WO2023216370A1 - 一种预制智能管道线槽的装置及方法 - Google Patents

一种预制智能管道线槽的装置及方法 Download PDF

Info

Publication number
WO2023216370A1
WO2023216370A1 PCT/CN2022/100132 CN2022100132W WO2023216370A1 WO 2023216370 A1 WO2023216370 A1 WO 2023216370A1 CN 2022100132 W CN2022100132 W CN 2022100132W WO 2023216370 A1 WO2023216370 A1 WO 2023216370A1
Authority
WO
WIPO (PCT)
Prior art keywords
die
extrusion
extruded
strip
core
Prior art date
Application number
PCT/CN2022/100132
Other languages
English (en)
French (fr)
Inventor
霍福磊
褚展鹏
刘秦元
褚展宙
陈江慧
刘跃明
李鹏
Original Assignee
临海伟星新型建材有限公司
浙江伟星新型建材股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 临海伟星新型建材有限公司, 浙江伟星新型建材股份有限公司 filed Critical 临海伟星新型建材有限公司
Publication of WO2023216370A1 publication Critical patent/WO2023216370A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • B29C48/023Extruding materials comprising incompatible ingredients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/304Extrusion nozzles or dies specially adapted for bringing together components, e.g. melts within the die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/32Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/18Applications used for pipes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation

Definitions

  • the invention belongs to the technical field of intelligent pipeline production, and specifically relates to a device and method for prefabricating intelligent pipeline trunking.
  • the cutting method will produce burrs and affect the appearance of the pipe.
  • the production process was added.
  • the third form of composite smart pipeline has high requirements for the connection joints of the composite pipe because the cables and pipes are highly composite, and the production cost is also relatively high.
  • the object of the present invention is to provide a device and method for prefabricating intelligent pipeline trunking.
  • a device for prefabricating intelligent pipeline trunking including a core tube extrusion die.
  • the core tube extrusion die is connected to a core die.
  • the core die is connected to a co-extruded strip extrusion die.
  • the co-extruded strip extrusion die is connected to an outlet die.
  • the core die, the co-extruded strip extrusion die and the outlet die share the same core die.
  • the inner diameters of the outer molds of the core die, the co-extruded strip extrusion die and the outlet die are equal, and the inner wall of the outer mold of the co-extruded strip extrusion die flows towards A convex structure with rounded corners extends from the channel to reduce the flow resistance to the flow base material and form a flow channel cavity.
  • the lower end of the side of the convex structure facing the extrusion direction extends in the extrusion direction, and forms a co-extrusion strip flow channel with the inner wall of the outer mold of the co-extrusion strip extrusion die.
  • the cross-section of the co-extrusion strip flow channel is rectangular or trapezoid.
  • a method for prefabricating intelligent pipeline trunking using the above device including the following steps:
  • the core tube extrusion die extrudes the non-polar base material.
  • the co-extrusion strip extrusion die begins to extrude the polar base material and extrudes it from the exit die.
  • the surface of the core tube forms a line groove structure, and the polar base material is squeezed into the line groove.
  • the non-bonding characteristics of polar and non-polar materials ensure that the co-extruded strip can be quickly processed in the subsequent process. peel off;
  • the non-polar substrate and the polar substrate have different thermal expansion coefficients.
  • the non-polar base material is PE
  • the polar base material is a modified PVC material.
  • the modified PVC material includes, in parts by weight, 100 parts of PVC resin, 5-10 parts of lubricant, and 1 part of antioxidant. -3 parts, 1-3 parts of dispersant, 2-3 parts of coupling agent, 5-7 parts of toughening agent.
  • the lubricant is carbon graphite powder
  • the antioxidant is phenolic antioxidant 1010 or 1076
  • the dispersant is any one or a mixture of zinc stearate and barium stearate
  • the coupling agent is aluminum acid.
  • Any one or a mixture of any two of ester, tin coupling agent, silane coupling agent, and the toughening agent is any one of POE, CPE, and ABS.
  • the core tube is extruded by a single-screw extruder
  • the temperature of the barrel area is 170-180°C
  • the temperature of the die head area is 180-190°C
  • the co-extruded strip is extruded by a single-screw extruder.
  • the temperature in the barrel area is 140-150°C and the temperature in the die head area is 150-160°C.
  • the vacuum degree of vacuum sizing is 0.1MPa, and the cooling box is cooled to 25 ⁇ 35°C.
  • the prefabricated wire trough is formed through the co-extrusion mode of co-extruded strips, which can effectively avoid damage to the pipe by knife cutting, and no burrs and waste will be produced during the production process;
  • Figure 1 is a cross-sectional view of the device of the present invention
  • Figure 2 is a side view of the present invention
  • FIG. 3 is an enlarged view of the details at A;
  • Figure 4 is a production flow chart of the present invention.
  • a device for prefabricating intelligent pipeline trunking includes a core tube extrusion die 1, which is connected to a core die 2, and a core die 2 is connected to a co-extruded bar extrusion die 3 Connection, the co-extruded strip extrusion die 3 is connected to the outlet die 4, the core die 2, the co-extruded strip extrusion die 3 and the outlet die 4 share the same core die, the core die 2, the co-extruded strip extrusion die 3 and the outlet
  • the inner diameters of the outer molds of the mold 4 are equal, and the inner wall of the outer mold of the co-extrusion strip extrusion mold 3 extends a convex structure 311 with rounded corners into the flow channel.
  • the lower end of the convex structure 311 faces toward the extrusion direction.
  • the co-extrusion strip flow channel 31 is formed with the inner wall of the outer mold of the co-extrusion strip extrusion die 3.
  • the cross-section of the co-extrusion strip flow channel 31 is rectangular or trapezoidal.
  • the method of prefabricating smart pipeline trunking using the above device includes the following steps: core pipe extrusion die 1 extrudes the non-polar base material.
  • the co-extruded strip extrusion die 3 begins to extrude the polar base material and extrudes it from the outlet die 4; after extrusion, the pipe is shaped through a vacuum sizing device, and after cooling in the cooling box, the co-extruded strip is peeled off; After peeling off, the co-extruded strip forms a stable and uniform prefabricated slot, and then directly embeds the intelligent cable.
  • the peeled co-extruded strip is recycled through a pelletizer and then placed into the co-extruded strip extrusion die 3 for reuse.
  • the core tube is extruded using a single-screw extruder, the barrel temperature is 180°C, and the die head temperature is 190°C.
  • the co-extruded strip is extruded using a single-screw extruder, the barrel temperature is 150°C, and the die head is 150°C.
  • the temperature is 160°C
  • the polar base material extruded from the core tube is PE base material
  • the expansion coefficient is 0.128mm/m*°C
  • the base material extruded from the co-extruded strip is modified PVC material, in parts by weight, including 100 parts of PVC resin, 8 parts of carbon graphite powder, 10102 parts of phenolic antioxidant, 1 part of zinc stearate, 2 parts of aluminate ester, 5 parts of POE, expansion coefficient of 0.088mm/m*°C, prefabricated intelligent pipeline
  • the groove device is extruded to form a pipe.
  • the pipe is vacuum sized with a vacuum degree of 0.1MPa, cooled to 30°C, and the co-extruded strip is peeled off to form a rectangular slot with a width of 4mm and a depth of 2mm, and then the intelligent cable is directly embedded.
  • the core tube is extruded using a single-screw extruder, the barrel temperature is 180°C, and the die head temperature is 190°C.
  • the co-extruded strip is extruded using a single-screw extruder, the barrel temperature is 150°C, and the die head is 150°C.
  • the temperature is 160°C
  • the polar base material extruded from the core tube is PE base material
  • the expansion coefficient is 0.128mm/m*°C
  • the base material extruded from the co-extruded strip is modified PVC material, in parts by weight, including 100 parts of PVC resin, 8 parts of carbon graphite powder, 10761 parts of phenolic antioxidant, 2 parts of barium stearate, 2 parts of silane coupling agent, 7 parts of CPE
  • expansion coefficient is 0.098mm/m*°C
  • the wire trough device is extruded to form a pipe.
  • the pipe is vacuum sized with a vacuum degree of 0.1MPa, cooled to 30°C, and the co-extruded strip is peeled off to form a rectangular slot 5mm wide and 2mm deep, and then the intelligent cable is directly embedded.
  • the core tube is extruded using a single-screw extruder, the barrel temperature is 180°C, and the die head temperature is 190°C.
  • the co-extruded strip is extruded using a single-screw extruder, the barrel temperature is 150°C, and the die head is 150°C.
  • the temperature is 160°C
  • the polar base material extruded from the core tube is PE base material
  • the expansion coefficient is 0.128mm/m*°C
  • the base material extruded from the co-extruded strip is modified PVC material, in parts by weight, including 100 parts of PVC resin, 8 parts of carbon graphite powder, 10102 parts of phenolic antioxidant, 2 parts of barium stearate, 3 parts of tin coupling agent, 6 parts of ABS, expansion coefficient of 0.1mm/m*°C, prefabricated intelligent
  • the pipe trunking device is extruded to form a pipe.
  • the pipe is vacuum sized with a vacuum degree of 0.1MPa, cooled to 30°C, and the co-extruded strip is peeled off to form a rectangular slot 4mm wide and 3mm deep, and then intelligent cables are directly embedded.
  • the manufacturer of phenolic antioxidant 1010 used in the examples is Shanghai Kain Chemical, and the manufacturer of phenolic antioxidant 1076 is BASF (China) Co., Ltd.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Electric Cable Installation (AREA)
  • Metal Extraction Processes (AREA)

