WO2023217874A1 - Composition lubrifiante présentant une stabilité d'émulsion améliorée - Google Patents

Composition lubrifiante présentant une stabilité d'émulsion améliorée Download PDF

Info

Publication number
WO2023217874A1
WO2023217874A1 PCT/EP2023/062443 EP2023062443W WO2023217874A1 WO 2023217874 A1 WO2023217874 A1 WO 2023217874A1 EP 2023062443 W EP2023062443 W EP 2023062443W WO 2023217874 A1 WO2023217874 A1 WO 2023217874A1
Authority
WO
WIPO (PCT)
Prior art keywords
lubricating composition
mass
chosen
prevent
ppm
Prior art date
Application number
PCT/EP2023/062443
Other languages
English (en)
Inventor
Ushioda NOBUO
David SÉNARD
Mickaël Debord
Original Assignee
Totalenergies Onetech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Totalenergies Onetech filed Critical Totalenergies Onetech
Publication of WO2023217874A1 publication Critical patent/WO2023217874A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M161/00Lubricating compositions characterised by the additive being a mixture of a macromolecular compound and a non-macromolecular compound, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M145/00Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
    • C10M145/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M145/10Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate
    • C10M145/12Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate monocarboxylic
    • C10M145/14Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/06Mixtures of thickeners and additives

