の貯蔵弾性率、損失弾性率のそれぞれの和を、抽出した(A1)のデータ点数で割ることで、(A1)並びに(A2)の貯蔵弾性率、損失弾性率の平均値を求めた。
 同様に、貯蔵弾性率3MPa以上15MPa以下のデータ点を“1”とし、それ以外のデータ点を“0”とすることで二値化し、領域(B1)並びに(B2)を抽出した。
 次に、抽出した(B1)並びに(B2)のデータ点数をそれぞれ測定全データ数で割ることで、(B1)並びに(B2)の面積率を算出した。
 最後に、抽出した(B1)並びに(B2)の貯蔵弾性率、損失弾性率のそれぞれの和を、抽出した(B1)並びに(B2)のデータ点数で割ることで、(B1)並びに(B2)の貯蔵弾性率、損失弾性率の平均値を求めた。
 同様に、貯蔵弾性率15MPa超過100MPa未満のデータ点を“1”とし、それ以外のデータ点を“0”とすることで二値化し、領域(C1)並びに(C2)を抽出した。
 次に、抽出した(C1)並びに(C2)のデータ点数を測定全データ数で割ることで、(C1)並びに(C2)の面積率を算出した。
 最後に、抽出した(C1)並びに(C2)の貯蔵弾性率、損失弾性率のそれぞれの和を、抽出した(C1)並びに(C2)のデータ点数で割ることで、(C1)並びに(C2)の貯蔵弾性率、損失弾性率の平均値を求めた。
 なお、表5~8に記載の各領域の面積率の和は、必ずしも100%になるとは限らない。貯蔵弾性率が3MPa未満、あるいは500MPa超過のデータ点がある場合、各領域の面積率の和は100%にならない。例えば、表6に記載されている比較例2は、領域(B1)と領域(C1)の和が47%であるが、残りのデータ点は貯蔵弾性率が500MPa超過であったため、各領域の和が100%にならなかった。
5.オープニング処理による領域(a1)の抽出
 上記の処方で抽出した領域(A1)を二値化したマッピングデータは、次のようにしてモルフォロジー演算によるオープニング処理を行う。
 まず、次のように収縮処理を行う。対象となるピクセルデータと、その8近傍のデータの和を取り、その和が6以上である場合には、対象データを“1”とし、5以下である場合には“0”とする。(8近傍、閾値3での収縮処理)
 続いて、次のように膨張処理を行う。対象となるピクセルデータと、その8近傍のデータの和を取り、その和が3以上である場合には、対象データを“1”とし、2以下である場合には“0”とする。(8近傍、閾値3での膨張処理)
 上記の画像処理操作により得られた新たな“1”のデータ点を領域(a1)と定義する。
 上記の二値化処理、並びにオープニング処理は、ImageJや、エクセル、Open Source Computer Visoion Library(OpenCV)等の公知のソフトウェアを用いて行うことができる。
 上記AFMによる動的粘弾性マッピング測定の結果は、下記表5~8に示す。
<ガラス転移温度(Tg)の測定>
1.試料の調製
 まず、重合体粒子の水分散液を100℃のオーブンにて乾燥させることで、重合体粒子の乾燥物を得た。
 次に、重合体粒子の乾燥物を離型フィルムで挟み、1.0mmのスペーサーを用いてプレス機で160℃の条件で200kg/cmの圧力を4分間かけることで、厚み1.0mmの重合体粒子のシートを得た。
 同様に、熱可塑性エラストマーを離型フィルムで挟み、1.0mmのスペーサーを用いてプレス機で160℃の条件で200kg/cmの圧力を4分間かけることで、厚み1.0mmの熱可塑性エラストマーのシートを得た。
