WO2023221070A1 - 一种自脱除co的甲醇制氢装置及其使用方法 - Google Patents

一种自脱除co的甲醇制氢装置及其使用方法 Download PDF

Info

Publication number
WO2023221070A1
WO2023221070A1 PCT/CN2022/094009 CN2022094009W WO2023221070A1 WO 2023221070 A1 WO2023221070 A1 WO 2023221070A1 CN 2022094009 W CN2022094009 W CN 2022094009W WO 2023221070 A1 WO2023221070 A1 WO 2023221070A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
reaction
methanol
reforming
selective oxidation
Prior art date
Application number
PCT/CN2022/094009
Other languages
English (en)
French (fr)
Inventor
潘立卫
李金晓
宋仁升
张晶
钟和香
陈淑花
靳文尧
于波
Original Assignee
大连大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连大学 filed Critical 大连大学
Priority to PCT/CN2022/094009 priority Critical patent/WO2023221070A1/zh
Publication of WO2023221070A1 publication Critical patent/WO2023221070A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • C01B3/58Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction

Definitions

  • the invention belongs to the technical field of energy and environment.
  • the invention relates to a methanol hydrogen production device that can self-remove CO and its use method.
  • Fuel cells are the fourth power generation technology after hydropower, thermal power and atomic power. It converts the Gibbs free energy part of the chemical energy of the fuel into electrical energy through electrochemical reactions and is not limited by the Carnot cycle effect, so it has a high energy conversion rate. Its fuel is hydrogen and oxygen, which has no pollution to the environment. It has no mechanical transmission parts and has a long service life. From the perspective of energy conservation and ecological environment protection, fuel cells are the most promising power generation technology. However, the development of hydrogen fuel cells faces many challenges. One of the key problems is the carbon monoxide "poisoning" problem of the platinum electrode of the fuel cell. Currently, hydrogen is mainly derived from the steam reforming and water gas shift reaction of hydrocarbons such as methanol and natural gas.
  • the resulting hydrogen usually contains 0.5% to 2% carbon monoxide.
  • fuel cell platinum electrodes are easily “poisoned” by carbon monoxide impurity gas, resulting in reduced battery performance and shortened life, seriously hindering the promotion of hydrogen fuel cells.
  • the commonly used treatment method at present is to set up a CO selective oxidation treatment device at the front end of the fuel cell inlet.
  • the carbon monoxide impurity gas in the hydrogen gas reacts with oxygen first, thereby preventing the carbon monoxide impurity gas from entering the battery and poisoning the electrode.
  • existing catalysts can only work within a very narrow temperature range, and an external power supply or heat source is required during the process to provide the reaction window temperature of the catalyst. CO will release a large amount of heat during the oxidation process. If the materials are unevenly distributed during the reaction, it will easily lead to local overheating, which requires relatively high heat resistance of the device and catalyst.
  • the present invention provides a methanol hydrogen production device that can self-remove CO and its use method.
  • the device is highly integrated and does not require external power supply, heat source and high-pressure environment.
  • a hydrogen production device that can self-remove methanol CO, including a reaction main mechanism and a starting mechanism.
  • the starting mechanism and the reaction main mechanism are connected through pipelines; both the starting mechanism and the reaction main mechanism are sleeve-type structures; the starting mechanism has a The integrated reactor of the heat exchanger; the starting mechanism is sequentially provided with heat exchange layer a, reaction chamber, and heat exchange layer b from the inside to the outside; the heat exchange layer a and the heat exchange layer b are connected to each other, and are equipped with enhanced heat transfer components inside; Thermal layer b is connected to the feed pipe; the other end of the feed pipe is connected to heat exchanger a, and the other end of heat exchanger a is connected to the reaction raw material feed pipe;
  • the main reaction mechanism is sequentially provided with product gas outlet chamber, reforming reaction chamber, CO selective oxidation chamber, and air preheating chamber from the inside to the outside;
  • the reforming reaction chamber is equipped with a reforming gas discharge chamber; a reforming gas discharge chamber and a CO selection chamber
  • the selective oxidation chambers are adjacently connected; there is a 0.5-3mm thin-walled interval between each chamber; the thin wall between the reformed gas discharge chamber and the lower part of the CO selective oxidation chamber has interconnected channels, and the CO selective oxidation chamber
  • a reforming catalyst filling layer is provided inside the reforming reaction chamber, and the reforming catalyst filling layer is embedded in the reforming
  • the reaction chamber is located adjacent to the reformed gas discharge chamber; a 0.5-3mm thin-walled interval is provided between the reforming catalyst filling layer and the reformed gas discharge chamber; and a
  • the product gas outlet is equipped with an enhanced heat transfer component.
  • the product gas outlet is connected to the product gas outlet pipe, and the product gas outlet pipe is connected to the heat exchanger a; the reforming reaction chamber passes through the heat exchange layer a and the heat exchange layer b respectively. Preheat raw material feed pipe connection.
  • the enhanced heat transfer component includes but is not limited to any form of plate, shell and tube, and plate-fin heat transfer structures, and can be a tubular structure or a sheet structure. It can be any of spiral grooved tubes, transverse grooved tubes, corrugated tubes, scaling tubes, diamond-shaped finned tubes, petal-shaped finned tubes, T-shaped finned tubes, and surface porous tubes.
  • the selective oxidation catalyst includes but is not limited to any one or two or more of Au-based, Pd-based, Pt-based, Rh-based, Ru-based, Ce-based, Zr-based, and La-based catalysts.
  • through holes are provided on the thin wall between the air preheating chamber and the CO selective oxidation chamber, and the diameter of the through holes is 1-5 mm.
  • reaction chamber is connected to the air inlet, the methanol inlet and the combustion exhaust gas outlet respectively; the inside of the reaction chamber is filled with a catalytic combustion catalyst. Heat exchange layer a and heat exchange layer b are not connected with the reaction chamber.
  • the reaction chamber is also equipped with an electric spark lighter.
  • the main reaction mechanism is a vertical device.
  • the air inlet is connected to the air inlet pipe
  • the methanol inlet is connected to the methanol pipe
  • the combustion exhaust gas outlet is connected to the gas exhaust pipe.
  • reaction raw materials are methanol and water.
  • the catalyst in the reforming catalyst packed layer is any one of Ni-based, Cu-based, Au-based, Pd-based, Pt-based, Rh-based, Ru-based, Co-based, Ce-based, Zr-based, La-based catalysts or Two or more types.
