WO2024008675A1 - Utilisation d'un additif anti-usure pour améliorer la conductivité thermique d'un fluide de refroidissement pour véhicule électrique - Google Patents

Utilisation d'un additif anti-usure pour améliorer la conductivité thermique d'un fluide de refroidissement pour véhicule électrique Download PDF

Info

Publication number
WO2024008675A1
WO2024008675A1 PCT/EP2023/068296 EP2023068296W WO2024008675A1 WO 2024008675 A1 WO2024008675 A1 WO 2024008675A1 EP 2023068296 W EP2023068296 W EP 2023068296W WO 2024008675 A1 WO2024008675 A1 WO 2024008675A1
Authority
WO
WIPO (PCT)
Prior art keywords
wear
weight
fluid
wear additive
chosen
Prior art date
Application number
PCT/EP2023/068296
Other languages
English (en)
Inventor
Nicolas CHAMPAGNE
Original Assignee
Totalenergies Onetech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Totalenergies Onetech filed Critical Totalenergies Onetech
Publication of WO2024008675A1 publication Critical patent/WO2024008675A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M137/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
    • C10M137/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having no phosphorus-to-carbon bond
    • C10M137/04Phosphate esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M153/00Lubricating compositions characterised by the additive being a macromolecular compound containing phosphorus
    • C10M153/04Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives

Definitions

  • the present invention relates to the field of lubricating compositions for electric vehicles. More particularly, the present invention relates to the field of lubricating and cooling compositions for electric vehicles, in particular for cooling the battery of an electric vehicle.
  • lubricating compositions also called “lubricating fluids”, for the main purposes of reducing the friction forces between the different parts of the vehicle's propulsion system. , especially between moving metal parts in engines.
  • lubricating compositions are also effective in preventing premature wear or even damage to these parts, and in particular to their surface.
  • Electric motors generate heat during operation. If the amount of heat generated is greater than the amount of heat normally dissipated to the environment, it is necessary to ensure engine cooling. Generally speaking, cooling is carried out on one or more heat-generating parts of the engine and/or heat-sensitive parts of the engine, in order to avoid reaching dangerous temperatures.
  • This cooling can be done by direct cooling or indirect cooling. Due to the increasing power density of electric motors, it will be necessary to develop and improve the mode of direct cooling of the electric motor where the lubricating fluid from the transmission part will also be used to cool the hot parts of the electric motor.
  • An example is the Tesla Model S vehicle, in which the lubricant from the gearbox also circulates in the hollow rotor of the electric motor to cool the stator coil heads via several oil jets.
  • a lubricating composition is conventionally composed of one or more base oil(s), to which are generally associated several additives dedicated to stimulating the lubricating performance of the base oil, such as for example friction modifier additives.
  • a particularly useful type of performance for a lubricating composition for electric vehicle propulsion systems consists of having good wear resistance properties, properties which are systematically part of the prerogatives to be respected in the manufacturers' specifications.
  • this type of lubricating composition must be able to cool the propulsion systems of electric vehicles.
  • the present invention relates to the use of at least one anti-wear additive to improve the thermal conductivity of a fluid comprising at least one base oil.
  • said anti-wear additive is chosen from phosphorus anti-wear, phospho-sulfur anti-wear, phospho-amine anti-wear, sulfur anti-wear, borated anti-wear, and mixtures thereof. . According to one embodiment, the anti-wear additive is used to improve the heat transfer properties of the fluid.
  • the fluid is used to cool the battery of an electric vehicle.
  • the anti-wear additive is used to prepare a unique fluid used to lubricate and cool the propulsion system of an electric vehicle.
  • the single fluid (the same fluid) circulates throughout the cooling and lubrication system of the propulsion system of an electric vehicle.
  • the anti-wear additive is chosen from phosphorus anti-wear, phospho-sulfur anti-wear, phospho-amine anti-wear, and mixtures thereof, preferably from phosphorus anti-wear.
  • the anti-wear additive is a phosphite polymer, preferably corresponding to formula (I):
  • each of RI, R2, R3 and R4 can be chosen independently of each other from the groups C1-C20 alkyl, C3-C22 alkenyl, C6-C40 cycloalkyl, C7-C40 cycloalkenyl, Cl -20 methoxy alkyl glycol ethers and Y -OH;
  • - Y is chosen from the groups C2-C40 alkylene, C2-C40 alkyl lactone, - R7-N(R8)-R9-, in which R7, R8 and R9 are independently of each other chosen from hydrogen, C1-C20 alkyl , C3-C22 alkenyl, C6-C40 cycloalkyl, C7-C40 cycloalkenyl, Cl -20 methoxy alkyl glycol ethers,
  • - m is an integer ranging from 2 to 100
  • - n is an integer ranging from 1 to 1000.
  • the phosphite polymer preferably corresponding to formula (I)
  • the anti-wear additive represents 0.01 to 10% by weight of the total weight of the fluid.
  • the anti-wear additive comprises from 5 to 9150 ppm by weight of phosphorus, preferably from 5 to 4500 ppm by weight of phosphorus, relative to the total weight of fluid.
  • the fluid comprises at least 70% by weight, preferably at least 80% by weight, more preferably at least 85% by weight, of base oil(s), relative to the total weight of the fluid.
  • the fluid comprises:
  • anti-wear additive(s) preferably chosen from phosphorus anti-wear, preferably chosen from phosphite polymers
  • one or more functional additives preferably chosen from viscosity index improving additives, antioxidant additives, antifoam additives, dispersants, detergents, viscosity modifier additives, and their mixing, relative to the total weight of the fluid.
  • the fluid used according to the invention has the advantage of being able to be used both to lubricate the parts of a propulsion system of an electric vehicle and to cool the parts of a propulsion system of a vehicle electric.
  • quantities in a product are expressed by weight, relative to the total weight of the product.
  • the present invention relates to the use of at least one anti-wear additive: to improve the thermal conductivity of a fluid comprising at least one base oil and/or to improve the heat transfer properties of a fluid comprising at least one oil basic and/or in a fluid comprising at least one base oil for cooling the battery of an electric vehicle.
  • electric vehicle within the meaning of the present invention is meant a vehicle comprising an electric motor as the sole means of propulsion, unlike a hybrid vehicle which comprises a combustion engine and an electric motor as combined means of propulsion. .
  • propulsion system within the meaning of the present invention, we mean a system comprising the mechanical parts necessary for the propulsion of a vehicle.
  • the propulsion system thus includes more particularly an electric motor, the rotor-stator assembly of the power electronics (dedicated to speed regulation), a transmission (also called reduction gear) and a battery.
  • the thermal conductivity can be determined according to standard ASTM D7896-19. It is preferably determined at 30°C in the context of the present invention.
  • the anti-wear additive used in the lubricating composition is an additive known for its wear reduction properties when added to a base oil.
  • the anti-wear additive is chosen from phosphorus anti-wear, phospho-sulfur anti-wear, phospho-amine anti-wear, sulfur anti-wear, borated anti-wear, and their mixtures.
  • the anti-wear additive is chosen from phosphorus anti-wear, phospho-sulfur anti-wear, phospho-amine anti-wear, and mixtures thereof.
  • a “phosphorus anti-wear” will designate an anti-wear comprising at least one phosphorus atom and not comprising sulfur or nitrogen.
  • a “sulfur-containing anti-wear” will designate an anti-wear comprising at least one sulfur atom and not comprising phosphorus or nitrogen.
  • a “phospho-sulfur anti-wear” will designate an anti-wear comprising at least one phosphorus atom and at least one sulfur atom and not comprising a nitrogen atom.
  • a “phospho-amine anti-wear” will designate an anti-wear comprising at least one phosphorus atom and at least one nitrogen atom and not comprising a sulfur atom.
  • a “sulfur-containing anti-wear” will designate an anti-wear comprising at least one sulfur atom and not comprising any phosphorus or nitrogen atom.
  • a “borated anti-wear” will designate an anti-wear comprising at least one boron atom and not comprising any phosphorus atom, nitrogen or sulfur.
  • Anti-wear additives such as phosphorous anti-wear, phospho-sulfur anti-wear, phospho-amine anti-wear, sulfur anti-wear and borated anti-wear are available commercially.
  • phosphates we can cite phosphates, phosphites, and phosphonates. These terms designate both phosphoric, phosphorous, phosphonic acids, their mono, di and triesters, for example alkyl phosphates, alkyl phosphonates, and their salts.
  • the phospho-sulfur anti-wear additives possibly used in the present invention may be (mono or di) thiophosphates and thiophosphites, these terms including thiophosphoric and thiophosphorous acids, esters of these acids, their salts, dithiophosphites and dithiophosphates.
  • phospho-sulfur anti-wear additives monobutylthiophosphate, monooctylthiophosphate, monolaurylthiophosphate, dibutylthiophosphate, dilaurylthiophosphate, tributylthiophosphate, trioctylthiophosphate, triphenylthiophosphate, monooctylthiophosphite, trilaurylthiophosphate, monolaurylthiophosphite, monobutylthiophosphite, dibutylthiophosphite, dilaurylthiophosphite, tribute ylthiophosphite, trioctylthiophosphite , triphenylthiophosphite, trilaurylthiophosphite and their salts.
  • anti-wear in the form of salts
  • anti-wear of the metal dithiophosphate type for example zinc, cobalt or nickel dithiophosphates.
  • sulfurized anti-wear products mention may be made of sulfurized olefins, sulfurized esters, polysulfides, in particular disulfides, thiocarbamates and dithiocarbamates and their salts.
  • anti-wear in the form of salts, mention may be made of anti-wear of the metal dithiocarbamate type, for example zinc, cobalt or nickel dithiocarbamates.
  • borated anti-wear agents we can cite borated esters, calcium borates and potassium borates.
  • the anti-wear additive is chosen from phosphite polymers, preferably corresponding to formula (I):
  • each of R 1 , R 2 , R 3 and R 4 can be chosen independently of each other from the groups C1-C20 alkyl, C3-C22 alkenyl, C6-C40 cycloalkyl, C7-C40 cycloalkenyl, methoxy C1-20 and Y-OH alkyl glycol ethers (serving as terminal group);
  • Y is chosen from the groups C2-C40 alkylene, C2-C40 alkyl lactone, -R 7 -N(R 8 )- R 9 -, in which R 7 , R 8 and R 9 are independently of each other chosen from hydrogen, C1-C20 alkyl, C3-C22 alkenyl, C6-C40 cycloalkyl, C7-C40 cycloalkenyl, methoxy alkyl glycol ethers, C -20,
  • - m is an integer ranging from 2 to 100
  • - n is an integer ranging from 1 to 1000.
  • alkyl means a linear or branched, non-cyclic, saturated hydrocarbon chain, optionally comprising one or more heteroatoms, such as oxygen, nitrogen or sulfur atoms.
  • the alkyls consist of carbon and hydrogen atoms.
  • alkenyl means a linear or branched non-cyclic hydrocarbon chain, unsaturated, optionally comprising one or more heteroatoms, such as oxygen, nitrogen or sulfur atoms.
  • the alkenyls consist of carbon and hydrogen atoms.
  • cycloalkyl means a saturated monocyclic or polycyclic group optionally having one or more alkyl or alkenyl substituents, said cycle or cycles may themselves be substituted by one or more heteroatoms, such as atoms of oxygen, nitrogen or sulfur.
  • cycloalkyls consist of carbon and hydrogen atoms.
  • cycloalkenyl means an unsaturated monocyclic or polycyclic group optionally having one or more alkyl or alkenyl substituents, said cycle(s) may themselves be substituted by one or more heteroatoms, such as atoms of oxygen, nitrogen or sulfur.
  • cycloalkenyls consist of carbon and hydrogen atoms.
  • a “Ci-Cj” group is a group comprising from i to j carbon atoms.
  • the Y group is chosen from alkylenes comprising from 2 to 20 carbon atoms, preferably from 2 to 12 carbon atoms, more preferably from 2 to 8 carbon atoms.
  • m ranges from 4 to 100.
  • the phosphite polymer preferably corresponding to formula (I) has a weight average molecular mass of less than 30,000 g/mol, preferably ranging from 3000 to 20,000 g/mol. Weight average molecular mass can be measured by size exclusion chromatography.
  • the phosphite polymer preferably corresponding to formula (I) has a number average molecular mass of less than 10000 g/mol, preferably ranging from 1000 to 5000 g/mol. The number average molecular mass can be measured by size exclusion chromatography. According to one embodiment, the phosphite polymer, preferably corresponding to formula (I), has a polydispersity index ranging from 1 to 5, preferably ranging from 2 to 4.
  • the phosphite polymer preferably corresponding to formula (I) contains less than 2% by weight, preferably less than 1% by weight, or even less than 0.7% by weight of (alkyl)phenol group, relative to the total weight of the phosphite polymer of formula (I).
  • the phosphite polymer preferably corresponding to formula (I) is completely free of aromatic groups other than (alkyl)phenol groups.
  • the phosphite polymer preferably corresponding to formula (I) is in liquid form.
  • the phosphite polymer preferably corresponding to formula (I) has a phosphorus content ranging from 0.5 to 20% by weight, preferably from 1 to 10% by weight, relative to the weight total phosphite polymer.
  • the phosphite polymer that can be used in the invention can be obtained according to the process described in document WO2011102861.
  • the polymer can be obtained according to the process described in paragraphs 27 to 32 of this document.
  • the synthesis of polymers of formula (I) generally involves transesterification in which the triphenyl phosphite (or any other suitable alkyl or aryl phosphite) may be reacted with a saturated or unsaturated alcohol or a polyethylene ether or of polypropylene glycol and a diol or a polymer diol H(0Y) m 0H where Y and m are as defined above with a basic catalyst suitable at a temperature between 20°C and 250°C, and preferably at a temperature between between 50°C and 185°C.
  • the fluid used according to the invention comprises from 0.01 to 10% by weight of anti-wear additives, preferably from 0.01 to 5% by weight of anti-wear additive(s), relative to the total weight of the fluid.
  • the quantity of anti-wear additives can be adapted in order to obtain a phosphorus content ranging from 5 to 9150 ppm by weight in the fluid.
  • the phosphorus content in the fluid used according to the invention ranges from 5 to 4500 ppm by weight, relative to the total weight of the fluid.
  • the fluid used according to the invention comprises one or more base oils, preferably in a content of at least 70% by weight, preferably ranging from 70 to 99% by weight, more preferably from 80 to 98%. by weight, preferably from 85 to 95% by weight, relative to the total weight of the fluid.
  • base oils can be chosen from base oils conventionally used in the field of lubricating oils, such as mineral, synthetic or natural, animal or vegetable oils or mixtures thereof.
  • It can be a mixture of several base oils, for example a mixture of two, three, or four base oils.
  • the base oils of the fluids considered according to the invention may in particular be oils of mineral or synthetic origin belonging to groups I to V according to the classes defined in the API classification (or their equivalents according to the ATIEL classification) and presented in the table 1 below or their mixtures.