Abstract

一种预制智能管道线槽的装置及方法,该装置包括芯管挤出模(1),芯管挤出模(1)与口芯模(2)连接,口芯模(2)与共挤条挤出模(3)连接,共挤条挤出模(3)与出口模(4)连接,口芯模(2)、共挤条挤出模(3)和出口模(4)共用一芯模,口芯模(2)、共挤条挤出模(3)和出口模(4)的外模的内径相等,共挤条挤出模(3)的外模内壁向共挤条流道(31)内延伸出带圆角的凸起结构(311),芯管挤出模(1)挤出非极性基材,当非极性基材挤出到出口模(4)位置时,共挤条挤出模(3)开始挤出极性基材,并从出口模(4)中挤出;挤出后定型,冷却,对共挤条进行剥离;剥离后便形成了稳定均匀的预制化槽口,直接嵌入智能化线缆,剥离后的共挤条通过造粒机回收,重复使用。该装置能有效避免对管材的损伤,能实现不同截面形式的槽口,成本低。

Description

一种预制智能管道线槽的装置及方法 技术领域
本发明属于智能管道生产技术领域,具体涉及一种预制智能管道线槽的装置及方法。
背景技术
在智能管道领域,管道智能化的实现主要依靠于功能性的线缆或光缆的集成与复合。目前已有复合技术主要通过以下三种方式:1.通过特定夹具实现线缆与管道的复合,2.依靠刀具等物理模式给管材开槽再与管材复合的形式。3.直接将线缆在生产过程中复合在管材内部。上述几种技术形式都存在着明显的缺陷:第一种形式不能保证功能性线缆与管材的稳固连接,布置在管材外端,管材本身不能为这些线缆提供保护,容易失效破坏,且测试数据精确度不高。第二种形式通过开槽的方式将线缆固定在管材内,刀具的切削对工艺的控制要求高,容易对管材产生损伤,且切削的方式会产生毛边,还影响了管材的外观,加上去毛边的工艺之后又增加了生产流程。第三种形式的复合智能管线由于线缆与管材已经高度复合,对于该种复合管的连接接头提出了很高的要求,生产成本也比较大。
发明内容
针对上述问题的存在,本发明的目的在于提供一种预制智能管道线槽的装置及方法。
为达到上述目的,提出以下技术方案:
一种预制智能管道线槽的装置,包括芯管挤出模,芯管挤出模与口芯模连接,口芯模与共挤条挤出模连接,共挤条挤出模与出口模连接,口芯模、共挤条挤出模和出口模共用一芯模,口芯模、共挤条挤出模和出口模的外模的内径相等,共挤条挤出模的外模内壁向流道内延伸出带圆角的凸起结构,减少对流动基体材料的流阻并形成流道空腔。
进一步地,凸起结构朝向挤出方向的一侧的下端向挤出方向延伸,与共挤条挤出模的外模内壁之间构成共挤条流道,共挤条流道的截面为矩形或梯形。
一种采用上述的装置预制智能管道线槽的方法,包括如下步骤:
1)芯管挤出模挤出非极性基材,当非极性基材挤出到出口模位置时,共挤条挤出模开始挤出极性基材,并从出口模中挤出,由于凸起结构的设置,芯管的 表面形成一线槽结构,极性基材挤入线槽中,极性与非极性材料不粘接的特性,保证共挤条在后续工艺中能快速剥离;
2)挤出后通过真空定径装置对管材进行定型,保证共挤条和芯管在不粘接的情况下仍可以不留间隙且两者的界面为均匀的直线,经过冷却箱冷却后,对共挤条进行剥离,由于芯管的非极性材料和共挤条的极性材料热膨胀系数不同,两者界面此时发生滑移,方便共挤条的剥离;
3)共挤条在剥离之后便形成了稳定均匀的预制化槽口,之后直接嵌入智能化线缆,剥离后的共挤条通过造粒机回收,再置入共挤条挤出模重复使用;
所述非极性基材和极性基材的热膨胀系数不同。
进一步地,非极性基材为PE,极性基材为改性PVC材料,所述改性PVC材料按重量份数计,包括PVC树脂100份,润滑剂5-10份,抗氧剂1-3份,分散剂1-3份,偶联剂2-3份,增韧剂5-7份。
进一步地,润滑剂为碳石墨粉,抗氧化剂为酚类抗氧化剂1010或1076,分散剂为硬质酸锌、硬脂酸钡中的任意一种或两种的混合物,偶联剂为铝酸酯、锡偶联剂、硅烷偶联剂的任意一种或任意两种的混合物,增韧剂为POE、CPE、ABS中的任意一种。
进一步地,芯管挤出为单螺杆挤出机挤出,机筒区的温度为170-180℃,模头区的温度为180-190℃,共挤条挤出为单螺杆挤出机挤出,机筒区温度为140-150℃,模头区温度为150-160℃。
