WO2023213124A1 - 一种多孔生物陶瓷修饰的加热结构及其制备方法和应用 - Google Patents

一种多孔生物陶瓷修饰的加热结构及其制备方法和应用 Download PDF

Info

Publication number
WO2023213124A1
WO2023213124A1 PCT/CN2023/079043 CN2023079043W WO2023213124A1 WO 2023213124 A1 WO2023213124 A1 WO 2023213124A1 CN 2023079043 W CN2023079043 W CN 2023079043W WO 2023213124 A1 WO2023213124 A1 WO 2023213124A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating structure
porous bioceramic
porous
structure according
modified
Prior art date
Application number
PCT/CN2023/079043
Other languages
English (en)
French (fr)
Inventor
汪亚桥
唐光武
Original Assignee
深圳麦克韦尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦克韦尔科技有限公司 filed Critical 深圳麦克韦尔科技有限公司
Publication of WO2023213124A1 publication Critical patent/WO2023213124A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/42Cartridges or containers for inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/48Fluid transfer means, e.g. pumps
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/70Manufacture
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/447Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/08Electrolytic coating other than with metals with inorganic materials by cathodic processes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/08Electrolytic coating other than with metals with inorganic materials by cathodic processes
    • C25D9/10Electrolytic coating other than with metals with inorganic materials by cathodic processes on iron or steel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness

Definitions

  • the present application belongs to the technical field of heating materials, and specifically relates to a porous bioceramic modified heating structure and its preparation method and application.
  • the electronic atomization process is accompanied by a boiling heat exchange process.
  • Commonly used heating structures in the field of electronic atomization include heating wires, heating meshes, etc., but the surfaces of the heating wires and heating meshes are smooth surfaces. In order to enhance the boiling heat transfer, the heating structure is increased. Specific surface area is an important method to increase heat transfer coefficient, lower temperature, and improve energy utilization.
  • the boiling heat transfer performance of the heat exchange surface can be improved by processing microstructures or nanostructures on the surface of ordinary heating structures. This is because the specific surface area of the heat exchange surface is greatly increased after being modified by micro-nanostructures. increased, showing better heat transfer performance than smooth surfaces.
  • the use of micro-nano structures can enhance the number of vaporization cores during the boiling process, increase the frequency of bubble detachment, etc., thereby strengthening the boiling process. Therefore, if the micro-nano porous structure can be applied to the field of electronic atomization, it can also achieve effects such as strengthening the atomization process, reducing the atomization temperature, and improving the atomization efficiency.
  • porous metal structures including porous copper, porous silver, porous nickel, etc.
  • these metals are heavy metals. During the atomization process, these metal elements will enter the atomization liquid, which does not meet the safety requirements in the field of electronic atomization.
  • the expansion coefficient of the porous metal does not match the heating structure matrix, which is prone to Thermal failure problem.
  • the technical problems to be solved by this application are to overcome the smooth surface of the heating structure in the prior art, low heat exchange efficiency, high temperature of the heating wire and heating mesh during the atomization process; heavy metals contained in commonly used porous structures are easy to precipitate into the atomized liquid, it does not meet the requirements for safe use, and is prone to defects such as thermal failure, thereby providing a porous bioceramic-modified heating structure and its preparation method and application.
  • the present application provides a porous bioceramic modified heating structure, which includes a base body and a porous bioceramic layer located on the surface of the base body.
  • the porous bioceramic layer includes micro-nano protrusions, and the basic material of the porous bioceramic layer is calcium phosphate salt.
  • the thickness of the porous bioceramic layer is 10-500 ⁇ m.
  • the size of the micro-nano protrusions is 10 nm-100 ⁇ m.
  • the shape of the micro-nano protrusions is at least one of needle-like, granular, spherical, and sheet-like.
  • the heating structure meets one or any combination of the following three conditions:
  • the heating structure is a heating mesh, heating wire or heating film
  • the calcium phosphate salt is at least one of hydroxyapatite, ⁇ -tricalcium phosphate or biphasic calcium phosphate;
  • the material of the substrate is iron-chromium-aluminum alloy, nickel-chromium alloy, stainless steel, metallic titanium or metallic nickel.
  • the present application also provides a method for preparing the above-mentioned porous bioceramic-modified heating structure, which includes the following steps: using an electrodeposition method to prepare a porous bioceramic layer on the surface of a substrate.
  • the electrodeposition method includes: subjecting an aqueous solution containing calcium ions and phosphate ions to an electrodeposition reaction under acidic conditions and hydrothermal treatment.
  • the concentration of calcium ions in the aqueous solution is 0.005-0.1mol/L, and the concentration of phosphate ions is 0.005-0.1mol/L;
  • the pH of the aqueous solution is 4-6;
  • the current density of the electrodeposition reaction is 0.001-1mA/cm 2 ;
  • the electrodeposition reaction time and temperature are conventional operating parameters in this field.
  • the hydrothermal treatment temperature is 50-80°C and the time is 24-48h;
  • the hydrothermal treatment is performed under alkaline conditions
  • a roasting step is included after the hydrothermal treatment
  • the calcining temperature is 600-1200°C
  • the calcining time is 2 to 4 hours
  • the calcining atmosphere is nitrogen atmosphere, inert atmosphere or reducing atmosphere.
  • This application also provides an application of the above-mentioned porous bioceramic-modified heating structure or the porous bioceramic-modified heating structure prepared by the above-mentioned preparation method in a heating element, an atomizer or an electronic atomization device.
  • the electronic atomization device is an electronic cigarette.
  • the heating element includes a liquid-conducting base 1 and a heating structure.
  • the heating structure is arranged on the surface of the liquid-conducting base and is used to heat atomized liquid to form an aerosol.
  • the heating structure may be a heating wire 2, a heating mesh 3 or a heating film 4.
  • the liquid-conducting matrix transmits liquid through capillary force
  • the liquid-conducting matrix can be porous materials such as cotton, porous ceramics, and porous glass.
  • the electronic cigarette includes a mouthpiece 9, an atomizer 5 and a main body 7.
  • the atomizer 5 includes a liquid storage tank 10 and a heating structure 6;
  • the main body is provided with a power supply 8 to provide power to the heating structure 6 .
  • the porous bioceramic modified heating structure includes a substrate and a porous bioceramic layer located on the surface of the substrate, wherein the porous bioceramic layer includes micro-nano protrusions, and the basic material of the porous bioceramic layer is phosphoric acid calcium salt.
