WO2023216334A1 - 一种微盲孔镭射对位方法及系统 - Google Patents

一种微盲孔镭射对位方法及系统 Download PDF

Info

Publication number
WO2023216334A1
WO2023216334A1 PCT/CN2022/095520 CN2022095520W WO2023216334A1 WO 2023216334 A1 WO2023216334 A1 WO 2023216334A1 CN 2022095520 W CN2022095520 W CN 2022095520W WO 2023216334 A1 WO2023216334 A1 WO 2023216334A1
Authority
WO
WIPO (PCT)
Prior art keywords
blind hole
laser
alignment
micro
dielectric layer
Prior art date
Application number
PCT/CN2022/095520
Other languages
English (en)
French (fr)
Inventor
陈俭云
白杨
何亚志
张锦锋
符唐盛
邓朝松
Original Assignee
广州美维电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州美维电子有限公司 filed Critical 广州美维电子有限公司
Publication of WO2023216334A1 publication Critical patent/WO2023216334A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0008Apparatus or processes for manufacturing printed circuits for aligning or positioning of tools relative to the circuit board
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/0026Etching of the substrate by chemical or physical means by laser ablation

Definitions

  • the invention relates to the technical field of printed boards, and in particular to a micro-blind hole laser alignment method and system.
  • the blind holes of PCB printed circuit boards are designed to be smaller and smaller.
  • the blind holes are very small, it is necessary to have good hole quality and high hole position accuracy. It is very difficult. The same problem will occur in SiP and heterogeneous integration.
  • the position accuracy of the blind holes produced by the conventional LDD laser direct hole forming method is very high, the quality is very poor; this is mainly because although the LDD process first ablates the surface copper and dielectric layer on the alignment target during laser processing, the identification The alignment pad on the lower pattern realizes the alignment consistency between the laser and the lower pattern, that is, the laser and the lower pattern are in the same alignment system; however, the laser machine needs to use a high-energy large spot to ablate 3-6um surface copper, and then Then use low energy to ablate the resin dielectric layer underneath to form a blind hole. When ablating the surface copper, the high-heat thermal ablation effect also affects the resin dielectric layer under the surface copper around the blind hole opening, and the surface copper around the blind hole opening.
  • a relatively large gap or excessive resin damage occurs between the resin dielectric layer and the resin dielectric layer.
  • the actual size of the resin hole wall at the blind hole opening exceeds the specification requirements; on the other hand, the excessive gap between the base copper and the resin around the blind hole opening affects the immersed copper plating and Blind via reliability. Therefore, although the LDD hole forming process can achieve precise alignment between the laser and the underlying pattern, it is difficult to obtain blind hole sizes and good blind hole quality that meet the requirements using high-heat laser, resulting in blind hole sizes that do not meet the requirements. Or the blind holes are of poor quality.
  • Another blind hole alignment method is to use the CFM (hole-mask) process.
  • the blind hole opening pattern is first made through an exposure machine, and then the surface copper at the blind hole opening is etched away. Although there is no need to ablate the surface copper during laser processing, The resin can be directly ablated with low energy to form better quality micro-blind holes.
  • the exposure machine cannot grasp the lower alignment target Pad through the surface copper, and can only use the lower alignment target Pad on the PCB board.
  • Through holes are used for alignment (another alignment system). In this way, the blind hole opening pattern production and the underlying pattern cannot be accurately aligned, making it impossible to achieve precise positioning of the micro blind holes.
  • the purpose of the present invention is to provide a micro-blind hole laser alignment method and system to solve the problem that the blind hole size produced by the traditional blind hole alignment method does not meet the requirements, or the blind hole quality is poor, or the blind hole cannot be positioned accurately.
  • the problem is to provide a micro-blind hole laser alignment method and system to solve the problem that the blind hole size produced by the traditional blind hole alignment method does not meet the requirements, or the blind hole quality is poor, or the blind hole cannot be positioned accurately.
  • a micro-blind hole laser alignment method includes the following steps:
  • the alignment target position is captured by an exposure machine and a blind hole opening image is produced
  • a laser machine is used to ablate the second resin dielectric layer to obtain a blind hole consistent with the blind hole opening image.