  • valves are provided on the air inlet pipe, methanol pipe, gas tail gas discharge pipe, feed pipe, product gas outlet pipe, product gas outlet pipe, preheating raw material feed pipe, and reaction raw material feed pipe.
  • the valve can be any one of a stop valve, a solenoid valve, and a pneumatic valve, as long as its opening and closing function is realized.
  • a pressure sensor and a temperature sensor are provided in the reaction chamber, and a pressure sensor is provided in the reforming reaction chamber.
  • the pressure sensor, temperature sensor, valve, heat exchanger a, and spark lighter are respectively connected to the PLC system.
  • the CO selective oxidation chamber is filled with a selective oxidation catalyst, and there are several small holes on the thin wall between the air preheating chamber and the CO selective oxidation chamber.
  • the several small holes are arranged non-uniformly; it can make the air and CO selective oxidation chamber
  • the reformed gas is fully contacted, and the CO selective oxidation chamber is filled with a selective oxidation catalyst, which can selectively oxidize the CO in the reformed gas discharged from the reformed gas discharge chamber.
  • the main reaction taking place here is: 2CO+O 2 ⁇ 2CO 2 .
  • a small amount of product hydrogen reacts with oxygen, and the reaction formula is: 2H 2 +O 2 ⁇ 2H 2 O. Both reactions can provide heat for the reforming reaction.
  • the thin wall between the reformed gas discharge chamber and the lower part of the CO selective oxidation chamber is provided with interconnected channels so that the reformed gas can be discharged smoothly.
  • the reforming catalyst filling layer is embedded inside the reforming reaction chamber and has a skid-mounted structure. The entire filling layer can be replaced as a whole. At the same time, the reforming catalyst filling layer has a segmented structure, and each segment can carry out an independent reforming process, so that the entire reforming process has a smaller reaction resistance drop.
  • the reformed gas is discharged from the through hole on the thin wall between the reforming catalyst filling layer and the reformed gas discharge chamber, and is discharged to the CO selective oxidation chamber through the reformed gas discharge chamber.
  • the product gas outlet is equipped with an enhanced heat transfer component to fully conduct heat exchange between the product gas (hydrogen and carbon dioxide) and the reforming reaction chamber.
  • the product gas with heat passes through heat exchanger a and then flows into the fuel cell.
  • the raw material methanol and water are fully preheated.
  • the raw material methanol and water exchange heat with the starting mechanism again and then flow into the reforming reaction chamber for reaction. .
  • the device can achieve self-heating operation and does not require additional heat sources or pressurized conditions.
  • Another object of the present invention is to request protection for the method of using the above device, which specifically includes the following steps:
  • the starting method can be an electric spark lighter or direct catalytic combustion at room temperature to ignite the reactants, and the combustion products are discharged through the exhaust pipe;
  • the valve on the preheated raw material feed pipe connected between heat exchange layer a, heat exchange layer b and the reforming reaction chamber is closed in the initial stage; when the starting mechanism runs for a period of time, the temperature reaches the reforming reaction temperature, and the valve opens. Pass reactants into the reforming reaction chamber;
  • reaction chamber of the starting mechanism After the reaction chamber of the starting mechanism reaches a certain temperature (180-300°C), introduce the reactants methanol and water into the reforming reaction chamber of the main reaction mechanism; (after preheating by the heat exchanger integrated with the starting mechanism, Pass into the reforming reaction chamber;) At this time, the reforming raw materials (preheated methanol and water) undergo a reforming reaction through the catalyst filled in the reforming catalyst packed layer, and the generated reformed gas passes through the reforming catalyst packed layer and The through holes provided on the thin wall between the reformed gas discharge chambers are discharged to the reformed gas discharge chambers;
  • the reformed gas is discharged from the reformed gas discharge chamber, enters the CO selective oxidation chamber, and contacts the air preheated from the air preheating chamber (the air is not preheated at the beginning, the reaction rate will be slow, and as the reaction progresses (the effect of air preheating will become better and better), the CO in the reformed gas will be removed under the action of the CO selective oxidation catalyst; the purified reformed gas (hydrogen and carbon dioxide) will exit the mouth from the product gas Discharge; fully exchange heat with heat exchanger a on the pipeline to preheat the raw materials (methanol and water).
  • selective oxidation is used to remove trace amounts of CO in the reformed gas, and the reaction heat is used to preheat the air and provide heat for the reforming reaction, thereby improving the energy utilization rate.
  • the selective oxidation of CO can be carried out at room temperature and pressure without additional heating or pressure conditions.
  • Traditional CO removal requires multi-stage reactors for combined removal, but the present invention uses the design idea of non-uniformly distributed air inlets to simplify the removal process. Non-uniformly distributed air inlets can also achieve uniform preheating of the air to reduce the generation of reaction hot spots.
  • the skid-mounted design of the reforming catalyst filling layer facilitates the overall replacement of the catalyst, and its segmented design is conducive to reducing the resistance drop of the reaction, allowing the reforming reaction to proceed more fully.
  • the product gas outlet is equipped with an enhanced heat transfer component, which helps the main reaction mechanism to fully absorb the heat during the reforming reaction and preheat the reaction raw materials.
  • the chambers are arranged alternately and have a compact structure, while ensuring a more complete exchange of gas and heat. It improves the utilization rate of materials and their uniform distribution, and avoids local overheating of the device causing sintering deactivation of the catalyst and damage to the device.
  • the entire device does not require an external power supply to operate, and the energy utilization rate is maximized through reasonable placement of heat exchangers and waste heat utilization technology.
  • the reforming catalyst filling layer uses a skid-mounted structure and a segmented structure to facilitate the overall replacement of the catalyst and reduce the resistance drop during the reaction process, which is beneficial to the reforming reaction to proceed more fully.
  • Figure 1 is a schematic diagram of a methanol hydrogen production device for self-removal of CO according to the present invention
  • Figure 2 is a top cross-sectional view of the starting mechanism of the present invention.
  • Figure 3 is a top cross-sectional view of the main reaction mechanism of the present invention.
  • the present invention will be described in detail below through specific examples, but the protection scope of the present invention will not be limited.