  • Mineral base oils include all types of base oils obtained by atmospheric and vacuum distillation of crude oil, followed by refining operations such as solvent extraction, desalphating, solvent dewaxing, hydrotreating, hydrocracking, hydroisomerization and hydrofinishing .
  • Blends of synthetic and mineral oils, which can be biosourced, can also be used.
  • the base oils of the fluids used according to the invention can also be chosen from synthetic oils, such as certain esters of carboxylic acids and alcohols, polyalphaolefins (PAO), and polyalkylene glycol (PAG) obtained by polymerization. or copolymerization of alkylene oxides comprising from 2 to 8 carbon atoms, in particular from 2 to 4 carbon atoms.
  • synthetic oils such as certain esters of carboxylic acids and alcohols, polyalphaolefins (PAO), and polyalkylene glycol (PAG) obtained by polymerization. or copolymerization of alkylene oxides comprising from 2 to 8 carbon atoms, in particular from 2 to 4 carbon atoms.
  • the PAOs used as base oils are for example obtained from monomers comprising 4 to 32 carbon atoms, for example from octene or decene.
  • the weight average molecular weight of PAO can vary quite widely. Of Preferably, the weight average molecular mass of the PAO is less than 600 Da.
  • the weight average molecular mass of the PAO can also range from 100 to 600 Da, from 150 to 600 Da, or even from 200 to 600 Da.
  • the oil or base oils of the fluid used according to the invention can be chosen from group II or III base oils.
  • the base oil or oils of the fluid used according to the invention are chosen from polyalphaolefins (PAO), polyalkylene glycol (PAG) and esters of carboxylic acids and alcohols. .
  • the fluid used according to the invention may also further comprise all types of functional additives, distinct from the anti-wear additives defined in the context of the present invention, suitable for use in a lubricant for electric vehicles.
  • Such additives can be chosen from detergents, dispersants, antioxidants, pour point depressants, anti-foaming agents, water improvers. viscosity index, and their mixtures.
  • the fluid used according to the invention comprises at least one functional additive chosen from detergents, dispersants, antioxidants, pour point depressants, anti-foaming agents, viscosity index improvers, and their mixtures.
  • these additional functional additives represent (in total) from 1 to 30% by weight, preferably from 1.5 to 25% by weight, preferably from 2 to 20% by weight, of the weight total fluid.
  • additives can be introduced individually and/or in the form of a mixture like those already available for sale for commercial lubricant formulations for vehicle engines, with a performance level as defined by the ACEA ( Association of European Automobile Manufacturers) and/or TAPI (American Petroleum Institute), well known to those skilled in the art.
  • the fluid used according to the invention may comprise at least one antioxidant additive.
  • the antioxidant additive generally makes it possible to delay the degradation of the composition in service. This degradation can notably result in the formation of deposits, the presence of sludge or an increase in the viscosity of the composition.
  • Antioxidant additives act in particular as free radical inhibitors or hydroperoxide destroyers.
  • antioxidant additives mention may be made of phenolic-type antioxidant additives, amine-type antioxidant additives and phosphosulfur-containing antioxidant additives. Some of these antioxidant additives, for example phosphosulfur antioxidant additives, can generate ash. Phenolic antioxidant additives can be ash-free or in the form of neutral or basic metal salts.
  • the antioxidant additives may in particular be chosen from sterically hindered phenols, sterically hindered phenol esters and sterically hindered phenols comprising a thioether bridge, diphenylamines, diphenylamines substituted by at least one Cl-C12 alkyl group, N,N '-dialkyl-aryl-diamines and mixtures thereof.
  • the sterically hindered phenols are chosen from compounds comprising a phenol group of which at least one vicinal carbon of the carbon carrying the alcohol function is substituted by at least one alkyl group in Ci-Cio, preferably an alkyl group in CI-C ⁇ , preferably a C4 alkyl group, preferably by the tert-butyl group.
  • Amino compounds are another class of antioxidant additives that can be used, possibly in combination with phenolic antioxidant additives.
  • Examples of amino compounds are aromatic amines, for example aromatic amines of formula NR 10 R n R 12 in which R 10 represents an aliphatic group or an aromatic group, optionally substituted, R 11 represents an aromatic group, optionally substituted, R 12 represents a hydrogen atom, an alkyl group, an aryl group or a group of formula R 13 S(O) Z R 14 in which R 13 represents an alkylene group or an alkenylene group, R 14 represents an alkyl group, a alkenyl group or an aryl group and z represents 0, 1 or 2.
  • Sulfurized alkyl phenols or their alkali and alkaline earth metal salts can also be used as antioxidant additives.
  • antioxidant additives are that of copper compounds, for example copper thio- or dithio-phosphates, copper salts and carboxylic acids, dithiocarbamates, sulphonates, phenates, copper acetylacetonates. Copper I and II salts, succinic acid or anhydride salts can also be used.
  • copper compounds for example copper thio- or dithio-phosphates, copper salts and carboxylic acids, dithiocarbamates, sulphonates, phenates, copper acetylacetonates.
  • Copper I and II salts, succinic acid or anhydride salts can also be used.
  • the fluid used according to the invention may contain all types of antioxidant additives known to those skilled in the art.
  • the fluid used according to the invention comprises at least one antioxidant additive free of ash.
  • the fluid used according to the invention may comprise from 0.5 to 2% by weight of at least one antioxidant additive, relative to the total weight of the fluid.
  • the fluid used according to the invention may also comprise at least one detergent additive.
  • Detergent additives generally help reduce the formation of deposits on the surface of metal parts by dissolving secondary oxidation and combustion products.
  • the detergent additives which can be used in the fluid used according to the invention are generally known to those skilled in the art.
  • the detergent additives may be anionic compounds comprising a long lipophilic hydrocarbon chain and a hydrophilic head.
  • the associated cation may be a metallic cation of an alkali or alkaline earth metal.
  • the detergent additives are preferably chosen from alkali metal or alkaline earth metal salts of carboxylic acids, sulfonates, salicylates, naphthenates, as well as phenate salts.
  • the alkali and alkaline earth metals are preferably calcium, magnesium, sodium or barium.
  • metal salts generally include the metal in stoichiometric quantity or in excess, therefore in quantity greater than the narrow stoichiometric quantity.
  • overbased detergent additives the excess metal providing the overbased character to the detergent additive is then generally in the form of a salt metal insoluble in oil, for example a carbonate, a hydroxide, an oxalate, an acetate, a glutamate, preferably a carbonate.
  • the fluid used according to the invention can for example comprise from 0.5 to 4% by weight of detergent additive, relative to the total weight of the composition.
  • the fluid used according to the invention may comprise at least one dispersing agent.
  • the dispersant will ensure the maintenance in suspension and the evacuation of insoluble solid contaminants consisting of secondary oxidation products which form when the fluid is in service.
  • the dispersing agent can be chosen from Mannich bases or succinimide type compounds, such as polyisobutylene succinimide (PIBSI).
  • PIBSI polyisobutylene succinimide
  • the fluid used according to the invention may for example comprise from 0.2 to 10% by weight of dispersing agent(s), relative to the total weight of the fluid.
  • the fluid used according to the invention may also comprise at least one anti-foaming agent.
  • the anti-foaming agent can be chosen from silicones.
  • the fluid used according to the invention may comprise from 0.01 to 2% by weight or from 0.01 to 5% by weight, preferably from 0.1 to 1.5% by weight or from 0.1 to 2% by weight d anti-foaming agent, relative to the total weight of the fluid.
  • the fluid used according to the invention may also comprise at least one pour point depressant additive (also known as “PPD” agents for “Pour Point Depressant” in English).
  • PPD pour point depressant additive
  • the fluid used according to the invention may also comprise at least one additive improving the viscosity index (VI improver).
  • VI improver As an example of VI improver, mention may be made of polymethacrylates, polyisobutenes or fatty acid esters. When present, these additives can represent 1 to 25% by weight of the total weight of the fluid.
  • the anti-wear additive(s) can be added to a base oil or mixture of oils, then other possible additional additives added.
  • the anti-wear additive(s) can be added to a pre-existing conventional lubricating formulation, comprising in particular one or more base oils, and possibly additional additives.
  • the fluid used according to the invention has a kinematic viscosity, measured at 40°C according to the ASTM D445 standard, ranging from 5 to 300 mm 2 /s, in particular from 10 to 25 mm 2 /s.
  • the fluid used according to the invention has a kinematic viscosity, measured at 100°C according to the ASTM D445 standard, ranging from 1 to 20 mm 2 /s, in particular from 2 to 15 mm 2 /s.
  • the fluid used according to the invention comprises, or even consists of:
  • anti-wear additive(s) preferably chosen from anti-wear phosphorous, preferably chosen from phosphite polymers
  • anti-wear additive(s) preferably chosen from phosphorus anti-wear, preferably chosen from phosphite polymers
  • one or more functional additives preferably chosen from viscosity index improving additives, antioxidant additives, antifoam additives, dispersants, detergents, viscosity modifier additives, and their mixing, relative to the total weight of the fluid.
  • the fluid used according to the invention comprises, or even consists of:
  • the fluid used according to the invention comprises from 5 to 9150 ppm by weight of phosphorus, preferably from 5 to 4500 ppm by weight of phosphorus, relative to the total weight of the fluid.
  • the fluid used according to the invention comprises from 5 to 4000 ppm by weight of sulfur, preferably from 7 to 1000 ppm by weight of sulfur, more preferably from 10 to 800 ppm by weight of sulfur , relative to the total weight of the fluid.
  • the anti-wear additive(s) have one or more of the characteristics defined in the present invention.
  • the present invention also relates to the use of at least one anti-wear additive in a fluid comprising at least one base oil, said fluid being used to cool the battery of an electric vehicle.
  • the anti-wear additive(s) have one or more of the characteristics defined in the present invention.
  • the anti-wear additive(s) have one or more of the characteristics defined in the present invention.
  • the fluid has one or more of the characteristics defined in the present invention.
  • the invention also relates, according to another of its aspects, to a method of lubricating and cooling a propulsion system of an electric vehicle, said method comprising the circulation of a single fluid in the lubrication and cooling system of the entire propulsion system of an electric vehicle, said fluid comprising a base oil and at least one anti-wear additive.
  • the anti-wear additive(s) have one or more of the characteristics defined in the present invention.
  • the fluid has one or more of the characteristics defined in the present invention.
  • the propulsion system of the electric vehicle includes an electric motor, the rotor-stator assembly of the power electronics (dedicated to speed regulation), a transmission (also called reduction gear) and a battery.
  • the invention also relates, according to another of its aspects, to a process for improving the thermal conductivity of a fluid comprising at least one base oil, said process comprising a step of mixing at least one anti-wear additive.
  • said anti-wear additive is chosen from phosphorus anti-wear additives, preferably chosen from phosphite polymers preferably corresponding to formula (I).
  • the anti-wear additive(s) have one or more of the characteristics defined in the present invention.
  • the fluid has one or more of the characteristics defined in the present invention.
  • a phosphite polymer type anti-wear was used. It is a phosphite polymer corresponding to formula (I) described in the present invention. It comprises 4.50% by weight of phosphorus and zero sulfur, it has a weight average molecular mass of approximately 10,000 g/mol and a number average molecular mass of approximately 3000 g/mol, it can be obtained for example according to the process described in Example 2 of document WO 2011/102861.
  • the base oil has a viscosity at 40°C of 7.62 cSt measured according to the ASTM D445 standard.
  • fluid 1 comprises 99% by weight of the base oil and 1% by weight of the anti-wear and fluid 2 comprises 95% by weight of the base oil and 5% by weight of anti-wear.
  • Table 2 brings together the thermal conductivities at 30°C, 60°C and 90°C of the compositions tested. Thermal conductivity was measured according to ASTM D7896-19.
  • Lubricating compositions were prepared by mixing the ingredients at a temperature of approximately 40° C., according to methods well known to those skilled in the art.
  • the lubricating compositions which were prepared and tested are detailed in Table 3 below.
  • the elemental phosphorus and sulfur contents were calculated based on the elemental contents in the ingredients and are also shown in Table 3 in ppm by weight.
  • the base oils are group III base oils
  • the phosphite polymer is identical to the phosphite polymer used in the example
  • the phosphorus anti-wear is a tert-butylphenyl phosphate (not meeting the formula
  • T antioxidant is an alkylated diphenylamine antioxidant
  • T anti-corrosion is a tolytriazine
  • the detergent is a calcium sulphonate overbased detergent
  • the additive package contains a pour point improver and an anti-foam.
  • the anti-wear properties of the additive of formula (I) were determined by the FZG A/8.3/90 method with a low load.
  • the lubricating compositions described in Table 3 were subjected to the FZG A/8.3/90 method (according to standard ISO 14635-1). The results are shown in Table 3 above. At its phosphorus content, the Cil composition according to the invention has better anti-wear properties than the CCI composition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

