WO2023057586A1 - Composé spiro comme additif détergent dans des lubrifiants pour moteurs marins - Google Patents

Composé spiro comme additif détergent dans des lubrifiants pour moteurs marins Download PDF

Info

Publication number
WO2023057586A1
WO2023057586A1 PCT/EP2022/077844 EP2022077844W WO2023057586A1 WO 2023057586 A1 WO2023057586 A1 WO 2023057586A1 EP 2022077844 W EP2022077844 W EP 2022077844W WO 2023057586 A1 WO2023057586 A1 WO 2023057586A1
Authority
WO
WIPO (PCT)
Prior art keywords
additives
mass
spiro compound
lubricating composition
marine
Prior art date
Application number
PCT/EP2022/077844
Other languages
English (en)
Inventor
Valérie Doyen
Gregory CHAO
Modestino DE FEO
Original Assignee
Totalenergies Onetech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Totalenergies Onetech filed Critical Totalenergies Onetech
Priority to CN202280079692.6A priority Critical patent/CN118369406A/zh
Priority to KR1020247015145A priority patent/KR20240101578A/ko
Priority to JP2024521015A priority patent/JP2024536410A/ja
Priority to EP22800222.6A priority patent/EP4413103A1/fr
Publication of WO2023057586A1 publication Critical patent/WO2023057586A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M139/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing atoms of elements not provided for in groups C10M127/00 - C10M137/00
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M159/00Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
    • C10M159/12Reaction products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/1006Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/14Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/144Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings containing hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/28Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • C10M2227/06Organic compounds derived from inorganic acids or metal salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • C10M2227/06Organic compounds derived from inorganic acids or metal salts
    • C10M2227/061Esters derived from boron
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • C10M2227/06Organic compounds derived from inorganic acids or metal salts
    • C10M2227/061Esters derived from boron
    • C10M2227/062Cyclic esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/04Detergent property or dispersant property
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/40Low content or no content compositions
    • C10N2030/45Ash-less or low ash content
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/76Reduction of noise, shudder, or vibrations
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/252Diesel engines

