WO2023210909A1 - 가공성 및 내식성이 우수한 도금 강재의 제조 방법 - Google Patents

가공성 및 내식성이 우수한 도금 강재의 제조 방법 Download PDF

Info

Publication number
WO2023210909A1
WO2023210909A1 PCT/KR2022/020448 KR2022020448W WO2023210909A1 WO 2023210909 A1 WO2023210909 A1 WO 2023210909A1 KR 2022020448 W KR2022020448 W KR 2022020448W WO 2023210909 A1 WO2023210909 A1 WO 2023210909A1
Authority
WO
WIPO (PCT)
Prior art keywords
mgzn
temperature
molten alloy
alloy plating
phase
Prior art date
Application number
PCT/KR2022/020448
Other languages
English (en)
French (fr)
Inventor
김선진
이재민
Original Assignee
현대제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대제철 주식회사 filed Critical 현대제철 주식회사
Priority to CN202280043509.7A priority Critical patent/CN117529573A/zh
Publication of WO2023210909A1 publication Critical patent/WO2023210909A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips

Definitions

  • the present invention relates to steel materials, and more specifically, to a method of manufacturing plated steel materials with excellent processability and corrosion resistance.
  • Hot-dip galvanized steel sheets have excellent sacrificial corrosion resistance, so when exposed to a corrosive environment, zinc with a low potential is preemptively eluted to prevent corrosion of the steel material. Thanks to these excellent corrosion properties, hot-dip galvanized steel sheets are used as steel sheets for home appliances, construction materials, and automobiles.
  • hot-dip galvanized steel sheets are used as steel sheets for home appliances, construction materials, and automobiles.
  • expectations for corrosion resistance are increasing due to technological advancements and improved quality standards
  • the need for the development of products with better corrosion resistance than conventional hot-dip galvanized steel sheets is increasing.
  • highly corrosion-resistant plated steel sheets have been produced in Europe and Japan to improve corrosion resistance by adding aluminum (Al) and magnesium (Mg) to zinc (Zn) plating baths.
  • Zn-Al-Mg plated steel sheets In addition to the sacrificial corrosion resistance of Zn, high-corrosion-resistant plated steel sheets form dense corrosion products in a corrosive environment due to the addition of Mg and Al, thereby blocking the steel from the oxidizing atmosphere and improving corrosion resistance.
  • Zn-Al-Mg plated steel sheets have superior corrosion resistance compared to galvanized steel sheets, but have the disadvantage of inferior processability.
  • the intermetallic compound of Zn-Al-Mg has high hardness and low crack resistance, and these cracks have the problem of damaging the appearance during the processing process or exposing the base steel material, thereby reducing corrosion resistance.
  • the technical problem to be achieved by the present invention is to provide a method for manufacturing plated steel materials with excellent processability and corrosion resistance.
  • a method of manufacturing a plated steel material with excellent processability and corrosion resistance includes the steps of immersing base iron in a molten alloy plating bath; And withdrawing the immersed base iron from the molten alloy plating bath and performing a cooling process, thereby forming a molten alloy plating layer on the base iron; It includes, and the first average cooling rate in the cooling process is different depending on the difference between the first temperature, which is the temperature of the molten alloy plating bath, and the second temperature, which is the solidification start temperature of the MgZn 2 phase constituting the molten alloy plating layer.
  • the first average cooling rate is 10 to 20°C/s, and the first temperature and the If the difference between the second temperatures is 50°C or more and less than 100°C, the first average cooling rate is 15 to 35°C/s, and if the difference between the first temperature and the second temperature is 100°C or more, the first average cooling rate is 100°C or more.
  • the speed may be 20 to 50°C/s.
  • the first average cooling rate may be the average cooling rate from the time the immersed base iron is withdrawn from the molten alloy plating bath to the time the MgZn 2 phase begins to solidify. there is.
  • the second average cooling rate in the cooling process from the time when the MgZn 2 phase begins to solidify to the time when solidification is completed may satisfy the relationship of Equation 1 below.
  • the molten alloy plating bath may be a Zn plating bath containing Al: 6 to 23%, Mg: 3 to 7% and other inevitable impurities in weight percent.
  • the molten alloy plating layer formed on the base iron is MgZn 2 having a ratio of the average minor axis length (a) and the average major axis length (b) of 0.5 or less among the entire MgZn 2 phase on the surface.
  • the area fraction of the phase may be 70% or less.
  • a method for manufacturing plated steel with excellent processability and corrosion resistance can be implemented.
  • Figure 1 is a photograph of the surface of a molten alloy plating layer according to Example 6 of the experimental examples.
  • Figure 2 is a photograph taken of the surface of the molten alloy plating layer according to Comparative Example 1 among the experimental examples.
  • Figure 3 is a photograph taken at 200x FE-SEM of the processed part after evaluating the 3T bending processability of the molten alloy plating layer according to Example 6 among the experimental examples.
  • Figure 4 is a photograph taken at 200x FE-SEM of the processed part after evaluating the 3T bending processability of the molten alloy plating layer according to Comparative Example 4 among the experimental examples.
  • Figure 5 is a photograph taken at 1000x FE-SEM of the cross section of the molten alloy plating layer according to Example 3 among the experimental examples.
  • Figure 6 is a photograph taken at 1000x FE-SEM of the cross section of the molten alloy plating layer according to Comparative Example 4 among the experimental examples.
  • a method for manufacturing a plated steel material with excellent processability and corrosion resistance according to an embodiment of the present invention will be described in detail.
  • the terms described below are terms appropriately selected in consideration of their functions in the present invention, and definitions of these terms should be made based on the content throughout the present specification. Below, we will provide specific details on ultra-high strength, high corrosion resistance plated steel sheets with excellent elongation and their manufacturing methods.
  • Zn-Al-Mg plated steel sheets have superior corrosion resistance compared to galvanized steel sheets, but have the disadvantage of inferior processability.
  • the intermetallic compound of Zn-Al-Mg has high hardness and low crack resistance, and these cracks damage the appearance during processing or expose the base steel, reducing corrosion resistance during processing.
  • MgZn 2 has the highest hardness, so technology to control the shape, distribution and size of the MgZn 2 phase is important.
  • the present invention relates to a method for manufacturing a Zn-Al-Mg-based highly corrosion-resistant plated steel containing, in weight percent, Al: 6 to 23%, Mg: 3 to 7%, the balance Zn and other unavoidable impurities, and its processability and processing corrosion resistance.
  • the purpose is to control the microstructure of the MgZn 2 phase with high hardness in order to improve.
  • a method for manufacturing plated steel with excellent processability and corrosion resistance includes the step of immersing base iron in a molten alloy plating bath (S10); And forming a molten alloy plating layer on the base iron by withdrawing the immersed base iron from the molten alloy plating bath and performing a cooling process (S20); Includes.
  • the molten alloy plating bath may be, for example, a Zn plating bath containing, in weight percent, Al: 6 to 23%, Mg: 3 to 7% and other unavoidable impurities. there is. Furthermore, the molten alloy plating bath may further contain 0.05 to 10% Fe and more than 0 to less than 1% Si by weight percent.
  • Mg and Al in the molten alloy plating bath are one of the elements that improve the corrosion resistance of the plating layer, and improve corrosion resistance by forming corrosion products more densely.
  • Mg in the plating bath is less than 1.0% by weight, its contribution to corrosion resistance is minimal, and in the past, when it exceeds 2.0% by weight, Mg is used at less than 2.0% by weight due to difficulties in production due to Mg oxidation dross.
  • Mg is added to the plating bath in an amount of 3.0% by weight or more to achieve better corrosion resistance.
  • MgZn 2 phases in the form of rods and needles or Al containing MgZn 2 in the plating layer grow to exceed 70% of the area fraction of the total MgZn 2 , reducing the processability of the plating layer.
  • the corrosion resistance deteriorates due to exposure of the steel or Fe-Al-Zn interface alloy layer due to cracks in the plating layer during processing.
  • Al when more than 23% by weight of Al is added in the plating bath, the discontinuous Fe-Al-Zn interfacial alloy layer between the steel and the plating layer grows excessively due to an increase in the melting point of the plating bath, which may result in poor interfacial adhesion during processing.
  • the form and fraction of the MgZn 2 phase can be closely controlled through cooling.
  • the first average cooling rate in the cooling process is the molten alloy plating bath. It is different depending on the difference between the first temperature, which is the temperature, and the second temperature, which is the solidification start temperature of the MgZn 2 phase constituting the molten alloy plating layer.
  • the first average cooling rate may be an average cooling rate from the time the immersed base iron is withdrawn from the molten alloy plating bath to the time the MgZn 2 phase begins to solidify.
  • the first average cooling rate is 10 ⁇ It may be 20°C/s.
  • the constituent phases other than the MgZn 2 phase such as Al phase and Zn phase, are coarsely crystallized, making it difficult to preferably control the fraction of the MgZn 2 region, and the plating layer in the liquid state This reacts with oxygen and can act as a factor that impairs the appearance of the plating surface.
  • the first average cooling rate exceeds 20°C, it may be difficult for a coarse region of MgZn 2 to be formed.
  • the first average cooling rate may be 15 to 35°C/s.
  • the constituent phases other than the MgZn 2 phase such as Al phase and Zn phase, are coarsely crystallized, making it difficult to preferably control the fraction of the MgZn 2 region, and the plating layer in the liquid state This reacts with oxygen and can act as a factor that impairs the appearance of the plating surface.
  • the first average cooling rate exceeds 35°C, it may be difficult to form a coarse region of MgZn 2 .
  • the first average cooling rate is 20 to 50°C. It may be °C/s.
  • the constituent phases other than the MgZn 2 phase such as Al phase and Zn phase, are coarsely crystallized, making it difficult to control the fraction of the MgZn 2 region appropriately, and the plating layer in the liquid state This reacts with oxygen and can act as a factor that impairs the appearance of the plating surface.
  • the first average cooling rate exceeds 50°C, it may be difficult to form a coarse region of MgZn 2 .
  • the second average cooling rate in the cooling process from the time when the MgZn 2 phase begins to solidify to the time when solidification is completed is calculated using the following equation: The relationship in Equation 1 can be satisfied.
  • the molten alloy plating layer realized by the above-described method of manufacturing a plated steel material with excellent processability and corrosion resistance is an area fraction of the MgZn 2 phase whose ratio of the average minor axis length (a) to the average major axis length (b) is 0.5 or less among the total MgZn 2 phases on the surface of the plating layer.
  • This may be less than 70%. That is, the area fraction of the MgZn 2 phase in the form of rods or needles among the total MgZn 2 phases distributed on the surface of the implemented plating layer may be 70% or less. In this case, the area fraction of the polygon-shaped MgZn 2 phase among the total MgZn 2 phases distributed on the surface of the implemented plating layer may be 30% or more.
  • the zinc alloy plating layer of the present invention is composed of primary Al phase (Al single phase structure with Zn dissolved in solid solution), Al/Zn eutectoid phase, Zn solid solution phase, MgZn 2 (MgZn 2 phase containing Al, Mg 2 Zn 11 phase included), and Al/ It may be composed of a Zn/Mg eutectic structure or a combination thereof.
  • the MgZn 2 phase and the MgZn 2 phase containing Al on the surface of the Zn-Al-Mg-based plating layer may be formed in the form of polygons, rods, and needles. .
  • the ratio of the average minor axis length (a) and the average major axis length (b) of the rod and needle shapes is characterized as 1:10 ⁇ a:b ⁇ 1:2.
  • the rod and needle-shaped MgZn 2 phases are distributed on the surface with an area fraction of less than 70%, more preferably with an area fraction of less than 50%, and the remaining MgZn 2 is in the shape of a polygon. It is characterized by being distributed.
  • an exemplary process for forming a molten alloy plating layer on base iron is as follows.