La présente invention concerne l'utilisation d'au moins un additif anti-usure pour améliorer la conductivité thermique d'un fluide comprenant au moins une huile de base.

Description

Description
Titre : Utilisation d’un additif anti-usure pour améliorer la conductivité thermique d’un fluide de refroidissement pour véhicule électrique
Domaine technique
La présente invention concerne le domaine des compositions lubrifiantes pour véhicule électrique. Plus particulièrement, la présente invention concerne le domaine des compositions lubrifiantes et refroidissantes pour véhicule électrique, en particulier pour refroidir la batterie d’un véhicule électrique.
Etat de la technique
L’évolution des normes internationales pour la réduction des émissions de CO2, mais également pour la diminution de la consommation d’énergie, pousse les constructeurs automobiles à proposer des solutions alternatives aux moteurs à combustion.
L’une des solutions identifiées par les constructeurs automobiles consiste à remplacer les moteurs à combustion par des moteurs électriques. Les recherches pour la réduction des émissions de CO2 ont donc mené au développement des véhicules électriques par un certain nombre de compagnies automobiles.
D’une manière générale, il est nécessaire de mettre en œuvre, dans les véhicules, des compositions lubrifiantes, dites encore « des fluides lubrifiants », à des fins principales de réduction des forces de frottement entre les différentes pièces du système de propulsion du véhicule, notamment entre les pièces métalliques en mouvement dans les moteurs. Ces compositions lubrifiantes sont en outre efficaces pour prévenir une usure prématurée voire un endommagement de ces pièces, et en particulier de leur surface.
Les moteurs électriques génèrent de la chaleur pendant leur fonctionnement. Si la quantité de chaleur générée est supérieure à la quantité de chaleur normalement dissipée à l’environnement, il est nécessaire d’assurer un refroidissement du moteur. De manière générale, le refroidissement d’effectue sur une ou plusieurs parties du moteur générant de la chaleur et/ou les parties du moteur sensibles à la chaleur, afin d’éviter d’atteindre des températures dangereuses.
Ce refroidissement pourra se faire par un refroidissement direct ou un refroidissement indirect. En raison de l’augmentation grandissante de la densité de puissance des moteurs électriques, il sera nécessaire de développer et d’améliorer le mode de refroidissement direct du moteur électrique où le fluide lubrifiant de la partie transmission servira également à refroidir les parties chaudes du moteur électrique. On peut citer en exemple le véhicule Tesla Model S, dans lequel le lubrifiant du réducteur circule également dans le rotor creux du moteur électrique pour refroidir les têtes de bobine statoriques via plusieurs jets d’huile.
Pour ce faire, une composition lubrifiante est classiquement composée d’une ou plusieurs huile(s) de base, auxquelles sont généralement associés plusieurs additifs dédiés à stimuler les performances lubrifiantes de l’huile de base, comme par exemple des additifs modificateurs de frottement.
Pour des raisons d'économie et de facilité de mise en œuvre, il serait avantageux de disposer d'une composition permettant de répondre simultanément aux besoins de lubrification et de refroidissement d'un système de propulsion (moteur, batterie, etc.) d'un véhicule électrique. Malheureusement, ces deux propriétés, lubrification et refroidissement, imposent à première vue des contraintes opposées.
Un type de performance particulièrement utile pour une composition lubrifiante des systèmes de propulsion de véhicules électriques consiste à présenter de bonnes propriétés de résistance à l’usure, propriétés faisant partie systématiquement des prérogatives à respecter dans les cahiers des charges des constructeurs.
En outre, ce type de composition lubrifiante doit pouvoir refroidir les systèmes de propulsion de véhicules électriques.
C’est donc un objet de la présente invention que de fournir un fluide unique (composition lubrifiante unique) pouvant être mis en œuvre dans tous les organes d’un système de propulsion d’un véhicule électrique.
Résumé de l’invention
Plus précisément, la présente invention concerne l’utilisation d’au moins un additif anti-usure pour améliorer la conductivité thermique d’un fluide comprenant au moins une huile de base.
Selon l’invention, ledit additif anti-usure est choisi parmi les anti-usure phosphorés, les anti-usure phospho-soufrés, les anti-usure phospho-aminés, les anti-usure soufrés, les anti-usure boratés, et leurs mélanges. Selon un mode de réalisation, l’additif anti-usure est utilisé pour améliorer les propriétés caloportrices du fluide.
Selon un mode de réalisation, le fluide est utilisé pour refroidir la batterie d’un véhicule électrique.
Selon un mode de réalisation, l’additif anti-usure est utilisé pour préparer un fluide unique mis en œuvre pour lubrifier et refroidir le système de propulsion d’un véhicule électrique. Ainsi, selon ce mode de réalisation, le fluide unique (le même fluide) circule dans l’ensemble du système de refroidissement et de lubrification du système de propulsion d’un véhicule électrique.
De préférence, l’additif anti-usure est choisi parmi les anti-usure phosphorés, les anti-usure phospho-soufrés, les anti-usure phospho-aminés, et leurs mélanges, de préférence parmi les anti-usure phosphorés.
De préférence, l’additif anti -usure est un polymère phosphite, de préférence répondant à la formule (I) :
[Chem 1]
Figure imgf000004_0001
dans laquelle,
- chacun des RI, R2, R3 et R4 peuvent être choisis indépendamment les uns des autres parmi les groupements C1-C20 alkyle, C3-C22 alkényle, C6-C40 cycloalkyle, C7- C40 cycloalkényle, Cl -20 méthoxy alkyl glycol éthers et Y-OH;
- Y est choisi parmi les groupements C2-C40 alkylène, C2-C40 alkyl lactone, - R7-N(R8)-R9-, dans lequel R7, R8 et R9 sont indépendamment les uns des autres choisis parmi hydrogène, C1-C20 alkyle, C3-C22 alkényle, C6-C40 cycloalkyle, C7-C40 cycloalkényle, Cl -20 méthoxy alkyl glycol éthers,
- m est un entier allant de 2 à 100,
- n est un entier allant de 1 à 1000.
Selon un mode de réalisation, le polymère phosphite, de préférence répondant à la formule (I), présente une masse moléculaire moyenne en poids inférieure à 30000 g/mol, de préférence allant de 5000 à 20000 g/mol. Selon un mode de réalisation, l’additif anti -usure représente de 0,01 à 10% en poids du poids total du fluide.
Selon un mode de réalisation, l’additif anti-usure comprend de 5 à 9150 ppm en poids de phosphore, de préférence de 5 à 4500 ppm en poids de phosphore, par rapport au poids total de fluide.
Selon un mode de réalisation, le fluide comprend au moins 70% en poids, de préférence au moins 80% en poids, de préférence encore au moins 85% en poids, d’huile(s) de base, par rapport au poids total du fluide.
Selon un mode de réalisation, le fluide comprend :
- de 70 à 99,99% en poids d’une ou plusieurs huile(s) de base, et
- de 0,01 à 10% en poids d’additif(s) anti-usure, de préférence choisi parmi les anti-usure phosphorés, de préférence choisi parmi les polymères phosphites,
- éventuellement de 1 à 30% en poids d’un ou plusieurs additifs fonctionnels, de préférence choisi parmi les additifs améliorant l’indice de viscosité, les additifs antioxydants, les additifs antimousse, les dispersants, les détergents, les additifs modificateur de viscosité, et leur mélange, par rapport au poids total du fluide.
Le fluide mis en œuvre selon l’invention a l’avantage de pouvoir être utilisé à la fois pour lubrifier les pièces d’un système de propulsion d’un véhicule électrique et pour refroidir les pièces d’un système de propulsion d’un véhicule électrique.
Sauf indication contraire, les quantités dans un produit sont exprimées en poids, par rapport au poids total du produit.
Description détaillée
La présente invention concerne l’utilisation d’au moins un additif anti-usure : pour améliorer la conductivité thermique d’un fluide comprenant au moins une huile de base et/ou pour améliorer les propriétés caloportrices d’un fluide comprenant au moins une huile de base et/ou dans un fluide comprenant au moins une huile de base pour refroidir la batterie d’un véhicule électrique.
Par « véhicule électrique » au sens de la présente invention, on entend désigner un véhicule comprenant un moteur électrique comme unique moyen de propulsion à l’inverse d’un véhicule hybride qui comprend un moteur à combustion et un moteur électrique comme moyens de propulsion combinés.
Par « système de propulsion » au sens de la présente invention, on entend désigner un système comprenant les pièces mécaniques nécessaires à la propulsion d’un véhicule. Dans le cadre d’un véhicule électrique, le système de propulsion englobe ainsi plus particulièrement un moteur électrique, l’ensemble rotor-stator de l’électronique de puissance (dédié à la régulation de la vitesse), une transmission (appelée également réducteur) et une batterie.
La conductivité thermique peut être déterminée selon la norme ASTM D7896- 19. Elle est de préférence déterminée à 30°C dans le cadre de la présente invention.
Additif anti-usure
L’additif anti -usure mis en œuvre dans la composition lubrifiante est un additif connu pour ses propriétés de réduction de l’usure lorsqu’il est ajouté dans une huile de base.
Selon l’invention, l’additif anti-usure est choisi parmi les anti-usure phosphorés, les anti-usure phospho-soufrés, les anti-usure phospho-aminés, les anti-usures soufrés, les anti-usures boratés, et leurs mélanges.
De préférence, l’additif anti-usure est choisi parmi les anti-usure phosphorés, les anti-usure phospho-soufrés, les anti-usure phospho-aminés, et leurs mélanges.
Au sens de la présente invention, un « anti-usure phosphoré » désignera un antiusure comprenant au moins un atome de phosphore et ne comprenant pas de soufre ni d’azote.
Au sens de la présente invention, un « anti -usure soufré » désignera un anti -usure comprenant au moins un atome de soufre et ne comprenant pas de phosphore ni d’azote.