Definitions

  • Lubricating composition having improved emulsion stability
  • the present invention relates to the lubrication of a vehicle comprising at least one combustion engine.
  • the present invention relates to the lubrication of a hybrid vehicle engine of the plug-in hybrid vehicle type and a hybrid vehicle comprising a range extender.
  • Hybrid vehicles include two engines, a combustion engine and an electric motor.
  • the thermal engine drives the wheels and is assisted by an electric motor.
  • a battery provides the electricity necessary for the operation of the electric motor, this battery is, in the case of conventional hybrid vehicles, recharged during the braking and deceleration phases, by a kinetic energy recovery system (SREC) integrated into the vehicle.
  • SREC kinetic energy recovery system
  • hybrid vehicle technologies There are different hybrid vehicle technologies. Among these hybrid technologies, we can notably cite:
  • micro-hybrid vehicles also called mild hybridization
  • these vehicles equipped with the “stop&start” system, recover the energy generated by braking to charge a battery which can momentarily assist the thermal engine;
  • - full-hybrid vehicles are vehicles with total hybridization.
  • the electric motor takes care of starting and locomotion.
  • the heat engine takes over, when increased power is needed (for example acceleration) the two engines work together. It is thus possible to drive with the combustion engine off for a few kilometers.
  • plug-in hybrid vehicles and hybrid vehicles including a range extender Other complementary technologies have recently been developed: plug-in hybrid vehicles and hybrid vehicles including a range extender.
  • Rechargeable hybrid vehicles also called plug-in in English
  • the battery can be recharged on the electrical network, these vehicles can thus drive in 100% electric mode over a distance of several tens of kilometers , for example 50 kilometers.
  • hybrid vehicles including a range extender also called range extender
  • only the electric motor drives the wheels. This electric motor is powered by a battery for a few dozen kilometers.
  • the thermal engine starts and drives a current generator making it possible to produce the electricity necessary to recharge the battery and maintain the operation of the electric motor.
  • Lubricating compositions and in particular those used for the lubrication of combustion engines, generally comprise small quantities of water resulting in particular from the direct adsorption by the lubricant of water contained in the air or even from the condensation of the ambient water vapor.
  • a lubricating composition thus typically comprises 0 to 10% water.
  • water in lubricating compositions is the cause of cold starting problems, corrosion but also premature wear of the combustion engine. In order to prevent these phenomena, it is then necessary to maintain this water in the form of an emulsion.
  • the thermal engine is used less often, which has the effect in particular of promoting problems of demixing of the lubricating composition.
  • the lubricating composition remaining stationary, the emulsion becomes unstable, the water separates from the oily phase and forms a continuous phase.
  • An objective of the present invention is to provide a lubricating composition allowing the lubrication of an internal combustion engine, in particular a plug-in hybrid vehicle engine or one comprising a range extender.
  • Another objective of the present application is to provide a lubricating composition having improved emulsion stability.
  • the objective of the invention is to provide a lubricating composition making it possible to maintain the water present in the form of stable emulsions.
  • the molybdenum element content being at least 400 ppm by mass, relative to the total mass of the lubricating composition
  • At least one first detergent additive chosen from magnesium salts of carboxylic acids, sulfonates, salicylates, naphthenates, phenates and any of their mixtures,
  • At least one second detergent additive chosen from calcium salts of carboxylic acids, sulfonates, salicylates, naphthenates, phenates and any of their mixtures, in which the cumulative content of magnesium element and calcium element, relative to the total mass of the lubricating composition, is at least 1000 ppm by mass.
  • the base oils used in the lubricating compositions according to the invention may be oils of mineral or synthetic origin, possibly regenerated, belonging to groups I to V according to the classes defined in the API classification (or their equivalents according to the ATIEL classification). (table A) or their mixtures.
  • the mineral base oils according to the invention include all types of bases obtained by atmospheric and vacuum distillation of crude oil, followed by refining operations such as solvent extraction, deasphalting, solvent dewaxing, hydrotreatment, hydrocracking, hydroisomerization and hydrofinishing.
  • Blends of synthetic and mineral oils, possibly regenerated, can also be used.
  • lubricating bases there is generally no limitation as to the use of different lubricating bases to produce the lubricating compositions according to the invention, except that they must have properties, in particular viscosity, viscosity index, sulfur content , resistance to oxidation, suitable for use in engines or vehicle transmissions.
  • the base oils of the lubricating compositions according to the invention can also be chosen from synthetic oils, such as certain esters of carboxylic acids and alcohols, and from polyalphaolefins.
  • the polyalphaolefins used as base oils are for example obtained from monomers comprising from 4 to 32 carbon atoms, for example from octene or decene, and whose viscosity at 100°C is between 1.5 and 15mm2 .
  • s -1 according to ASTM D445.
  • Their average molecular mass is generally between 250 and 3,000 according to the ASTM D5296 standard.
  • the lubricating composition according to the invention may comprise at least 50% by mass of base oils relative to the total mass of the composition. More advantageously, the lubricating composition according to the invention comprises at least 60% by mass, or even at least 70% by mass, of base oils relative to the total mass of the composition. More particularly advantageously, the lubricating composition according to the invention comprises from 75 to 95% by mass of base oils relative to the total mass of the composition.
  • the additive to improve the viscosity index
  • the lubricating composition according to the invention comprises at least one additive making it possible to improve the viscosity index of the lubricating composition (in English “viscosity index improver”).
  • additive making it possible to improve the viscosity index within the meaning of the invention is meant a chemical compound making it possible to guarantee good cold resistance and a minimum viscosity at high temperature of the lubricating composition.
  • polymers improving the viscosity index mention may be made of polymer esters; homopolymers or copolymers, hydrogenated or non-hydrogenated, of styrene, butadiene and isoprene; olefin homopolymers or copolymers, such as ethylene or propylene; polyacrylates and polymethacrylates (PMA).
  • the lubricating composition according to the invention typically comprises from 0.1% to 13% by weight of additive(s) improving the viscosity index, relative to the total weight of the lubricating composition.
  • the lubricating composition according to the invention comprises from 0.5% to 12% by weight of additive(s) improving the viscosity index, relative to the total weight of the lubricating composition, more preferably from 1% to 10% by mass, even more preferably from 5% to 10% by mass.
  • the lubricating composition according to the invention comprises at least one organomolybdenum compound.
  • organomolybdenum compound according to the invention is meant any fat-soluble organomolybdenum compound.
  • the organomolybdenum compound according to the present invention can be chosen from organic molybdenum complexes comprising at least one chemical element molybdenum (Mo), preferably at least two chemical elements molybdenum (Mo), and at least one ligand such as a ligand carboxylate, an ester ligand, an amide ligand, a dithiophosphate ligand, a dithiocarbamate ligand.
  • Mo chemical element molybdenum
  • Mo chemical elements molybdenum
  • ligand such as a ligand carboxylate, an ester ligand, an amide ligand, a dithiophosphate ligand, a dithiocarbamate ligand.
  • organic complexes of molybdenum with carboxylates, esters, amides can be obtained by reaction of molybdenum oxide or ammonium molybdates with fatty substances, glycerides, fatty acids or derivatives of fatty acids (esters , amines, amides, etc.).
  • the carboxylate ligands, the ester ligands and the amide ligands are free of sulfur and phosphorus.
  • the organomolybdenum compound of the invention is chosen from complexes of molybdenum with amide ligands, mainly prepared by reaction of a source of molybdenum, which can be for example molybdenum trioxide, and a amine derivative, and fatty acids comprising for example from 4 to 36 carbon atoms such as for example fatty acids contained in vegetable or animal oils.
  • a source of molybdenum which can be for example molybdenum trioxide, and a amine derivative
  • fatty acids comprising for example from 4 to 36 carbon atoms such as for example fatty acids contained in vegetable or animal oils.
  • the synthesis of such compounds is for example described in patents US4889647, EP0546357, US5412130 or EP1770153.
  • the organomolybdenum compound is chosen from dinuclear organomolybdenum compounds.
  • nuclear organomolybdenum compound within the meaning of the invention, we mean organomolybdenum compounds whose nucleus has two molybdenum atoms. We also speak of dimeric organomolydbene compounds.
  • the organomolybdenum compound is chosen from organic complexes of molybdenum with amide ligands obtained by reaction:
  • - X 1 represents an oxygen atom or a nitrogen atom
  • - X 2 represents an oxygen atom or a nitrogen atom
  • n or m represents 1 when respectively X 1 or X 2 represents an oxygen atom, n or m represents 2 when respectively X 1 or X 2 represents a nitrogen atom,
  • molybdenum chosen from molybdenum trioxide or molybdates, preferably ammonium molybdate.
  • the organomolybdenum compound may comprise from 0.1 to 30% by weight, preferably from 0.1 to 20%, more preferably from 2 to 8.5% by weight of molybdenum relative to to the total weight of the organomolybdenum complex.
  • the organomolybdenum compound comprises at least one organic molybdenum complex of formula (I) or (II), alone or as a mixture: in which :
  • - X 1 represents an oxygen atom or a nitrogen atom
  • - X 2 represents an oxygen atom or a nitrogen atom
  • - n 1 when X 1 represents an oxygen atom and m represents 1 when X 2 represents an oxygen atom;
  • - n represents 2 when X 1 represents a nitrogen atom and m represents 2 when X 2 represents a nitrogen atom;
  • Ri represents a linear or branched, saturated or unsaturated alkyl group, comprising from 4 to 36 carbon atoms, preferably from 4 to 20 carbon atoms, advantageously from 6 to 18 carbon atoms; in which :
  • - X 1 represents an oxygen atom or a nitrogen atom
  • -X 2 represents an oxygen atom or a nitrogen atom
  • -n 1 when X 1 represents an oxygen atom and m represents 1 when X 2 represents an oxygen atom;
  • - n represents 2 when X 1 represents a nitrogen atom and m represents 2 when X 2 represents a nitrogen atom;
  • - Ri represents a linear or branched, saturated or unsaturated alkyl group, comprising from 4 to 36 carbon atoms, preferably from 4 to 20 carbon atoms, advantageously from 6 to 18 carbon atoms;
  • organic molybdenum complex of formula (I) or (II) is prepared by reaction:
  • molybdenum chosen from molybdenum trioxide or molybdates, preferably ammonium molybdate.
  • the organic molybdenum complex of formula (I) consists of at least one compound of formula (la) or (lb), alone or as a mixture: in which Ri represents a linear or branched, saturated or unsaturated alkyl group, comprising from 4 to 36 carbon atoms, preferably from 4 to 20 carbon atoms, advantageously from 6 to 18 carbon atoms, in which Ri represents a linear or branched, saturated or unsaturated alkyl group, comprising from 4 to 36 carbon atoms, preferably from 4 to 20 carbon atoms, advantageously from 6 to 18 carbon atoms.
  • the organomolybdenum compound is chosen from organic complexes of molybdenum with dithiophosphate ligands or organic complexes of molybdenum with dithiocarbamate ligands.
  • the organic complexes of molybdenum with dithiophosphate ligands are also called molybdenum dithiophosphates or Mo-DTP compounds and the organic complexes of molybdenum with dithiocarbamate ligands are also called molybdenum dithiocarbamates or Mo-DTC compounds.
  • the organomolybdenum compound is chosen from molybdenum dithiocarbamates.
  • Mo-DTC compounds are complexes formed of a molybdenum metal core linked to one or more ligands, the ligand being an alkyl dithiocarbamate group. These compounds are well known to those skilled in the art.
  • the Mo-DTC compound may comprise from 1 to 40%, preferably from 2 to 30%, more preferably from 3 to 28%, advantageously from 4 to 15% by weight of molybdenum, relative to the total weight of the Mo-DTC compound.
  • the Mo-DTC compound may comprise from 1 to 40%, preferably from 2 to 30%, more preferably from 3 to 28%, advantageously from 4 to 15% by weight of sulfur. , relative to the total weight of the Mo-DTC compound.
  • the Mo-DTC compound is a dimeric Mo-DTC compound.
  • dimeric Mo-DTC compounds mention may be made of the compounds and their preparation processes as described in documents EP 0757093, EP 0719851, EP 0743354 or EP 1013749.
  • Dimeric Mo-DTC compounds generally correspond to compounds of formula (III): in which :
  • R 3 , R4, R5, Re identical or different, independently represent a hydrocarbon group chosen from alkyl, alkenyl, aryl, cycloalkyl or cycloalkenyl groups,
  • X 3 , X 4 , X 5 and X 6 identical or different, independently represent an oxygen atom or a sulfur atom.
  • alkyl group within the meaning of the invention is meant a hydrocarbon group, linear or branched, saturated or unsaturated, comprising from 1 to 24 carbon atoms, preferably from 4 to 18 carbon atoms.
  • the alkyl group is chosen from the group formed by methyl, ethyl, propyl, isopropyl, n-butyl, iso-butyl, tert-butyl, n-pentyl, iso-pentyl, neopentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, isotridecyl, tetradecyl, l hexadecyl, stearyl, icosyl, docosyl, tetracosyl, triacontyl, 2-ethylhexyl, 2-butyloctyl, 2-butyldecyl, 2-hexyloctyl, 2-hexyldecyl, 2-octyldecyl, 2-hexyldodecyl , 2-
  • alkenyl group within the meaning of the present invention is meant a linear or branched hydrocarbon group comprising at least one double bond and comprising from 2 to 24 carbon atoms.
  • the alkenyl group may be chosen from vinyl, allyl, propenyl, butenyl, isobutenyl, pentenyl, isopentenyl, hexenyl, heptenyl, octenyl, nonenyl, decenyl, undecenyl, dodecenyl, tetradecenyl and oleic.
  • aryl group within the meaning of the present invention is meant a polycyclic aromatic hydrocarbon or an aromatic group, substituted or not by an alkyl group.
  • the aryl group can comprise from 6 to 24 carbon atoms.
  • the aryl group may be chosen from the group formed by phenyl, toluyl, xylyl, cumenyl, mesityl, benzyl, phenethyl, styryl, cinnamyl, benzhydryl, trityl, ethylphenyl, propylphenyl, butylphenyl, pentylphenyl, hexylphenyl, heptylphenyl, octylphenyl, nonylphenyl, decylphenyl, undecylphenyl, dodecylphenyl, phenylphenyl, benzylphenyl, phenyl-styrene, p-cumylphenyl and naphthyl.
  • cycloalkyl group within the meaning of the present invention is meant a polycyclic or cyclic hydrocarbon, substituted or not by an alkyl group.
  • cycloalkenyl group within the meaning of the present invention is meant a polycyclic or cyclic hydrocarbon, substituted or not by an alkyl group, and comprising at least one unsaturation.
  • the cycloalkyl groups and the cycloalkenyl groups can comprise from 3 to
  • the cycloalkyl groups and the cycloalkenyl groups can be chosen, in a non-limiting manner, from the group consisting of cyclopentyl, cyclohexyl, cycloheptyl, methylcyclopentyl, methylcyclohexyl, methylcycloheptyl, cyclopentenyl, cyclohexenyl, cycloheptenyl, methylcyclopentenyl, methylcyclohexenyl.
  • R3, R4, R5 and Re independently represent an alkyl group comprising from 1 to 24 carbon atoms, preferably from 4 to 18 carbon atoms or an alkenyl group comprising from 2 to 24 carbon atoms.
  • X3, X4, X5 and Xe may be identical and may represent a sulfur atom.
  • X3, X4, X5 and Xe may be identical and may be an oxygen atom.
  • X3 and X4 may represent a sulfur atom and X 5 and X 6 may represent an oxygen atom.
  • X3 and X4 may represent an oxygen atom and Xs and Xe may represent a sulfur atom.
  • the ratio in number of sulfur atoms relative to the number of oxygen atoms (S/O) of the Mo-DTC compound can vary from (1/3) to ( 3/1).
  • the Mo-DTC compound of formula (III) can be chosen from a symmetrical Mo-DTC compound, an asymmetrical Mo-DTC compound and their combination.
  • symmetrical Mo-DTC compound according to the invention is meant a Mo-DTC compound of formula (V) in which the groups R3, R4, R5 and Re are identical.
  • asymmetric Mo-DTC compound is meant a Mo-DTC compound of formula (V) in which the R3 and R4 groups are identical, the R5 and Re groups are identical and the R3 and R4 groups are different from the groups R5 and Re.
  • the Mo-DTC compound is a mixture of at least one symmetrical Mo-DTC compound and at least one asymmetrical Mo-DTC compound.
  • R3 and R4 identical, represent an alkyl group comprising from 5 to 15 carbon atoms, preferably from 8 to 13 carbon atoms
  • R5 and Re identical, represent an alkyl group comprising from 5 to 15 carbon atoms, preferably from 8 to 13 carbon atoms
  • the groups R3 and R4 are identical to or different from the groups R5 and Re.
  • R3 and R4, identical represent an alkyl group comprising 6 to 10 carbon atoms and R5 and Re, identical, represent an alkyl group comprising 10 to 15 carbon atoms, and the R3 and R4 groups are different from the R5 and Re groups.
  • R3 and R4, identical represent an alkyl group comprising from 10 to 15 carbon atoms and R5 and Re, identical, represent an alkyl group comprising 6 to 10 carbon atoms, and the R3 and R4 groups are different from the R5 and Re groups.
  • R3, R4, R5 and Re represent an alkyl group comprising from 5 to 15 carbon atoms, preferably from 8 to 13 carbon atoms.
  • the Mo-DTC compound is chosen from the compounds of formula (III) in which:
  • - X 5 and X 6 represent a sulfur atom
  • R3 represents an alkyl group comprising 8 carbon atoms or an alkyl group comprising 13 carbon atoms
  • R4 represents an alkyl group comprising 8 carbon atoms or an alkyl group comprising 13 carbon atoms
  • - R5 represents an alkyl group comprising 8 carbon atoms or an alkyl group comprising 13 carbon atoms
  • - Re represents an alkyl group comprising 8 carbon atoms or an alkyl group comprising 13 carbon atoms.
  • the compound Mo-DTC is chosen from the compounds of formula (Il la)
  • the Mo-DTC compound is a mixture:
  • Mo-DTC compounds As examples of Mo-DTC compounds, mention may be made of the products Molyvan L®, Molyvan 807® or Molyvan 822® marketed by the company R.T Vanderbilt Compagny® or the products Sakura-lube 200®, Sakura-lube 165®, Sakura-lube 525® or Sakura-lube 600® marketed by the company Adeka.
  • the lubricating composition according to the invention typically comprises at least 400 ppm mass of molybdenum element, relative to the total mass of the lubricating composition.
  • the lubricating composition according to the invention comprises at most 1,500 ppm in mass of molybdenum element, relative to the total mass of the lubricating composition, more preferably from 500 ppm to 1200 ppm, even more preferably from 750 ppm to 1000 ppm.