  • base iron annealed at 680 ⁇ 850°C is immersed in a plating bath at 440 ⁇ 530°C and then passed through an air knife to satisfy the single side standard of 30 ⁇ 300g/ m2 .
  • the entry temperature of the base iron after annealing is adjusted so that it does not differ more than ⁇ 20°C from the plating bath temperature.
  • the area fraction of the MgZn 2 phase in the cross section (e.g., longitudinal section) within the molten alloy plating layer is 20 to 70%
  • the cross section (e.g., longitudinal section) within the molten alloy plating layer is 20 to 70%.
  • the ratio of the area fraction of the Al-containing phase to the area fraction of the MgZn 2 phase is characterized in that it is 1 to 70%.
  • the Al-containing phase may exist spaced apart from the MgZn 2 phase or may exist inside the MgZn 2 phase in a cross section within the molten alloy plating layer.
  • the Al-containing phase refers to i) a single Al phase and ii) a phase containing more than 20% Al, with unavoidable impurities within 2% and the remainder being Zn.
  • the molten alloy plating layer may contain 20 to 70% of the MgZn 2 phase as an area fraction in the cross section. That is, the ratio of the cross-sectional area (A2) occupied by the MgZn 2 phase among the total cross-sectional area (A1) of the molten alloy plating layer is 20 to 70%, and the value of (A2 / A1) ⁇ 100 can satisfy the range of 20 to 70. Meanwhile, in the cross section of the molten alloy plating layer, the sum of the cross-sectional area (B1) of the Al-containing phase present separately from the MgZn 2 phase and the cross-sectional area (B2) of the Al-containing phase present inside the MgZn 2 phase is the cross-sectional area of the entire MgZn 2 phase (B3).
  • the value of [(B1 + B2) / B3] ⁇ 100 can satisfy the range of 1 to 70. According to this structure, crack resistance is excellent, and specifically, the average crack width in bending evaluation (3T bending evaluation, 1T bending evaluation) may be 30 ⁇ m or less.
  • the molten alloy plating layer of the plated steel of the present invention may have an area fraction of the MgZn 2 phase on the surface of 10 to 70%. If the area fraction is less than 10%, it cannot be formed, and if it exceeds 70%, crack resistance deteriorates.
  • the surface of the molten alloy plating layer may refer to the upper surface in contact with the outside.
  • the molten alloy plating layer may have an area fraction of the MgZn 2 phase having a ratio of the average minor axis length (a) and the average major axis length (b) of 0.5 or less among the total MgZn 2 phases on the surface of 70% or less.
  • the MgZn 2 phase which accounts for less than 70% of the total MgZn 2 phase on the surface of the molten alloy plating layer, has a ratio of the average minor axis length (a) and the average major axis length (b) of 1:2 to 1:10, a value of 0.5 or less. You can have it.
  • the ratio of the average minor axis length (a) and the average major axis length (b) of the MgZn 2 phase is 0.5 or less.
  • the ratio of the average minor axis length (a) and the average major axis length (b) may be 1/10 or more and 1/2 or less. there is.
  • the ratio between the average minor axis length (a) and the average major axis length (b) is less than 0.5, crack resistance deteriorates.
  • the average minor axis length (a) may be 1 to 20 ⁇ m, and the average major axis length (b) may be 2 to 200 ⁇ m.
  • the molten alloy plating layer of a plated steel material according to another aspect of the present invention may have an area fraction of Al-Zn dendrites composed of Al and Zn phases of 30% or less on the surface. Since Al-Zn dendrites do not have a desirable effect on chemical conversion processability or LME (Liquid Metal Embrittlement) resistance, it is preferable that the area fraction is low. Therefore, in the plating layer according to this embodiment, the area fraction of Al-Zn dendrites is set to 30% or less.
  • the MgZn 2 phase and the MgZn 2 phase containing Al on the surface of the Zn-Al-Mg-based plating layer are in the form of a polygon. It consists of a rod and needle shape, and the ratio of the average minor axis length (a) and the average major axis length (b) of the rod and needle shape is 1:2 ⁇ a:b ⁇ 1:10. do.
  • the MgZn 2 phase in the form of rods and needles is distributed on the surface with an area fraction of 70% or less, and more preferably with an area fraction of less than 50%, and the remaining MgZn 2 is in the shape of a polygon. It is distributed.
  • the molten alloy plating layer is characterized in that the area fraction of the MgZn 2 phase whose ratio between the average minor axis length (a) and the average major axis length (b) exceeds 0.5 among all MgZn 2 phases on the surface is 30% or more.
  • the area fraction of the MgZn 2 phase whose ratio between the average minor axis length (a) and the average major axis length (b) exceeds 0.5 among all MgZn 2 phases on the surface is 30% or more.
  • more than 30% of the total MgZn 2 phase on the surface has a ratio of the average minor axis length (a) and the average major axis length (b) exceeding 0.5, such as 1:1.5, 1:1.2, etc. It can be characterized as having.
  • the diameter (average diameter) of a virtual circle having an area equal to the cross-sectional area of the MgZn 2 phase in which the ratio of the average minor axis length (a) and the average major axis length (b) exceeds 0.5 may be 1 to 50 ⁇ m. If the average diameter is less than 1 ⁇ m, it is impossible to form, and if it exceeds 50 ⁇ m, crack resistance deteriorates.
  • a 1.2 mm cold-rolled material was prepared from a base steel plate, and the ingredients were carbon (C): 0.15% by weight, silicon (Si): 0.01% by weight, manganese (Mn): 0.6% by weight, phosphorus (P): 0.05% by weight, and sulfur. (S): It has a composition of 0.05% by weight and the remainder is iron (Fe). Nitrogen - After annealing to a temperature of 760°C within the range of 680 to 850°C, specifically, 760°C in a 5-10% hydrogen atmosphere gas, the annealed specimen is cooled to a temperature that does not differ by more than 20°C from the plating bath, and then placed in the plating bath at 1 ⁇ 20°C.
  • the plating thickness was adjusted by nitrogen wiping after immersion in the plating bath at a temperature of 485°C, and cooling was performed at the first and second average cooling rates to form a Zn-Al-Mg base. A plated steel sheet was obtained.
  • Table 1 shows the results of evaluating the composition (unit: weight %) of the molten alloy plating layer in the plated steel material according to the experimental example of the present invention and the microstructure and bending workability according to the process structure.
  • Example 1 Bal. 10 3.2 70 20 13 45 ⁇ Example 2 Bal. 10 3 100 22 13 44 ⁇ Example 3 Bal. 10 3.1 90 30 13 40 ⁇ Example 4 Bal. 10 3.2 70 20 13 42 ⁇ Example 5 Bal. 10.2 5 40 15 13 55 ⁇ Example 6 Bal. 10.1 5.3 30 13 13 52 ⁇ Example 7 Bal. 10.3 5.4 10 12 13 51 ⁇ Example 8 Bal. 15 5 100 35 15 54 ⁇ Example 9 Bal. 10 7 70 30 15 62 ⁇ Example 10 Bal.
  • the temperature difference item refers to the temperature difference between the first temperature, which is the temperature of the molten alloy plating bath, and the second temperature, which is the solidification start temperature of the MgZn 2 phase constituting the molten alloy plating layer formed on the base iron immersed in the molten alloy plating bath.
  • the first average cooling rate refers to the average cooling rate in the cooling process from the time the immersed base iron is withdrawn from the molten alloy plating bath to the time the MgZn 2 phase begins to solidify
  • the second average cooling rate is This refers to the average cooling rate in the cooling process from the time when the MgZn 2 phase begins to solidify to the time when solidification is completed.
  • the solidification initiation temperature of MgZn 2 phase was derived using a thermodynamic calculation program (FactSage 7.1).
  • the temperature difference between the first temperature, which is the temperature of the molten alloy plating bath, and the second temperature, which is the solidification start temperature of the MgZn 2 phase constituting the molten alloy plating layer formed on the base iron immersed in the molten alloy plating bath varies depending on the plating component.
  • the same plating component was controlled by adjusting the plating bath temperature, and the first average cooling rate was controlled by adjusting the air knife height.
  • the MgZn 2 area fraction was evaluated by FE-SEM for each plated steel sheet manufactured. After observing the surface of the ship, measurements were made using an image program.
  • the area fraction disclosed in Table 1 represents the fraction of the rod or needle-shaped MgZn 2 phase among the total MgZn 2 phases distributed on the surface of the plating layer as an area ratio.
  • the bending part after 1T and 3T bending was observed 200 and 500 times with a FE-SEM (Field Emission Scanning Electron Microscope), and the width of the bending crack was measured and averaged for evaluation.
  • the ' ⁇ ' item refers to cases where the average crack width in the bending evaluation exceeds 0 and is less than 30 ⁇ m
  • the 'X' item refers to the case where the average crack width exceeds 30 ⁇ m in the bending evaluation.
  • the composition of the molten alloy plating bath satisfies the range of Al: 6 to 23%, Mg: 3 to 7%, and the balance being Zn, in weight percent.
  • the first temperature which is the temperature of the molten alloy plating bath
  • the second temperature which is the solidification start temperature of the MgZn 2 phase constituting the molten alloy plating layer
  • the first average cooling rate is 10 ⁇ Satisfies the range of 20°C/s (Examples 5, 6, and 7)
  • the first temperature is the temperature of the molten alloy plating bath and the second temperature is the solidification start temperature of the MgZn 2 phase constituting the molten alloy plating layer.
  • the first average cooling rate satisfies the range of 15 to 35°C/s (Examples 1, 3, 4, 9, and 10), and the temperature of the molten alloy plating bath
  • the difference between the first temperature and the second temperature which is the solidification start temperature of the MgZn 2 phase constituting the molten alloy plating layer
  • the first average cooling rate satisfies the range of 20 to 50°C/s ( Examples 2, 8, 11), iii)
  • the second average cooling rate in the cooling process from the time when the MgZn 2 phase begins to solidify to the time when solidification is completed satisfies the relationship of Equation 1 below.
  • Examples 1 to 11 can confirm that the area fraction of the MgZn 2 phase in the form of a rod or needle among the total MgZn 2 phases distributed on the surface of the implemented plating layer is 70% or less, and no cracks are observed in the bending evaluation. It can be confirmed that the average width is 30 ⁇ m or less (see Figures 1 and 3). Furthermore, it can be confirmed that the growth of the Fe-Al interface alloy layer in the cross section of the plating layer can be controlled to less than 10 ⁇ m (see Figure 5).
  • the difference between the first temperature, which is the temperature of the molten alloy plating bath, and the second temperature, which is the solidification start temperature of the MgZn 2 phase constituting the molten alloy plating layer, is 50° C. or more and 100° C. If it is less than °C, the first average cooling rate does not satisfy the range of 15 to 35 °C/s, and accordingly, among the total MgZn 2 phases distributed on the surface of the implemented plating layer, the MgZn 2 phase in the form of a rod or needle is It can be seen that the area fraction exceeds 70%, and the average crack width exceeds 30 ⁇ m in bending evaluation.
  • the area fraction of the MgZn 2 phase in the form of a rod or needle among the total MgZn 2 phases distributed on the surface of the implemented plating layer exceeds 70%, and the average crack width in the bending evaluation exceeds 30 ⁇ m. can confirm.
  • Examples 1 to 3 the formation of rod and needle-like MgZn 2 phases was developed relatively little, and the crack width was measured to be within 15 ⁇ m or 30 ⁇ m.
  • Comparative Examples 1 and 2 do not satisfy the first average cooling rate range of the present invention, and when the area fraction of the rod and needle-like MgZn 2 phase exceeds 70%, cracks occur on the MgZn 2 phase with high hardness. In addition, cracks progress along grain boundaries, and the crack width exceeds 30 ⁇ m on average.
  • Comparative Example 3 shows that bending workability is not good when the range of the first average cooling rate and the second average cooling rate disclosed in the embodiment of the present invention is not satisfied.
  • Comparative Example 4 does not satisfy the Al content range of the molten alloy plating layer of the present invention, and Comparative Examples 5 and 6 do not satisfy the Al and Mg contents of the molten alloy plating layer, resulting in excessive production of the Fe-Al alloy layer. And it can be confirmed that the bending workability is inferior because the area fraction of MgZn 2 exceeds 70%.
  • Comparative Example 4 it can be seen that the growth of the Fe-Al interface alloy layer was formed thicker than 10 ⁇ m (see Figure 6), and the excessive formation of the rod and needle-shaped MgZn 2 phase and the growth of the Fe-Al alloy layer resulted in the formation of cracks. It can be seen that there is no directionality, and the average crack width and area are inferior (see Figure 4).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Thermal Sciences (AREA)
  • Coating With Molten Metal (AREA)