Au sens de la présente invention, un « anti-usure phospho-soufré » désignera un anti-usure comprenant au moins un atome de phosphore et au moins un atome de soufre et ne comprenant pas d’atome d’azote. Au sens de la présente invention, un « anti-usure phospho-aminé » désignera un anti -usure comprenant au moins un atome de phosphore et au moins un atome d’azote et ne comprenant pas d’atome de soufre.
Au sens de la présente invention, un « anti -usure soufré » désignera un anti -usure comprenant au moins un atome de soufre et ne comprenant pas d’atome de phosphore ni d’azote.
Au sens de la présente invention, un « anti -usure boraté » désignera un anti -usure comprenant au moins un atome de bore et ne comprenant pas d’atome de phosphore ni d’azote ni de soufre.
Les additifs anti-usure de type anti-usure phosphorés, les anti-usure phospho- soufrés, les anti-usure phospho-aminés, les anti -usures soufrés, les anti-usures boratés sont disponibles commercialement.
Parmi les additifs anti-usure phosphoré, on peut citer les phosphates, phosphites, et phosphonates. Ces termes désignent à la fois les acides phosphoriques, phosphoreux, phosphoniques, leurs mono, di et triesters, par exemple phosphates d'alkyle, phosphonates d'alkyle, et leurs sels.
Les additifs anti usure phospho-soufrés éventuellement utilisés dans la présente invention peuvent être des (mono ou di) thiophosphates et thiophosphites, ces termes incluant les acides thiophosphoriques et thiophosphoreux, les esters de ces acides, leurs sels, les dithiophosphites et dithiophosphates.
On peut citer, à titre d'exemples d'additifs anti usure phospho-soufrés, les monobutylthiophosphate, monooctylthiophosphate, monolaurylthiophosphate, dibutylthiophosphate, dilaurylthiophosphate, tributylthiophosphate, trioctylthiophosphate, triphenylthiophosphate, monooctylthiophosphite, trilaurylthiophosphate, monolaurylthiophosphite, monobutylthiophosphite, dibutylthiophosphite, dilaurylthiophosphite, tributylthiophosphite, trioctylthiophosphite, triphenylthiophosphite, trilaurylthiophosphite et leurs sels.
Parmi les anti-usure phospho-soufrés sous forme de sels, on pourra citer les antiusure de type dithiophosphate métallique, par exemple les dithiophosphates de zinc, de cobalt ou de nickel. Parmi les anti-usure soufrés, on pourra citer les oléfines sulfurisées, les esters sulfurisés, les polysulfures, notamment les disulfures, les thiocarbamates et les dithiocarbamates et leurs sels.
Parmi les anti-usure soufrés sous forme de sels, on pourra citer les anti-usure de type dithiocarbamate métallique, par exemple les dithiocarbamates de zinc, de cobalt ou de nickel.
Parmi les anti-usure boratés, on pourra citer les esters boratés, les borates de calcium et les borates de potassium.
Selon un mode de réalisation, l’additif anti-usure est choisi parmi les polymères phosphite, de préférence répondant à la formule (I) :
[Chem 1]
Figure imgf000008_0001
dans laquelle,
- chacun des R1, R2, R3 et R4 peuvent être choisis indépendamment les uns des autres parmi les groupements alkyle en C1-C20, alkényle en C3-C22, cycloalkyle en C6-C40, cycloalkényle en C7-C40, méthoxy alkyl glycol éthers en Ci -20 et Y-OH (servant de groupe terminal) ;
- Y est choisi parmi les groupements alkylène en C2-C40, alkyl lactone en C2-C40, -R7-N(R8)- R9-, dans lequel R7, R8 et R9 sont indépendamment les uns des autres choisis parmi hydrogène, alkyle en C1-C20, alkényle en C3-C22, cycloalkyle en C6-C40, cycloalkényle en C7-C40, méthoxy alkyl glycol éthers en Ci -20,
- m est un entier allant de 2 à 100,
- n est un entier allant de 1 à 1000.
Au sens de la présente invention, on entend par « alkyle » une chaîne linéaire ou ramifiée non cyclique hydrocarbonée, saturée, comprenant éventuellement un ou plusieurs hétéroatomes, tel que des atomes d’oxygène, d’azote ou de soufre. De préférence, les alkyles sont constitués d’atomes de carbone et d’hydrogène. Au sens de la présente invention, on entend par « alkényle » une chaîne linéaire ou ramifiée non cyclique hydrocarbonée, insaturée, comprenant éventuellement un ou plusieurs hétéroatomes, tel que des atomes d’oxygène, d’azote ou de soufre. De préférence, les alkényles sont constitués d’atomes de carbone et d’hydrogène.
Au sens de la présente invention, on entend par « cycloalkyle » un groupement monocyclique ou polycyclique saturé présentant éventuellement un ou plusieurs substituants alkyle ou alkényle, ledit ou lesdits cycles peuvent eux-mêmes être substitués par un ou plusieurs hétéroatomes, tel que des atomes d’oxygène, d’azote ou de soufre. De préférence, les cycloalkyles sont constitués d’atomes de carbone et d’hydrogène.
Au sens de la présente invention, on entend par « cycloalkényle » un groupement monocyclique ou polycyclique insaturé présentant éventuellement un ou plusieurs substituants alkyle ou alkényle, ledit ou lesdits cycles peuvent eux-mêmes être substitués par un ou plusieurs hétéroatomes, tel que des atomes d’oxygène, d’azote ou de soufre. De préférence, les cycloalkényles sont constitués d’atomes de carbone et d’hydrogène.
Au sens de la présente invention, un groupement « en Ci-Cj » est un groupement comportant de i à j atomes de carbone.
Selon un mode de réalisation préféré, le groupement Y est choisi parmi les alkylène comprenant de 2 à 20 atomes de carbone, de préférence de 2 à 12 atomes de carbone, de préférence encore de 2 à 8 atomes de carbone.
Selon un mode de réalisation, m va de 4 à 100.
Selon un mode de réalisation, le polymère phosphite, de préférence répondant à la formule (I), présente une masse moléculaire moyenne en poids inférieure à 30000 g/mol, de préférence allant de 3000 à 20000 g/mol. La masse moléculaire moyenne en poids peut être mesurée par chromatographie d’exclusion stérique.
Selon un mode de réalisation, le polymère phosphite, de préférence répondant à la formule (I), présente une masse moléculaire moyenne en nombre inférieure à 10000 g/mol, de préférence allant de 1000 à 5000 g/mol. La masse moléculaire moyenne en nombre peut être mesurée par chromatographie d’exclusion stérique. Selon un mode de réalisation, le polymère phosphite, de préférence répondant à la formule (I), présente un indice de polydispersité allant de 1 à 5, de préférence allant de 2 à 4.
De préférence, le polymère phosphite, de préférence répondant à la formule (I), contient moins de 2% en poids, de préférence moins de 1% en poids, voire moins de 0,7% en poids de groupement (alkyl)phénol, par rapport au poids total du polymère phosphite de formule (I).
De préférence, le polymère phosphite, de préférence répondant à la formule (I), est totalement exempt de groupement aromatique différents des groupements (alkyl)phénol.
Typiquement, le polymère phosphite, de préférence répondant à la formule (I), est sous forme liquide.
Selon un mode de réalisation, le polymère phosphite, de préférence répondant à la formule (I), présente une teneur en phosphore allant de 0,5 à 20% en poids, de préférence de 1 à 10% en poids, par rapport au poids total du polymère phosphite.
Le polymère phosphite pouvant être mis en œuvre dans l’invention peut être obtenu selon le procédé décrit dans le document WO2011102861. En particulier, le polymère peut être obtenu selon le procédé décrit dans les paragraphes 27 à 32 de ce document.
La synthèse des polymères de formule (I) implique généralement une transestérification dans laquelle le phosphite de triphényle (ou tout autre phosphite d'alkyle ou d'aryle approprié) pourra être mis à réagir avec un alcool saturé ou insaturé ou un éther de polyéthylène ou de polypropylène glycol et un diol ou un polymère diol H(0Y)m0H où Y et m sont tels que définis précédemment avec un catalyseur basique approprié à une température comprise entre 20°C et 250°C, et de préférence à une température comprise entre 50°C et 185°C. Parmi les exemples non limitatifs d'alcools saturés ou insaturés, on peut citer les alcools de décyle, d’isodécyle, de lauryle, de tridécyle, d’isotridécyle, de tétradécyle, de pentadécyle, d’hexadécyle, de stéaryle, d’isostéaryle, oléique, les éthers de glycol monohydroxylés. De préférence, le fluide mis en œuvre selon l’invention comprend de 0,01 à 10% en poids d’additifs anti -usure, de préférence de 0,01 à 5% en poids d’additif(s) anti -usure, par rapport au poids total du fluide.
La quantité d’additifs anti -usure pourra être adaptée afin d’obtenir une teneur en phosphore allant de 5 à 9150 ppm en poids dans le fluide. De préférence, la teneur en phosphore dans le fluide mis en œuvre selon l’invention va de 5 à 4500 ppm en poids, par rapport au poids total du fluide.
Huile(s) de base
Le fluide mis en œuvre selon l’invention comprend une ou plusieurs huiles de base, de préférence en une teneur d’au moins 70% en poids, de préférence allant de 70 à 99% en poids, de préférence encore de 80 à 98% en poids, préférentiellement de 85 à 95% en poids, par rapport au poids total du fluide.
Ces huiles de base peuvent être choisies parmi les huiles de base conventionnellement utilisées dans le domaine des huiles lubrifiantes, telles que les huiles minérales, synthétiques ou naturelles, animales ou végétales ou leurs mélanges.
Il peut s’agir d’un mélange de plusieurs huiles de base, par exemple un mélange de deux, trois, ou quatre huiles de base.
Les huiles de base des fluides considérées selon l’invention peuvent être en particulier des huiles d’origines minérales ou synthétiques appartenant aux groupes I à V selon les classes définies dans la classification API (ou leurs équivalents selon la classification ATIEL) et présentées dans le tableau 1 ci-dessous ou leurs mélanges.
[Tableau 1]
Figure imgf000012_0001
Les huiles de base minérales incluent tous types d’huiles de base obtenues par distillation atmosphérique et sous vide du pétrole brut, suivies d’opérations de raffinage telles qu’ extraction au solvant, désalphatage, déparaffinage au solvant, hydrotraitement, hydrocraquage, hydroisomérisation et hydrofinition.
Des mélanges d’huiles synthétiques et minérales, pouvant être biosourcées, peuvent également être employés.
