WO2023221232A1 - 使聚酰亚胺清漆兼具耐电涌性和耐湿热性的方法、聚酰亚胺清漆和绝缘电线 - Google Patents

使聚酰亚胺清漆兼具耐电涌性和耐湿热性的方法、聚酰亚胺清漆和绝缘电线 Download PDF

Info

Publication number
WO2023221232A1
WO2023221232A1 PCT/CN2022/100656 CN2022100656W WO2023221232A1 WO 2023221232 A1 WO2023221232 A1 WO 2023221232A1 CN 2022100656 W CN2022100656 W CN 2022100656W WO 2023221232 A1 WO2023221232 A1 WO 2023221232A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide
polyimide varnish
structural unit
resistance
silica
Prior art date
Application number
PCT/CN2022/100656
Other languages
English (en)
French (fr)
Inventor
尹勇
高翔
Original Assignee
住井科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住井科技(深圳)有限公司 filed Critical 住井科技(深圳)有限公司
Publication of WO2023221232A1 publication Critical patent/WO2023221232A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • H01B3/306Polyimides or polyesterimides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/308Wires with resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Definitions

  • the present invention relates to the field of motors, and in particular to a method of making polyimide varnish have both surge resistance and moisture-heat resistance, polyimide varnish and insulated wires.
  • ATF automated fluid cooling of the motor
  • the windings are also required to have "humid heat resistance” that can withstand hot and cold cycles in water-containing ATF.
  • the current strategy to solve the problem of moisture and heat resistance is to use materials with relatively excellent hydrolysis resistance such as amide imide.
  • the drawbacks of this strategy are the reduction in heat resistance and the reduction in PDIV accompanying the increase in dielectric constant.
  • the present invention provides a polyimide varnish that has both surge resistance and moisture and heat resistance.
  • the polyimide varnish includes a polyimide precursor solution having a structural unit (I) represented by formula (I) and a structural unit (II) represented by formula (II), and in the polyimide
  • the inorganic filler is uniformly dispersed in the precursor solution, and the molar ratio of structural unit (II) to structural unit (I) is 60/40 to 90/10.
  • the inorganic filler includes at least one of silica, alumina, titanium oxide and chromium oxide.
  • the amount of the inorganic filler added to the polyimide precursor is 10 to 40 phr.
  • the weight average molecular weight of the polyimide precursor is 20,000 to 50,000.
  • the solid content of the polyimide precursor solution is 15 to 35 wt%.
  • the silica is introduced in the form of a colloidal nanosilica solution.
  • the primary particle size of colloidal nanosilica is 5 to 100 nm; preferably, the concentration of silica in the colloidal nanosilica solution is 5 to 50 wt%.
  • the present invention provides a method for making a polyimide varnish have both surge resistance and moisture and heat resistance.
  • the polyimide varnish includes a polyimide precursor solution having a structural unit (I) represented by formula (I) and a structural unit (II) represented by formula (II), and in the polyimide
  • the inorganic filler is uniformly dispersed in the precursor solution, and the molar ratio of structural unit (II) to structural unit (I) is 60/40 to 90/10.
  • the inorganic filler includes at least one of silica, alumina, titanium oxide and chromium oxide.
  • the present invention provides an insulated electric wire, including a conductor and an insulating film formed by coating the outer peripheral surface of the conductor with the insulated electric wire according to any one of the above and curing the insulated electric wire.
  • a polyimide precursor solution and a colloidal nanosilica solution are mixed under stirring conditions to obtain a polyimide varnish.
  • the polyimide precursor solution contains a polyimide precursor and a solvent.
  • the solvent is not particularly limited and can generally be an organic solvent, for example, it can be selected from dimethylacetamide (DMAc), N-methylpyrrolidone (NMP), N,N-dimethylformamide (DMF), and xylene. of at least one.
  • DMAc dimethylacetamide
  • NMP N-methylpyrrolidone
  • DMF N,N-dimethylformamide
  • xylene xylene.
  • a mixed solution of dimethylacetamide and N-methylpyrrolidone is used as the solvent in the specific embodiment.
  • the choice of the solvent is independent of surge resistance and moisture and heat resistance.
  • DMAc has the advantage of lowering the viscosity at the same molecular weight compared with NMP.
  • the toughness of the film formed by the varnish is easily reduced, but if about 10% of NMP is introduced into the solvent, the toughness of the film will be better.