Abstract

본 발명의 일 실시예에 따른 가공성 및 내식성이 우수한 도금 강재의 제조 방법은 용융합금도금욕에 소지철을 침지하는 단계; 및 침지된 상기 소지철을 상기 용융합금도금욕에서 인출하여 냉각공정을 수행함으로써, 상기 소지철 상에 용융합금도금층을 형성하는 단계; 를 포함하며, 상기 냉각공정에서의 제 1 평균냉각속도는 상기 용융합금도금욕의 온도인 제 1 온도와 상기 용융합금도금층을 구성하는 MgZn2상의 응고개시온도인 제 2 온도의 차이에 따라 상이하다.

Description

가공성 및 내식성이 우수한 도금 강재의 제조 방법
본 발명은 강재에 관한 것으로서, 보다 상세하게는 가공성 및 내식성이 우수한 도금 강재의 제조 방법에 관한 것이다.
용융아연 도금 강판은 희생방식성이 우수하여 부식 환경 노출 시, 전위가 낮은 아연이 선제적으로 용출되어 강재의 부식을 방지하는 특성을 가진다. 이와 같은 우수한 부식특성 덕분에 용융아연 도금 강판은 가전, 건자재 및 자동차용 강판으로 사용되고 있다. 그러나 기술발전과 품질눈높이 향상으로 내식성에 대한 기대요구가 높아지면서 종래의 용융아연 도금 강판보다 더 우수한 내식성을 갖는 제품의 개발에 대한 필요성이 증대되고 있다. 이러한 문제점을 해결하기 위해, 2000년대 초반부터 유럽과 일본에서 아연(Zn) 도금욕에 알루미늄(Al)과 마그네슘(Mg)을 첨가하여 내식성을 향상시키는 고내식 도금 강판을 생산하고 있다. 고내식 도금 강판은 Zn의 희생 방식성 외에 Mg과 Al 첨가로 인해 부식 환경에서 치밀한 부식 생성물을 형성시켜 산화 분위기로부터 강재를 차단하여 내부식성을 향상시킨다. 그러나 Zn-Al-Mg 도금 강판은 아연 도금 강판 대비 내식성은 우수하나, 가공성이 열위한 단점이 있다. Zn-Al-Mg의 금속간 화합물은 경도가 높아 크랙 저항성이 낮고, 이러한 크랙은 가공 공정에서 외관을 손상시키거나, 소지 강재를 노출시켜 내식성이 저하되는 문제점이 있다.
관련 선행 기술로는 일본공개특허 제2005-105367호가 있다
본 발명이 이루고자 하는 기술적 과제는 가공성 및 내식성이 우수한 도금 강재의 제조 방법을 제공하는 것이다.
상기 과제를 해결하기 위한 본 발명의 일 측면에 따른 가공성 및 내식성이 우수한 도금 강재의 제조 방법은 용융합금도금욕에 소지철을 침지하는 단계; 및 침지된 상기 소지철을 상기 용융합금도금욕에서 인출하여 냉각공정을 수행함으로써, 상기 소지철 상에 용융합금도금층을 형성하는 단계; 를 포함하며, 상기 냉각공정에서의 제 1 평균냉각속도는 상기 용융합금도금욕의 온도인 제 1 온도와 상기 용융합금도금층을 구성하는 MgZn2상의 응고개시온도인 제 2 온도의 차이에 따라 상이하다.
상기 가공성 및 내식성이 우수한 도금 강재의 제조 방법에서, 상기 제 1 온도와 상기 제 2 온도의 차이가 50℃ 미만인 경우 상기 제 1 평균냉각속도는 10 ~ 20℃/s이고, 상기 제 1 온도와 상기 제 2 온도의 차이가 50℃ 이상이고 100℃ 미만인 경우 상기 제 1 평균냉각속도는 15 ~ 35℃/s이고, 상기 제 1 온도와 상기 제 2 온도의 차이가 100℃ 이상인 경우 상기 제 1 평균냉각속도는 20 ~ 50℃/s일 수 있다.
상기 가공성 및 내식성이 우수한 도금 강재의 제조 방법에서, 상기 제1 평균냉각속도는 침지된 상기 소지철을 상기 용융합금도금욕에서 인출한 시점부터 MgZn2상이 응고 개시되는 시점까지의 평균냉각속도일 수 있다.
상기 가공성 및 내식성이 우수한 도금 강재의 제조 방법에서, 상기 MgZn2상이 응고 개시되는 시점부터 응고 완료되는 시점까지 상기 냉각공정에서의 제 2 평균냉각속도는 하기의 수학식1의 관계를 만족할 수 있다.
<수학식1>
0.0114 × T - 0.2841 ≤ 제 2 평균냉각속도 ≤ 0.025 × T +10 (단, T는 MgZn2상의 응고개시온도)
상기 가공성 및 내식성이 우수한 도금 강재의 제조 방법에서, 상기 용융합금도금욕은 중량%로, Al: 6 ~ 23%, Mg: 3 ~ 7% 및 기타 불가피한 불순물을 함유하는 Zn 도금욕일 수 있다.
상기 가공성 및 내식성이 우수한 도금 강재의 제조 방법에서, 상기 소지철 상에 형성된 상기 용융합금도금층은 표면에서 전체 MgZn2상 중에 평균 단축길이(a)와 평균 장축길이(b)의 비가 0.5 이하인 MgZn2상의 면적분율이 70% 이하일 수 있다.
본 발명의 실시예에 따르면, 가공성 및 내식성이 우수한 도금 강재의 제조 방법을 구현할 수 있다.
물론 이러한 효과에 의해 본 발명의 범위가 한정되는 것은 아니다.
도 1은 실험예 중 실시예6에 따른 용융합금도금층의 표면을 촬영한 사진이다.
도 2는 실험예 중 비교예1에 따른 용융합금도금층의 표면을 촬영한 사진이다.
도 3은 실험예 중 실시예6에 따른 용융합금도금층에 대하여 3T 굽힘 가공성 평가 후 가공부를 FE-SEM 200배로 촬영한 사진이다.
도 4는 실험예 중 비교예4에 따른 용융합금도금층에 대하여 3T 굽힘 가공성 평가 후 가공부를 FE-SEM 200배로 촬영한 사진이다.
도 5는 실험예 중 실시예3에 따른 용융합금도금층의 단면을 FE-SEM 1000배로 촬영한 사진이다.
도 6은 실험예 중 비교예4에 따른 용융합금도금층의 단면을 FE-SEM 1000배로 촬영한 사진이다.
본 발명의 일 실시예에 따른 가공성 및 내식성이 우수한 도금 강재의 제조 방법을 상세하게 설명한다. 후술되는 용어들은 본 발명에서의 기능을 고려하여 적절하게 선택된 용어들로서, 이러한 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. 이하에서는 연신율이 우수한 초고강도 고내식 도금 강판 및 그 제조 방법의 구체적인 내용을 제공하고자 한다.
Zn-Al-Mg 도금 강판은 아연 도금 강판 대비 내식성은 우수하나, 가공성이 열위한 단점이 있다. Zn-Al-Mg의 금속간 화합물은 경도가 높아 크랙 저항성이 낮고, 이러한 크랙은 가공 시 외관을 손상시키거나, 소지 강재가 노출되어 가공 시 내식성이 저하된다. 금속간 화합물 중 MgZn2는 경도가 가장 높아 MgZn2상의 형상, 분포와 크기를 조절하는 기술이 중요하다.
본 발명은 중량%로, Al: 6 ~ 23%, Mg: 3 ~ 7%, 잔부 Zn 및 기타 불가피한 불순물을 포함하는 Zn-Al-Mg계 고내식 도금 강재의 제조 방법에 대한 것이며 가공성 및 가공 내식성을 개선하기 위해 경도가 높은 MgZn2상의 미세조직을 제어하는 것을 목적으로 한다.
본 발명의 일 실시예에 따른 가공성 및 내식성이 우수한 도금 강재의 제조 방법은 용융합금도금욕에 소지철을 침지하는 단계(S10); 및 침지된 상기 소지철을 상기 용융합금도금욕에서 인출하여 냉각공정을 수행함으로써, 상기 소지철 상에 용융합금도금층을 형성하는 단계(S20); 를 포함한다.
상기 소지철을 침지하는 단계(S10)에서 상기 용융합금도금욕은, 예를 들어, 중량%로, Al: 6 ~ 23%, Mg: 3 ~ 7% 및 기타 불가피한 불순물을 함유하는 Zn 도금욕일 수 있다. 나아가, 상기 용융합금도금욕은 중량%로, 0.05 ~ 10%의 Fe 및 0초과 1%미만의 Si을 더 함유할 수도 있다.