Il n’existe généralement aucune limitation quant à l’emploi d’huiles de base différentes pour réaliser les compositions mises en œuvre selon l’invention, si ce n’est qu’elles doivent avoir des propriétés, notamment en termes de viscosité, d’indice de viscosité, ou de résistance à l’oxydation, adaptées à une utilisation pour des systèmes de propulsion d’un véhicule électrique ou hybride.
Les huiles de bases des fluides mis en œuvre selon l’invention peuvent également être choisies parmi les huiles synthétiques, telles certains esters d’acides carboxyliques et d’alcools, les polyalphaoléfines (PAO), et les polyalkylène glycol (PAG) obtenus par polymérisation ou copolymérisation d’oxydes d’alkylène comprenant de 2 à 8 atomes de carbone, en particulier de 2 à 4 atomes de carbone.
Les PAO utilisées comme huiles de base sont par exemple obtenues à partir de monomères comprenant de 4 à 32 atomes de carbone, par exemple à partir d’octène ou de décène. La masse moléculaire moyenne en poids de la PAO peut varier assez largement. De manière préférée, la masse moléculaire moyenne en poids de la PAO est inférieure à 600 Da. La masse moléculaire moyenne en poids de la PAO peut également aller de 100 à 600 Da, de 150 à 600 Da, ou encore de 200 à 600 Da.
Avantageusement, l’huile ou les huiles de base du fluide mis en oeuvre selon l’invention peuvent être choisies parmi les huiles de base du groupe II ou III.
Selon un mode de réalisation alternatif, l’huile ou les huiles de base du fluide mis en œuvre selon l’invention sont choisies parmi les polyalphaoléfines (PAO), les polyalkylène glycol (PAG) et les esters d’acides carboxyliques et d’alcools.
Additifs complémentaires
Le fluide mis en œuvre selon l’invention peut également comprendre en outre tous types d’additifs fonctionnels, distincts des additifs anti -usure définis dans le contexte de la présente invention, adaptés à une utilisation dans un lubrifiant pour véhicules électriques.
De tels additifs, connus de l’homme du métier dans le domaine de la lubrification de véhicules électriques peuvent être choisis parmi les détergents, les dispersants, les antioxydants, les abaisseurs du point d’écoulement, les agents anti -mousse, les améliorants d’indice de viscosité, et leurs mélanges.
Avantageusement, le fluide mis en œuvre selon l’invention comprend au moins un additif fonctionnel choisi parmi les détergents, les dispersants, les antioxydants, les abaisseurs du point d’écoulement, les agents anti-mousse, les améliorants d’indice de viscosité, et leurs mélanges.
Typiquement, lorsqu’ils sont présents, ces additifs fonctionnels, additionnels, représentent (en tout) de 1 à 30% en poids, de préférence de 1,5 à 25% en poids, préférentiellement de 2 à 20% en poids, du poids total du fluide.
Ces additifs peuvent être introduits isolément et/ou sous la forme d’un mélange à l’image de ceux déjà disponibles à la vente pour les formulations de lubrifiants commerciaux pour moteurs de véhicules, de niveau de performance tels que définis par l’ACEA (Association des Constructeurs Européens d’ Automobiles) et/ou TAPI (American Petroleum Institute), bien connus de l’homme du métier. Le fluide mis en œuvre selon l’invention peut comprendre au moins un additif antioxydant.
L’additif antioxydant permet généralement de retarder la dégradation de la composition en service. Cette dégradation peut notamment se traduire par la formation de dépôts, par la présence de boues ou par une augmentation de la viscosité de la composition.
Les additifs antioxydants agissent notamment comme inhibiteurs radicalaires ou destructeurs d’hydropéroxydes. Parmi les additifs antioxydants couramment employés, on peut citer les additifs antioxydants de type phénolique, les additifs antioxydants de type aminé, les additifs antioxydants phosphosoufrés. Certains de ces additifs antioxydants, par exemple les additifs antioxydants phosphosoufrés, peuvent être générateurs de cendres. Les additifs antioxydants phénoliques peuvent être exempt de cendres ou bien être sous forme de sels métalliques neutres ou basiques. Les additifs antioxydants peuvent notamment être choisis parmi les phénols stériquement encombrés, les esters de phénol stériquement encombrés et les phénols stériquement encombrés comprenant un pont thioéther, les diphénylamines, les diphénylamines substituées par au moins un groupement alkyle en Cl- C12, les N,N'-dialkyle-aryle-diamines et leurs mélanges.
De préférence selon l’invention, les phénols stériquement encombrés sont choisis parmi les composés comprenant un groupement phénol dont au moins un carbone vicinal du carbone portant la fonction alcool est substitué par au moins un groupement alkyle en Ci- Cio, de préférence un groupement alkyle en CI-CÔ, de préférence un groupement alkyle en C4, de préférence par le groupement tert-butyle.
Les composés aminés sont une autre classe d’additifs antioxydants pouvant être utilisés, éventuellement en combinaison avec les additifs antioxydants phénoliques. Des exemples de composés aminés sont les amines aromatiques, par exemple les amines aromatiques de formule NR10RnR12 dans laquelle R10 représente un groupement aliphatique ou un groupement aromatique, éventuellement substitué, R11 représente un groupement aromatique, éventuellement substitué, R12 représente un atome d’hydrogène, un groupement alkyle, un groupement aryle ou un groupement de formule R13S(O)ZR14 dans laquelle R13 représente un groupement alkylène ou un groupement alkenylène, R14 représente un groupement alkyle, un groupement alcényle ou un groupement aryle et z représente 0, 1 ou 2. Des alkyl phénols sulfurisés ou leurs sels de métaux alcalins et alcalino-terreux peuvent également être utilisés comme additifs antioxydants.
Une autre classe d’additifs antioxydants est celle des composés cuivrés, par exemple les thio- ou dithio-phosphates de cuivre, les sels de cuivre et d’acides carboxyliques, les dithiocarbamates, les sulphonates, les phénates, les acétylacétonates de cuivre. Les sels de cuivre I et II, les sels d’acide ou d’anhydride succiniques peuvent également être utilisés.
Le fluide mis en œuvre selon l’invention peut contenir tous types d’additifs antioxydants connus de l’homme du métier.
De manière avantageuse, le fluide mis en œuvre selon l’invention comprend au moins un additif antioxydant exempt de cendres.
Le fluide mis en œuvre selon l’invention peut comprendre de 0,5 à 2 % en poids d’au moins un additif antioxydant, par rapport au poids total du fluide.
Le fluide mis en œuvre selon l’invention peut également comprendre au moins un additif détergent.
Les additifs détergents permettent généralement de réduire la formation de dépôts à la surface des pièces métalliques par dissolution des produits secondaires d’oxydation et de combustion.
Les additifs détergents utilisables dans le fluide mis en œuvre selon l’invention sont généralement connus de l’homme de métier. Les additifs détergents peuvent être des composés anioniques comprenant une longue chaîne hydrocarbonée lipophile et une tête hydrophile. Le cation associé peut être un cation métallique d’un métal alcalin ou alcalino- terreux.
Les additifs détergents sont préférentiellement choisis parmi les sels de métaux alcalins ou de métaux alcalino-terreux d’acides carboxyliques, les sulfonates, les salicylates, les naphténates, ainsi que les sels de phénates. Les métaux alcalins et alcalino-terreux sont préférentiellement le calcium, le magnésium, le sodium ou le baryum.
Ces sels métalliques comprennent généralement le métal en quantité stœchiométrique ou bien en excès, donc en quantité supérieure à la quantité stœchiom étriqué. Il s’agit alors d’additifs détergents surbasés ; le métal en excès apportant le caractère surbasé à l’additif détergent est alors généralement sous la forme d’un sel métallique insoluble dans l’huile, par exemple un carbonate, un hydroxyde, un oxalate, un acétate, un glutamate, préférentiellement un carbonate.
Le fluide mis en œuvre selon l’invention peut par exemple comprendre de 0,5 à 4 % en poids d’additif détergent, par rapport au poids total de la composition.
Également, le fluide mis en œuvre selon l’invention peut comprendre au moins un agent dispersant. Typiquement, le dispersant permettra de d’assurer le maintien en suspension et l’évacuation des contaminants solides insolubles constitués par les produits secondaires d’oxydation qui se forment lorsque le fluide est en service.
L’agent dispersant peut être choisi parmi les bases de Mannich ou les composés de type succinimide, tels que les polyisobutylène succinimide (PIBSI).
Le fluide mis en œuvre selon l’invention peut par exemple comprendre de 0,2 à 10 % en poids d’agent(s) dispersant(s), par rapport au poids total du fluide.
Le fluide mis en œuvre selon l’invention peut comprendre en outre au moins un agent antimousse.
L’agent antimousse peut être choisi parmi les silicones.
Le fluide mis en œuvre selon l’invention peut comprendre de 0,01 à 2 % massique ou de 0,01 à 5 % massique, préférentiellement de 0,1 à 1,5 % massique ou de 0,1 à 2 % massique d’agent antimousse, par rapport au poids total du fluide.
Le fluide mis en œuvre selon l’invention peut également comprendre au moins un additif abaisseur du point d’écoulement, (dits encore agents « PPD » pour « Pour Point Depressant » en langue anglaise).
En ralentissant la formation de cristaux de paraffine, les additifs abaisseurs de point d’écoulement améliorent généralement le comportement à froid du fluide. Comme exemple d’additifs abaisseurs de point d’écoulement, on peut citer les polyméthacrylates d’alkyle, les polyacrylates, les polyarylamides, les polyalkylphénols, les polyalkylnaphtalènes, les polystyrènes alkylés.
Le fluide mis en œuvre selon l’invention peut également comprendre au moins un additif améliorant l’indice de viscosité (améliorant de VI). Comme exemple d’améliorant de VI, on peut citer les polyméthacrylates, les polyisobutènes ou les esters d’acide gras. Lorsqu’ils sont présents, ces additifs peuvent représenter de 1 à 25% en poids, du poids total du fluide.
En termes de formulation d’un tel fluide, le ou les additifs anti-usure peuvent être additionnés à une huile ou mélange d’huiles de base, puis les autres additifs complémentaires éventuels, ajoutés.