  • the weight ratio of dimethylacetamide and N-methylpyrrolidone is 0:100-90:10.
  • Polyimide precursors include any polyimide precursor material derived from diamine and dianhydride monomers and capable of being converted into polyimide, such as polyamic acid and the like.
  • the diamine is preferably an aromatic diamine, and examples thereof include phenylenediamine (PPD), diaminodiphenyl ether (ODA), 4,4'-diamino-2,2'-dimethylbiphenyl, 4, 4'-diamino-3,3'-dimethylbiphenyl, bis(4-aminophenyl) sulfide, 3,3'-diaminodiphenyl sulfone, 1,4-bis(4-aminophenoxy) methyl)benzene, 1,3-bis(3-aminophenoxy)benzene, 2,2-bis[4-(4-aminophenoxy)]phenyl]hexafluoropropane, 2,2-bis(4 -Aminophenyl)hexafluor
  • the dianhydride is preferably an aromatic dianhydride, and examples thereof include pyromellitic dianhydride (PMDA), biphenyltetracarboxylic dianhydride (BPDA), and 3,3',4,4'-benzophenonetetracarboxylic.
  • PMDA pyromellitic dianhydride
  • BPDA biphenyltetracarboxylic dianhydride
  • 3,3',4,4'-benzophenonetetracarboxylic 3,3',4,4'-benzophenonetetracarboxylic.
  • Acid dianhydride bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 1,2 ,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 3,3',4,4'-diphenylsulfone tetracarboxylic dianhydride , 4,4'-(hexafluoroisopropylidene)diphthalic anhydride, 4,4'-(4,4'-isopropylidenediphenoxy)bisphthalic anhydride, 4, 4'-oxybisphthalic anhydride, bis(1,3-dioxo-1,3-dihydroisobenzofuran)5-carboxylate)-1,4-phenylene ester, etc.
  • One type of these dianhydrides may be used alone
  • the BPDA monomer will crystallize, causing the elastic modulus to be too high, resulting in stress that will promote the hydrolysis of the film in a hot and humid environment.
  • the molar ratio of biphenyltetracarboxylic dianhydride (BPDA)/pyromellitic acid dianhydride (PMDA) is between 60/40 and 90/10.
  • BPDA biphenyltetracarboxylic dianhydride
  • PMDA pyromellitic dianhydride
  • the present invention provides a polyimide varnish that has both surge resistance and moisture and heat resistance.
  • the polyimide varnish includes a polyimide precursor solution having a structural unit (I) represented by formula (I) and a structural unit (II) represented by formula (II), and in the polyimide
  • the inorganic filler is uniformly dispersed in the precursor solution, and the molar ratio of structural unit (II) to structural unit (I) is 60/40 to 90/10.
  • the "hygroscopicity" of the polymer only means water absorption. This is a completely different factor from moisture-heat resistance (hydrolysis resistance).
  • moisture-heat resistance hydrolysis resistance
  • aramid nylon
  • the invention has developed for the first time a polyimide varnish that has both surge resistance and moisture-heat resistance.
  • the polyimide insulation film used for the preparation has excellent moisture-heat resistance and will not crack after multiple moisture-heat cycles.
  • the weight average molecular weight of the polyimide precursor is 10,000 to 50,000. In this molecular weight range, the polyimide molecular chains can enter between the colloidal silica nanoparticles, thereby preventing the agglomeration of the particles. In order to ensure film toughness and improve workability by suppressing viscosity, the weight average molecular weight of the polyimide precursor is preferably 20,000 to 40,000.
  • the solid content of the polyimide precursor solution is 15 to 35 wt%. Within this solid content range, the dispersion and appropriate viscosity of the colloidal nanosilica particles can be maintained for a long time. If the solid content of the polyimide precursor solution is low or high, it will be difficult to cover the electric wire from the viewpoint of viscosity. From this point of view, the solid content of the polyimide precursor solution is preferably 20 to 30 wt%.
  • the polyimide precursor solution can be obtained by reacting a dianhydride and a diamine in a solvent.
  • the molar ratio of dianhydride and diamine can be 90:100 ⁇ 100:100. By using this molar ratio, it is possible to obtain a varnish having a molecular weight greater than that required to maintain the strength and toughness of the film and a molecular weight that is equal to or less than the maximum molecular weight that can penetrate between colloidal nanosilica particles.
  • the reaction temperature and reaction time can be adjusted according to needs. For example, the reaction temperature may be 70°C. The reaction time can be 5 hours. Under this reaction condition, a polyimide precursor with appropriate weight average molecular weight can be obtained.