상기 용융합금도금욕 내 Mg과 Al은 도금층의 내식성을 향상시키는 원소 중 하나로, 부식 생성물을 보다 치밀하게 형성시켜 내식성을 향상시킨다. 도금욕 내 Mg이 1.0중량% 미만인 경우 내식성에 기여하는 바가 미미하며, 종래에서는 2.0중량% 초과 시 Mg 산화 드로스에 의한 생산의 어려움이 있어 Mg을 2.0중량% 미만으로 사용하였다. 하지만 본 발명에서는 보다 우수한 내식성을 구현하기 위해 도금욕 내 Mg을 3.0중량% 이상으로 첨가한다. 위에서 언급했듯, Mg을 3.0중량% 초과하여 첨가 시 산화 드로스에 의한 생산의 어려움이 있으나, Al을 6.0중량% 이상 첨가 시 용탕 중의 Mg 산화에 의한 드로스를 감소시킬 수 있다. 더불어 Al 첨가 시 초정 Al 생성과 Zn-Al-Mg 3원 공정상을 형성하여 내식성을 향상시키는 역할을 수행할 수 있다. 한편, 도금욕 내 Mg을 7.0중량% 초과 첨가 시 도금층에서 로드(Rod) 및 침상 형태의 MgZn2 또는 Al을 포함하는 MgZn2상이 전체 MgZn2의 면적분율 70%를 초과하도록 성장하여 도금층의 가공성이 열위해지며, 가공 시 도금층 크랙 발생에 의해 강재 혹은 Fe-Al-Zn 계면 합금화층 노출로 인해 내식성이 저하된다. 한편, 도금욕 내 Al을 23중량% 초과 첨가 시 도금욕 융점 상승으로 인해 강재와 도금층 사이 불연속적인 Fe-Al-Zn 계면 합금층이 과잉 성장하여 가공 시 계면 밀착성이 취약할 수 있다.
MgZn2상의 형태 및 분율은 냉각을 통해 면밀히 제어할 수 있다. 본 발명의 일 실시예에 따른 가공성 및 내식성이 우수한 도금 강재의 제조 방법은 용융합금도금층을 형성하는 단계(S20)를 수행하는 과정에서 상기 냉각공정에서의 제 1 평균냉각속도는 상기 용융합금도금욕의 온도인 제 1 온도와 상기 용융합금도금층을 구성하는 MgZn2상의 응고개시온도인 제 2 온도의 차이에 따라 상이하다. 상기 제1 평균냉각속도는 침지된 상기 소지철을 상기 용융합금도금욕에서 인출한 시점부터 MgZn2상이 응고 개시되는 시점까지의 평균냉각속도일 수 있다.
구체적으로, 상기 용융합금도금욕의 온도인 상기 제 1 온도와 상기 용융합금도금층을 구성하는 MgZn2상의 응고개시온도인 상기 제 2 온도의 차이가 50℃ 미만인 경우 상기 제 1 평균냉각속도는 10 ~ 20℃/s일 수 있다. 이 경우, 상기 제 1 평균냉각속도가 10℃/s 미만인 경우 MgZn2상 이외의 구성상인 Al상, Zn상 등이 조대하게 정출되어 MgZn2 영역의 분율을 바람직하게 제어하기 어려우며, 액상 상태의 도금층이 산소와 반응하여 도금표면 외관을 저해하는 요소로 작용할 수 있다. 한편, 상기 제 1 평균냉각속도가 20℃를 초과하는 경우 MgZn2의 조대 영역이 형성되기 어려울 수 있다.
한편, 상기 용융합금도금욕의 온도인 상기 제 1 온도와 상기 용융합금도금층을 구성하는 MgZn2상의 응고개시온도인 상기 제 2 온도의 차이가 50℃ 이상이고 100℃ 미만인 경우 상기 제 1 평균냉각속도는 15 ~ 35℃/s일 수 있다. 이 경우, 상기 제 1 평균냉각속도가 15℃/s 미만인 경우 MgZn2상 이외의 구성상인 Al상, Zn상 등이 조대하게 정출되어 MgZn2 영역의 분율을 바람직하게 제어하기 어려우며, 액상 상태의 도금층이 산소와 반응하여 도금표면 외관을 저해하는 요소로 작용할 수 있다. 한편, 상기 제 1 평균냉각속도가 35℃를 초과하는 경우 MgZn2의 조대 영역이 형성되기 어려울 수 있다.
또한, 상기 용융합금도금욕의 온도인 상기 제 1 온도와 상기 용융합금도금층을 구성하는 MgZn2상의 응고개시온도인 상기 제 2 온도의 차이가 100℃ 이상인 경우 상기 제 1 평균냉각속도는 20 ~ 50℃/s일 수 있다. 이 경우, 상기 제 1 평균냉각속도가 20℃/s 미만인 경우 MgZn2상 이외의 구성상인 Al상, Zn상 등이 조대하게 정출되어 MgZn2 영역의 분율을 바람직하게 제어하기 어려우며, 액상 상태의 도금층이 산소와 반응하여 도금표면 외관을 저해하는 요소로 작용할 수 있다. 한편, 상기 제 1 평균냉각속도가 50℃를 초과하는 경우 MgZn2의 조대 영역이 형성되기 어려울 수 있다.
나아가, 본 발명의 일 실시예에 따른 가공성 및 내식성이 우수한 도금 강재의 제조 방법에서, 상기 MgZn2상이 응고 개시되는 시점부터 응고 완료되는 시점까지 상기 냉각공정에서의 제 2 평균냉각속도는 하기의 수학식1의 관계를 만족할 수 있다.
<수학식1>
0.0114 × T - 0.2841 ≤ 제 2 평균냉각속도 ≤ 0.025 × T +10 (단, T는 MgZn2상의 응고개시온도)
상기 수학식1을 만족하지 않는 조건으로 냉각 시 Rod형 MgZn2 석출상의 성장을 제어하기 어려워 가공성이 열위해지며, 판의 떨림으로 인해 생산성이 저하되는 단점이 있다.
상술한 가공성 및 내식성이 우수한 도금 강재의 제조 방법에 의하여 구현된 용융합금도금층은 도금층 표면에서 전체 MgZn2상 중에 평균 단축길이(a)와 평균 장축길이(b)의 비가 0.5 이하인 MgZn2상의 면적분율이 70% 이하일 수 있다. 즉, 구현된 상기 도금층 표면에 분포된 전체 MgZn2상 중에 로드(Rod) 또는 침상 형태의 MgZn2상의 면적분율이 70% 이하일 수 있다. 이 경우, 구현된 상기 도금층 표면에 분포된 전체 MgZn2상 중에 폴리곤(Polygon) 형태의 MgZn2상의 면적분율이 30% 이상일 수 있다.
본 발명의 아연합금도금층은 초정 Al상(Zn 고용된 Al단상 조직), Al/Zn공석상, Zn 고용상, MgZn2(Al을 포함하는 MgZn2상, Mg2Zn11상 포함) 및 Al/Zn/Mg 공정 조직 또는 이들의 조합으로 구성될 수 있다. 가공성 및 가공 내식성 개선을 위한 미세조직 측면에서 상기 Zn-Al-Mg 계 도금층의 표면에 MgZn2상 및 Al을 포함하는 MgZn2상은 폴리곤(Polygon) 형태와 로드(Rod) 및 침상 형태로 이루어질 수 있다.
Rod 및 침상 형태의 평균 단축길이(a)와 평균 장축길이(b)의 비는 1:10 ≤ a:b ≤ 1:2 인 것을 특징으로 한다. 전체 MgZn2 중에 Rod 및 침상형태의 MgZn2상은 표면에 70% 미만의 면적 분율로 분포되어 있으며, 보다 바람직하게는 50% 미만의 면적 분율로 분포되어 있으며, 잔부 MgZn2는 폴리곤(Polygon) 형상으로 분포되어 있는 것을 특징으로 한다.
본 발명에서 소지철 상에 용융합금도금층을 형성하는 예시적인 공정은 다음과 같다.
예를 들어, 680~850℃에서 소둔한 소지철은 440~530℃의 도금욕에 침지 후 에어나이프를 통과하여 편면 기준 30~300g/m2를 만족하도록 한다. 단, 소둔 후 소지철의 진입 온도는 도금욕 온도와 ±20℃ 이상 차이가 나지 않도록 조절한다.
본 발명의 일 실시예에 따른 도금 강재는, 상기 용융합금도금층 내 단면(예를 들어, 종단면)에서 MgZn2상의 면적분율은 20~70%이고, 상기 용융합금도금층 내 단면(예를 들어, 종단면)에서 MgZn2상의 면적분율에 대한 Al 함유 상의 면적분율의 비율은 1~70%인 것을 특징으로 한다. 여기에서, 상기 Al 함유 상은 상기 용융합금도금층 내 단면에서, MgZn2상과 이격되어 존재하거나 MgZn2상 내부에 존재할 수 있다. 또한, 본 실시예에서, 상기 Al 함유 상은 i) Al단상 및 ii) Al을 20% 이상 함유하되, 불가피 불순물이 2% 이내이며 잔부가 Zn인 상을 의미한다.