  • This application increases the specific surface area of the heating structure by arranging a porous bioceramic layer including micro-nano protrusions on the heating structure substrate, thereby reducing the size of the bubbles during the atomization process, increasing the frequency of detachment, improving the atomization efficiency, and at the same time reducing the The temperature of the heating structure matrix during the atomization process; in addition, the micro-nano protrusion structure isolates the contact between the heating structure matrix and the atomization liquid, reducing the risk of heavy metals in the matrix precipitating into the atomization liquid.
  • the porous bioceramic layer The basic material is calcium phosphate, which does not contain heavy metals and there is no risk of heavy metals precipitating into the atomized liquid. The expansion coefficient matches the matrix and is not prone to thermal failure.
  • the porous bioceramic-modified heating structure provided by this application can further increase the specific surface area of the heating structure by limiting the thickness of the porous bioceramic layer and the size and shape of the micro-nano protrusions. accumulation to improve the atomization efficiency of the heating structure.
  • the generation of calcium phosphate salt is also accompanied by the generation of nanoscale and micron scale hydrogen bubbles.
  • These hydrogen bubbles are natural pore-forming agent to form a specific bubble escape channel.
  • these bubble escape channels become natural escape channels for the gas phase atomization medium, thus enabling a heating structure with higher specific surface area and atomization efficiency to be produced.
  • Figure 1 is an electron microscope image of the surface of the heating structure modified by porous bioceramics in Example 1 of the present application;
  • Figure 2 is an electron microscope image of the surface of the heating structure modified by porous bioceramics in Example 2 of the present application;
  • Figure 3 is an electron microscope image of the surface of the heating structure modified by porous bioceramics in Example 3 of the present application;
  • FIG. 4 is a schematic structural diagram of the heating element provided by this application.
  • FIG. 5 is a schematic structural diagram of another heating element provided by this application.
  • FIG. 6 is a schematic structural diagram of another heating element provided by this application.
  • Figure 7 is a schematic structural diagram of the electronic cigarette provided by this application.
  • Figure 8 is a bubble diagram of a pool boiling experiment before (left picture) and after (right picture) modification of the heating wire in Example 1 of the present application;
  • Liquid-conducting matrix 2. Heating wire; 3. Heating net; 4. Heating film; 5. Atomizer; 6. Heating structure; 7. Main body; 8. Power supply; 9. Nozzle; 10. Storage liquid tank.
  • a heating structure modified by porous bioceramics including a matrix and a porous bioceramic layer located on the surface of the matrix.
  • the matrix material is iron-chromium-aluminum heating wire.
  • the basic material of the porous bioceramic layer is hydroxyapatite.
  • the heating structure For heating wire.
  • the preparation method of the porous bioceramic modified heating structure is:
  • the calcium phosphate salt-modified heating wire was placed in a 60°C, 0.1 mol/L sodium hydroxide solution for 36 hours, thereby completely converting the obtained precursor calcium phosphate salt into hydroxyapatite (HAP).
  • HAP hydroxyapatite
  • bioceramics In order to enhance the strength of the bioceramics, they were sintered in a nitrogen atmosphere at 1200°C for 3 hours to obtain the porous bioceramics modified heating structure.
  • Figure 1 is an electron microscope image of the surface of the modified heating structure. It can be seen from the picture that the shape of the protrusions is strip-like, the thickness is about 20 ⁇ m, and the size of the protrusions is 2-10 ⁇ m.
  • a heating structure modified by porous bioceramics including a matrix and a porous bioceramic layer located on the surface of the matrix.
  • the matrix material is iron-chromium-aluminum metal heating wire.
  • the basic material of the porous bioceramic layer is hydroxyapatite.
  • the heating The structure is heating wire.
  • the preparation method of the porous bioceramic modified heating structure is:
  • the calcium phosphate salt-modified heating wire is placed in a 60°C, 0.1 mol/L sodium hydroxide solution for 48 hours, thereby completely converting the obtained precursor calcium phosphate salt into hydroxyapatite (HAP).
  • HAP hydroxyapatite
  • bioceramics In order to enhance the strength of the bioceramics, they were sintered in a nitrogen atmosphere at 1200°C for 3 hours to obtain the porous bioceramics modified heating structure.
  • Figure 2 is an electron microscope picture of the surface of the modified heating structure. It can be seen from the picture that the shape of the protrusions is a grass ball with a thickness of about 20 ⁇ m. The diameter of a single ball is about 20 ⁇ m, and the diameter of a grass ball is about 2 to 5 ⁇ m. Branch composition.
  • a heating structure modified by porous bioceramics including a matrix and a porous bioceramic layer located on the surface of the matrix.
  • the matrix material is an iron-chromium-aluminum metal heating mesh.
  • the basic material of the porous bioceramic layer is hydroxyapatite.
  • the heating The structure is heating wire.
  • the preparation method of the porous bioceramic modified heating structure is:
  • the calcium phosphate salt-modified heating wire is placed in a 60°C, 0.1 mol/L sodium hydroxide solution for 24 hours, thereby completely converting the obtained precursor calcium phosphate salt into hydroxyapatite (HAP).
  • HAP hydroxyapatite
  • bioceramics In order to enhance the strength of the bioceramics, they were sintered in an air atmosphere at 1200°C for 3 hours to obtain the porous bioceramics-modified heating structure.
  • Figure 3 is an electron microscope image of the surface of the modified heating structure. It can be seen from the image that the protrusions are petal-shaped, with a thickness of about 10 ⁇ m, and the length of each petal is about 10 ⁇ m.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials For Medical Uses (AREA)

