WO2023057590A1 - Compose spiro comme additif detergent dans des lubrifiants destines a des systemes de motorisation - Google Patents

Compose spiro comme additif detergent dans des lubrifiants destines a des systemes de motorisation Download PDF

Info

Publication number
WO2023057590A1
WO2023057590A1 PCT/EP2022/077850 EP2022077850W WO2023057590A1 WO 2023057590 A1 WO2023057590 A1 WO 2023057590A1 EP 2022077850 W EP2022077850 W EP 2022077850W WO 2023057590 A1 WO2023057590 A1 WO 2023057590A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
additives
lubricating composition
spiro compound
compound
Prior art date
Application number
PCT/EP2022/077850
Other languages
English (en)
Inventor
Modestino DE FEO
Gregory CHAO
Steve FAURE
Original Assignee
Totalenergies Onetech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Totalenergies Onetech filed Critical Totalenergies Onetech
Publication of WO2023057590A1 publication Critical patent/WO2023057590A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M139/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing atoms of elements not provided for in groups C10M127/00 - C10M137/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C65/00Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C65/01Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups containing hydroxy or O-metal groups
    • C07C65/03Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups containing hydroxy or O-metal groups monocyclic and having all hydroxy or O-metal groups bound to the ring
    • C07C65/05Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups containing hydroxy or O-metal groups monocyclic and having all hydroxy or O-metal groups bound to the ring o-Hydroxy carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M159/00Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
    • C10M159/12Reaction products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • C10M2203/1025Aliphatic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/28Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • C10M2227/06Organic compounds derived from inorganic acids or metal salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • C10M2227/06Organic compounds derived from inorganic acids or metal salts
    • C10M2227/061Esters derived from boron
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • C10M2227/06Organic compounds derived from inorganic acids or metal salts
    • C10M2227/061Esters derived from boron
    • C10M2227/062Cyclic esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/04Detergent property or dispersant property
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/08Resistance to extreme temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/40Low content or no content compositions
    • C10N2030/45Ash-less or low ash content
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/76Reduction of noise, shudder, or vibrations
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines

Definitions

  • the present invention relates to the field of lubricating compositions, in particular lubricating compositions for the lubrication of engine systems, mobile or stationary, in particular gasoline, diesel, gas (liquefied natural, compressed or hydrogen) or dual fuel engines, in particular light and heavy vehicles.
  • the invention provides access to a lubricant having a reduced content of metallic detergents conventionally used in the field of lubricants and, consequently, having a reduced level of ash, in particular sulphated ash, while maintaining good detergency properties.
  • Lubricating compositions also called “lubricants”, are commonly used in engines for the main purposes of reducing the frictional forces between the various moving metal parts in the engines. They are also effective in preventing premature wear or even damage to these parts, and in particular to their surface.
  • a lubricating composition is conventionally composed of a base oil with which several additives are generally associated, such as for example friction modifier additives, dedicated to stimulating the lubricating performance of the base oil, but also to providing additional performance.
  • the lubricants intended for the lubrication of engines must satisfy several requirements. They must therefore combine good anti-wear and anti-corrosion performance, as well as good detergency and dispersion properties to reduce the formation of deposits.
  • the lubricants in particular for gasoline, diesel, gas (liquefied natural, compressed or hydrogen) or dual fuel engines, have good detergency properties.
  • the incomplete combustion of the fuel produces soot which can lead to sludge deposits, as well as carbon and varnish deposits.
  • residual sulfur in the fuel burns in the combustion chamber to produce sulfur-derived acids. These acids are responsible for corrosion and wear in the engine and accelerate the degradation of the oil.
  • Detergent additives are thus added to base oils to prevent the formation of deposits on the surface of metal parts, which are harmful to the engine, by dissolving secondary products of oxidation and combustion, and thus increase the life of the engine.
  • the detergent additives commonly used are metal salts, in particular sulfonates, phenates, salicylates of alkali metals, in particular of calcium or magnesium, overbased or not.
  • Diesel particulate filters (LAP or DPF for "Diesel particulate filter” in Anglo-Saxon terminology), for example, which capture particles (PM for “Particle Matter” in Anglo-Saxon terminology) from the exhaust flow, allow reduce diesel vehicle exhaust particulate emissions with soot filtration efficiency greater than 95%.
  • Application WO2006/022934 describes a lubricating composition comprising a lubricating oil and a detergent/antioxidant additive produced from the reaction between an acidic organic compound and a boron compound.
  • the present invention aims to propose a means for improving the detergency properties of lubricants intended for mobile or stationary motorization systems, in particular in light and heavy vehicles, while reducing the ash content.
  • the invention relates, according to a first of its aspects, to the use, as a detergent additive in a lubricating composition intended for an engine system, of at least one spiro compound of formula (I) below: [Chem 1] in which :
  • M is an atom chosen from boron (B) and aluminum (Al), in particular is a boron atom; ni and n2 are, independently of each other, 0, 1 or 2; And
  • R represent, independently of each other, a hydrocarbon group comprising from 1 to 50 carbon atoms, in particular from 5 to 20 and more particularly from 5 to 15 carbon atoms.
  • the spiro compound used according to the invention is of formula (I) above, in which M is a boron atom.
  • the spiro compound is a compound called a "spiroboronate compound", of formula (!') below: wherein n1, n2 and R are as previously defined.
  • detergent additive within the meaning of the present invention, is meant a compound which, introduced into a lubricant, makes it possible to provide and/or increase its detergency capacities and therefore to reduce, prevent, or even remove deposits in the engine system.
  • spiro compound according to the invention will more simply denote a spiro compound of formula (I) as defined above, in particular a spiroboronate compound of formula (!') as defined above.
  • spiro compounds considered according to the invention are described more precisely in the following text.
  • the invention also relates, according to another of its aspects, to a lubricating composition intended for the lubrication of a motorization system, in particular of a light or heavy-duty motor vehicle, comprising at least:
  • a lubricating composition according to the invention comprises, in addition to the said spiro compound(s) according to the invention, one or more other detergent additives, in particular chosen from the metallic detergent additives conventionally used in the field of lubricants, in particular based on calcium or magnesium.
  • the detergency properties of the lubricant can be assessed by evaluating the performance of the lubricant in terms of thermal stability by an "MCT” test (for "Micro Coking Test” in English terminology) according to the GFC Lu-27-T standard. -07, as described in the examples. This test reports on the tendency of the lubricant to form deposits/varnish under high temperature conditions similar to those encountered in the hottest parts of the engine (from 230°C to 280°C).
  • the thermal stability of the detergent according to the MCT test, potentiated by the addition of the spiro compound according to the invention, remains high even in the event of prolonged exposure of the lubricant to high temperatures.
  • a lubricating composition according to the invention retains good detergency capacities, even after prolonged use, in other words even when it is used.
  • used within the meaning of the invention, is meant a lubricating composition implemented during at least one oil change interval, that is to say over a distance traveled by the vehicle of between 10,000 and 30,000 km, preferably between 15,000 and 30,000 km.
  • said spiro compound or compounds, implemented as detergent additives according to the invention generate little ash compared to conventional metallic detergents.
  • the implementation of one or more spiro compounds advantageously makes it possible to increase the detergency capacities of a lubricating composition, without negatively impacting the content of ash generated by the lubricant.
  • the addition of one or more spiro compounds according to the invention makes it possible to reduce the content of metallic detergents conventionally used in lubricants, for example based calcium or magnesium, and undesirable given the ashes they generate, while maintaining, or even improving, the detergency capacity of the lubricant, compared to a lubricant free of spiro compound.
  • a lubricating composition according to the invention thus makes it possible to combine excellent detergency properties and a low level of ash, in particular sulphated ash.
  • a lubricating composition according to the invention advantageously has good properties in terms of reducing the fuel consumption of motor vehicles, also called “Fuel Eco” properties, and, in fact, contributes to the reduction of CO2 emissions.
  • the implementation of a spiro compound according to the invention in particular of the spiroboronate type, also makes it possible to significantly increase the stability to oxidation of the composition lubricating.
  • the implementation of a spiro compound according to the invention, in particular of a spiroboronate compound according to the invention makes it possible to access a lubricant having excellent detergency properties, a reduced ash content and excellent oxidation stability properties.
  • the spiro compounds according to the invention due in particular to the tetra-covalent configuration of the boron or aluminum atom, are not hydrolysable.
  • the spiro compounds according to the invention in particular the spiroboronate compounds according to the invention, exhibit excellent stability when they are brought into contact with water (which would for example result from the combustion of fuel or the condensation).
  • water which would for example result from the combustion of fuel or the condensation.
  • the absence of decomposition/degradation of the spiro compounds in the presence of water makes it possible in particular to prevent, during the implementation of the lubricating composition according to the invention, the formation of boric acid, a product classified as CMR (carcinogenic, mutagenic and repro toxic).
  • the invention also relates to a process or a method for increasing the detergency capacity of a lubricating composition intended for a mobile or stationary engine system, in particular of a lubricating composition implementing a reduced content of metallic detergents, comprising the addition to said lubricating composition of at least one spiro compound according to the invention.
  • the process or method according to the invention advantageously makes it possible to increase the detergency capacity of said composition, while maintaining a low ash content.
  • the lubricant according to the invention makes it possible to reduce and/or prevent the phenomena of abnormal combustion of the fuel, in particular pre-ignition, by particular low-speed pre-ignition (known as “Low Speed PreIgnition” or “LSPI”) and/or knocking in an engine lubricated by a lubricant according to the invention (Kocsis et al, “The Impact of Lubricant Volatility, Viscosity and Detergent Chemistry on Low Speed Pre-Ignition Behavior", SAE Int. J.
  • the spiro compound is advantageously implemented according to the invention as a detergent additive in a lubricating composition, to prevent and/or reduce abnormal fuel combustion, in particular pre-ignition, in particular LSPI, and/or or knock, in an engine lubricated with said lubricating composition.
  • abnormal combustion is meant any phenomenon during which all or part of the fuel mixture is ignited in an uncontrolled manner within the combustion chamber of an engine, in particular of a vehicle engine, in particular of a vehicle automobile.
  • Abnormal combustion according to the invention more particularly means pre-ignition phenomena, including low-speed pre-ignition (LSPI); and knocking, including super-knock or mega-knock that may follow a pre-ignition event.
  • LSPI low-speed pre-ignition
  • knocking including super-knock or mega-knock that may follow a pre-ignition event.
  • pre-ignition is meant to include the phenomenon of low frequency vibration producing a sound effect of snoring (or “Rumble”). More particularly, “pre-ignition” is low-speed pre-ignition (LSPI).
  • LSPI low-speed pre-ignition
  • the lubricants considered according to the invention advantageously having excellent detergency properties, a reduced ash content, good "Euel Eco” properties and reduction/prevention of abnormal fuel combustion phenomena, in particular LSPI, can be implemented for various motorization systems, mobile or stationary, in particular for motorization systems comprising a diesel, gasoline, gas or dual-fuel, in particular diesel or gasoline engine.
  • motorization system within the meaning of the present invention, is meant a system comprising all the mechanical parts necessary for the intended mobile or stationary application and including at least one engine, in particular an internal combustion engine. It may be a combustion, gas, in particular hydrogen, ammonia, electric or hybrid engine system, depending on the nature of the engine(s) included in the engine system: combustion engine, gas engine, in particular hydrogen, ammonia and/or electric.
  • a “mobile” motorization system is more particularly a motorization system implemented in vehicles, including light vehicles, heavy goods vehicles, so-called “off-road” mobile machines, or else marine vehicles.
  • a mobile motorization system thus corresponds more particularly to the propulsion system of a vehicle.
  • propulsion system within the meaning of the present invention, is meant a system comprising the mechanical parts necessary for the propulsion of a vehicle.
  • the propulsion system more particularly includes an engine, a transmission and optionally a battery.
  • the battery is itself generally made up of a set of electric accumulators, called cells.
  • a “stationary” motorization system within the meaning of the invention is a motorization system including a stationary motor.
  • a stationary motor For example, it can find applications in devices for the production of electrical energy. It may in particular be a gas-operated drive system, in particular a stationary gas-operated engine.
  • a "Diesel engine” within the meaning of the invention is a combustion engine whose fuel is diesel.
  • a lubricating composition according to the invention is implemented in a propulsion system of a light motor vehicle or of a heavy goods vehicle, preferably for a gasoline or diesel engine.
  • the lubricating compositions according to the invention are particularly suitable for gasoline and diesel engine systems, equipped with exhaust gas post-treatment systems, such as particulate filters (DPF).
  • DPF particulate filters
  • the invention also relates, according to another of its aspects, to a process or a method for lubricating a motorization system, mobile or stationary, in particular a diesel, gasoline, gas or dual-fuel engine, in particular in a light or heavy vehicle, comprising a step of bringing at least one mechanical part of said system into contact with a lubricating composition as defined above.
  • a process or a method for lubricating a motorization system mobile or stationary, in particular a diesel, gasoline, gas or dual-fuel engine, in particular in a light or heavy vehicle, comprising a step of bringing at least one mechanical part of said system into contact with a lubricating composition as defined above.
  • FIG. 1 presents a histogram of the rating results according to the MCT test for the reference lubricants 1 and 2 and for the lubricating compositions according to the invention II and 12 supplemented with a spiro compound according to the invention, as described in examples 1 and 2.
  • Figure 2 shows the particle size distribution for the emulsion of spiroboronate in water obtained after paddle stirring ( Figure 2a) and after Ultra-Turrax® stirring ( Figure 2b), as described in Example 4.
  • Figure 3 shows the NMR spectra of pure spiroboronate (Figure 3a) and of the residue ( Figure 3b) obtained as described in Example 4.
  • the invention is based on the implementation, in a lubricant for an engine system, of one or more specific spiro compounds, as an additive to improve the detergency of the lubricant.
  • the invention can implement a single spiro compound or a mixture of at least two distinct spiro compounds, in particular three or four distinct spiro compounds, in particular as defined below.
  • M is an atom chosen from boron and aluminum, in particular is a boron atom; ni and n2 are, independently of each other, 0, 1 or 2; And
  • R represent, independently of each other, a hydrocarbon group comprising from 1 to 50 carbon atoms, in particular from 5 to 20 and more particularly from 5 to 15 carbon atoms.
  • the R groups are only composed of carbon and hydrogen atoms.
  • the hydrocarbon groups can in particular be alkyl, alkenyl, aryl or aralkyl groups.
  • the substituents R represent, independently of each other, a hydrocarbon group, preferably an aliphatic chain, linear or branched, comprising from 3 to 50 carbon atoms, in particular from 3 to 30 carbon atoms, in particular from 5 to 25 carbon atoms, in particular from 5 to 20 carbon atoms and more particularly from 8 to 15 carbon atoms.
  • the substituents R can represent, independently of one another, an aliphatic, linear or branched chain, in particular an alkyl chain, preferably linear, from C1 to C50; in particular C3 to C30, in particular C5 to C25, in particular C5 to C20 and more particularly Cs to C15, for example Cio.
  • n1 and n2 are equal to 0.
  • n1 and n2 are equal to 1 or 2.
  • the R groups, carried by the same cycle, can be identical or different.
  • the spiro compound may be of formula (I) above, in which n1 and n2 are 1; the substituents R possibly being identical or different, preferably identical.
  • the spiro compound is of formula (I) above, in which: n1 and n2 are 1; and the groups R, which are identical, represent alkyl groups, preferably linear, C1 to C50, in particular C3 to C30, in particular C5 to C25, in particular C5 to C20 and more particularly Cs to C15, even more preferentially in Cio.
  • the spiro compound is of formula (I) in which M is a boron atom.
  • the spiro compound can be a so-called spiroboronate compound, of formula (T) below:
  • the spiro compound is of formula (I) in which M is an aluminum atom.
  • the spiro compound can be a so-called spiroaluminate compound, of formula (I”) following: [Chem 4]
  • n1, n2 and R are as previously defined.
  • the invention thus relates, according to another of its aspects, to a spiro compound of formula (I) mentioned above, in which:
  • - ni and n2 are, independently of each other, 0, 1 or 2, at least one of ni and n2 being 1 or 2; preferably n1 and n2 are 1;
  • the R groups represent, independently of each other, a linear or branched aliphatic chain, in particular an alkyl chain, preferably linear, comprising from 5 to 50 carbon atoms, in particular from 6 to 30 carbon, in particular from 8 to 25 carbon atoms and more particularly from 10 to 15 carbon atoms.
  • the invention relates to a compound of the spiroaluminate type of formula (I”) above, in which:
  • - ni and n2 are, independently of each other, 0, 1 or 2, at least one of ni and n2 being 1 or 2; preferably n1 and n2 are 1;
  • the R groups represent, independently of each other, a linear or branched aliphatic chain, in particular an alkyl chain, preferably linear, comprising from 5 to 50 carbon atoms, in particular from 6 to 30 carbon, in particular from 8 to 25 carbon atoms and more particularly from 10 to 15 carbon atoms.
  • the compound of spiroaluminate type according to the invention is of formula (I”) in which:
  • the groups R which are identical or different, preferably identical, represent alkyl chains, preferably linear, comprising from 5 to 50 carbon atoms, in particular from 6 to 30 carbon atoms, in particular from 8 to 25 carbon atoms and more particularly from 10 to 15 carbon atoms.
  • the spiro compound used according to the invention can be prepared from at least salicylic acid or a derivative of salicylic acid and a boron compound or an aluminum compound.
  • boron or aluminum compound in particular boric acid or aluminum hydroxide.
  • the preparation of the spiro compound used in the lubricating composition according to the invention does not involve any step, subsequent to the reaction of salicylic acid or one of its derivatives with said boron or aluminum compound, of reaction with an amine compound, as is the case for example in the context of the preparation of the compounds proposed in applications WO2018/220007 and WO2018/220009.
  • Salicylic acid and its derivatives of formula (Ia) above can be synthesized according to synthetic methods known to those skilled in the art or can be commercially available.
  • the boron compound (in other words, based on boron) can be chosen in particular from boric acid (B(OH)3), boronic acids, boric and boronic esters, boron oxide and acid complexes boric.
  • the boron compound can be chosen from boric acid; boron oxide; boric acid complexes; trialkyl borates, in particular in which the alkyl groups comprise independently of each other from 1 to 4 carbon atoms; boronic acids having a C1-C12 alkyl group; boric acids substituted with two alkyl groups, in particular C1 to C12; boric acids substituted with two aryl groups, in particular C6 to C12; boric acids substituted by one or two aralkyl groups, in particular C7 to C12, and derivatives of these compounds obtained by substitution of at least one alkyl group by one or more alkoxy groups.
  • Boric acid complexes are in particular complexes of boron with one or more molecules comprising one or more alcohol functions.
  • the boron compound is boric acid.
  • the aluminum compound in other words, based on aluminium
  • reaction can be carried out in a solvent medium consisting of one or more apolar solvents and/or practical polar solvents.
  • the solvent medium may consist of one or more solvents chosen from naphtha, practical polar solvents, such as water and alcohols, for example methanol, ethanol, propanol, butanol; and their mixtures.
  • the reaction between salicylic acid or one of its derivatives of formula (la) above and the boron or aluminum compound to obtain the desired spiro compound in particular the reaction between salicylic acid or one of its derivatives of formula (Ia) and the boron compound to obtain the desired spiroboronate compound, can be carried out in an apolar aprotic solvent medium, in particular in toluene.
  • hydrocarbon group a radical saturated or not, linear, branched or cyclic, aromatic or not, comprising carbon and hydrogen
  • aliphatic chain a hydrocarbon group consisting exclusively of carbon and hydrogen atoms, linear or branched, saturated or unsaturated, non-aromatic.
  • an aliphatic chain is an alkyl chain
  • alkyl a saturated, linear or branched aliphatic group; for example, a C x to C z alkyl represents a saturated carbon chain of x to z carbon atoms, linear or branched;
  • alkenyl a mono- or poly-unsaturated, linear or branched aliphatic group
  • a cyclic alkyl group for example a C x to C z cycloalkyl represents a cyclic carbon group of x to z carbon atoms, for example a cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl;
  • aryl a mono- or polycyclic aromatic group, in particular comprising between 6 and 10 carbon atoms.
  • aryl group mention may be made of phenyl or naphthyl groups;
  • aralkyl an aryl group as defined above, substituted by at least one alkyl group as defined above.
  • the said spiro compound or compounds are advantageously implemented in a sufficient content to achieve the required level of detergency capacity of the lubricant.
  • a small amount of spiro compound(s) in particular less than 2% by mass, in particular less than or equal to 1% by mass, relative to the total mass of said lubricating composition, makes it possible to significantly increase the detergency capacity of the lubricant.
  • spiro compound(s) can be adjusted according to the nature of the lubricant, and more particularly taking into account the presence or not and the quantity implemented of other additive(s).
  • s) detergent(s), in particular metal(s), for example calcium-based, present in the lubricant can be adjusted according to the nature of the lubricant, and more particularly taking into account the presence or not and the quantity implemented of other additive(s).
  • the said spiro compound or compounds considered according to the invention in particular as defined previously, can be implemented at a rate of 0.1 to 20% by mass, in particular from 0.2 to 15% by mass , in particular from 0.5 to 10%, and more particularly from 0.5 to 5.0% by mass, relative to the total mass of said lubricating composition.
  • a lubricating composition as considered according to the invention comprises more particularly one or more base oils and, optionally, other additives conventionally considered in lubricating compositions.
  • a lubricating composition comprises one or more base oils.
  • base oils can be chosen from the base oils conventionally used in the field of lubricating oils, such as mineral, synthetic or natural, animal or vegetable oils or mixtures thereof.
  • It can be a mixture of several base oils, for example a mixture of two, three or four base oils.
  • the base oils of the lubricating compositions considered according to the invention may in particular be oils of mineral or synthetic origin belonging to groups I to V according to the classes defined in the API classification (or their equivalents according to the ATIEL classification) and presented in Table A below or mixtures thereof. [Table 1]
  • Mineral base oils include all types of base oils obtained by atmospheric and vacuum distillation of crude oil followed by refining operations such as solvent extraction, de-alpha removal, solvent dewaxing, hydrotreating, hydrocracking, hydroisomerization and hydrofinishing .
  • Synthetic base oils can be esters of carboxylic acids and alcohols, polyalphaolefins or polyalkylene glycol (PAG) obtained by polymerization or copolymerization of alkylene oxides comprising from 2 to 8 carbon atoms, in particular of 2 to 4 carbon atoms.