용융합금도금층은 단면에서 MgZn2상을 면적분율로 20~70% 포함할 수 있다. 즉, 상기 용융합금도금층의 전체 단면적(A1) 중에서 MgZn2상이 차지하는 단면적(A2)의 비율이 20~70%이며, (A2 / A1) × 100의 값은 20 내지 70의 범위를 만족할 수 있다. 한편, 용융합금도금층의 단면에서, MgZn2상과 이격되어 존재하는 Al 함유 상의 단면적(B1) 및 MgZn2상 내부에 존재하는 Al 함유 상의 단면적(B2)의 합이 전체 MgZn2상의 단면적(B3) 대비 1~70%의 비율을 가질 수 있다. 즉, [(B1 + B2) / B3] × 100의 값은 1 내지 70의 범위를 만족할 수 있다. 이러한 조직에 의하면, 크랙 저항성이 우수하며, 구체적으로, 굽힘 평가(3T 굽힘 평가, 1T 굽힘 평가)에서 크랙폭 평균이 30㎛ 이하일 수 있다.
본 발명의 도금 강재의 용융합금도금층은 표면에서 MgZn2상의 면적분율이 10 ~ 70%일 수 있으며, 상기 면적분율이 10% 미만은 형성이 불가하며, 70%를 초과하면 내크랙성이 저하된다. 여기에서, 용융합금도금층의 표면은 외부와 접하는 상부표면을 의미할 수 있다.
본 발명의 일 실시예에 따른 도금 강재는, 용융합금도금층은 표면에서 전체 MgZn2상 중에 평균 단축길이(a)와 평균 장축길이(b)의 비가 0.5 이하인 MgZn2상의 면적분율이 70% 이하일 수 있다. 예를 들어, 용융합금도금층의 표면에서 전체 MgZn2상 중 70% 이하의 MgZn2상은 평균 단축길이(a)와 평균 장축길이(b)의 비가 1:2 내지 1:10으로 0.5 이하의 값을 가질 수 있다. 이 경우, 상기 평균 단축길이(a)와 평균 장축길이(b)의 비가 0.5 이하인 MgZn2상은 상기 평균 단축길이(a)와 평균 장축길이(b)의 비가 1/10 이상이고 1/2 이하일 수 있다. 상기 평균 단축길이(a)와 평균 장축길이(b)의 비가 0.5 미만인 경우 내크랙성이 저하된다. 상기 평균 단축길이(a)는 1~20㎛이고, 상기 평균 장축길이(b)는 2~200㎛일 수 있다. 1㎛ 미만의 평균 단축길이(a)와 2㎛ 미만의 평균 장축길이(b)는 형성이 불가능하며, 상기 평균 단축길이(a)가 20㎛를 초과하거나, 상기 평균 장축길이(b)가 200㎛를 초과하는 경우 내크랙성이 저하된다.
한편, 본 발명의 다른 측면에 따른 도금 강재의 용융합금도금층은 표면에서 Al상과 Zn상으로 구성되는 Al-Zn 덴드라이트의 면적분율은 30% 이하일 수 있다. Al-Zn 덴드라이트는 화성 처리성이나 내LME(Liquid Metal Embrittlement)성에 바람직한 영향을 주지 않기 때문에 그 면적분율은 낮은 것이 바람직하다. 따라서 본 실시예에 따른 도금층에서는 Al-Zn 덴드라이트의 면적분율을 30%이하로 한다.
앞에서 살펴본 바와 같이, 본 발명의 일 실시예에 따른 가공성 및 내식성이 우수한 도금 강재에서, 상기 Zn-Al-Mg 계 도금층의 표면에 MgZn2상 및 Al을 포함하는 MgZn2상은 폴리곤(Polygon) 형태와 로드(Rod) 및 침상 형태로 이루어져 있으며, 로드(Rod) 및 침상 형태의 평균 단축길이(a)와 평균 장축길이(b)의 비는 1:2 ≤ a:b ≤ 1:10 인 것을 특징으로 한다. 전체 MgZn2 중에 로드 및 침상 형태의 MgZn2상은 표면에 70% 이하의 면적분율로 분포되어 있으며, 보다 바람직하게는 50% 미만의 면적분율로 분포되어 있으며, 잔부 MgZn2는 폴리곤(Polygon) 형상으로 분포되어 있다.
상기 용융합금도금층은 표면에서 전체 MgZn2상 중에 평균 단축길이(a)와 평균 장축길이(b)의 비가 0.5를 초과하는 MgZn2상의 면적분율이 30% 이상인 것을 특징으로 한다. 예를 들어, 용융합금도금층은 표면에서 전체 MgZn2상 중 30% 이상의 MgZn2상은 평균 단축길이(a)와 평균 장축길이(b)의 비가 0.5를 초과하는 1:1.5, 1:1.2 등의 값을 가지는 것을 특징으로 할 수 있다. 상기 평균 단축길이(a)와 평균 장축길이(b)의 비가 0.5를 초과하는 MgZn2상의 단면적과 동일한 면적을 가지는 가상의 원의 직경(평균직경)은 1~50㎛일 수 있다. 상기 평균직경이 1㎛ 미만은 형성이 불가능하며 50㎛를 초과하는 경우 내크랙성이 저하된다.
이하 본 발명의 이해를 돕기 위해 바람직한 실험예들을 제시한다. 다만, 하기의 실험예는 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명이 하기의 실험예에 의해 한정되는 것은 아니다.
실험예
1. 시편의 조성 및 공정조건
소지 강판으로 1.2㎜ 냉연 소재를 준비하였고, 성분은 탄소(C): 0.15중량%, 규소(Si): 0.01중량%, 망간(Mn): 0.6중량%, 인(P): 0.05중량%, 황(S): 0.05중량% 및 나머지 철(Fe)의 조성을 가진다. 질소 - 5~10% 수소 분위기 가스에서 680 ~ 850℃의 범위 내에서, 구체적으로, 760℃의 온도로 소둔 후 소둔 시편을 도금욕과 20℃ 이상 차이 나지 않는 온도까지 냉각 후 도금욕에 1~5초간 침적하였다. 440 ~ 530℃의 범위 내에서, 구체적으로, 485℃ 온도의 도금욕 침지 이후 질소 와이핑으로 도금 두께를 조절하였으며, 제 1 평균냉각속도 및 제 2 평균냉각속도로 냉각하여 Zn-Al-Mg계 도금 강판을 얻었다.
2. 도금층 조성 및 미세조직 평가
표 1은 본 발명의 실험예에 따른 도금 강재에서 용융합금도금층의 조성(단위: 중량%)과 공정조직에 따른 미세조직과 굽힘가공성을 평가한 결과를 나타낸 것이다.
구분 Zn
(wt%)
Al
(wt%)
Mg
(wt%)
온도차
(℃)
제1평균
냉각속도
(℃/s)
제2평균
냉각속도
(℃/s)
MgZn2
면적분율
(면적%)
굽힘
가공성
실시예1 Bal. 10 3.2 70 20 13 45
실시예2 Bal. 10 3 100 22 13 44
실시예3 Bal. 10 3.1 90 30 13 40
실시예4 Bal. 10 3.2 70 20 13 42
실시예5 Bal. 10.2 5 40 15 13 55
실시예6 Bal. 10.1 5.3 30 13 13 52
실시예7 Bal. 10.3 5.4 10 12 13 51
실시예8 Bal. 15 5 100 35 15 54
실시예9 Bal. 10 7 70 30 15 62
실시예10 Bal. 15 5.3 95 34 13 53
실시예11 Bal. 15 5.1 100 45 11 55
비교예1 Bal. 10.2 7 50 10 13 71 X
비교예2 Bal. 10.3 7 70 7 13 73 X
비교예3 Bal. 15 5.3 120 10 3 71 X
비교예4 Bal. 23.5 7 60 25 13 75 X
비교예5 Bal. 24 7.5 60 26 15 72 X
비교예6 Bal. 24 7.3 40 15 11 80 X