 得られたサンプルの離型フィルムを剥がし、穴あけポンチを用いて、直径8mmの円形に成形した。
2.装置、測定条件等
 下記の装置、測定条件で重合体粒子並びに熱可塑性エラストマーの動的粘弾性を測定した。低温側から測定し、最初に観測されたtanδのピーク温度をガラス転移温度(Tg)とした。
 装置:Discovery Hybrid Rheometer 2(TAインスツルメント社製、商標)
 測定プレート:直径8mmのパラレルプレート
 法線応力:1.0N
 感度:0.3N
 回転方向のひずみ:0.1%
 測定開始温度:-120℃
 測定終了温度:30℃
 昇温速度:5℃/分
 測定周波数:1Hz
 上述の測定試料調整方法でシートを得ることができない場合、ガラス転移温度Tgは、JIS K 6240(2011)に準拠し、DSCによっても測定できる。具体的には、対象の化合物を20mgはかりとり、アルミニウム製試料皿にのせ、示差走査型熱量計装置(DSC7000X、日立ハイテクサイエンス社製)に入れ、-140℃まで降温速度10℃/分で降温した後、1分間保持した。その後、(Tg+40℃)まで昇温速度20℃/分で昇温し、DSC曲線を得た。得られたDSC曲線の変曲点の温度からガラス転移温度(Tg)を求めた。
 上記Tgの測定の結果は、表1~4中に示した。
 なお、重合体粒子、熱可塑性エラストマーとしては、市販品を用いることができる。市販品の場合には、Tgは市販品のカタログデータや、公知文献を採用することができる。Tgの単位は摂氏(℃)である。
<ゲル浸透カラムクロマトグラフィー(GPC)による数平均分子量(Mn)の測定法>
1.試料の調整 
 測定対象物0.5gに対してテトラヒドロフラン10gを加えて超音波をかけながら2時間放置し溶解させた。続いて、ポリテトラフルオロエチレン製メンブレインフィルター(ポアサイズ3μm、アドバンテック(ADVANTEC)社製)で濾過し、濾液を測定試料とした。
2.装置、測定条件等
 下記の装置、測定条件でエマルション化合物のGPC測定を実施した。なお、得られたGPCチャートが二峰性である場合、本実施形態においては、数平均分子量が大きいほうを適用する。
 装置   :東ソー製 HLC-8220  GPC
 カラム  :以下のカラムを4本直列につないで分離した。
        東ソー製 TSKgel GMH XL
        東ソー製 TSKgel GMH XL
        東ソー製 TSKgel GMH XLL
        東ソー製 TSKgel GMH XLL
 カラム温度:40℃
 溶媒   :テトラヒドロフラン
 流速   :1mL/分
 検出器  :RI
 検量線  :標準ポリスチレン
 上記ゲル浸透カラムクロマトグラフィー(GPC)による数平均分子量(Mn)の測定の結果は、段落0311の表1中に用いた材料の記載一覧に示した。
<動的粘弾性の測定>
1.フレキソ印刷原版からの試料の調製
 まず、アセトン等の溶媒を用いて上記製造例5で得られたフレキソ印刷原版を構成する赤外線アブレーション層を不織布で拭き取った後、得られた支持体と感光性樹脂組成物層の積層体に対して、プレス機で120℃の条件で50kg/cmの圧力を4分間かけることで、支持体からはみ出した感光性樹脂組成物層を回収した。