  • the polyalphaolefins used as base oils are for example obtained from monomers comprising 4 to 32 carbon atoms, for example from decene, octene or dodecene, and whose viscosity at 100° C. is between 1, 5 and 15 mm 2 .s -1 according to the ASTM D445 standard. Their average molecular mass is generally between 250 and 3000 according to the ASTM D5296 standard.
  • Blends of synthetic and mineral oils, which may be biosourced, can also be used.
  • a lubricating composition under consideration according to the invention comprises at least one base oil chosen from group II, III and IV oils of the API classification, and mixtures thereof.
  • such a lubricating composition can comprise at least one group III base oil, in particular a mixture of at least two group III base oils.
  • the base oils suitable for the invention may have a kinematic viscosity measured at 40° C. according to the ASTM D445 (KV40) standard ranging from 10 to 100 mm 2 /s, in particular from 12 to 50 mm 2 /s, more particularly from 15 to 40 mm 2 /s.
  • KV40 kinematic viscosity measured at 40° C. according to the ASTM D445 (KV40) standard ranging from 10 to 100 mm 2 /s, in particular from 12 to 50 mm 2 /s, more particularly from 15 to 40 mm 2 /s.
  • the base oils suitable for the invention may have a kinematic viscosity measured at 100° C. according to the ASTM D445 standard (KV 100) ranging from 1 to 15 mm 2 /s, in particular from 2 to 10 mm 2 /s, more particularly from 4 to 8 mm 2 /s.
  • the base oil or oils may be present in a lubricating composition according to the invention in a content of at least 50% by mass, relative to its total mass, in particular at least 60% by mass, more particularly ranging from 60 to 99% by mass and preferably from 70 to 90% by mass.
  • the oil or oils of group III represent(s) at least 50% by mass, in particular at least 60% by mass, more particularly between 70 and 100% by mass, for example between 80 and 100% by mass, of the total mass of base oils in the composition.
  • a lubricating composition according to the invention may comprise all types of additives suitable for the intended use for the lubricant, as detailed in the following text, for example for use in motorization systems for light vehicles or heavy goods vehicles. , especially diesel engines.
  • the additives are chosen so as not to significantly impact the ash content of the lubricating composition.
  • additives can be introduced individually and/or in the form of a mixture, or "package of additives", like those already available for sale for the formulations of commercial lubricants for vehicle engines, of level of performance as defined by ACEA (Association of European Automobile Manufacturers) and/or API (American Petroleum Institute), well known to those skilled in the art.
  • ACEA Association of European Automobile Manufacturers
  • API American Petroleum Institute
  • additives distinct from said spiro compound(s) may be chosen in particular from other detergent additives, distinct from said spiro compound(s), in particular metallic detergent additives, friction modifiers, anti-wear additives, extreme pressure additives , antioxidants, viscosity index (VI) improvers, pour point depressants (PPD), dispersants, antifoaming agents, thickeners, corrosion inhibitors, and mixtures thereof.
  • a lubricating composition according to the invention comprises one or more additives chosen from other detergent additives, distinct from said spiro compound(s), in particular chosen from metallic detergent additives, viscosity index improvers, additives pour point, anti-wear additives, antioxidants and mixtures thereof.
  • the lubricating composition under consideration according to the invention may comprise one or more other detergent additives, in particular one or more metallic detergent additives.
  • metal detergents are known to those skilled in the art to provide high levels of detergency.
  • these metal compounds have the disadvantage of generating sulphated ash.
  • anionic compounds comprising a long lipophilic hydrocarbon chain and a hydrophilic head, the associated cation possibly being a metal cation of an alkali or alkaline earth metal.
  • alkali metal or alkaline-earth metal salts of carboxylic acids are generally chosen from alkali metal or alkaline-earth metal salts of carboxylic acids, in particular sulfonates, salicylates, naphthenates, phenates, carboxylates and mixtures thereof.
  • the alkali and alkaline-earth metals are preferably calcium, magnesium, sodium or barium.
  • These metallic salts generally comprise the metal in a stoichiometric quantity or else in excess, therefore in a quantity greater than the stoichiometric quantity.
  • overbased detergent additives the excess metal providing the overbased character to the additive detergent is then generally in the form of a metal salt insoluble in the base oil, for example a carbonate, a hydroxide, an oxalate, an acetate, a glutamate, preferentially a carbonate.
  • a lubricating composition according to the invention comprises at least one metallic detergent additive, distinct from the spiro compounds according to the invention, in particular chosen from salts of alkali metals or alkaline-earth metals, overbased or not. , in particular among calcium salts, magnesium salts and mixtures thereof.
  • a lubricating composition according to the invention intended for a motorization system, in particular for a light or heavy motor vehicle, comprises at least:
  • At least one metallic detergent additive distinct from said spiro compound in particular as defined above, in particular chosen from calcium and magnesium salts and mixtures thereof.
  • a lubricating composition according to the invention may comprise at least one calcium-based detergent additive, such as a sulphonate, a salicylate, a naphthenate, a phenate, a calcium carboxylate or a mixture thereof, in particular an overbased calcium-based detergent additive, for example with calcium carbonate.
  • a calcium-based detergent additive such as a sulphonate, a salicylate, a naphthenate, a phenate, a calcium carboxylate or a mixture thereof, in particular an overbased calcium-based detergent additive, for example with calcium carbonate.
  • the content of metallic detergent additives as defined above, undesirable with regard to the ash they generate, can be reduced, while retaining good detergency properties.
  • the lubricating composition according to the invention may comprise less than 15% by mass, in particular less than 10% by mass and more particularly from 0.1 to 10% by mass, in particular from 0.5% to 5 0.0% by mass, of metal detergent additive(s) distinct from the spiro compounds according to the invention, relative to the total mass of said composition.
  • the said metallic detergent additive(s) may be present in the lubricating composition so as to provide a content of metallic element(s), in particular calcium, of less than or equal to 6000 ppm, in particular ranging from 100 ppm to 4000 ppm, preferably from 250 ppm to 3000 ppm.
  • a lubricating composition according to the invention thus has a sulphated ash content, determined according to the ASTM D-874 standard, of less than or equal to 2% by mass, in particular less than or equal to 1.5% by mass, and more particularly less than or equal to 1% by mass, relative to the total mass of said lubricating composition.
  • a lubricating composition according to the invention may comprise:
  • a lubricating composition under consideration according to the invention may also comprise one or more other additives, distinct from the said spiro compound(s), chosen from friction modifier additives, anti-wear additives, extreme pressure additives, antioxidants, viscosity index improvers, point depressant additives flow agents, dispersants, antifoaming agents, thickeners, corrosion inhibitors, and mixtures thereof.
  • additives distinct from the said spiro compound(s), chosen from friction modifier additives, anti-wear additives, extreme pressure additives, antioxidants, viscosity index improvers, point depressant additives flow agents, dispersants, antifoaming agents, thickeners, corrosion inhibitors, and mixtures thereof.
  • a lubricating composition considered according to the invention can also comprise at least one viscosity index (VI) improver.
  • Viscosity index (VI) improvers in particular viscosity index improver polymers, help ensure good cold behavior and minimum viscosity at high temperatures.
  • polymers improving the viscosity index mention may be made of polymeric esters, homopolymers or copolymers, hydrogenated or non-hydrogenated, of styrene, butadiene and isoprene, homopolymers or copolymers of olefins, such as such as ethylene or propylene, polyacrylates and polymethacrylates (PMA).
  • a lubricating composition according to the invention comprises at least one viscosity index improver chosen from polymethacrylates (PMA) and hydrogenated polyisoprene-styrene (PISH), linear, grafted, comb-shaped or star-shaped, preferably in star.
  • PMA polymethacrylates
  • PISH hydrogenated polyisoprene-styrene
  • the additive(s) improving the viscosity index may be present in a lubricating composition according to the invention in a content ranging from 1 to 15% by mass, in particular from 2 to 10% by mass, relative to the total mass. of the lubricating composition.
  • a lubricating composition according to the invention is free of additive improving the viscosity index.
  • a lubricating composition under consideration according to the invention may comprise at least one friction modifier additive.
  • the friction modifier additives can be chosen from compounds providing metallic elements and compounds free of ash, preferably from compounds free of ash.
  • transition metals such as Mo, Sb, Sn, Fe, Cu, Zn
  • the ligands of which may be hydrocarbon compounds comprising oxygen, nitrogen, sulfur or phosphorus.
  • the friction modifier additives are chosen from ash-free compounds, generally of organic origin and which can be more particularly chosen from monoesters of fatty acids and polyols, alkoxylated amines, alkoxylated fatty amines, fatty epoxides, borate fatty epoxides, fatty amines or fatty acid glycerol esters.
  • the fatty compounds comprise at least one hydrocarbon group comprising from 10 to 24 carbon atoms.
  • a lubricating composition comprises at least one friction modifier additive, in particular based on molybdenum.
  • the molybdenum-based compounds can be chosen from molybdenum dithiocarbamates (Mo-DTC), molybdenum dithiophosphates (Mo-DTP), and mixtures thereof.
  • a lubricating composition considered according to the invention may comprise from 0.01 to 5% by mass, preferably from 0.01 to 5% by mass, more particularly from 0.1 to 2% by mass or even more particularly from 0 1 to 1.5% by mass, relative to the total mass of the lubricating composition, of friction modifier additives.
  • a lubricating composition according to the invention may comprise at least one antiwear and/or extreme pressure additive.
  • Anti-wear additives and extreme pressure additives protect friction surfaces by forming a protective film adsorbed on these surfaces.
  • the anti-wear additives are chosen from phosphosulfur additives such as metal alkylthiophosphates, in particular zinc alkylthiophosphates, and more specifically zinc dialkyldithiophosphates or ZnDTP.
  • phosphosulfur additives such as metal alkylthiophosphates, in particular zinc alkylthiophosphates, and more specifically zinc dialkyldithiophosphates or ZnDTP.
  • the preferred compounds are of formula Zn((SP(S)(OR 3 )(OR 4 ))2, in which R 3 and R 4 , which are identical or different, independently represent an alkyl group, preferably an alkyl group comprising from 1 to 18 carbon atoms.
  • Amine phosphates are also anti-wear additives which can be used in the lubricating composition according to the invention.
  • the phosphorus provided by these additives can act as a poison for the catalytic systems of automobiles because these additives generate ash.
  • the extreme pressure and/or anti-wear additive(s) may be present in a lubricating composition according to the invention in a content ranging from 0.01 to 6% by mass, preferably from 0.05 to 4% by mass. , more preferably from 0.1 to 2% by mass relative to the total mass of lubricating composition.
  • a lubricating composition considered according to the invention may comprise at least one antioxidant additive.
  • Antioxidant additives are essentially dedicated to delaying the degradation of the lubricating composition in service. This degradation can in particular result in the formation of deposits, in the presence of sludge or in an increase in the viscosity of the lubricating composition. They act in particular as free radical inhibitors or destroyers of hydroperoxides.
  • antioxidant additives commonly employed, mention may be made of antioxidant additives of the phenolic type, antioxidant additives of the amine type, phosphosulfur antioxidant additives. Some of these antioxidant additives, for example phosphosulfur antioxidant additives, can be ash generators. The phenolic antioxidant additives can be ash-free or in the form of neutral or basic metal salts.
  • the antioxidant additives may in particular be chosen from sterically hindered phenols, sterically hindered phenol esters and sterically hindered phenols comprising a thioether bridge, diphenylamines, diphenylamines substituted with at least one C1-C12 alkyl group, N,N '-dialkyl-aryl-diamines and mixtures thereof.
  • the sterically hindered phenols are chosen from compounds comprising a phenol group of which at least one carbon vicinal to the carbon carrying the alcohol function is substituted by at least one C1-C10 alkyl group, preferably a C1-C6 alkyl group. , preferably a C4 alkyl group, preferably by the ter-butyl group.
  • Amino compounds are another class of antioxidant additives that can be used, possibly in combination with phenolic antioxidant additives.
  • Examples of amino compounds are aromatic amines, for example aromatic amines of formula NR 5 R 6 R 7 in which R 5 represents an aliphatic group or an optionally substituted aromatic group, R 6 represents an aromatic group, optionally substituted, R 7 represents a hydrogen atom, an alkyl group, an aryl group or a group of formula R 8 S(O) Z R 9 in which R 8 represents an alkylene group or an alkenylene group, R 9 represents a alkyl group, an alkenyl group or an aryl group and z represents 0, 1 or 2.
  • Sulfurized alkyl phenols or their alkali and alkaline earth metal salts can also be used as antioxidant additives.
  • a lubricating composition considered according to the invention may contain all types of antioxidant additives known to those skilled in the art.
  • the lubricating composition comprises at least one ash-free antioxidant additive.
  • a lubricating composition considered according to the invention may comprise from 0.1 to 2% by mass, relative to the total mass of the composition, of at least one antioxidant additive.
  • a lubricating composition considered according to the invention may comprise at least one pour point depressant additive (also called “PPD” agents for “Pour Point Depressant” in English).
  • pour point depressants By slowing down the formation of paraffin crystals, pour point depressants generally improve the cold behavior of the lubricating composition.
  • pour point reducing agents examples include polyalkyl methacrylates, poly acrylates, polyarylamides, polyalkylphenols, polyalkylnaphthalenes and alkylated polystyrenes.
  • a lubricating composition considered according to the invention can also comprise at least one dispersing agent.
  • the dispersing agents ensure the maintenance in suspension and the evacuation of the insoluble solid contaminants constituted by the secondary products of oxidation which are formed when the lubricating composition is in service. They can be chosen from Mannich bases, succinimides and their derivatives.
  • a lubricating composition under consideration according to the invention may comprise from 0.2 to 10% by mass of dispersing agent(s), relative to the total mass of the composition.
  • a lubricating composition under consideration according to the invention may also comprise at least one antifoam additive.
  • the antifoam additives can be chosen from polar polymers such as polymethylsiloxanes or polyacrylates.
  • a lubricating composition considered according to the invention may comprise from 0.01 to 3% by weight of antifoam additive(s), relative to the total weight of the lubricating composition.
  • the package of additives can represent from 1% to 30% by mass relative to the total mass of the composition, in particular from 1 to 20% by mass, in particular from 3% to 15% by mass and more particularly from 5 to 15% by weight.
  • a lubricating composition according to the invention may comprise, or even consist of:
  • additives distinct from said spiro compound(s), chosen from other detergent additives, in particular metallic detergent additives, friction modifiers, anti-wear additives, extreme pressure additives, antioxidants, viscosity index (VI), pour point depressants (PPD), dispersants, antifoaming agents, thickeners, corrosion inhibitors, and mixtures thereof.
  • a lubricating composition formulated according to the invention comprises, or even consists of:
  • additive(s) chosen from among the other detergent additives, distinct from the said spiro compound(s), in particular chosen from metallic detergent additives; anti-wear agents; antioxidants; dispersants; viscosity index improvers and mixtures thereof; the contents being expressed relative to the total mass of said lubricating composition.
  • a lubricating composition formulated according to the invention may comprise, or even consist of:
  • lubricating composition optionally from 1% to 30% by weight, preferably from 3% to 20% by weight, of one or more other additives chosen from anti-wear agents, antioxidants, viscosity index improvers and mixtures thereof, contents being expressed relative to the total mass of said lubricating composition.
  • a lubricating composition according to the invention may have a kinematic viscosity, measured at 40° C. according to the ASTM D445 standard, of between 20 mm 2 /s and 50 mm 2 /s, preferably between 25 mm 2 /s and 40 mm 2 /s.
  • a lubricating composition according to the invention has a kinematic viscosity, measured at 100° C. according to the ASTM D445 standard, of between 2 mm 2 /s and 20 mm 2 /s, preferably between 4 mm 2 /s and 15 mm 2 /s.
  • the lubricating compositions considered according to the invention can be intended for mobile or stationary motorization systems, in particular for petrol, diesel, gas or dual-fuel engines.
  • the invention thus relates, according to another of its aspects, to the use of a composition as defined above, incorporating one or more spiro compounds as a detergent additive, to lubricate a mobile or stationary engine system.
  • the lubricating compositions according to the invention may in particular be intended for engine systems including an internal combustion engine, and more particularly a diesel or gasoline fuel engine, preferably a diesel engine.
  • they are implemented for the lubrication of a motorization system of a vehicle, more particularly of a light or heavy vehicle, for example trucks.
  • DPF diesel particulate filters
  • the MCT test evaluates the tendency of a composition to form deposits (or varnish) on a hot surface (coking). It takes into account the thermal stability of a composition in thin film, subjected to temperature conditions similar to those encountered in the hottest parts of the engine (230 to 280°C). These deposits and varnishes are measured by a video rater. The result is expressed in the form of a score out of 10, called merit, according to CEC M-02-A-78. The higher the MCT value, the better the thermal stability of the lubricating composition.
  • test conditions are as follows:
  • the temperature from which the deposition of varnish occurs is also determined. The higher this temperature, the better the thermal stability of the lubricating composition.
  • Oxidation stability is evaluated by differential pressure scanning calorimetry, which determines the oxidation induction time, known as OIT (for "Oxidation Induction Time” in English terminology) for lubricating compositions. This is a standard procedure in the lubricating oil industry based on CEC L-85 T-99.
  • the lubricating composition to be tested is heated to a high temperature (in the present case, isothermal at 50°C for 5 minutes, then increased to 210°C at a rate of 40°C/min, oxidation making at 210°C), and the time when the lubricant begins to break down is measured.
  • a high temperature in the present case, isothermal at 50°C for 5 minutes, then increased to 210°C at a rate of 40°C/min, oxidation making at 210°C
  • the effect of adding a spiroboronate compound was evaluated on two lubricants, denoted reference 1 and reference 2, intended for heavy goods vehicles, the composition of which is detailed in the following table.
  • the lubricants are formulated by simply mixing the various components at 60°C.
  • Additive package common in the field of lubricants and commercially available. It includes anti-wear agents of the type zinc dithiophosphate, detergents based on calcium and dispersants of the type PIBSI.
  • Two lubricating compositions in accordance with the invention are prepared by supplementing reference lubricants 1 and 2 respectively with a spiroboronate compound in accordance with the invention (spiro compound of formula (I) in which M is an atom of boron, R each represent a decyl group and n1 and m are equal to 1), at a rate of 1% by weight relative to the reference lubricant.
  • a spiroboronate compound in accordance with the invention spiro compound of formula (I) in which M is an atom of boron, R each represent a decyl group and n1 and m are equal to 1
  • the rating results (MCT at 90 min) are collated in the following table and are presented in the histogram of Figure 1.
  • the temperature values from which the formation of deposits (Toepôt) occurs are also collated in the table following.
  • compositions according to the invention supplemented with a spiroboronate compound according to the invention, have an excellent rating, superior to those obtained with the reference lubricants, which testifies to a significantly increased thermal stability under high temperature conditions (from 230°C to 280°C).
  • a spiroboronate compound according to the invention makes it possible to significantly increase the thermal stability of the lubricant.
  • the lubricants will thus form less deposit/varnish under the conditions of implementation at the level of the motorization system of the vehicles, and thus have improved detergency properties.
  • the reference lubricants and the lubricating compositions according to the invention, as prepared in example 1, are evaluated according to the MCT test modified to subject the layers of lubricant to high temperature (from 230 to 280° C.) for a duration three times longer. long (3 times 90 minutes). Such conditions make it possible to simulate aging of the lubricant.
  • the rating results, under the different conditions of the MCT test, are collated in the following table, and are presented in the histogram of FIG. 1.
  • the temperature values from which the formation of the deposits (Toepôt) occurs are also collected in the following table.
  • the lubricants according to the invention retain excellent detergency properties even after repeated use of the lubricant.
  • Two lubricating compositions in accordance with the invention are prepared on the basis of the comparative lubricants CC3 and CC4, in which 2% by mass of base oil are replaced by 2% by mass of spiroboronate compound according to the invention.
  • the lubricants are formulated by simply mixing the various components at 60°C. [Table 5]
  • Oxidation stability properties are evaluated according to the protocol based on the CEC L-85 T-99 standard, described above.
  • OIT oxidation induction time
  • the lubricating composition according to the invention also makes it possible to improve engine cleanliness.
  • the spiroboronate compound tested is a spiro compound of formula (I) in which M is a boron atom, R each represent an octadecyl chain (C18) and n1 and n2 are equal to 1, in other words has the following formula:
  • the compound spiroboronate was prepared from the previously synthesized salicylic acid derivative (2-hydroxy-5-octadecylbenzoic acid) and boric acid.
  • Figure 2 shows the particle size distribution for the emulsion obtained after paddle stirring ( Figure 2a) and after Ultra-Turrax® stirring ( Figure 2b).
  • the emulsion of spiroboronate in water was then passed to the rotary evaporator under vacuum, in order to evaporate the water.
  • the residue after water evaporation was collected and analyzed by RMNIH.
  • the NMR spectrum of the residue is compared to that of the pure spiroboronate compound.
  • Figure 3 shows the NMR spectra of pure spiroboronate (Figure 3a) and of the residue obtained as previously described ( Figure 3b).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Lubricants (AREA)