  • the experimental methods used in the present invention are all conventional methods, and the experimental equipment, materials, reagents, etc. used are all commercially available.
  • the pressure sensor, temperature sensor, valve, heat exchanger a, and spark lighter connected to the PLC system are not limited to a specific model, as long as their functions are realized.
  • a self-removal methanol hydrogen production device includes a reaction main mechanism and a starting mechanism 1. Both the starting mechanism 1 and the reaction main mechanism are sleeve-type structures; the starting mechanism 1 is a Integrated reactor of heat exchanger; starting mechanism 1 is provided with heat exchange layer a9, reaction chamber 10, and heat exchange layer b11 in sequence from the inside to the outside; heat exchange layer a9 and heat exchange layer b11 are interconnected, and are equipped with enhanced heat transfer components inside. ; The reactants are passed into the reforming reaction chamber 6 of the reaction body mechanism after sufficient heat exchange with the reaction chamber 10 .
  • the heat exchange layer b11 is connected to the feed pipe; the other end of the feed pipe is connected to the heat exchanger a8, and the other end of the heat exchanger a8 is connected to the reaction raw material feed pipe;
  • the main reaction mechanism is composed of multiple sleeve-type structures.
  • the main reaction mechanism is sequentially provided with product gas outlet chamber 7, reforming reaction chamber 6, CO selective oxidation chamber 3, and air preheating chamber 2 from the inside to the outside; the reforming reaction chamber A reformed gas discharge chamber 4 is provided in 6; the reformed gas discharge chamber 4 and the CO selective oxidation chamber 3 are adjacently connected; a 0.5-3mm thin-walled interval is provided between each chamber; the reformed gas discharge chamber 4 is connected to the CO selective oxidation chamber 3.
  • the thin wall between the lower parts of the selective oxidation chamber 3 is provided with interconnected channels, and a connecting channel is provided between the top of the CO selective oxidation chamber 3 and the top of the product gas outlet chamber 7, and the connecting channel is arranged above the two cavities. ;
  • the reforming catalyst filling layer 5 is embedded in the reforming reaction chamber 6 and is arranged adjacent to the reforming gas discharge chamber 4; the reforming catalyst filling layer is connected with the reforming gas discharge chamber 4.
  • the product gas outlet port 7 is provided with an enhanced heat transfer component.
  • the product gas outlet port 7 is connected to the product gas outlet pipe, and the product gas outlet pipe is connected to the heat exchanger a8; the heat exchanger 8 is also connected to an external product gas outlet pipe.
  • the reforming reaction chamber 6 is connected to the heat exchange layer a9 and the heat exchange layer b11 respectively through preheated raw material feed pipes.
  • the selective oxidation catalyst includes but is not limited to any one or two or more of Au-based, Pd-based, Pt-based, Rh-based, Ru-based, Ce-based, Zr-based, and La-based catalysts.
  • through holes are provided on the thin wall between the air preheating chamber and the CO selective oxidation chamber, and the diameter of the through holes is 1-5 mm.
  • reaction chamber 10 is connected to the air inlet, the methanol inlet and the combustion exhaust gas outlet respectively; the inside of the reaction chamber 10 is filled with a catalytic combustion catalyst.
  • the heat exchange layer a9, the heat exchange layer b11 and the reaction chamber 10 are not connected.
  • the reaction chamber 10 is also equipped with an electric spark lighter.
  • Catalytic combustion catalysts include but are not limited to any one or two of Mn-based, Ni-based, Cu-based, Au-based, Pd-based, Pt-based, Rh-based, Ru-based, Co-based, Ce-based, Zr-based, and La-based the above catalyst.
  • the main reaction mechanism is a vertical device.
  • the air inlet is connected to the air inlet pipe
  • the methanol inlet is connected to the methanol pipe
  • the combustion exhaust gas outlet is connected to the gas exhaust pipe.
  • reaction raw materials are methanol and water.
  • air inlet pipe, methanol pipe, gas tail gas discharge pipe, feed pipe, reaction raw material feed pipe, product gas outlet pipe, product gas outlet pipe, and preheating raw material feed pipe are all equipped with electromagnetic valve.
  • reaction chamber 10 is provided with a pressure sensor and a temperature sensor
  • reforming reaction chamber 6 is provided with a pressure sensor
  • the pressure sensor, temperature sensor, valve, heat exchanger a, and spark lighter are respectively connected to the PLC system.
  • the air tightness of the entire device must first be checked.
  • the specific operation is: close all valves of the starting mechanism. Air is introduced into the reaction chamber 10 of the starting mechanism. When the pressure in the reaction chamber 10 reaches 0.2MPa, the flow of air is stopped. When the pressure remains unchanged, the air tightness of this part is good. Close all valves of the main reaction mechanism and introduce air into the air preheating chamber 2. When the pressure in the reforming reaction chamber 6 reaches 0.2MPa, stop introducing air. When the pressure remains unchanged, the air tightness of this part is good. .
  • the starting method is ignition with an electric spark lighter or direct catalytic combustion at room temperature to ignite the reactants, and the combustion products are discharged through the exhaust pipe.
  • the reactants methanol and water are introduced into the reforming reaction chamber 6 of the reaction main mechanism.
  • the specific operation is: open the mixed solution of methanol and water from the feed pipeline, and after heat exchange through the heat exchanger a8, the reactant (mixed solution of methanol and water) enters the heat exchange layer a9 and The heat exchange layer b11 enters the reforming reaction chamber 6 after being fully preheated.
  • the reforming raw materials (methanol and water) undergo a reforming reaction through the catalyst filled in the reforming catalyst packed layer 5 , and the generated reformed gas is discharged to the reformed gas discharge chamber 4 through the small holes on the edge of the reforming catalyst packed layer 5 .
  • the reformed gas is discharged from the lower connected channel between the reformed gas discharge chamber 4 and the CO selective oxidation chamber 3, and contacts the air entering from the air preheating chamber 2 in the CO selective oxidation chamber 3.
  • the CO in the reformed gas reacts with the air, and a small part of the hydrogen in the reformed gas also reacts with the air. Both reactions are exothermic reactions.
  • the temperature in the CO selective oxidation chamber 3 rises, and the air preheating chamber 2 is heated.
  • the purified reformed gas is discharged from the product gas outlet port 7. At this time, the reformed gas temperature is relatively high. Through the enhanced heat transfer component in the product gas outlet port 7 and the reforming reaction chamber 6, sufficient heat exchange is carried out to provide a good solution for the heavy industry. The whole reaction provides energy.