Definitions

  • the present invention relates to the field of lubricating compositions, and more particularly to the field of lubricating compositions intended for the lubrication of marine engines, in particular two-stroke or four-stroke marine engines. It relates more particularly to the use of spiro compounds as detergent additives in lubricants for marine engines.
  • the invention provides access to a lubricant with excellent detergency and oxidation stability properties, while maintaining a low ash content.
  • Marine engines such as two-stroke or four-stroke marine engines, use lubricants, also called “marine oils", ensuring the lubrication of the various parts of the engine.
  • lubricants also called “marine oils”
  • slow two-stroke marine engines with a crosshead implement on the one hand, "cylinder” oils ensuring the lubrication of the piston-cylinder assembly or of the piston-segment-liner zone and, on the other hand , “system” oils, ensuring the lubrication of all moving parts other than the piston-cylinder assembly or outside the piston-ring-liner assembly.
  • lubricating oils in particular cylinder oils.
  • the lubricating oils within the piston-cylinder assembly are in contact with the combustion residues of the fuel, these residues possibly containing, when they come from fuels with a high sulfur content, significant quantities of acid gases.
  • acid gases are formed: these are in particular sulfur oxides (SO2, SO3), which are then hydrolyzed, during contact with the humidity present in the gases. combustion and/or in oil, to generate sulfurous (HSO3) or sulfuric (H2SO4) acid.
  • the neutralization capacity of lubricating oils was thus a criterion of choice, making it possible to adjust the basicity of the lubricant used to the sulfur content of the fuel used, in order to be able to neutralize all the sulfur contained in the fuel and likely to be transformed into sulfuric acid by combustion.
  • base number or BN or "Base number” in Anglo-Saxon terminology, sometimes called TBN for “Total Base Number” in Anglo-Saxon terminology
  • TBN Total Base Number
  • the desired basicity for the lubricant was conventionally provided by detergents overbased with insoluble metal salts, in particular metal carbonates such as calcium carbonate.
  • detergents are in particular metallic soaps of the salicylate, phenate, sulphonate or carboxylate type, which form micelles in which the particles of insoluble metallic salts are kept in suspension.
  • Part of the BN can also be provided by non-overbased or “neutral” metallic detergents.
  • a clogged filter due to unburnt matter can induce an increase in fuel consumption and thus result in fuel wastage, which goes against the desired properties in terms of reducing marine fuel consumption.
  • lubricants for marine engines being in direct contact with the engine, and in particular with the hot part of the engine, such as for example the piston-cylinder assembly, have good stability at high temperatures, in order to reduce or prevent the formation of deposits on the surface of metal parts, which are harmful to the engine.
  • document WO 2014/180843 proposes a cylinder lubricant for a marine engine, usable both with fuel oils with a high sulfur content and fuel oils with a low sulfur content, and having in particular good thermal resistance, combining a metallic detergent overbased with metal carbonate salts, a neutral detergent and a specific BN fatty amine, in particular a tetra-amine.
  • Applications WO 2018/220007 and WO 2018/220009 propose, for example, the implementation of compounds derived from salicylic acid, products of the reaction between salicylic acid, a boron compound and an amine compound, for example of the polyamine, for formulating lubricating compositions for marine engines, in particular for engines marine two-stroke, combining good anti-corrosion properties, wear resistance and good detergency performance.
  • the present invention aims to provide a means for providing a lubricant intended for the lubrication of a marine engine with excellent detergency properties while having a low impact on the ash content.
  • the invention relates, according to a first of its aspects, to the use, as a detergent additive in a lubricating composition intended for a marine engine, for example a two-stroke or four-stroke engine, of at least one spiro compound of the following formula (I) [Chem 1] in which :
  • M is an atom chosen from boron (B) and aluminum (Al), in particular is a boron atom; ni and n2 are, independently of each other, 0, 1 or 2; And
  • R represent, independently of one another, a hydrocarbon group comprising from 1 to 50 carbon atoms, in particular from 5 to 20 and more particularly from 5 to 20 carbon atoms.
  • the spiro compound used according to the invention is of formula (I) above, in which M is a boron atom.
  • the spiro compound is a compound called a "spiroboronate compound", of formula (!') below: wherein n1, n2 and R are as previously defined.
  • detergent additive within the meaning of the present invention, is meant a compound which, introduced into a lubricating oil, makes it possible to provide and/or increase its detergency capacities and therefore to reduce, prevent, or even remove engine deposits.
  • spiro compound according to the invention will more simply denote a spiro compound of formula (I) as defined above, in particular a spiroboronate compound of formula (!') as defined above. Examples of spiro compounds considered according to the invention are described more precisely in the following text.
  • marine lubricant refers to a lubricant intended for the lubrication of a marine engine.
  • the marine lubricants under consideration according to the invention are suitable for use in the lubrication of two-stroke or four-stroke marine engines, in particular for two-stroke marine engines.
  • a lubricant called “cylinder lubricant” used for lubricating the piston-cylinder assembly of the engine a lubricant called “system lubricant”, used for lubricating all parts in motion of the engine excluding the piston-cylinder assembly, or even a lubricant called “crankcase lubricant” used for the lubrication of the entire engine, including the piston-cylinder assembly, in particular in an engine 4-stroke.
  • cylinder lubricant used for lubricating the piston-cylinder assembly of the engine
  • system lubricant used for lubricating all parts in motion of the engine excluding the piston-cylinder assembly
  • crankcase lubricant used for the lubrication of the entire engine, including the piston-cylinder assembly, in particular in an engine 4-stroke.
  • the invention also relates, according to another of its aspects, to a lubricating composition intended for the lubrication of a marine engine, in particular a two-stroke or four-stroke engine, comprising at least:
  • a lubricating composition according to the invention comprises, in addition to the said spiro compound(s) according to the invention, one or more other detergent additives, in particular chosen from the metallic detergent additives conventionally used in the field of lubricants, in particular based on calcium or magnesium.
  • a spiro compound according to the invention makes it possible to obtain a marine lubricant having equivalent, and even improved, thermal resistance properties, compared to a lubricant incorporating conventional metallic detergents, and therefore to ensure good engine cleanliness, in particular of the segment-piston-cylinder area.
  • the detergency properties of the marine lubricant can be assessed by evaluating the performance of the lubricant in terms of thermal resistance by ECBT type tests, as described in the publication entitled “Research and Development of Marine Lubricants in ELF ANTAR France - The relevance of laboratory tests in simulating field performance” by Jean-Philippe ROMAN, MARINE PROPULSION CONFERENCE 2000 - AMSTERDAM - 29-30 MARCH 2000.
  • said spiro compound or compounds, implemented as detergent additives according to the invention generate little ash compared to conventional metallic detergents.
  • the incorporation in a marine lubricant of one or more spiro compounds according to the invention advantageously makes it possible to increase the detergency capacities of the lubricant, without negatively impacting the content of ash generated by the lubricant.
  • a lubricating composition according to the invention thus makes it possible to combine excellent detergency properties and a low level of ash, in particular sulphated ash.
  • the implementation of a spiro compound according to the invention thus makes it possible to access a marine lubricating composition having good properties in terms of engine cleanliness, in particular in the segment-piston-cylinder zone of a marine engine, in particular the piston-cylinder assembly.
  • the implementation of a spiro compound according to the invention also makes it possible to significantly increase the oxidation stability of the marine lubricant.
  • a spiro compound according to the invention makes it possible to access a marine lubricant having, under the temperature conditions encountered at the level of the marine engine, excellent properties of thermal resistance, engine cleanliness and oxidation stability, with reduced ash content.
  • the spiro compounds according to the invention due in particular to the tetra-covalent configuration of the boron or aluminum atom, are not hydrolysable.
  • the spiro compounds according to the invention in particular the spiroboronate compounds according to the invention, exhibit excellent stability when they are brought into contact with water (which would for example result from the combustion of fuel or the condensation).
  • water which would for example result from the combustion of fuel or the condensation.
  • the absence of decomposition/degradation of the spiro compounds in the presence of water makes it possible in particular to prevent, during the implementation of the lubricating composition according to the invention, the formation of boric acid, a product classified as CMR (carcinogenic, mutagenic and repro toxic).
  • the invention also relates to a process or a method for increasing the detergency capacity of a lubricating composition intended for a marine engine, in particular of a lubricating composition implementing a reduced content of metallic detergents, in particular of calcium carbonate, or even free of metallic detergent, comprising the addition to said lubricating composition of at least one spiro compound according to the invention.
  • the process or method according to the invention advantageously makes it possible to increase the detergency capacity of said composition, while maintaining a low ash content.
  • the invention also relates, according to another of its aspects, to a process or method for detergency of a marine engine, in particular a four-stroke or two-stroke engine, comprising a step of bringing at least one mechanical part of said marine engine, in particular of at least part of the segments, piston and/or cylinder of said marine engine, with a lubricating composition according to the invention as defined above.
  • It also relates to the use of at least one spiro compound according to the invention in a lubricant intended for the lubrication of a marine engine, in particular the piston-cylinder assembly of a marine engine, to improve engine cleanliness.
  • the invention also relates, according to another of its aspects, to a process or method for lubricating a marine engine, in particular a four-stroke or two-stroke engine, comprising a step of bringing at least one mechanical part of said marine engine, in particular of at least part of the rings, piston and/or liner of said marine engine, with a lubricating composition as defined above.
  • Figure 1 shows the particle size distribution for the emulsion of spiroboronate in water obtained after paddle stirring ( Figure la) and after Ultra-Turrax® stirring ( Figure 1b), as described in Example 4.
  • Figure 2 shows the NMR spectra of pure spiroboronate (Figure 2a) and of the residue ( Figure 2b) obtained as described in Example 4.
  • the invention is based on the implementation, in a lubricant for a marine engine, of one or more specific spiro compounds, as detergent additive(s).
  • the invention can implement a single spiro compound or a mixture of at least two distinct spiro compounds, in particular three or four distinct spiro compounds, in particular as defined below.
  • M is an atom chosen from boron and aluminum, in particular is a boron atom; ni and n2 are, independently of each other, 0, 1 or 2; And
  • R represent, independently of each other, a hydrocarbon group comprising from 1 to 50 carbon atoms, in particular from 5 to 20 carbon atoms.
  • the R 1 and R 2 groups are only composed of carbon and hydrogen atoms.
  • the hydrocarbon groups can in particular be alkyl, alkenyl, aryl or aralkyl groups.
  • the substituents R represent, independently of each other, a hydrocarbon group, preferably an aliphatic chain, linear or branched, comprising from 3 to 50 carbon atoms, in particular from 3 to 30 carbon atoms, in particular from 5 to 25 carbon atoms and more particularly from 8 to 20 carbon atoms.
  • substituents R can represent, independently of one another, an aliphatic, linear or branched chain, in particular an alkyl chain, preferably linear, in Ci to C50; in particular C3 to C30, in particular C5 to C25 and more particularly Cs to C20, for example C10 or C10.
  • n1 and n2 are equal to 0.
  • n1 and n2 are equal to 1 or 2.
  • the R groups, carried by the same cycle, can be identical or different.
  • the spiro compound may be of formula (I) above, in which n1 and n2 are 1; the substituents R possibly being identical or different, preferably identical.
  • the spiro compound is of formula (I) above, in which: n1 and n2 are 1; and the groups R, which are identical, represent alkyl groups, preferably linear, C1 to C50, in particular C3 to C30, in particular C5 to C25 and more particularly Cs to C20, even more preferably C10.
  • the spiro compound is of formula (I) in which M is a boron atom.
  • the spiro compound can be a so-called spiroboronate compound, of the following formula (!'): [Chem 3] wherein R, n1 and n2 are as previously defined.
  • the spiro compound is of formula (I) in which M is an aluminum atom.
  • the spiro compound may be a so-called spiroaluminate compound, of formula (I”) following:
  • the invention thus relates, according to another of its aspects, to a spiro compound of formula (I) mentioned above, in which:
  • - ni and n2 are, independently of each other, 0, 1 or 2, at least one of ni and n2 being 1 or 2; preferably n1 and n2 are 1;
  • the R groups represent, independently of each other, an aliphatic, linear or branched chain, in particular an alkyl chain, preferably linear, comprising 5 to 50 carbon atoms, in particular from 6 to 30 carbon atoms, in particular from 8 to 25 carbon atoms and more particularly from 10 to 20 carbon atoms.
  • the invention relates to a compound of the spiroaluminate type of formula (I”) above, in which:
  • - ni and n2 are, independently of each other, 0, 1 or 2, at least one of ni and n2 being 1 or 2; preferably n1 and n2 are 1;
  • the R groups represent, independently of each other, a linear or branched aliphatic chain, in particular an alkyl chain, preferably linear, comprising from 5 to 50 carbon atoms, in particular from 6 to 30 carbon, in particular from 8 to 25 carbon atoms and more particularly from 10 to 20 carbon atoms.
  • the compound of spiroaluminate type according to the invention is of formula (I”) in which:
  • the groups R which are identical or different, preferably identical, represent alkyl chains, preferably linear, comprising from 5 to 50 carbon atoms, in particular from 6 to 30 carbon atoms, in particular from 8 to 25 carbon atoms and more particularly from 10 to 20 carbon atoms.
  • the spiro compound used according to the invention can be prepared from salicylic acid or a derivative of salicylic acid and a boron compound or an aluminum compound.
  • boron or aluminum compound in particular boric acid or aluminum hydroxide.
  • the preparation of the spiro compound used in the lubricating composition according to the invention does not involve any step, subsequent to the reaction of salicylic acid or one of its derivatives with said boron or aluminum compound, of reaction with an amine compound, as is the case for example in the context of the preparation of the compounds proposed in applications WO2018/220007 and WO2018/220009.
  • Salicylic acid and its derivatives of formula (Ia) above can be synthesized according to synthetic methods known to those skilled in the art or can be commercially available.
  • the boron compound (in other words, based on boron) can be chosen in particular from boric acid (B(OH)3), boronic acids, boric and boronic esters, boron oxide and acid complexes boric.
  • the boron compound can be chosen from boric acid; boron oxide; boric acid complexes; trialkyl borates, in particular in which the alkyl groups comprise independently of each other from 1 to 4 carbon atoms; boronic acids having a C1-C12 alkyl group; boric acids substituted with two alkyl groups, in particular C1 to C12; boric acids substituted with two aryl groups, in particular C6 to C12; boric acids substituted by one or two aralkyl groups, in particular C7 to C12, and derivatives of these compounds obtained by substitution of at least one alkyl group by one or more alkoxy groups.
  • Boric acid complexes are in particular complexes of boron with one or more molecules comprising one or more alcohol functions.
  • the boron compound is boric acid.
  • the aluminum compound in other words, based on aluminium
  • reaction can be carried out in a solvent medium consisting of one or more apolar solvents and/or practical polar solvents.
  • the solvent medium may consist of one or more solvents chosen from naphtha, practical polar solvents, such as water and alcohols, for example methanol, ethanol, propanol, butanol; and their mixtures.
  • the reaction between salicylic acid or one of its derivatives of formula (la) above and the boron or aluminum compound to obtain the desired spiro compound in particular the reaction between salicylic acid or one of its derivatives of formula (Ia) and the boron compound to obtain the desired spiroboronate compound, can be carried out in an apolar aprotic solvent medium, in particular in toluene.
  • hydrocarbon group a radical saturated or not, linear, branched or cyclic, aromatic or not, comprising carbon and hydrogen;
  • aliphatic chain a hydrocarbon group consisting exclusively of carbon and hydrogen atoms, linear or branched, saturated or unsaturated, non-aromatic.
  • an aliphatic chain is an alkyl chain
  • alkyl a saturated, linear or branched aliphatic group; for example, a C x to C z alkyl represents a saturated carbon chain of x to z carbon atoms, linear or branched;
  • alkenyl a mono- or polyunsaturated, linear or branched aliphatic group
  • cycloalkyl a cyclic alkyl group, for example a C x to C z cycloalkyl represents a cyclic carbon group of x to z carbon atoms, for example a cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl;
  • aryl a mono- or polycyclic aromatic group, in particular comprising between 6 and 10 carbon atoms.
  • aryl group mention may be made of phenyl or naphthyl groups;
  • aralkyl an aryl group as defined above, substituted by at least one alkyl group as defined above.
  • Said spiro compound or compounds are advantageously implemented in a sufficient content to achieve the required level of detergency capacity of the marine lubricant.
  • a small amount of spiro compound(s) in particular less than 3% by mass, relative to the total mass of said lubricating composition, provides access to the required detergency capacity, even in the absence metallic detergents such as calcium-based detergents.
  • the amount implemented in spiro compound(s) can be adjusted according to the composition of the marine lubricant, and more particularly taking into account the presence or not and the amount implemented of other additive(s).
  • the said spiro compound or compounds considered according to the invention in particular as defined previously, can be implemented at a rate of 0.1 to 20% by mass, in particular from 0.2 to 15% by mass , in particular from 0.5 to 10%, and more particularly from 0.5 to 5% by mass, relative to the total mass of said marine lubricating composition.
  • a lubricating composition for marine engines as considered according to the invention comprises more particularly one or more base oils and, optionally, other additives conventionally considered in marine lubricants.
  • a marine lubricant according to the invention comprises one or more base oils.
  • base oils can be chosen from the base oils conventionally used in the field of marine lubricants, such as mineral, synthetic or natural, animal or vegetable oils or mixtures thereof.
  • It can be a mixture of several base oils, for example a mixture of two, three or four base oils.
  • the base oils of the marine lubricants considered according to the invention may in particular be oils of mineral or synthetic origin belonging to groups I to V according to the classes defined in the API classification (or their equivalents according to the ATIEL classification) and presented in Table A below or mixtures thereof.
  • Mineral base oils include all types of base oils obtained by atmospheric and vacuum distillation of crude oil followed by refining operations such as solvent extraction, de-alpha removal, solvent dewaxing, hydrotreating, hydrocracking, hydroisomerization and hydrofinishing .
  • Group I mineral bases are for example bases called Neutral Solvent (such as 150NS, 330NS, 500NS or 600NS) or Brightstock.
  • Synthetic base oils can be esters of carboxylic acids and alcohols, polyalphaolefins or polyalkylene glycol (PAG) obtained by polymerization or copolymerization of alkylene oxides comprising from 2 to 8 carbon atoms, in particular of 2 to 4 carbon atoms.