Abstract

La présente demande concerne l'utilisation, à titre d'additif détergent dans une composition lubrifiante destinée à un système de motorisation, d'un composé spiro de formule (I) dans laquelle M est un atome choisi parmi le bore et l'aluminium; R représentent, indépendamment l'un de l'autre, un groupement hydrocarboné comprenant de 1 à 50 atomes de carbone; et n1 et n2 valent, indépendamment l'un de l'autre, 0, 1 ou 2. Elle concerne également une composition lubrifiante destinée à la lubrification d'un système de motorisation, comprenant une ou plusieurs huiles de base et au moins un composé spiro de formule (I) ainsi qu'un procédé de lubrification d'un système de motorisation mettant en œuvre une telle composition.

Description

Description
Titre : COMPOSE SPIRO COMME ADDITIF DETERGENT DANS DES
LUBRIFIANTS DESTINES A DES SYSTEMES DE MOTORISATION
Domaine technique
La présente invention concerne le domaine des compositions lubrifiantes, notamment des compositions lubrifiantes pour la lubrification des systèmes de motorisation, mobiles ou stationnaires, notamment des moteurs essence, Diesel, à gaz (naturel liquéfié, comprimé ou à hydrogène) ou dual fuel, en particulier de véhicules automobiles légers et poids lourds.
Elle concerne plus particulièrement l’utilisation de composés spiro spécifiques à titre d’additifs détergents dans des compositions lubrifiantes destinées à la lubrification de ces systèmes de motorisation.
De manière avantageuse, l’invention permet d’accéder à un lubrifiant possédant une teneur amoindrie en détergents métalliques classiquement mis en œuvre dans le domaine des lubrifiants et, par conséquent, présentant un taux de cendres, notamment de cendres sulfatées, réduit, tout en maintenant de bonnes propriétés de détergence.
Technique antérieure
Les compositions lubrifiantes, dites encore « les lubrifiants », sont communément mises en œuvre dans les moteurs à des fins principales de réduction des forces de frottement entre les différentes pièces métalliques en mouvement dans les moteurs. Elles sont en outre efficaces pour prévenir une usure prématurée voire un endommagement de ces pièces, et en particulier de leur surface.
Pour ce faire, une composition lubrifiante est classiquement composée d’une huile de base à laquelle sont généralement associés plusieurs additifs, comme par exemple des additifs modificateurs de frottement, dédiés à stimuler les performances lubrifiantes de l’huile de base, mais aussi à procurer des performances supplémentaires.
De fait, les lubrifiants destinés à la lubrification des moteurs, par exemple des moteurs Diesel, doivent satisfaire plusieurs exigences. Ils doivent ainsi combiner de bonnes performances anti-usure, anti-corrosion, ainsi que de bonnes propriétés de détergence et de dispersion pour réduire la formation de dépôt. En particulier, il est indispensable que les lubrifiants, notamment pour des moteurs à essence, Diesel, à gaz (naturel liquéfié, comprimé ou à hydrogène) ou dual fuel, possèdent de bonnes propriétés de détergence. De fait, la combustion incomplète du carburant produit des suies qui peuvent entraîner des dépôts de boues, ainsi que des dépôts de carbone et de vernis. Dans le cas de carburants gazole ou essence, le soufre résiduel dans le carburant brûle dans la chambre de combustion pour produire des acides dérivés du soufre. Ces acides sont responsables de la corrosion et de l’usure dans le moteur et accélèrent la dégradation de l’huile.
Des additifs détergents sont ainsi ajoutés aux huiles de base pour éviter la formation de dépôts à la surface des pièces métalliques, nocifs pour le moteur, par dissolution des produits secondaires d’oxydation et de combustion, et ainsi augmenter la durée de vie du moteur. Les additifs détergents couramment employés sont des sels métalliques, notamment des sulfonates, phénates, salicylates de métaux alcalins, en particulier de calcium ou magnésium, surbasés ou non.
Cependant, ces détergents métalliques sont générateurs de cendres.
Il est connu que les cendres, notamment sulfatées, ainsi que le phosphore et le souffre, peuvent endommager les systèmes de post-traitement des gaz d’échappement qui équipent désormais tous les nouveaux véhicules pour éliminer les émissions nocives telles que les NOx, le CO ou les suies.
Or, les réglementations existantes et proposées sur les émissions environnementales obligent les constructeurs à développer des systèmes de post-traitement des gaz d’échappement de plus en plus efficaces. Les filtres à particules Diesel (LAP ou encore DPF pour « Diesel particulate filter » en terminologie anglo-saxonne), par exemple, qui capturent les particules (PM pour « Particle Matter » en terminologie anglo-saxonne) du flux d’échappement, permettent de réduire les émissions de particules d’échappement des véhicules Diesel avec une efficacité de filtration des suies supérieure à 95 %.
Cependant, lorsque les matières particulaires imbrûlées, principalement dues aux cendres sulfatées (en particulier, à base de calcium, magnésium et zinc), le phosphore et le soufre (« SAPS ») sont captés par le filtre, la perte de charge du DPL augmente car les dépôts métalliques réduisent la porosité du filtre, réduisant sa perméabilité et augmentant la résistance à l’écoulement des gaz d’échappement. Du fait de ces effets négatifs sur les systèmes de post-traitement des gaz d’échappement, plusieurs équipementiers ont publié des directives concernant la composition physique et chimique des lubrifiants pour moteurs, y compris des spécifications en termes de « bas taux de cendres » (LOW SAPS).
En raison de la réglementation toujours plus stricte en matière d’émissions nocives pour l’environnement, l’utilisation des détergents métalliques classiquement mis en œuvre dans les lubrifiants pourrait être encore plus restreinte au cours des prochaines années.
Malheureusement, une simple diminution de la teneur en détergents métalliques se fait au détriment des propriétés de détergence du lubrifiant et est ainsi préjudiciable à la durée de vie du moteur.
Par conséquent, des recherches se sont orientées vers le développement de nouveaux composés détergents à bas taux de cendres.
Les demandes W02018/220007 et W02018/220009 proposent la mise en œuvre de composés dérivés de l’acide salicylique, produits de la réaction entre l’acide salicylique, un composé de bore et un composé aminé, par exemple de type polyamine, pour formuler des compositions lubrifiantes, combinant de bonnes propriétés anti-corrosion, de résistance à l’usure et de bonnes performances de détergence.
La demande W02006/022934 décrit une composition lubrifiante comprenant une huile lubrifiante et un additif détergent/anti-oxydant produit de la réaction entre un composé organique acide et un composé de bore.
Exposé de l’invention
La présente invention vise à proposer un moyen pour améliorer les propriétés de détergence des lubrifiants, destinés aux systèmes de motorisation mobiles ou stationnaires, en particulier dans des véhicules légers et poids lourds, tout en réduisant la teneur en cendres.
Plus particulièrement, l’invention concerne, selon un premier de ses aspects, l’utilisation, à titre d’additif détergent dans une composition lubrifiante destinée à un système de motorisation, d’au moins un composé spiro de formule (I) suivante : [Chem 1]
Figure imgf000005_0001
dans laquelle :
M est un atome choisi parmi le bore (B) et l’aluminium (Al), en particulier est un atome de bore ; ni et n2 valent, indépendamment l’un de l’autre, 0, 1 ou 2 ; et
R représentent, indépendamment l’un de l’autre, un groupement hydrocarboné comprenant de 1 à 50 atomes de carbone, en particulier de 5 à 20 et plus particulièrement de 5 à 15 atomes de carbone.
De préférence, le composé spiro mis en œuvre selon l’invention est de formule (I) précitée, dans laquelle M est un atome de bore. Autrement dit, selon ce mode de réalisation particulier, le composé spiro est un composé dit « composé spiroboronate », de formule (!’) suivante :
Figure imgf000005_0002
dans laquelle ni, n2 et R sont tels que définis précédemment.
Par « additif détergent » au sens de la présente invention, on entend désigner un composé qui, introduit au niveau d’un lubrifiant, permet d’apporter et/ou accroître ses capacités de détergence et donc de diminuer, d’empêcher, voire de supprimer les dépôts dans le système de motorisation.
On désignera plus simplement, dans la suite du texte, sous l’appellation « composé spiro » selon l’invention, un composé spiro de formule (I) telle que définie ci-dessus, en particulier un composé spiroboronate de formule (!’) telle que définie ci-dessus. Des exemples de composés spiro considérés selon l’invention sont décrits plus précisément dans la suite du texte.
L’invention concerne encore, selon un autre de ses aspects, une composition lubrifiante destinée à la lubrification d’un système de motorisation, en particulier d’un véhicule automobile léger ou poids-lourd, comprenant au moins :
- une ou plusieurs huiles de base ; et
- au moins un composé spiro tel que défini précédemment et détaillé dans la suite du texte, en particulier au moins un composé spiroboronate de formule (!’).
Selon un mode de réalisation particulier, une composition lubrifiante selon l’invention comprend, outre le ou lesdits composés spiro selon l’invention, un ou plusieurs autres additifs détergents, en particulier choisis parmi les additifs détergents métalliques classiquement utilisés dans le domaine des lubrifiants, notamment à base de calcium ou de magnésium.
Comme illustré dans les exemples qui suivent, les inventeurs ont découvert qu’il est possible, en supplémentant un lubrifiant par un composé spiro tel que défini précédemment, même en une faible teneur, d’accroître de manière significative les propriétés de détergence du lubrifiant.
Les propriétés de détergence du lubrifiant peuvent être appréciées via l’évaluation des performances du lubrifiant en termes de stabilité thermique par un test « MCT » (pour « Micro Coking Test » en terminologie anglo-saxonne) selon la norme GFC Lu-27-T-07, comme décrit dans les exemples. Ce test rend compte de la tendance du lubrifiant à former des dépôts/vernis dans des conditions de hautes températures semblables à celles rencontrées dans les parties les plus chaudes du moteur (de 230°C à 280°C).
Par ailleurs, comme illustré en exemple 2, la stabilité thermique du détergent suivant l’essai MCT, potentialisée par l’ajout du composé spiro selon l’invention, demeure élevée même en cas d’exposition prolongée du lubrifiant aux hautes températures.
Ainsi, de manière avantageuse, une composition lubrifiante selon l’invention, supplémentée par un composé spiro tel que défini précédemment, conserve de bonnes capacités de détergence, même après une utilisation prolongée, autrement dit même lorsqu’elle est usagée. Par « usagée » au sens de l’invention, on entend désigner une composition lubrifiante mise en œuvre au cours d’au moins un intervalle de vidange, c’est-à-dire sur une distance parcourue par le véhicule comprise entre 10 000 et 30 000 km, de préférence entre 15 000 et 30000 km.
D’autre part, le ou lesdits composés spiro, mis en œuvre à titre d’additifs détergents selon l’invention, génèrent peu de cendres comparativement aux détergents métalliques classiques.
Dès lors, la mise en œuvre d’un ou plusieurs composés spiro permet avantageusement d’accroître les capacités de détergence d’une composition lubrifiante, sans impacter négativement la teneur en cendres générées par le lubrifiant.
Également, l’ajout d’un ou plusieurs composés spiro selon l’invention, aptes à accroître de manière significative les capacités de détergence du lubrifiant, permet de réduire la teneur en détergents métalliques classiquement mis en œuvre dans les lubrifiants, par exemple à base de calcium ou de magnésium, et indésirables compte-tenu des cendres qu’ils engendrent, tout en maintenant, voire même en améliorant, la capacité de détergence du lubrifiant, comparativement à un lubrifiant exempt de composé spiro.
De manière avantageuse, il est ainsi possible de réduire les effets néfastes en termes de taux de cendres, notamment sulfatées, liés à l’utilisation des détergents métalliques classiques, sans pour autant impacter les propriétés de détergence du lubrifiant, voire même en améliorant la détergence.
Une composition lubrifiante selon l’invention permet ainsi de combiner d’excellentes propriétés de détergence et un faible taux de cendres, en particulier de cendres sulfatées.
Également, une composition lubrifiante selon l’invention présente avantageusement de bonnes propriétés en termes de réduction de la consommation de carburant des véhicules à moteur, dites encore propriétés de « Fuel Eco » et, de fait, participe à la réduction des émissions de CO2.
Également, de manière avantageuse, comme illustré dans les exemples, la mise en œuvre d’un composé spiro selon l’invention, en particulier de type spiroboronate, permet en outre d’accroître de manière significative la stabilité à l’oxydation de la composition lubrifiante. Ainsi, la mise en œuvre d’un composé spiro selon l’invention, en particulier d’un composé spiroboronate selon l’invention, permet d’accéder à un lubrifiant présentant d’excellentes propriétés de détergence, un taux de cendres réduit et d’excellentes propriétés de stabilité à l’oxydation.
Par ailleurs, avantageusement, comme illustré dans les exemples qui suivent, les composés spiro selon l’invention, du fait notamment de la configuration tétra-covalente de l’atome de bore ou d’aluminium, ne sont pas hydroly sables.
Autrement dit, les composés spiro selon l’invention, en particulier les composés spiroboronates selon l’invention, présentent une excellente stabilité lorsqu’ils sont mis en contact avec de l’eau (qui serait par exemple issue de la combustion du carburant ou de la condensation). L’absence de décomposition/dégradation des composés spiro en présence d’eau permet notamment de prévenir, lors de la mise en œuvre de la composition lubrifiante selon l’invention, la formation d’acide borique, produit classé CMR (cancérigène, mutagène et repro toxique).
L’invention concerne encore un procédé ou une méthode pour accroître la capacité de détergence d’une composition lubrifiante destinée à un système de motorisation, mobile ou stationnaire, en particulier d’une composition lubrifiante mettant en œuvre une teneur réduite en détergents métalliques, comprenant l’ajout à ladite composition lubrifiante d’au moins un composé spiro selon l’invention.
Le procédé ou la méthode selon l’invention permet avantageusement d’accroître la capacité de détergence de ladite composition, tout en maintenant un faible taux de cendres.
Enfin, de manière avantageuse, en réduisant la teneur en détergents métalliques, notamment en détergents à base de calcium, le lubrifiant selon l’invention permet de réduire et/ou prévenir les phénomènes de combustion anormale du carburant, notamment le pré-allumage, en particulier le pré-allumage à basse vitesse (connus sous l’appellation « Low Speed PreIgnition » en anglais ou « LSPI ») et/ou le cliquetis dans un moteur lubrifié par un lubrifiant selon l’invention (Kocsis et al, " The Impact of Lubricant Volatility, Viscosity and Detergent Chemistry on Low Speed Pre-Ignition Behavior”, SAE Int. J. Engines, 10(3): 1019- 1035, 2017; Ritchie et al., « Controlling Low-Speed Pre-Ignition in Modem Automotive Equipment, Part 3: Identification of Key Additive Component Types and Other Lubricant Composition Effects on Low-Speed Pre-Ignition », SAE Int. J. Engines, 9(2) : 832-840, 2016).
Ainsi, le composé spiro est avantageusement mis en œuvre selon l’invention à titre d’additif détergent dans une composition lubrifiante, pour prévenir et/ou diminuer la combustion anormale du carburant, en particulier le pré-allumage, notamment le LSPI, et/ou le cliquetis, dans un moteur lubrifié au moyen de ladite composition lubrifiante.
Par « combustion anormale », on entend tout phénomène au cours duquel tout ou une partie du mélange carburé est enflammé de façon non contrôlée au sein de la chambre de combustion d’un moteur, en particulier d’un moteur de véhicule, notamment de véhicule automobile. Par combustion anormale selon l’invention, on entend plus particulièrement les phénomènes de pré-allumage, incluant le pré-allumage à basse vitesse (LSPI) ; et le cliquetis, y compris le super-cliquetis ou méga-cliquetis qui peut suivre un événement de préallumage.
Par « pré-allumage » selon l’invention, on entend inclure le phénomène de vibration basse fréquence produisant un effet sonore de ronflement (ou « Rumble » en anglais). Plus particulièrement, le « pré-allumage » est le pré-allumage à basse vitesse (LSPI).
Les lubrifiants considérés selon l’invention, présentant avantageusement d’excellentes propriétés de détergence, un taux en cendres réduit, de bonnes propriétés de « Euel Eco » et de réduction/prévention des phénomènes de combustion anormale du carburant, notamment du LSPI, peuvent être mis en œuvre pour divers systèmes de motorisation, mobiles ou stationnaires, en particulier pour des systèmes de motorisation comprenant un moteur Diesel, à essence, au gaz ou dual-fuel, en particulier Diesel ou à essence.
Par « système de motorisation » au sens de la présente invention, on entend désigner un système comprenant toutes les pièces mécaniques nécessaires à l’application mobile ou stationnaire visée et incluant au moins un moteur, en particulier un moteur à combustion interne. Il peut s’agir d’un système de motorisation à combustion, à gaz, notamment à hydrogène, à ammoniaque, électrique ou hybride, suivant la nature du ou des moteurs inclus dans le système de motorisation : moteur à combustion, à gaz, notamment à hydrogène, à ammoniaque et/ou électrique. Un système de motorisation « mobile » est plus particulièrement un système de motorisation mis en œuvre dans des véhicules, incluant les véhicules légers, les véhicules poids-lourds, les machines mobiles dites « off road », ou encore les véhicules marins.