  • the amount of solvent can be selected according to the required solid content of the polyimide precursor solution.
  • the inorganic filler includes, but is not limited to, at least one of silica, alumina, titanium oxide and chromium oxide.
  • the added amount of the inorganic filler relative to the polyimide precursor (solution) is 10 to 40 phr.
  • the inorganic filler silica introduced in the present invention is preferably in the form of colloidal nanosilica.
  • Colloidal nanosilica or colloidal silica, organosilicon sol
  • the silica in the obtained polyimide varnish is dispersed in nanometer size. This way the light is not scattered and the polyimide varnish is transparent.
  • polyimide varnish has good storage stability.
  • the polyimide varnish coating has good toughness. If nanosilica powder is used directly, it will become secondary, tertiary, and quaternary particles due to agglomeration, and it will be difficult to break them even with ultrasonic and other means.
  • the resulting polyimide varnish will be very hazy and the film will have poor toughness.
  • the size of the nanosized silica in the colloidal nanosilica is at the nanoscale in at least one dimension, and preferably the size in all dimensions is the nanoscale. In a preferred embodiment, the size of nanosilica in at least one dimension is 5 to 100 nm. This can provide surge resistance without impairing the toughness of the resulting film.
  • the solvent in colloidal nanosilica is an organic solvent, such as dimethylacetamide (DMAc), N-methylpyrrolidone (NMP), N,N-dimethylformamide (DMF), and xylene. At least one.
  • DMAc dimethylacetamide
  • NMP N-methylpyrrolidone
  • DMF N,N-dimethylformamide
  • xylene xylene. At least one.
  • a colloidal silica solution surface-modified with a silane coupling agent can also be used.
  • the affinity between nanosilica and the polyimide precursor can be improved by surface treatment with a silane coupling agent.
  • the quality of the silane coupling agent is that of the colloidal nanosilica. 5-30% of the mass of silica in the solution.
  • the composition of the silane coupling agent is not limited, and silane coupling agents commonly used in this field can be used.
  • DMAC-ST is colloidal silica, manufactured by Nissan Chemical Co., Ltd., with a silica concentration of 20wt% and a silica particle size of 10-15nm.
  • insulated wire Specifically, copper is cast, stretched, drawn, and softened to obtain a conductor with a circular cross-section and an average diameter of 1 mm. Coat varnish on the outer peripheral surface of the above-mentioned conductor, and repeat the application of varnish multiple times until the required film thickness is formed.
  • the inlet temperature of the heating furnace is 350°C and the outlet temperature of the heating furnace is 450°C. Bake to get insulated wire.
  • the thickness of the insulating film formed by the varnish is 60 ⁇ m.
  • the V-t test is measured using the sine wave generator of Changzhou WELLYUE Electric Co., Ltd. (CHANGZHOU WELLYUE ELECTRICAL., LTD.).
  • the test conditions are temperature 155°C, frequency 100kHz, voltage 1500Vp, and the voltage type is sine wave.
  • the damp heat test adopts the ATF sealing test method. Add a mixture of 0.2wt% 100mL ATF and pure water into a sealed container (autoclave) with a volume of 200mL. The volume of sample (wire) + ATF + pure water should not exceed 80% of the volume of the sealed container. The durability conditions are -40°C ⁇ 8hrs+155°C ⁇ 40hrs as one cycle, for a total of 28 cycles. After the heat and humidity resistance test, visually inspect the appearance of the sample and check for cracks.
  • the molar ratio of BPDA/PMDA in Examples 1-4 is between 80/40 and 90/10.
  • the molar ratio of structural unit (II) and structural unit (I) is 60/40.
  • the insulating film of the insulated wire did not crack even after multiple heat and humidity cycles, indicating that the polyimide film of this composition has high hydrolysis resistance.
  • the molar ratio of BPDA/PMDA is between 10/90 and 50/50, and at this time, the insulated wire breaks after undergoing a moist heat cycle.
  • the film could not be formed, that is, the film was damaged, and the wire could not be manufactured. This is because the crystallinity of PPD/PMDA is too high and the film becomes brittle and will not form a film. As BPDA increases, the crystallinity weakens. Although a film is formed to a certain extent, the elasticity is too high and the stress is strong. The film hydrolyzes in a hot and humid environment and cannot have excellent hydrolysis resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