进一步地,真空定径的真空度为0.1MPa,冷却箱冷却至25~35℃。
本发明的有益效果在于:
1)通过共挤条共挤的模式形成预制化线槽,能有效避免刀具切割对管材的损伤,且生产过程中不会产生毛边和废料;
2)通过挤出模具的设计,能实现不同截面形式的槽口,且可实现多个槽口的预制化线槽;
3)通过独特的极性共挤条配方设计,在管材成型的同时保证共挤条和槽口之间的层间润滑、不粘接,共挤条能轻松撕下形成槽口且能重复利用。
附图说明
图1为本发明的装置的剖视图;
图2为本发明的侧视图;
图3为A处的细节放大图;
图4为本发明的生产流程图。
图中:1、芯管挤出模;2、口芯模;3、共挤条挤出模;4、出口模;31、共挤条流道;311、凸起结构。
具体实施方式
下面结合说明书附图和实施例对本发明做进一步地说明,但本发明的保护范围并不仅限于此。
如图1到图3所示,一种预制智能管道线槽的装置包括芯管挤出模1,芯管挤出模1与口芯模2连接,口芯模2与共挤条挤出模3连接,共挤条挤出模3与出口模4连接,口芯模2、共挤条挤出模3和出口模4共用一芯模,口芯模2、共挤条挤出模3和出口模4的外模的内径相等,共挤条挤出模3的外模内壁向流道内延伸出带圆角的凸起结构311,凸起结构311朝向挤出方向的一侧的下端向挤出方向延伸,与共挤条挤出模3外模的内壁构成共挤条流道31,共挤条流道31的截面为矩形或梯形。
如图4所示,采用上述装置预制智能管道线槽的方法,包括如下步骤:芯管挤出模1挤出非极性基材,当非极性基材挤出到出口模4位置时,共挤条挤出模3开始挤出极性基材,并从出口模4中挤出;挤出后通过真空定径装置对管材进行定型,经过冷却箱冷却后,对共挤条进行剥离;共挤条在剥离之后便形成了稳定均匀的预制化槽口,之后直接嵌入智能化线缆,剥离后的共挤条通过造粒机回收,再置入共挤条挤出模3重复使用。
实施例1
芯管挤出采用单螺杆挤出机挤出,机筒温度为180℃,模头温度为190℃,共挤条挤出采用单螺杆挤出机挤出,机筒温度为150℃,模头温度为160℃,芯管挤出的极性基材为PE基材,膨胀系数为0.128mm/m*℃,共挤条挤出的基材为改性PVC材料,按重量份数计,包括PVC树脂100份,碳石墨粉8份,酚类抗氧剂10102份,硬质酸锌1份,铝酸酯2份,POE5份,膨胀系数为0.088mm/m*℃,经过预制智能管道线槽的装置挤出形成管材,管材经过真空定径,真空度为0.1MPa,冷却至30℃,剥离共挤条,形成宽4mm深2mm的矩形槽口,之后直 接嵌入智能化线缆。
实施例2
芯管挤出采用单螺杆挤出机挤出,机筒温度为180℃,模头温度为190℃,共挤条挤出采用单螺杆挤出机挤出,机筒温度为150℃,模头温度为160℃,芯管挤出的极性基材为PE基材,膨胀系数为0.128mm/m*℃,共挤条挤出的基材为改性PVC材料,按重量份数计,包括PVC树脂100份,碳石墨粉8份,酚类抗氧剂10761份,硬质酸钡2份,硅烷偶联剂2份,CPE7份,膨胀系数为0.098mm/m*℃,经过预制智能管道线槽的装置挤出形成管材,管材经过真空定径,真空度为0.1MPa,冷却至30℃,剥离共挤条,形成宽5mm深2mm的矩形槽口,之后直接嵌入智能化线缆。
实施例3
芯管挤出采用单螺杆挤出机挤出,机筒温度为180℃,模头温度为190℃,共挤条挤出采用单螺杆挤出机挤出,机筒温度为150℃,模头温度为160℃,芯管挤出的极性基材为PE基材,膨胀系数为0.128mm/m*℃,共挤条挤出的基材为改性PVC材料,按重量份数计,包括PVC树脂100份,碳石墨粉8份,酚类抗氧剂10102份,硬质酸钡2份,锡偶联剂3份,ABS 6份,膨胀系数为0.1mm/m*℃,经过预制智能管道线槽的装置挤出形成管材,管材经过真空定径,真空度为0.1MPa,冷却至30℃,剥离共挤条,形成宽4mm深3mm的矩形槽口,之后直接嵌入智能化线缆。
实施例中所采用的酚类抗氧化剂1010的生产厂家是上海凯茵化工,酚类抗氧化剂1076的生产厂家是巴斯夫(中国)有限公司。