Un système de motorisation mobile correspond ainsi plus particulièrement au système de propulsion d’un véhicule.
Par « système de propulsion » au sens de la présente invention, on entend désigner un système comprenant les pièces mécaniques nécessaires à la propulsion d’un véhicule. Le système de propulsion englobe plus particulièrement un moteur, une transmission et éventuellement une batterie. La batterie est elle-même généralement constituée d’un ensemble d’accumulateurs électriques, appelés cellules.
Un système de motorisation « stationnaire » au sens de l’invention est un système de motorisation incluant un moteur stationnaire. Il peut trouver par exemple des applications dans des dispositifs de production d’énergie électrique. Il peut s’agir en particulier d’un système de motorisation fonctionnant au gaz, en particulier d’un moteur fonctionnant au gaz stationnaire.
Un « moteur Diesel » au sens de l’invention est un moteur à combustion dont le carburant est le gazole.
Selon un mode de réalisation particulier, une composition lubrifiante selon l’invention est mise en œuvre dans un système de propulsion d’un véhicule automobile léger ou d’un poids- lourds, de préférence pour un moteur essence ou Diesel.
Les compositions lubrifiantes selon l’invention sont particulièrement adaptées pour des systèmes de motorisation essence et Diesel, équipés de systèmes de post-traitement des gaz d’échappement, tels que des filtres à particules (DPF).
L’invention concerne encore, selon un autre de ses aspects, un procédé ou une méthode de lubrification d’un système de motorisation, mobile ou stationnaire, notamment d’un moteur Diesel, à essence, au gaz ou dual-fuel, en particulier dans un véhicule automobile léger ou poids lourd, comprenant une étape de mise en contact d’au moins une pièce mécanique dudit système avec une composition lubrifiante telle que définie ci-dessus. D’autres caractéristiques, variantes et avantages de la mise en œuvre d’un composé spiro selon l’invention ressortiront mieux à la lecture de la description et des exemples qui suivent, donnés à titre illustratif et non limitatif de l’invention.
Dans la suite du texte, les expressions « compris entre ... et ... », « allant de ... à ... » et « variant de ... à ... » sont équivalentes et entendent signifier que les bornes sont incluses, sauf mention contraire.
Brève description des dessins
La figure 1 présente un histogramme des résultats de cotation selon le test MCT pour les lubrifiants de référence 1 et 2 et pour les compositions lubrifiantes selon l’invention II et 12 supplémentées par un composé spiro selon l’invention, comme décrit en exemples 1 et 2.
La figure 2 présente la distribution des tailles des particules pour l’émulsion de spiroboronate dans l’eau obtenue après agitation par pale (figure 2a) et après agitation Ultra-Turrax® (figure 2b), comme décrit en exemple 4.
La figure 3 présente les spectres RMN du spiroboronate pur (figure 3a) et du résidu (figure 3b) obtenu comme décrit en exemple 4.
Description détaillée
Composé SPIRO
Comme indiqué précédemment, l’invention repose sur la mise en œuvre, dans un lubrifiant pour système de motorisation, d’un ou plusieurs composés spiro spécifiques, à titre d’additif pour améliorer la détergence du lubrifiant.
Il est entendu que l’invention peut mettre en œuvre un unique composé spiro ou un mélange d’au moins deux composés spiro distincts, notamment trois ou quatre composés spiro distincts, en particulier tels que définis ci-dessous.
Comme mentionné précédemment, le composé spiro considéré selon l’invention est de formule (I) suivante :
[Chem 2]
Figure imgf000012_0001
dans laquelle :
M est un atome choisi parmi le bore et l’aluminium, en particulier est un atome de bore ; ni et n2 valent, indépendamment l’un de l’autre, 0, 1 ou 2 ; et
R représentent, indépendamment l’un de l’autre, un groupement hydrocarboné comprenant de 1 à 50 atomes de carbone, en particulier de 5 à 20 et plus particulièrement de 5 à 15 atomes de carbone.
Les groupements hydrocarbonés considérés selon l’invention peuvent être éventuellement interrompus par un ou plusieurs hétéroatomes, par exemple -O-, -NH-, -N= ou -S-, en particulier -O- ou -NH- ; et/ou éventuellement substitués par un ou plusieurs groupes -OH, -NH2 et -SH, en particulier -OH ou -NH2.
Selon un mode de réalisation particulier, les groupements R sont uniquement composés d’atomes de carbone et d’hydrogène.
Les groupements hydrocarbonés peuvent être notamment des groupes alkyles, alcényles, aryles ou aralkyles.
Selon un mode de réalisation particulier, les substituants R représentent, indépendamment l’un de l’autre, un groupement hydrocarboné, de préférence une chaîne aliphatique, linéaire ou ramifiée, comprenant de 3 à 50 atomes de carbone, en particulier de 3 à 30 atomes de carbone, notamment de 5 à 25 atomes de carbone, notamment de 5 à 20 atomes de carbone et plus particulièrement de 8 à 15 atomes de carbone.
En particulier, les substituants R peuvent représenter, indépendamment l’un de l’autre, une chaîne aliphatique, linéaire ou ramifiée, en particulier une chaîne alkyle, de préférence linéaire, en Ci à C50 ; en particulier en C3 à C30, notamment en C5 à C25, notamment en C5 à C20 et plus particulièrement en Cs à C15, par exemple en Cio. Selon un mode de réalisation particulier, ni et n2 valent 0.
Selon un autre mode de réalisation particulier, ni et n2 valent 1 ou 2.
Lorsque ni vaut 2 ou n2 vaut 2, les groupements R, portés par un même cycle, peuvent être identiques ou différents.
Selon un mode de réalisation particulier, le composé spiro peut être de formule (I) précitée, dans laquelle ni et n2 valent 1 ; les substituants R pouvant être identiques ou différents, de préférence identiques.
Selon un mode de réalisation particulier, le composé spiro est de formule (I) précitée, dans laquelle : ni et n2 valent 1 ; et les groupements R, identiques, représentent des groupes alkyles, de préférence linéaires, en Ci à C50, en particulier en C3 à C30, notamment en C5 à C25, notamment en C5 à C20 et plus particulièrement en Cs à C15, encore plus préférentiellement en Cio.
Selon un mode de réalisation particulier, le composé spiro est de formule (I) dans laquelle M est un atome de bore.
Autrement dit, selon ce mode de réalisation particulier, le composé spiro peut être un composé dit spiroboronate, de formule (T) suivante :
[Chem 3]
Figure imgf000013_0001
dans laquelle ni et n2 et R sont tels que définis précédemment.
Selon un autre mode de réalisation particulier, le composé spiro est de formule (I) dans laquelle M est un atome d’aluminium.
Autrement dit, selon ce mode de réalisation particulier, le composé spiro peut être un composé dit spiroaluminate, de formule (I”) suivante : [Chem 4]
Figure imgf000014_0001
dans laquelle ni, n2 et R sont tels que définis précédemment.
L’invention concerne ainsi, selon un autre de ses aspects, un composé spiro de formule (I) précitée, dans laquelle :
- M est un atome d’aluminium ;
- ni et n2 valent, indépendamment l’un de l’autre, 0, 1 ou 2, au moins l’un des ni et n2 valant 1 ou 2 ; de préférence ni et n2 valent 1 ; et
- les groupements R représentent, indépendamment l’un de l’autre, une chaîne aliphatique, linéaire ou ramifiée, en particulier une chaîne alkyle, de préférence linéaire, comprenant de 5 à 50 atomes de carbone, en particulier de 6 à 30 atomes de carbone, notamment de 8 à 25 atomes de carbone et plus particulièrement de 10 à 15 atomes de carbone.
Autrement dit, l’invention concerne un composé de type spiroaluminate de formule (I”) précitée, dans laquelle :
- ni et n2 valent, indépendamment l’un de l’autre, 0, 1 ou 2, au moins l’un des ni et n2 valant 1 ou 2 ; de préférence ni et n2 valent 1 ; et
- les groupements R représentent, indépendamment l’un de l’autre, une chaîne aliphatique, linéaire ou ramifiée, en particulier une chaîne alkyle, de préférence linéaire, comprenant de 5 à 50 atomes de carbone, en particulier de 6 à 30 atomes de carbone, notamment de 8 à 25 atomes de carbone et plus particulièrement de 10 à 15 atomes de carbone.
Selon un mode de réalisation particulier, le composé de type spiroaluminate selon l’invention est de formule (I”) dans laquelle :
- ni et n2 valent 1 ; et
- les groupements R, identiques ou différents, de préférence identiques, représentent des chaînes alkyles, de préférence linéaires, comprenant de 5 à 50 atomes de carbone, en particulier de 6 à 30 atomes de carbone, notamment de 8 à 25 atomes de carbone et plus particulièrement de 10 à 15 atomes de carbone. Le composé spiro mis en œuvre selon l’invention peut être préparé à partir d’au moins l’acide salicylique ou un dérivé d’acide salicylique et un composé de bore ou un composé d’aluminium.
Plus particulièrement, il peut être obtenu par réaction : - d’au moins un composé choisi parmi l’acide salicylique et ses dérivés, de formule (la) suivante : [Chem 5]
Figure imgf000015_0001
dans laquelle R est tel que défini précédemment et n est tel que défini précédemment pour ni et n2 ; et
- d’au moins un composé boré ou d’aluminium, en particulier de l’acide borique ou de l’hydroxyde d’aluminium.
La préparation du composé spiro mis en œuvre dans la composition lubrifiante selon l’invention ne fait intervenir aucune étape, ultérieure à la réaction de l’acide salicylique ou de l’un de ses dérivés avec ledit composé de bore ou d’aluminium, de réaction avec un composé aminé, comme c’est le cas par exemple dans le cadre de la préparation des composés proposés dans les demandes W02018/220007 et WO2018/220009.
L’acide salicylique et ses dérivés de formule (la) précitée peuvent être synthétisés selon des méthodes de synthèse connues de l’homme du métier ou être disponibles commercialement.
Le composé boré (autrement dit, à base de bore) peut être notamment choisi parmi l’acide borique (B(OH)3), les acides boroniques, les esters boriques et boroniques, l’oxyde de bore et les complexes d’acide borique. En particulier, le composé boré peut être choisi parmi l’acide borique ; l’oxyde de bore ; les complexes d’acide borique ; les borates de trialkyle, en particulier dans lesquels les groupes alkyles comprennent indépendamment les uns des autres de 1 à 4 atomes de carbone ; les acides boroniques présentant un groupement C1-C12 alkyle; les acides boriques substitués par deux groupements alkyles, en particulier en Ci àCi2 ; les acides boriques substitués par deux groupements aryles, en particulier en CÔ à C12 ; les acides boriques substitués par un ou deux groupements aralkyle, en particulier en C7 à C12, et des dérivés de ces composés obtenus par substitution d’au moins un groupe alkyle par un ou plusieurs groupe alcoxy.
Les complexes d’acide borique sont notamment des complexes du bore avec une ou plusieurs molécules comprenant une ou plusieurs fonctions alcools.
Selon un mode de réalisation particulier, le composé de bore est l’acide borique.
Le composé d’aluminium (autrement dit, à base d’aluminium) peut être par exemple choisi parmi l’hydroxyde d’aluminium (A1(OH)3), l’oxyde d’aluminium, le sulfate d’aluminium (A12SO4)3.
H appartient à l’homme du métier d’ajuster les conditions de réaction entre le ou lesdits composés (la) et le composé de bore ou d’aluminium pour obtenir le composé spiro souhaité. En particulier, la réaction peut être opérée dans un milieu solvant constitué d’un ou plusieurs solvants apolaires et/ou solvants polaires pratiques.
Le milieu solvant peut être constitué d’un ou plusieurs solvants choisis parmi le naphta, les solvants polaires pratiques, tels que l’eau et les alcools, par exemple le méthanol, l’éthanol, le propanol, le butanol ; et leurs mélanges.
Avantageusement, la réaction entre l’acide salicylique ou l’un de ses dérivés de formule (la) précitée et le composé de bore ou d’aluminium pour obtenir le composé spiro souhaité, en particulier la réaction entre l’acide salicylique ou l’un de ses dérivés de formule (la) et le composé de bore pour obtenir le composé spiroboronate souhaité, peut être opérée dans un milieu solvant aprotique apolaire, en particulier dans le toluène.
Dans le cadre de l’invention, on entend par :
- « groupement hydrocarboné », un radical saturé ou non, linéaire, ramifié ou cyclique, aromatique ou non, comprenant du carbone et de l'hydrogène ; - « chaîne aliphatique », un groupe hydrocarboné constitué exclusivement d'atomes de carbone et d'hydrogène, linéaire ou ramifié, saturé ou insaturé, non aromatique. De préférence, une chaîne aliphatique est une chaîne alkyle ;
- « alkyle », un groupe aliphatique saturé, linéaire ou ramifié ; par exemple, un alkyle en Cx à Cz représente une chaîne carbonée saturée de x à z atomes de carbone, linéaire ou ramifiée ;
- « alcényle », un groupe aliphatique mono- ou poly-insaturé, linéaire ou ramifié ;
- « cycloalkyle », un groupe alkyle cyclique, par exemple un cycloalkyle en Cx à Cz représente un groupe carboné cyclique de x à z atomes de carbone, par exemple un cyclopropyle, cyclobutyle, cyclopentyle, cyclohexyle, cycloheptyle ;
- « aryle », un groupe aromatique mono- ou polycyclique, en particulier comprenant entre 6 et 10 atomes de carbones. A titre d’exemple de groupe aryle, on peut citer les groupes phényle ou naphtyle ;
- « aralkyle », un groupe aryle tel que défini précédemment, substitué par au moins un groupe alkyle tel que défini précédemment.
Le ou lesdits composés spiro sont avantageusement mis en œuvre en une teneur suffisante pour accéder au niveau requis de capacité de détergence du lubrifiant. De manière avantageuse, même une faible quantité de composé(s) spiro, en particulier inférieure à 2 % massique, notamment inférieure ou égale à 1 % massique, par rapport à la masse totale de ladite composition lubrifiante, permet d’accroître de manière significative la capacité de détergence du lubrifiant.
Bien entendu, la quantité mise en œuvre en composé(s) spiro peut être ajustée en fonction de la nature du lubrifiant, et plus particulièrement compte-tenu de la présence ou non et de la quantité mise en œuvre en autre(s) additif(s) détergent(s), notamment métallique(s), par exemple à base de calcium, présents au niveau du lubrifiant.
D’une manière générale, le ou lesdits composés spiro considérés selon l’invention, en particulier tels que définis précédemment, peuvent être mis en œuvre à raison de 0,1 à 20 % massique, en particulier de 0,2 à 15 % massique, notamment de 0,5 à 10 %, et plus particulièrement de 0,5 à 5,0 % massique, par rapport à la masse totale de ladite composition lubrifiante. COMPOSITION LUBRIFIANTE
Une composition lubrifiante telle que considérée selon l’invention comprend plus particulièrement une ou plusieurs huiles de base et, éventuellement, d’autres additifs classiquement considérés dans les compositions lubrifiantes.
Il est entendu que la nature et la quantité des autres additifs sont adaptées au regard de la destination du lubrifiant, et plus particulièrement au regard du type de système de motorisation auquel il est destiné, par exemple suivant qu’il est destiné à une utilisation pour un moteur de véhicule léger, de poids lourds, moteur Diesel ou essence, etc.
Huile de base
De manière conventionnelle, une composition lubrifiante comprend une ou plusieurs huiles de base.
Ces huiles de base peuvent être choisies parmi les huiles de base conventionnellement utilisées dans le domaine des huiles lubrifiantes, telles que les huiles minérales, synthétiques ou naturelles, animales ou végétales ou leurs mélanges.
Il peut s’agir d’un mélange de plusieurs huiles de base, par exemple un mélange de deux, trois ou quatre huiles de base.
Les huiles de base des compositions lubrifiantes considérées selon l’invention peuvent être en particulier des huiles d’origines minérales ou synthétiques appartenant aux groupes I à V selon les classes définies dans la classification API (ou leurs équivalents selon la classification ATIEL) et présentées dans le tableau A ci-dessous ou leurs mélanges. [Tableau 1]
Figure imgf000019_0001
Tableau A
Les huiles de base minérales incluent tous types d’huiles de base obtenues par distillation atmosphérique et sous vide du pétrole brut, suivies d’opérations de raffinage telles qu’extraction au solvant, désalphatage, déparaffinage au solvant, hydrotraitement, hydrocraquage, hydroisomérisation et hydrofinition.
Les huiles de base synthétiques peuvent être des esters d’acides carboxy liques et d’alcools, des polyalphaoléfines ou encore des polyalkylène glycol (PAG) obtenus par polymérisation ou copolymérisation d’oxydes d’alkylène comprenant de 2 à 8 atomes de carbone, en particulier de 2 à 4 atomes de carbone. Les polyalphaoléfines utilisées comme huiles de base sont par exemple obtenues à partir de monomères comprenant 4 à 32 atomes de carbone, par exemple à partir de décène, d’octène ou de dodécène, et dont la viscosité à 100°C est comprise entre 1,5 et 15 mm2.s-1 selon la norme ASTM D445. Leur masse moléculaire moyenne est généralement comprise entre 250 et 3000 selon la norme ASTM D5296.
Des mélanges d’huiles synthétiques et minérales, pouvant être biosourcées, peuvent également être employés.