 次に、感光性樹脂組成物を離型フィルムで挟み、1.5mmのスペーサーを用いてプレス機で120℃の条件で200kg/cmの圧力を4分間かけることで、厚み1.5mmの感光性樹脂組成物層を有する感光性樹脂組成物シートを得た。その後、「AFP-1216」露光機を用いて、感光性樹脂組成物シートの両面から各3000mJ/cmの紫外線で全面露光した。
 得られたサンプルの離型フィルムを剥がし、穴あけポンチを用いて、厚み1.5mmの硬化物を直径8mmの円形に成形した。
2.装置、測定条件等
下記の装置、測定条件で感光性樹脂組成物の硬化物の動的粘弾性を測定した。
 装置:Discovery Hybrid Rheometer 2(TAインスツルメント社製、商標)
 測定プレート:直径8mmのパラレルプレート
 法線応力:5N
 感度:0.1N
 回転方向のひずみ:0.1%
 測定温度:-30℃
 測定周波数:2.5Hz
 上記動的粘弾性の測定の結果は、下記表7,8に示す。
〔特性評価〕
<印刷試験>
 実施例及び比較例で得られたフレキソ印刷版を用いて、下記の(印刷条件)でフレキソ印刷試験を行った。
 まず、画像全面が着肉し始める印圧を基準印圧(キスタッチ)とし、100m印刷後と、10万m印刷後の印刷物を回収した。
 次に、フレキソ印刷版を新しいものに交換し、前記基準印圧から100μm押し込み、100m印刷後と、10万m印刷後の印刷物を回収した。
(印刷条件)
フレキソ印刷機  :AI-3型フレキソ印刷機(伊予機械製)
被印刷体     :NPiフォーム紙(日本製紙社製、商標)
インキ      :藍 プロセス PR-1003(サカタインクス社製)
アニロックスロール:800lpi(セル容積3.8cm3/m2)
クッションテープ :DuploFLEX5.2(Lohman社製、商標)
印刷速度     :200m/分
印刷室の温度   :23度
印刷室の相対湿度 :50%
<網点評価>
 まず、上記の<印刷試験>にて得られた印刷物の網点画像率(網点画像率=網点濃度/べた部濃度)を、eXact(Xrite社製)を用いて測定した。
 次に、印刷物の網点画像率が10%の網点の印刷部を、マイクロスコープ(キーエンス製、VHX-1000)を用いて倍率40倍で5mm四方の視野で観察し、印刷不良(網点の抜け、スラー)を起こしている網点の数を計測し、下記の評価基準に基づいて評価した。なお、下記評価基準において3以上であれば実用上問題なく使用することができる。
(評価基準)
 5:印刷不良を起こしている網点がない。
 4:印刷不良を起こしている網点が1個以上2個以下である。
 3:印刷不良を起こしている網点が4個以上9個以下である。
 2:印刷不良を起こしている網点が10個以上19個以下である。
 1:印刷不良を起こしている網点が20個以上である。
<インキ乗り評価>
 上記の<印刷試験>にて得られた印刷物のべた部のインキ濃度を、eXact(Xrite社製)を用いて測定した。7点測定した平均値をインキ濃度とした。
 下記評価基準において、3以上であれば実用上問題なく使用することができる。
5:ベタ部のインキ濃度が0.95以上である。
4:ベタ部のインキ濃度が0.9以上0.95未満である。
3:ベタ部のインキ濃度が0.85以上0.9未満である。
2:ベタ部のインキ濃度が0.8以上0.85未満である。
1:ベタ部のインキ濃度が0.8未満である。
 上記各結果を、下記表9に示す。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000006
 