Claims (7)

  1. 一种预制智能管道线槽的装置,包括芯管挤出模(1),其特征在于芯管挤出模(1)与口芯模(2)连接,口芯模(2)与共挤条挤出模(3)连接,共挤条挤出模(3)与出口模(4)连接,口芯模(2)、共挤条挤出模(3)和出口模(4)共用一芯模,口芯模(2)、共挤条挤出模(3)和出口模(4)的外模的内径相等,共挤条挤出模(3)的外模内壁向流道内延伸出带圆角的凸起结构(311)。
  2. 如权利要求1所述的一种预制智能管道线槽的装置,其特征在于凸起结构(311)朝向挤出方向的一侧的下端向挤出方向延伸,与共挤条挤出模(3)的外模内壁之间构成共挤条流道(31),共挤条流道(31)的截面为矩形或梯形。
  3. 一种采用如权利要求2所述的装置预制智能管道线槽的方法,其特征在于包括如下步骤:
    1)芯管挤出模(1)挤出非极性基材,当非极性基材挤出到出口模(4)位置时,共挤条挤出模(3)开始挤出极性基材,并从出口模(4)中挤出;
    2)挤出后通过真空定径装置对管材进行定型,经过冷却箱冷却后,对共挤条进行剥离;
    3)共挤条在剥离之后便形成了稳定均匀的预制化槽口,之后直接嵌入智能化线缆,剥离后的共挤条通过造粒机回收,再置入共挤条挤出模(3)重复使用;
    所述非极性基材和极性基材的热膨胀系数不同。
  4. 如权利要求3所述的方法,其特征在于非极性基材为PE,极性基材为改性PVC材料,所述改性PVC材料按重量份数计,包括PVC树脂100份,润滑剂5-10份,抗氧剂1-3份,分散剂1-3份,偶联剂2-3份,增韧剂5-7份。
  5. 如权利要求4所述的方法,其特征在于润滑剂为碳石墨粉,抗氧化剂为酚类抗氧化剂1010或1076,分散剂为硬质酸锌、硬脂酸钡中的任意一种或两种的混合物,偶联剂为铝酸酯、锡偶联剂、硅烷偶联剂的任意一种或任意两种的混合物,增韧剂为POE、CPE、ABS中的任意一种。
  6. 如权利要求5所述的方法,其特征在于芯管挤出为单螺杆挤出机挤出,机筒区的温度为170-180℃,模头区的温度为180-190℃,共挤条挤出为单螺杆挤出机挤出,机筒区温度为140-150℃,模头区温度为150-160℃。
  7. 如权利要求3所述的方法,其特征在于真空定径的真空度为0.1MPa,冷却箱冷却至25~35℃。
PCT/CN2022/100132 2022-05-13 2022-06-21 一种预制智能管道线槽的装置及方法 WO2023216370A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210525401.3 2022-05-13
CN202210525401.3A CN114905716B (zh) 2022-05-13 2022-05-13 一种预制智能管道线槽的装置及方法