  • the polyalphaolefins used as base oils are for example obtained from monomers comprising 4 to 32 carbon atoms, for example from decene, octene or dodecene, and whose viscosity at 100° C. is between 1, 5 and 15 mm 2 .s -1 according to the ASTM D445 standard. Their average molecular mass is generally between 250 and 3000 according to the ASTM D5296 standard.
  • Blends of synthetic and mineral oils, which may be biosourced, can also be used.
  • the lubricating compositions according to the invention have a viscometric grade SAE-20, SAE-30, SAE-40, SAE-50 or SAE-60 according to the SAEJ300 classification, equivalent to a kinematic viscosity at 100° C. of between 5 .6 and 26.1 mm 2 /s measured according to the ASTM D445 standard.
  • Grade 40 oils have a kinematic viscosity, measured according to the ASTM D445 standard, at 100° C. of between 12.5 and 16.3 mm 2 /s.
  • Grade 50 oils have a kinematic viscosity, measured according to the ASTM D445 standard, at 100° C. of between 16.3 and 21.9 mm 2 /s.
  • Grade 60 oils have a kinematic viscosity, measured according to the ASTM D445 standard, at 100° C. of between 21.9 and 26.1 mm 2 /s.
  • the base oil(s) may be present in a lubricating composition according to the invention in a content of at least 50% by mass, relative to its total mass, in particular at least 60% by mass, more particularly ranging from 65 to 99% by mass and preferably from 70 to 98% by mass, for example ranging from 65% to 95% by mass.
  • a lubricating composition according to the invention can comprise all types of additives usually used in marine lubricants.
  • additives can be introduced individually and/or in the form of a mixture, or “package of additives”, like those already available for sale for the formulations of commercial lubricants for marine engines.
  • additives distinct from said spiro compound(s) may be chosen in particular from other detergent additives, distinct from said spiro compound(s), in particular overbased and neutral metallic detergent additives, basic organic additives improving the total base number ( TBN), anti-wear additives, dispersant additives, viscosity index (VI) improver, thickeners, anti-foaming agents, antioxidant additives, anti-rust additives and mixtures thereof.
  • TBN total base number
  • anti-wear additives anti-wear additives
  • dispersant additives dispersant additives
  • viscosity index (VI) improver thickeners
  • anti-foaming agents antioxidant additives
  • anti-rust additives anti-rust additives and mixtures thereof.
  • a marine lubricant under consideration according to the invention, incorporating one or more spiro compounds according to the invention, in particular as defined previously, may comprise one or more other detergent additives, in particular one or more metallic detergent additives.
  • metal detergents are known to those skilled in the art to provide high levels of detergency.
  • these metal compounds have the disadvantage of generating sulphated ash.
  • anionic compounds comprising a long lipophilic hydrocarbon chain and a hydrophilic head, the associated cation possibly being a metal cation of an alkali or alkaline earth metal.
  • alkali metal or alkaline-earth metal salts of carboxylic acids are generally chosen from alkali metal or alkaline-earth metal salts of carboxylic acids, in particular sulfonates, salicylates, naphthenates, phenates, carboxylates and mixtures thereof.
  • the alkali and alkaline-earth metals are preferably calcium, magnesium, sodium or barium.
  • These metallic salts generally include the metal in a stoichiometric quantity (we then speak of non-overbased or “neutral” detergents), or else in excess, therefore in a quantity greater than the stoichiometric amount.
  • a marine lubricant according to the invention comprises at least one metallic detergent additive, distinct from the said spiro compound or compounds, in particular at least one overbased detergent additive and/or at least one neutral detergent additive.
  • the overbased detergent and/or the neutral detergent are compounds based on metals chosen from calcium, magnesium, sodium and barium, preferably based on calcium or magnesium.
  • the overbased detergent is overbased with insoluble metal salts chosen from the group of alkali and alkaline-earth metal carbonates, preferably calcium carbonate.
  • the overbased detergent used in a marine lubricant according to the invention can be chosen in particular from phenates, sulphonates, salicylates, carboxylates and mixed detergents (phenates-sulphonates-salicylates) overbased with calcium carbonate, more particularly by calcium carbonate overbased sulfonates and phenates.
  • the content of metallic detergents, in particular of overbased detergents and/or of neutral detergents as described previously, included in a marine lubricant according to the invention can in particular be adjusted so as to reach the desired value of the total base number of the lubricant.
  • a marine lubricant according to the invention may have a total base number, TBN, measured according to the ASTM D2896 standard, of less than or equal to 140 mg KOH per gram of lubricant, in particular between 5 and 140 mg KOH/g of lubricant, in particular between 5 and 100 mg KOH/g of lubricant, in particular between 10 and 60 mg KOH/g of lubricant.
  • TBN total base number
  • a marine engine lubricant according to the invention comprises at least:
  • At least one metallic detergent additive distinct from said spiro compound in particular at least one overbased detergent and/or one neutral detergent as defined above, in particular based on calcium or magnesium.
  • the content of metallic detergent additives as defined above, undesirable with regard to the ash they generate, can be reduced, while retaining good detergency properties.
  • the marine lubricant composition according to the invention may comprise less than 25% by mass, in particular from 0.1 to 25% by mass, more particularly from 5% to 15% by mass, of additive(s) metallic detergent(s) distinct from the spiro compounds according to the invention, relative to the total mass of said composition.
  • the lubricating composition according to the invention may comprise less than 15% by mass, in particular less than 10% by mass and more particularly from 0.1 to 10% by mass, in particular from 0.5% to 5 % by mass, of metal detergent additive(s) distinct from the spiro compounds according to the invention, relative to the total mass of said composition.
  • the said metallic detergent additive(s) may be present in the lubricating composition so as to provide a content of metallic element(s), in particular calcium, of less than or equal to 10,000 ppm, in particular ranging from 100 ppm to 10000 ppm, preferably 250 ppm to 6000 ppm.
  • a marine lubricant according to the invention may comprise:
  • one or more metallic detergent additives distinct from said spiro compound according to the invention, in particular chosen from overbased and neutral metallic detergents as defined previously , in particular based on calcium or magnesium; the contents being expressed relative to the total mass of said marine lubricant.
  • a lubricating composition according to the invention does not comprise a fatty amine, in particular of the tri-amine or tetra-amine type.
  • a lubricating composition considered according to the invention can also comprise at least one basic organic additive making it possible to increase the total base number, called TBN, of the lubricating composition.
  • TBN booster make it possible to increase the total base index of the composition; in other words, are able to neutralize acids and provide access to improved detergent performance.
  • They may in particular be amino, alkylated or aromatic organic additives or even nitrogen dispersants.
  • the said basic organic additive(s) improving the TBN can be used in a content greater than or equal to 0.1% by mass, relative to the total mass of the said lubricating composition, in particular in a content of between 0 , 1 and 10% by mass, more particularly between 0.5 and 7% by mass, preferably between 1 and 5% by mass.
  • a lubricating composition considered according to the invention may also comprise at least one anti-foam additive, in particular implemented to counter the effect of metallic detergents.
  • the antifoam additives can be chosen from polar polymers such as polymethylsiloxanes or polyacrylates; succinimides and their derivatives, in particular from polyisobutylene succinimide (PIBSI) or polyisobutylene succinic anhydride (PIBSA).
  • a lubricating composition under consideration according to the invention may comprise from 0.01 to 3% by mass of antifoam additive(s), relative to the total mass of the lubricating composition.
  • a lubricating composition considered according to the invention can also comprise a viscosity index (VI) improver.
  • Viscosity index (VI) improvers in particular viscosity index improver polymers, help ensure good cold behavior and minimum viscosity at high temperatures.
  • polymers improving the viscosity index mention may be made of polymeric esters, homopolymers or copolymers, hydrogenated or non-hydrogenated, of styrene, butadiene and isoprene, homopolymers or copolymers of olefins, such as such as ethylene or propylene, poly acrylates and polymethacrylates (PMA).
  • the additive(s) improving the viscosity index may be present in a lubricating composition according to the invention in a content ranging from 1 to 15% by mass, in particular from 2 to 10% by mass, relative to the total mass. of the lubricating composition.
  • a lubricating composition according to the invention may comprise at least one antiwear and/or extreme pressure additive.
  • Anti-wear additives protect friction surfaces by forming a protective film adsorbed on these surfaces.
  • the anti-wear additives are chosen from phosphosulfur additives such as metal alkylthiophosphates, in particular zinc alkylthiophosphates, and more specifically zinc dialkyldithiophosphates or ZnDTP.
  • phosphosulfur additives such as metal alkylthiophosphates, in particular zinc alkylthiophosphates, and more specifically zinc dialkyldithiophosphates or ZnDTP.
  • the preferred compounds are of formula Zn((SP(S)(OR 3 )(OR 4 ))2, in which R 3 and R 4 , which are identical or different, independently represent an alkyl group, preferably an alkyl group comprising from 1 to 18 carbon atoms.
  • Amine phosphates, polysulfides, in particular sulfur olefins, are also anti-wear additives which can be used in the lubricating composition according to the invention.
  • the extreme pressure and/or anti-wear additive(s) may be present in a lubricating composition according to the invention in a content ranging from 0.01 to 6 % by mass, preferably from 0.05 to 4% by mass, more preferably from 0.1 to 2% by mass relative to the total mass of lubricating composition.
  • a lubricating composition considered according to the invention may comprise at least one antioxidant additive.
  • Antioxidant additives are essentially dedicated to delaying the degradation of the lubricating composition in service. This degradation can in particular result in the formation of deposits or in an increase in the viscosity of the lubricating composition. They act in particular as free radical inhibitors or destroyers of hydroperoxides.
  • antioxidant additives commonly employed, mention may be made of antioxidant additives of the phenolic type, antioxidant additives of the amine type, phosphosulfur antioxidant additives. Some of these antioxidant additives, for example phosphosulfur antioxidant additives, can be ash generators. The phenolic antioxidant additives can be ash-free or in the form of neutral or basic metal salts.
  • the antioxidant additives may in particular be chosen from sterically hindered phenols, sterically hindered phenol esters and sterically hindered phenols comprising a thioether bridge, diphenylamines, diphenylamines substituted with at least one C1-C12 alkyl group, N,N '-dialkyl-aryl-diamines and mixtures thereof.
  • the sterically hindered phenols are chosen from compounds comprising a phenol group of which at least one carbon vicinal to the carbon carrying the alcohol function is substituted by at least one C1-C10 alkyl group, preferably a C1-C6 alkyl group. , preferably a C4 alkyl group, preferably by the ter-butyl group.
  • Amino compounds are another class of antioxidant additives that can be used, possibly in combination with phenolic antioxidant additives.
  • Examples of amino compounds are aromatic amines, for example aromatic amines of formula NR 5 R 6 R 7 in which R 5 represents an aliphatic group or an optionally substituted aromatic group, R 6 represents an optionally substituted aromatic group, R 7 represents a hydrogen atom, an alkyl group, an aryl group or a group of formula R 8 S(O) Z R 9 in which R 8 represents a alkylene group or an alkenylene group, R 9 represents an alkyl group, an alkenyl group or an aryl group and z represents 0, 1 or 2.
  • Sulfurized alkyl phenols or their alkali and alkaline earth metal salts can also be used as antioxidant additives.
  • a lubricating composition considered according to the invention may contain all types of antioxidant additives known to those skilled in the art.
  • the antioxidant additive(s) may be present in a lubricating composition according to the invention in a content ranging from 0.01 to 10% by mass, preferentially from 0.05 to 8% by mass, more preferentially from 0.1 to 5% by mass, even more preferably from 0.1 to 2% by mass relative to the total mass of lubricating composition.
  • the spiro compound according to the invention makes it possible to provide the marine lubricant with excellent stability to oxidation.
  • the present invention also relates to the use of at least one spiro compound of formula (I) as defined according to the present invention, as an additive in a lubricating composition intended for a marine engine, to improve the stability at oxidizing said lubricating composition.
  • a marine lubricant according to the invention may advantageously comprise a content of antioxidant additive(s) less than or equal to 10% by mass, in particular less than or equal to 5% by mass, in particular ranging from 0.1 to 2 % by mass, relative to the total mass of said lubricant, or even be completely free of other antioxidant additive.
  • a lubricating composition considered according to the invention can also comprise at least one dispersing agent.
  • the dispersing agents ensure the maintenance in suspension and the evacuation of the insoluble solid contaminants constituted by the secondary products of oxidation which form when the lubricating composition is in service or by combustion residues, unburnt matter, or any other contaminant. They can be chosen from Mannich bases, succinimides and their derivatives.
  • a lubricating composition under consideration according to the invention may comprise from 0.2 to 10% by mass of dispersing agent(s), relative to the total mass of the composition.
  • dispersing agent(s) may comprise from 0.2 to 10% by mass of dispersing agent(s), relative to the total mass of the composition.
  • all of the additives detailed above can be introduced in the form of a mixture or “package” of additives.
  • the additive package may represent from 1% to 35% by mass, in particular from 2 to 30% by mass, relative to the total mass of the composition, preferably ranging from 5% to 25% by mass .
  • a lubricating composition for a marine engine according to the invention may comprise, or even consist of:
  • additives distinct from said spiro compound or compounds, chosen from: other detergent additives, in particular overbased and neutral metallic detergent additives; anti-wear additives; basic organic additives improving the total base number; dispersant additives; viscosity index (VI) improvers, thickeners; antifoaming agents; antioxidant additives; anti-rust additives; and their mixtures.
  • other detergent additives in particular overbased and neutral metallic detergent additives
  • anti-wear additives basic organic additives improving the total base number
  • dispersant additives viscosity index (VI) improvers, thickeners
  • antifoaming agents antioxidant additives
  • anti-rust additives and their mixtures.
  • a lubricating composition for a marine engine according to the invention comprises, or even consists of:
  • a lubricating composition for a marine engine according to the invention may comprise, or even consist of:
  • spiro compound(s) from 0.1 to 20% by mass, preferably from 0.5 to 10% by mass, of spiro compound(s) according to the invention, in particular as defined above and more particularly of one or more spiroboronate compounds according to the invention;
  • additives chosen from: basic organic additives improving the total base number; anti-wear additives; dispersant additives; viscosity index (VI) improvers; thickeners; antifoaming agents; antioxidant additives; anti-rust additives; and mixtures thereof; the contents being expressed relative to the total mass of said lubricating composition.
  • a lubricating composition according to the invention is suitable for the lubrication of four-stroke or two-stroke engines.
  • the invention thus relates, according to another of its aspects, to the use of a composition as defined above, incorporating one or more spiro compounds as a detergent additive, to lubricate a marine engine.
  • - lubricating base oil 1 group I mineral oil, with a viscosity at 40° C. of 120 mm 2 /s measured according to standard ASTM D7279;
  • - lubricating base oil 2 group I mineral oil, with a viscosity at 40° C. of 500 mm 2 /s measured according to standard ASTM D7279;
  • a metallic detergent additive of the neutral phenate type sulphurised calcium phenate with a BN equal to 116 mg KOH/g of phenate
  • a calcium carbonate overbased sulfonate metal detergent additive BN equal to 400 mg KOH/g overbased sulfonate
  • silicon based antifoam agent sulphurised calcium phenate with a BN equal to 116 mg KOH/g of phenate
  • BN calcium carbonate overbased sulfonate metal detergent additive
  • spiro compound of formula (I) according to the invention in which M is a boron atom, R each represent a C16 alkyl group and ni and are equal to 1).
  • the components and their quantities (expressed in percentage by mass relative to the total mass of the composition) for the various lubricants are indicated in the following table.
  • the lubricants are formulated by simply mixing the various components at 60°C. [Table 2]
  • the lubricants are characterized by their total base number, noted TBN, expressed in mg KOH/g and evaluated according to the ASTM D-2896 standard.
  • the thermal resistance of the lubricants prepared in example 1 was evaluated by implementing the continuous ECBT test. This test makes it possible to simulate both the thermal stability and the detergency of marine lubricants when the lubricating composition coming from the crankcase is sprayed onto the hot part of a marine engine and, in particular, at the top of the piston.
  • the products tested are projected into the beaker according to cyclic sequences during which the duration of the stopping step is three times greater than the duration of the starting step.
  • the test temperatures are chosen between 270°C and 310°C, and the duration of the test is one hour.
  • the cooling of the beaker is done naturally, without splashing, which strongly contributes to the formation of varnish.
  • the final result of the Stop & Go test is based on a visual evaluation, according to a method described in the aforementioned publication by Jean-Philippe ROMAN.
  • the method is as follows: A video-quotation based both on the color of the varnish and on the coverage rate of the surface, is carried out. Scoring is done on a scale of 0 to 100 points. Curves reporting the performance of each composition for at least three temperatures are plotted on a graph. When the curve crosses level 50 of the performance index on a merit scale of 100, the corresponding temperature is noted.
  • the lubricants incorporating a spiroboronate compound according to the invention in total or partial replacement of metallic detergent additives, thus form fewer carbonaceous deposits under the conditions of implementation at the level of a marine engine, in other words have detergency properties. improved, thereby improving engine cleanliness.
  • Oxidation stability is evaluated by differential pressure scanning calorimetry, which determines the oxidation induction time, known as OIT (for "Oxidation Induction Time” in English terminology) for lubricating compositions. This is a standard procedure in the lubricating oil industry based on CEC L-85 T-99.
  • the lubricating composition to be tested is heated to an elevated temperature, generally about 25°C below the average decomposition temperature for the sample tested (in this case, from 50 to 210°C), and when the lubricant begins to break down is measured.
  • elevated temperature generally about 25°C below the average decomposition temperature for the sample tested (in this case, from 50 to 210°C)
  • the spiroboronate compound tested is a spiro compound of formula (I) in which M is a boron atom, R each represent an octadecyl chain (C18) and n1 and n2 are equal to 1, in other words has the following formula:
  • the compound spiroboronate was prepared from the previously synthesized salicylic acid derivative (2-hydroxy-5-octadecylbenzoic acid) and boric acid.
  • the spiroboronate compound was dispersed at 5% by mass in water.
  • the emulsion was subjected to vigorous paddle agitation, followed by more vigorous agitation using an Ultra-Turrax® agitator.
  • the emulsions obtained after each shaking are stable. They are analyzed by laser granulometry using a Malvern Mastersizer 2000 granulometer.
  • Figure 1 shows the particle size distribution for the emulsion obtained after paddle stirring (Figure la) and after Ultra-Turrax® stirring (Figure 1b).
  • the emulsion of spiroboronate in water was then passed to the rotary evaporator under vacuum, in order to evaporate the water.
  • the residue after evaporation of the water was recovered and analyzed by RMNIH.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