표 1에서 온도차 항목은 용융합금도금욕의 온도인 제 1 온도와 용융합금도금욕에 침지되는 소지철 상에 형성되는 용융합금도금층을 구성하는 MgZn2상의 응고개시온도인 제 2 온도 간의 온도차를 의미하며, 제 1 평균냉각속도는 침지된 상기 소지철을 상기 용융합금도금욕에서 인출한 시점부터 MgZn2상이 응고 개시되는 시점까지의 냉각공정에서의 평균냉각속도를 의미하며, 제 2 평균냉각속도는 상기 MgZn2상이 응고 개시되는 시점부터 응고 완료되는 시점까지 냉각공정에서의 평균냉각속도를 의미한다. 본 실험예에서 MgZn2상의 응고개시온도는 열역학 계산 프로그램(FactSage 7.1)을 이용하여 도출하였다. 용융합금도금욕의 온도인 제 1 온도와 용융합금도금욕에 침지되는 소지철 상에 형성되는 용융합금도금층을 구성하는 MgZn2상의 응고개시온도인 제 2 온도 간의 온도차는 도금 성분에 따라 차이가 존재하지만, 동일 도금 성분에 대해서는 도금욕 온도 조정을 통해 조절하였으며, 제 1 평균냉각속도는 에어나이프 높이 조정을 통해 제어하였다.MgZn2 면적분율 평가는 제조된 각각의 도금 강판에 대하여 FE-SEM 으로 500배 표면 관찰 후 이미지 프로그램을 이용하여 측정하였다. 표 1에 개시된 면적분율은 도금층 표면에 분포된 전체 MgZn2상 중에 로드(Rod) 또는 침상 형태의 MgZn2상의 분율을 면적비로 나타낸 것이다.
굽힘 가공성 평가에서는, 1T, 3T 굽힘 후 굽힘 가공부를 FE-SEM(Field Emission Scanning Electron Microscope)으로 200배, 500배 관찰한 후, 굽힘 크랙의 폭을 측정 후 평균화하여 평가하였다. '○'항목은 굽힘 평가에서 크랙 폭 평균이 0 초과 30㎛ 이하인 경우를 의미하며, 'X'항목은 굽힘 평가에서 크랙 폭 평균이 30㎛ 초과한 경우를 의미한다.
표 1을 참조하면, 실시예1 내지 실시예11에서는, i) 용융합금도금욕의 조성이 중량%로, Al: 6 ~ 23%, Mg: 3 ~ 7% 및 잔부가 Zn인 범위를 만족하며, ii) 상기 용융합금도금욕의 온도인 상기 제 1 온도와 상기 용융합금도금층을 구성하는 MgZn2상의 응고개시온도인 상기 제 2 온도의 차이가 50℃ 미만인 경우 상기 제 1 평균냉각속도는 10 ~ 20℃/s인 범위를 만족하며(실시예5, 6, 7), 상기 용융합금도금욕의 온도인 상기 제 1 온도와 상기 용융합금도금층을 구성하는 MgZn2상의 응고개시온도인 상기 제 2 온도의 차이가 50℃ 이상이고 100℃ 미만인 경우 상기 제 1 평균냉각속도는 15 ~ 35℃/s인 범위를 만족하며(실시예1, 3, 4, 9, 10), 상기 용융합금도금욕의 온도인 상기 제 1 온도와 상기 용융합금도금층을 구성하는 MgZn2상의 응고개시온도인 상기 제 2 온도의 차이가 100℃ 이상인 경우 상기 제 1 평균냉각속도는 20 ~ 50℃/s인 범위를 만족하며(실시예2, 8, 11), iii) 상기 MgZn2상이 응고 개시되는 시점부터 응고 완료되는 시점까지 상기 냉각공정에서의 제 2 평균냉각속도는 하기의 수학식1의 관계를 만족한다.
<수학식1>
0.0114 × T - 0.2841 ≤ 제 2 평균냉각속도 ≤ 0.025 × T +10 (단, T는 MgZn2상의 응고개시온도)
이 경우, 실시예1 내지 실시예11은 구현된 상기 도금층 표면에 분포된 전체 MgZn2상 중에 로드(Rod) 또는 침상 형태의 MgZn2상의 면적분율이 70% 이하임을 확인할 수 있으며, 굽힘 평가에서 크랙 폭 평균이 30㎛ 이하임을 확인할 수 있다(도 1, 도 3 참조). 나아가, 도금층 단면에서 Fe-Al계면 합금층의 성장이 10㎛ 미만으로 제어될 수 있음을 확인할 수 있다(도 5 참조).
이에 반하여, 비교예1 및 비교예2는 상기 용융합금도금욕의 온도인 상기 제 1 온도와 상기 용융합금도금층을 구성하는 MgZn2상의 응고개시온도인 상기 제 2 온도의 차이가 50℃ 이상이고 100℃ 미만인 경우 상기 제 1 평균냉각속도는 15 ~ 35℃/s인 범위를 만족하지 못하며, 이에 따라, 구현된 상기 도금층 표면에 분포된 전체 MgZn2상 중에 로드(Rod) 또는 침상 형태의 MgZn2상의 면적분율이 70%를 초과하며, 굽힘 평가에서 크랙 폭 평균이 30㎛를 초과함을 확인할 수 있다.
비교예3은 상기 용융합금도금욕의 온도인 상기 제 1 온도와 상기 용융합금도금층을 구성하는 MgZn2상의 응고개시온도인 상기 제 2 온도의 차이가 50℃ 이상이고 100℃ 미만인 경우 상기 제 1 평균냉각속도는 15 ~ 35℃/s인 범위를 만족하지 못하며, 상기 MgZn2상이 응고 개시되는 시점부터 응고 완료되는 시점까지 상기 냉각공정에서의 제 2 평균냉각속도는 상기 수학식1의 관계를 만족하지 못하며, 이에 따라, 구현된 상기 도금층 표면에 분포된 전체 MgZn2상 중에 로드(Rod) 또는 침상 형태의 MgZn2상의 면적분율이 70%를 초과하며, 굽힘 평가에서 크랙 폭 평균이 30㎛를 초과함을 확인할 수 있다.
비교예4 내지 비교예6에서 용융합금도금욕의 조성이 중량%로, Al: 6 ~ 23%의 범위를 만족하지 못하며, 비교예5 내지 비교예6에서 용융합금도금욕의 조성이 중량%로, Mg: 3 ~ 7%의 범위를 만족하지 못하는 바, 구현된 상기 도금층 표면에 분포된 전체 MgZn2상 중에 로드(Rod) 또는 침상 형태의 MgZn2상의 면적분율이 70%를 초과하며, 굽힘 평가에서 크랙 폭 평균이 30㎛를 초과함을 확인할 수 있다(도 2, 도 4 참조).
예를 들어, 실시예1 내지 실시예3은 Rod 및 침상형 MgZn2상의 형성이 비교적 적게 발달되어 크랙의 폭이 15㎛ 혹은 30㎛ 이내로 측정되었다. 반면 비교예1 및 비교예2는 본 발명의 제 1 평균냉각속도 범위를 만족하지 않는 경우로, Rod 및 침상형 MgZn2상의 면적분율이 70%를 초과하는 경우, 경도가 높은 MgZn2상에서의 크랙 뿐 아니라, 입계(grain boundary)를 따라 크랙이 진행되어 크랙의 폭이 평균 30㎛를 초과한다.
비교예3은 본 발명의 실시예에서 개시하는 제 1 평균냉각속도와 제 2 평균냉각속도의 범위를 만족하지 않는 경우 굽힘가공성이 양호하지 않음을 나타낸다.
비교예4는 본 발명의 용융합금도금층의 Al 함량 범위를 만족하지 않으며, 비교예5 및 비교예6은 용융합금도금층의 Al 및 Mg 함량을 만족하지 않은 경우로서, Fe-Al 합금층의 과잉 생성 및 MgZn2의 면적분율이 70%를 초과하여 굽힘가공성이 열위한 것을 확인할 수 있다. 비교예4의 경우, Fe-Al계면 합금층의 성장이 10㎛ 이상으로 두껍게 형성된 것을 확인할 수 있으며(도 6 참조), Rod 및 침상형 MgZn2상의 과잉 형성 및 Fe-Al합금층 성장으로 크랙의 방향성이 없으며, 평균 크랙 폭과 면적이 열위한 것을 확인할 수 있다(도 4 참조).
앞에서 설명한 본 발명의 기술적 사상에 의하면, 가공성에 불리한 경도가 높은 MgZn2상이 형성되어도 로드(Rod) 및 침상형 MgZn2상의 성장을 억제하고 면적분율을 조절하여 가공성이 우수한 도금강판을 구현할 수 있다.
이상에서는 본 발명의 실시예를 중심으로 설명하였지만, 당업자의 수준에서 다양한 변경이나 변형을 가할 수 있다. 이러한 변경과 변형이 본 발명의 범위를 벗어나지 않는 한 본 발명에 속한다고 할 수 있다. 따라서 본 발명의 권리범위는 이하에 기재되는 청구범위에 의해 판단되어야 할 것이다.