Abstract

本发明属于能源环境技术领域,公开了一种自脱除CO的甲醇制氢装置及其使用方法。该装置包括反应主体机构和启动机构。启动机构为带有换热器的集成反应器。反应主体机构为立式装置,由多个套筒式结构组成,由内向外依次设置:产品气出口腔、重整反应腔、CO选择性氧化腔、空气预热腔。该装置可以实现自热运行,不需要额外热源,也不需要加压条件。主体装置的腔室之间交互排列、结构紧凑,同时又能保证气体、热量的交换更加充分,通过合理的布置换热器及余热利用技术最大程度的提高了能量利用率。

Description

一种自脱除CO的甲醇制氢装置及其使用方法 技术领域
本发明属于能源环境技术领域,本发明涉及一种自脱除CO的甲醇制氢装置及其使用方法。
背景技术
燃料电池是它是继水力发电、热能发电和原子能发电之后的第四种发电技术。其通过电化学反应把燃料的化学能中的吉布斯自由能部分转换成电能,不受卡诺循环效应的限制,因此具有较高的能量转化率。其燃料为氢气和氧气,对环境无污染,同时没有机械传动部件,使用寿命长。从节约能源和保护生态环境的角度来看,燃料电池是最有发展前途的发电技术。但氢燃料电池发展面临许多挑战,其中一个关键难题是燃料电池铂电极的一氧化碳“中毒”问题。当下,氢主要来源于甲醇和天然气等碳氢化合物的蒸汽重整和水煤气变换反应,由此产生的氢通常含有0.5%至2%的一氧化碳。作为氢燃料电池汽车的“心脏”,燃料电池铂电极容易被一氧化碳杂质气体“毒害”,导致电池性能下降和寿命缩短,严重阻碍氢燃料电池的推广。
目前常用的处理方法是在燃料电池入口前端设置CO选择性氧化处理装置,在氢气进入燃料电池之前,让氢气中的一氧化碳杂质气体优先与氧气发生反应,从而避免一氧化碳杂质气体进入电池毒化电极。然而,现有催化剂只能在极窄的温度范围内工作,过程中需要外加电源或热源以提供催化剂的反应窗口温度。CO在氧化过程中会放出大量的热,如果反应过程中物料分布不均,容易导致局部过热,对装置和催化剂的耐热性要求都比较高。
发明内容
为了克服现有技术的不足,本发明提供一种自脱除CO的甲醇制氢装置及其使用方法,该装置集成度高,不需要外加电源、热源且不需要高压环境。
本发明的上述目的是通过以下技术方案实现的:
一种自脱除甲醇CO的制氢装置,包括反应主体机构和启动机构,启动机构和反应主体机构之间通过管道连接;启动机构和反应主体机构均为套筒式结构;启动机构为带有换热器的集成反应器;启动机构由内向外依次顺序设置换热层a、反应室、换热层b;换热层a与换热层b相互连通,内部设有强化传热组件;换热层b与进料管道相连;进料管道的另一端连接换热器a,换热器a的另一端连接反应原料进料管路;
反应主体机构由内向外依次顺序设置产品气出口腔、重整反应腔、CO选择性氧化腔、空气预热腔;重整反应腔内设置重整气排出腔;重整气排出腔和CO选择性氧化腔相邻连接设置;各腔室之间设有0.5-3mm薄壁间隔;重整气排出腔与CO选择性氧化腔下部之间的薄壁开设有相互连通的通道,CO选择性氧化腔顶部与产品气出口腔顶部之间设有连接通道,且连接通道设置在两个腔体的上方;重整反应腔的内部设有重整催化剂填充层,重整催化剂填充层嵌入在重整反应腔内并与重整气排出腔相邻设置;重整催化剂填充层与重整气排出腔之间设有0.5-3mm薄壁间隔;且薄壁上设有通孔;通孔孔径大小为1-5mm;
产品气出口腔处设有强化传热组件,产品气出口腔与产品气出口管道连接,产品气出口管道与换热器a连接;重整反应腔与换热层a、换热层b分别通过预热原料进料管道连接。
进一步的,所述强化传热组件包括但不限于板式、管壳式、板翅式传热结构中的任一种形式,可以为管式结构、也可以为片状结构。可以为螺旋槽管、横纹槽管、波纹管、缩放管、菱形翅片管、花瓣形翅片管、T型翅片管、表面多孔管中的任一种。
空气预热腔与CO选择性氧化腔之间的薄壁上设有若干个通孔,且若干个通孔非均布设置;CO选择性氧化腔中装填有选择性氧化催化剂。所述选择性氧化催化剂包括但不限于Au基、Pd基、Pt基、Rh基、Ru基、Ce基、Zr基、La基催化剂中的任一种或两种以上。
进一步的,空气预热腔与CO选择性氧化腔之间的薄壁上设有若干个通孔,通孔孔径大小为1-5mm。
进一步的,反应室分别与空气进气口、甲醇入口和燃烧尾气排出口连接;反应室内部装填有催化燃烧催化剂。换热层a、换热层b与反应室不连通。反应室内还配设有电火花打火器。
进一步的,反应主体机构为立式装置。
进一步的,空气进气口连接空气进气管道,甲醇入口连接甲醇管道;燃烧尾气排出口连接燃气尾气排出管道。
进一步的,所述反应原料为甲醇和水。
进一步的,重整催化剂填充层内催化剂为Ni基、Cu基、Au基、Pd基、Pt基、Rh基、Ru基、Co基、Ce基、Zr基、La基催化剂中的任一种或两种以上。
进一步的,所述空气进气管道、甲醇管道、燃气尾气排出管道、进料管道、产品气出气管道、产品气出口管道、预热原料进料管道、反应原料进料管路上均设有阀。所述阀可以为截止阀、电磁阀、气动阀中的任一种,实现其开闭功能即可。
进一步的,所述反应室内设有压力传感器和温度传感器,所述重整反应腔内设有压力传感器。
进一步的,所述压力传感器、温度传感器、阀、换热器a、电火花打火器分别与PLC系统相连接。