Publications (1)

Publication Number Publication Date
WO2023216370A1 true WO2023216370A1 (zh) 2023-11-16

Family

ID=82767079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/100132 WO2023216370A1 (zh) 2022-05-13 2022-06-21 一种预制智能管道线槽的装置及方法

Country Status (2)

Country Link
CN (1) CN114905716B (zh)
WO (1) WO2023216370A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5162120A (en) * 1991-11-29 1992-11-10 Northern Telecom Limited Method and apparatus for providing jackets on cable
JPH1090568A (ja) * 1996-07-24 1998-04-10 Ube Nitto Kasei Co Ltd 光ファイバケーブル用スペーサおよびその製造方法、製造装置
JPH1138288A (ja) * 1997-07-23 1999-02-12 Ube Nitto Kasei Co Ltd 光ファイバケーブル,同ケーブル用合成樹脂ユニットおよびそれらの製造方法
EP1650006A2 (en) * 2004-10-21 2006-04-26 Glynwed Pipe Systems Limited Method for manufacturing pipes with external axial grooves
JP2007223091A (ja) * 2006-02-22 2007-09-06 Ube Nitto Kasei Co Ltd 直線一溝スペーサの製造方法
CN111647240A (zh) * 2020-06-10 2020-09-11 杭州联通管业有限公司 一种抗冲增韧mpvc电力管及其制备方法
CN214082746U (zh) * 2020-11-17 2021-08-31 临海伟星新型建材有限公司 一种聚烯烃管道的挤出模头结构
CN216230678U (zh) * 2021-11-17 2022-04-08 河北日泰新型管材有限公司 一种聚乙烯复合管挤出模具

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4478778A (en) * 1981-12-18 1984-10-23 Amp Incorporated Method of manufacturing flat peelable cable
US9274302B2 (en) * 2011-10-13 2016-03-01 Corning Cable Systems Llc Fiber optic cables with extruded access features for access to a cable cavity
CN103980527A (zh) * 2014-04-16 2014-08-13 深圳市沃尔核材股份有限公司 辐照交联热缩发泡管、防滑花纹管、制备方法及挤出机头
CN104070658B (zh) * 2014-07-12 2016-08-24 芜湖精塑实业有限公司 隔热条挤出模具结构
CN104552873B (zh) * 2015-01-07 2017-08-22 日丰企业集团有限公司 一种外层发泡的塑料复合管材共挤模具
CN206528044U (zh) * 2017-02-23 2017-09-29 四川明星电缆股份有限公司 双芯可分离型光伏电缆挤出模具
CN107696450B (zh) * 2017-11-28 2023-12-29 江苏东强股份有限公司 实现高度密实均匀挤塑的电缆模具
CN209599811U (zh) * 2019-01-24 2019-11-08 晋中市榆新线缆有限公司 一种双色耐磨电缆挤出模具
CN109676890A (zh) * 2019-02-28 2019-04-26 华迅工业(苏州)有限公司 一种轨道交通用线缆双层共挤外模具
CN210705913U (zh) * 2019-08-05 2020-06-09 临海伟星新型建材有限公司 一种带共挤流道的管道挤出模具
CN212684661U (zh) * 2020-06-18 2021-03-12 航天瑞奇电缆有限公司 一种双耳高抗拉电缆挤出模具