Claims (6)

  1. 용융합금도금욕에 소지철을 침지하는 단계; 및
    침지된 상기 소지철을 상기 용융합금도금욕에서 인출하여 냉각공정을 수행함으로써, 상기 소지철 상에 용융합금도금층을 형성하는 단계; 를 포함하며,
    상기 냉각공정에서의 제 1 평균냉각속도는 상기 용융합금도금욕의 온도인 제 1 온도와 상기 용융합금도금층을 구성하는 MgZn2상의 응고개시온도인 제 2 온도의 차이에 따라 상이한 것을 특징으로 하는,
    가공성 및 내식성이 우수한 도금 강재의 제조 방법.
  2. 제 1 항에 있어서,
    상기 제 1 온도와 상기 제 2 온도의 차이가 50℃ 미만인 경우, 상기 제 1 평균냉각속도는 10 ~ 20℃/s이고,
    상기 제 1 온도와 상기 제 2 온도의 차이가 50℃ 이상이고 100℃ 미만인 경우, 상기 제 1 평균냉각속도는 15 ~ 35℃/s이고,
    상기 제 1 온도와 상기 제 2 온도의 차이가 100℃ 이상인 경우, 상기 제 1 평균냉각속도는 20 ~ 50℃/s인 것을 특징으로 하는,
    가공성 및 내식성이 우수한 도금 강재의 제조 방법.
  3. 제 1 항에 있어서,
    상기 제1 평균냉각속도는 침지된 상기 소지철을 상기 용융합금도금욕에서 인출한 시점부터 MgZn2상이 응고 개시되는 시점까지의 평균냉각속도인,
    가공성 및 내식성이 우수한 도금 강재의 제조 방법.
  4. 제 1 항에 있어서,
    상기 MgZn2상이 응고 개시되는 시점부터 응고 완료되는 시점까지 상기 냉각공정에서의 제 2 평균냉각속도는 하기의 수학식1의 관계를 만족하는,
    가공성 및 내식성이 우수한 도금 강재의 제조 방법.
    <수학식1>
    0.0114 × T - 0.2841 ≤ 제 2 평균냉각속도 ≤ 0.025 × T +10 (단, T는 MgZn2상의 응고개시온도)
  5. 제 1 항에 있어서,
    상기 용융합금도금욕은 중량%로, Al: 6 ~ 23%, Mg: 3 ~ 7% 및 기타 불가피한 불순물을 함유하는 Zn 도금욕인 것을 특징으로 하는,
    가공성 및 내식성이 우수한 도금 강재의 제조 방법.
  6. 제 1 항에 있어서,
    상기 소지철 상에 형성된 상기 용융합금도금층은 표면에서 전체 MgZn2상 중에 평균 단축길이(a)와 평균 장축길이(b)의 비가 0.5 이하인 MgZn2상의 면적분율이 70% 이하인 것을 특징으로 하는,
    가공성 및 내식성이 우수한 도금 강재의 제조 방법.
PCT/KR2022/020448 2022-04-29 2022-12-15 가공성 및 내식성이 우수한 도금 강재의 제조 방법 WO2023210909A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280043509.7A CN117529573A (zh) 2022-04-29 2022-12-15 具有优异加工性和耐腐蚀性的镀层钢的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0053442 2022-04-29
KR1020220053442A KR20230153716A (ko) 2022-04-29 2022-04-29 가공성 및 내식성이 우수한 도금 강재의 제조 방법