  • the first detergent additive (based on magnesium)
  • the lubricating composition according to the invention also comprises at least one first detergent additive.
  • Detergent additives generally make it possible to reduce the formation of deposits on the surface of metal parts by dissolving secondary oxidation and combustion products.
  • detergent additives which can be used in the lubricating compositions according to the invention are generally known to those skilled in the art.
  • Detergent additives may be anionic compounds comprising a long lipophilic hydrocarbon chain and a hydrophobic head.
  • the associated cation may be a metallic cation of an alkali or alkaline earth metal.
  • the first detergent additive is typically chosen from magnesium salts of carboxylic acids, sulfonates, salicylates, naphthenates, phenates and any mixtures thereof.
  • the first detergent additive is chosen from magnesium sulfonates.
  • the detergents used will be non-overbased (or neutral) or overbased.
  • the excess metal providing the overbased character to the detergent is in the form of metal salts that are insoluble in the oil.
  • the overbased detergents are thus in the form of micelles composed of insoluble metal salts held in suspension in the lubricating composition by the detergents in the form of metal salts soluble in the oil. These micelles may contain one or more types of insoluble metal salts, stabilized by one or more types of detergents.
  • Overbased detergents will be called mixed type if the micelles include several types of detergents, different from each other by the nature of their hydrophobic chain.
  • the first detergent additive(s) represent from 0.5 to 8% by mass, preferably from 2% to 4% by mass, relative to the total mass of the lubricating composition.
  • the second detergent additive (calcium-based)
  • composition according to the invention further comprises at least one second detergent additive.
  • the second detergent additive is typically chosen from calcium salts.
  • the second detergent additive is chosen from calcium salts of carboxylic acids, sulfonates, salicylates, naphthenates, phenates and any of their mixtures.
  • the second detergent additive is chosen from calcium carboxylates, preferably from calcium salicylates.
  • the detergents used will be non-overbased (or neutral) or overbased.
  • the excess metal providing the overbased character to the detergent is in the form of metal salts that are insoluble in the oil.
  • the overbased detergents are thus in the form of micelles composed of insoluble metal salts held in suspension in the lubricating composition by the detergents in the form of metal salts soluble in the oil. These micelles may contain one or more types of insoluble metal salts, stabilized by one or more types of detergents.
  • Overbased detergents will be called mixed type if the micelles include several types of detergents, different from each other by the nature of their hydrophobic chain.
  • the second detergent additive represents from 0.5 to 8% by mass, preferably from 2% to 4% by mass, relative to the total mass of the lubricating composition.
  • composition according to the invention is free of second detergent additive.
  • the magnesium element content is at least 1000 ppm by mass, relative to the total mass of the lubricating composition, more preferably from 1100 ppm to 3000 ppm, even more preferably from 1400 ppm at 2800 ppm, typically from 1600 ppm to 2650 ppm.
  • the composition according to the invention comprises at least one first detergent additive and at least one second detergent additive.
  • the cumulative content of magnesium element and calcium element, relative to the total mass of the lubricating composition is at least 1000 ppm by mass, more preferably from 1100 ppm to 3000 ppm , even more preferably from 1400 ppm to 2800 ppm, typically from 1600 ppm to 2650 ppm.
  • cumulative content of magnesium element and calcium element within the meaning of the invention is meant the sum of the content of magnesium element present in the lubricating composition and the content of calcium element present in the lubricating composition.
  • the ratio between the calcium element content (from the first detergent additive) and the magnesium element content (from the second detergent additive) ranges from 10:1 to 1:10.
  • the ratio between the calcium element content and the magnesium element content ranges from 5:1 to 1:5, preferably from 5:2 to 5:2, more preferably from 5:2 to 1:1.
  • the BN (Base Number measured according to ASTM D-2896) of the lubricating compositions according to the present invention is totally or partly provided by neutral or overbased detergents based on alkali or alkaline earth metals, in particular by the first and second detergent additives. .
  • the BN value of the lubricating compositions according to the present invention can vary from 1 to 140 mg of KOH/g, preferably from 3 to 80 mg of KOH/g, more preferably from 5 to 50 mg of KOH/g, typically 5 to 20 mg KOH/g.
  • the value of the BN will be chosen according to the conditions of use of the lubricating compositions and in particular according to the sulfur content of the fuel used.
  • the preferred additives for the lubricating composition according to the invention are chosen from detergent additives different from the first and second detergent additives defined above, the friction modifier additives differ from the molybdenum compounds defined above, extreme pressure additives, dispersants, pour point enhancers, anti-foaming agents, thickeners and mixtures thereof.
  • the lubricating compositions according to the invention comprise at least one extreme pressure additive, or a mixture.
  • Anti-wear additives and extreme pressure additives protect surface friction by forming a protective film adsorbed on its surfaces.
  • the anti-wear additives are chosen from additives comprising phosphorus and sulfur such as alkylthiophosphate metals, in particular zinc alkylthiophosphate, and more precisely zinc dialkyldithiophosphate or ZnDTP.
  • the preferred compounds are of formula Zn((SP(S)(OR)(OR'))2, in which R and R', identical or different, independently represent an alkyl group, preferably an alkyl group comprising from 1 to 18 carbon atoms.
  • Amine phosphates are also anti-wear additives which can be used in the lubricating compositions of the invention.
  • the phosphorus atoms provided by these additives can act as poison in automobile catalytic systems since they generate ash. It is possible to minimize these effects by substituting part of the amine phosphates with additives which do not provide phosphorus, such as for example polysulphides, in particular olefins containing sulfur.
  • the lubricating compositions according to the invention may comprise from 0.01 to 6% by mass, preferably from 0.05 to 4% by mass, more preferably from 0.1 to 2% by mass relative to the total mass of lubricating composition, anti-wear and extreme pressure additives.
  • the lubricating compositions according to the invention comprise from 0.01 to 6% by mass, preferably from 0.05 to 4% by mass, more preferably from 0.1 to 2% by mass relative to the total mass of composition.
  • compositions according to the invention may comprise at least one friction modifier additive different from the molybdenum compounds of the invention.
  • the friction modifier additives can in particular be chosen from compounds providing metallic elements and ash-free compounds.
  • the compounds providing metallic elements mention may be made of transition metal complexes such as Mo, Sb, Sn, Fe, Cu, Zn for which the ligands may be hydrocarbon compounds comprising oxygen, nitrogen atoms , sulfur or phosphorus.
  • the ashless friction modifier additives are generally of organic origin or can be chosen from fatty acid monoesters and polyols, alkoxylated amines, alkoxylated fatty amines, fatty epoxides, fatty epoxy borates, amines fats or glycerol acid esters.
  • fatty compounds comprising at least one hydrocarbon group comprising from 10 to 24 carbon atoms.
  • the lubricating composition according to the invention may comprise from 0.01 to 2% by mass or from 0.01 to 5% by mass, preferably from 0.1 to 1.5% by mass or from 0.1 to 2% by mass. % by mass relative to the total mass of the lubricating composition, of friction modifier additive different from the molybdenum compounds according to the invention.
  • the lubricating composition according to the invention may comprise at least one antioxidant additive.
  • Antioxidant additives generally delay the degradation of the lubricating composition. This degradation is most often expressed by the formation of deposits, by the presence of sludge or by an increase in the viscosity of the lubricating composition.
  • Antioxidant additives generally act as free radical inhibitors or destructive hydroperoxide inhibitors.
  • antioxidants we can cite phenolic type antioxidants, amine type antioxidants, antioxidants containing sulfur and phosphorus. Some of these antioxidants, for example those including sulfur and phosphorus, can generate ash.
  • Phenolic antioxidant additives can be ash-free or in the form of neutral or basic metal salts.
  • the antioxidant additives may in particular be chosen from sterically hindered phenols, sterically hindered phenol esters, sterically hindered phenols comprising a thioether bridge, diphenylamines, diphenylamines substituted with at least one C1 to C12 alkyl group, N,N '-dialkyl-aryl-diamines and mixtures thereof.
  • the sterically hindered phenols are chosen from compounds comprising a phenol group for which at least one of the carbon atoms in the vicinity of the carbon atom carrying the alcohol function is substituted by at least one alkyl group in C1 to C10, preferably a C1 to C6 alkyl group, preferably a C4 alkyl group, preferably a tert-butyl group.
  • Amino compounds are another class of antioxidant additives that can be used, optionally in combination with phenolic antioxidant additives.
  • amine compounds are aromatic amines, for example aromatic amines of formula NRaRbRc in which Ra represents an aliphatic group or an aromatic group, optionally substituted, Rb represents an aromatic group, optionally substituted, Rc represents a hydrogen atom, an alkyl group, an aryl group or a group of formula RdS(O)zRe in which Rd represents an alkylene or alkenylene group, Re represents an alkyl group, an alkenyl group or an aryl group and z represents 0, 1 or 2.
  • Sulfur-containing alkyl phenols or their alkali or alkaline earth metal salts can also be used as antioxidant additives.
  • antioxidant additives are compounds comprising copper, for example copper thio- or dithio-phosphate, copper salts and carboxylic acids, dithiocarbamates, sulfonates, phenates, copper acetylacetonates . Copper I and II salts, succinic acid or anhydride salts can also be used.
  • the lubricating compositions according to the invention can also comprise any type of antioxidant known to those skilled in the art.
  • the lubricating composition comprises at least one ash-free antioxidant additive.
  • the lubricating composition according to the invention comprises from 0.1 to 2% by mass relative to the total mass of the composition, of at least one antioxidant additive.
  • the lubricating composition according to the invention may also comprise at least one detergent additive distinct from the first and second detergent additives defined above.
  • the detergent additives are preferably chosen from alkali or alkaline earth metal salts of carboxylic acids, sulfonates, salicylates, naphthenates, as well as phenate salts.
  • the alkali and alkaline earth metals are preferably sodium or barium.
  • metal salts generally include the metal in stoichiometric quantity or in excess, that is to say in a content greater than the stoichiometric content.
  • overbased detergents the excess metal implying the overbased nature of the detergent additive is usually in the form of an oil insoluble metal salt, e.g. carbonate, hydroxide, oxalate, acetate, glutamate, preferably carbonate.
  • the lubricating composition according to the invention may comprise from 0.2% to 8% or from 0.5% to 3% by mass of additional detergent additives (distinct from the first and second detergent additives defined above), relative to the total mass of the lubricating composition.
  • the lubricating composition according to the invention may also comprise a pour point lowering additive.
  • the pour point lowering additive By slowing down the formation of paraffin crystals, the pour point lowering additive generally improves the cold behavior of the lubricating composition according to the invention.
  • alkyl polymethacrylates examples include polyacrylates, polyarylamides, polyalkylphenols, polyalkylnaphthalene, alkyl polystyrenes.
  • the lubricating composition according to the invention may also comprise a dispersing agent.
  • the dispersing agents can be chosen from Mannich bases, succinimides and their derivatives. Also advantageously, the lubricating composition according to the invention may comprise from 0.2 to 10% by weight of dispersing agent relative to the total mass of lubricating composition.
  • the lubricating composition according to the invention may also comprise at least one thickening agent.
  • the lubricating composition according to the invention may also comprise an antifoaming agent and a demulsifying agent.
  • the lubricating composition comprises, relative to the total mass of the lubricating composition:
  • the molybdenum element content ranging from 400 ppm to 1500 ppm by mass
  • At least one first detergent additive chosen from magnesium salts of carboxylic acids, sulfonates, salicylates, naphthenates, phenates and any of their mixtures,
  • At least one second detergent additive chosen from calcium salts of carboxylic acids, sulfonates, salicylates, naphthenates, phenates and any of their mixtures, in which the cumulative content of magnesium element and calcium element, relative to the total mass of the lubricating composition, ranges from 1000 ppm to 3000 ppm by mass.
  • the lubricating composition comprises, relative to the total mass of the lubricating composition:
  • the molybdenum element content ranging from 500 ppm to 1500 ppm by mass
  • the lubricating composition comprises, relative to the total mass of the lubricating composition:
  • the molybdenum element content ranging from 750 ppm to 100 ppm by mass
  • the invention also relates to the use of a lubricating composition as defined above for the lubrication of a combustion engine.
  • the engine is chosen from gasoline engines and diesel engines, preferably the combustion engine is a gasoline engine.
  • the engine is a plug-in hybrid vehicle engine or a hybrid vehicle engine comprising a range extender.
  • the term rechargeable hybrid vehicle means a vehicle comprising a thermal engine and an electric motor, the battery being able to be recharged on the electrical network, this vehicle can thus run in 100% electric mode over a distance of several tens of kilometers, such as for example for 50 kilometers.
  • the term hybrid vehicle comprising a range extender means a hybrid vehicle in which only the electric motor drives the wheels. This electric motor is powered by a battery for a few dozen kilometers. When the battery reaches a certain charge threshold (for example of the order of 30%), the thermal engine starts and drives a current generator making it possible to produce the electricity necessary to recharge the battery and maintain the operation of the electric motor.
  • a certain charge threshold for example of the order of 30%
  • the invention relates to the use of the lubricating composition according to the invention to prevent and/or prevent and/or slow down cold starting problems of the engine.
  • the invention relates to the use of the lubricating composition according to the invention to prevent and/or prevent and/or slow down corrosion phenomena likely to occur in the engine.
  • the invention relates to the use of the lubricating composition according to the invention to prevent and/or prevent and/or slow down the wear of said engine.
  • the invention relates to the use of the lubricating composition according to the invention to prevent and/or prevent and/or slow down the phenomena of demixing of the lubricating composition.
  • demixing means the phenomenon during which the water present in the lubricating composition, initially in the form of emulsions, spontaneously separates from the mixture to form a continuous aqueous phase.
  • the rating “FAIL” is then assigned to the lubricating composition.
  • the emulsion is not sufficiently stable and the lubricating composition does not sufficiently prevent demixing phenomena.
  • the invention also relates to a method for lubricating a combustion engine, in particular a plug-in hybrid vehicle engine or a hybrid vehicle comprising a range extender, this method comprising bringing into contact at least one part of the engine with the lubricating composition according to the invention.
  • Example 1 preparation of lubricating compositions
  • the lubricating compositions C1, C2, C3* and C4* are prepared from the following components:
  • Base oil 1 Group III base oil having a kinematic viscosity at 40°C, measured according to the ASTM D445 standard, equal to 19.57 mm 2 /s; a kinematic viscosity at 100°C, measured according to the ASTM D445 standard, equal to 4.23 mm 2 /s; a viscosity index, measured according to standard ASTM D2270, equal to 122; a NOACK volatility, measured according to the DIN 51581 standard, equal to 15% by mass;
  • MoDTC compound molybdenum dialkyldithiocarbamate compound, commercially available under the reference “Sakuralube 525®” from the company Adeka;
  • Additive package 1 conventional additive package comprising 5% by mass of a first detergent additive of the magnesium sulfonate type and 15% by mass of a second detergent additive of the calcium salicylate type. Additive Package 1 does not include other detergent additives.
  • Additive package 2 conventional additive package. Additive Package 2 differs from Additive Package 1 in that it does not include a magnesium-based detergent additive. In particular, additive package 2 only includes, as detergent additive, 15% by weight of a detergent additive of the calcium salicylate type. Additive Package 2 does not include any other detergent additives, including no magnesium-based detergent additives.
  • Additional detergent additive conventional detergent additive such as magnesium sulfonate.
  • compositions C1, C2, C3* and C4* are prepared by mixing the compounds described in Table 2, at a temperature of around 60°C.
  • the percentages indicated correspond to percentages by mass relative to the total mass of the composition.
  • compositions C1 and C2 are according to the invention.
  • the C3* composition is comparative in that it does not include an organomolybdenum compound.
  • the C4* composition is comparative in that it does not include a magnesium-based detergent additive.
  • a 100mL composition is prepared by mixing 60mL of the lubricating composition to be tested, 20mL of water and 20mL of E1O type gasoline fuel. The composition is then mixed with ultraturax (10,000 rpm) for 1 minute. The composition is poured into a closed frustoconical flask, then placed in an oven at 60°C for 18 hours.
  • the vials are recovered and the ability of the lubricating composition to prevent demixing phenomena is assessed visually by an operator.
  • the rating “FAIL” is then attributed to the lubricating composition.
  • the emulsion is not sufficiently stable and the aqueous phase separates from the oil phase.
  • the lubricating composition does not sufficiently prevent demixing phenomena.
  • compositions C1 and C2 according to the invention make it possible to prevent demixing phenomena.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