La présente demande concerne l'utilisation, à titre d'additif détergent dans une composition lubrifiante destinée à un moteur marin, d'au moins un composé spiro de formule (I) dans laquelle M est un atome choisi parmi le bore et l'aluminium; n1 et n2 valent, indépendamment l'un de l'autre, 0, 1 ou 2; et R représentent, indépendamment l'un de l'autre, un groupement hydrocarboné comprenant de 1 à 50 atomes de carbone, en particulier de 5 à 20 atomes de carbone. Elle concerne également l'utilisation dudit composé spiro à titre d'additif dans une composition lubrifiante destinée à un moteur marin, pour améliorer la stabilité à l'oxydation de ladite composition lubrifiante. Elle concerne enfin une composition lubrifiante destinée à la lubrification d'un moteur marin, comprenant une ou plusieurs huiles de base et au moins un composé spiro de formule (I), ainsi qu'un procédé de lubrification d'un moteur marin mettant en œuvre une telle composition.

Description

Description
Titre : Composé spiro comme additif détergent dans des lubrifiants pour moteurs marins
Domaine technique
La présente invention concerne le domaine des compositions lubrifiantes, et plus particulièrement le domaine des compositions lubrifiantes destinées à la lubrification de moteurs marins, notamment de moteurs marins deux temps ou quatre temps. Elle concerne plus particulièrement l’utilisation de composés spiro à titre d’additifs détergents dans des lubrifiants pour moteurs marins.
De manière avantageuse, l’invention permet d’accéder à un lubrifiant présentant d’excellentes propriétés de détergence et de stabilité à l’oxydation, tout en maintenant un faible taux de cendres.
Technique antérieure
Les moteurs marins, tels que les moteurs marins à deux temps ou à quatre temps, mettent en œuvre des lubrifiants, dits encore « huiles marines », assurant la lubrification des différentes pièces du moteur. Par exemple, les moteurs marins deux temps lents à crosse mettent en œuvre, d’une part, des huiles « cylindre » assurant la lubrification de l’ensemble piston- cylindre ou de la zone piston- segment-chemise et, d’autre part, des huiles « système », assurant la lubrification de toutes les parties en mouvement autres que l’ensemble piston- cylindre ou hors de l’ensemble piston-segment-chemise.
Jusqu’à il y a peu de temps, la basicité était un critère décisif dans la formulation des huiles lubrifiantes, en particulier des huiles cylindres. En effet, les huiles lubrifiantes au sein de l’ensemble piston cylindre sont au contact avec les résidus de combustion du carburant, ces résidus pouvant contenir, lorsqu’ils proviennent de carburants à haute teneur en soufre, des quantités importantes de gaz acides. De fait, lors de la combustion de carburants à haute teneur en soufre, des gaz acides se forment : ce sont notamment des oxydes de soufre (SO2, SO3), qui sont ensuite hydrolysés, lors du contact avec l’humidité présente dans les gaz de combustion et/ou dans l’huile, pour générer de l’acide sulfureux (HSO3) ou sulfurique (H2SO4). La capacité de neutralisation des huiles lubrifiantes, exprimée par son indice de base (ou BN ou « Base number » en terminologie anglo-saxonne, parfois dénommé TBN pour « Total Base Number » en terminologie anglo-saxonne), mesurée selon la norme ASTM D-2896, était ainsi un critère de choix, permettant d’ajuster la basicité du lubrifiant mis en œuvre à la teneur en soufre du carburant utilisé, afin de pouvoir neutraliser la totalité du soufre contenu dans le carburant et susceptible de se transformer en acide sulfurique par combustion. Ainsi, plus la teneur en soufre d’un carburant était élevée, plus le BN du lubrifiant marin devait être élevé. Les lubrifiants marins disponibles sur le commerce peuvent ainsi présenter des BN allant jusqu’à 140 mg KOH/g.
La basicité souhaitée pour le lubrifiant était classiquement apportée par des détergents surbasés par des sels métalliques insolubles, notamment des carbonates métalliques comme le carbonate de calcium. Ces détergents sont notamment des savons métalliques de type salicylate, phénate, sulfonate, carboxylate, qui forment des micelles où les particules de sels métalliques insolubles sont maintenues en suspension. Une partie du BN peut également être apportée par des détergents métalliques non surbasés ou « neutres ».
Avec les nouvelles motorisations et nouveaux carburants, la basicité du lubrifiant requise pour répondre aux nouveaux besoins n’est plus si critique, voire même une réduction des détergents classiques surbasés devient nécessaire.
De fait, de nouvelles réglementations établies au regard des préoccupations environnementales ont imposé des limitations en termes de taux de soufre dans les carburants utilisés sur les navires, ce qui implique également de réduire la teneur en détergents métalliques au niveau des huiles lubrifiantes des moteurs marins.
En effet, un excès de détergents métalliques, et donc de sites basiques, par rapport à un carburant à faible teneur en soufre mis en œuvre, est susceptible d’induire un risque de déstabilisation des micelles de détergents surbasés non utilisées, qui contiennent des sels métalliques insolubles. Cette déstabilisation peut résulter en la formation de dépôts de sels métalliques insolubles (typiquement, de carbonate de calcium) et présentant une dureté élevée, principalement sur la couronne de piston du moteur et, à terme, peut conduire à un risque d’usure excessive de type polissage chemise.
Il est connu que les cendres sulfatées, ainsi que le phosphore et le souffre, peuvent endommager les systèmes de post-traitement des gaz d’échappement qui équipent désormais tous les nouveaux véhicules pour éliminer les émissions nocives telles que les NOx, le CO ou les suies.
Également, un filtre encrassé à cause des matières imbrûlées peut induire une augmentation de la consommation de carburant et résulte ainsi en un gaspillage de carburant, ce qui va à l’encontre des propriétés recherchées en termes de réduction de la consommation de carburant marin.
Ainsi, il apparaît nécessaire de réduire la teneur en détergents métalliques, en particulier en détergents métalliques surbasés, typiquement à base de carbonate de calcium, mis en œuvre dans les lubrifiants marins.
Toutefois, une diminution de la teneur en détergents métalliques revient également à réduire les capacités détergentes des lubrifiants en deçà des niveaux requis.
Or, il est indispensable que les lubrifiants pour moteurs marins, étant directement en contact avec le moteur, et notamment avec la partie chaude du moteur, comme par exemple l’ensemble piston-cylindre, présentent une bonne stabilité à des températures élevées, afin de réduire ou empêcher la formation de dépôts en surface des pièces métalliques, nocifs pour le moteur.
Par conséquent, il existe un besoin de disposer de nouveaux composés, alternatifs aux détergents métalliques, notamment aux détergents métalliques surbasés, aptes à procurer au lubrifiant marin, les propriétés de détergence souhaitées, en générant peu de cendres, et permettant ainsi d’assurer, dans les conditions de températures élevées rencontrées dans les moteurs marins, de bonnes propriétés en termes de propreté du moteur.
Par exemple, le document WO 2014/180843 propose un lubrifiant cylindre pour moteur marin, utilisable à la fois avec des fiouls à haute teneur en soufre et des fiouls à basse teneur en soufre, et ayant notamment une bonne tenue thermique, associant un détergent métallique surbasés par des sels métalliques de carbonate, un détergent neutre et une amine grasse de BN spécifique, en particulier une tétra-amine.
Les demandes WO 2018/220007 et WO 2018/220009 proposent par exemple la mise en œuvre de composés dérivés de l’acide salicylique, produits de la réaction entre l’acide salicylique, un composé de bore et un composé aminé, par exemple de type polyamine, pour formuler des compositions lubrifiantes pour moteurs marins, en particulier pour moteurs marins deux-temps, combinant de bonnes propriétés anti-corrosion, de résistance à l’usure et de bonnes performances de détergence.
Exposé de l’invention
La présente invention vise à proposer un moyen pour apporter à un lubrifiant, destiné à la lubrification d’un moteur marin, d’excellentes propriétés de détergence en ayant un faible impact sur la teneur en cendres.
Plus particulièrement, l’invention concerne, selon un premier de ses aspects, l’utilisation, à titre d’additif détergent dans une composition lubrifiante destinée à un moteur marin, par exemple un moteur deux temps ou quatre temps, d’au moins un composé spiro de formule (I) suivante [Chem 1]
Figure imgf000006_0001
dans laquelle :
M est un atome choisi parmi le bore (B) et l’aluminium (Al), en particulier est un atome de bore ; ni et n2 valent, indépendamment l’un de l’autre, 0, 1 ou 2 ; et
R représentent, indépendamment l’un de l’autre, un groupement hydrocarboné comprenant de 1 à 50 atomes de carbone, en particulier de 5 à 20 et plus particulièrement de 5 à 20 atomes de carbone.
De préférence, le composé spiro mis en œuvre selon l’invention est de formule (I) précitée, dans laquelle M est un atome de bore. Autrement dit, selon ce mode de réalisation particulier, le composé spiro est un composé dit « composé spiroboronate », de formule (!’) suivante :
Figure imgf000007_0001
dans laquelle ni, n2 et R sont tels que définis précédemment.
Par « additif détergent » au sens de la présente invention, on entend désigner un composé qui, introduit au niveau d’une huile lubrifiante, permet d’apporter et/ou accroître ses capacités de détergence et donc de diminuer, d’empêcher, voire de supprimer les dépôts dans le moteur.
On désignera plus simplement, dans la suite du texte, sous l’appellation « composé spiro » selon l’invention, un composé spiro de formule (I) telle que définie ci-dessus, en particulier un composé spiroboronate de formule (!’) telle que définie ci-dessus. Des exemples de composés spiro considérés selon l’invention sont décrits plus précisément dans la suite du texte.
On désigne plus simplement sous l’appellation « lubrifiant marin », un lubrifiant destiné à la lubrification d’un moteur marin. Les lubrifiants marins considérés selon l’invention sont appropriés pour une mise en œuvre pour la lubrification de moteurs marins deux temps ou quatre temps, notamment pour des moteurs marins deux temps.
Il peut s’agir d’un lubrifiant dit « lubrifiant cylindre » mis en œuvre pour la lubrification de l’ensemble piston-cylindre du moteur, d’un lubrifiant dit « lubrifiant système », mis en œuvre pour la lubrification de toutes les parties en mouvement du moteur hors l’ensemble piston-cylindre, ou encore d’un lubrifiant dit « lubrifiant carter » mis en œuvre pour la lubrification de l’ensemble du moteur, y compris l’ensemble piston-cylindre, en particulier dans un moteur 4-temps.
L’invention concerne encore, selon un autre de ses aspects, une composition lubrifiante destinée à la lubrification d’un moteur marin, notamment d’un moteur deux-temps ou quatre- temps, comprenant au moins :
- une ou plusieurs huiles de base ; - au moins un composé spiro de formule (I) tel que défini précédemment et détaillé dans la suite du texte, en particulier au moins un composé spiroboronate de formule (!’).
Selon un mode de réalisation particulier, une composition lubrifiante selon l’invention comprend, outre le ou lesdits composés spiro selon l’invention, un ou plusieurs autres additifs détergents, en particulier choisis parmi les additifs détergents métalliques classiquement utilisés dans le domaine des lubrifiants, notamment à base de calcium ou de magnésium.
Comme illustré dans les exemples qui suivent, les inventeurs ont découvert que la mise en œuvre d’un composé spiro selon l’invention permet d’accéder à un lubrifiant marin présentant des propriétés de tenue thermique équivalentes, et même améliorées, comparativement à un lubrifiant incorporant des détergents métalliques conventionnels, et donc d’assurer une bonne propreté moteur, notamment de la zone segment-piston-cylindre. Les propriétés de détergence du lubrifiant marin peuvent être appréciées via l’évaluation des performances du lubrifiant en termes de tenue thermique par des essais de type ECBT, tels que décrits dans la publication intitulée « Research and Development of Marine Lubricants in ELF ANTAR France - The relevance of laboratory tests in simulating field performance » par Jean-Philippe ROMAN, MARINE PROPULSION CONFERENCE 2000 - AMSTERDAM - 29-30 MARCH 2000.
Ces essais rendent compte de la tendance du lubrifiant marin à former des dépôts/vernis dans les conditions rencontrées lors de sa mise en œuvre au niveau d’un moteur marin, en particulier au niveau de la zone segment-piston-cylindre du moteur.
D’autre part, le ou lesdits composés spiro, mis en œuvre à titre d’additifs détergents selon l’invention, génèrent peu de cendres comparativement aux détergents métalliques classiques.
Dès lors, l’incorporation au niveau d’un lubrifiant marin d’un ou plusieurs composés spiro selon l’invention permet avantageusement d’accroître les capacités de détergence du lubrifiant, sans impacter négativement la teneur en cendres générées par le lubrifiant.
Avantageusement, comme illustré dans les exemples, il est possible de mettre en œuvre un ou plusieurs composés spiro selon l’invention, pour remplacer partiellement les détergents métalliques classiquement mis en œuvre dans un lubrifiant marin et indésirables compte- tenu des cendres qu’ils engendrent, tout en conservant, voire même en améliorant, la tenue thermique du lubrifiant marin, et donc sa capacité de détergence.
De manière avantageuse, il est ainsi possible de réduire les effets néfastes en termes de taux de cendres, notamment sulfatées, liés à l’utilisation des détergents métalliques, en particulier des détergents surbasés, sans pour autant impacter, voire en améliorant, les propriétés de tenue thermique et de détergence du lubrifiant.
Une composition lubrifiante selon l’invention permet ainsi de combiner d’excellentes propriétés de détergence et un faible taux de cendres, en particulier de cendres sulfatées. Avantageusement, la mise en œuvre d’un composé spiro selon l’invention permet ainsi d’accéder à une composition lubrifiante marine présentant de bonnes propriétés en termes de propreté moteur, notamment dans la zone segment-piston-cylindre d’un moteur marin, en particulier de l’ensemble piston cylindre.
De manière avantageuse, comme illustré dans les exemples, la mise en œuvre d’un composé spiro selon l’invention permet en outre d’accroître de manière significative la stabilité à l’oxydation du lubrifiant marin.
Ainsi, la mise en œuvre d’un composé spiro selon l’invention permet d’accéder à un lubrifiant marin présentant, dans les conditions de température rencontrées au niveau du moteur marin, d’excellentes propriétés de tenue thermique, de propreté moteur et de stabilité à l’oxydation, avec un taux de cendres réduit.
Par ailleurs, avantageusement, comme illustré dans les exemples qui suivent, les composés spiro selon l’invention, du fait notamment de la configuration tétra-covalente de l’atome de bore ou d’aluminium, ne sont pas hydroly sables.
Autrement dit, les composés spiro selon l’invention, en particulier les composés spiroboronates selon l’invention, présentent une excellente stabilité lorsqu’ils sont mis en contact avec de l’eau (qui serait par exemple issue de la combustion du carburant ou de la condensation). L’absence de décomposition/dégradation des composés spiro en présence d’eau permet notamment de prévenir, lors de la mise en œuvre de la composition lubrifiante selon l’invention, la formation d’acide borique, produit classé CMR (cancérigène, mutagène et repro toxique). L’invention concerne encore un procédé ou une méthode pour accroître la capacité de détergence d’une composition lubrifiante destinée à un moteur marin, en particulier d’une composition lubrifiante mettant en œuvre une teneur réduite en détergents métalliques, notamment en carbonate de calcium, voire exempte de détergent métallique, comprenant l’ajout à ladite composition lubrifiante d’au moins un composé spiro selon l’invention.