使聚酰亚胺清漆兼具耐电涌性和耐湿热性的方法、聚酰亚胺清漆和绝缘电线。所述聚酰亚胺清漆包含具有式(I)所示的结构单元(I)和式(II)所示的结构单元(II)的聚酰亚胺前驱体溶液以及在所述聚酰亚胺前驱体溶液中均匀分散的无机填料,其中结构单元(II)和结构单元(I)的摩尔比为60/40~90/10。

Description

使聚酰亚胺清漆兼具耐电涌性和耐湿热性的方法、聚酰亚胺清漆和绝缘电线 技术领域
本发明涉及电机领域,尤其涉及一种使聚酰亚胺清漆兼具耐电涌性和耐湿热性的方法、聚酰亚胺清漆和绝缘电线。
背景技术
随着电动车的高电压化,所使用的绕组要求耐电涌性,另一方面要求伴随发热的高耐热性(耐水解性)。为了防止发热而设计了对电动机进行ATF(自动液)冷却的方法,也要求绕组在含水的ATF中耐受冷热循环的“耐湿热性”。现有技术的解决耐湿热性的策略为使用酰胺酰亚胺等耐水解性相对优异的材料。这样的策略存在的缺陷是耐热性降低、伴随高介电常数化的PDIV降低。
发明内容
针对上述问题,第一方面,本发明提供一种兼具耐电涌性和耐湿热性的聚酰亚胺清漆。所述聚酰亚胺清漆包含具有式(I)所示的结构单元(I)和式(II)所示的结构单元(II)的聚酰亚胺前驱体溶液以及在所述聚酰亚胺前驱体溶液中均匀分散的无机填料,其中结构单元(II)和结构单元(I)的摩尔比为60/40~90/10。
Figure PCTCN2022100656-appb-000001
较佳地,所述无机填料包括二氧化硅、氧化铝、氧化钛和氧化铬中的至少一种。
较佳地,所述无机填料相对于聚酰亚胺前驱体的添加量为10~40phr。
较佳地,聚酰亚胺前驱体的重均分子量为20,000~50,000。
较佳地,聚酰亚胺前驱体溶液的固含量为15~35wt%。
较佳地,所述二氧化硅以胶体纳米二氧化硅溶液的形式引入。
较佳地,胶体纳米二氧化硅一次粒径的尺寸为5~100nm;优选地,胶体纳米二氧化硅溶液中二氧化硅的浓度为5~50wt%。
第二方面,本发明提供一种使聚酰亚胺清漆兼具耐电涌性和耐湿热性的方法。所述聚酰亚胺清漆包含具有式(I)所示的结构单元(I)和式(II)所示的结构单元(II)的聚酰亚胺前驱体溶液以及在所述聚酰亚胺前驱体溶液中均匀分散的无机填料,其中结构单元(II)和结构单元(I)的摩尔比为60/40~90/10。
Figure PCTCN2022100656-appb-000002
较佳地,所述无机填料包括二氧化硅、氧化铝、氧化钛和氧化铬中的至少一种。
第三方面,本发明提供一种绝缘电线,包括导体和将上述任一项所述的绝缘电线涂覆在导体外周面并固化形成的绝缘皮膜。
具体实施方式
通过下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。在没有特殊说明的情况下,各百分含量指质量百分含量。
作为示例,在搅拌条件下将聚酰亚胺前驱体溶液与胶体纳米二氧化硅溶液混合,得到聚酰亚胺清漆。聚酰亚胺前驱体溶液包含聚酰亚胺前驱体和溶剂。所述溶剂没有特别限定,一般可为有机溶剂,例如可选自二甲基乙酰胺(DMAc)、N甲基吡咯烷酮(NMP)、N,N-二甲基甲酰胺(DMF)、二甲苯中的至少一种。具体实施方式中的溶剂使用二甲基乙酰胺和N甲基吡咯烷酮的混合溶液。所述溶剂的选择与耐电涌性和耐湿热性无关。相对而言,使用DMAc具有与NMP相比可以在同一分子量下降低粘度的优点。另一方面,如果溶剂完全采用DMAc,则清漆形成的薄膜的韧性容易降低,但是如果在溶剂中引入10%左右的NMP薄膜的韧性会更好。优选地,二甲基乙酰胺和N甲基吡咯烷酮的重量比为0:100~90:10。