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5162120A (en) * 1991-11-29 1992-11-10 Northern Telecom Limited Method and apparatus for providing jackets on cable
JPH1090568A (ja) * 1996-07-24 1998-04-10 Ube Nitto Kasei Co Ltd 光ファイバケーブル用スペーサおよびその製造方法、製造装置
JPH1138288A (ja) * 1997-07-23 1999-02-12 Ube Nitto Kasei Co Ltd 光ファイバケーブル,同ケーブル用合成樹脂ユニットおよびそれらの製造方法
EP1650006A2 (en) * 2004-10-21 2006-04-26 Glynwed Pipe Systems Limited Method for manufacturing pipes with external axial grooves
JP2007223091A (ja) * 2006-02-22 2007-09-06 Ube Nitto Kasei Co Ltd 直線一溝スペーサの製造方法
CN111647240A (zh) * 2020-06-10 2020-09-11 杭州联通管业有限公司 一种抗冲增韧mpvc电力管及其制备方法
CN214082746U (zh) * 2020-11-17 2021-08-31 临海伟星新型建材有限公司 一种聚烯烃管道的挤出模头结构
CN216230678U (zh) * 2021-11-17 2022-04-08 河北日泰新型管材有限公司 一种聚乙烯复合管挤出模具

Also Published As

Publication number Publication date
CN114905716A (zh) 2022-08-16
CN114905716B (zh) 2023-03-10

Similar Documents

Publication Publication Date Title
CN103786324A (zh) 一种双壁波纹管管材的生产工艺
JPS5948499B2 (ja) ラミネ−トシ−スの製造方法
TWI727139B (zh) 樹脂包覆鋼管之製造方法
CN212847888U (zh) 一种便于调整的电缆挤出模具
US20050046073A1 (en) Extrusion method and apparatus for producing a cable
WO2023216370A1 (zh) 一种预制智能管道线槽的装置及方法
CN205185297U (zh) 一体式加热冷却钢塑复合管管端封口机构
CN110576619A (zh) 一种提高hdpe双壁波纹管生产效益的新工艺方法
CN1169666C (zh) 外镀锌内衬聚乙烯钢塑复合管制造方法
WO2018034537A1 (ko) 후렌지형 합성수지 피복 금속관과 그 제조방법
CN109291391B (zh) 一种带信息导线的硅芯管生产工艺
CN105346063A (zh) 一体式加热冷却钢塑复合管管端封口机构
CN103971795B (zh) 一种中压交联电缆带头结构的使用方法
KR102121899B1 (ko) 통신선 보호관의 성형장치 및 그 통신선 보호관
CN217098838U (zh) 一种电缆护套挤塑模具
JP2012016847A (ja) 二重管の製造方法、及び二重管の製造装置
JP2011056762A (ja) 樹脂組成物の押出装置及び樹脂組成物の製造方法
CN105538558A (zh) 一种无布橡胶导气长波纹管及其成型装置和成型方法
CN116884712A (zh) 一种通讯线缆生产工艺
KR200309027Y1 (ko) 코팅층을 갖는 파이프 제조 장치
CN114516209B (zh) 一种用于贴辊的复合片材及应用其的克拉管生产工艺
CN215921206U (zh) 一种具有循环式高效降温的塑料挤出机
CN106994762A (zh) 一种热塑性塑料包覆金属型材的生产设备
CN1234520C (zh) 无规共聚聚丙烯铝塑复合管及其制备方法
CN219191215U (zh) 一种阻燃pvc电缆料生产挤出机模头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22941316

Country of ref document: EP

Kind code of ref document: A1