  • the laser energy emitted by the laser machine does not ablate the surface copper around the second resin dielectric layer.
  • the laser machine is an ultraviolet laser machine, and the laser wavelength emitted by the laser machine is 355nm.
  • the diameter of the blind hole is less than 50um.
  • using an exposure machine to capture the alignment target position and create a blind hole opening image includes: through the second resin medium layer, aligning the Align the target, attach a dry film at the alignment target position, and develop an image of the blind hole opening.
  • the step further includes: cleaning and drying the dry film residue at the blind hole.
  • a micro-blind hole laser alignment system including a laser machine and an exposure machine;
  • the laser machine is used to remove the surface copper and the first resin dielectric layer of the first set thickness on the inner alignment target of the printed board.
  • the alignment target is covered with the second set thickness of the second resin dielectric layer.
  • the exposure machine is used to capture the alignment target position and create a blind hole opening image according to the second resin medium layer; and to ablate the second resin medium layer according to the blind hole opening image to obtain A blind hole consistent with the image of the blind hole opening.
  • the surface copper around the second resin dielectric layer is not ablated.
  • the laser machine is an ultraviolet laser machine, and the laser wavelength emitted by the laser machine is 355nm.
  • the diameter of the blind hole is less than 50um.
  • the micro-blind hole laser alignment method of the present invention uses a laser machine to remove the surface copper and the first resin dielectric layer of the first set thickness on the inner alignment target of the printed board.
  • the alignment target is covered with a third 2.
  • the hole is accurately positioned; at the same time, after the blind hole is developed, the hole only needs to be ablated with small energy on the second resin dielectric layer. Since the small energy ablation will not ablate the copper surface around the alignment target, it will not cause The blind hole diameter is relatively large, which can meet the size requirements of the blind hole diameter and ensure the quality of the blind hole.
  • Figure 1 is a schematic flow chart of a micro-blind hole laser alignment method provided by an embodiment of the present invention
  • Figure 2 is a schematic diagram of a printed board used in a micro-blind hole laser alignment method according to an embodiment of the present invention, wherein: 1. Alignment target.
  • Blind hole a through hole that connects the surface layer and the inner layer and does not penetrate the entire board.
  • Microvia In printed circuit boards, holes with a diameter less than 6 mm (150 microns) are called microvias.
  • Exposure machine refers to a machine that emits ultraviolet light of UVA wavelength by turning on the light, and transfers the image information on the film or other transparent objects to the surface coated with photosensitive material.
  • Laser machines use laser beams to etch or permanently mark the surfaces of various materials.
  • the specific principle is to expose deep materials through the evaporation of surface materials, thereby carving holes or patterns.
  • Figure 1 shows a micro-blind hole laser alignment method of the present invention.
  • Figure 2 shows a print used in a micro-blind hole laser alignment method provided by an embodiment of the present invention. Schematic diagram of board manufacturing.
  • the micro-blind hole laser alignment method includes the following steps:
  • Step S1 Use a laser machine to remove the surface copper and the first resin dielectric layer of the first set thickness on the inner layer alignment target 1 of the printed board.
  • the alignment target 1 is covered with the second set thickness of the first resin dielectric layer.
  • the laser machine is an ultraviolet laser machine, and the laser wavelength emitted by the laser machine is 355 nm.
  • the inner layer alignment target 1 of the board making is removed.
  • the printed board surface does not need to be laser pre-treated (browning), and the surface copper layer can be directly ablated.
  • Step S2 According to the second resin medium layer, capture the position of the alignment target 1 through an exposure machine and create a blind hole opening image;
  • using an exposure machine to capture the position of the alignment target 1 and creating a blind hole opening image includes: aligning the target through the second resin medium layer.
  • the alignment target 1 is attached with a dry film at the position of the alignment target 1, and a blind hole opening image is developed.