Figure JPOXMLDOC01-appb-T000007
 
Figure JPOXMLDOC01-appb-T000008
 
Figure JPOXMLDOC01-appb-T000009
 
(成分)
 表1~4中に記載の各成分としては、以下のものを用いた。
<反応性乳化剤>
 アデカリアソープSE1025:(α-スルフォ(1-ノニルフェノキシ)メチル-2-(2-プロペニルオキシ)エトキシ-ポリ(オキシ-1,2-エタンジイル)のアンモニウム塩、ADEKA社製
<一塩基酸単量体>
 AA     :アクリル酸、三菱ケミカル社製
 MAA    :メタクリル酸、三菱ケミカル社製
<(メタ)アクリル酸エステル>
 BA     :アクリル酸ブチル(Mw128)、三菱ケミカル社製
 2-EHA  :アクリル酸2-エチルへキシル(Mw184)、三菱ケミカル社製
 LA     :ラウリルアクリレート(Mw240)、大阪有機化学社製
 ISTA   :イソステアリルアクリレート(Mw324)、大阪有機化学社製
 MPE400A:メトキシポリエチレングリコールアクリレート(Mw470)、大阪有機化学社製
<重合体粒子(i)>
 LX111NF:ポリブタジエンラテックス(Tg-82℃)、日本ゼオン社製
 SX1503A:アクリロニトリルブタジエン共重合体ラテックス(Tg-26℃)、日本ゼオン社製
<熱可塑性エラストマー(ii)>
 TR2827:スチレン-ブタジエンブロック共重合体(Tg-88℃)、JSR社製
 TR2787:スチレン-ブタジエンブロック共重合体(Tg-86℃)、JSR社製
 T-315 :スチレン-ブタジエンブロック共重合体(Tg-69℃)、旭化成社製
 BR1220:ポリブタジエンゴム(Tg-102℃)、日本ゼオン社製
<光重合性化合物(iii)>
 1.9ND   :1.9-ノナンジオールジメタクリレート、共栄社化学社製
 1.6HX-A :1.6-ヘキサンジオールアクリレート、共栄社化学社製
 DCP-A   :ジメチロールトリシクロデカンジアクリレート、共栄社化学社製
 TMP     :トリメチロルプロパントリメタクリレート、共栄社化学社製
 S       :n-ステアリルメタクリレート、共栄社化学社製
 IB-X    :イソボルニルメタクリレート、共栄社化学社製
 DCP     :ジメチロールトリシクロデカンジメタクリレート、共栄社化学社製
 BAC-45  :ポリブタジエンジアクリレート(Mn4800)、大阪有機化学社製
 CN307   :ポリブタジエンジアクリレート(Mn3800)、巴工業社製
 CN9014NS:ポリブタジエンウレタンジアクリレート(Mn8000)、巴工業社製
<光重合開始剤(iv)>
 Irg651  :ベンジルジメチルケタール、BASFジャパン社製
<可塑剤(v)>
 LBR-352 :液状ポリブタジエン、クラレ社製
 Ricon156:液状ポリブタジエン、巴工業社製
 B3000   :液状ポリブタジエン、日本曹達社製
 PW-32   :液状パラフィン、出光興産社製
<安定剤(vi)>
 BHT    :2,6-ジ-tert-ブチル-p-クレゾール、東京化成工業社製
 MEHQ   :4-メトキシフェノール、東京化成工業社製
<洗浄助剤(vii)>
 エマール0  :ラウリル硫酸ナトリウム、花王社製
 本発明は、印刷物を得るためのフレキソ印刷版として産業上の利用可能性を有する。
 2022年5月18日に出願された日本国特許出願2022-081755号の開示は、その全体が参照により本明細書に取り込まれる。
 また、明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
 10:フレキソ印刷原版、11:支持体、12:感光性樹脂組成物層、12a:レリーフ層、13:中間層、14:赤外線アブレーション層、14a:ネガパターン、S1:バック露光工程、S2:赤外線照射工程、S3:パターン露光工程、S4:現像工程、100:フレキソ印刷版

Claims (27)