聚酰亚胺前驱体包括衍生自二胺和二酸酐单体并能够转化成聚酰亚胺的任何聚酰亚胺前体材料,例如聚酰胺酸等。二胺优选为芳族二胺,例如可举出苯二胺(PPD)、二氨基二苯醚(ODA)、4,4'-二氨基-2,2'-二甲基联苯、4,4'-二氨基-3,3'-二甲基联苯、双(4-氨基苯基)硫醚、3,3'-二氨基二苯砜、1,4-双(4-氨基苯氧基)苯、1,3-双(3-氨基苯氧基)苯、2,2-双[4-(4-氨基苯氧基)]苯基]六氟丙烷、2,2-双(4-氨基苯基)六氟丙烷、9,9-双 (4-氨基苯基)芴、2,2-双[4-(4-氨基苯氧基)苯基]丙烷、4,4'-双(4-氨基苯氧基)联苯、1,3-双(4-氨基苯氧基)苯、2,2'-双(三氟甲基)联苯胺等。这些二胺可以单独使用一种,也可以两种或者两种以上混合使用。二酸酐优选为芳族二酸酐,例如可举出均苯四甲酸二酸酐(PMDA)、联苯四羧酸二酐(BPDA)、3,3',4,4'-二苯甲酮四羧酸二酐、双环[2.2.2]辛-7-烯-2,3,5,6-四羧酸二酐、1,2,3,4-环戊烷四羧酸二酐、1,2,3,4-环丁烷四羧酸二酐、1,2,4,5-环己烷四羧酸二酐、3,3',4,4'-二苯基砜四羧酸二酐、4,4'-(六氟异亚丙基)二邻苯二甲酸酐、4,4'-(4,4'-异亚丙基二苯氧基)双邻苯二甲酸酐、4,4'-氧双邻苯二甲酸酐、双(1,3-二氧代-1,3-二氢异苯并呋喃)5-羧酸)-1,4-亚苯基酯等。这些二酸酐可以单独使用一种,也可以两种或者两种以上混合使用。
然而在试验中发现,当二胺采用二氨基二苯醚(ODA),二酸酐采用均苯四甲酸二酸酐(PMDA)和联苯四羧酸二酐(BPDA)组成的混合物时,聚酰亚胺清漆的性能较佳。基本上,为了在市场上具有竞争力,必须选择广泛流通的廉价材料。PMDA是一种非常便宜的材料,但耐水解性差,不能单独使用。BPDA具有优异的耐水解性,是具有优势的材料,但由于PMDA相对昂贵,所以希望是必要最小限度的量。因为ODA也广泛流通,所以成本竞争力非常高且具有醚键,因此可以形成皮膜韧性优良的聚酰亚胺。由于这些原因,本发明用这三种单体进行了研究。其中,如后所述,发现特定的BPDA/PMDA配合比对提高耐水解性的效果非常显著。单独采用均苯四甲酸二酸酐(PMDA)或者联苯四羧酸二酐(BPDA)制备的聚酰亚胺清漆包覆的绝缘电线,在湿热循环过程中容易破裂。这是由于PMDA的水解性较差;BPDA单体会发生结晶性,而引起弹性率过高导致所产生的应力会促进皮膜在湿热环境下水解。作为优选,联苯四羧酸二酐(BPDA)/均苯四甲酸二酸酐(PMDA)的摩尔比在60/40~90/10之间。通过将联苯四羧酸二酐(BPDA)和均苯四甲酸二酸酐(PMDA)的摩尔比限定在上述范围,能够抑制结晶性和皮膜的高弹性率化,并且导入BPDA的耐水解结构,进而改善绝缘电线的耐湿热性能。
据此,本发明提供一种兼具耐电涌性和耐湿热性的聚酰亚胺清漆。所述聚酰亚胺清漆包含具有式(I)所示的结构单元(I)和式(II)所示的结构单元(II)的聚酰亚胺前驱体溶液以及在所述聚酰亚胺前驱体溶液中均匀分散的无机填料,其中结构单元(II)和结构单元(I)的摩尔比为60/40~90/10。
Figure PCTCN2022100656-appb-000003
Figure PCTCN2022100656-appb-000004
在此需要特别说明的是,聚合物的“吸湿性”仅表示吸水率。这与湿热性(耐水解性)是完全不同的要素。例如芳纶(尼龙)的吸水率非常高,耐吸湿性差,但却具有优异的耐湿热性。本发明首次开发出兼具耐电涌性和耐湿热性的聚酰亚胺清漆,用于制备的聚酰亚胺绝缘皮膜耐湿热性优异,经过多次湿热循环也不会发生破裂。
聚酰亚胺前驱体的重均分子量为10,000~50,000。在该分子量范围,聚酰亚胺分子链可以进入胶体二氧化硅纳米颗粒间,由此可以防止颗粒的凝集。为了确保皮膜韧性和通过抑制粘度来提高作业性,聚酰亚胺前驱体的重均分子量优选为20,000~40,000。
聚酰亚胺前驱体溶液的固含量为15~35wt%。在该固含量范围时,可以长时间维持胶体纳米二氧化硅颗粒的分散性以及合适粘度。若聚酰亚胺前驱体溶液的固含量较低或较高,则从粘度的观点出发难以对电线进行覆盖。从该方面考虑,聚酰亚胺前驱体溶液的固含量优选为20~30wt%。
聚酰亚胺前驱体溶液可通过将二酸酐与二胺在溶剂中反应而得。二酸酐与二胺的摩尔比可为90:100~100:100。采用该摩尔比,可以得到维持皮膜的强韧性所需的分子量以上且能进入胶体纳米二氧化硅颗粒间的最大分子量以下的清漆。反应温度和反应时间可以根据需求作出调整。例如,反应温度可为70℃。反应时间可为5小时。在该反应条件下,可以得到合适重均分子量的聚酰亚胺前驱体。溶剂用量可根据所需的聚酰亚胺前驱体溶液的固含量来选择。