Abstract

一种多孔生物陶瓷修饰的加热结构及其制备方法和应用。加热结构包括基体和位于基体表面的多孔生物陶瓷层,其中,多孔生物陶瓷层包括微钠米凸起,多孔生物陶瓷层的基础材料为磷酸钙盐。通过在加热结构基体上设置包括微纳米凸起的多孔生物陶瓷层,增大了加热结构的比表面积,使得雾化过程气泡尺寸减小、脱离频率增加,雾化效率提高,同时降低了雾化过程中加热结构基体的温度;另外,微纳米凸起结构隔绝了加热结构基体与雾化液的接触,降低了基体中重金属析出到雾化液的风险,同时,多孔生物陶瓷层的基础材料为磷酸钙盐,其中不含重金属,也不存在重金析出到雾化液中的风险。

Description

一种多孔生物陶瓷修饰的加热结构及其制备方法和应用
相关申请的交叉引用
本申请要求在2022年5月6日提交中国专利局、申请号为202210488051.8、发明名称为“一种多孔生物陶瓷修饰的加热结构及其制备方法和应用”的中国专利申请的优先权,其全部内容通过引用的方式并入本文中。
技术领域
本申请属于加热材料技术领域,具体涉及一种多孔生物陶瓷修饰的加热结构及其制备方法和应用。
背景技术
电子雾化过程是伴随着沸腾的换热过程,电子雾化领域常用的加热结构包括发热丝、发热网等,但发热丝、发热网表面为光滑表面,为了强化沸腾换热,增加加热结构的比表面积是增加换热系数,降低温度,提高能量利用率的一种重要方法。
随着纳米技术的发展,诸多研究者发现通过在普通加热结构表面加工微米结构或纳米结构可以提高换热表面的沸腾传热性能,这是因为换热表面经过微纳米结构修饰后,比表面积大大增加,表现出比光滑表面更好的换热性能。特别的,微纳结构的使用能够增强沸腾过程中气化核心的数目、增加气泡脱离频率等,从而使沸腾过程得到强化。因而,若微纳多孔结构能够应用到电子雾化领域,也能实现对雾化过程的强化,降低雾化温度、提高雾化效率等效果。
现有技术中常用的微纳多孔结构为多孔金属结构,包括多孔铜、多孔银、多孔镍等。但是,这些金属为重金属,在雾化过程中这些金属元素会进入雾化液中,不满足电子雾化领域安全性的使用要求;另外,多孔金属与发热结构基体的膨胀系数不匹配,容易出现热失效的问题。
发明内容
因此,本申请要解决的技术问题在于克服现有技术中的加热结构表面光滑,换热效率低、雾化过程中发热丝、发热网本体温度高;常用的多孔结构中含有的重金属,易析出到雾化液中、不满足安全性使用要求,且容易出现热失效等缺陷,从而提供一种多孔生物陶瓷修饰的加热结构及其制备方法和应用。
为此,本申请提供如下技术方案:
本申请提供一种多孔生物陶瓷修饰的加热结构,包括基体和位于基体表面的多孔生物陶瓷层,
其中,所述多孔生物陶瓷层包括微纳米凸起,所述多孔生物陶瓷层的基础材料为磷酸钙盐。
可选的,所述多孔生物陶瓷层的厚度为10-500μm。
可选的,所述微纳米凸起的尺寸为10nm-100μm。
可选的,所述微纳米凸起的形状为针状,颗粒状,草球状,片状中的至少一种。
可选的,所述所述加热结构满足以下三个条件之一或任意组合:
(1)加热结构为发热网,发热丝或发热膜;
(2)所述磷酸钙盐为羟基磷灰石,β-磷酸三钙或双相磷酸钙中的至少一种;
(3)所述基体的材质为铁铬铝合金,镍铬合金,不锈钢,金属钛或金属镍。
本申请还提供一种上述的多孔生物陶瓷修饰的加热结构的制备方法,包括如下步骤:采用电沉积法在基体表面制备多孔生物陶瓷层。
可选的,所述电沉积方法包括:将含有钙离子和磷酸根离子的水溶液在酸性条件下进行电沉积反应,水热处理。
可选的,所述水溶液中钙离子的浓度为0.005-0.1mol/L,所述磷酸根离子的浓度为0.005-0.1mol/L;
可选的,所述水溶液的pH为4-6;
可选的,所述电沉积反应的电流密度为0.001-1mA/cm2
所述电沉积反应时间和温度为本领域的常规操作参数。
可选的,所述水热处理的温度为50-80℃,时间为24-48h;