Alternativement, le ou les additifs anti-usure peuvent être additionnés à une formulation lubrifiante conventionnelle préexistante, comprenant notamment une ou plusieurs huiles de base, et éventuellement des additifs complémentaires.
Alternativement, le ou les additifs anti-usure peuvent être combinés avec un ou plusieurs additifs additionnels lorsqu’ils sont présents, et le « paquet » d’additifs ainsi formé additionné à une huile ou mélange d’huiles de base.
Avantageusement, le fluide mis en œuvre selon l’invention présente une viscosité cinématique, mesurée à 40°C selon la norme ASTM D445 allant de 5 à 300 mm2/s, en particulier de 10 à 25 mm2/s.
Avantageusement, le fluide mis en œuvre selon l’invention présente une viscosité cinématique, mesurée à 100°C selon la norme ASTM D445 allant de 1 à 20 mm2/s, en particulier de 2 à 15 mm2/s.
Selon un mode de réalisation particulier, le fluide mis en œuvre selon l’invention comprend, voire est constituée de :
- une huile de base ou mélange d’huiles de base;
- un ou plusieurs anti-usure;
- éventuellement un ou plusieurs additifs additionnels choisis parmi les modificateurs d’indice de viscosité, les détergents, les dispersants, les antioxydants, les abaisseurs du point d’écoulement, les agents anti-mousse et leurs mélanges.
Selon un mode de réalisation particulier, le fluide mis en œuvre selon l’invention comprend, voire est constituée de :
- de 70 à 99,99% en poids d’une ou plusieurs huile(s) de base, et
- de 0,01 à 10% en poids d’additif(s) anti-usure, de préférence choisi parmi les anti-usure phosphorés, de préférence choisi parmi les polymères phosphites,
- éventuellement de 1 à 30% en poids d’un ou plusieurs additifs fonctionnels, de préférence choisi parmi les additifs améliorant l’indice de viscosité, les additifs antioxydants, les additifs antimousse, les dispersants, les détergents, les additifs modificateur de viscosité, et leur mélange, par rapport au poids total du fluide.
Selon un mode de réalisation particulier, le fluide mis en œuvre selon l’invention comprend, voire est constituée de :
- de 70 à 99% en poids d’une ou plusieurs huile(s) de base, et
- de 0,01 à 10% en poids d’additif(s) anti-usure, de préférence choisi parmi les anti-usure phosphorés, de préférence choisi parmi les polymères phosphites,
- éventuellement de 1 à 30% en poids d’un ou plusieurs additifs fonctionnels, de préférence choisi parmi les additifs améliorant l’indice de viscosité, les additifs antioxydants, les additifs antimousse, les dispersants, les détergents, les additifs modificateur de viscosité, et leur mélange, par rapport au poids total du fluide.
Selon un mode de réalisation particulier, le fluide mis en œuvre selon l’invention comprend, voire est constituée de :
- au moins 70% en poids, de préférence de 70 à 99% en poids d’huile(s) de base;
- de 0,05% à 10 % en poids, en particulier de 0,1% à 7 % en poids, et plus particulièrement de 1 % à 5 % en poids, de polymère(s) phosphite répondant à la formule (I) ;
- éventuellement de 1 à 20% en poids, de préférence de 1,5 à 10% en poids, et plus particulièrement de 2 à 5% en poids, d’un ou plusieurs additifs fonctionnels, de préférence choisis parmi les modificateurs d’indice de viscosité, les détergents, les dispersants, les antioxydants, les abaisseurs du point d’écoulement, les agents anti -mousse et leurs mélanges, par rapport au poids total du fluide.
Selon un mode de réalisation, le fluide mis en œuvre selon l’invention comprend de 5 à 9150 ppm en poids de phosphore, de préférence de 5 à 4500 ppm en poids de phsophore, par rapport au poids total du fluide. Selon un mode de réalisation, le fluide mis en œuvre selon l’invention comprend de 5 à 4000 ppm en poids de soufre, de préférence de 7 à 1000 ppm en poids de soufre, de préférence encore de 10 à 800 ppm en poids de soufre, par rapport au poids total du fluide.
La présente invention concerne également l’utilisation d’au moins un additif anti-usure pour améliorer les propriétés caloportrices d’un fluide comprenant au moins une huile de base.
De préférence, le ou les additifs anti-usure présentent une ou plusieurs des caractéristiques définies dans la présente invention.
De préférence, le fluide présente une ou plusieurs des caractéristiques définies dans la présente invention.
La présente invention concerne également l’utilisation d’au moins un additif anti-usure dans un fluide comprenant au moins une huile de base, ledit fluide étant mis en œuvre pour refroidir la batterie d’un véhicule électrique.
De préférence, le ou les additifs anti-usure présentent une ou plusieurs des caractéristiques définies dans la présente invention.
De préférence, le fluide présente une ou plusieurs des caractéristiques définies dans la présente invention.
La présente invention a également pour objet l’utilisation d’un fluide comprenant au moins une huile de base et au moins un additif anti-usure pour améliorer la conductivité thermique d’un fluide comprenant au moins une huile de base et/ou pour améliorer les propriétés caloportrices du fluide et/ou pour refroidir la batterie d’un véhicule électrique.
De préférence, le ou les additifs anti-usure présentent une ou plusieurs des caractéristiques définies dans la présente invention.
De préférence, le fluide présente une ou plusieurs des caractéristiques définies dans la présente invention.
L’invention concerne encore, selon un autre de ses aspects, un procédé de lubrification et de refroidissement d’un système de propulsion d’un véhicule électrique, ledit procédé comprenant la circulation d’un fluide unique dans le système de lubrification et de refroidissement de l’ensemble du système de propulsion d’un véhicule électrique, ledit fluide comprenant une huile de base et au moins un additif anti-usure.
De préférence, le ou les additifs anti-usure présentent une ou plusieurs des caractéristiques définies dans la présente invention.
De préférence, le fluide présente une ou plusieurs des caractéristiques définies dans la présente invention.
Typiquement, le système de propulsion du véhicule électrique comprend un moteur électrique, l’ensemble rotor-stator de l’électronique de puissance (dédié à la régulation de la vitesse), une transmission (appelée également réducteur) et une batterie.
L’invention concerne encore, selon un autre de ses aspects, un procédé d’amélioration de la conductivité thermique d’un fluide comprenant au moins une huile de base, ledit procédé comprenant une étape de mélange d’au moins un additif anti -usure tel que défini dans la présente invention, avec au moins une huile de base, de préférence ledit additif anti-usure est choisi parmi les additifs anti-usure phosphorés, de préférence choisis parmi les polymères phosphite répondant de préférence à la formule (I).
De préférence, le ou les additifs anti-usure présentent une ou plusieurs des caractéristiques définies dans la présente invention.
De préférence, le fluide présente une ou plusieurs des caractéristiques définies dans la présente invention.
L’invention va maintenant être décrite au moyen des exemples suivants, donnés bien entendu à titre illustratif et non limitatif de l’invention.
Exemples
Exemple 1
Dans cet exemple un anti -usure de type polymère phosphite a été mis en œuvre. Il s’agit d’un polymère phosphite répondant à la formule (I) décrite dans la présente invention. Il comprend 4,50% en poids de phosphore et zéro soufre, il présente une masse moléculaire moyenne en poids d’environ 10000 g/mol et une masse moléculaire moyenne en nombre d’environ 3000 g/mol, il peut être obtenu par exemple selon le procédé décrit dans l’exemple 2 du document WO 2011/102861.
Dans cet exemple, une huile de base du Groupe III a été mise en œuvre. L’huile de base présente une viscosité à 40°C de 7,62 cSt mesurée selon la norme ASTM D445.
Dans cet exemple, le fluide 1 comprend 99% en poids de l’huile de base et 1% en poids de l’anti-usure et le fluide 2 comprend 95% en poids de l’huile de base et 5% en poids de l’antiusure.
Le tableau 2 rassemble les conductivités thermiques à 30°C, 60°C et 90°C, des compositions testées. La conductivité thermique a été mesurée selon la norme ASTM D7896-19.
[Tableau 2]
Figure imgf000021_0001
Les résultats du tableau 2 montrent que l’additif anti -usure permet d’améliorer la conductivité thermique à 30°C, à 60°C et à 90°C de la composition lubrifiante.
Exemple 2
Des compositions lubrifiantes ont été préparées par mélange des ingrédients à une température d’environ 40°C, selon des méthodes bien connues de l’homme du métier. Les compositions lubrifiantes qui ont été préparées et testées sont détaillées dans le tableau 3 ci- dessous. Les teneurs élémentaires en phosphore et en soufre ont été calculées en fonction des teneurs élémentaires dans les ingrédients et sont également indiquées dans le tableau 3 en ppm en poids.
Enfin, les viscosités cinématique à 40°C et à 100°C ont été déterminées par la méthode ASTM D445 et sont indiquées dans le tableau 3.
[Tableau 3]
Figure imgf000022_0001
Dans les compositions du tableau 3 : - les huiles de base sont des huiles de base du groupe III,
- le polymère phosphite est identique au polymère phosphite mis en œuvre dans l’exemple
1,
- l’anti-usure phosphoré est un tert-butylphenyl phosphate (ne répondant pas à la formule
(I)), comprenant 8, 10% en poids de phosphore et zéro soufre et commercialisé comme additif anti -usure,
- T anti-oxydant est un anti-oxydant diphénylamine alkylé,
- T anti-corrosion est un tolytriazine, - le détergent est un détergent surbasé sulfonate de calcium,
- le paquet d’additif contient un améliorant de point d’écoulement et un anti-mousse.
Les propriétés anti -usure de l’additif de formule (I) ont été déterminées par la méthode FZG A/8,3/90 avec une faible charge.
Les compositions lubrifiantes décrites dans le tableau 3 ont été soumises à la méthode FZG A/8,3/90 (selon la norme ISO 14635-1). Les résultats sont indiqués dans le tableau 3 ci- dessus. A iso teneur en phosphore, la composition Cil selon l’invention présente de meilleures propriétés anti -usure que la composition CCI.