Composition lubrifiante comprenant : - au moins une huile de base, - de 0,1% à 13% en masse d'au moins un additif permettant d'améliorer l'indice de viscosité, - au moins un composé organomolybdène, la teneur en élément molybdène étant d'au moins 400 ppm en masse, - au moins un premier additif détergent choisi parmi les sels de magnésium d'acides carboxyliques, de sulfonates, de salicylates, de naphténates, de phénates et l'un quelconque de leurs mélanges, - optionnellement, au moins un second additif détergent choisi parmi les sels de calcium d'acides carboxyliques, de sulfonates, de salicylates, de naphténates, de phénates et l'un quelconque de leurs mélanges, dans laquelle la teneur cumulée en élément magnésium et en élément calcium, par rapport à masse totale de la composition lubrifiante, est d'au moins 1000 ppm en masse.

Description

Composition lubrifiante présentant une stabilité d’émulsion améliorée
La présente invention concerne la lubrification de véhicule comprenant au moins un moteur à combustion. En particulier, la présente invention concerne la lubrification de moteur de véhicule hybride de type véhicule hybride rechargeable et véhicule hybride comprenant un prolongateur d’autonomie.
Les véhicules hybrides comprennent deux moteurs, un moteur thermique et un moteur électrique. Dans la plus grande partie des véhicules hybrides, le moteur thermique entraîne les roues et est secondé par un moteur électrique. Une batterie fournie l’électricité nécessaire au fonctionnement du moteur électrique, cette batterie est, dans le cas des véhicules hybrides classiques, rechargée pendant les phases de freinage et de décélération, par un système de récupération de l’énergie cinétique (SREC) intégré au véhicule.
Il existe différentes technologies de véhicules hybrides. Parmi ces technologies hybrides, on peut notamment citer :
- les véhicules micro-hybrides (également appelé hybridation légère), ces véhicules, équipés du système « stop&start », récupèrent l’énergie générée par le freinage pour charger une batterie qui peut venir assister momentanément le moteur thermique ;
- les véhicules mild-hybrides qui comprennent une assistance électrique lors des accélérations ;
- les véhicules full-hybrides sont des véhicules dont l’hybridation est totale. A faible vitesse, lorsque la batterie est chargée, le moteur électrique se charge du démarrage et de la locomotion. A grande vitesse, ou quand la batterie est déchargée, le moteur thermique prend le relais, lorsqu’il y a besoin d’une puissance accrue (par exemple accélération) les deux moteurs fonctionnent ensemble. Il est ainsi possible de rouler avec le moteur thermique coupé pendant quelques kilomètres.
D’autres technologies complémentaires ont été récemment développées : les véhicules hybrides rechargeables et les véhicules hybrides comprenant un prolongateur d’autonomie. Les véhicules hybrides rechargeables (appelé également plug-in en anglais) comprennent un moteur thermique et un moteur électrique, la batterie peut être rechargée sur le réseau électrique, ces véhicules peuvent ainsi rouler en mode 100% électrique sur une distance de plusieurs dizaines que kilomètres, par exemple 50 kilomètres. Dans les véhicules hybrides comprenant un prolongateur d’autonomie (appelé également range extender en anglais), seul le moteur électrique entraine les roues. Ce moteur électrique est alimenté par une batterie pendant quelques dizaines de kilomètres. Lorsque la batterie atteint un certain seuil de charge (par exemple de l’ordre de 30%) le moteur thermique démarre et entraîne un générateur de courant permettant de produire l’électricité nécessaire pour recharger la batterie et maintenir le fonctionnement du moteur électrique.
Les compositions lubrifiantes, et notamment celles utilisées pour la lubrification des moteurs à combustion, comprennent généralement de faibles quantités d’eau résultant de notamment de l’adsorption directe par le lubrifiant d’eau contenue dans l’air ou encore de la condensation de la vapeur d’eau ambiante. Une composition lubrifiante comprend ainsi typiquement de 0 à 10 % en eau. Bien que présente sous forme de traces, l’eau dans les compositions lubrifiantes est à l’origine de problèmes de démarrage à froid, de corrosion mais aussi d’usure prématurée du moteur à combustion. Afin de prévenir ces phénomènes, il est alors nécessaire de maintenir cette eau sous forme d’émulsion.
Cependant, dans les moteurs de véhicule hybride, notamment de type véhicule hybride rechargeable ou ceux intégrant un prolongateur d’autonomie, le moteur thermique est utilisé moins souvent, ce qui a notamment pour conséquence de favoriser les problèmes de démixtion de la composition lubrifiante. La composition lubrifiante restant stationnaire, l’émulsion devient instable, l’eau se sépare de la phase huileuse et forme une phase continue.
Des problèmes similaires sont également observés avec les véhicules classiques équipés uniquement d’un moteur à combustion (véhicules non hybrides) et fonctionnant de manière occasionnelle, notamment avec les moteurs à essence. La composition lubrifiante n’étant pas régulièrement mise en circulation dans le moteur, l’eau présente a tendance à se séparer du reste de la composition lubrifiante et à former une phase continue.
Il est donc nécessaire de fournir une composition lubrifiante spécifique permettant la lubrification de tels systèmes de motorisation, tout en permettant de prévenir les problèmes de démixtion.
Un objectif de la présente invention est de fournir une composition lubrifiante permettant la lubrification de moteur à combustion interne, notamment de moteur de véhicule hybride rechargeable ou comprenant un prolongateur d’autonomie.
Un autre objectif de la présente demande est de fournir une composition lubrifiante présentant une stabilité d’émulsion améliorée. En particulier, l’objectif de l’invention est de fournir une composition lubrifiante permettant de maintenir l’eau présente sous la forme d’émulsions stables. Ces objectifs sont remplis par la présente demande qui concerne une composition lubrifiante comprenant :
- au moins une huile de base,
- de 0,1% à 13% en masse, par rapport à masse totale de la composition lubrifiante, d’au moins un additif permettant d’améliorer l’indice de viscosité,
- au moins un composé organomolybdène, la teneur en élément molybdène étant d’au moins 400 ppm en masse, par rapport à masse totale de la composition lubrifiante,
- au moins un premier additif détergent choisi parmi les sels de magnésium d'acides carboxyliques, de sulfonates, de salicylates, de naphténates, de phénates et l’un quelconque de leurs mélanges,
- optionnellement, au moins un second additif détergent choisi parmi les sels de calcium d'acides carboxyliques, de sulfonates, de salicylates, de naphténates, de phénates et l’un quelconque de leurs mélanges, dans laquelle la teneur cumulée en élément magnésium et en élément calcium, par rapport à masse totale de la composition lubrifiante, est d’au moins 1000 ppm en masse.
L’huile de base
Les huiles de base utilisées dans les compositions lubrifiantes selon l’invention peuvent être des huiles d’origines minérales ou synthétiques, éventuellement régénérées, appartenant aux groupes I à V selon les classes définies dans la classification API (ou leurs équivalents selon la classification ATIEL) (tableau A) ou leurs mélanges.
Tableau 1
Figure imgf000004_0001
Les huiles de base minérales selon l’invention incluent tous types de bases obtenues par distillation atmosphérique et sous vide du pétrole brut, suivies d’opérations de raffinage telles qu’extraction au solvant, désasphaltage, déparaffinage au solvant, hydrotraitement, hydrocraquage, hydroisomérisation et hydrofinition.
Des mélanges d’huiles synthétiques et minérales, éventuellement régénérées peuvent également être employés.
Il n’existe généralement aucune limitation quant à l’emploi de bases lubrifiantes différentes pour réaliser les compositions lubrifiantes selon l’invention, si ce n’est qu’elles doivent avoir des propriétés, notamment de viscosité, indice de viscosité, teneur en soufre, résistance à l’oxydation, adaptées à une utilisation pour des moteurs ou pour des transmissions de véhicule.
Les huiles de bases des compositions lubrifiantes selon l’invention peuvent également être choisies parmi les huiles synthétiques, telles certains esters d’acides carboxyliques et d’alcools, et parmi les polyalphaoléfines. Les polyalphaoléfines utilisées comme huiles de base sont par exemple obtenues à partir de monomères comprenant de 4 à 32 atomes de carbone, par exemple à partir d’octène ou de décène, et dont la viscosité à 100 °C est comprise entre 1 ,5 et 15 mm2. s-1 selon la norme ASTM D445. Leur masse moléculaire moyenne est généralement comprise entre 250 et 3 000 selon la norme ASTM D5296.
La composition lubrifiante selon l’invention peut comprendre au moins 50 % en masse d’huiles de base par rapport à la masse totale de la composition. De manière plus avantageuse, la composition lubrifiante selon l’invention comprend au moins 60 % en masse, voire au moins 70 % en masse, d’huiles de base par rapport à la masse totale de la composition. De manière plus particulièrement avantageuse, la composition lubrifiante selon l’invention comprend de 75 à 95% % en masse d’huiles de base par rapport à la masse totale de la composition.
L’additif permettant d’améliorer l’indice de viscosité
La composition lubrifiante selon l’invention comprend au moins un additif permettant d’améliorer l’indice de viscosité de la composition lubrifiante (en anglais « viscosity index improver »).
Par « additif permettant d’améliorer l’indice de viscosité », on entend au sens de l’invention un composé chimique permettant de garantir une bonne tenue à froid et une viscosité minimale à haute température de la composition lubrifiante. Comme exemples de polymère améliorant l'indice de viscosité, on peut citer les esters polymères ; les homopolymères ou les copolymères, hydrogénés ou non- hydrogénés, du styrène, du butadiène et de l'isoprène ; les homopolymères ou les copolymères d'oléfine, telle que l'éthylène ou le propylène ; les polyacrylates et polyméthacrylates (PMA).
La composition lubrifiante selon l’invention comprend typiquement de 0,1% à 13% en masse d'additif(s) améliorant l'indice de viscosité, par rapport au poids total de la composition lubrifiante.
De préférence, la composition lubrifiante selon l’invention comprend de 0,5 % à 12% en masse d'additif(s) améliorant l'indice de viscosité, par rapport au poids total de la composition lubrifiante, plus préférentiellement de 1% à 10% en mase, encore plus préférentiellement de 5% à 10% en masse.
Le composé organomolybdène
La composition lubrifiante selon l’invention comprend au moins un composé organomolybdène.
Par composé organomolybdène selon l’invention on entend désigner tout composé organomolybdène liposoluble.
Le composé organomolybdène selon la présente invention, peut être choisi parmi les complexes organiques du molybdène comprenant au moins un élément chimique molybdène (Mo), de préférence au moins deux éléments chimiques molybdène (Mo), et au moins un ligand tel qu’un ligand carboxylate, un ligand ester, un ligand amide, un ligand dithiophosphate, un ligand dithiocarbamate.
Par exemple, les complexes organiques du molybdène avec des carboxylates, des esters, des amides peuvent être obtenus par réaction d’oxyde de molybdène ou de molybdates d’ammonium avec des corps gras, glycérides, acides gras ou dérivés d’acides gras (esters, amines, amides, ...).
Au sens de l’invention, les ligands carboxylates, les ligands esters et les ligands amides sont exempts de soufre et de phosphore.
Dans un mode de réalisation, le composé organomolybdène de l’invention est choisi parmi les complexes du molybdène avec des ligands amide, principalement préparés par réaction d’une source de molybdène, qui peut être par exemple le trioxyde de molybdène, et d’un dérivé d’amine, et d’acides gras comprenant par exemple de 4 à 36 atomes de carbone tels que par exemple les acides gras contenus dans les huiles végétales ou animales. La synthèse de tels composés est par exemple décrite dans les brevets US4889647, EP0546357, US5412130 ou EP1770153.
Selon un mode de réalisation préféré, le composé organomolybdène est choisi parmi les composés organomolydbène dinucléaires.
Par « composé organomolybdène dinucléaire », on entend au sens de l’invention des composés organomolybdène dont le noyau présente deux atomes de molybdène. On parle également de composés organomolydbène dimériques.
Dans un mode de réalisation préféré de l’invention, le composé organomolybdène est choisi parmi les complexes organiques du molybdène avec des ligands amide obtenus par réaction :
(i) d’un corps gras de type mono, di ou tri glycéride, ou acide gras,
(ii) d’une source aminée de formule (A) :
Figure imgf000007_0001
dans laquelle :
- X1 représente un atome d’oxygène ou un atome d’azote,
- X2 représente un atome d’oxygène ou un atome d’azote,
- n ou m représente 1 lorsque respectivement X1 ou X2 représente un atome d’oxygène, n ou m représente 2 lorsque respectivement X1 ou X2 représente un atome d’azote,
(iii) et d’une source de molybdène choisie parmi le trioxyde de molybdène ou les molybdates, préférentiellement le molybdate d’ammonium.