可选的,所述水热处理在碱性条件下进行;
可选的,水热处理之后还包括焙烧的步骤;
可选的,焙烧温度为600-1200℃,焙烧时间为2~4h,焙烧气氛为氮气气氛、惰性气氛或者还原气氛。
本申请还提供一种上述的多孔生物陶瓷修饰的加热结构或上述的制备方法制备得到的多孔生物陶瓷修饰的加热结构在发热体、雾化器或电子雾化装置中的应用。
可选的,所述电子雾化装置为电子烟。
如图4-6所示,所述发热体包括导液基体1和加热结构,发热结构设置在导液基体的表面并用于加热雾化液体形成气溶胶。
所述加热结构可以是发热丝2,发热网3或发热膜4。
所述导液基体通过毛细作用力传输液体,所述导液基体可以是棉、多孔陶瓷、多孔玻璃等多孔材料。
如图7所示,所述电子烟包括吸嘴9,雾化器5和主体7,雾化器5包括储液仓10、加热结构6;
主体设有电源8,为加热结构6提供电力。
本申请技术方案,具有如下优点:
本申请提供的多孔生物陶瓷修饰的加热结构,包括基体和位于基体表面的多孔生物陶瓷层,其中,所述多孔生物陶瓷层包括微钠米凸起,所述多孔生物陶瓷层的基础材料为磷酸钙盐。本申请通过在加热结构基体上设置包括微纳米凸起的多孔生物陶瓷层,增大了加热结构的比表面积,使得雾化过程气泡尺寸减小、脱离频率增加,雾化效率提高,同时降低了雾化过程中加热结构基体的温度;另外,微纳米凸起结构隔绝了加热结构基体与雾化液的接触,降低了基体中重金属析出到雾化液的风险,同时,所述多孔生物陶瓷层的基础材料为磷酸钙盐,其中不含重金属,也不存在重金析出到雾化液中的风险,膨胀系数与基体匹配,不容易出现热失效的问题。
本申请提供的多孔生物陶瓷修饰的加热结构,通过对多孔生物陶瓷层的厚度、微纳米凸起的尺寸和形状的限定,能够进一步增加加热结构的比表面 积,提升加热结构的雾化效率。
本申请提供的多孔生物陶瓷修饰的加热结构的制备方法,在电沉积制备过程,随着磷酸钙盐的生成也伴随着纳米级、微米级的氢气泡的产生,这些氢气泡就是天然的造孔剂,形成特定的气泡脱离通道。而将多孔生物陶瓷应用到雾化领域时,这些气泡脱离通道,也就变成了天然的气相雾化介质的脱离通道,从而能够制得具有较高比表面积和雾化效率的加热结构。
附图说明
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例1中多孔生物陶瓷修饰的加热结构表面的电镜图;
图2是本申请实施例2中多孔生物陶瓷修饰的加热结构表面的电镜图;
图3是本申请实施例3中多孔生物陶瓷修饰的加热结构表面的电镜图;
图4是本申请提供的发热体的结构示意图;
图5是本申请提供的另一发热体的结构示意图;
图6是本申请提供的另一发热体的结构示意图;
图7是本申请提供的电子烟的结构示意图;
图8是本申请实施例1中发热丝修饰前(左图)后(右图)池沸腾实验气泡图;
其中,1、导液基体;2、发热丝;3、发热网;4、发热膜;5、雾化器;6、加热结构;7、主体;8、电源;9、吸嘴;10、储液仓。
具体实施方式
提供下述实施例是为了更好地进一步理解本申请,并不局限于所述最佳实施方式,不对本发明的内容和保护范围构成限制,任何人在本发明的启示下或是将本申请与其他现有技术的特征进行组合而得出的任何与本申请相同或相近似的产品,均落在本申请的保护范围之内。
实施例中未注明具体实验步骤或条件者,按照本领域内的文献所描述的常规实验步骤的操作或条件即可进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规试剂产品。
实施例1
一种多孔生物陶瓷修饰的加热结构,包括基体和位于基体表面的多孔生物陶瓷层,所述基体材质为铁铬铝发热丝,多孔生物陶瓷层的基础材料为羟基磷灰石,所述加热结构为发热丝。
所述多孔生物陶瓷修饰的加热结构的其制备方法为:
配制0.01mol/L CaCl2、0.01mol/L Na2HPO4混合溶液,氨水调节PH至6,在90℃的条件下进行电沉积反应40min。反应过程中以发热丝为阴极,使用不溶性阳极(纯钛片),在发热丝(即,阴极)上生成磷酸钙盐。反应的电流密度0.4mA/cm2。在伴随着磷酸钙盐的生成的过程中也会生成氢气,氢气的生成与脱离就使得磷酸钙盐的凸起之间有天然的孔隙。
将磷酸钙盐修饰的发热丝放入60℃、0.1mol/L氢氧化钠溶液中,36h,从而将得到的前驱体磷酸钙盐完全转化为羟基磷灰石(HAP)。
为了增强生物陶瓷强度,将其在氮气气氛围,1200℃的条件下,烧结3h,得到所述多孔生物陶瓷修饰的加热结构。
图1是修饰后发热结构表面的电镜图,从图中可以看出,凸起的形状为长条状,厚度约为20μm,凸起的尺寸为2-10μm。
实施例2
一种多孔生物陶瓷修饰的加热结构,包括基体和位于基体表面的多孔生物陶瓷层,所述基体材质为铁铬铝金属发热丝,多孔生物陶瓷层的基础材料为羟基磷灰石,所述加热结构为发热丝。
所述多孔生物陶瓷修饰的加热结构的其制备方法为:
配制0.005mol/L CaCl2、0.005mol/L Na2HPO4混合溶液,氨水调节PH至6,在90℃的条件下进行电沉积反应40min。反应过程中以发热丝为阴极,使用不溶性阳极(纯钛片),在发热丝(即,阴极)上生成磷酸钙盐。反应的电流密度0.6mA/cm2。在伴随着磷酸钙盐的生成的过程中也会生成氢气,氢气 的生成与脱离就使得磷酸钙盐的凸起之间有天然的孔隙。
将磷酸钙盐修饰的发热丝放入60℃、0.1mol/L氢氧化钠溶液中,48h,从而将得到的前驱体磷酸钙盐完全转化为羟基磷灰石(HAP)。
为了增强生物陶瓷强度,将其在氮气氛围,1200℃的条件下,烧结3h,得到所述多孔生物陶瓷修饰的加热结构。
图2是修饰后发热结构表面的电镜图,从图中可以看出,凸起的形状为草球状,厚度约为20μm,单颗球的直径约为20μm,草球有直径约为2~5μm分支构成。
实施例3
一种多孔生物陶瓷修饰的加热结构,包括基体和位于基体表面的多孔生物陶瓷层,所述基体材质为铁铬铝金属发热网,多孔生物陶瓷层的基础材料为羟基磷灰石,所述加热结构为发热丝。
所述多孔生物陶瓷修饰的加热结构的其制备方法为:
配制0.005mol/L CaCl2、0.005mol/L Na2HPO4混合溶液,氨水调节PH至6,在90℃的条件下进行电沉积反应40min。反应过程中以发热丝为阴极,使用不溶性阳极(纯钛片),在铁铬铝金属发热网(即,阴极)上生成磷酸钙盐。反应的电流密度0.7mA/cm2。在伴随着磷酸钙盐的生成的过程中也会生成氢气,氢气的生成与脱离就使得磷酸钙盐的凸起之间有天然的孔隙。
将磷酸钙盐修饰的发热丝放入60℃、0.1mol/L氢氧化钠溶液中,24h,从而将得到的前驱体磷酸钙盐完全转化为羟基磷灰石(HAP)。
为了增强生物陶瓷强度,将其在空气氛围,1200℃的条件下,烧结3h,得到所述多孔生物陶瓷修饰的加热结构。
图3是修饰后发热结构表面的电镜图,从图中可以看出,凸起的形状为花瓣状,厚度约为10μm,每片花瓣的长度约为10μm。
实验例
沸腾实验
在饱和大气压下,以丙二醇(PG)/蔬菜甘油(VG)=3:7混合物为工质进行池沸腾实验。实验过程中,保持工质温度为210℃。图8是实施例1中发热 丝修饰前(左图)后(右图),在相同的功率下其沸腾过程中的气泡图。从图中可以明显看到,在微纳多孔羟基磷灰石修饰后,所产生的气泡数量增多,且直径大大减小,同时气泡脱离频率提高。在相同功率12W的条件下,未修饰发热丝表面产生膜沸腾,发热丝被烧红;而修饰的发热丝处在核态沸腾阶段,发热丝温度低。即在多孔生物陶瓷生物修饰后,能够提高电子雾化过程中发热丝的雾化效率,同时降低了雾化过程中加热结构基体的温度。其它实施例具有相近的技术效果,不再一一展示。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (15)