所述无机填料包括但不限于二氧化硅、氧化铝、氧化钛和氧化铬中的至少一种。一些技术方案中,所述无机填料相对于聚酰亚胺前驱体(溶液)的添加量为10~40phr。本发明引入的无机填料二氧化硅优选采用胶体纳米二氧化硅的形式。胶体纳米二氧化硅(或称胶体二氧化硅、有机硅溶胶)是指纳米尺寸的二氧化硅(或称纳米二氧化硅)已分散于溶剂中的胶体。也就是说,所得的聚酰亚胺清漆中二氧化硅是以纳米尺寸分散。这样光不会散射,因而聚酰亚胺清漆呈透明。而且,聚酰亚胺清漆具有良好的保存稳定性。该聚酰亚胺清漆的涂 膜具有良好的韧性。如果直接使用纳米二氧化硅粉体,则其会因团聚而成为二次、三次、四次粒子,即使用超声等手段也难以将其破碎。这样所得的聚酰亚胺清漆会很混浊且涂膜的韧性较差。胶体纳米二氧化硅中的纳米尺寸的二氧化硅在至少一个维度上的尺寸为纳米级,优选为在各维度上的尺寸均为纳米级。优选实施方式中,纳米二氧化硅在至少一个维度上的尺寸为5~100nm。这样可以在不损害所得的皮膜的强韧性的情况下赋予耐电涌性。胶体纳米二氧化硅中的溶剂为有机溶剂,例如可选自二甲基乙酰胺(DMAc)、N甲基吡咯烷酮(NMP)、N,N-二甲基甲酰胺(DMF)、二甲苯中的至少一种。在胶体纳米二氧化硅与聚酰亚胺前驱体混合后、以及如下所述将聚酰亚胺清漆成膜后,二氧化硅颗粒仍能保持原来的粒径。更优选地,还可以使用硅烷偶联剂表面改性的胶体二氧化硅溶液。通过用硅烷偶联剂对其进行表面处理可以改善纳米二氧化硅与聚酰亚胺前驱体的亲和性,一些技术方案中,所述硅烷偶联剂的质量为所述胶体纳米二氧化硅溶液中的二氧化硅质量的5-30%。硅烷偶联剂的组成不受限制,可采用本领域常用的硅烷偶联剂。
下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。
DMAC-ST是胶体二氧化硅,日产化学制,二氧化硅浓度为20wt%,二氧化硅的粒径为10-15nm。
制备比较例1-18和实施例1-4的清漆
将DMAC、NMP、ODA、PPD放入烧瓶中搅拌1小时左右直至ODA和PPD溶解,然后加入PMDA和BPDA并在室温下继续搅拌24小时以获得基底清漆。在得到的基底清漆中加入DMAC-ST搅拌4小时,备用。
制备比较例1-18和实施例1-4的绝缘电线
制作绝缘电线。具体而言,通过对铜进行铸造、拉伸、拉丝及软化,得到截面为圆形且平均直径为1mm的导电体。将清漆涂布在上述导电体的外周面上,重复多次涂布清漆的操作直至形成所需皮膜厚度,在加热炉的入口温度为350℃、加热炉的出口温度为450℃的条件下进行烘烤,得到绝缘电线。清漆形成的绝缘皮膜厚度为60μm。
表1 单位:g
Figure PCTCN2022100656-appb-000005
表2 比较例1-18和实施例1-4的绝缘电线性能参数
Figure PCTCN2022100656-appb-000006
Figure PCTCN2022100656-appb-000007
V-t试验使用常州威尔岳电气有限公司(CHANGZHOU WELLYUE ELECTRICAL.,LTD.)的正弦波发生装置进行测定。测试条件为温度155℃,频率100kHz,电压1500Vp,电压类型为正弦波。
湿热试验采用ATF密封试验方法。在容积200mL的密封容器(高压釜)中加入0.2wt%的100mL ATF和纯水的混合液。试料(电线)+ATF+纯水的体积不应超过密封容器容积的80%。耐久性条件为-40℃×8hrs+155℃×40hrs为1个循环,共进行28个循环。耐湿热试验后,目视检查样品的外观,并检查是否破裂。
从表2可以看出,实施例1-4中BPDA/PMDA的摩尔比在80/40至90/10之间,此时结构单元(II)和结构单元(I)的摩尔比为60/40~90/10,即使在经过多个湿热循环后绝缘电线的绝缘皮膜没有发生破裂,说明该组成的聚酰亚胺皮膜的耐水解性高。反之,比较例2-6中BPDA/PMDA的摩尔比在10/90至50/50之间,此时绝缘电线在经过湿热循环后发生破裂。
另外,比较例8-14的绝缘电线无法形成皮膜、即薄膜破烂,不能做成电线。这是因为PPD/PMDA的结晶性太高,薄膜变脆,不会成为皮膜。随着BPDA的增加,结晶性减弱,虽然形成了某种程度的皮膜,但弹性过高,应力强,皮膜在湿热环境下发生水解无法具备优异的耐水解性。