Le procédé ou la méthode selon l’invention permet avantageusement d’accroître la capacité de détergence de ladite composition, tout en maintenant un faible taux de cendres.
L’invention concerne encore, selon un autre de ses aspects, un procédé ou une méthode de détergence d’un moteur marin, en particulier d’un moteur quatre temps ou deux temps, comprenant une étape de mise en contact d’au moins une pièce mécanique dudit moteur marin, en particulier d’au moins une partie des segments, piston et/ou cylindre dudit moteur marin, avec une composition lubrifiante selon l’invention telle que définie ci-dessus.
Elle concerne encore l’utilisation d’au moins un composé spiro selon l’invention dans un lubrifiant destiné à la lubrification d’un moteur marin, notamment de l’ensemble piston- cylindre d’un moteur marin, pour améliorer la propreté moteur.
L’invention concerne encore, selon un autre de ses aspects, un procédé ou une méthode de lubrification d’un moteur marin, en particulier d’un moteur quatre temps ou deux temps, comprenant une étape de mise en contact d’au moins une pièce mécanique dudit moteur marin, en particulier d’au moins une partie des segments, piston et/ou chemise dudit moteur marin, avec une composition lubrifiante telle que définie ci-dessus.
D’autres caractéristiques, variantes et avantages de la mise en œuvre d’un composé spiro selon l’invention pour la formulation d’un lubrifiant marin ressortiront mieux à la lecture de la description et des exemples qui suivent, donnés à titre illustratif et non limitatif de l’invention.
Dans la suite du texte, les expressions « compris entre ... et ... », « allant de ... à ... » et « variant de ... à ... » sont équivalentes et entendent signifier que les bornes sont incluses, sauf mention contraire. Brève description des dessins
La figure 1 présente la distribution des tailles des particules pour l’émulsion de spiroboronate dans l’eau obtenue après agitation par pale (figure la) et après agitation Ultra-Turrax® (figure 1b), comme décrit en exemple 4.
La figure 2 présente les spectres RMN du spiroboronate pur (figure 2a) et du résidu (figure 2b) obtenu comme décrit en exemple 4.
Description détaillée
Composé SPIRO
Comme indiqué précédemment, l’invention repose sur la mise en œuvre, dans un lubrifiant pour moteur marin, d’un ou plusieurs composés spiro spécifiques, à titre d’additif(s) détergent(s).
Il est entendu que l’invention peut mettre en œuvre un unique composé spiro ou un mélange d’au moins deux composés spiro distincts, notamment trois ou quatre composés spiro distincts, en particulier tels que définis ci-dessous.
Comme mentionné précédemment, le composé spiro considéré selon l’invention est de formule (I) suivante :
[Chem 2]
Figure imgf000011_0001
dans laquelle :
M est un atome choisi parmi le bore et l’aluminium, en particulier est un atome de bore ; ni et n2 valent, indépendamment l’un de l’autre, 0, 1 ou 2 ; et
R représentent, indépendamment l’un de l’autre, un groupement hydrocarboné comprenant de 1 à 50 atomes de carbone, en particulier de 5 à 20 atomes de carbone.
Les groupements hydrocarbonés considérés selon l’invention peuvent être éventuellement interrompus par un ou plusieurs hétéroatomes, par exemple -O-, -NH-, -N= ou -S-, en particulier -O- ou -NH- ; et/ou éventuellement substitués par un ou plusieurs groupes -OH, -NH2 et -SH, en particulier -OH ou -NH2.
Selon un mode de réalisation particulier, les groupements R1 et R2 sont uniquement composés d’atomes de carbone et d’hydrogène.
Les groupements hydrocarbonés peuvent être notamment des groupes alkyles, alcényles, aryles ou aralkyles.
Selon un mode de réalisation particulier, les substituants R représentent, indépendamment l’un de l’autre, un groupement hydrocarboné, de préférence une chaîne aliphatique, linéaire ou ramifiée, comprenant de 3 à 50 atomes de carbone, en particulier de 3 à 30 atomes de carbone, notamment de 5 à 25 atomes de carbone et plus particulièrement de 8 à 20 atomes de carbone.
En particulier, les substituants R peuvent représenter, indépendamment l’un de l’autre, une chaîne aliphatique, linéaire ou ramifiée, en particulier une chaîne alkyle, de préférence linéaire, en Ci à C50 ; en particulier en C3 à C30, notamment en C5 à C25 et plus particulièrement en Cs à C20, par exemple en Cio ou en CIÔ.
Selon un mode de réalisation particulier, ni et n2 valent 0.
Selon un autre mode de réalisation particulier, ni et n2 valent 1 ou 2.
Lorsque ni vaut 2 ou n2 vaut 2, les groupements R, portés par un même cycle, peuvent être identiques ou différents.
En particulier, le composé spiro peut être de formule (I) précitée, dans laquelle ni et n2 valent 1 ; les substituants R pouvant être identiques ou différents, de préférence identiques. Selon un mode de réalisation particulier, le composé spiro est de formule (I) précitée, dans laquelle : ni et n2 valent 1 ; et les groupements R, identiques, représentent des groupes alkyles, de préférence linéaires, en Ci à C50, en particulier en C3 à C30, notamment en C5 à C25 et plus particulièrement en Cs à C20, encore plus préférentiellement en CIÔ.
Selon un mode de réalisation préféré, le composé spiro est de formule (I) dans laquelle M est un atome de bore. Autrement dit, selon ce mode de réalisation particulier, le composé spiro peut être un composé dit spiroboronate, de formule (!’) suivante : [Chem 3]
Figure imgf000013_0001
dans laquelle R, ni et n2 sont tels que définis précédemment.
Selon un autre mode de réalisation particulier, le composé spiro est de formule (I) dans laquelle M est un atome d’aluminium.
Autrement dit, selon ce mode de réalisation particulier, le composé spiro peut être un composé dit spiroaluminate, de formule (I”) suivante :
[Chem 4]
Figure imgf000013_0002
dans laquelle ni, n2 et R sont tels que définis précédemment.
L’invention concerne ainsi, selon un autre de ses aspects, un composé spiro de formule (I) précitée, dans laquelle :
- M est un atome d’aluminium ;
- ni et n2 valent, indépendamment l’un de l’autre, 0, 1 ou 2, au moins l’un des ni et n2 valant 1 ou 2 ; de préférence ni et n2 valent 1 ;
- les groupements R représentent, indépendamment l’un de l’autre, une chaîne aliphatique, linéaire ou ramifiée, en particulier une chaîne alkyle, de préférence linéaire, comprenant de 5 à 50 atomes de carbone, en particulier de 6 à 30 atomes de carbone, notamment de 8 à 25 atomes de carbone et plus particulièrement de 10 à 20 atomes de carbone.
Autrement dit, l’invention concerne un composé de type spiroaluminate de formule (I”) précitée, dans laquelle :
- ni et n2 valent, indépendamment l’un de l’autre, 0, 1 ou 2, au moins l’un des ni et n2 valant 1 ou 2 ; de préférence ni et n2 valent 1 ; et
- les groupements R représentent, indépendamment l’un de l’autre, une chaîne aliphatique, linéaire ou ramifiée, en particulier une chaîne alkyle, de préférence linéaire, comprenant de 5 à 50 atomes de carbone, en particulier de 6 à 30 atomes de carbone, notamment de 8 à 25 atomes de carbone et plus particulièrement de 10 à 20 atomes de carbone.
Selon un mode de réalisation particulier, le composé de type spiroaluminate selon l’invention est de formule (I”) dans laquelle :
- ni et n2 valent 1 ; et
- les groupements R, identiques ou différents, de préférence identiques, représentent des chaînes alkyles, de préférence linéaires, comprenant de 5 à 50 atomes de carbone, en particulier de 6 à 30 atomes de carbone, notamment de 8 à 25 atomes de carbone et plus particulièrement de 10 à 20 atomes de carbone.
Le composé spiro mis en œuvre selon l’invention peut être préparé à partir de l’acide salicylique ou un dérivé d’acide salicylique et d’un composé de bore ou un composé d’aluminium.
Plus particulièrement, il peut être obtenu par réaction :
- d’au moins un composé choisi parmi l’acide salicylique et ses dérivés, de formule (la) suivante :
[Chem 5]
Figure imgf000015_0001
dans laquelle R est tel que défini précédemment et n est tel que défini précédemment pour ni et n2 ; et
- d’au moins un composé boré ou d’aluminium, en particulier de l’acide borique ou de l’hydroxyde d’aluminium.
La préparation du composé spiro mis en œuvre dans la composition lubrifiante selon l’invention ne fait intervenir aucune étape, ultérieure à la réaction de l’acide salicylique ou de l’un de ses dérivés avec ledit composé de bore ou d’aluminium, de réaction avec un composé aminé, comme c’est le cas par exemple dans le cadre de la préparation des composés proposés dans les demandes W02018/220007 et WO2018/220009.
L’acide salicylique et ses dérivés de formule (la) précitée peuvent être synthétisés selon des méthodes de synthèse connues de l’homme du métier ou être disponibles commercialement.
Le composé boré (autrement dit, à base de bore) peut être notamment choisi parmi l’acide borique (B(OH)3), les acides boroniques, les esters boriques et boroniques, l’oxyde de bore et les complexes d’acide borique.
En particulier, le composé boré peut être choisi parmi l’acide borique ; l’oxyde de bore ; les complexes d’acide borique ; les borates de trialkyle, en particulier dans lesquels les groupes alkyles comprennent indépendamment les uns des autres de 1 à 4 atomes de carbone ; les acides boroniques présentant un groupement C1-C12 alkyle; les acides boriques substitués par deux groupements alkyles, en particulier en Ci àCi2 ; les acides boriques substitués par deux groupements aryles, en particulier en CÔ à C12 ; les acides boriques substitués par un ou deux groupements aralkyle, en particulier en C7 à C12, et des dérivés de ces composés obtenus par substitution d’au moins un groupe alkyle par un ou plusieurs groupe alcoxy. Les complexes d’acide borique sont notamment des complexes du bore avec une ou plusieurs molécules comprenant une ou plusieurs fonctions alcools.
Selon un mode de réalisation particulier, le composé de bore est l’acide borique.
Le composé d’aluminium (autrement dit, à base d’aluminium) peut être notamment choisi parmi l’hydroxyde d’aluminium (A1(OH)3), l’oxyde d’aluminium, le sulfate d’aluminium (A12SO4)3.
H appartient à l’homme du métier d’ajuster les conditions de réaction entre le ou lesdits composés (la) et le composé de bore ou d’aluminium pour obtenir le composé spiro souhaité. En particulier, la réaction peut être opérée dans un milieu solvant constitué d’un ou plusieurs solvants apolaires et/ou solvants polaires pratiques.
Le milieu solvant peut être constitué d’un ou plusieurs solvants choisis parmi le naphta, les solvants polaires pratiques, tels que l’eau et les alcools, par exemple le méthanol, l’éthanol, le propanol, le butanol ; et leurs mélanges.
Avantageusement, la réaction entre l’acide salicylique ou l’un de ses dérivés de formule (la) précitée et le composé de bore ou d’aluminium pour obtenir le composé spiro souhaité, en particulier la réaction entre l’acide salicylique ou l’un de ses dérivés de formule (la) et le composé de bore pour obtenir le composé spiroboronate souhaité, peut être opérée dans un milieu solvant aprotique apolaire, en particulier dans le toluène.
Dans le cadre de l’invention, on entend par :
- « groupement hydrocarboné », un radical saturé ou non, linéaire, ramifié ou cyclique, aromatique ou non, comprenant du carbone et de l'hydrogène ;
- « chaîne aliphatique », un groupe hydrocarboné constitué exclusivement d'atomes de carbone et d'hydrogène, linéaire ou ramifié, saturé ou insaturé, non aromatique. De préférence, une chaîne aliphatique est une chaîne alkyle
- « alkyle », un groupe aliphatique saturé, linéaire ou ramifié ; par exemple, un alkyle en Cx à Cz représente une chaîne carbonée saturée de x à z atomes de carbone, linéaire ou ramifiée ;
- - « alcényle », un groupe aliphatique mono- ou poly-insaturé, linéaire ou ramifié ;
- « cycloalkyle », un groupe alkyle cyclique, par exemple un cycloalkyle en Cx à Cz représente un groupe carboné cyclique de x à z atomes de carbone, par exemple un cyclopropyle, cyclobutyle, cyclopentyle, cyclohexyle, cycloheptyle ;
- « ary le », un groupe aromatique mono- ou polycyclique, en particulier comprenant entre 6 et 10 atomes de carbones. A titre d’exemple de groupe aryle, on peut citer les groupes phényle ou naphtyle ;
- « aralkyle », un groupe aryle tel que défini précédemment, substitué par au moins un groupe alkyle tel que défini précédemment.
Le ou lesdits composés spiro sont avantageusement mis en œuvre en une teneur suffisante pour accéder au niveau requis de capacité de détergence du lubrifiant marin. De manière avantageuse, même une faible quantité de composé(s) spiro, en particulier inférieure à 3 % massique, par rapport à la masse totale de ladite composition lubrifiante, permet d’accéder à la capacité de détergence requise, même en l’absence de détergents métalliques tels que des détergents à base de calcium.
Bien entendu, la quantité mise en œuvre en composé(s) spiro peut être ajustée en fonction de la composition du lubrifiant marin, et plus particulièrement compte-tenu de la présence ou non et de la quantité mise en œuvre en autre(s) additif(s) détergent(s), notamment métallique(s), par exemple de détergents surbasés et/ou neutres à base de calcium, présents au niveau du lubrifiant.
D’une manière générale, le ou lesdits composés spiro considérés selon l’invention, en particulier tels que définis précédemment, peuvent être mis en œuvre à raison de 0,1 à 20 % massique, en particulier de 0,2 à 15 % massique, notamment de 0,5 à 10 %, et plus particulièrement de 0,5 à 5 % massique, par rapport à la masse totale de ladite composition lubrifiante marine.
COMPOSITION LUBRIFIANTE
Une composition lubrifiante pour moteurs marins telle que considérée selon l’invention comprend plus particulièrement une ou plusieurs huiles de base et, éventuellement, d’autres additifs classiquement considérés dans les lubrifiants marins.
Il est entendu que la nature et la quantité des autres additifs sont adaptées au regard de la destination du lubrifiant, et plus particulièrement au regard du type de moteur marin auquel il est destiné. Huile de base
De manière conventionnelle, un lubrifiant marin selon l’invention comprend une ou plusieurs huiles de base.
Ces huiles de base peuvent être choisies parmi les huiles de base conventionnellement utilisées dans le domaine des lubrifiants marins, telles que les huiles minérales, synthétiques ou naturelles, animales ou végétales ou leurs mélanges.
Il peut s’agir d’un mélange de plusieurs huiles de base, par exemple un mélange de deux, trois ou quatre huiles de base.
Les huiles de base des lubrifiants marins considérés selon l’invention peuvent être en particulier des huiles d’origines minérales ou synthétiques appartenant aux groupes I à V selon les classes définies dans la classification API (ou leurs équivalents selon la classification ATIEL) et présentées dans le tableau A ci-dessous ou leurs mélanges.
[Tableau 1]
Figure imgf000018_0001
Tableau A
Les huiles de base minérales incluent tous types d’huiles de base obtenues par distillation atmosphérique et sous vide du pétrole brut, suivies d’opérations de raffinage telles qu’extraction au solvant, désalphatage, déparaffinage au solvant, hydrotraitement, hydrocraquage, hydroisomérisation et hydrofinition. Les bases minérales du Groupe I sont par exemple les bases appelées Neutral Solvant (comme par exemple, 150NS, 330NS, 500NS ou 600NS) ou le Brightstock.