  • the step further includes: cleaning and drying the dry film residue at the blind hole.
  • Step S3 According to the blind hole opening image, use a laser machine to ablate the second resin dielectric layer to obtain a blind hole consistent with the blind hole opening image.
  • the laser energy emitted by the laser machine does not ablate the surface copper around the second resin dielectric layer.
  • the diameter of the blind hole is less than 50um.
  • micro-blind holes below 50um, which mainly reflect the position accuracy of the sub-blind holes and the quality of the blind holes.
  • the copper surface is directly ablated by laser through LDD (laser direct drilling process).
  • LDD laser direct drilling process
  • the diameter of the blind hole is too large and the quality of the blind hole is too poor, which does not meet the requirements of the micro-blind hole process.
  • the blind hole is very small through CFM hole forming (mask hole forming process). It is easy to deviate and the alignment accuracy is too poor.
  • the present invention first removes the surface copper and the resin dielectric layer of a certain thickness on the board surface aligned with target 1, and retains the dielectric layer of a certain thickness.
  • the alignment of the lower layer can be seen through the remaining dielectric layer.
  • Target 1 During the CFM mask production process, the LDI exposure machine grabs the lower alignment target 1Pad through the remaining dielectric layer for alignment, and creates a micro-blind hole opening pattern to accurately locate the location and position of the micro-blind hole. The size of the micro-blind hole opening; then during the laser process, the laser machine still grabs the lower alignment target 1Pad for alignment, and ablate the resin dielectric layer at the opening position of the micro-blind hole to achieve precise positioning and high quality of the micro-blind hole. into holes.
  • the advantage of the LDD (laser direct drilling process) alignment method is that the laser directly refers to the underlying pattern for alignment, and the blind hole position accuracy is high.
  • the disadvantage is that the laser directly ablates the copper surface, the blind hole diameter is too large, and the quality of the blind hole is too high. Poor, does not meet the requirements of micro-blind via technology.
  • the advantage of the CFM hole forming (mask hole forming process) alignment method is that the surface copper at the opening of the blind hole is removed in advance, and then the laser machine can use small energy to drill holes in the resin dielectric layer, and the quality of the blind hole is better.
  • the shortcomings are obvious. Blind holes are easily misaligned and the alignment accuracy is too poor.
  • the added process is simple and only processes the lower layer alignment Pad, which is short in time and has less cost increase. Compared with the realization of the micro-blind hole process, the increased processing time and cost are minimal.
  • the alignment method of the present invention combines the advantages of LDD hole forming and CFM hole forming processes. Through the new alignment method, it avoids the shortcomings of the two processes and satisfies the micro blind hole position accuracy and blind hole quality. .
  • the micro-blind hole laser alignment method of the present invention when making the blind hole opening image, uses alignment according to the position of the alignment target 1 to produce the blind hole opening image, realizing the blind hole opening image.
  • the hole is accurately positioned; at the same time, after the blind hole is developed, the hole only needs to be ablated with small energy on the second resin dielectric layer. Since the small energy ablation will not ablate the copper surface around the alignment target 1, it will not The diameter of the blind hole is made larger to ensure the quality of the blind hole.
  • a micro-blind hole laser alignment system of the present invention includes a laser machine and an exposure machine;
  • the laser machine is used to remove the surface copper and the first resin dielectric layer of the first set thickness on the inner alignment target 1 of the printed board.
  • the alignment target 1 is covered with the second set thickness. second resin dielectric layer;
  • the exposure machine is used to capture the position of the alignment target 1 and create a blind hole opening image based on the second resin medium layer; and to ablate the second resin medium layer based on the blind hole opening image, A blind hole consistent with the blind hole opening image is obtained.
  • the surface copper around the second resin dielectric layer is not ablated.
  • the laser machine is an ultraviolet laser machine, and the laser wavelength emitted by the laser machine is 355nm.
  • the diameter of the blind hole is less than 50um.