Claims (10)

  1. 一种兼具耐电涌性和耐湿热性的聚酰亚胺清漆,其特征在于,所述聚酰亚胺清漆包含具有式(I)所示的结构单元(I)和式(II)所示的结构单元(II)的聚酰亚胺前驱体溶液以及在所述聚酰亚胺前驱体溶液中均匀分散的无机填料,其中结构单元(II)和结构单元(I)的摩尔比为60/40~90/10。
    Figure PCTCN2022100656-appb-100001
  2. 根据权利要求1所述的聚酰亚胺清漆,其特征在于,所述无机填料包括二氧化硅、氧化铝、氧化钛和氧化铬中的至少一种。
  3. 根据权利要求1或2所述的聚酰亚胺清漆,其特征在于,所述聚酰亚胺前驱体的重均分子量为20,000~50,000。
  4. 根据权利要求1至3中任一项所述的聚酰亚胺清漆,其特征在于,所述无机填料相对于聚酰亚胺前驱体的添加量为10~40phr。
  5. 根据权利要求1至4中任一项所述的聚酰亚胺清漆,其特征在于,聚酰亚胺前驱体溶液的固含量为15~35wt%。
  6. 根据权利要求2至5中任一项所述的聚酰亚胺清漆,其特征在于,所述二氧化硅以胶体纳米二氧化硅溶液的形式引入。
  7. 根据权利要求6所述的聚酰亚胺清漆,其特征在于,胶体纳米二氧化硅一次粒径的尺寸为5~100nm;优选地,胶体纳米二氧化硅溶液中二氧化硅的浓度为5~50wt%。
  8. 一种使聚酰亚胺清漆兼具耐电涌性和耐湿热性的方法,其特征在于,所述聚酰亚胺清漆包含具有式(I)所示的结构单元(I)和式(II)所示的结构单元(II)的聚酰亚胺前驱体溶液以及在所述聚酰亚胺前驱体溶液中均匀分散的无机填料,其中结构单元(II)和结构单元(I)的摩尔比为60/40~90/10。
    Figure PCTCN2022100656-appb-100002
    Figure PCTCN2022100656-appb-100003
  9. 根据权利要求8所述的方法,其特征在于,所述无机填料包括二氧化硅、氧化铝、氧化钛和氧化铬中的至少一种。
  10. 一种绝缘电线,其特征在于,包括导体和将权利要求1至7中任一项所述的聚酰亚胺清漆涂覆在导体外周面并固化形成的绝缘皮膜。
PCT/CN2022/100656 2022-05-17 2022-06-23 使聚酰亚胺清漆兼具耐电涌性和耐湿热性的方法、聚酰亚胺清漆和绝缘电线 WO2023221232A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210540624.7 2022-05-17
CN202210540624.7A CN114806396A (zh) 2022-05-17 2022-05-17 使聚酰亚胺清漆兼具耐电涌性和耐湿热性的方法、聚酰亚胺清漆和绝缘电线

Publications (1)

Publication Number Publication Date
WO2023221232A1 true WO2023221232A1 (zh) 2023-11-23

Family

ID=82515616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/100656 WO2023221232A1 (zh) 2022-05-17 2022-06-23 使聚酰亚胺清漆兼具耐电涌性和耐湿热性的方法、聚酰亚胺清漆和绝缘电线

Country Status (2)

Country Link
CN (1) CN114806396A (zh)
WO (1) WO2023221232A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63193935A (ja) * 1987-02-06 1988-08-11 Asahi Glass Co Ltd ポリイミド系重合体成形物
JP2002172747A (ja) * 2000-09-28 2002-06-18 Toray Ind Inc 積層フィルム及びその製造方法
WO2013136807A1 (ja) * 2012-03-14 2013-09-19 三井化学株式会社 ポリイミド前駆体ワニス、ポリイミド樹脂、及びその用途
CN104661818A (zh) * 2012-09-28 2015-05-27 Dic株式会社 层叠体、导电性图案及电路
CN104910409A (zh) * 2015-05-06 2015-09-16 杭州师范大学 一种多孔低介电聚酰亚胺薄膜的制备方法
CN108912680A (zh) * 2018-06-27 2018-11-30 桂林电器科学研究院有限公司 含有钛白粉的黑色亚光聚酰亚胺薄膜及其制备方法
CN112280465A (zh) * 2020-11-11 2021-01-29 住井科技(深圳)有限公司 绝缘涂料组合物以及绝缘皮膜
CN112391114A (zh) * 2020-11-11 2021-02-23 住井科技(深圳)有限公司 绝缘涂料组合物以及绝缘皮膜
CN112391113A (zh) * 2020-11-11 2021-02-23 住井科技(深圳)有限公司 绝缘涂料组合物以及绝缘皮膜