Il n’existe généralement aucune limitation quant à l’emploi d’huiles de base différentes dans la composition lubrifiante, si ce n’est qu’elles doivent avoir des propriétés, notamment de viscosité, d’indice de viscosité, de teneur en soufre ou de résistance à l’oxydation, adaptées à une utilisation pour des systèmes de motorisation, en particulier pour des moteurs de véhicule. De préférence, une composition lubrifiante considérée selon l’invention comprend au moins une huile de base choisie parmi les huiles de groupe II, III et IV de la classification API, et leurs mélanges.
En particulier, une telle composition lubrifiante peut comprendre au moins une huile de base de groupe III, en particulier un mélange d’au moins deux huiles de base de groupe III.
Les huiles de base convenant à l’invention peuvent présenter une viscosité cinématique mesurée à 40 °C selon la norme ASTM D445 (KV40) allant de 10 à 100 mm2/s, en particulier de 12 à 50 mm2/s, plus particulièrement de 15 à 40 mm2/s.
Les huiles de base convenant à l’invention peuvent présenter une viscosité cinématique mesurée à 100 °C selon la norme ASTM D445 (KV 100) allant de 1 à 15 mm2/s, en particulier de 2 à 10 mm2/s, plus particulièrement de 4 à 8 mm2/s.
La ou les huiles de base peuvent être présentes dans une composition lubrifiante selon l’invention en une teneur d’au moins 50 % massique, par rapport à sa masse totale, en particulier d’au moins 60 % massique, plus particulièrement allant de 60 à 99 % massique et de préférence de 70 à 90 % massique.
De préférence, l’huile ou les huiles de groupe III représente(nt) au moins 50 % massique, en particulier au moins 60 % massique, plus particulièrement entre 70 et 100 % massique, par exemple entre 80 et 100 % massique, de la masse totale des huiles de base de la composition.
ADDITIFS
Une composition lubrifiante selon l’invention peut comprendre tous types d’additifs adaptés à l’utilisation visée pour le lubrifiant, telle que détaillée dans la suite du texte, par exemple pour une utilisation dans des systèmes de motorisation de véhicules légers ou de poids lourds, notamment des moteurs Diesel.
En particulier, dans le cas où Ton cherche à formuler un lubrifiant présentant une faible teneur en cendres, il est entendu que les additifs sont choisis de manière à ne pas impacter de manière significative le taux de cendres de la composition lubrifiante.
Ces additifs peuvent être introduits isolément et/ou sous la forme d’un mélange, ou « paquet d’additifs », à l’image de ceux déjà disponibles à la vente pour les formulations de lubrifiants commerciaux pour moteurs de véhicules, de niveau de performance tels que définis par 1’ACEA (Association des Constructeurs Européens d’ Automobiles) et/ou 1’API (American Petroleum Institute), bien connus de l’homme du métier.
Ces additifs, distincts du ou desdits composés spiro, peuvent être notamment choisis parmi d’autres additifs détergents, distincts du ou desdits composés spiro, en particulier des additifs détergents métalliques, des modificateurs de frottement, des additifs anti-usure, des additifs extrême pression, des antioxydants, des améliorants de l’indice de viscosité (VI), des additifs abaisseurs du point d’écoulement (PPD), des dispersants, des agents anti-mousse, des épaississants, des inhibiteurs de corrosion, et leurs mélanges.
Avantageusement, une composition lubrifiante selon l’invention comprend un ou plusieurs additifs choisis parmi d’autres additifs détergents, distincts du ou desdits composés spiro, en particulier choisis parmi des additifs détergents métalliques, des améliorants de l’indice de viscosité, des additifs abaisseurs du point d’écoulement, des additifs anti-usure, des antioxydants et leurs mélanges.
Autres détergents
La composition lubrifiante considérée selon l’invention, supplémentée par un ou plusieurs composés spiro selon l’invention, en particulier tels que définis précédemment, peut comprendre un ou plusieurs autres additifs détergents, en particulier un ou plusieurs additifs détergents métalliques.
Comme évoqué précédemment, les détergents métalliques sont connus de l’homme du métier pour procurer de hauts niveaux de détergence. Ces composés métalliques présentent toutefois l’inconvénient d’être générateurs de cendres sulfatées.
Il s’agit généralement de composés anioniques comprenant une longue chaîne hydrocarbonée lipophile et une tête hydrophile, le cation associé pouvant être un cation métallique d’un métal alcalin ou alcalinoterreux.
Ils sont généralement choisis parmi les sels de métaux alcalins ou de métaux alcalino-terreux d’acides carboxyliques, notamment les sulfonates, les salicylates, les naphténates, les phénates, les carboxylates et les mélanges de ceux-ci. Les métaux alcalins et alcalino-terreux sont préférentiellement le calcium, le magnésium, le sodium ou le baryum.
Ces sels métalliques comprennent généralement le métal en quantité stœchiométrique ou bien en excès, donc en quantité supérieure à la quantité stœchiométrique. Il s’agit alors d’additifs détergents surbasés ; le métal en excès apportant le caractère surbasé à l’additif détergent est alors généralement sous la forme d’un sel métallique insoluble dans l’huile de base, par exemple un carbonate, un hydroxyde, un oxalate, un acétate, un glutamate, préférentiellement un carbonate.
Selon un mode de réalisation particulier, une composition lubrifiante selon l’invention comprend au moins un additif détergent métallique, distinct des composés spiro selon l’invention, en particulier choisi parmi les sels de métaux alcalins ou de métaux alcalino- terreux, surbasés ou non, en particulier parmi les sels de calcium, les sels de magnésium et leurs mélanges.
Ainsi, selon un mode de réalisation particulier, une composition lubrifiante selon l’invention, destinée à un système de motorisation, notamment pour un véhicule automobile léger ou poids lourd, comprend au moins :
- une ou plusieurs huiles de base ;
- au moins un composé spiro selon l’invention ; et
- au moins un additif détergent métallique distinct dudit composé spiro, en particulier tel que défini précédemment, notamment choisi parmi les sels de calcium et de magnésium et leurs mélanges.
En particulier, une composition lubrifiante selon l’invention peut comprendre au moins un additif détergent à base de calcium, tel qu’un sulfonate, un salicylate, un naphténate, un phénate, un carboxylate de calcium ou un mélange de ceux-ci, en particulier un additif détergent à base de calcium surbasé, par exemple par du carbonate de calcium.
De manière avantageuse, comme indiqué précédemment, de par l’ajout d’un ou plusieurs composés spiro selon l’invention, permettant d’accroître de manière significative la capacité de détergence du lubrifiant, la teneur en additifs détergents métalliques tels que définis précédemment, non désirables au regard des cendres qu’ils génèrent, peut être diminuée, tout en conservant de bonnes propriétés de détergence.
Selon un mode de réalisation particulier, la composition lubrifiante selon l’invention peut comprendre moins de 15 % massique, en particulier moins de 10 % massique et plus particulièrement de 0,1 à 10 % massique, en particulier de 0,5 % à 5,0 % massique, d’additif(s) détergent(s) métallique(s) distinct(s) des composés spiro selon l’invention, par rapport à la masse totale de ladite composition. En particulier, le ou lesdits additifs détergents métalliques peuvent être présents dans la composition lubrifiante de manière à procurer une teneur en élément(s) métallique(s), en particulier en calcium, inférieure ou égale à 6000 ppm, en particulier allant de 100 ppm à 4000 ppm, de préférence de 250 ppm à 3000 ppm.
L’abaissement de la teneur en détergents métalliques, tels que les sels de calcium et de magnésium, permet avantageusement de répondre aux spécifications des compositions lubrifiantes « LOW SAPS ».
De manière avantageuse, une composition lubrifiante selon l’invention présente ainsi un taux de cendres sulfatées, déterminé selon la norme ASTM D-874, inférieur ou égal à 2 % massique, en particulier inférieur ou égal à 1,5 % massique, et plus particulièrement inférieur ou égal à 1 % massique, par rapport à la masse totale de ladite composition lubrifiante.
Selon un mode de réalisation particulier, une composition lubrifiante selon l’invention peut comprendre :
- de 60 à 99,8 % massique, de préférence de 70 à 90 % massique, d’une ou plusieurs huiles de base ;
- de 0,1 à 20 % massique, en particulier de 0,2 à 15 % massique et plus particulièrement de 0,5 à 10 % massique d’au moins un composé spiro selon l’invention, tel que défini précédemment, en particulier au moins un composé spiroboronate selon l’invention ; et
- de 0,1 à 10 % massique, en particulier de 0,5 à 5 % massique, d’un ou plusieurs additifs détergents métalliques, distincts dudit composé spiro selon l’invention, en particulier tels que définis précédemment, notamment choisis parmi les sels de calcium et de magnésium et leurs mélanges ; les teneurs étant exprimées par rapport à la masse totale de ladite composition lubrifiante.
Autres additifs
Une composition lubrifiante considérée selon l’invention peut également comprendre un ou plusieurs autres additifs, distincts du ou desdits composés spiro, choisi(s) parmi les additifs modificateurs de frottement, les additifs anti-usure, les additifs extrême pression, les antioxydants, les améliorants de l’indice de viscosité, les additifs abaisseurs du point d’écoulement, les dispersants, les agents anti-mousse, les épaississants, les inhibiteurs de corrosion, et leurs mélanges.
Ainsi, une composition lubrifiante considérée selon l’invention peut également comprendre au moins un améliorant de l’indice de viscosité (VI). Les améliorants de l’indice de viscosité (VI), en particulier les polymères améliorant l’indice de viscosité, permettent de garantir une bonne tenue à froid et une viscosité minimale à haute température. Comme exemples de polymère améliorant l’indice de viscosité, on peut citer les esters polymères, les homopolymères ou les copolymères, hydrogénés ou non-hydrogénés du styrène, du butadiène et de l’isoprène, les homopolymères ou les copolymères d’oléfine, tel que l’éthylène ou le propylène, les polyacrylates et polyméthacrylates (PMA).
Avantageusement, une composition lubrifiante selon l’invention comprend au moins un améliorant de l’indice de viscosité choisi parmi les polyméthacrylates (PMA) et les polyisoprène-styrène hydrogénés (PISH), linéaires, greffés, en peigne ou en étoile, de préférence en étoile.
En particulier, le ou les additifs améliorant l’indice de viscosité peuvent être présents dans une composition lubrifiante selon l’invention en une teneur allant de 1 à 15 % massique, en particulier de 2 à 10 % massique, par rapport à la masse totale de la composition lubrifiante. Selon un mode de réalisation, une composition lubrifiante selon l’invention est exempte d’additif améliorant l’indice de viscosité.
Une composition lubrifiante considérée selon l’invention peut comprendre au moins un additif modificateur de frottement.
Les additifs modificateurs de frottement peuvent être choisis parmi des composés apportant des éléments métalliques et des composés exempts de cendres, de préférence parmi des composés exempts de cendres.
Parmi les composés apportant des éléments métalliques, on peut citer les complexes de métaux de transition tels que Mo, Sb, Sn, Fe, Cu, Zn dont les ligands peuvent être des composés hydrocarbonés comprenant des atomes d’oxygène, d’azote, de soufre ou de phosphore.
De manière avantageuse, les additifs modificateurs de frottement sont choisis parmi des composés exempts de cendre, généralement d’origine organique et pouvant être plus particulièrement choisis parmi les monoesters d’acides gras et de polyols, les amines alcoxylées, les amines grasses alcoxylées, les époxydes gras, les époxydes gras de borate, les amines grasses ou les esters de glycérol d’acide gras. Selon l’invention, les composés gras comprennent au moins un groupement hydrocarboné comprenant de 10 à 24 atomes de carbone.
Selon une variante avantageuse, une composition lubrifiante comprend au moins un additif modificateur de frottement, en particulier à base de molybdène.
En particulier, les composés à base de molybdène peuvent être choisis parmi les dithiocarbamates de molybdène (Mo-DTC), les dithiophosphates de molybdène (Mo-DTP), et leurs mélanges.
De manière avantageuse, une composition lubrifiante considérée selon l’invention peut comprendre de 0,01 à 5 % massique, de préférence de 0,01 à 5 % massique, plus particulièrement de 0,1 à 2 % massique ou encore plus particulièrement de 0,1 à 1,5 % massique, par rapport à la masse totale de la composition lubrifiante, d’ additifs modificateurs de frottement.
Une composition lubrifiante selon l’invention peut comprendre au moins un additif antiusure et/ou extrême -pression.
Les additifs anti-usure et les additifs extrême pression protègent les surfaces en frottement par formation d’un film protecteur adsorbé sur ces surfaces.
II existe une grande variété d’additifs anti-usure. De manière préférée pour la composition lubrifiante selon l’invention, les additifs anti-usure sont choisis parmi des additifs phospho- soufrés comme les alkylthiophosphates métalliques, en particulier les alkylthiophosphates de zinc, et plus spécifiquement les dialkyldithiophosphates de zinc ou ZnDTP. Les composés préférés sont de formule Zn((SP(S)(OR3)(OR4))2, dans laquelle R3 et R4, identiques ou différents, représentent indépendamment un groupement alkyle, préférentiellement un groupement alkyle comportant de 1 à 18 atomes de carbone.
Les phosphates d’amines sont également des additifs anti-usure qui peuvent être employés dans la composition lubrifiante selon l'invention. Toutefois, le phosphore apporté par ces additifs peut agir comme poison des systèmes catalytiques des automobiles car ces additifs sont générateurs de cendres. On peut minimiser ces effets en substituant partiellement les phosphates d'amines par des additifs n’apportant pas de phosphore, tels que, par exemple, les polysulfures, notamment les oléfines soufrées. De manière avantageuse, le ou les additifs extrême-pression et/ou anti-usure peuvent être présents dans une composition lubrifiante selon l'invention en une teneur allant de 0,01 à 6 % massique, préférentiellement de 0,05 à 4 % massique, plus préférentiellement de 0,1 à 2 % massique par rapport à la masse totale de composition lubrifiante.
Une composition lubrifiante considérée selon l’invention peut comprendre au moins un additif antioxydant. Les additifs antioxydants sont pour l’essentiel dédiés à retarder la dégradation de la composition lubrifiante en service. Cette dégradation peut notamment se traduire par la formation de dépôts, par la présence de boues ou par une augmentation de la viscosité de la composition lubrifiante. Ils agissent notamment comme inhibiteurs radicalaires ou destructeurs d’hydroperoxydes.
Parmi les additifs antioxydants couramment employés, on peut citer les additifs antioxydants de type phénolique, les additifs antioxydant de type aminé, les additifs antioxydants phosphosoufrés. Certains de ces additifs antioxydants, par exemple les additifs antioxydants phosphosoufrés, peuvent être générateurs de cendres. Les additifs antioxydants phénoliques peuvent être exempts de cendres ou bien être sous forme de sels métalliques neutres ou basiques. Les additifs antioxydants peuvent notamment être choisis parmi les phénols stériquement encombrés, les esters de phénol stériquement encombrés et les phénols stériquement encombrés comprenant un pont thioéther, les diphénylamines, les diphénylamines substituées par au moins un groupement alkyle en C1-C12, les N,N’-dialkyle- aryle-diamines et leurs mélanges.
De préférence, les phénols stériquement encombrés sont choisis parmi les composés comprenant un groupement phénol dont au moins un carbone vicinal du carbone portant la fonction alcool est substitué par au moins un groupement alkyle en C1-C10, de préférence un groupement alkyle en CI-CÔ, de préférence un groupement alkyle en C4, de préférence par le groupement ter-butyle.
Les composés aminés sont une autre classe d’additifs antioxydants pouvant être utilisés, éventuellement en combinaison avec les additifs antioxydants phénoliques. Des exemples de composés aminés sont les amines aromatiques, par exemple les amines aromatiques de formule NR5R6R7 dans laquelle R5 représente un groupement aliphatique ou un groupement aromatique, éventuellement substitué, R6 représente un groupement aromatique, éventuellement substitué, R7 représente un atome d’hydrogène, un groupement alkyle, un groupement aryle ou un groupement de formule R8S(O)ZR9 dans laquelle R8 représente un groupement alkylène ou un groupement alkenylène, R9 représente un groupement alkyle, un groupement alcényle ou un groupement aryle et z représente 0, 1 ou 2.
Des alkyl phénols sulfurisés ou leurs sels de métaux alcalins et alcalino-terreux peuvent également être utilisés comme additifs antioxydants.
Une composition lubrifiante considérée selon l’invention peut contenir tous types d’additifs antioxydants connus de l’homme du métier. De manière avantageuse, la composition lubrifiante comprend au moins un additif antioxydant exempt de cendres.
De manière également avantageuse, une composition lubrifiante considérée selon l’invention peut comprendre de 0,1 à 2 % massique, par rapport à la masse totale de la composition, d’au moins un additif antioxydant.
Une composition lubrifiante considérée selon l’invention peut comprendre au moins un additif abaisseur de point d’écoulement (dits encore agents « PPD » pour « Pour Point Depressant » en langue anglaise). En ralentissant la formation de cristaux de paraffine, les additifs abaisseurs de point d’écoulement améliorent généralement le comportement à froid de la composition lubrifiante.