Les huiles de base synthétiques peuvent être des esters d’acides carboxy liques et d’alcools, des polyalphaoléfines ou encore des polyalkylène glycol (PAG) obtenus par polymérisation ou copolymérisation d’oxydes d’alkylène comprenant de 2 à 8 atomes de carbone, en particulier de 2 à 4 atomes de carbone. Les polyalphaoléfines utilisées comme huiles de base sont par exemple obtenues à partir de monomères comprenant 4 à 32 atomes de carbone, par exemple à partir de décène, d’octène ou de dodécène, et dont la viscosité à 100°C est comprise entre 1,5 et 15 mm2.s-1 selon la norme ASTM D445. Leur masse moléculaire moyenne est généralement comprise entre 250 et 3000 selon la norme ASTM D5296.
Des mélanges d’huiles synthétiques et minérales, pouvant être biosourcées, peuvent également être employés.
H n’existe généralement aucune limitation quant à l’emploi d’huiles de base différentes dans la composition lubrifiante, si ce n’est qu’elles doivent avoir des propriétés, notamment de viscosité, d’indice de viscosité, de teneur en soufre ou de résistance à l’oxydation, adaptées à une utilisation pour la lubrification des moteurs marins.
En particulier, les compositions lubrifiantes selon l’invention ont un grade viscosimétrique SAE- 20, SAE-30, SAE-40, SAE-50 ou SAE-60 selon la classification SAEJ300, équivalent à une viscosité cinématique à 100 °C comprise entre 5,6 et 26,1 mm2/s mesurée selon la norme ASTM D445.
Les huiles de grade 40 ont une viscosité cinématique, mesurée selon la norme ASTM D445, à 100°C comprise entre 12,5 et 16,3 mm2/s. Les huiles de grade 50 ont une viscosité cinématique, mesurée selon la norme ASTM D445, à 100°C comprise entre 16,3 et 21,9 mm2/s. Les huiles de grade 60 ont une viscosité cinématique, mesurée selon la norme ASTM D445, à 100°C comprise entre 21,9 et 26,1 mm2/s.
La ou les huiles de base peuvent être présentes dans une composition lubrifiante selon l’invention en une teneur d’au moins 50 % massique, par rapport à sa masse totale, en particulier d’au moins 60 % massique, plus particulièrement allant de 65 à 99 % massique et de préférence de 70 à 98 % massique, par exemple allant de 65 % à 95 % massique. ADDITIFS
Une composition lubrifiante selon l’invention peut comprendre tous types d’additifs usuellement mis en œuvre dans les lubrifiants marins.
Il est entendu que la nature des autres additifs mis en œuvre est choisie de manière à ne pas impacter négativement les propriétés recherchées pour le lubrifiant marin.
Ces additifs peuvent être introduits isolément et/ou sous la forme d’un mélange, ou « paquet d’additifs », à l’image de ceux déjà disponibles à la vente pour les formulations de lubrifiants commerciaux pour moteurs marins.
Ces additifs, distincts du ou desdits composés spiro, peuvent être notamment choisis parmi d’autres additifs détergents, distincts du ou desdits composés spiro, en particulier des additifs détergents métalliques surbasés et neutres, des additifs organiques basiques améliorant l’indice de base total (TBN), des additifs anti-usure, des additifs dispersants, un améliorant de l’indice de viscosité (VI), des épaississants, des agents anti-mousse, des additifs antioxydants, des additifs antirouille et leurs mélanges.
Autres détergents
Un lubrifiant marin considéré selon l’invention, incorporant un ou plusieurs composés spiro selon l’invention, en particulier tels que définis précédemment, peut comprendre un ou plusieurs autres additifs détergents, en particulier un ou plusieurs additifs détergents métalliques.
Comme évoqué précédemment, les détergents métalliques sont connus de l’homme du métier pour procurer de hauts niveaux de détergence. Ces composés métalliques présentent toutefois l’inconvénient d’être générateurs de cendres sulfatées.
Il s’agit généralement de composés anioniques comprenant une longue chaîne hydrocarbonée lipophile et une tête hydrophile, le cation associé pouvant être un cation métallique d’un métal alcalin ou alcalinoterreux
Ils sont généralement choisis parmi les sels de métaux alcalins ou de métaux alcalino-terreux d’acides carboxyliques, notamment les sulfonates, les salicylates, les naphténates, les phénates, les carboxylates et les mélanges de ceux-ci. Les métaux alcalins et alcalino-terreux sont préférentiellement le calcium, le magnésium, le sodium ou le baryum.
Ces sels métalliques comprennent généralement le métal en quantité stoechiométrique (on parle alors de détergents non surbasés ou « neutres »), ou bien en excès, donc en quantité supérieure à la quantité stœchiométrique. Il s’agit dans ce dernier cas d’additifs détergents surbasés ; le métal en excès apportant le caractère surbasé à l’additif détergent est alors généralement sous la forme d’un sel métallique insoluble dans l’huile de base, par exemple un carbonate, un hydroxyde, un oxalate, un acétate, un glutamate, préférentiellement un carbonate.
Selon un mode de réalisation particulier, un lubrifiant marin selon l’invention comprend au moins un additif détergent métallique, distinct du ou desdits composés spiro, en particulier au moins un additif détergent surbasé et/ou au moins un additif détergent neutre.
En particulier, le détergent surbasé et/ou le détergent neutre sont des composés à base de métaux choisis parmi le calcium, le magnésium, le sodium et le baryum, préférentiellement à base de calcium ou magnésium.
De préférence, le détergent surbasé est surbasé par des sels insolubles métalliques choisis dans le groupe des carbonates de métaux alcalins et alcalino-terreux, préférentiellement le carbonate de calcium.
Le détergent surbasé mis en œuvre dans un lubrifiant marin selon l’invention peut être notamment choisi parmi les phénates, les sulfonates, les salicylates, les carboxylates et les détergents mixtes (phénates-sulfonates-salicylates) surbasés au carbonate de calcium, plus particulièrement par les sulfonates et phénates surbasés au carbonate de calcium.
La teneur en détergents métalliques, en particulier en détergents surbasés et/ou en détergents neutres tels que décrits précédemment, inclus dans un lubrifiant marin selon l’invention peut être notamment ajustée de manière à atteindre la valeur souhaitée de l’indice de base total du lubrifiant.
En particulier, un lubrifiant marin selon l’invention peut présenter un indice de base total, TBN, mesuré selon la norme ASTM D2896, inférieur ou égal à 140 mg KOH par gramme de lubrifiant, en particulier compris entre 5 et 140 mg KOH/g de lubrifiant, en particulier entre 5 et 100 mg KOH/g de lubrifiant, notamment compris entre 10 et 60 mg KOH/g de lubrifiant.
Selon un mode de réalisation particulier, un lubrifiant pour moteur marin selon l’invention, comprend au moins :
- une ou plusieurs huiles de base ;
- au moins un composé spiro selon l’invention, en particulier au moins un composé spiroboronate selon l’invention ; et
- au moins un additif détergent métallique distinct dudit composé spiro, en particulier au moins un détergent surbasé et/ou un détergent neutre tels que définis précédemment, notamment à base de calcium ou de magnésium.
De manière avantageuse, comme indiqué précédemment, de par l’ajout d’un ou plusieurs composés spiro selon l’invention, permettant d’apporter la capacité de détergence requise pour le lubrifiant marin, la teneur en additifs détergents métalliques tels que définis précédemment, non désirables au regard des cendres qu’ils génèrent, peut être diminuée, tout en conservant de bonnes propriétés de détergence.
Selon un mode de réalisation particulier, la composition lubrifiante marine selon l’invention peut comprendre moins de 25 % massique, en particulier de 0,1 à 25 % massique, plus particulièrement de 5 % à 15 % massique, d’additif(s) détergent(s) métallique(s) distinct(s) des composés spiro selon l’invention, par rapport à la masse totale de ladite composition.
Selon un mode de réalisation particulier, la composition lubrifiante selon l’invention peut comprendre moins de 15 % massique, en particulier moins de 10 % massique et plus particulièrement de 0,1 à 10 % massique, en particulier de 0,5 % à 5 % massique, d’additif(s) détergent(s) métallique(s) distinct(s) des composés spiro selon l’invention, par rapport à la masse totale de ladite composition.
En particulier, le ou lesdits additifs détergents métalliques peuvent être présents dans la composition lubrifiante de manière à procurer une teneur en élément(s) métallique(s), en particulier en calcium, inférieure ou égale à 10 000 ppm, en particulier allant de 100 ppm à 10000 ppm, de préférence de 250 ppm à 6 000 ppm.
Selon un mode de réalisation particulier, un lubrifiant marin selon l’invention peut comprendre :
- de 60 à 98,9 % massique, en particulier de 65 à 98 % massique, d’une ou plusieurs huiles de base ;
- de 0,1 à 20 % massique, en particulier de 0,2 à 15 % massique et plus particulièrement de 0,5 à 10 % massique d’au moins un composé spiro selon l’invention, tel que défini précédemment et plus particulièrement d’au moins un composé spiroboronate selon l’invention,
- éventuellement de 1 à 30 % massique, en particulier de 5 à 25 % massique, d’un ou plusieurs additifs détergents métalliques, distincts dudit composé spiro selon l’invention, en particulier choisis parmi les détergents métalliques surbasés et neutres tels que définis précédemment, notamment à base de calcium ou de magnésium ; les teneurs étant exprimées par rapport à la masse totale dudit lubrifiant marin.
Par ailleurs, selon un mode de réalisation particulier, une composition lubrifiante selon l’invention ne comprend pas d’amine grasse, en particulier de type tri-amine ou tétra-amine.
Autres additifs
Une composition lubrifiante considérée selon l’invention peut comprendre également au moins un additif organique basique permettant d’accroître l’indice de base total, dit TBN, de la composition lubrifiante.
Ces additifs organiques basiques, dits « TBN booster », permettent d’accroître l’indice de base total de la composition ; autrement dit sont aptes à neutraliser les acides et permettent d’accéder à des performances de détergence améliorées.
Les additifs organiques basiques améliorant le TBN sont connus de l’homme du métier.
Ils peuvent être notamment des additifs organiques aminés, alkylés ou aromatiques ou encore des dispersants azotés.
En particulier, le ou lesdits additifs organiques basiques améliorant le TBN, peuvent être mis en œuvre en une teneur supérieure ou égale à 0,1 % massique, par rapport à la masse totale de ladite composition lubrifiante, en particulier en une teneur comprise entre 0,1 et 10 % massique, plus particulièrement entre 0,5 et 7 % massique, de préférence entre 1 et 5 % massique.
Une composition lubrifiante considérée selon l’invention peut comprendre également au moins un additif anti-mousse, en particulier mis en œuvre pour contrer l’effet des détergents métalliques. Les additifs anti-mousse peuvent être choisis parmi les polymères polaires tels que les polyméthylsiloxanes ou les poly acrylates ; les succinimides et leurs dérivés, en particulier parmi le succinimide de polyisobutylène (PIBSI) ou l’anhydride succinique de polyisobutylène (PIBSA). En particulier, une composition lubrifiante considérée selon l’invention peut comprendre de 0,01 à 3% massique d’additif(s) anti-mousse, par rapport à la masse totale de la composition lubrifiante.
Une composition lubrifiante considérée selon l’invention peut également comprendre un améliorant de l’indice de viscosité (VI). Les améliorants de l’indice de viscosité (VI), en particulier les polymères améliorant l’indice de viscosité, permettent de garantir une bonne tenue à froid et une viscosité minimale à haute température. Comme exemples de polymère améliorant l’indice de viscosité, on peut citer les esters polymères, les homopolymères ou les copolymères, hydrogénés ou non-hydrogénés du styrène, du butadiène et de l’isoprène, les homopolymères ou les copolymères d’oléfine, telle que l’éthylène ou le propylène, les poly acrylates et polyméthacrylates (PMA).
En particulier, le ou les additifs améliorant l’indice de viscosité peuvent être présents dans une composition lubrifiante selon l’invention en une teneur allant de 1 à 15 % massique, en particulier de 2 à 10 % massique, par rapport à la masse totale de la composition lubrifiante.
Une composition lubrifiante selon l’invention peut comprendre au moins un additif antiusure et/ou extrême-pression. Les additifs anti-usure protègent les surfaces en frottement par formation d'un film protecteur adsorbé sur ces surfaces.
II existe une grande variété d’additifs anti-usure. De manière préférée pour la composition lubrifiante selon l’invention, les additifs anti-usure sont choisis parmi des additifs phospho- soufrés comme les alkylthiophosphates métalliques, en particulier les alkylthiophosphates de zinc, et plus spécifiquement les dialkyldithiophosphates de zinc ou ZnDTP. Les composés préférés sont de formule Zn((SP(S)(OR3)(OR4))2, dans laquelle R3 et R4, identiques ou différents, représentent indépendamment un groupement alkyle, préférentiellement un groupement alkyle comportant de 1 à 18 atomes de carbone.
Les phosphates d’amines, les polysulfures, notamment les oléfines soufrées, sont également des additifs anti-usure qui peuvent être employés dans la composition lubrifiante selon l'invention.
De manière avantageuse, le ou les additifs extrême -pression et/ou anti-usure peuvent être présents dans une composition lubrifiante selon l’invention en une teneur allant de 0,01 à 6 % massique, préférentiellement de 0,05 à 4 % massique, plus préférentiellement de 0,1 à 2 % massique par rapport à la masse totale de composition lubrifiante.
Une composition lubrifiante considérée selon l’invention peut comprendre au moins un additif antioxydant. Les additifs antioxydants sont pour l’essentiel dédiés à retarder la dégradation de la composition lubrifiante en service. Cette dégradation peut notamment se traduire par la formation de dépôts ou par une augmentation de la viscosité de la composition lubrifiante. Ils agissent notamment comme inhibiteurs radicalaires ou destructeurs d’hydroperoxydes .
Parmi les additifs antioxydants couramment employés, on peut citer les additifs antioxydants de type phénolique, les additifs antioxydants de type aminé, les additifs antioxydants phosphosoufrés. Certains de ces additifs antioxydants, par exemple les additifs antioxydants phosphosoufrés, peuvent être générateurs de cendres. Les additifs antioxydants phénoliques peuvent être exempts de cendres ou bien être sous forme de sels métalliques neutres ou basiques. Les additifs antioxydants peuvent notamment être choisis parmi les phénols stériquement encombrés, les esters de phénol stériquement encombrés et les phénols stériquement encombrés comprenant un pont thioéther, les diphénylamines, les diphénylamines substituées par au moins un groupement alkyle en C1-C12, les N,N’-dialkyle- aryle-diamines et leurs mélanges.
De préférence, les phénols stériquement encombrés sont choisis parmi les composés comprenant un groupement phénol dont au moins un carbone vicinal du carbone portant la fonction alcool est substitué par au moins un groupement alkyle en C1-C10, de préférence un groupement alkyle en CI-CÔ, de préférence un groupement alkyle en C4, de préférence par le groupement ter-butyle.