  1. 一种多孔生物陶瓷修饰的加热结构,其特征在于,包括基体和位于基体表面的多孔生物陶瓷层,
    其中,所述多孔生物陶瓷层包括微纳米凸起,所述多孔生物陶瓷层的基础材料为磷酸钙盐。
  2. 根据权利要求1所述的多孔生物陶瓷修饰的加热结构,其特征在于,所述多孔生物陶瓷层的厚度为10-500μm。
  3. 根据权利要求1或2所述的多孔生物陶瓷修饰的加热结构,其特征在于,所述微纳米凸起的尺寸为10nm-100μm。
  4. 根据权利要求1-3任一项所述的多孔生物陶瓷修饰的加热结构,其特征在于,所述微纳米凸起的形状为针状,颗粒状,草球状,片状中的至少一种。
  5. 根据权利要求1-3任一项所述的多孔生物陶瓷修饰的加热结构,其特征在于,所述加热结构满足以下三个条件之一或任意组合:
    (1)所述加热结构为发热网,发热丝或发热膜;
    (2)所述磷酸钙盐为羟基磷灰石,β-磷酸三钙或双相磷酸钙中的至少一种;
    (3)所述基体的材质为铁铬铝合金,镍铬合金,不锈钢,金属钛或金属镍。
  6. 一种权利要求1-5任一项所述的多孔生物陶瓷修饰的加热结构的制备方法,其特征在于,包括如下步骤:采用电沉积法在基体表面制备多孔生物陶瓷层。
  7. 根据权利要求6所述的多孔生物陶瓷修饰的加热结构的制备方法,其 特征在于,所述电沉积方法包括:将含有钙离子和磷酸根离子的水溶液在酸性条件下进行电沉积反应,水热处理。
  8. 根据权利要求7所述的多孔生物陶瓷修饰的加热结构的制备方法,其特征在于,所述水溶液中钙离子的浓度为0.005-0.1mol/L,所述磷酸根离子的浓度为0.005-0.1mol/L。
  9. 根据权利要求7所述的多孔生物陶瓷修饰的加热结构的制备方法,其特征在于,所述水溶液的pH为4-6。
  10. 根据权利要求7所述的多孔生物陶瓷修饰的加热结构的制备方法,其特征在于,所述电沉积反应的电流密度为0.001-1mA/cm2
  11. 根据权利要求7所述的多孔生物陶瓷修饰的加热结构的制备方法,其特征在于,所述水热处理的温度为50-80℃,时间为24-48h。
  12. 根据权利要求7所述的多孔生物陶瓷修饰的加热结构的制备方法,其特征在于,所述水热处理在碱性条件下进行。
  13. 根据权利要求7所述的多孔生物陶瓷修饰的加热结构的制备方法,其特征在于,所述水热处理之后还包括焙烧的步骤。
  14. 根据权利要求13所述的多孔生物陶瓷修饰的加热结构的制备方法,其特征在于,所述焙烧温度为600-1200℃,焙烧时间为2~4h,焙烧气氛为氮气气氛、惰性气氛或者还原气氛。
  15. 一种权利要求1-5任一项所述的多孔生物陶瓷修饰的加热结构或权利要求6-14任一项所述的制备方法制备得到的多孔生物陶瓷修饰的加热结构在发热体、雾化器或电子雾化装置中的应用。
PCT/CN2023/079043 2022-05-06 2023-03-01 一种多孔生物陶瓷修饰的加热结构及其制备方法和应用 WO2023213124A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210488051.8 2022-05-06
CN202210488051.8A CN117044993A (zh) 2022-05-06 2022-05-06 一种多孔生物陶瓷修饰的加热结构及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2023213124A1 true WO2023213124A1 (zh) 2023-11-09