Publications (1)

Publication Number Publication Date
WO2023210909A1 true WO2023210909A1 (ko) 2023-11-02

Family

ID=88519153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/020448 WO2023210909A1 (ko) 2022-04-29 2022-12-15 가공성 및 내식성이 우수한 도금 강재의 제조 방법

Country Status (3)

Country Link
KR (1) KR20230153716A (ko)
CN (1) CN117529573A (ko)
WO (1) WO2023210909A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1199376A1 (en) * 1999-05-24 2002-04-24 Nippon Steel Corporation Plated steel product, plated steel sheet and precoated steel sheet having excellent resistance to corrosion
JP2005105367A (ja) 2003-09-30 2005-04-21 Nippon Steel Corp 溶接性と延性に優れた高降伏比高強度冷延鋼板および高降伏比高強度溶融亜鉛めっき鋼板、並びに、高降伏比高強度合金化溶融亜鉛めっき鋼板とその製造方法
KR20140074231A (ko) * 2012-12-07 2014-06-17 동부제철 주식회사 내식성, 가공성 및 외관이 우수한 합금도금강판 및 그 제조방법
CN104419867B (zh) * 2013-09-05 2016-09-07 鞍钢股份有限公司 1250MPa级超高强锌铝镁镀层钢板及其生产方法
KR20190078435A (ko) * 2017-12-26 2019-07-04 주식회사 포스코 표면품질 및 내식성이 우수한 아연합금도금강재 및 그 제조방법
KR20210035722A (ko) * 2019-09-24 2021-04-01 주식회사 포스코 내식성, 내골링성, 가공성 및 표면 품질이 우수한 도금 강판 및 이의 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1199376A1 (en) * 1999-05-24 2002-04-24 Nippon Steel Corporation Plated steel product, plated steel sheet and precoated steel sheet having excellent resistance to corrosion
JP2005105367A (ja) 2003-09-30 2005-04-21 Nippon Steel Corp 溶接性と延性に優れた高降伏比高強度冷延鋼板および高降伏比高強度溶融亜鉛めっき鋼板、並びに、高降伏比高強度合金化溶融亜鉛めっき鋼板とその製造方法
KR20140074231A (ko) * 2012-12-07 2014-06-17 동부제철 주식회사 내식성, 가공성 및 외관이 우수한 합금도금강판 및 그 제조방법
CN104419867B (zh) * 2013-09-05 2016-09-07 鞍钢股份有限公司 1250MPa级超高强锌铝镁镀层钢板及其生产方法
KR20190078435A (ko) * 2017-12-26 2019-07-04 주식회사 포스코 표면품질 및 내식성이 우수한 아연합금도금강재 및 그 제조방법
KR20210035722A (ko) * 2019-09-24 2021-04-01 주식회사 포스코 내식성, 내골링성, 가공성 및 표면 품질이 우수한 도금 강판 및 이의 제조방법

Also Published As

Publication number Publication date
KR20230153716A (ko) 2023-11-07
CN117529573A (zh) 2024-02-06

Similar Documents

Publication Publication Date Title
WO2018117714A1 (ko) 용접성 및 프레스 가공성이 우수한 용융 아연계 도금강재 및 그 제조방법
KR100515398B1 (ko) 우수한 내식성 및 가공성을 가진 도금 강선과 그 제조방법
WO2019132336A1 (ko) 가공 후 내식성 우수한 아연합금도금강재 및 그 제조방법
KR102384674B1 (ko) 내식성, 내골링성, 가공성 및 표면 품질이 우수한 도금 강판 및 이의 제조방법
WO2013032173A2 (ko) 도금밀착성이 우수한 고망간강 및 이로부터 용융아연도금강판을 제조하는 방법
WO2021112519A1 (ko) 굽힘 가공성 및 내식성이 우수한 용융아연도금강판 및 이의 제조방법
WO2017111431A1 (ko) 내식성이 우수한 열간 프레스 성형품 및 그 제조방법
CN113728121B (zh) 镀层钢板
JP2001295018A (ja) 耐食性の優れたSi含有高強度溶融亜鉛めっき鋼板とその製造方法
WO2023210909A1 (ko) 가공성 및 내식성이 우수한 도금 강재의 제조 방법
KR20120076111A (ko) 우수한 내식성, 가공성 및 외관을 제공하는 용융아연도금욕 및 그에 의해 도금된 강판
WO2023191248A1 (ko) 가공성 및 내식성이 우수한 도금 강재
WO2013100610A1 (ko) 고망간 열연 아연도금강판 및 그 제조방법
JPS645108B2 (ko)
WO2021125630A1 (ko) 가공부 내식성이 우수한 Zn-Al-Mg계 용융합금도금 강재 및 그 제조방법
WO2021060879A1 (ko) 내식성, 내골링성, 가공성 및 표면 품질이 우수한 도금 강판 및 이의 제조방법
JPH022939B2 (ko)
JP3198900B2 (ja) 薄目付け溶融亜鉛めっき鋼板の製造方法
WO2022131779A1 (ko) 내식성 및 용접성이 우수한 고강도 알루미늄계 도금강판 및 제조방법
JPH11350099A (ja) 耐黒変性及び加工性に優れたアルミニウムめっき鋼板の製造方法
JP3198902B2 (ja) 薄目付け溶融亜鉛めっき鋼板の製造方法
KR101629260B1 (ko) 용융도금욕 조성물
JP3139353B2 (ja) 薄目付け溶融亜鉛めっき鋼板の製造方法
JP3383125B2 (ja) 耐食性、耐熱性に優れた溶融アルミめっき鋼板及びその製造法
JP2024519996A (ja) 加工性および耐食性に優れためっき鋼材の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023572669

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22940403

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280043509.7

Country of ref document: CN