Dans un mode de réalisation de l’invention, le composé organomolybdène peut comprendre de 0,1 à 30% en poids, de préférence de 0,1 à 20%, plus préférentiellement de 2 à 8,5% en poids de molybdène par rapport au poids total du complexe organomolybdène.
De préférence, le composé organomolybdène comprend au moins un complexe organique du molybdène de formule (I) ou (II), seul ou en mélange :
Figure imgf000008_0001
dans laquelle :
- X1 représente un atome d’oxygène ou un atome d’azote ;
- X2 représente un atome d’oxygène ou un atome d’azote ;
- n représente 1 lorsque X1 représente un atome d’oxygène et m représente 1 lorsque X2 représente un atome d’oxygène ;
- n représente 2 lorsque X1 représente un atome d’azote et m représente 2 lorsque X2 représente un atome d’azote ;
Ri représente un groupement alkyle linéaire ou ramifié, saturé ou insaturé, comprenant de 4 à 36 atomes de carbone, préférentiellement de 4 à 20 atomes de carbone, avantageusement de 6 à 18 atomes de carbone ;
Figure imgf000008_0002
dans laquelle :
- X1 représente un atome d’oxygène ou un atome d’azote ;
-X2 représente un atome d’oxygène ou un atome d’azote ;
-n représente 1 lorsque X1 représente un atome d’oxygène et m représente 1 lorsque X2 représente un atome d’oxygène ;
- n représente 2 lorsque X1 représente un atome d’azote et m représente 2 lorsque X2 représente un atome d’azote ;
- Ri représente un groupement alkyle linéaire ou ramifié, saturé ou insaturé, comprenant de 4 à 36 atomes de carbone, préférentiellement de 4 à 20 atomes de carbone, avantageusement de 6 à 18 atomes de carbone ;
-R2 représente un groupement alkyle linéaire ou ramifié, saturé ou insaturé, comprenant de 4 à 36 atomes de carbone, préférentiellement de 4 à 20 atomes de carbone, avantageusement de 6 à 18 atomes de carbone. Avantageusement, le complexe organique du molybdène de formule (I) ou (II) est préparé par réaction :
(i) d’un corps gras de type mono, di ou tri glycéride, ou acide gras,
(ii) de diéthanolamine ou de 2-(2-aminoéthyl) aminoéthanol,
(iii) et d’une source de molybdène choisie parmi le trioxyde de molybdène ou les molybdates, préférentiellement le molybdate d’ammonium.
Plus avantageusement, le complexe organique du molybdène de formule (I) est constitué d’au moins un composé de formule (l-a) ou (l-b), seul ou en mélange :
Figure imgf000009_0001
dans laquelle Ri représente un groupement alkyle linéaire ou ramifié, saturé ou insaturé, comprenant de 4 à 36 atomes de carbone, préférentiellement de 4 à 20 atomes de carbone, avantageusement de 6 à 18 atomes de carbone,
Figure imgf000009_0002
dans laquelle Ri représente un groupement alkyle linéaire ou ramifié, saturé ou insaturé, comprenant de 4 à 36 atomes de carbone, préférentiellement de 4 à 20 atomes de carbone, avantageusement de 6 à 18 atomes de carbone.
Comme exemple de complexes de molybdène exempts de soufre selon l’invention, on peut citer le Molyvan 855® commercialisé par la société Vanderbilt.
Dans un autre mode de réalisation de l’invention, le composé organomolybdène est choisi parmi les complexes organiques du molybdène avec des ligands dithiophosphates ou les complexes organiques du molybdène avec des ligands dithiocarbamates.
Au sens de l’invention, les complexes organiques du molybdène avec des ligands dithiophosphates sont également appelés les dithiophosphates de molybdène ou composés Mo-DTP et les complexes organiques du molybdène avec des ligands dithiocarbamates sont également appelés les dithiocarbamates de molybdène ou composés Mo-DTC. Dans un mode de réalisation plus préféré de l’invention, le composé organomolybdène est choisi parmi les dithiocarbamates de molybdène.
Les composés Mo-DTC sont des complexes formés d’un noyau métallique de molybdène lié à un ou plusieurs ligands, le ligand étant un groupement dithiocarbamate d’alkyles. Ces composés sont bien connus de l’homme du métier.
Dans un mode de réalisation de l’invention, le composé Mo-DTC peut comprendre de 1 à 40%, de préférence de 2 à 30%, plus préférentiellement de 3 à 28%, avantageusement de 4 à 15% en poids de molybdène, par rapport au poids total du composé Mo-DTC.
Dans un autre mode de réalisation de l’invention, le composé Mo-DTC peut comprendre de 1 à 40%, de préférence de 2 à 30%, plus préférentiellement de 3 à 28%, avantageusement de 4 à 15% en poids de soufre, par rapport au poids total du composé Mo-DTC.
Dans un mode de réalisation préféré de l’invention, le composé Mo-DTC est un composé Mo-DTC dimérique.
Comme exemples de composés Mo-DTC dimériques, on peut citer les composés et leurs procédés de préparation tels que décrits dans les documents EP 0757093, EP 0719851 , EP 0743354 ou EP 1013749.
Les composés Mo-DTC dimériques correspondent généralement aux composés de formule (III) :
Figure imgf000010_0001
dans laquelle :
R3, R4, R5, Re, identiques ou différents, représentent indépendamment un groupement hydrocarboné choisi parmi les groupements alkyle, alcényle, aryle, cycloalkyle ou cycloalcényle,
X3, X4, X5 et X6, identiques ou différents, représentent indépendamment un atome d’oxygène ou un atome de soufre. Par groupement alkyle au sens de l’invention, on entend un groupement hydrocarboné, linéaire ou ramifié, saturé ou insaturé, comprenant de 1 à 24 atomes de carbone, de préférence de 4 à 18 atomes de carbone.
Dans un mode de réalisation de l’invention, le groupement alkyle est choisi dans le groupe formé par le méthyle, l’éthyle, le propyle, l’isopropyle, le n-butyle, l’iso-butyle, le tert-butyle, le n-pentyle, l’iso-pentyle, le néopentyle, l’hexyle, l’heptyle, l’octyle, le nonyle, le décyle, l’undécyle, le dodécyle, le tridécyle, l’isotridécyle, le tétradécyle, l’hexadécyle, le stéaryle, l’icosyle, le docosyle , le tétracosyle, le triacontyle, le 2-éthylhexyle, le 2-butyloctyle, le 2- butyldécyle, 2-hexyloctyle, 2-hexyldécyle, 2-octyldécyle, le 2-hexyldodécyle, le 2- octyldodécyle, le 2-décyltétradécyle, le 2-dodécylhexadécyle, le 2-hexadécyloctadécyle, le 2-tetradécyloctadécyle, le myristyle, le palmityle et le stéaryle.
Par groupement alcényle au sens de la présente invention, on entend un groupement hydrocarboné linéaire ou ramifié comprenant au moins une double liaison et comprenant de 2 à 24 atomes de carbone. Le groupement alcényle peut être choisi parmi le vinyle, l’allyle, le propényle, le butényle, l’isobutényle, le pentényle, l’isopentényle, l’hexényle, l’heptényle, l’octényle, le nonényle, le décényle, l’undécényle, le dodécényle, le tétradécényle et l’oléique.
Par groupement aryle au sens de la présente invention, on entend un hydrocarbure aromatique polycyclique ou un groupement aromatique, substitué ou non par un groupe alkyle. Le groupement aryle peut comprendre de 6 à 24 atomes de carbone.
Dans un mode de réalisation, le groupe aryle peut être choisi dans le groupe formé par le phényle, le toluyle, le xylyle, le cuményle, le mésityle, le benzyle, le phénéthyle, le styryle, le cinnamyle, le benzhydryle, le trityle, l’éthylphényle, le propylphényle, le butylphényle, le pentylphényle, le hexylphényl, le heptylphényle, le octylphényle, le nonylphényle, le decylphenyl, le undecylphenyl, le dodécylphényle, le phénylphényle, le benzylphényle, le phényle-styrène, p-cumylphényle et le naphtyle.
Par groupement cycloalkyle au sens de la présente invention, on entend un hydrocarbure polycyclique ou cyclique, substitué ou non par un groupe alkyle.
Par groupement cycloalcényle au sens de la présente invention, on entend un hydrocarbure polycyclique ou cyclique, substitué ou non par un groupe alkyle, et comprenant au moins une insaturation.
Les groupes cycloalkyle et les groupes cycloalcényle peuvent comprendre de 3 à
24 atomes de carbone. Au sens de la présente invention, les groupes cycloalkyle et les groupes cycloalcényle peuvent être choisis, de façon non limitative, dans le groupe constitué par le cyclopentyle, le cyclohexyle, le cycloheptyle, le méthylcyclopentyle, le méthylcyclohexyle, le méthylcycloheptyle, le cyclopentényle, le cyclohexényle, le cycloheptényle, le méthylcyclopentenyle, le méthylcyclohexenyle.
Dans un mode de réalisation préféré de l’invention, R3, R4, R5 et Re, identiques ou différents, représentent indépendamment un groupement alkyle comprenant de 1 à 24 atomes de carbone, de préférence de 4 à 18 atomes de carbone ou un groupement alcényle comprenant de 2 à 24 atomes de carbone.
Dans un mode de réalisation de l’invention, X3, X4, X5 et Xe peuvent être identiques et peuvent représenter un atome de soufre.
Dans un autre mode de réalisation de l’invention, X3, X4, X5 et Xe peuvent être identiques et peuvent être un atome d’oxygène.
Dans un autre mode de réalisation de l’invention, X3 et X4 peuvent représenter un atome de soufre et X5 et X6 peuvent représenter un atome d’oxygène.
Dans un autre mode de réalisation de l’invention, X3 et X4 peuvent représenter un atome d’oxygène et Xs et Xe peuvent représenter un atome de soufre.
Dans un autre mode de réalisation de l’invention, le ratio en nombre d’atomes de soufre par rapport au nombre d’atomes d’oxygène (S/O) du composé Mo-DTC peut varier de (1/3) à (3/1 ).
Dans un autre mode de réalisation de l’invention, le composé Mo-DTC de formule (III) peut être choisi parmi un composé Mo-DTC symétrique, un composé Mo-DTC asymétrique et leur combinaison.
Par composé Mo-DTC symétrique selon l’invention, on entend un composé Mo-DTC de formule (V) dans laquelle les groupements R3, R4, R5 et Re sont identiques.
Par composé Mo-DTC asymétrique selon l’invention, on entend un composé Mo- DTC de formule (V) dans laquelle les groupements R3 et R4 sont identiques, les groupements R5 et Re sont identiques et les groupements R3 et R4 sont différents des groupements R5 et Re. Dans un mode de réalisation préféré de l’invention, le composé Mo-DTC est un mélange d’au moins un composé Mo-DTC symétrique et d’au moins un composé Mo-DTC asymétrique.
Dans un mode de réalisation de l’invention, R3 et R4, identiques, représentent un groupement alkyle comprenant de 5 à 15 atomes de carbone, de préférence de 8 à 13 atomes de carbone, et R5 et Re, identiques, représentent un groupement alkyle comprenant de 5 à 15 atomes de carbone, de préférence de 8 à 13 atomes de carbone, et les groupements R3 et R4 sont identiques ou différents des groupements R5 et Re.
Dans un autre mode de réalisation préféré de l’invention, R3 et R4, identiques, représentent un groupement alkyle comprenant de 6 à 10 atomes de carbone et R5 et Re, identiques, représentent un groupement alkyle comprenant de 10 à 15 atomes de carbone, et les groupements R3 et R4 sont différents des groupements R5 et Re.
Dans un autre mode de réalisation préféré de l’invention, R3 et R4, identiques, représentent un groupement alkyle comprenant de 10 à 15 atomes de carbone et R5 et Re, identiques, représentent un groupement alkyle comprenant de 6 à 10 atomes de carbone, et les groupements R3 et R4 sont différents des groupements R5 et Re.
Dans un autre mode de réalisation préféré de l’invention, R3, R4, R5 et Re, identiques, représentent un groupement alkyle comprenant de 5 à 15 atomes de carbone, de préférence de 8 à 13 atomes de carbone.
De manière avantageuse, le composé Mo-DTC est choisi parmi les composés de formule (III) dans laquelle :
- X3 et X4 représentent un atome d’oxygène,
- X5 et X6 représentent un atome de soufre,
- R3 représente un groupement alkyle comprenant 8 atomes de carbone ou un groupement alkyle comprenant 13 atomes de carbone,
- R4 représente un groupement alkyle comprenant 8 atomes de carbone ou un groupement alkyle comprenant 13 atomes de carbone,
- R5 représente un groupement alkyle comprenant 8 atomes de carbone ou un groupement alkyle comprenant 13 atomes de carbone, - Re représente un groupement alkyle comprenant 8 atomes de carbone ou un groupement alkyle comprenant 13 atomes de carbone.
Ainsi, de manière avantageuse, le composé Mo-DTC est choisi parmi les composés de formule (Il l-a)
Figure imgf000014_0001
(lll-a) dans laquelle les groupements R3, R4, R5 et Re sont tels que définis pour la formule (III).
De manière plus avantageuse, le composé Mo-DTC est un mélange :
- d’un composé Mo-DTC de formule (lll-a) dans laquelle R3, R4, R5 et Re représentent un groupement alkyle comprenant 8 atomes de carbone,
- d’un composé Mo-DTC de formule (lll-a) dans laquelle R3, R4, R5 et Re représentent un groupement alkyle comprenant 13 atomes de carbone, et/ou
- d’un composé Mo-DTC de formule (lll-a) dans laquelle R3, R4 représentent un groupement alkyle comprenant 8 atomes de carbone et R5 et Re représentent un groupement alkyle comprenant 13 atomes de carbone.
Comme exemples de composés Mo-DTC, on peut citer les produits Molyvan L®, Molyvan 807® ou Molyvan 822® commercialisés par la société R.T Vanderbilt Compagny® ou les produits Sakura-lube 200®, Sakura-lube 165®, Sakura-lube 525® ou Sakura-lube 600® commercialisés par la société Adeka.
La composition lubrifiante selon l’invention comprend typiquement au moins 400 ppm masse d’élément molybdène, par rapport à la masse totale de la composition lubrifiante.
De préférence, la composition lubrifiante selon l’invention comprend au plus 1 500 ppm en mase d’élément molybdène, par rapport à la masse totale de la composition lubrifiante, plus préférentiellement de 500 ppm à 1200 ppm, encore plus préférentiellement de 750 ppm à 1000 ppm.
Le premier additif détergent (à base de magnésium)
La composition lubrifiante selon l’invention comprend également au moins un premier additif détergent. Les additifs détergents permettent généralement de réduire la formation de dépôts à la surface des parties métalliques par dissolution des produits secondaires d’oxydation et de combustion.