Abstract

本发明公开了一种微盲孔镭射对位方法及系统,所述方法包括以下步骤:通过镭射机去除印制板的内层对位靶标上的表铜以及第一设定厚度的第一树脂介质层,所述对位靶标上覆盖有第二设定厚度的第二树脂介质层;根据所述第二树脂介质层,通过曝光机抓取所述对位靶标位置并制作出盲孔开口图像;根据所述盲孔开口图像,通过镭射机烧蚀第二树脂介质层,得到与所述盲孔开口图像一致的盲孔。本发明通过在制作盲孔开口图像时,根据所述对位靶标位置进行对位,制作出盲孔开口图像,实现了盲孔精确定位;同时,在盲孔显影后,只需在第二树脂介质层上通过小能量烧蚀成孔,不会使盲孔孔径偏大,保证了盲孔品质。

Description

一种微盲孔镭射对位方法及系统 技术领域
本发明涉及印制板技术领域,具体涉及一种微盲孔镭射对位方法及系统。
背景技术
随着电子产品向小体积高性能的发展趋势,PCB印制线路板的盲孔设计得越来越小,当盲孔非常小时,既要成孔品质好,又要成孔位置精度高,则非常困难,在SiP、异构集成也会有同样的问题。
常规的LDD镭射直接成孔法,制作出来的盲孔虽然位置精度很高,但品质很差;这主要是因为虽然LDD工艺在镭射时先烧蚀对位靶标上的表铜及介质层,识别下层图形上的对位Pad,实现镭射和下层图形的对位一致性,即镭射和下层图形为同一对位系统;但是镭射机要使用高能量的大光斑烧蚀3-6um的表铜,然后再用低能量烧蚀其下的树脂介质层形成盲孔,烧蚀表铜时高热量的热烧蚀效果也影响到盲孔开口四周表铜下面的树脂介质层,盲孔开口四周的表铜和树脂介质层之间产生比较大的缝隙或过度的树脂损伤。一方面,即使表铜盲孔开口尺寸符合要求,但实际上盲孔开口处树脂孔壁实际尺寸超过规格要求;另一方面盲孔开口四周过大的基铜与树脂间缝隙影响沉铜电镀和盲孔的可靠性。因此,LDD成孔工艺虽然能实现镭射和下层图形精准对位,但是,高热量的镭射很难得到符合要求的盲孔尺寸和良好的盲孔品质,造成制作出的盲孔尺寸不符合要求,或盲孔品质差。
另一种盲孔对位方法,是采用CFM(掩膜成孔)工艺,通过曝光机先制作出盲孔开口图形,然后蚀刻掉盲孔开口处的表铜,镭射时虽然无需烧蚀表铜,可以用小能量直接烧蚀树脂,形成品质较好的微盲孔,但是在制作盲孔开口图形时,曝光机无法透过表铜抓取下层的对位标靶Pad,只能使用PCB板子上的通孔来对位(另外一个对位系统),这样,盲孔开口图形制作与下层图形之间无法精准对位,造成无法实现微盲孔的精确定位。
发明内容
鉴于以上技术问题,本发明的目的在于提供一种微盲孔镭射对位方法及系统,解决传统的盲孔对位方法制作的盲孔尺寸不符合要求,或盲孔品质差,或无 法精确定位的问题。
本发明采用以下技术方案:
一种微盲孔镭射对位方法,包括以下步骤:
通过镭射机去除印制板的内层对位靶标上的表铜以及第一设定厚度的第一树脂介质层,所述对位靶标上覆盖有第二设定厚度的第二树脂介质层;
根据所述第二树脂介质层,通过曝光机抓取所述对位靶标位置并制作出盲孔开口图像;
根据所述盲孔开口图像,通过镭射机烧蚀第二树脂介质层,得到与所述盲孔开口图像一致的盲孔。
可选的,在通过镭射机烧蚀第二树脂介质层时,所述镭射机发射出的激光能量不烧蚀所述第二树脂介质层周围的表铜。
可选的,所述镭射机为紫外镭射机,所述镭射机发出的激光波长为355nm。
可选的,所述盲孔的直径小于50um。
可选的,所述根据所述第二树脂介质层,通过曝光机抓取所述对位靶标位置并制作出盲孔开口图像,包括:透过所述第二树脂介质层,对准所述对位靶标,在所述对位靶标位置处贴附干膜,显影出盲孔开口图像。
可选的,所述显影出盲孔开口图像步骤后,还包括:清洗烘干所述盲孔处的干膜残留。