Les composés aminés sont une autre classe d’additifs antioxydants pouvant être utilisés, éventuellement en combinaison avec les additifs antioxydants phénoliques. Des exemples de composés aminés sont les amines aromatiques, par exemple les amines aromatiques de formule NR5R6R7 dans laquelle R5 représente un groupement aliphatique ou un groupement aromatique, éventuellement substitué, R6 représente un groupement aromatique, éventuellement substitué, R7 représente un atome d’hydrogène, un groupement alkyle, un groupement aryle ou un groupement de formule R8S(O)ZR9 dans laquelle R8 représente un groupement alkylène ou un groupement alkenylène, R9 représente un groupement alkyle, un groupement alcényle ou un groupement aryle et z représente 0, 1 ou 2.
Des alkyl phénols sulfurisés ou leurs sels de métaux alcalins et alcalino-terreux peuvent également être utilisés comme additifs antioxydants.
Une composition lubrifiante considérée selon l’invention peut contenir tous types d’additifs antioxydants connus de l’homme du métier.
De manière avantageuse, le ou les additifs antioxydant peuvent être présents dans une composition lubrifiante selon l’invention en une teneur allant de 0,01 à 10 % massique, préférentiellement de 0,05 à 8 % massique, plus préférentiellement de 0,1 à 5 % massique, encore plus préférentiellement de 0,1 à 2 % massique par rapport à la masse totale de composition lubrifiante.
Comme indiqué précédemment, le composé spiro selon l’invention permet de procurer au lubrifiant marin une excellente stabilité à l’oxydation.
Ainsi, la présente invention concerne encore l’utilisation d’au moins un composé spiro de formule (I) tel que défini selon la présente invention, à titre d’additif dans une composition lubrifiante destinée à un moteur marin, pour améliorer la stabilité à l’oxydation de ladite composition lubrifiante.
Dès lors, un lubrifiant marin selon l’invention peut comprendre avantageusement une teneur en additif(s) antioxydant(s) inférieure ou égale à 10 % massique, notamment inférieure ou égale à 5 % massique, en particulier allant de 0,1 à 2 % massique, par rapport à la masse totale dudit lubrifiant, voire être totalement exempt d’autre additif anti-oxydant.
Une composition lubrifiante considérée selon l’invention peut également comprendre au moins un agent dispersant. Les agents dispersants assurent le maintien en suspension et l’évacuation des contaminants solides insolubles constitués par les produits secondaires d’oxydation qui se forment lorsque la composition lubrifiante est en service ou par les résidus de combustion, les imbrûlés, ou tout autre contaminant. Ils peuvent être choisis parmi les bases de Mannich, les succinimides et leurs dérivés.
En particulier, une composition lubrifiante considérée selon l’invention peut comprendre de 0,2 à 10 % massique d’agent(s) dispersant(s), par rapport à la masse totale de la composition. Comme mentionné ci-dessus, l’ensemble des additifs détaillés ci-dessus peuvent être introduits sous la forme d’un mélange ou « paquet » d’additifs.
Selon ce mode de réalisation, le paquet d’additif peut représenter de 1 % à 35 % massique, en particulier de 2 à 30 % massique, par rapport à la masse totale de la composition, de préférence allant de 5 % à 25 % massique.
Selon un mode de réalisation particulier, une composition lubrifiante pour moteur marin selon l’invention peut comprendre, voire être constituée de :
- une huile de base ou un mélange d’huiles de base ;
- un ou plusieurs composés spiro selon l’invention, en particulier tels que définis précédemment, et plus particulièrement un ou plusieurs composés spiroboronates selon l’invention ;
- éventuellement un ou plusieurs additifs, distincts du ou desdits composés spiro, choisis parmi : les autres additifs détergents, en particulier les additifs détergents métalliques surbasés et neutres ; les additifs anti-usure ; les additifs organiques basiques améliorant l’indice de base total ; les additifs dispersants ; les améliorants de l’indice de viscosité (VI), les épaississants ; les agents anti-mousse ; les additifs anti-oxydants ; les additifs antirouille ; et leurs mélanges.
De préférence, une composition lubrifiante pour moteur marin selon l’invention comprend, voire est constituée de :
- de 60 à 98,9 % massique, en particulier de 70 à 90 % massique, d’une ou plusieurs huiles de base ;
- de 0,1 à 20 % massique, de préférence de 0,5 à 10 % massique, d’un ou plusieurs composés spiro selon l’invention, en particulier tels que définis ci-dessus et plus particulièrement d’un ou plusieurs composés spiroboronates selon l’invention ;
- de 1 % à 35 % massique, de préférence de 5 % à 25 % massique, d’un ou plusieurs additif(s) choisi(s) parmi : les autres additifs détergents, en particulier choisis parmi les additifs détergents métalliques surbasés et neutres ; les additifs organiques basiques améliorant l’indice de base total ; les additifs anti-usure ; les additifs dispersants ; les améliorants de l’indice de viscosité (VI) ; les épaississants ; les agents anti-mousse ; les additifs antioxydants ; les additifs antirouille ; et leurs mélanges ; les teneurs étant exprimées par rapport à la masse totale de ladite composition lubrifiante. En particulier, une composition lubrifiante pour moteur marin selon l’invention peut comprendre, voire être constitué de :
- de 60 à 97,9 % massique, en particulier de 70 à 90 % massique, d’une ou plusieurs huiles de base ;
- de 0,1 à 20 % massique, de préférence de 0,5 à 10 % massique, de composé(s) spiro selon l’invention, en particulier tels que définis ci-dessus et plus particulièrement d’un ou plusieurs composés spiroboronates selon l’invention ;
- de 1 à 30 % massique, en particulier de 5 % à 25 % massique, d’un ou plusieurs additifs détergents métalliques distincts du ou desdits composés spiro, en particulier choisis parmi les détergents métalliques surbasés et neutres tels que définis précédemment, notamment à base de calcium ou de magnésium ; et
- éventuellement de 1 % à 30 % massique, en particulier de 3 % à 20 % massique, d’un ou plusieurs autres additifs choisis parmi : les additifs organiques basiques améliorant l’indice de base total ; les additifs anti-usure ; les additifs dispersants ; les améliorants de l’indice de viscosité (VI) ; les épaississants ; les agents anti-mousse ; les additifs anti-oxydants ; les additifs antirouille ; et leurs mélanges ; les teneurs étant exprimées par rapport à la masse totale de ladite composition lubrifiante.
APPLICATION
Comme indiqué précédemment, une composition lubrifiante selon l’invention est appropriée pour la lubrification de moteurs quatre-temps ou deux-temps.
L’invention concerne ainsi, selon un autre de ses aspects, l’utilisation d’une composition telle que définie précédemment, incorporant un ou plusieurs composés spiro à titre d’additif détergent, pour lubrifier un moteur marin.
Ses bonnes propriétés de tenue thermique et de stabilité à l’oxydation la rendent particulièrement adaptée en tant qu’huile cylindre, autrement dit pour la lubrification d’au moins la zone piston- segment-chemise d’un moteur marin et/ou en tant qu’huile système, pour la lubrification des parties en mouvement du moteur hors l’ensemble piston- segment- chemise.
Elle peut être mise en œuvre pour des moteurs marins lents, semi -rapides ou rapides.
Elle peut être mise en œuvre notamment pour des moteurs marins Diesel. Elle peut également être mise en œuvre pour des moteurs marins dont le carburant est obtenu au moins partiellement à partir de matière organique, ou biocarburant, tel que le biodiesel, le bioéthanol ou encore l’ammoniaque.
L’ensemble des caractéristiques et modes particuliers relatifs au composé spiro de formule (I) et à la composition lubrifiante le comprenant, s’applique également aux utilisations, procédés et méthodes visés selon l’invention.
L’invention va maintenant être décrite au moyen des exemples suivants, donnés à titre illustratif et non limitatif de l’invention.
Exemple
Exemple 1
Préparation des compositions lubrifiantes
Différentes compositions lubrifiantes ont été préparées à partir des composés suivants :
- huile de base lubrifiante 1 : huile minérale de groupe I, de viscosité à 40°C de 120 mm2/s mesurée selon la norme ASTM D7279 ;
- huile de base lubrifiante 2 : huile minérale de groupe I, de viscosité à 40°C de 500 mm2/s mesurée selon la norme ASTM D7279 ;
- paquet d’additifs comprenant un additif détergent métallique de type phénate neutre (phénate de calcium sulfurisé de BN égal à 116 mg KOH/g de phénate) ; un additif détergent métallique de type sulfonate surbasé de carbonate de calcium (BN égal à 400 mg KOH/g de sulfonate surbasé) et un agent antimousse à base de silicium ;
- un composé spiroboronate selon l’invention (composé spiro de formule (I) selon l’invention dans laquelle M est un atome de Bore, R représentent chacun un groupe alkyle en Ci6 et ni et valent 1).
Les composants et leurs quantités (exprimées en pourcentage massique par rapport à la masse totale de la composition) pour les différents lubrifiants sont indiqués dans le tableau suivant. Les lubrifiants sont formulés par simple mélange à 60°C des différents composants. [Tableau 2]
Figure imgf000030_0001
Les lubrifiants sont caractérisés par leur indice de base total, noté TBN, exprimé en mg KOH/g et évalué selon la norme ASTM D-2896.
[Tableau 3]
Figure imgf000030_0002
Exemple 2
Evaluation des propriétés de tenue thermique des lubrifiants
Essai ECBT continu
La tenue thermique des lubrifiants préparés en exemple 1 a été évaluée par la mise en œuvre de l’essai ECBT continu. Cet essai permet de simuler à la fois la stabilité thermique et la détergence des lubrifiants marins lorsque la composition lubrifiante provenant du carter est projetée sur la partie chaude d’un moteur marin et, notamment, au sommet du piston.
Une description détaillée de cet essai est donnée dans la publication intitulée « Research and Development of Marine Lubricants in ELF ANTAR France - The relevance of laboratory tests in simulating field performance » par Jean-Philippe ROMAN, MARINE PROPULSION CONFERENCE 2000 - AMSTERDAM - 29-30 MARCH 2000.
Essai ECBT Stop & Go
Le même type de test, tel que décrit ci-dessus pour l’essai ECBT continu, est réalisé dans des conditions de cycle. Ce test reflète le comportement du lubrifiant dans la zone de la ceinture des segments de piston.
Les produits testés sont projetés dans le bêcher selon des séquences cycliques au cours desquelles la durée de l’étape d’arrêt est trois fois supérieure à la durée de l’étape de démarrage. Les températures d’essai sont choisies entre 270°C et 310°C, et la durée de l’essai est d’une heure. A la fin d’un cycle, le refroidissement du bêcher se fait naturellement, sans éclaboussures, ce qui contribue fortement à la formation de vernis. Le résultat final de l’essai Stop & Go est basé sur une évaluation visuelle, selon une méthode décrite dans la publication de Jean-Philippe ROMAN précitée.
La méthode est la suivante : Une vidéo-cotation basée à la fois sur la couleur du vernis et sur le taux de couverture de la surface, est réalisée. La cotation se fait sur une échelle de 0 à 100 points. Des courbes rapportant les performances de chaque composition pour au moins trois températures sont tracées sur un graphique. Lorsque la courbe franchit le niveau 50 de l’indice de performance sur une échelle de mérite de 100, la température correspondante est notée.
Résultats
Les résultats obtenus pour chacun des lubrifiants sont rassemblés dans le tableau suivant.
Résultats de l’essai ECBT continu
[Tableau 4]
Figure imgf000031_0001
Ces résultats montrent que le remplacement des détergents métalliques par un spiroboronate selon l’invention conduit à une amélioration de la tenue thermique du lubrifiant dans les conditions de hautes températures rencontrées dans la partie chaude du moteur.
Les lubrifiants incorporant un composé spiroboronate selon l’invention, en remplacement total ou partiel d’additifs détergents métalliques, forment ainsi moins de dépôts carbonés dans les conditions de mise en œuvre au niveau d’un moteur marin, autrement dit présentent des propriétés de détergence améliorées, et permettent ainsi d’améliorer la propreté du moteur. Résultats de l’essai ECBT Stop & Go
[Tableau 5]
Figure imgf000032_0001
(*) correspondant au niveau 50 de l’indice de performance sur une échelle de mérite de 100
Ces résultats montrent que la mise en œuvre, dans un lubrifiant marin, d’un composé spiroboronate selon l’invention, en sus d’additifs détergents métalliques, voire en remplacement des additifs détergents métalliques, permet d’améliorer la stabilité thermique du lubrifiant dans des conditions qui reflètent celles mises en œuvre au niveau de la ceinture des segments de piston d’un moteur marin, et donc les propriétés de détergence.
Exemple 3
Evaluation des propriétés de stabilité à l’oxydation des lubrifiants
La stabilité à l’oxydation est évaluée par calorimétrie à balayage différentiel de pression, qui détermine le temps d’induction d’oxydation, dit OIT (pour « Oxidation Induction Time » en terminologie anglo-saxonne) pour les compositions lubrifiantes. Il s’agit d’une procédure standard dans l’industrie des huiles lubrifiantes basée sur la norme CEC L-85 T-99.
Selon ce protocole, la composition lubrifiante à tester est chauffée à une température élevée, généralement d’environ 25 °C en-dessous de la température de décomposition moyenne pour l’échantillon testé (dans ce cas, de 50 à 210 °C), et le moment où le lubrifiant commence à se décomposer est mesuré. Plus la durée du test, exprimée en minutes, est longue, meilleure est la stabilité à l’oxydation du lubrifiant.
Résultats
Les résultats obtenus pour chacun des lubrifiants sont rassemblés dans le tableau suivant.
[Tableau 6]
Figure imgf000032_0002
Ces résultats montrent que l’ajout d’un composé spiroboronate selon l’invention permet d’améliorer de manière significative la stabilité à l’oxydation du lubrifiant. Exemple 4
Evaluation de la stabilité du composé spiroboronate en présence d’eau
La stabilité à l’eau d’un composé spiroboronate conforme à l’invention a été évaluée comme décrit ci-dessous.
Le composé spiroboronate testé est un composé spiro de formule (I) dans laquelle M est un atome de bore, R représentent chacun une chaîne octadécyle (C18) et ni et n2 valent 1, autrement dit est de formule suivante :
Figure imgf000033_0001
Le composé spiroboronate a été préparé à partir du dérivé d’acide salicylique (acide 2- hydroxy-5-octadécylbenzoïque) préalablement synthétisé et de l’acide borique.
Dans un ballon tricol de 250 mL muni d’un appareil de Dean-Stark pour éliminer l’eau et d’un agitateur mécanique sous azote, ont été introduits l’acide 2-hydroxy-5- octadécylbenzoïque (8,9 g, 22,8 mmol, 2 équiv) et l’acide borique (0,70 g, 11,4 mmol, 1,0 équiv) dans du toluène (65 mL). Le mélange a été chauffé à reflux jusqu’à la fin de la réaction, et le composé spiroboronate récupéré.
Le composé spiroboronate a été dispersé à 5% massique dans de l’eau. L’émulsion a été soumise à une agitation vigoureuse par pale, suivie d’une plus forte agitation à l’aide d’un agitateur Ultra-Turrax®.
Les émulsions obtenues après chaque agitation sont stables. Elles sont analysées par granulométrie laser à l’aide d’un granulomètre Malvern Mastersizer 2000.
La figure 1 présente la distribution des tailles des particules pour l’émulsion obtenue après agitation par pale (figure la) et après agitation Ultra-Turrax® (figure 1b). L’émulsion du spiroboronate dans l’eau a ensuite été passée à l’évaporateur rotatif sous vide, afin d’évaporer l’eau. Le résidu à l’issue de l’évaporation de l’eau a été récupéré et analysé par RMNIH.
Le spectre RMN du résidu est comparé à celui du composé spiroboronate pur. La figure 2 présente les spectres RMN du spiroboronate pur (figure 2a) et du résidu obtenu comme décrit précédemment (figure 2b).
La comparaison des deux spectres montre que le résidu obtenu correspond au spiroboronate de départ. Ainsi, le composé spiroboronate n’a pas subi d’hydrolyse en présence de l’eau.