Les additifs détergents pouvant être utilisés dans les compositions lubrifiantes selon l’invention sont généralement connus de l’homme du métier. Les additifs détergents peuvent être des composés anioniques comprenant une longue chaîne hydrocarbonée lipophilique et une tête hydrophobe. Le cation associé peut être un cation métallique d’un métal alcalin ou alcalino-terreux.
Le premier additif détergent est typiquement choisi parmi les sels de magnésium d'acides carboxyliques, de sulfonates, de salicylates, de naphténates, de phénates et l’un quelconque de leurs mélanges.
Selon un mode de réalisation préféré, le premier additif détergent est choisi parmi les sulfonates de magnésium.
Les détergents utilisés seront non surbasés (ou neutres) ou surbasés. On parle de détergents non surbasés ou «neutres» lorsque les sels métalliques contiennent le métal en quantité approximativement stoechiométrique. On parle de détergents surbasés, lorsque le métal est en excès (en quantité supérieure à la quantité stoechiométrique). Le métal en excès apportant le caractère surbasé au détergent se présente sous la forme de sels métalliques insolubles dans l'huile. Les détergents surbasés se présentent ainsi sous forme de micelles composées de sels métalliques insolubles maintenues en suspension dans la composition lubrifiante par les détergents sous forme de sels métalliques solubles dans l'huile. Ces micelles peuvent contenir un ou plusieurs types de sels métalliques insolubles, stabilisés par un ou plusieurs types de détergents. Les détergents surbasés seront dits de type mixte si les micelles comprennent plusieurs types de détergents, différents entre eux par la nature de leur chaîne hydrophobe.
Avantageusement, le ou les premier(s) additif(s) détergent(s) représentent de 0,5 à 8% en masse, de préférence de 2% à 4% en masse, par rapport au masse total de la composition lubrifiante.
Le second additif détergent (à base de calcium)
Selon un mode de réalisation préféré, la composition selon l’invention comprend en outre au moins un second additif détergent.
Le second additif détergent est typiquement choisi parmi les sels de calcium.
De préférence, le second additif détergent est choisi parmi les sels de calcium d'acides carboxyliques, de sulfonates, de salicylates, de naphténates, de phénates et l’un quelconque de leurs mélanges. Avantageusement, le second additif détergent est choisi parmi les carboxylates de calcium, de préférence parmi les salicylates de calcium.
Les détergents utilisés seront non surbasés (ou neutres) ou surbasés. On parle de détergents non surbasés ou «neutres» lorsque les sels métalliques contiennent le métal en quantité approximativement stoechiométrique. On parle de détergents surbasés, lorsque le métal est en excès (en quantité supérieure à la quantité stoechiométrique). Le métal en excès apportant le caractère surbasé au détergent se présente sous la forme de sels métalliques insolubles dans l'huile. Les détergents surbasés se présentent ainsi sous forme de micelles composées de sels métalliques insolubles maintenues en suspension dans la composition lubrifiante par les détergents sous forme de sels métalliques solubles dans l'huile. Ces micelles peuvent contenir un ou plusieurs types de sels métalliques insolubles, stabilisés par un ou plusieurs types de détergents. Les détergents surbasés seront dits de type mixte si les micelles comprennent plusieurs types de détergents, différents entre eux par la nature de leur chaîne hydrophobe
Avantageusement, lorsqu’il est présent, le second additif détergent représente de 0,5 à 8% en masse, de préférence de 2% à 4% en masse, par rapport au masse total de la composition lubrifiante.
Selon un mode de réalisation, la composition selon l’invention est exempte de second additif détergent.
De préférence, selon ce mode de réalisation, la teneur en élément magnésium est d’au moins 1000 ppm en masse, par rapport à masse totale de la composition lubrifiante, plus préférentiellement de 1 100 ppm à 3000 ppm, encore plus préférentiellement de 1400 ppm à 2800 ppm, typiquement de 1600 ppm à 2650 ppm.
Selon un mode de réalisation préféré, la composition selon l’invention comprend au moins un premier additif détergent et au moins un second additif détergent.
De préférence, selon ce mode de réalisation préféré, la teneur cumulée en élément magnésium et en élément calcium, par rapport à masse totale de la composition lubrifiante, est d’au moins 1000 ppm en masse, plus préférentiellement de 1 100 ppm à 3000 ppm, encore plus préférentiellement de de 1400 ppm à 2800 ppm, typiquement de 1600 ppm à 2650 ppm.
Par « teneur cumulée en élément magnésium et en élément calcium », on entend au sens de l’invention la somme de la teneur en élément magnésium présent dans la composition lubrifiante et de la teneur en élément calcium présent dans la composition lubrifiante. De préférence, le ratio entre la teneur en élément calcium (provenant du premier additif détergent) et la teneur en élément magnésium (provenant du second additif détergent) va de 10:1 à 1 :10.
Avantageusement, le ratio entre la teneur en élément calcium et la teneur en élément magnésium va de 5:1 à 1 :5, de préférence de 5:2 à 5:2, plus préférentiellement de 5:2 à 1 :1.
Le BN (Base Number mesuré selon ASTM D-2896) des compositions lubrifiantes selon la présente invention, est totalement ou en partie apporté par les détergents neutres ou surbasés à base de métaux alcalins ou alcalino terreux, notamment par le premier et le second additifs détergents.
La valeur de BN des compositions lubrifiantes selon la présente invention, mesuré selon ASTM D-2896 peut varier de 1 à 140 mg de KOH/g, de préférence de 3 à 80 mg de KOH/g, plus préférentiellement de 5 à 50 mg de KOH/g, typiquement de 5 à 20 mg de KOH/g. La valeur du BN sera choisie en fonction des conditions d'utilisation des compositions lubrifiantes et notamment selon la teneur en soufre du combustible utilisé.
Autres additifs
De nombreux additifs optionnels peuvent également être présents dans les compositions lubrifiantes selon l’invention.
Les additifs préférés pour la composition lubrifiante selon l’invention sont choisis parmi les additifs détergents différents du premier et du second additifs détergents définis ci-dessus, les additifs modificateurs de frottement diffèrent des composés molybdène définis ci-dessus, des additifs extrême pression, des dispersants, des activateurs du point d'écoulement, des agents anti-mousse, des épaississants et leurs mélanges.
De préférence, les compositions lubrifiantes selon l’invention, comprennent au moins un additif extrême pression, ou un mélange.
Les additifs anti-usure et les additifs extrême pression protègent les frictions des surfaces en formant un film de protection adsorbé sur ses surfaces.
Il existe une grande variété d’additifs anti-usure. De préférence, pour les compositions lubrifiantes de l’invention, les additifs anti-usure sont choisis parmi les additifs comprenant du phosphore et du soufre tels que les métaux alkylthiophosphate, en particulier zinc alkylthiophosphate, et plus précisément le zinc dialkyldithiophosphate ou ZnDTP. Les composés préférés sont de formule Zn((SP(S)(OR)(OR'))2, dans laquelle R et R', identique ou différent, représente indépendamment un groupe alkyle, de préférence un groupe alkyle comprenant de 1 à 18 atomes de carbone. Les phosphates d’amine sont également des additifs anti-usure qui peuvent être utilisés dans les compositions lubrifiantes de l’invention. Cependant, les atomes de phosphore apportés par ces additifs peuvent agir comme poison des systèmes catalytiques des automobiles puisqu’ils génèrent des cendres. Il est possible de minimiser ces effets en substituant une partie des phosphates d’amine avec des additifs n’apportant pas de phosphore, tels que par exemple les polysulfides, notamment les oléfines contenant du soufre.
Avantageusement, les compositions lubrifiantes selon l’invention peut comprendre de 0,01 à 6% en masse, de préférence de 0,05 à 4% en masse, plus préférentiellement de 0,1 à 2% en masse par rapport au masse total de composition lubrifiante, d’additifs antiusure et extrême pression.
Avantageusement, les compositions lubrifiantes selon l’invention comprennent de 0,01 à 6% en masse, de préférence de 0,05 à 4% en masse, plus préférentiellement de 0,1 à 2% en masse par rapport au masse total de composition lubrifiante, d’additifs anti-usure (ou composé anti-usure).
Avantageusement, les compositions selon l’invention peuvent comprendre au moins un additif modificateur de friction différents des composés molybdène de l’invention. Les additifs modificateurs de friction peuvent notamment être choisis parmi les composes apportant des éléments métalliques et des composes sans cendres. Parmi les composes apportant des éléments métalliques il peut être fait mention des complexes de métaux de transition tels que Mo, Sb, Sn, Fe, Cu, Zn pour lesquels les ligands peuvent être des composés hydrocarbonés comprenant des atomes d’oxygène, d’azote, de soufre ou de phosphore. Les additifs modificateurs de friction sans cendres sont généralement d’origine organique ou peuvent être choisis parmi les monoester d’acide gras et de polyols, les amines alcoxylées, les amines grasses alcoxylées, les époxydes gras, les borates d’époxydes gras, les amines grasses ou les esters d’acide de glycérol. Selon l’invention, les composes gras comprenant au moins un groupe hydrocarboné comprenant de 10 à 24 atomes de carbone.
Avantageusement la composition lubrifiante selon l’invention peut comprendre de 0,01 à 2% en masse ou de 0,01 à 5% en masse, de préférence de 0,1 à 1 ,5% en masse ou de 0,1 à 2% en masse par rapport au masse total de la composition lubrifiante, d’additif modificateur de friction différent des composés molybdène selon l’invention.
Avantageusement, la composition lubrifiante selon l’invention peut comprendre au moins un additif antioxydant. Les additifs antioxydant généralement retardant la dégradation de la composition lubrifiante. Cette dégradation s’exprime le plus souvent par la formation de dépôt, par la présence de boues ou par une augmentation de la viscosité de la composition lubrifiante.
Les additifs antioxydants agissent généralement comme inhibiteurs radicalaires ou inhibiteurs destructeurs de l'hydroperoxyde. Parmi les antioxydants couramment utilisés on peut citer les antioxydants de type phénolique, les antioxydants de type amine, les antioxydants contenant du soufre et du phosphore. Certains de ces antioxydants, par exemple ceux comprenant du soufre et du phosphore peuvent générer des cendres. Les additifs antioxydants phénoliques peuvent être exempt de cendres ou bien être sous la forme de sels métalliques neutres ou basiques. Les additifs antioxydants peuvent notamment être choisis parmi les phénols stériquement encombrés, des esters de phénols stériquement encombrés, des phénols stériquement encombrés comprenant un pont thioéther, des diphénylamines, des diphénylamines substituées avec au moins un groupe alkyl en C1 à C12, des N,N’-dialkyl-aryl-diamines et leurs mélanges.
De préférence selon l’invention, les phénols stériquement encombrés sont choisis parmi les composés comprenant un groupe phénol pour lequel au moins un des atomes de carbone au voisinage de l’atome de carbone portant la fonction alcool est substitué par au moins un groupe alkyle en C1 à C10, de préférence un groupe alkyle en C1 à C6, de préférence un groupe alkyle en C4, de préférence un groupe ter-butyle.
Les composes amines sont une autre classe d’additifs antioxydants qui peuvent être utilises, optionnellement en combinaison avec des additifs antioxydants phénoliques. Des exemples de composes amines sont les amines aromatiques, par exemple les amines aromatiques de formule NRaRbRc dans laquelle Ra représente un groupe aliphatique ou un groupe aromatique, optionnellement substitué, Rb représente un groupe aromatique, optionnellement substitué, Rc représente un atome d’hydrogène, un groupe alkyle, un groupe aryle group ou un groupe de groupe de formule RdS(O)zRe dans lequel Rd représente un groupe alkylène ou alkenylène, Re représente un groupe alkyle, un groupe alkényle ou un groupe aryle et z représente 0, 1 ou 2.
Les alkyl-phénols contenant du soufre ou leurs sels de métaux alcalins ou alcalino- terreux peuvent aussi être utilisés comme additifs antioxydants.
D’autres classes d’additifs antioxydants sont les composés comprenant du cuivre, par exemple thio- ou dithio-phosphate de cuivre, des sels de cuivre et d’acides carboxylique, des dithiocarbamates, des sulfonates, des phénates, des acétylacéto nates de cuivre. Les sels de cuivre I et II, les sels d’acide ou d’anhydride succinique peuvent également être utilisés. Les compositions lubrifiantes selon l’invention peuvent également comprendre tout type d’antioxydant connu de l’homme du métier.
Avantageusement, la composition lubrifiante comprend au moins un additif antioxydant exempt de cendres.
Egalement avantageusement la composition lubrifiante selon l’invention comprend de 0,1 à 2% en masse par rapport au masse total de la composition, d’au moins un additive antioxydant.
La composition lubrifiante selon l’invention peut également comprendre au moins un additif détergent distinct du premier et du second additifs détergents définis ci-dessus.