一种微盲孔镭射对位系统,包括镭射机和曝光机;
所述镭射机,用于去除印制板的内层对位靶标上的表铜以及第一设定厚度的第一树脂介质层,所述对位靶标上覆盖有第二设定厚度的第二树脂介质层;
所述曝光机,用于根据所述第二树脂介质层,抓取所述对位靶标位置并制作出盲孔开口图像;并根据所述盲孔开口图像,烧蚀第二树脂介质层,得到与所述盲孔开口图像一致的盲孔。
可选的,所述镭射机发射出的激光能量在烧蚀第二树脂介质层时,不烧蚀所述第二树脂介质层周围的表铜。
可选的,所述镭射机为紫外镭射机,所述镭射机发出的激光波长为355nm。
可选的,所述盲孔的直径小于50um。
相比现有技术,本发明的有益效果在于:
本发明的微盲孔镭射对位方法,通过镭射机去除印制板的内层对位靶标上的表铜以及第一设定厚度的第一树脂介质层,所述对位靶标上覆盖有第二设定厚度的第二树脂介质层;根据所述第二树脂介质层,通过曝光机抓取所述对位靶标位置并制作出盲孔开口图像;根据所述盲孔开口图像,通过镭射机烧蚀第二树脂介质层,得到与所述盲孔开口图像一致的盲孔;在制作盲孔开口图像时,根据所述对位靶标位置进行对位,制作出盲孔开口图像,实现了盲孔精确定位;同时,在盲孔显影后,只需在第二树脂介质层上通过小能量烧蚀成孔,由于小能量烧蚀不会烧蚀到对位靶标周围的铜面,不会使盲孔孔径偏大,可满足盲孔孔径的尺寸要求,且保证了盲孔品质。
附图说明
图1为本发明一实施例提供的一种微盲孔镭射对位方法的流程示意图;
图2为本发明一实施例提供的一种微盲孔镭射对位方法采用的印制板的示意图,其中,1、对位靶标。
具体实施方式
下面,结合附图以及具体实施方式,对本发明做进一步描述,需要说明的是,在不相冲突的前提下,以下描述的各实施例之间或各技术特征之间可以任意组合形成新的实施例:
实施例一:
下面对本发明的专业名称进行解释说明:
盲孔:连接表层和内层的通孔,不穿透整板的孔。
微孔:在印刷电路板中,直径小于6毫米(150微米)的孔称为微孔。
曝光机:是指通过开启灯光发出UVA波长的紫外线,将胶片或其他透明体上的图像信息转移到涂有感光物质的表面上的机器设备。
镭射机,是用激光束在各种不同的物质表面进行蚀刻或打上永久的标记。具体原理是通过表层物质的蒸发露出深层物质,从而刻出孔或图案等。
请参照图1和2所示,图1示出了本发明的一种微盲孔镭射对位方法,图2示出了本发明实施例提供的一种微盲孔镭射对位方法采用的印制板的示意图,所述微盲孔镭射对位方法包括以下步骤:
步骤S1:通过镭射机去除印制板的内层对位靶标1上的表铜以及第一设定厚 度的第一树脂介质层,所述对位靶标1上覆盖有第二设定厚度的第二树脂介质层;
在本实施例中,所述镭射机为紫外镭射机,所述镭射机发出的激光波长为355nm。
在上述实现过程中,通过采用紫外镭射机去除制板的内层对位靶标1上的表铜以及第一设定厚度的第一树脂介质层,在去除制板的内层对位靶标1上的表铜以及第一设定厚度的第一树脂介质层前,印制板板面无需做镭射预处理(棕化),可以直接烧蚀表铜层面。
步骤S2:根据所述第二树脂介质层,通过曝光机抓取所述对位靶标1位置并制作出盲孔开口图像;
可选的,所述根据所述第二树脂介质层,通过曝光机抓取所述对位靶标1位置并制作出盲孔开口图像,包括:透过所述第二树脂介质层,对准所述对位靶标1,在所述对位靶标1位置处贴附干膜,显影出盲孔开口图像。
可选的,所述显影出盲孔开口图像步骤后,还包括:清洗烘干所述盲孔处的干膜残留。
步骤S3:根据所述盲孔开口图像,通过镭射机烧蚀第二树脂介质层,得到与所述盲孔开口图像一致的盲孔。
在本实施例中,在通过镭射机烧蚀第二树脂介质层时,所述镭射机发射出的激光能量不烧蚀所述第二树脂介质层周围的表铜。