CO选择性氧化腔中装填有选择性氧化催化剂,且空气预热腔与CO选择性氧化腔之间的薄壁上设有若干个小孔,若干个小孔非均布设置;可使空气与重整气充分接触,CO选择性氧化腔中装填有选择性氧化催化剂,可对重整气排出腔排出重整气中的CO进行选择性氧化。此处发生的主要反应为:2CO+O 2→2CO 2。同时也有少量产品氢气与氧气反应,反应式为:2H 2+O 2→2H 2O。两个反应均能为重整反应供热。重整气排出腔与CO选择性氧化腔下部之间的薄壁开设有相互连通的通道,使重整气可以顺利排出。CO选择性氧化腔顶部与产品气出口腔顶部之间设有连接通道,且连接通道设置在两个腔体的上方;使经CO选择性氧化处理的产品气及时排出。重整催化剂填充层嵌入在重整反应腔内部,为撬装式结构,整个填充层可整体进行替换。同时该重整催化剂填充层为分段式结构,每段都可进行独立的重整过程,使整个重整过程具有较小的反应阻力降。重整气由重整催化剂填充层与重整气排出腔之间薄壁上的通孔排出,并通过重整气排出腔排出至CO选择性氧化腔。产品气出口腔处设有强化传热组件,使产品气(氢气和二氧化碳)与重整反应腔充分进行换热。带有热量的产品气经过换热器a换热后通入燃料电池,将原料甲醇和水进行充分预热,原料甲醇和水经过与启动机构再次换热后通入重整反应腔中进行反应。该装置可以实现自热运行,不需要额外热源,也不需要加压条件。
本发明另一个目的是请求保护上述装置的使用方法,具体包括以下步骤:
S1.检查装置气密性,开启启动机构;
S2.将甲醇和空气通入启动机构,启动方式可以为电火花打火器或在室温下直接进行的催化燃烧将反应物点燃,燃烧产物通过尾气排出管路排出;
换热层a、换热层b与重整反应腔之间连接的预热原料进料管道上的阀在初始阶段关闭;当启动机构运行一段时间后,温度达到重整反应温度,阀门开启,向重整反应腔通入反应物;
S3.待启动机构的反应室内达到一定温度(180-300℃)后,向反应主体机构的重整反应腔内通入反应物甲醇和水;(经过启动机构集成的换热器预热后,通入重整反应腔中;)此时重整原料(经预热的甲醇和水)通过重整催化剂填充层中填充的催化剂进行重整反应,产生的重整气通过重整催化剂填充层与重整气排出腔之间薄壁上设置的通孔排出至重整气排出腔;
S4.重整气从重整气排出腔排出,进入CO选择性氧化腔,与从空气预热腔中预热的空气接触(一开始空气没有预热,反应速率会比较慢,随着反应的进行,空气预热的效果会越来越好),在CO选择性氧化催化剂的作用下将重整气中的CO脱除;经净化后的重整气(氢气和二氧化碳)由产品气出口腔排出;与管道上的换热器a充分换热,将原料(甲醇和水)预热。
S5.当反应达到稳定时,停止向启动机构通入甲醇和空气,此时反应主体机构可以实现自热运行。
本发明的提供的装置中,重整气中微量CO的脱除选择了选择性氧化的手段,反应放热用于对空气的预热和重整反应的供热,提高了能量的使用率。CO的选择性氧化常温常压下即可进行,不需要额外加热或加压条件。传统的CO脱除需要多段反应器联用脱除,而本发明使用非均布的空气进气口的设计思路,简化了脱除工艺。非均布的空气进气口还可以实现对空气的均匀预热,以减少反应热点的产生。重整催化剂填充层的撬装设计便于催化剂的整体替换,其分段设计有利于减小反应的阻力降,使重整反应更充分的进行。产品气出口腔设有强化传热组件,利于反应主体机构充分吸收重整反应过程中的热量,对反应原料进行预热。各腔室之间交互排列、结构紧凑,同时又能保证气体、热量的交换更加充分。提高了物料的利用率和其均匀分布,避免装置局部过热造成催化剂烧结失活和装置的损坏。整个装置不需要外加电源即可进行,通过合理的布置换热器及余热利用技术最大程度的提高了能量利用率。
本发明与现有技术相比的有益效果是:
(1)将空气进料、CO选择性氧化、甲醇催化重整等过程设置在同一反应主体机构中,以不同腔室的方式进行集成,使得反应主体机构结构紧凑,解决了一般反应主体机构集成度较差、占地面积大等问题;
(2)对反应各个环节热量交换进行合理匹配,充分利用甲醇燃烧和CO催化燃烧过程中产生的能量,供给甲醇重整和反应物预热等过程(对于甲醇重整过程,是甲醇和水的预热,对于CO选择性脱除,是针对重整气和空气的预热),同时合理设置换热结构将尾气余热充分回收,极大提高了整个装置的能量效率;
(3)重整催化剂填充层使用撬装结构和分段结构,便于催化剂的整体替换和减小反应过程中的阻力降,利于重整反应更充分的进行。
(4)通过合理设置空气预热腔和CO选择性氧化腔之间的孔分布改进反应装置有限空间内的物料混合不充分的问题,避免局部过热的发生,提高原料利用效率。同时该设计可以将 本应该通过多段处理的CO选择性脱除步骤经一段反应即可达到要求。采用本发明的装置可以将重整气中的CO脱除到1ppm以下。
附图说明
图1为本发明一种自脱除CO的甲醇制氢装置的示意图;
图2为本发明启动机构的俯视剖视图;
图3为本发明反应主体机构的俯视剖视图;
图中:1.启动机构;2.空气预热腔;3.CO选择性氧化腔;4.重整气排出腔;5.重整催化剂填充层;6.重整反应腔;7.产品气出口腔;8.换热器a;9.换热层a;10.反应室;11.换热层b。
具体实施方式
下面通过具体实施例详述本发明,但不限制本发明的保护范围。如无特殊说明,本发明所采用的实验方法均为常规方法,所用实验器材、材料、试剂等均可从商业途径获得。实施例中与PLC系统相连接的压力传感器、温度传感器、阀、换热器a、电火花打火器均不限定某一具体型号,实现其功能即可。