Comme exemple d’agents de réduction du point d’écoulement, on peut citer les polyméthacrylates d’alkyle, les poly acrylates, les polyarylamides, les polyalkylphénols, les polyalkylnaphtalènes et les polystyrènes alkylés.
Une composition lubrifiante considérée selon l’invention peut également comprendre au moins un agent dispersant. Les agents dispersants assurent le maintien en suspension et l’évacuation des contaminants solides insolubles constitués par les produits secondaires d’oxydation qui se forment lorsque la composition lubrifiante est en service. Ils peuvent être choisis parmi les bases de Mannich, les succinimides et leurs dérivés.
En particulier, une composition lubrifiante considérée selon l’invention peut comprendre de 0,2 à 10 % massique d’agent(s) dispersant(s), par rapport à la masse totale de la composition. Une composition lubrifiante considérée selon l’invention peut comprendre également au moins additif anti-mousse. Les additifs anti-mousse peuvent être choisis parmi les polymères polaires tels que les polyméthylsiloxanes ou les poly acrylates.
En particulier, une composition lubrifiante considérée selon l’invention peut comprendre de 0,01 à 3 % massique d’additif(s) anti-mousse, par rapport à la masse totale de la composition lubrifiante.
Comme mentionné ci-dessus, l’ensemble des additifs détaillés ci-dessus peuvent être introduits sous la forme d’un mélange ou « paquet » d’additifs.
Selon ce mode de réalisation, le paquet d’additifs peut représenter de 1 % à 30 % massique par rapport à la masse totale de la composition, en particulier de 1 à 20 % massique, notamment de 3 % à 15 % massique et plus particulièrement de 5 à 15 % massique.
Selon un mode de réalisation particulier, une composition lubrifiante selon l’invention peut comprendre, voire être constituée de :
- une huile de base ou un mélange d’huiles de base ;
- un ou plusieurs composés spiro selon l’invention, en particulier tels que définis précédemment et plus particulièrement d’au moins un composé spiroboronate selon l’invention ; et
- éventuellement un ou plusieurs additifs, distincts du ou desdits composés spiro, choisis parmi les autres additifs détergents, en particulier les additifs détergents métalliques, les modificateurs de frottement, les additifs anti-usure, les additifs extrême pression, les antioxydants, les améliorants de l’indice de viscosité (VI), les additifs abaisseurs du point d’écoulement (PPD), les dispersants, les agents anti-mousse, les épaississants, les inhibiteurs de corrosion, et leurs mélanges.
De préférence, une composition lubrifiante formulée selon l’invention comprend, voire est constituée de :
- de 60 à 98,9 % massique, en particulier de 70 à 90 % massique, d’une ou plusieurs huiles de base ;
- de 0,1 à 20 % massique, de préférence de 0,5 à 10 % massique, d’un ou plusieurs composés spiro selon l’invention tels que définis ci-dessus, en particulier d’un ou plusieurs composés spiroboronate selon l’invention ; et
- de 1 % à 30 % massique, de préférence de 3 % à 20 % massique, d’un ou plusieurs additif(s) choisi(s) parmi les autres additifs détergents, distincts du ou desdits composés spiro, en particulier choisis parmi les additifs détergents métalliques ; les agents anti-usure ; les antioxydants ; les dispersants ; les améliorants d’indice de viscosité et leurs mélanges ; les teneurs étant exprimées par rapport à la masse totale de ladite composition lubrifiante.
En particulier, une composition lubrifiante formulée selon l’invention peut comprendre, voire être constitué de :
- de 60 à 99,8 % massique, en particulier de 70 à 90 % massique, d’une ou plusieurs huiles de base ;
- de 0,1 à 20 % massique, de préférence de 0,5 à 10 % massique, d’un ou plusieurs composés spiro selon l’invention tels que définis ci-dessus, en particulier d’un ou plusieurs composés spiroboronate selon l’invention ;
- de 0,1 à 10 % massique, en particulier de 0,5 à 5 % massique, d’un ou plusieurs additifs détergents métalliques distincts du ou desdits composés spiro, en particulier tels que définis précédemment, notamment choisis parmi les sels de calcium et de magnésium et leurs mélanges ; et
- éventuellement de 1 % à 30 % massique, de préférence de 3 % à 20 % massique, d’un ou plusieurs autres additifs choisis parmi les agents anti-usure, les antioxydants, les améliorants d’indice de viscosité et leurs mélanges, les teneurs étant exprimées par rapport à la masse totale de ladite composition lubrifiante.
Selon un mode de réalisation particulier, une composition lubrifiante selon l’invention peut présenter une viscosité cinématique, mesurée à 40°C selon la norme ASTM D445, comprise entre 20 mm2/s et 50 mm2/s, de préférence entre 25 mm2/s et 40 mm2/s.
Avantageusement encore, une composition lubrifiante selon l’invention présente une viscosité cinématique, mesurée à 100°C selon la norme ASTM D445, comprise entre 2 mm2/s et 20 mm2/s, de préférence entre 4 mm2/s et 15 mm2/s.
APPLICATION Comme indiqué précédemment, les compositions lubrifiantes considérées selon l’invention peuvent être destinées à des systèmes de motorisation mobiles ou stationnaires, notamment pour des moteurs à essence, Diesel, au gaz ou dual-fuel.
L’invention concerne ainsi, selon un autre de ses aspects, l’utilisation d’une composition telle que définie précédemment, incorporant un ou plusieurs composés spiro à titre d’additif détergent, pour lubrifier un système de motorisation mobile ou stationnaire.
Les compositions lubrifiantes selon l’invention peuvent être notamment destinés à des systèmes de motorisation incluant un moteur à combustion interne, et plus particulièrement un moteur à carburant gazole ou à essence, de préférence un moteur Diesel.
Selon un mode de réalisation particulier, elles sont mises en œuvre pour la lubrification d’un système de motorisation d’un véhicule, plus particulièrement d’un véhicule léger ou poids lourds, par exemple de camions.
En particulier, elles peuvent être adaptées pour la lubrification de systèmes de motorisation essence ou Diesel, équipés de systèmes de post-traitement des gaz d’échappement, notamment de filtres à particules Diesel (DPF).
L’ensemble des caractéristiques et modes particuliers relatifs au composé spiro de formule (I) et à la composition lubrifiante le comprenant, s’applique également aux utilisations, procédés et méthodes visés selon l’invention.
L’invention va maintenant être décrite au moyen des exemples suivants, donnés à titre illustratif et non limitatif de l’invention.
Exemple
Mesure de la stabilité thermique
Les performances des compositions en termes de stabilité thermique sont évaluées par MCT (pour « Micro Coking Test » en langue anglaise), selon la norme GFC Eu-27-T-07.
F’ essai MCT évalue la tendance d’une composition à former des dépôts (ou vernis) sur une surface chaude (cokéfaction). Il rend compte de la stabilité thermique d’une composition en couche mince, soumise à des conditions de température semblables à celles rencontrées dans les parties les plus chaudes du moteur (230 à 280°C). Ees dépôts et vernis sont mesurés par un vidéo-cotateur. Ee résultat est exprimé sous forme d’une note sur 10, appelée mérite, selon la méthode CEC M-02-A-78. Plus la valeur de MCT est élevée, meilleure est la stabilité thermique de la composition lubrifiante.
Les conditions d’essai sont les suivantes :
- 600 pl d’huile ;
- durée : 90 minutes ;
- plaque inclinée de 1,5 % ;
- gradient de température de 230 à 280°C ;
- vidéo-cotation des vernis de la plaque : note de 0 à 10, meilleur résultat 10.
En outre, la température à partir de laquelle intervient le dépôt de vernis est également déterminée. Plus cette température est élevée, meilleure est la stabilité thermique de la composition lubrifiante.
Mesure de la stabilité à l’oxydation
La stabilité à l’oxydation est évaluée par calorimétrie à balayage différentiel de pression, qui détermine le temps d’induction d’oxydation, dit OIT (pour « Oxidation Induction Time » en terminologie anglo-saxonne) pour les compositions lubrifiantes. Il s’agit d’une procédure standard dans l’industrie des huiles lubrifiantes basée sur la norme CEC L-85 T-99.
Selon ce protocole, la composition lubrifiante à tester est chauffée à une température élevée, (dans le cas présent, isotherme à 50°C pendant 5 minutes, puis montée à 210°C à raison de 40°C/min, l’oxydation se faisant à 210°C), et le moment où le lubrifiant commence à se décomposer est mesuré. Plus la durée du test, exprimée en minutes, est longue, meilleure est la stabilité à l’oxydation du lubrifiant.
Exemple 1
Evaluation des propriétés de détergence liées à l’ajout du spiroboronate
L’effet de l’ajout d’un composé spiroboronate a été évalué sur deux lubrifiants, notés référence 1 et référence 2, destinés aux poids lourds, dont la composition est détaillée dans le tableau suivant. Les lubrifiants sont formulés par simple mélange à 60°C des différents composants.
[Tableau 2]
Figure imgf000032_0002
(1) Huile de base de groupe III (KV100
Figure imgf000032_0001
KV40 = 37 nurf/s, VI supérieur à 125) disponible commercialement par exemple auprès de la société SK Lubricantes sous le nom commercial « Yubase* 6 >>.
(2> Huile de base de groupe III (KV100 = 4,2 mirf/s, KV40 - 19,1 mmVs, VI de 126) disponible commercialement par exemple auprès de la société SK Lubricantes sous le nom commercial « Yubase® 4 ».
<ÂI Paquet d'additifs usuels dans le domaine des lubrifiants et disponible commercialement. Il comprend des agents anti-usure de type dithiophosphate de zinc, des détergents à base de calcium et des dispersants de type PIBSI.
(4! Paquet d'additifs usuels dans le domaine des lubrifiants et disponible commercialement. Il comprend des agents anti-usure de type dithiophosphate de zinc, des détergents à base de calcium et des dispersants de type PIBSI.
Deux compositions lubrifiantes conformes à l’invention, notées II et 12, sont préparées en supplémentant respectivement les lubrifiants de référence 1 et 2 par un composé spiroboronate conforme à l’invention (composé spiro de formule (I) dans laquelle M est un atome de bore, R représentent chacun un groupe décyle et ni et m valent 1), à raison de 1 % massique par rapport au lubrifiant de référence.
Les propriétés en termes de stabilité thermique des lubrifiants de référence 1 et 2 et des compositions lubrifiantes II et 12 selon l’invention, incorporant un composé spiroboronate selon l’invention, sont évaluées selon le protocole de MCT décrit ci-dessus.
Les résultats de cotation (MCT à 90 min) sont rassemblés dans le tableau suivant et sont présentés sur l’histogramme de la figure 1. Les valeurs de température à partir de laquelle intervient la formation des dépôts (Toépôt) sont également rassemblées dans le tableau suivant.
[Tableau 3]
Figure imgf000033_0001
' ' ’ Les valeurs sont exprimées avec un écart-type de = l %
Les compositions selon l’invention, supplémentées avec un composé spiroboronate selon l’invention, présentent une excellente cotation, supérieure à celles obtenues avec les lubrifiants de référence, ce qui témoigne d’une stabilité thermique significativement accrue dans des conditions de hautes températures (de 230°C à 280 °C).
Ces résultats sont confirmés par des températures de formation des dépôts pour les compositions selon l’invention bien supérieures à celles obtenues avec les lubrifiants de référence.
Ainsi, l’ajout d’un composé spiroboronate selon l’invention permet d’accroître significativement la stabilité thermique du lubrifiant. Les lubrifiants formeront ainsi moins de dépôt/vemis dans les conditions de mise en œuvre au niveau du système de motorisation des véhicules, et présentent ainsi des propriétés de détergence améliorées.
Exemple 2
Maintien des propriétés de détergence au cours du vieillissement du lubrifiant
Les lubrifiants de référence et les compositions lubrifiantes selon l’invention, telles que préparées en exemple 1, sont évaluées suivant le test MCT modifié pour soumettre les couches de lubrifiant à haute température (de 230 à 280 °C) pendant une durée trois fois plus longue (3 fois 90 minutes). De telles conditions permettent de simuler un vieillissement du lubrifiant.
Les résultats de cotation, dans les différentes conditions du test MCT, sont rassemblés dans le tableau suivant, et sont présentés sur l’histogramme de la figure 1. Les valeurs de température à partir de laquelle intervient la formation des dépôts (Toépôt) sont également rassemblées dans le tableau suivant.
[Tableau 4]
Figure imgf000034_0001
Les valeurs sont exprimées avec un écart-type de ± 1 %
Ces résultats montrent que les lubrifiants supplémentés par un spiroboronate conservent une stabilité thermique améliorée, même pour une durée d’exposition aux conditions de hautes températures trois fois plus longue.
Ces résultats sont confirmés par des températures à partir desquelles intervient la formation des dépôts pour les compositions selon l’invention bien supérieures à celles obtenues avec les lubrifiants de référence.
Ainsi, les lubrifiants selon l’invention conservent d’excellentes propriétés de détergence même après un usage répété du lubrifiant.
Exemple 3
Evaluation des propriétés de stabilité à l’oxydation des lubrifiants
L’effet de l’ajout d’un composé spiroboronate sur les propriétés de stabilité à l’oxydation a été évalué sur deux lubrifiants, notés CC3 et CC4, dont la composition est détaillée dans le tableau 5 suivant.
Deux compositions lubrifiantes conformes à l’invention, notés 13 et 14, sont préparées sur la base des lubrifiants comparatifs CC3 et CC4, dans lesquels 2% massique d’huile de base sont remplacés par 2% massique en composé spiroboronate selon l’invention.
Les lubrifiants sont formulés par simple mélange à 60°C des différents composants. [Tableau 5]
Figure imgf000035_0001
(1) Huile de base de groupe III (KV100 = 6, 3-6, 7 mm2/s, KV40 = 37 mm2/s, VI supérieur à 125) disponible commercialement par exemple auprès de la société SK Lubricantes sous le nom commercial « Yubase® 6 » ;
(2) Huile de base de groupe III (KV100 = 4,2 mm2/s, KV40 = 19,1 mm2/s, VI de 126) disponible commercialement par exemple auprès de la société SK Lubricantes sous le nom commercial « Yubase® 4 » ;
(3) Huile de base de groupe I (KV100 = 5, 0-5, 5 mm2/s, KV40 = 30,0-31,54 mm2/s, VI de 90- 92) disponible commercialement par exemple auprès de la société DANA sous le nom commercial « SN 150 » ;
(4) Mélange de différents additifs usuels dans le domaine des lubrifiants et disponible commercialement. Il comprend un additif détergent à base de calcium surbasé, et ne comprend pas d’additif anti-usure de type dithiophosphate de zinc ;
(5) Composé spiro de formule (I), dans laquelle M est un atome de bore, R représentent chacun un groupe décyle et ni et m valent 1.
Les propriétés de stabilité à l’oxydation sont évaluées selon le protocole basé sur la norme CEC L-85 T-99, décrit ci-dessus.
Les résultats de temps d’induction d’oxydation (OIT) sont rassemblés dans le tableau suivant.
[Tableau 6]
Figure imgf000035_0002
Ces résultats montrent que l’ajout d’un composé spiroboronate selon l’invention permet d’améliorer de manière significative la stabilité à l’oxydation du lubrifiant. Test de propreté de moteurs
Enfin, les lubrifiants CC3 et 13 ont été évalués au moyen de l’essai moteur TDI3 selon la méthode CEC L-l 17-20 qui mesure en particulier la propreté des pistons.
Les résultats sont rassemblés dans le tableau 6 suivant.
[Tableau 7]
Figure imgf000036_0002
On constate que la composition lubrifiante selon l’invention permet également d’améliorer la propreté moteur.
Exemple 4
Evaluation de la stabilité du composé spiroboronate en présence d’eau
La stabilité à l’eau d’un composé spiroboronate conforme à l’invention a été évaluée comme décrit ci-dessous.
Le composé spiroboronate testé est un composé spiro de formule (I) dans laquelle M est un atome de bore, R représentent chacun une chaîne octadécyle (C18) et ni et n2 valent 1, autrement dit est de formule suivante :
Figure imgf000036_0001
Le composé spiroboronate a été préparé à partir du dérivé d’acide salicylique (acide 2- hydroxy-5-octadécylbenzoïque) préalablement synthétisé et de l’acide borique.
Dans un ballon tricol de 250 mL muni d’un appareil de Dean-Stark pour éliminer l’eau et d’un agitateur mécanique sous azote, ont été introduits l’acide 2-hydroxy-5- octadécylbenzoïque (8,9 g, 22,8 mmol, 2 équiv) et l’acide borique (0,70 g, 11,4 mmol, 1,0 équiv) dans du toluène (65 mL). Le mélange a été chauffé à reflux jusqu’à la fin de la réaction, et le composé spiroboronate récupéré. Le composé spiroboronate a été dispersé à 5% massique dans de l’eau. L’émulsion a été soumise à une agitation vigoureuse par pale, suivie d’une plus forte agitation à l’aide d’un agitateur Ultra-Turrax®. Les émulsions obtenues après chaque agitation sont stables. Elles sont analysées par granulométrie laser à l’aide d’un granulomètre Malvern Mastersizer 2000.
La figure 2 présente la distribution des tailles des particules pour l’émulsion obtenue après agitation par pale (figure 2a) et après agitation Ultra-Turrax® (figure 2b). L’émulsion du spiroboronate dans l’eau a ensuite été passée à l’évaporateur rotatif sous vide, afin d’évaporer l’eau. Le résidu à l’issue de l’évaporation de l’eau a été récupéré et analysé par RMNIH.
Le spectre RMN du résidu est comparé à celui du composé spiroboronate pur.
La figure 3 présente les spectres RMN du spiroboronate pur (figure 3a) et du résidu obtenu comme décrit précédemment (figure 3b).
La comparaison des deux spectres montre que le résidu obtenu correspond au spiroboronate de départ. Ainsi, le composé spiroboronate n’a pas subi d’hydrolyse en présence de l’eau.