  1.  少なくとも、支持体と、レリーフ層とが順次積層されており、
     前記レリーフ層が前記支持体と接している面と反対側の面の表層から1μmを切削して得られる断面のAFMによる動的粘弾性マッピング測定において、
     周波数が2,000Hzにおける貯蔵弾性率が、100MPa以上500MPa以下である領域(A1)と、
     周波数が2,000Hzにおける貯蔵弾性率が、3MPa以上15MPa以下である領域(B1)と、を少なくとも有する、
     フレキソ印刷版。
  2.  前記領域(A1)の面積率が、前記断面の総面積に対して3面積%以上35面積%以下であり、
     前記領域(B1)の面積率が、前記断面の総面積に対して35面積%以上65面積%以下である、
     請求項1に記載のフレキソ印刷版。
  3.  前記領域(A1)をモルフォロジー演算によるオープニング処理を施して得られる領域(a1)において、
     連続して隣接しているピクセルデータから構成される、1領域あたりの面積が0.1μm以上10μm以下である領域(a1′)の面積が、前記領域(a1)の面積に対して占める割合(a1′/a1)が、90面積%以上100面積%以下である、
     請求項1又は2に記載のフレキソ印刷版。
  4.  前記領域(B1)の面積率に対する前記領域(A1)の面積率の比率(A1/B1)が、0.1以上0.8以下である、
     請求項1又は2に記載のフレキソ印刷版。
  5.  前記領域(A1)において、
     周波数が2,000Hzにおける貯蔵弾性率が100MPa以上250MPa以下である領域(A1′)の面積が前記領域(A1)の面積に対して占める割合(A1′/A1)が、50面積%以上100面積%以下である、
     請求項1又は2に記載のフレキソ印刷版。
  6.  前記領域(B1)のうち、
     周波数が2,000Hzにおける貯蔵弾性率が10MPa以上15MPa以下である領域(B1′)の面積が、前記領域(B1)の面積に対して占める割合(B1′/B1)が、50面積%以上100面積%以下である、
     請求項1又は2に記載のフレキソ印刷版。
  7.  前記領域(A1)において、周波数が2,000Hzにおける損失弾性率の平均値が、50MPa以上250MPa以下であり、
     前記周波数における前記領域(A1)のtanδ([損失弾性率の平均値]/[貯蔵弾性率の平均値])が、0.5以上0.8以下であり、
     前記領域(B1)において、周波数が2,000Hzにおける損失弾性率の平均値が、2MPa以上10MPa以下であり、
     前記周波数における前記領域(B1)のtanδ([損失弾性率の平均値]/[貯蔵弾性率の平均値])が、0.4以上0.7以下である、
     請求項1又は2に記載のフレキソ印刷版。
  8.  前記AFMによる動的粘弾性マッピング測定において、
     周波数が2,000Hzにおける貯蔵弾性率が、15MPa超過100MPa未満である領域(C1)をさらに有し、
     前記領域(C1)の面積率が、前記断面の総面積に対して25面積%以上55面積%以下である、
     請求項1又は2に記載のフレキソ印刷版。
  9.  前記領域(B1)の面積率に対する前記領域(C1)の面積率の比率(C1/B1)が、0.3以上1.0以下である、
     請求項8に記載のフレキソ印刷版。
  10.  前記領域(C1)において、周波数が2,000Hzにおける損失弾性率の平均値が、10MPa以上50MPa以下であり、
     前記周波数における前記領域(C1)のtanδ([損失弾性率の平均値]/[貯蔵弾性率の平均値])が0.45以上0.75以下である、
     請求項8又は9に記載のフレキソ印刷版。
  11.  請求項1又は2に記載のフレキソ印刷版を用いて印刷をする工程を備えるフレキソ印刷方法。
  12.  少なくとも、支持体と、感光性樹脂組成物層とが順次積層されており、
      前記感光性樹脂組成物層が、下記の<測定条件1>において、周波数が2,000Hzの貯蔵弾性率が100MPa以上500MPa以下である領域(A2)と、2,000Hzの貯蔵弾性率が3MPa以上15MPa以下である領域(B2)と、を少なくとも有する、
     フレキソ印刷原版。
    <測定条件1>
     前記感光性樹脂組成物層を前記積層体から取り出し、1.5mm厚に成形し、上面及び下面から、それぞれに3000mJの紫外線を照射した硬化物の、表層1μmを切削して得られた断面のAFMによる動的粘弾性マッピング測定を行う。
  13.  前記領域(A2)の面積率が、前記断面の総面積に対して3面積%以上30面積%以下であり、
     前記領域(B2)の面積率が、前記断面の総面積に対して35面積%以上70面積%以下である、
     請求項12に記載のフレキソ印刷原版。
  14.  前記硬化物は、
     -30℃、2.5Hzにおける動的粘弾性測定において、
     貯蔵弾性率G’(MPa)が、2.0以上18.0以下である、
     請求項12又は13に記載のフレキソ印刷原版。
  15.  前記硬化物は、