在本实施例中,所述盲孔的直径小于50um。
在现有技术中,50um以下微盲孔的制作存在瓶颈,主要体现子盲孔位置精度和盲孔品质两方面。通过LDD(镭射直接成孔工艺)镭射直接烧蚀铜面,盲孔孔径偏大,盲孔品质太差,不符合微盲孔工艺需求;通过CFM成孔(掩膜成孔工艺)盲孔很容易偏位,对位精度太差。
在本实施例中,本发明先将板面对位靶标1位置的表铜及一定厚度的树脂介质层除去,且保留一定厚度的介质层,透过残留的介质层可以看到下层的对位靶标1;在CFM掩膜制作过程中,LDI曝光机透过残留的介质层抓取下层对位靶标1Pad来对位,制作出微盲孔开口图形,以此准确的定位微盲孔的位置和微盲孔开口大小;然后在镭射过程中镭射机仍然抓取这个下层的对位靶标1Pad来对位, 并烧蚀微盲孔开口位置的树脂介质层,实现微盲孔的精确定位和高品质成孔。
下面将对传统的工艺流程和本发明的方法的工艺流程作详细比较,如下表:
1)传统的工艺流程:LDD(镭射直接成孔工艺)对位说明如表1所示:
Figure PCTCN2022095520-appb-000001
表1:LDD(镭射直接成孔工艺)对位说明
其中,LDD(镭射直接成孔工艺)对位方法的优点是镭射直接参照下层图形来对位,盲孔位置精度高,缺点是镭射直接烧蚀铜面,盲孔孔径偏大,盲孔品质太差,不符合微盲孔工艺需求。
2)传统的工艺流程:CFM成孔(掩膜成孔工艺)对位说明如表2所示:
Figure PCTCN2022095520-appb-000002
表2:CFM成孔(掩膜成孔工艺)对位说明
其中,CFM成孔(掩膜成孔工艺)对位方法工艺的优点是提前去掉盲孔开口处的表铜,然后镭射机可以用小能量在树脂介质层上钻孔,盲孔的品质较好,但是缺点很明显,盲孔很容易偏位,对位精度太差。
3)本发明的镭射对位方法,使用UV镭射机切割掉对位Pad上的表铜,然后再做盲孔开口图形,对位说明如表3所示:
Figure PCTCN2022095520-appb-000003
表3:本发明的镭射对位说明
本发明从工艺流程上看,增加的流程简单,只针对下层对位Pad加工,耗时短,成本增加也较少,相对于微盲孔工艺的实现,增加的加工耗时和成本微乎其微。而且,本发明的对位方法,融合了LDD成孔和CFM成孔工艺的优点,通过新的对位方法,避开两种工艺的缺点,很好的满足微盲孔位置精度和盲孔品质。
在上述实现过程中,本发明的微盲孔镭射对位方法,在制作盲孔开口图像时,采用的是根据所述对位靶标1位置进行对位,制作出盲孔开口图像,实现了盲孔精确定位;同时,在盲孔显影后,只需在第二树脂介质层上通过小能量烧蚀成孔,由于小能量烧蚀不会烧蚀到对位靶标1周围的铜面,不会使盲孔孔径偏大,保证了盲孔品质。
实施例二:
本发明的一种微盲孔镭射对位系统,包括镭射机和曝光机;
所述镭射机,用于去除印制板的内层对位靶标1上的表铜以及第一设定厚度的第一树脂介质层,所述对位靶标1上覆盖有第二设定厚度的第二树脂介质层;
所述曝光机,用于根据所述第二树脂介质层,抓取所述对位靶标1位置并制作出盲孔开口图像;并根据所述盲孔开口图像,烧蚀第二树脂介质层,得到与所述盲孔开口图像一致的盲孔。
可选的,所述镭射机发射出的激光能量在烧蚀第二树脂介质层时,不烧蚀所述第二树脂介质层周围的表铜。
可选的,所述镭射机为紫外镭射机,所述镭射机发出的激光波长为355nm。
可选的,所述盲孔的直径小于50um。
对本领域的技术人员来说,可根据以上描述的技术方案以及构思,做出其它各种相应的改变以及形变,而所有的这些改变以及形变都应该属于本发明权利要求的保护范围之内。