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013241553A (ja) * 2012-05-22 2013-12-05 Hideo Nishino カルド型ジアミンを組成とする熱硬化性ポリイミド
KR102374975B1 (ko) * 2016-03-17 2022-03-16 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 폴리아미드산, 열가소성 폴리이미드, 수지 필름, 금속장 적층판 및 회로 기판
JP6517399B2 (ja) * 2018-05-01 2019-05-22 株式会社有沢製作所 ポリイミド樹脂前駆体
WO2020016954A1 (ja) * 2018-07-18 2020-01-23 住友電気工業株式会社 樹脂ワニス、絶縁電線及び絶縁電線の製造方法
CN109135554B (zh) * 2018-09-05 2021-03-19 住井科技(深圳)有限公司 聚酰亚胺清漆及其制备方法和应用
CN111690323B (zh) * 2020-06-24 2021-09-10 住井工业(湖南)有限公司 聚酰亚胺清漆及其制备方法和应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63193935A (ja) * 1987-02-06 1988-08-11 Asahi Glass Co Ltd ポリイミド系重合体成形物
JP2002172747A (ja) * 2000-09-28 2002-06-18 Toray Ind Inc 積層フィルム及びその製造方法
WO2013136807A1 (ja) * 2012-03-14 2013-09-19 三井化学株式会社 ポリイミド前駆体ワニス、ポリイミド樹脂、及びその用途
CN104661818A (zh) * 2012-09-28 2015-05-27 Dic株式会社 层叠体、导电性图案及电路
CN104910409A (zh) * 2015-05-06 2015-09-16 杭州师范大学 一种多孔低介电聚酰亚胺薄膜的制备方法
CN108912680A (zh) * 2018-06-27 2018-11-30 桂林电器科学研究院有限公司 含有钛白粉的黑色亚光聚酰亚胺薄膜及其制备方法
CN112280465A (zh) * 2020-11-11 2021-01-29 住井科技(深圳)有限公司 绝缘涂料组合物以及绝缘皮膜
CN112391114A (zh) * 2020-11-11 2021-02-23 住井科技(深圳)有限公司 绝缘涂料组合物以及绝缘皮膜
CN112391113A (zh) * 2020-11-11 2021-02-23 住井科技(深圳)有限公司 绝缘涂料组合物以及绝缘皮膜

Also Published As

Publication number Publication date
CN114806396A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
CN109135554B (zh) 聚酰亚胺清漆及其制备方法和应用
EP2501743B1 (en) Wire wrap compositions and methods relating thereto
EP2861650B1 (en) Polyimide resin and polyimide film produced therefrom
KR102251518B1 (ko) 폴리아믹산, 폴리이미드 수지 및 폴리이미드 필름
JP7140432B2 (ja) 芳香族カルボン酸を含む導体被覆用ポリイミドワニスおよびその製造方法
JP7442614B2 (ja) ポリアミド酸組成物、ポリアミド酸組成物の製造方法、それを含むポリイミド及びそれを含む被覆物
CN112391114B (zh) 绝缘涂料组合物以及绝缘皮膜
CN110437714B (zh) 自粘清漆及其应用
JP7442615B2 (ja) ポリアミド酸組成物、ポリアミド酸組成物の製造方法、それを含むポリイミド及びそれを含む被覆物
CN111690323B (zh) 聚酰亚胺清漆及其制备方法和应用
WO2023221232A1 (zh) 使聚酰亚胺清漆兼具耐电涌性和耐湿热性的方法、聚酰亚胺清漆和绝缘电线
KR102472537B1 (ko) 폴리아믹산 조성물 및 이를 포함하는 폴리이미드
CN112391113B (zh) 绝缘涂料组合物以及绝缘皮膜
JP2013155281A (ja) 絶縁塗料、該絶縁塗料を用いた絶縁電線および該絶縁電線を用いたコイル
CN116179075B (zh) 一种poss改性聚酰亚胺绝缘漆、制备方法及应用
CN110601409B (zh) 电机用线圈及含有该线圈的电机
CN112280464B (zh) 提高涂料的保存稳定性的方法
KR102472532B1 (ko) 폴리아믹산 조성물 및 이를 포함하는 폴리이미드
CN117210122A (zh) 一种耐水解易加工的聚酰亚胺清漆及绝缘电线
CN117430846A (zh) 一种聚酰亚胺薄膜及其制备方法
TW202415709A (zh) 黑色聚醯亞胺膜及其製造方法
CN110540794A (zh) 浸渍清漆及其应用
CN115424770A (zh) 高压负荷电线
CN109796591A (zh) 聚酰亚胺前体、聚酰亚胺纳米复合薄膜及其制备方法
KR20230059390A (ko) 폴리아믹산 조성물 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22942263

Country of ref document: EP

Kind code of ref document: A1