Family

ID=88646200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/079043 WO2023213124A1 (zh) 2022-05-06 2023-03-01 一种多孔生物陶瓷修饰的加热结构及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN117044993A (zh)
WO (1) WO2023213124A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111974661A (zh) * 2020-07-18 2020-11-24 钟术光 一种超声雾化片及超声雾化器
CN112315039A (zh) * 2020-11-18 2021-02-05 深圳麦克韦尔科技有限公司 陶瓷发热体、雾化器、电子雾化装置及陶瓷发热体的制备方法
CN112672656A (zh) * 2018-09-28 2021-04-16 菲利普莫里斯生产公司 用于气溶胶生成系统的加热器组件
CN214431825U (zh) * 2020-11-18 2021-10-22 深圳麦克韦尔科技有限公司 陶瓷发热体、雾化器及电子雾化装置
WO2021255209A1 (en) * 2020-06-18 2021-12-23 Philip Morris Products S.A. Heater assembly having fluid permeable heater with directly deposited transport material
CN215347051U (zh) * 2021-03-01 2021-12-31 深圳市锐丽科技有限公司 基于微孔陶瓷基体的雾化芯及含其的电子烟

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112672656A (zh) * 2018-09-28 2021-04-16 菲利普莫里斯生产公司 用于气溶胶生成系统的加热器组件
WO2021255209A1 (en) * 2020-06-18 2021-12-23 Philip Morris Products S.A. Heater assembly having fluid permeable heater with directly deposited transport material
CN111974661A (zh) * 2020-07-18 2020-11-24 钟术光 一种超声雾化片及超声雾化器
CN112315039A (zh) * 2020-11-18 2021-02-05 深圳麦克韦尔科技有限公司 陶瓷发热体、雾化器、电子雾化装置及陶瓷发热体的制备方法
CN214431825U (zh) * 2020-11-18 2021-10-22 深圳麦克韦尔科技有限公司 陶瓷发热体、雾化器及电子雾化装置
CN215347051U (zh) * 2021-03-01 2021-12-31 深圳市锐丽科技有限公司 基于微孔陶瓷基体的雾化芯及含其的电子烟

Also Published As

Publication number Publication date
CN117044993A (zh) 2023-11-14

Similar Documents

Publication Publication Date Title
Wen et al. Preparation of bioactive microporous titanium surface by a new two-step chemical treatment
CN101545109B (zh) 一种具有表面生物活性层的钛或钛合金及其制备方法
CN103495202A (zh) 医用镁合金表面介孔生物玻璃涂层及制备方法
CN111302335B (zh) 一种带竖直微孔的超高导热性石墨烯厚膜及其制备方法
CN104888271A (zh) 一种生物可降解镁合金表面锶羟基磷灰石涂层的制备方法
CN110016658B (zh) 一种钛合金表面超亲/疏可调控微纳复合结构及其制备方法
Zhang et al. Ultralong hydroxyapatite microtubes: solvothermal synthesis and application in drug loading and sustained drug release
CN101575726A (zh) 含氟羟基磷灰石梯度生物活性膜层的制备方法
WO2023213124A1 (zh) 一种多孔生物陶瓷修饰的加热结构及其制备方法和应用
CN114558177B (zh) 一种具有生物活性涂层的植入物及其制造方法
CN111910166A (zh) 一种耐腐蚀金属多孔材料及其制备方法和应用
CN105220202B (zh) 一种钛基三维多孔二氧化钛氧化层的制备方法
CN109014184B (zh) 一种具有双重腐蚀抗力的生物医用镁合金及其制备方法
CN105031950B (zh) 一种基于多孔复合材料的可控蒸发表面温度的方法
JP2000178791A (ja) 多孔質酸化チタン皮膜の製造方法
Essien et al. Economic Route to sodium-containing silicate bioactive glass scaffold.
CN105327397A (zh) 一种医用镁合金表面的介孔硅酸钙涂层可降解植入材料的制备
CN113289057A (zh) 钽涂层骨科植入材料及其制备方法、骨科植入物
CN111286776A (zh) 一种医用镁合金表面纳米级耐蚀和生物相容复合涂层的制备方法
CN107186220A (zh) 一种单质镍/石墨烯纳米复合材料及其制备方法
KR101081687B1 (ko) 바이오재료 제조방법
Hayakawa et al. Coating of hydroxyapatite films on titanium substrates by electrodeposition under pulse current
Chaijaruwanich Coating techniques for biomaterials: A review
CN115444971A (zh) 一种骨缺损修复用生物可降解多孔镁合金支架的综合加工处理方法
CN105040070B (zh) 一种钛合金ta2表面高太阳吸收率低发射率膜层的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23799113

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023799113

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023799113

Country of ref document: EP

Effective date: 20241010