Claims (10)

  1. 一种微盲孔镭射对位方法,其特征在于,包括以下步骤:
    通过镭射机去除印制板的内层对位靶标上的表铜以及第一设定厚度的第一树脂介质层,所述对位靶标上覆盖有第二设定厚度的第二树脂介质层;
    根据所述第二树脂介质层,通过曝光机抓取所述对位靶标位置并制作出盲孔开口图像;
    根据所述盲孔开口图像,通过镭射机烧蚀第二树脂介质层,得到与所述盲孔开口图像一致的盲孔。
  2. 根据权利要求1所述的微盲孔镭射对位方法,其特征在于,在通过镭射机烧蚀第二树脂介质层时,所述镭射机发射出的激光能量不烧蚀所述第二树脂介质层周围的表铜。
  3. 根据权利要求1所述的微盲孔镭射对位方法,其特征在于,所述镭射机为紫外镭射机,所述镭射机发出的激光波长为355nm。
  4. 根据权利要求1所述的微盲孔镭射对位方法,其特征在于,所述盲孔的直径小于50um。
  5. 根据权利要求1所述的微盲孔镭射对位方法,其特征在于,所述根据所述第二树脂介质层,通过曝光机抓取所述对位靶标位置并制作出盲孔开口图像,包括:透过所述第二树脂介质层,对准所述对位靶标,在所述对位靶标位置处贴附干膜,显影出盲孔开口图像。
  6. 根据权利要求5所述的微盲孔镭射对位方法,其特征在于,所述显影出盲孔开口图像步骤后,还包括:清洗烘干所述盲孔处的干膜残留。
  7. 一种微盲孔镭射对位系统,其特征在于,包括镭射机和曝光机;
    所述镭射机,用于去除印制板的内层对位靶标上的表铜以及第一设定厚度的第一树脂介质层,所述对位靶标上覆盖有第二设定厚度的第二树脂介质层;
    所述曝光机,用于根据所述第二树脂介质层,通过曝光机抓取所述对位靶标位置并制作出盲孔开口图像;并根据所述盲孔开口图像,通过镭射机烧蚀第二树脂介质层,得到与所述盲孔开口图像一致的盲孔。
  8. 根据权利要求7所述的微盲孔镭射对位系统,其特征在于,所述镭射机发射出的激光能量在烧蚀第二树脂介质层时,不烧蚀所述第二树脂介质层周围的表铜。
  9. 根据权利要求7所述的微盲孔镭射对位系统,其特征在于,所述镭射机为紫外镭射机,所述镭射机发出的激光波长为355nm。
  10. 根据权利要求7所述的微盲孔镭射对位系统,其特征在于,所述盲孔的直径小于50um。
PCT/CN2022/095520 2022-05-12 2022-05-27 一种微盲孔镭射对位方法及系统 WO2023216334A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210518223.1A CN114885504A (zh) 2022-05-12 2022-05-12 一种微盲孔镭射对位方法及系统
CN202210518223.1 2022-05-12

Publications (1)

Publication Number Publication Date
WO2023216334A1 true WO2023216334A1 (zh) 2023-11-16

Family

ID=82675693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/095520 WO2023216334A1 (zh) 2022-05-12 2022-05-27 一种微盲孔镭射对位方法及系统

Country Status (2)