     -30℃、2.5Hzにおける動的粘弾性測定において、
     貯蔵弾性率G’(MPa)と、損失弾性率G”(MPa)とが下記式(1)及び(2)を満たす、
     請求項12又は13に記載のフレキソ印刷原版。
     2.0≦G‘+G“≦25.0 式(1)
     0.4≦G“≦7.0   式(2)
  16.  前記感光性樹脂組成物層は、ガラス転移温度が-45℃以上-10℃以下である重合体粒子(i)と、ガラス転移温度が-95℃以上-60℃以下である熱可塑性エラストマー(ii)と、光重合性化合物(iii)と、光重合開始剤(iv)と、を少なくとも含み、
     前記重合体粒子(i)は、該重合体粒子(i)を構成する単量体単位として、芳香族ビニル化合物と、共役ジエン化合物と、を、含み、
     前記熱可塑性エラストマー(ii)は、該熱可塑性エラストマー(ii)を構成する単量体単位として、芳香族ビニル化合物と、共役ジエン化合物とを、含む、
     請求項12又は13に記載のフレキソ印刷原版。
  17.  前記感光性樹脂組成物層は、
     数平均分子量が2,000以上8,000以下の光重合性化合物を含む、
     請求項16に記載のフレキソ印刷原版。
  18.  前記感光性樹脂組成物層は、
     前記感光性樹脂組成物層の総量を100質量%としたとき、
     前記重合体粒子(i)の含有量が、3質量%以上30質量%以下であり、
     前記熱可塑性エラストマー(ii)の含有量が、25質量%以上55質量%以下であり、
     数平均分子量が2,000以上8,000以下の光重合性化合物の含有量が、1質量%以上20質量%以下である、
     請求項17に記載のフレキソ印刷原版。
  19.  前記硬化物は、AFMによる動的粘弾性マッピング測定において、
     さらに2,000Hzにおける貯蔵弾性率が15MPa超過100MPa未満である領域(C2)を有する、
     請求項12又は13に記載のフレキソ印刷原版。
  20.  前記硬化物は、AFMによる動的粘弾性マッピング測定において、
     前記領域(C2)の面積率が、前記断面の総面積に対して20面積%以上40面積%以下である、
     請求項19に記載のフレキソ印刷原版。
  21.  前記感光性樹脂組成物層は、
     前記熱可塑性エラストマー(ii)に対する前記重合体粒子(i)の質量比が0.1以上1.0以下である、
     請求項16に記載のフレキソ印刷原版。
  22.  前記領域(B2)の面積率に対する前記領域(A2)の面積率の比率(A2/B2)が、0.05以上0.7以下である、
     請求項12又は13に記載のフレキソ印刷版。
  23.  前記重合体粒子(i)が、該重合体粒子(i)を構成する単量体単位として、
     100質量部の共役ジエン化合物単量体単位に対し、40質量部以上120質量部以下の芳香族ビニル化合物単量体単位と、
     25質量部以上140質量部以下の(メタ)アクリル酸エステル単量体単位と、を含む、
     請求項16に記載のフレキソ印刷原版。
  24.  前記重合体粒子(i)は、該重合体粒子(i)を構成する単量体単位として、
     数平均分子量が150以上500以下の(メタ)アクリル酸エステル単量体単位を含む、
     請求項16に記載のフレキソ印刷原版。
  25.  以下の工程1~4をこの順に含む、請求項12又は13に記載のフレキソ印刷原版の製造方法:
     工程1;重合体粒子(i)含有水分散液に、少なくとも光重合性化合物(iii)を添加して重合体粒子(i)含有水分散液を得る工程。
     工程2;工程1で得られた、前記重合体粒子(i)含有水分散液から水を除去し、重合体粒子(i)と光重合性化合物(iii)を含む混合物を得る工程。
     工程3;工程2で得られた、前記混合物に、少なくとも、熱可塑性エラストマー(ii)を添加して、感光性樹脂組成物を得る工程。
     工程4;工程3で得られた、前記感光性樹脂組成物を支持体上に積層してフレキソ印刷原版を得る工程。
  26.  以下の工程1、2をこの順に含む、請求項1又は2に記載のフレキソ印刷版の製造方法。
     工程1;請求項12又は13に記載の感光性樹脂組成物層を、ネガパターンを介して、部分選択的に露光して部分硬化物を得る工程、
     工程2;工程1で得られた前記部分硬化物から、感光性樹脂組成物層の未露光部分を取り除く工程。
  27.  請求項26に記載のフレキソ印刷版の製造方法により印刷版を製造する印刷版製造工程と、
     前記印刷版製造工程で得られたフレキソ印刷版を用いて印刷する印刷工程と、を備える、
     印刷方法。
PCT/JP2023/017607 2022-05-18 2023-05-10 感光性樹脂組成物、フレキソ印刷原版、及びフレキソ印刷版の製造方法 WO2023223919A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022081755 2022-05-18
JP2022-081755 2022-05-18