Claims

33 Revendications
1. Utilisation, à titre d’additif détergent dans une composition lubrifiante destinée à un moteur marin, d’au moins un composé spiro de formule (I) suivante
Figure imgf000035_0001
dans laquelle
M est un atome choisi parmi le bore et l’aluminium ; ni et n2 valent, indépendamment l’un de l’autre, 0, 1 ou 2 ; et
R représentent, indépendamment l’un de l’autre, un groupement hydrocarboné comprenant de 1 à 50 atomes de carbone, en particulier de 5 à 20 atomes de carbone.
2. Utilisation selon la revendication précédente, ledit composé spiro étant de formule (I) dans laquelle les substituants R représentent, indépendamment l’un de l’autre, une chaîne aliphatique, linéaire ou ramifiée, en particulier une chaîne alkyle, de préférence linéaire, en Ci à C50 ; en particulier en C3 à C30, notamment en C5 à C25 et plus particulièrement en Cs à C20, plus préférentiellement en C16.
3. Utilisation selon la revendication 1 ou 2, ledit composé spiro étant de formule (I) dans laquelle ni et n2 valent 1, les groupements R étant identiques.
4. Utilisation selon l’une quelconque des revendications précédentes, ledit composé spiro étant de formule (I) dans laquelle M est un atome de bore.
5. Utilisation selon l’une quelconque des revendications précédentes, le ou lesdits composés spiro étant mis en œuvre en une teneur comprise entre 0,1 et 20 % massique par rapport à la masse totale de ladite composition lubrifiante, de préférence comprise entre 0,2 et 15 % massique, de préférence encore entre 0,5 et 10 % massique, et plus particulièrement de 0,5 à 5 % massique.
6. Utilisation selon l’une quelconque des revendications précédentes, ladite composition lubrifiante comprenant au moins un additif détergent métallique, distinct du composé spiro de formule (I), en particulier au moins un additif détergent métallique surbasé et/ou un additif détergent métallique neutre, notamment à base de calcium. 34
7. Utilisation selon l’une quelconque des revendications précédentes, ladite composition comprenant une ou plusieurs huiles de base en une teneur d’au moins 50 % massique, par rapport à sa masse totale, en particulier d’au moins 60 % massique, plus particulièrement allant de 65 à 99 % massique et de préférence de 70 à 98 % massique.
8. Utilisation selon l’une quelconque des revendications précédentes, ladite composition comprenant un ou plusieurs autres additifs, distincts du ou desdits composés spiro, choisi(s) parmi : les additifs organiques basiques améliorant l’indice de base total ; les additifs antiusure ; les additifs dispersants ; un améliorant de l’indice de viscosité (VI) ; les épaississants ; les agents anti-mousse ; les additifs anti-oxydants ; les additifs antirouille ; et leurs mélanges.
9. Utilisation selon l’une quelconque des revendications précédentes, ladite composition étant de grade viscosimétrique SAE-20, SAE-30, SAE-40, SAE-50 ou SAE-60 selon la classification SAEJ300.
10. Utilisation selon l’une quelconque des revendications précédentes, ladite composition lubrifiante étant un lubrifiant pour un moteur deux temps ou quatre temps, en particulier un lubrifiant destiné à la lubrification de l’ensemble piston- segment-chemise dudit moteur marin.
11. Utilisation d’au moins un composé spiro de formule (I) tel que défini dans l’une quelconque des revendications 1 à 5 à titre d’additif dans une composition lubrifiante destinée à un moteur marin, pour améliorer la stabilité à l’oxydation de ladite composition lubrifiante.
12. Composition lubrifiante destinée à la lubrification d’un moteur marin, comprenant au moins :
- une ou plusieurs huiles de base ;
- au moins un composé spiro de formule (I) tel que défini dans l’une quelconque des revendications 1 à 5 ;
- éventuellement un ou plusieurs additifs, distincts du ou desdits composés spiro, choisis parmi : les autres additifs détergents, en particulier les additifs détergents métalliques surbasés et neutres ; les additifs anti-usure ; les additifs dispersants ; les améliorants de l’indice de viscosité (VI) ; les épaississants ; les agents anti-mousse ; les additifs antioxydants ; les additifs antirouille et leurs mélanges.
13. Composition lubrifiante selon la revendication précédente, ladite composition étant telle que définie dans les revendications 9 et 10.
14. Procédé de lubrification d’un moteur marin, en particulier d’un moteur marin deux ou quatre temps, comprenant une étape de mise en contact d’au moins une pièce mécanique dudit moteur marin, en particulier d’au moins une partie des segments, piston et/ou chemise dudit moteur marin, avec une composition lubrifiante telle que définie selon la revendication 12 ou 13.
PCT/EP2022/077844 2021-10-07 2022-10-06 Composé spiro comme additif détergent dans des lubrifiants pour moteurs marins WO2023057586A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280079692.6A CN118369406A (zh) 2021-10-07 2022-10-06 作为船用发动机润滑剂中的清净剂添加剂的螺环化合物
KR1020247015145A KR20240101578A (ko) 2021-10-07 2022-10-06 스피로 화합물의 선박 엔진용 윤활제의 청정제 첨가제로서의 용도
JP2024521015A JP2024536410A (ja) 2021-10-07 2022-10-06 船舶用エンジンのための潤滑剤における洗浄添加剤としてのスピロ化合物
EP22800222.6A EP4413103A1 (fr) 2021-10-07 2022-10-06 Composé spiro comme additif détergent dans des lubrifiants pour moteurs marins

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2110617A FR3127955A1 (fr) 2021-10-07 2021-10-07 Composé spiro comme additif détergent dans des lubrifiants pour moteurs marins
FRFR2110617 2021-10-07

Publications (1)

Publication Number Publication Date
WO2023057586A1 true WO2023057586A1 (fr) 2023-04-13

Family

ID=79831609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/077844 WO2023057586A1 (fr) 2021-10-07 2022-10-06 Composé spiro comme additif détergent dans des lubrifiants pour moteurs marins

Country Status (6)

Country Link
EP (1) EP4413103A1 (fr)
JP (1) JP2024536410A (fr)
KR (1) KR20240101578A (fr)
CN (1) CN118369406A (fr)
FR (1) FR3127955A1 (fr)
WO (1) WO2023057586A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060019838A1 (en) * 2004-07-21 2006-01-26 Muir Ronald J Fuel and lubricant additive containing alkyl hydroxy carboxylic acid boron esters
WO2014180843A1 (fr) 2013-05-07 2014-11-13 Total Marketing Services Lubrifiant pour moteur marin
WO2016196099A1 (fr) * 2015-06-04 2016-12-08 Chevron Oronite Company Llc Ester de polyol boré d'antioxydant/modificateur de coefficient de frottement à base de phénol encombré présentant une performance améliorée
WO2018220007A1 (fr) 2017-05-31 2018-12-06 Total Marketing Services Composé comprenant des fonctionnalités polyamine, acide et bore et son utilisation en tant qu'additif lubrifiant
WO2018220009A1 (fr) 2017-05-31 2018-12-06 Total Marketing Services Composé comprenant des fonctions polyamine, acide et bore et son utilisation en tant qu'additif pour lubrifiant

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060019838A1 (en) * 2004-07-21 2006-01-26 Muir Ronald J Fuel and lubricant additive containing alkyl hydroxy carboxylic acid boron esters
WO2014180843A1 (fr) 2013-05-07 2014-11-13 Total Marketing Services Lubrifiant pour moteur marin
WO2016196099A1 (fr) * 2015-06-04 2016-12-08 Chevron Oronite Company Llc Ester de polyol boré d'antioxydant/modificateur de coefficient de frottement à base de phénol encombré présentant une performance améliorée
WO2018220007A1 (fr) 2017-05-31 2018-12-06 Total Marketing Services Composé comprenant des fonctionnalités polyamine, acide et bore et son utilisation en tant qu'additif lubrifiant
WO2018220009A1 (fr) 2017-05-31 2018-12-06 Total Marketing Services Composé comprenant des fonctions polyamine, acide et bore et son utilisation en tant qu'additif pour lubrifiant

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JEAN-PHILIPPE ROMAN: "Research and Development of Marine Lubricants in ELF ANTAR France - The relevance of laboratory tests in simulating field performance", MARINE PROPULSION CONFERENCE 2000, 29 March 2000 (2000-03-29)

Also Published As

Publication number Publication date
FR3127955A1 (fr) 2023-04-14
JP2024536410A (ja) 2024-10-04
KR20240101578A (ko) 2024-07-02
CN118369406A (zh) 2024-07-19
EP4413103A1 (fr) 2024-08-14

Similar Documents

Publication Publication Date Title
EP2245125A1 (fr) Composition lubrifiante pour moteur quatre temps a bas taux de cendres
FR3069864B1 (fr) Composition lubrifiante comprenant un diester
WO2017021522A1 (fr) Compositions lubrifiantes pour prevenir ou diminuer le pre-allumage dans un moteur
WO2017021426A1 (fr) Utilisation d'une amine grasse pour prevenir et/ou reduire les pertes métalliques des pièces dans un moteur
WO2017157979A1 (fr) Composition lubrifiante a base de polyalkylene glycols
EP4413104A1 (fr) Composition lubrifiante pour prévenir ou diminuer la combustion anormale dans un moteur
EP3523407B1 (fr) Composition lubrifiante pour moteur marin ou moteur stationnaire
WO2018210829A1 (fr) Utilisation de compositions lubrifiantes pour ameliorer la proprete d'un moteur de vehicule 4-temps
WO2014096328A1 (fr) Composition lubrifiante a base d'ether de polyglycerol
FR3039834A1 (fr) Compositions lubrifiantes pour prevenir ou diminuer le pre-allumage dans un moteur
EP3430110A1 (fr) Composition lubrifiante a base de polyalkylene glycols
WO2016102529A1 (fr) Composition lubrifiante a matériau a changement de phase
EP3481927B1 (fr) Composition lubrifiante pour moteur a gaz
WO2023057586A1 (fr) Composé spiro comme additif détergent dans des lubrifiants pour moteurs marins
WO2020201126A1 (fr) Utilisation d'une composition lubrifiante pour transmission
EP4413105A1 (fr) Compose spiro comme additif detergent dans des lubrifiants destines a des systemes de motorisation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22800222

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024521015

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022800222

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022800222

Country of ref document: EP

Effective date: 20240507

WWE Wipo information: entry into national phase

Ref document number: 11202402350R

Country of ref document: SG