Country Link
CN (1) CN114885504A (zh)
WO (1) WO2023216334A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001135910A (ja) * 1999-11-04 2001-05-18 Mitsubishi Gas Chem Co Inc 炭酸ガスレーザーによる銅張多層板の孔あけ方法
JP2001230518A (ja) * 2000-02-16 2001-08-24 Mitsubishi Gas Chem Co Inc 炭酸ガスレーザーによる孔あけ方法及びその後処理方法
TW200614891A (en) * 2005-10-20 2006-05-01 Hushi Electronic Kunsuan Co Ltd Direct carbon dioxide laser drilling method
CN102695375A (zh) * 2012-06-14 2012-09-26 广州美维电子有限公司 一种2mil微盲孔的加工方法
CN102711382A (zh) * 2012-06-14 2012-10-03 广州美维电子有限公司 Pcb逐层对位镭射钻孔的方法
CN104244589A (zh) * 2014-05-23 2014-12-24 胜宏科技(惠州)股份有限公司 一种提高hdi线路板曝光精度的方法
CN106341961A (zh) * 2016-09-12 2017-01-18 深圳市景旺电子股份有限公司 高密度互连印制电路板及提高盲孔与图形对准度的方法
CN106376186A (zh) * 2016-09-12 2017-02-01 深圳市景旺电子股份有限公司 一种互联pcb及其提高盲孔和线路层对准度的制作方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001135910A (ja) * 1999-11-04 2001-05-18 Mitsubishi Gas Chem Co Inc 炭酸ガスレーザーによる銅張多層板の孔あけ方法
JP2001230518A (ja) * 2000-02-16 2001-08-24 Mitsubishi Gas Chem Co Inc 炭酸ガスレーザーによる孔あけ方法及びその後処理方法
TW200614891A (en) * 2005-10-20 2006-05-01 Hushi Electronic Kunsuan Co Ltd Direct carbon dioxide laser drilling method
CN102695375A (zh) * 2012-06-14 2012-09-26 广州美维电子有限公司 一种2mil微盲孔的加工方法
CN102711382A (zh) * 2012-06-14 2012-10-03 广州美维电子有限公司 Pcb逐层对位镭射钻孔的方法
CN104244589A (zh) * 2014-05-23 2014-12-24 胜宏科技(惠州)股份有限公司 一种提高hdi线路板曝光精度的方法
CN106341961A (zh) * 2016-09-12 2017-01-18 深圳市景旺电子股份有限公司 高密度互连印制电路板及提高盲孔与图形对准度的方法
CN106376186A (zh) * 2016-09-12 2017-02-01 深圳市景旺电子股份有限公司 一种互联pcb及其提高盲孔和线路层对准度的制作方法

Also Published As

Publication number Publication date
CN114885504A (zh) 2022-08-09

Similar Documents

Publication Publication Date Title
TWI663898B (zh) 可撓性印刷電路板之製造方法
US7989148B2 (en) Method for forming photoelectric composite board
CN111770638A (zh) 具有台阶的印制电路板的制作工艺和印制电路板
US8037586B2 (en) Method for fabricating blind via structure of substrate
CN114158195A (zh) 一种激光辅助制作精密线路的方法
JP2010087168A (ja) 多層プリント配線板の製造方法
WO2023216334A1 (zh) 一种微盲孔镭射对位方法及系统
JP2013004926A (ja) 回路基板の製造方法、回路基板の製造装置、及び、レーザ加工用治具
TWI763895B (zh) 多層印刷配線板的製造方法以及多層印刷配線板
JPH09172255A (ja) プリント配線板の製造方法
KR100815361B1 (ko) 인쇄회로기판의 제조방법
KR100826344B1 (ko) 기판 레이저 드릴링 스캐닝 방법
TWI386117B (zh) 具有光學可讀標示碼的電路板及該電路板的製作方法
JP3037316B1 (ja) ソルダーレジスト形成方法
TWM601505U (zh) 形成cof細密電路的系統以及刻製電路的系統
KR100648465B1 (ko) 인쇄회로기판의 미세 회로 형성 방법
JP2008078250A (ja) 配線板の製造方法
JP2020155781A (ja) 基板の製造方法
JP2007164059A (ja) ソルダーレジスト用露光システム及びプリント配線板の製造方法
CN113543483B (zh) 印刷线路板的阻焊塞孔方法
US11229123B2 (en) Method of manufacturing the printed board
JPS62216297A (ja) 多層プリント板の孔加工法
JP2018166155A (ja) Fcbga基板およびその製造方法
TWI699905B (zh) 在發光二極體載板上形成焊墊的方法
JPH09181444A (ja) 印刷配線板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22941282

Country of ref document: EP

Kind code of ref document: A1