Claims

Revendications
1. Utilisation, à titre d’additif détergent dans une composition lubrifiante destinée à un système de motorisation, d’au moins un composé spiro de formule (I) suivante
Figure imgf000038_0001
dans laquelle
M est un atome choisi parmi le bore et l’aluminium ; ni et n2 valent, indépendamment l’un de l’autre, 0, 1 ou 2 ; et
R représentent, indépendamment l’un de l’autre, un groupement hydrocarboné comprenant de 1 à 50 atomes de carbone, notamment de 5 à 20 atomes de carbone et plus particulièrement de 5 à 15 atomes de carbone.
2. Utilisation selon la revendication précédente, ledit composé spiro étant de formule (I) dans laquelle les substituants R représentent, indépendamment l’un de l’autre, une chaîne aliphatique, linéaire ou ramifiée, en particulier une chaîne alkyle, de préférence linéaire, en Ci à C50 ; en particulier en C3 à C30, notamment en C5 à C25, notamment en C5 à C20 et plus particulièrement en Cs à C15, plus préférentiellement en Cio.
3. Utilisation selon la revendication 1 ou 2, ledit composé spiro étant de formule (I) dans laquelle ni et n2 valent 1, les groupements R étant identiques.
4. Utilisation selon l’une quelconque des revendications précédentes, ledit composé spiro étant de formule (I) dans laquelle M est un atome de bore.
5. Utilisation selon l’une quelconque des revendications précédentes, le ou lesdits composés spiro étant mis en œuvre en une teneur comprise entre 0,1 et 20 % massique par rapport à la masse totale de ladite composition lubrifiante, de préférence comprise entre 0,2 et 15 % massique, de préférence encore entre 0,5 et 10 % massique, et plus préférentiellement entre 0,5 et 5,0 % massique.
6. Utilisation selon l’une quelconque des revendications précédentes, ladite composition lubrifiante comprenant au moins un additif détergent métallique, distinct du composé spiro de formule (I), choisi parmi les sels de métaux alcalins ou de métaux alcalino-terreux, surbasés ou non, en particulier parmi les sels de calcium, les sels de magnésium et leurs mélanges.
7. Utilisation selon la revendication précédente, le ou lesdits additifs détergents métalliques étant présents en une teneur inférieure ou égale à 15 % massique, en particulier inférieure ou égale à 10 % massique et plus particulièrement comprise entre 0,5 % et 5,0 % massique, par rapport à la masse totale de ladite composition.
8. Utilisation selon l’une quelconque des revendications précédentes, ladite composition comprenant une ou plusieurs huiles de base en une teneur d’au moins 50 % massique, par rapport à sa masse totale, en particulier d’au moins 60 % massique, plus particulièrement allant de 60 à 99 % massique et de préférence de 70 à 90 % massique.
9. Utilisation selon l’une quelconque des revendications précédentes, ladite composition comprenant un ou plusieurs autres additifs, distincts du ou desdits composés spiro, choisi(s) parmi les additifs modificateurs de frottement, les additifs anti-usure, les additifs extrême pression, les antioxydants, les améliorants de l’indice de viscosité, les additifs abaisseurs du point d’écoulement, les dispersants, les agents anti-mousse, les épaississants, les inhibiteurs de corrosion, et leurs mélanges.
10. Utilisation selon l’une quelconque des revendications précédentes, ladite composition lubrifiante étant un lubrifiant pour un système de motorisation, mobile ou stationnaire, comprenant un moteur Diesel, à essence, au gaz ou dual-fuel, en particulier dans un véhicule automobile léger ou poids lourd.
11. Utilisation selon l’une quelconque des revendications précédentes, pour prévenir et/ou diminuer la combustion anormale du carburant, en particulier le pré-allumage, notamment le LSPI, et/ou le cliquetis, dans un système de motorisation lubrifié à l’aide de ladite composition lubrifiante.
12. Composition lubrifiante destinée à la lubrification d’un système de motorisation, comprenant au moins :
- une ou plusieurs huiles de base ;
- au moins un composé spiro tel que défini dans l’une quelconque des revendications 1 à 5,
- éventuellement un ou plusieurs additifs, distincts du ou desdits composés spiro, choisis parmi les autres additifs détergents, en particulier les additifs détergents métalliques, les modificateurs de frottement, les additifs anti-usure, les additifs extrême pression, les antioxydants, les améliorants de l’indice de viscosité (VI), les additifs abaisseurs du point d’écoulement (PPD), les dispersants, les agents anti-mousse, les épaississants, les inhibiteurs de corrosion, et leurs mélange.
13. Composition lubrifiante selon la revendication précédente, ladite composition comprenant au moins un additif détergent métallique distinct du composé spiro de formule (I), en particulier choisi parmi les sels de calcium et de magnésium et leurs mélanges ; en particulier en une teneur inférieure ou égale à 15 % massique, notamment inférieure ou égale à 10 % massique et plus particulièrement comprise entre 0,5 % et 5,0 % massique, par rapport à la masse totale de ladite composition.
14. Procédé de lubrification d’un système de motorisation, comprenant une étape de mise en contact d’au moins une pièce mécanique dudit système avec une composition lubrifiante telle que définie selon la revendication 12 ou 13, ledit système de motorisation comprenant en particulier un moteur Diesel, à essence, au gaz ou dual-fuel, plus particulièrement dans un véhicule automobile léger ou poids lourd.
PCT/EP2022/077850 2021-10-07 2022-10-06 Compose spiro comme additif detergent dans des lubrifiants destines a des systemes de motorisation WO2023057590A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2110620A FR3127953A1 (fr) 2021-10-07 2021-10-07 Composé spiro comme additif détergent dans des lubrifiants destinés à des systèmes de motorisation
FRFR2110620 2021-10-07

Publications (1)

Publication Number Publication Date
WO2023057590A1 true WO2023057590A1 (fr) 2023-04-13

Family

ID=79602210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/077850 WO2023057590A1 (fr) 2021-10-07 2022-10-06 Compose spiro comme additif detergent dans des lubrifiants destines a des systemes de motorisation

Country Status (2)

Country Link
FR (1) FR3127953A1 (fr)
WO (1) WO2023057590A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050172543A1 (en) * 2004-01-29 2005-08-11 Muir Ronald J. Detergent / anti-oxidant additives for fuels and lubricants
US20060019838A1 (en) * 2004-07-21 2006-01-26 Muir Ronald J Fuel and lubricant additive containing alkyl hydroxy carboxylic acid boron esters
WO2018220009A1 (fr) 2017-05-31 2018-12-06 Total Marketing Services Composé comprenant des fonctions polyamine, acide et bore et son utilisation en tant qu'additif pour lubrifiant
WO2018220007A1 (fr) 2017-05-31 2018-12-06 Total Marketing Services Composé comprenant des fonctionnalités polyamine, acide et bore et son utilisation en tant qu'additif lubrifiant
FR3092335A1 (fr) * 2019-02-04 2020-08-07 Total Marketing Services Composition lubrifiante pour prévenir le pré-allumage

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07104608B2 (ja) * 1987-07-03 1995-11-13 キヤノン株式会社 静電荷像現像用トナ−

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050172543A1 (en) * 2004-01-29 2005-08-11 Muir Ronald J. Detergent / anti-oxidant additives for fuels and lubricants
US20060019838A1 (en) * 2004-07-21 2006-01-26 Muir Ronald J Fuel and lubricant additive containing alkyl hydroxy carboxylic acid boron esters
WO2006022934A2 (fr) 2004-07-21 2006-03-02 Chemtura Corporation Additif de combustible et de lubrifiant contenant des esters de bore d'acide carboxylique d'hydroxy alkyle
WO2018220009A1 (fr) 2017-05-31 2018-12-06 Total Marketing Services Composé comprenant des fonctions polyamine, acide et bore et son utilisation en tant qu'additif pour lubrifiant
WO2018220007A1 (fr) 2017-05-31 2018-12-06 Total Marketing Services Composé comprenant des fonctionnalités polyamine, acide et bore et son utilisation en tant qu'additif lubrifiant
FR3092335A1 (fr) * 2019-02-04 2020-08-07 Total Marketing Services Composition lubrifiante pour prévenir le pré-allumage

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KOCSIS ET AL.: "The Impact of Lubricant Volatility, Viscosity and Detergent Chemistry on Low Speed Pre-Ignition Behavior", SAE INT. J. ENGINES, vol. 10, no. 3, 2017, pages 1019 - 1035
RITCHIE ET AL.: "Controlling Low-Speed Pre-Ignition in Modern Automotive Equipment, Part 3: Identification of Key Additive Component Types and Other Lubricant Composition Effects on Low-Speed Pre-Ignition", SAE INT. J. ENGINES, vol. 9, no. 2, 2016, pages 832 - 840, XP055869355

Also Published As

Publication number Publication date
FR3127953A1 (fr) 2023-04-14

Similar Documents

Publication Publication Date Title
EP2245125A1 (fr) Composition lubrifiante pour moteur quatre temps a bas taux de cendres
EP3174960B1 (fr) Compositions lubrifiantes pour véhicule a moteur
WO2023057581A1 (fr) Composition lubrifiante pour prévenir ou diminuer la combustion anormale dans un moteur
WO2017021522A1 (fr) Compositions lubrifiantes pour prevenir ou diminuer le pre-allumage dans un moteur
WO2018210829A1 (fr) Utilisation de compositions lubrifiantes pour ameliorer la proprete d&#39;un moteur de vehicule 4-temps
EP2935542A1 (fr) Composition lubrifiante a base d&#39;ether de polyglycerol
WO2017013238A1 (fr) Composition lubrifiante a fuel eco longue durée
EP3331974A1 (fr) Compositions lubrifiantes pour prevenir ou diminuer le pre-allumage dans un moteur
EP3134495B1 (fr) Utilisation d&#39;une composition lubrifiante pour diminuer le cliquetis
WO2016102529A1 (fr) Composition lubrifiante a matériau a changement de phase
WO2023057590A1 (fr) Compose spiro comme additif detergent dans des lubrifiants destines a des systemes de motorisation
EP3781656A1 (fr) Composition lubrifiante pour moteurs industriels a potentiel fe amplifie
EP3529341A1 (fr) Composition lubrifiante
WO2023057586A1 (fr) Composé spiro comme additif détergent dans des lubrifiants pour moteurs marins
WO2016156323A1 (fr) Copolymère étoile et son utilisation comme améliorant de viscosité
WO2022207715A1 (fr) Lubrification de moteur de véhicule hybride rechargeable et véhicule hybride comprenant un prolongateur d&#39;autonomie
EP3172295A1 (fr) Composition lubrifiante comprenant un composé anti-cliquetis
WO2023061899A1 (fr) Carbodiimide comme additif dans des lubrifiants destinés à des systèmes de motorisation pour ameliorer la compatibilite avec les elastomeres
KR20240099252A (ko) 구동 시스템용 윤활제의 청정제 첨가제로서 스피로 화합물
KR20240099254A (ko) 엔진의 비정상 연소를 방지하거나 감소시키기 위한 윤활 조성물
FR3140887A1 (fr) Utilisation d’une huile de base spécifique pour réduire les émissions de particules
WO2024052415A1 (fr) Composition lubrifiante avec des propriétés fuel eco améliorées dans les véhicules hybrides
EP3237589A1 (fr) Composition lubrifiante a matériau a changement de phase
FR3011246A1 (fr) Composition lubrifiante a base de copolymeres ethylene/propylene

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22802028

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022802028

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022802028

Country of ref document: EP

Effective date: 20240507