实施例1
一种自脱除CO的甲醇制氢装置,如图1-图3所示,包括反应主体机构和启动机构1,启动机构1和反应主体机构均为套筒式结构;启动机构1为带有换热器的集成反应器;启动机构1由内向外依次顺序设置换热层a9、反应室10、换热层b11;换热层a9与换热层b11相互连通,内部设有强化传热组件;使反应物经过与反应室10的充分换热后通入反应主体机构的重整反应腔6中。换热层b11与进料管道相连;进料管道的另一端连接换热器a8,换热器a8的另一端连接反应原料进料管路;
反应主体机构由多个套筒式结构组成,反应主体机构由内向外依次顺序设置产品气出口腔7、重整反应腔6、CO选择性氧化腔3、空气预热腔2;重整反应腔6内设置重整气排出腔4;重整气排出腔4和CO选择性氧化腔3相邻连接设置;各腔室之间设有0.5-3mm薄壁间隔;重整气排出腔4与CO选择性氧化腔3下部之间的薄壁开设有相互连通的通道,CO选择性氧化腔3顶部与产品气出口腔7顶部之间设有连接通道,且连接通道设置在两个腔体的上方;重整反应腔6的内部设有重整催化剂填充层5,重整催化剂填充层5嵌入在重整反应腔6内并与重整气排出腔4相邻设置;重整催化剂填充层与重整气排出腔之间设有0.5-3mm薄壁间隔;且薄壁上设有通孔;通孔孔径大小为1-5mm;
产品气出口腔7处设有强化传热组件,产品气出口腔7与产品气出口管道连接,产品气 出口管道与换热器a8连接;换热器8还外接有产品气出气管道。
重整反应腔6与换热层a9、换热层b11分别通过预热原料进料管道连接。
空气预热腔2与CO选择性氧化腔3之间的薄壁上设有若干个通孔,且若干个通孔非均布设置;CO选择性氧化腔3中装填有选择性氧化催化剂。所述选择性氧化催化剂包括但不限于Au基、Pd基、Pt基、Rh基、Ru基、Ce基、Zr基、La基催化剂中的任一种或两种以上。
进一步的,空气预热腔与CO选择性氧化腔之间的薄壁上设有若干个通孔,通孔孔径大小为1-5mm。
进一步的,反应室10分别与空气进气口、甲醇入口和燃烧尾气排出口连接;反应室10内部装填有催化燃烧催化剂。换热层a9、换热层b11与反应室10不连通。反应室10内还配设有电火花打火器。催化燃烧催化剂包括但不限于Mn基、Ni基、Cu基、Au基、Pd基、Pt基、Rh基、Ru基、Co基、Ce基、Zr基、La基中的任一种或两种以上的催化剂。
进一步的,反应主体机构为立式装置。
进一步的,空气进气口连接空气进气管道,甲醇入口连接甲醇管道;燃烧尾气排出口连接燃气尾气排出管道。
进一步的,所述反应原料为甲醇和水。
进一步的,所述空气进气管道、甲醇管道、燃气尾气排出管道、进料管道、反应原料进料管路、产品气出气管道、产品气出口管道、预热原料进料管道上均设有电磁阀。
进一步的,所述反应室10内设有压力传感器和温度传感器,所述重整反应腔6内设有压力传感器。
所述压力传感器、温度传感器、阀、换热器a、电火花打火器分别与PLC系统相连接。
上述一种自脱除CO的甲醇制氢装置的使用方法,具体为:
S1.启动自脱除CO的甲醇制氢装置前,由于整个装置的流程涉及一氧化碳和氢气等有毒或易燃易爆气体,所以首先要检查整个装置的气密性。具体操作是:关闭启动机构的所有阀门。向启动机构的反应室10通入空气。当反应室10内的压力达到0.2MPa后,停止通入空气,当压力保持不变,则该部分气密性良好。关闭反应主体机构的所有阀门,向空气预热腔2通入空气,当重整反应腔6内的压力达到0.2MPa后,停止通入空气,当压力保持不变,则该部分气密性良好。
S2.将甲醇和空气通入启动机构的反应室10内,启动方式为电火花打火器打火或在室温下直接进行的催化燃烧将反应物点燃,燃烧产物通过尾气排出管路排出。
S3.待启动机构反应室10内达到一定温度(180-300℃)后,向反应主体机构的重整反应腔6通入反应物甲醇和水。具体操作为:打开从进料管路处通入甲醇和水的混合溶液,经换热器a8进行热交换后,反应物(甲醇和水的混合溶液)进入启动机构1的换热层a9和换热层b11,进行充分预热后,进入重整反应腔6。此时重整原料(甲醇和水)通过重整催化剂填充层5中填充的催化剂进行重整反应,产生的重整气通过重整催化剂填充层5边缘的小孔排出至重整气排出腔4。
S4.重整气由重整气排出腔4与CO选择性氧化腔3之间下部连通的通道排出,在CO选择性氧化腔3内与从空气预热腔2中进入的空气接触。在CO选择性氧化腔3内填充的催化剂的作用下重整气中的CO与空气反应,重整气中一小部分氢气也与空气反应,两个反应都为放热反应。此时CO选择性氧化腔3内的温度上升,并对空气预热腔2进行加热。经过净化后的重整气由产品气出口腔7排出,此时的重整气温度较高,通过产品气出口腔7内的强化传热组件与重整反应腔6进行充分换热,为重整反应供能。
S5.当反应达到稳定时,停止向启动机构1通入甲醇和空气,此时反应主体机构可以通过选择性氧化阶段供热而实现自热运行。
反应稳定后,还需在产品气出口处定期抽样检测产品气体的组成,以判断本发明的装置是否运行正常。
以上所述实施方式仅为本发明的优选实施例,而并非本发明可行实施的全部实施例。对于本领域一般技术人员而言,在不背离本发明原理和精神的前提下对其所作出的任何显而易见的改动,都应当被认为包含在本发明的权利要求保护范围之内。