Les additifs détergents sont de préférence choisis parmi les sels de métaux alcalins ou alcalino-terreux d’acide carboxylique, les sulfonates, les salicylates, les naphténates, ainsi que les sels de phénates. Les métaux alcalins et alcalino-terreux sont de préférence le sodium ou le baryum.
Ces sels métalliques comprennent généralement le métal en quantité stoechiométrique ou en excès, c’est-à-dire dans une teneur supérieure à la teneur stoechiométrique. Ceux-ci sont alors des détergents surbasés; l’excès de métal impliquant la nature surbasée de l’additif détergent est généralement sous la forme d’un sel métallique insoluble dans l’huile, par exemple carbonate, hydroxyde, oxalate, acétate, glutamate, de préférence carbonate.
Avantageusement, la composition lubrifiante selon l’invention peut comprendre de 0,2% à 8% ou de 0,5% à 3% en masse d’additif détergents supplémentaires (distincts du premier et du second additifs détergents définis ci-dessus), par rapport au masse total de la composition lubrifiante.
Egalement de manière avantageuse, la composition lubrifiante selon l’invention peut aussi comprendre un additif d’abaissement du point d’écoulement.
En ralentissant la formation de cristaux de paraffine, l’additif d’abaissement du point d’écoulement améliore généralement le comportement à froid de la composition lubrifiante selon l’invention.
Comme exemple d’additif d’abaissement du point d’écoulement on peut mentionner, les alkyles polyméthacrylates, polyacrylates, polyarylamides, polyalkylphénols, polyalkylnaphtalène, les alkyls polystyrènes.
Avantageusement, la composition lubrifiante selon l’invention peut aussi comprendre un agent dispersant.
Les agents dispersants peuvent être choisis parmi les bases de Mannich bases, les succinimides et leurs dérivés. Egalement de manière avantageuse, la composition lubrifiante selon l’invention peut comprendre de 0,2 à 10% en masse d’agent dispersant par rapport au masse total de composition lubrifiante.
La composition lubrifiante selon l’invention peut également comprendre au moins un agent épaississant.
La composition lubrifiante selon l’invention peut également comprendre un agent antimousse et un agent démulsifiant.
La composition lubrifiante
De préférence, la composition lubrifiante comprend, par rapport à masse totale de la composition lubrifiante :
- de 50% à 95% en masse d’au moins une huile de base,
- de 0,1 % à 13% en masse d’au moins un additif permettant d’améliorer l’indice de viscosité,
- au moins un composé organomolybdène, la teneur en élément molybdène allant de 400 ppm à 1500 ppm en masse,
- au moins un premier additif détergent choisi parmi les sels de magnésium d'acides carboxyliques, de sulfonates, de salicylates, de naphténates, de phénates et l’un quelconque de leurs mélanges,
- optionnellement, au moins un second additif détergent choisi parmi les sels de calcium d'acides carboxyliques, de sulfonates, de salicylates, de naphténates, de phénates et l’un quelconque de leurs mélanges, dans laquelle la teneur cumulée en élément magnésium et en élément calcium, par rapport à masse totale de la composition lubrifiante, va de 1000 ppm à 3000 ppm en masse.
Avantageusement, la composition lubrifiante comprend, par rapport à masse totale de la composition lubrifiante :
- de 60% à 95% en masse d’au moins une huile de base,
- de 0,5% à 12% en masse d’au moins un additif permettant d’améliorer l’indice de viscosité,
- au moins un composé organomolybdène, la teneur en élément molybdène allant de 500 ppm à 1500 ppm en masse,
- au moins un premier additif détergent choisi parmi les sulfonates de magnésium,
- optionnellement, au moins un second additif détergent choisi parmi les salicylates, de calcium, dans laquelle la teneur cumulée en élément magnésium et en élément calcium, par rapport à masse totale de la composition lubrifiante, va de 1400 ppm à 2800 ppm en masse.
Plus avantageusement, la composition lubrifiante comprend, par rapport à masse totale de la composition lubrifiante :
- de 75% à 95% en masse d’au moins une huile de base,
- de 5% à 10% en masse d’au moins un additif permettant d’améliorer l’indice de viscosité,
- au moins un composé organomolybdène, la teneur en élément molybdène allant de 750 ppm à 100 ppm en masse,
- au moins un premier additif détergent choisi parmi les sulfonates de magnésium,
- optionnellement, au moins un second additif détergent choisi parmi les salicylates, de calcium, dans laquelle la teneur cumulée en élément magnésium et en élément calcium, par rapport à masse totale de la composition lubrifiante, va de 1600 ppm à 2650 ppm en masse.
Utilisations et procédés
L’invention concerne également l’utilisation d’une composition lubrifiante telle que définie ci-dessus pour la lubrification d’un moteur à combustion.
De préférence, le moteur est choisi parmi les moteurs à essence et les moteurs diesel, de préférence le moteur à combustion est un moteur essence.
Selon un mode de réalisation préféré, le moteur est un moteur de véhicule hybride rechargeable ou de véhicule hybride comprenant un prolongateur d’autonomie.
Dans le cadre de la présente invention, on entend par véhicule hybride rechargeable (appelé également plug-in en anglais) un véhicule comprenant un moteur thermique et un moteur électrique, la batterie pouvant être rechargée sur le réseau électrique, ce véhicule peut ainsi rouler en mode 100% électrique sur une distance de plusieurs dizaines que kilomètres, comme par exemple pendant 50 kilomètres.
Dans le cadre de la présente invention, on entend par véhicule hybride comprenant un prolongateur d’autonomie (appelé également range extender en anglais), un véhicule hybride dans lequel seul le moteur électrique entraine les roues. Ce moteur électrique est alimenté par une batterie pendant quelques dizaines de kilomètres. Lorsque la batterie atteint un certain seuil de charge (par exemple de l’ordre de 30%) le moteur thermique démarre et entraîne un générateur de courant permettant de produire l’électricité nécessaire pour recharger la batterie et maintenir le fonctionnement du moteur électrique. Selon un premier mode de réalisation, l’invention concerne l’utilisation de la composition lubrifiante selon l’invention pour prévenir et/ou empêcher et/ou ralentir les problèmes de démarrages à froid du moteur.
Selon un second mode de réalisation, l’invention concerne l’utilisation de la composition lubrifiante selon l’invention pour prévenir et/ou empêcher et/ou ralentir les phénomènes de corrosion susceptibles de se produire dans le moteur.
Selon un troisième mode de réalisation, l’invention concerne l’utilisation de la composition lubrifiante selon l’invention pour prévenir et/ou empêcher et/ou ralentir l’usure dudit moteur.
Selon un quatrième mode de réalisation, l’invention concerne l’utilisation de la composition lubrifiante selon l’invention pour prévenir et/ou empêcher et/ou ralentir les phénomènes de démixtion de la composition lubrifiante.
Par « démixtion », on entend au sens de l’invention le phénomène au cours duquel l’eau présente dans la composition lubrifiante, initialement sous la forme d’émulsions, se sépare spontanément du mélange pour former une phase aqueuse continue.
La capacité d’une composition lubrifiante à prévenir les phénomènes de démixtion peut par exemple être évaluée selon le protocole suivant :
1 ) préparer un mélange de 100mL comprenant 60mL de la composition lubrifiante à tester, 20mL d’eau et 20mL de carburant, par exemple de carburant essence de type E10,
2) agiter le mélange afin de le rendre homogène,
3) placer le mélange à l’étuve à 60°C pendant 18h dans une fiole tronconique fermée.
Après 18h de stockage, la capacité de la composition lubrifiante à prévenir les phénomènes de démixtion est évalué visuellement par un opérateur.
Si le mélange se présente sous la forme d’une phase unique, cela signifie que l’émulsion est stable. La notation « PASSE » est alors attribuée à la composition lubrifiante, témoignant du fait que la composition lubrifiante est peu sensible aux phénomènes de démixtion.
A l’inverse, dans le cas où le mélange n’est pas homogène, notamment en raison de la formation d’une phase surnageante huileuse, la notation « ECHEC » est alors attribuée à la composition lubrifiante. L’émulsion n’est pas suffisamment stable et la composition lubrifiante ne permet pas de prévenir suffisamment les phénomènes de démixtion.
L’invention concerne également un procédé de lubrification d’un moteur à combustion, notamment d’un moteur de véhicule hybride rechargeable ou de véhicule hybride comprenant un prolongateur d’autonomie, ce procédé comprenant la mise en contact d’au moins une pièce du moteur avec la composition lubrifiante selon l’invention.
Les variantes et les modes de réalisations détaillés ci-dessous pour l’additif permettant d’améliorer l’indice de viscosité, le composé orgnomolybdène, le premier additif détergent et le second additif détergent s’appliquent également aux différentes utilisations définies ci-dessus.
Les caractéristiques particulières, avantageuses ou préférées de l'utilisation combinée selon l'invention définissent des combinaisons particulières, avantageuses ou préférées utilisables selon l'invention.
Les différents aspects de l'invention peuvent être illustrés par les exemples qui suivent.
Exemple:
Exemple 1 : préparation de compositions lubrifiantes
Les compositions lubrifiantes C1 , C2, C3* et C4* sont préparées à partir des composants suivant :
- Huile de base 1 : huile de base de groupe III présentant une viscosité cinématique à 40°C, mesurée selon la norme ASTM D445, égale à 19,57 mm2/s ; une viscosité cinématique à 100°C, mesurée selon la norme ASTM D445, égale à 4,23 mm2/s ; un indice de viscosité, mesuré selon la norme ASTM D2270, égal à 122 ; une volatilité NOACK, mesurée selon la norme DIN 51581 , égale à 15% en masse ;
- Additif Vil : additif permettant d’améliorer l’indice de viscosité (« viscosity index improver» en anglais), qui est un polymère d’oléfine conventionnel ;
- Composé MoDTC : composé dialkyldithiocarbamate de molybdène, disponible commercialement sous la référence « Sakuralube 525® » auprès de la société Adeka ;
- PPD : additif permettant d’abaisser le point d’écoulement (« Pour Point Depressant » en anglais) ; - Paquet d’additifs 1 : paquet d’additif conventionnel comprenant 5% en masse d’un premier additif détergent de type sulfonate de magnésium et 15% en masse d’un second additif détergent de type salicylate de calcium. Le paquet d’additif 1 ne comprend pas d’autres additifs détergents. - Paquet d’additifs 2 : paquet d’additif conventionnel. Le paquet d’additifs 2 diffère du paquet d’additifs 1 en ce qu’il ne comprend pas d’additif détergent à base de magnésium. En particulier, le paquet d’additifs 2 comprend uniquement, à titre d’additif détergent, 15% en masse d’un additif détergent de type salicylate de calcium. Le paquet d’additifs 2 ne comprend pas d’autres additifs détergents, notamment pas d’additifs détergents à base de magnésium.
- Additif détergent supplémentaire : additif détergent conventionnel de type sulfonate de magnésium.
Plus particulièrement, les compositions C1 , C2, C3* et C4* sont préparées par mélange des composés décrits dans le tableau 2, à une température de l’ordre de 60°C. Les pourcentages indiqués correspondent à des pourcentages en masse par rapport à la masse totale de la composition.
Tableau 2
Figure imgf000025_0001
Figure imgf000026_0001
Les compositions C1 et C2 sont selon l’invention.
La composition C3* est comparative en ce qu’elle ne comprend pas de composé organomolybdène.
La composition C4* est comparative en ce qu’elle ne comprend pas d’additif détergent à base de magnésium.
Exemple 2 : Capacité à prévenir les phénomènes de démixtion
La capacité des compositions lubrifiantes préparées ci-dessus à prévenir les phénomènes de démixtion a été évaluée selon le protocole suivant : Une composition de 100mL est préparée par mélange de 60mL de la composition lubrifiante à tester, 20mL d’eau et 20mL de carburant essence de type E1O. La composition est ensuite mélangée à l’ultraturax (10 000 tr/min) pendant 1 minute. La composition est versée une fiole tronconique fermé, puis placée à l’étuve à 60°C pendant 18h.
Après 18h de stockage, les fioles sont récupérées et la capacité de la composition lubrifiante à prévenir les phénomènes de démixtion est évalué visuellement par unopérateur.
Si le mélange se présente sous la forme d’une phase unique, cela signifie que l’émulsion est stable. La notation « PASSE » est alors attribuée à la composition lubrifiante, témoignant du fait que la composition lubrifiante est peu sensible aux phénomènes de démixtion.
A l’inverse, dans le cas où le mélange n’est pas homogène, notamment en raison de la formation d’une phase surnageante huileuse, la notation « ECHEC » est alors attribuée à la composition lubrifiante. L’émulsion n’est pas suffisamment stable et la phase aqueuse se sépare de la phase huile. La composition lubrifiante ne permet pas de prévenir suffisamment les phénomènes de démixtion.
Les résultats obtenus sont présentés dans le tableau 3.
Tableau 3
Figure imgf000027_0001
Les compositions C1 et C2 selon l’invention permettent de prévenir les phénomènes de démixtion.
A l’inverse, les émulsions obtenues à partir des compositions lubrifiantes C3* et C4* ne sont pas stables. Ces compositions lubrifiantes ne permettent donc pas de prévenir les phénomènes de démixtion.