Claims

Revendications
1. Utilisation d’au moins un additif anti -usure pour améliorer la conductivité thermique d’un fluide comprenant au moins une huile de base, ledit additif anti-usure étant choisi parmi les anti-usure phosphorés, les anti-usure phospho-soufrés, les anti-usure phospho-aminés, les anti-usure soufrés, les anti-usure boratés, et leurs mélanges.
2. Utilisation d’au moins un additif anti -usure selon la revendication 1, pour améliorer les propriétés caloportrices du fluide.
3. Utilisation d’au moins un additif anti -usure selon la revendication 1 ou 2, dans laquelle le fluide est utilisé pour refroidir la batterie d’un véhicule électrique.
4. Utilisation d’au moins un additif anti-usure selon l’une des revendications 1 à 3, pour préparer un fluide unique mis en œuvre pour lubrifier et refroidir le système de propulsion d’un véhicule électrique.
5. Utilisation d’au moins un additif anti-usure selon l’une des revendications 1 à 4, dans laquelle l’additif anti -usure est choisi parmi les anti -usure phosphorés, les antiusure phospho-soufrés, les anti-usure phospho-aminés, et leurs mélanges, de préférence parmi les anti-usure phosphorés.
6. Utilisation d’au moins un additif anti-usure selon l’une quelconque des revendications 1 à 5, dans laquelle l’additif anti-usure est un polymère phosphite, de préférence répondant à la formule (I) :
[Chem 1]
Figure imgf000024_0001
dans laquelle, - chacun des R1, R2, R3 et R4 peuvent être choisis indépendamment les uns des autres parmi les groupements C1-C20 alkyle, C3-C22 alkényle, C6-C40 cycloalkyle, C7-C40 cycloalkényle, Cl -20 méthoxy alkyl glycol éthers et Y-OH;
- Y est choisi parmi les groupements C2-C40 alkylène, C2-C40 alkyl lactone, -R7-N(R8)-R9- , dans lequel R7, R8 et R9 sont indépendamment les uns des autres choisis parmi hydrogène, C1-C20 alkyle, C3-C22 alkényle, C6-C40 cycloalkyle, C7-C40 cycloalkényle, Cl -20 méthoxy alkyl glycol éthers,
- m est un entier allant de 2 à 100,
- n est un entier allant de 1 à 1000.
7. Utilisation d’au moins un additif anti -usure selon la revendication 6, dans laquelle le polymère phosphite, de préférence répondant à la formule (I), présente une masse moléculaire moyenne en poids inférieure à 30000 g/mol, de préférence allant de 5000 à 20000 g/mol.
8. Utilisation d’au moins un additif anti-usure selon l’une quelconque des revendications 1 à 7, dans laquelle l’additif anti-usure représente de 0,01 à 10% en poids du poids total du fluide.
9. Utilisation d’au moins un additif anti-usure selon l’une quelconque des revendications 1 à 8, dans laquelle l’additif anti-usure comprend de 5 à 9150 ppm en poids de phosphore, de préférence de 5 à 4500 ppm en poids de phosphore, par rapport au poids total de fluide.
10. Utilisation d’au moins un additif anti-usure selon l’une quelconque des revendications 1 à 9, dans laquelle le fluide comprend au moins 70% en poids, de préférence au moins 80% en poids, de préférence encore au moins 85% en poids, d’huile(s) de base, par rapport au poids total du fluide.
11. Utilisation d’au moins un additif anti-usure selon l’une quelconque des revendications 1 à 10, dans laquelle le fluide comprend : de 70 à 99,99% en poids d’une ou plusieurs huile(s) de base, et de 0,01 à 10% en poids d’additif(s) anti -usure, de préférence choisi parmi les anti-usure phosphorés, de préférence choisi parmi les polymères phosphites, éventuellement de 1 à 30% en poids d’un ou plusieurs additifs fonctionnels, de préférence choisi parmi les additifs améliorant l’indice de viscosité, les additifs antioxydants, les additifs antimousse, les dispersants, les détergents, les additifs modificateur de viscosité, et leur mélange, par rapport au poids total du fluide.
PCT/EP2023/068296 2022-07-05 2023-07-04 Utilisation d'un additif anti-usure pour améliorer la conductivité thermique d'un fluide de refroidissement pour véhicule électrique WO2024008675A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2206841 2022-07-05
FR2206841A FR3137684A1 (fr) 2022-07-05 2022-07-05 Utilisation d’un additif anti-usure pour améliorer la conductivité thermique d’un fluide de refroidissement pour véhicule électrique

Publications (1)

Publication Number Publication Date
WO2024008675A1 true WO2024008675A1 (fr) 2024-01-11

Family

ID=83355699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/068296 WO2024008675A1 (fr) 2022-07-05 2023-07-04 Utilisation d'un additif anti-usure pour améliorer la conductivité thermique d'un fluide de refroidissement pour véhicule électrique

Country Status (2)

Country Link
FR (1) FR3137684A1 (fr)
WO (1) WO2024008675A1 (fr)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011102861A1 (fr) 2010-02-19 2011-08-25 Dover Chemical Corporation Stabilisants de polymères à base de phospite polymère liquide sans alkylphénols
CN113652278A (zh) * 2021-07-30 2021-11-16 四川沃府新材料科技发展有限公司 具有良好导热性能的石墨烯基改性润滑油及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011102861A1 (fr) 2010-02-19 2011-08-25 Dover Chemical Corporation Stabilisants de polymères à base de phospite polymère liquide sans alkylphénols
CN113652278A (zh) * 2021-07-30 2021-11-16 四川沃府新材料科技发展有限公司 具有良好导热性能的石墨烯基改性润滑油及其制备方法

Also Published As

Publication number Publication date
FR3137684A1 (fr) 2024-01-12

Similar Documents

Publication Publication Date Title
EP3289054A1 (fr) Composition lubrifiante ultra-fluide
WO2020182718A1 (fr) Utilisation d'un ester dans une composition de refroidissement
EP2245125A1 (fr) Composition lubrifiante pour moteur quatre temps a bas taux de cendres
FR3072685A1 (fr) Composition pour refroidir et lubrifier un systeme de motorisation d'un vehicule
FR3069864A1 (fr) Composition lubrifiante comprenant un diester
EP4185674A1 (fr) Composition lubrifiante pour transmission automobile
WO2017013238A1 (fr) Composition lubrifiante a fuel eco longue durée
EP3877488B1 (fr) Utilisation d'un diester pour ameliorer les proprietes anti-usure d'une composition lubrifiante
WO2024008675A1 (fr) Utilisation d'un additif anti-usure pour améliorer la conductivité thermique d'un fluide de refroidissement pour véhicule électrique
WO2020201126A1 (fr) Utilisation d'une composition lubrifiante pour transmission
WO2022018000A1 (fr) Composition lubrifiante pour transmission automobile aux propriétés anticorrosion améliorées
EP4185671A1 (fr) Composition lubrifiante pour transmission automobile stable à l'oxydation
EP2488618B1 (fr) Utilisation d'un lubrifiant moteur
WO2024052415A1 (fr) Composition lubrifiante avec des propriétés fuel eco améliorées dans les véhicules hybrides
FR3057878A1 (fr) Composition lubrifiante
FR3139828A1 (fr) Utilisation d’un monoester dans une composition lubrifiante pour transmissions de véhicules
WO2023061899A1 (fr) Carbodiimide comme additif dans des lubrifiants destinés à des systèmes de motorisation pour ameliorer la compatibilite avec les elastomeres
EP4146774A1 (fr) Composition lubrifiante pour vehicules electriques
FR3137919A1 (fr) Utilisation d’un diester dans une composition de refroidissement
FR3142198A1 (fr) Composition lubrifiante pour transmission automobile.
WO2024110561A1 (fr) Composition lubrifiante pour transmission automobile
FR3115291A1 (fr) Utilisation d’ester de dialkylène glycol pour diminuer le frottement dans les véhicules équipés de moteur hybride
FR3121447A1 (fr) Lubrification de moteur de véhicule hybride rechargeable et véhicule hybride comprenant un prolongateur d’autonomie
FR3108914A1 (fr) Composition lubrifiante comprenant un composé 2,5-dimercapto-1,3,4-thiadiazole alkyl polycarboxylate
WO2016102528A1 (fr) Composition lubrifiante a matériau a changement de phase

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23738019

Country of ref document: EP

Kind code of ref document: A1