Claims (9)

  1. 一种自脱除CO的甲醇制氢装置,其特征是,包括反应主体机构和启动机构(1),启动机构(1)和反应主体机构均为套筒式结构;启动机构(1)为带有换热器的集成反应器,并配设有电火花打火器;启动机构(1)由内向外依次顺序设置换热层a(9)、反应室(10)、换热层b(11);换热层a(9)与换热层b(11)相互连通,内部设有强化传热组件;换热层b(11)与进料管道相连;进料管道的另一端连接换热器a(8),换热器a(8)的另一端连接反应原料进料管路;重整催化剂填充层与重整气排出腔之间设有0.5-3mm薄壁间隔;且薄壁上设有通孔;通孔孔径大小为1-5mm;
    反应主体机构由内向外依次顺序设置产品气出口腔(7)、重整反应腔(6)、CO选择性氧化腔(3)、空气预热腔(2);重整反应腔(6)内设置重整气排出腔(4);重整气排出腔(4)和CO选择性氧化腔(3)相邻连接设置;各腔室之间设有0.5-3mm薄壁间隔;重整气排出腔(4)与CO选择性氧化腔(3)下部之间的薄壁开设有相互连通的通道,CO选择性氧化腔(3)顶部与产品气出口腔(7)顶部之间设有连接通道,且连接通道设置在两个腔体的上方;重整反应腔(6)的内部设有重整催化剂填充层(5),重整催化剂填充层(5)嵌入在重整反应腔(6)内并与重整气排出腔(4)相邻设置;
    产品气出口腔(7)处设有强化传热组件,产品气出口腔(7)与产品气出口管道连接,产品气出口管道与换热器a(8)连接;
    重整反应腔(6)与换热层a(9)、换热层b(11)分别通过预热原料进料管道连接。
  2. 如权利要求1所述的一种自脱除CO的甲醇制氢装置,其特征是,空气预热腔(2)与CO选择性氧化腔(3)之间的薄壁上设有若干个通孔,且若干个通孔非均布设置;CO选择性氧化腔(3)中装填有选择性氧化催化剂。
  3. 如权利要求2所述的一种自脱除CO的甲醇制氢装置,其特征是,电火花打火器设置在反应室(10)内,反应室(10)分别与空气进气口、甲醇入口和燃烧尾气排出口连接;反应室(10)内部装填有催化燃烧催化剂;换热层a(9)、换热层b(11)与反应室(10)不连通。
  4. 如权利要求3所述的一种自脱除CO的甲醇制氢装置,其特征是,反应主体机构为立式装置。
  5. 如权利要求4所述的一种自脱除CO的甲醇制氢装置,其特征是,空气进气口连接空气进气管道,甲醇入口连接甲醇管道;燃烧尾气排出口连接燃气尾气排出管道。
  6. 如权利要求5所述的一种自脱除CO的甲醇制氢装置,其特征是,
    所述空气进气管道、甲醇管道、燃气尾气排出管道、进料管道、反应原料进料管路、产 品气出气管道、产品气出口管道、预热原料进料管道上均设有阀。
  7. 如权利要求6所述的一种自脱除CO的甲醇制氢装置,其特征是,所述反应室(10)内设有压力传感器和温度传感器,所述重整反应腔(6)内设有压力传感器。
  8. 如权利要求7所述的一种自脱除CO的甲醇制氢装置,其特征是,所述强化传热组件包括但不限于板式、管壳式、板翅式传热结构中的任一种形式,可以为管式结构、也可以为片状结构。
  9. 如权利要求1-8任一项所述的一种自脱除CO的甲醇制氢装置的使用方法,其特征是,具体包括以下步骤:
    S1.检查装置气密性,开启启动机构(1);
    S2.将甲醇和空气通入启动机构(1),启动方式可以为电火花打火器或在室温下直接进行的催化燃烧将反应物点燃,燃烧产物通过尾气排出管路排出;
    S3.待启动机构(1)的反应室(10)内达到180-300℃后,向反应主体机构的重整反应腔(6)内通入反应物甲醇和水;此时重整原料经预热过的甲醇和水通过重整催化剂填充层(5)中填充的催化剂进行重整反应,产生的重整气通过重整催化剂填充层(5)与重整气排出腔(4)之间薄壁上设置的通孔排出至重整气排出腔(4);
    S4.重整气从重整气排出腔(4)排出,进入CO选择性氧化腔(3),与从空气预热腔(2)中预热的空气接触,在CO选择性氧化催化剂的作用下将重整气中的CO脱除;经净化后的重整气氢气和二氧化碳由产品气出口腔(7)排出;与管道上的换热器a(8)充分换热,将原料甲醇和水预热。
    S5.当反应达到稳定时,停止向启动机构(1)通入甲醇和空气,此时反应主体机构可以实现自热运行。
PCT/CN2022/094009 2022-05-20 2022-05-20 一种自脱除co的甲醇制氢装置及其使用方法 WO2023221070A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/094009 WO2023221070A1 (zh) 2022-05-20 2022-05-20 一种自脱除co的甲醇制氢装置及其使用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/094009 WO2023221070A1 (zh) 2022-05-20 2022-05-20 一种自脱除co的甲醇制氢装置及其使用方法