Claims

REVENDICATIONS
1. Composition lubrifiante comprenant :
- au moins une huile de base,
- de 0,1% à 13% en masse, par rapport à masse totale de la composition lubrifiante, d’au moins un additif permettant d’améliorer l’indice de viscosité,
- au moins un composé organomolybdène, la teneur en élément molybdène étant d’au moins 400 ppm en masse, par rapport à masse totale de la composition lubrifiante,
- au moins un premier additif détergent choisi parmi les sels de magnésium d'acides carboxyliques, de sulfonates, de salicylates, de naphténates, de phénates et l’un quelconque de leurs mélanges,
- optionnellement, au moins un second additif détergent choisi parmi les sels de calcium d'acides carboxyliques, de sulfonates, de salicylates, de naphténates, de phénates et l’un quelconque de leurs mélanges, dans laquelle la teneur cumulée en élément magnésium et en élément calcium, par rapport à masse totale de la composition lubrifiante, est d’au moins 1000 ppm en masse.
2. Composition lubrifiante selon la revendication 1 , dans laquelle la teneur en élément molybdène est inférieure ou égale à 1 500 ppm en masse, par rapport à la masse totale de la composition lubrifiante.
3. Composition lubrifiante selon la revendication 1 ou selon la revendication 2, dans laquelle le premier additif détergent est choisi parmi les sulfonates de magnésium.
4. Composition lubrifiante selon l’une quelconque des revendications 1 à 3, comprenant au moins un second additif détergent choisi parmi les sels de calcium d'acides carboxyliques, de sulfonates, de salicylates, de naphténates, de phénates et l’un quelconque de leurs mélanges, et dans laquelle le ratio entre la teneur en élément calcium et la teneur en élément magnésium va de 10:1 à 1 :10.
5. Composition lubrifiante selon la revendication 4, dans laquelle le ratio entre la teneur en élément en élément calcium et la teneur en élément magnésium va de 5:1 à 1 :5, de préférence de 5:2 à 5:2, plus préférentiellement de 5:2 à 1 :1 .
6. Composition lubrifiante selon l’une quelconque des revendications précédentes, dans laquelle le second additif détergent est choisi parmi les carboxylates de calcium, de préférence parmi les salicylates de calcium.
7. Composition lubrifiante selon l’une quelconque des revendications précédentes, dans laquelle le composé organomolybdène est choisi parmi les dithiocarbamates de molybdène
8. Utilisation d’une composition lubrifiante selon l’une quelconque des revendications précédentes, pour la lubrification d’un moteur à combustion.
9. Utilisation selon la revendication 8, pour la lubrification d’un moteur à combustion d’un véhicule hybride rechargeable ou d’un moteur de véhicule hybride comprenant un prolongateur d’autonomie.
10. Utilisation selon la revendication 8 ou selon la revendication 9, pour :
- prévenir et/ou empêcher et/ou ralentir les problèmes de démarrages à froid dudit moteur, et/ou
- pour prévenir et/ou empêcher et/ou ralentir les phénomènes de corrosion susceptibles de se produire dans ledit moteur, et/ou
- prévenir et/ou empêcher et/ou ralentir l’usure dudit moteur, et/ou
- prévenir et/ou empêcher et/ou ralentir les phénomènes de démixtion de la composition lubrifiante.
PCT/EP2023/062443 2022-05-11 2023-05-10 Composition lubrifiante présentant une stabilité d'émulsion améliorée WO2023217874A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2204449A FR3135465A1 (fr) 2022-05-11 2022-05-11 Composition lubrifiante présentant une stabilité d’émulsion améliorée
FRFR2204449 2022-05-11

Publications (1)

Publication Number Publication Date
WO2023217874A1 true WO2023217874A1 (fr) 2023-11-16

Family

ID=82595237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/062443 WO2023217874A1 (fr) 2022-05-11 2023-05-10 Composition lubrifiante présentant une stabilité d'émulsion améliorée

Country Status (2)

Country Link
FR (1) FR3135465A1 (fr)
WO (1) WO2023217874A1 (fr)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4889647A (en) 1985-11-14 1989-12-26 R. T. Vanderbilt Company, Inc. Organic molybdenum complexes
EP0546357A1 (fr) 1991-12-09 1993-06-16 R.T. VANDERBILT COMPANY, Inc. Complèxes organiques de molybdène
US5412130A (en) 1994-06-08 1995-05-02 R. T. Vanderbilt Company, Inc. Method for preparation of organic molybdenum compounds
EP0719851A2 (fr) 1994-12-27 1996-07-03 Asahi Denka Kogyo Kabushiki Kaisha Composition d'huile lubrifiante
EP0743354A1 (fr) 1993-12-30 1996-11-20 Tonen Corporation Composition d'huile lubrifiante
EP0757093A1 (fr) 1995-07-20 1997-02-05 Tonen Corporation Composition d'huile lubrifiante
EP1013749A2 (fr) 1998-12-24 2000-06-28 Asahi Denka Kogyo Kabushiki Kaisha Compositions lubrifiantes
EP1770153A1 (fr) 2005-09-23 2007-04-04 R.T. Vanderbilt Company, Inc. Procéde de préparation des composés organiques de molybdène
EP3046941A1 (fr) * 2013-09-17 2016-07-27 Vanderbilt Chemicals, LLC Procédé de réduction de la séparation de phase aqueuse dans une composition d'émulsion appropriée pour un moteur alimenté en carburant e85
US20220064564A1 (en) * 2020-08-31 2022-03-03 Eneos Corporation Lubricating oil composition for internal combustion engine

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4889647A (en) 1985-11-14 1989-12-26 R. T. Vanderbilt Company, Inc. Organic molybdenum complexes
EP0546357A1 (fr) 1991-12-09 1993-06-16 R.T. VANDERBILT COMPANY, Inc. Complèxes organiques de molybdène
EP0743354A1 (fr) 1993-12-30 1996-11-20 Tonen Corporation Composition d'huile lubrifiante
US5412130A (en) 1994-06-08 1995-05-02 R. T. Vanderbilt Company, Inc. Method for preparation of organic molybdenum compounds
EP0719851A2 (fr) 1994-12-27 1996-07-03 Asahi Denka Kogyo Kabushiki Kaisha Composition d'huile lubrifiante
EP0757093A1 (fr) 1995-07-20 1997-02-05 Tonen Corporation Composition d'huile lubrifiante
EP1013749A2 (fr) 1998-12-24 2000-06-28 Asahi Denka Kogyo Kabushiki Kaisha Compositions lubrifiantes
EP1770153A1 (fr) 2005-09-23 2007-04-04 R.T. Vanderbilt Company, Inc. Procéde de préparation des composés organiques de molybdène
EP3046941A1 (fr) * 2013-09-17 2016-07-27 Vanderbilt Chemicals, LLC Procédé de réduction de la séparation de phase aqueuse dans une composition d'émulsion appropriée pour un moteur alimenté en carburant e85
US20220064564A1 (en) * 2020-08-31 2022-03-03 Eneos Corporation Lubricating oil composition for internal combustion engine

Also Published As

Publication number Publication date
FR3135465A1 (fr) 2023-11-17

Similar Documents

Publication Publication Date Title
FR3083244A1 (fr) Composition pour refroidir et lubrifier un systeme de propulsion d'un vehicule electrique ou hybride
FR2998303A1 (fr) Composition lubrifiante
WO2016174186A1 (fr) Composition lubrifiante ultra-fluide
WO2020182718A1 (fr) Utilisation d'un ester dans une composition de refroidissement
EP3423551A1 (fr) Composition lubrifiante à base d'amines neutralisées et de molybdène
EP3325583B1 (fr) Composition lubrifiante a fuel eco longue durée
WO2018210829A1 (fr) Utilisation de compositions lubrifiantes pour ameliorer la proprete d'un moteur de vehicule 4-temps
WO2020094546A1 (fr) Utilisation d'un diester pour ameliorer les proprietes anti-usure d'une composition lubrifiante
WO2023217874A1 (fr) Composition lubrifiante présentant une stabilité d'émulsion améliorée
EP3947610A1 (fr) Utilisation d'une composition lubrifiante pour transmission
WO2024052415A1 (fr) Composition lubrifiante avec des propriétés fuel eco améliorées dans les véhicules hybrides
EP4314214A1 (fr) Lubrification de moteur de véhicule hybride rechargeable et véhicule hybride comprenant un prolongateur d'autonomie
WO2020152137A1 (fr) Complexe dinucléaire de molybdène et son utilisation dans des compositions lubrifiantes
WO2021198131A1 (fr) Composition lubrifiante comprenant un composé 2,5-dimercapto-1,3,4-thiadiazole alkyl polycarboxylate
EP3609989B1 (fr) Composition lubrifiante notamment pour limiter le frottement
WO2024008675A1 (fr) Utilisation d'un additif anti-usure pour améliorer la conductivité thermique d'un fluide de refroidissement pour véhicule électrique
WO2022084320A1 (fr) Utilisation d'ester de dialkylène glycol pour diminuer le frottement dans les véhicules équipés de moteur hybride
WO2024013131A1 (fr) Utilisation d'un diester dans une composition de refroidissement et/ou de lubrification d'un véhicule électrique ou hybride
WO2023061899A1 (fr) Carbodiimide comme additif dans des lubrifiants destinés à des systèmes de motorisation pour ameliorer la compatibilite avec les elastomeres
WO2023057590A1 (fr) Compose spiro comme additif detergent dans des lubrifiants destines a des systemes de motorisation
EP4185674A1 (fr) Composition lubrifiante pour transmission automobile
WO2016102528A1 (fr) Composition lubrifiante a matériau a changement de phase

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23726329

Country of ref document: EP

Kind code of ref document: A1