Publications (1)

Publication Number Publication Date
WO2023223919A1 true WO2023223919A1 (ja) 2023-11-23

Family

ID=88835226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/017607 WO2023223919A1 (ja) 2022-05-18 2023-05-10 感光性樹脂組成物、フレキソ印刷原版、及びフレキソ印刷版の製造方法

Country Status (1)

Country Link
WO (1) WO2023223919A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003107681A (ja) * 2001-10-02 2003-04-09 Asahi Kasei Corp フレキソ印刷用感光性樹脂組成物
WO2017057086A1 (ja) * 2015-09-30 2017-04-06 旭化成株式会社 フレキソ印刷用感光性樹脂組成物及びフレキソ印刷原版

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003107681A (ja) * 2001-10-02 2003-04-09 Asahi Kasei Corp フレキソ印刷用感光性樹脂組成物
WO2017057086A1 (ja) * 2015-09-30 2017-04-06 旭化成株式会社 フレキソ印刷用感光性樹脂組成物及びフレキソ印刷原版

Similar Documents

Publication Publication Date Title
JP7028560B2 (ja) フレキソ印刷版
JP3836433B2 (ja) 改良された水系現像可能なフレキソ印刷用感光性樹脂
JP6810251B2 (ja) フレキソ印刷版用感光性樹脂組成物、フレキソ印刷原版、フレキソ印刷版、及び、共重合体
JP7104805B2 (ja) フレキソ印刷原版及びフレキソ印刷版の製造方法
JP6579707B2 (ja) フレキソ印刷用感光性樹脂組成物及びフレキソ印刷原版
US10416556B2 (en) Photosensitive resin composition for flexographic printing and flexographic printing original plate
WO2004090638A1 (ja) 感光性樹脂組成物、それを用いた感光層および感光性樹脂印刷用原版
JP4994488B2 (ja) フレキソ印刷用感光性樹脂組成物、及びその製造方法
WO2023223919A1 (ja) 感光性樹脂組成物、フレキソ印刷原版、及びフレキソ印刷版の製造方法
JP7229332B2 (ja) フレキソ印刷原版及びフレキソ印刷版の製造方法
JP7108376B2 (ja) フレキソ印刷原版及びフレキソ印刷版
JP2017032845A (ja) フレキソ印刷版用感光性樹脂組成物
WO2022210577A1 (ja) フレキソ印刷原版及びフレキソ印刷版の製造方法
JP2004246247A (ja) フレキソ印刷用感光性樹脂組成物
WO2022173000A1 (ja) フレキソ印刷原版、フレキソ印刷版及びフレキソ印刷版の製造方法
JP2019066602A (ja) フレキソ印刷版
JP7438458B1 (ja) フレキソ印刷版の製造方法、及び印刷方法
JP4415245B2 (ja) 感光性樹脂組成物およびそれを用いた感光性樹脂印刷原版
JP2022119359A (ja) フレキソ印刷原版及びフレキソ印刷原版の製造方法
JP4487176B2 (ja) 感光性樹脂組成物およびそれを用いた感光性樹脂印刷用原版
JP2005148588A (ja) 感光性樹脂組成物およびそれを用いた感光性樹脂印刷用原版
JP2018180048A (ja) フレキソ印刷版用感光性樹脂組成物及びその製造方法、並びにフレキソ印刷原版
JP2005077503A (ja) 感光性樹脂組成物層およびそれを用いた感光性樹脂印刷原版

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23807523

Country of ref document: EP

Kind code of ref document: A1