Publications (1)

Publication Number Publication Date
WO2023221070A1 true WO2023221070A1 (zh) 2023-11-23

Family

ID=88834333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/094009 WO2023221070A1 (zh) 2022-05-20 2022-05-20 一种自脱除co的甲醇制氢装置及其使用方法

Country Status (1)

Country Link
WO (1) WO2023221070A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002025762A1 (fr) * 2000-09-20 2002-03-28 Kabushiki Kaisha Toshiba Dispositif de reformage de combustible destine a des piles a combustible a haut polymere solide
JP2003243018A (ja) * 2002-02-15 2003-08-29 Babcock Hitachi Kk 水素製造装置およびその運転方法
JP2006342014A (ja) * 2005-06-08 2006-12-21 Kobe Steel Ltd 高純度水素製造方法
WO2008029755A1 (fr) * 2006-09-05 2008-03-13 Panasonic Corporation Appareil générateur d'hydrogène et système de pile à combustible
US20090087705A1 (en) * 2007-09-27 2009-04-02 Sanyo Electric Co., Ltd Reforming apparatus for fuel cell
CN106082127A (zh) * 2016-08-25 2016-11-09 晋城市阿邦迪能源有限公司 选择性氧化净化co的甲醇重整反应器
CN108083228A (zh) * 2017-12-04 2018-05-29 大连大学 一种脱除富氢气体中微量一氧化碳的方法
CN111483978A (zh) * 2020-04-30 2020-08-04 郑州帅先新能源科技有限公司 重整制氢装置及重整制氢方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002025762A1 (fr) * 2000-09-20 2002-03-28 Kabushiki Kaisha Toshiba Dispositif de reformage de combustible destine a des piles a combustible a haut polymere solide
JP2003243018A (ja) * 2002-02-15 2003-08-29 Babcock Hitachi Kk 水素製造装置およびその運転方法
JP2006342014A (ja) * 2005-06-08 2006-12-21 Kobe Steel Ltd 高純度水素製造方法
WO2008029755A1 (fr) * 2006-09-05 2008-03-13 Panasonic Corporation Appareil générateur d'hydrogène et système de pile à combustible
US20090087705A1 (en) * 2007-09-27 2009-04-02 Sanyo Electric Co., Ltd Reforming apparatus for fuel cell
CN106082127A (zh) * 2016-08-25 2016-11-09 晋城市阿邦迪能源有限公司 选择性氧化净化co的甲醇重整反应器
CN108083228A (zh) * 2017-12-04 2018-05-29 大连大学 一种脱除富氢气体中微量一氧化碳的方法
CN111483978A (zh) * 2020-04-30 2020-08-04 郑州帅先新能源科技有限公司 重整制氢装置及重整制氢方法

Similar Documents

Publication Publication Date Title
TWI392543B (zh) 燃料重組反應物中快速加熱之方法與裝置
EP0600621B1 (en) A combined reformer and shift reactor
EP2244327B1 (en) Solid oxide fuel cell system
CN110203882A (zh) 一种氨分解装置及系统和制氢方法
CN1330034C (zh) 重整器和具有该重整器的燃料电池系统
CN107324281B (zh) 快速启动自热型甲醇重整制氢微反应器
JPH01140563A (ja) 固体酸化物燃料電池発電装置及び装置内での燃料改質方法
CN111747378A (zh) 一种甲醇水燃料重整制氢系统
JP2008535766A (ja) 熱交換器用の一体型かつ円筒状の水蒸気改質装置
WO2021031894A1 (zh) 一种一体化中小型天然气水蒸汽重整反应器及重整反应工艺
JP5165832B2 (ja) 水素発生装置および方法
JP2006206383A (ja) 炭化水素系ガスの改質器
KR101243767B1 (ko) 고분자 전해질 연료전지용 수소생산시스템
KR20010075696A (ko) 수소가스 생성장치 및 이를 이용한 연료전지 시스템
WO2023221070A1 (zh) 一种自脱除co的甲醇制氢装置及其使用方法
JPS6238828B2 (zh)
WO2010091642A1 (zh) 化学链燃烧方法以及系统
CN114933280B (zh) 一种自脱除co的甲醇制氢装置及其使用方法
CN212387735U (zh) 一种甲醇水燃料重整制氢系统
CN115465837A (zh) 一种用于碳氢化合物水蒸气重整反应的列管式反应器
CN112723308B (zh) 一种碳烃燃料等离子体催化链式制氢的方法
CN111453697B (zh) 用于sofc的多燃料通用型重整制氢系统及方法
GB2384726A (en) Heating of autothermal hydrocarbon reformation reactor
JP2003335504A (ja) 自己酸化内部加熱型改質方法及び装置
JPH07106881B2 (ja) 燃料電池用改質器装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22942110

Country of ref document: EP

Kind code of ref document: A1