WO2023210115A1 - 光学モジュールの調整方法及び検査方法 - Google Patents

光学モジュールの調整方法及び検査方法 Download PDF

Info

Publication number
WO2023210115A1
WO2023210115A1 PCT/JP2023/005268 JP2023005268W WO2023210115A1 WO 2023210115 A1 WO2023210115 A1 WO 2023210115A1 JP 2023005268 W JP2023005268 W JP 2023005268W WO 2023210115 A1 WO2023210115 A1 WO 2023210115A1
Authority
WO
WIPO (PCT)
Prior art keywords
display panel
optical module
light
projection lens
parallelism
Prior art date
Application number
PCT/JP2023/005268
Other languages
English (en)
French (fr)
Inventor
潤 横山
建哉 米村
毅吏 浦島
洋平 武智
英之 田近
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023210115A1 publication Critical patent/WO2023210115A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor

Definitions

  • the present disclosure relates to an adjustment method and an inspection method for an optical module that projects light or images.
  • Patent Document 1 discloses an adjustment device for an optical module of a liquid crystal projector. This optical module adjustment device adjusts and fixes the position and orientation of a liquid crystal panel mounted on an optical module in order to suppress blurring of an image projected from the optical module onto a screen.
  • FIG. 12 is a diagram schematically showing the configuration of an optical module adjustment device 101 disclosed in Patent Document 1.
  • An optical module 105 under assembly which includes a liquid crystal panel 102 for displaying an image, a prism 103, and a projection lens 104 for projecting an image, is installed in the adjustment device 101. Further, the liquid crystal panel 102 is connected to a control device 106. Further, the liquid crystal panel 102 is held by a robot 107 that adjusts the position and orientation of the liquid crystal panel 102.
  • the position and orientation of the liquid crystal panel 102 are adjusted as follows.
  • a test pattern is displayed on the liquid crystal panel 102 according to a command from the control device 106.
  • the pattern displayed on the liquid crystal panel 102 is imaged and displayed on a transmission screen 108 via a prism 103 and a projection lens 104.
  • the test pattern displayed on the transmissive screen 108 is imaged by the camera 109, and the state of the test pattern is analyzed by the control device 106.
  • the robot 107 is controlled based on the analyzed results, and the liquid crystal panel 102 is positioned in a predetermined posture and position.
  • optical module 105 can be adjusted by controlling the bonding device 110 by the control device 106 and fixing the liquid crystal panel 102 to the optical module 105.
  • An optical module inspection method includes: A method for inspecting an optical module including a display panel for displaying an image and a projection lens for projecting the image on the display panel, the method comprising: a test pattern display step of displaying on the display panel a test pattern having at least three or more point-shaped lighting parts; a test pattern light receiving step of receiving the test pattern including each luminous flux of the dotted lighting portions projected from the projection lens by a light receiving portion of a wavefront sensor; a phase distribution calculation step in which a control unit calculates a phase distribution of the wavefront of the test pattern received by the wavefront sensor; a phase distribution cutting step of cutting out each luminous flux region of the dotted lighting portions of the test pattern from the phase distribution of the wavefront by the control unit; a parallelism calculating step in which the controller calculates the parallelism of light in each luminous flux area of the dotted lighting section cut out in the phase distribution cutting step; a tilt determination step in which the control unit determines whether or not the display panel is tilte
  • a diagram schematically showing the configuration of an optical module of a transmissive liquid crystal projector Diagram schematically showing a simplified configuration of the optical module
  • a diagram schematically showing an adjustment device for an optical module according to an embodiment of the present disclosure Flowchart illustrating a method for adjusting an optical module according to an embodiment of the present disclosure
  • a diagram schematically showing an example of a test pattern for a display panel A diagram schematically showing a state in which the test pattern in Figure 5 is projected onto the light receiving section of the wavefront sensor.
  • Diagram schematically showing the relationship between light intensity distribution and each luminous flux Diagram schematically showing an example of a display panel test pattern consisting of three lighting parts
  • Flowchart explaining the method of adjusting the optical module using the test pattern in Figure 9 A diagram schematically showing an adjustment device for an optical module disclosed in Patent Document 1.
  • An object of one aspect of the present disclosure is to provide an optical module adjustment method and inspection method that can adjust an optical module that projects light or images at high speed and with high precision.
  • FIG. 1 is a diagram schematically showing the configuration of an optical module 1 of a transmission type liquid crystal projector.
  • the optical module 1 includes a light source 2, first and second dichroic mirrors 3a, 3b, first, second and third mirrors 4a, 4b, 4c, and first, second and third display panels 5a, 5b. , 5c, a prism 6, and a projection lens 7.
  • the light emitted from the light source 2 passes only the red color through the first dichroic mirror 3a tilted with respect to the optical axis, and enters the first display panel 5a via the first mirror 4a.
  • the light source 2 is, for example, a white light source such as a mercury lamp.
  • the display panel 5 is a general term for the first, second, and third display panels 5a, 5b, and 5c. Specifically, the display panel 5 is composed of the first, second, and third display panels 5a, 5b, and 5c. ing.
  • the first, second, and third display panels 5a, 5b, and 5c are each, for example, a transmissive liquid crystal panel.
  • the first display panel 5a transmits light according to the pattern of the image, and projects a red image onto a screen (not shown) via the prism 6 and the projection lens 7.
  • the light reflected by the first dichroic mirror 3a is separated into green and blue light by the second dichroic mirror 3b tilted with respect to the optical axis.
  • the green light is reflected by the second dichroic mirror 3b, and a green image is projected onto the screen via the second display panel 5b, prism 6, and projection lens 7.
  • the blue light passes through the second dichroic mirror 3b, and projects a blue image onto the screen via the second and third mirrors 4b and 4c, the third display panel 5c, the prism 6, and the projection lens 7.
  • the optical module 1 superimposes three images of red, green, and blue, respectively, and displays the image on the screen.
  • FIG. 2 is a diagram schematically showing a simplified configuration of the optical module 1 according to the embodiment of the present disclosure.
  • the adjustment of the optical module 1 involves adjusting the positions and postures of the display panel 5, that is, the first, second, and third display panels 5a, 5b, and 5c, with respect to the optical axis of the projection lens 7.
  • the optical axis direction of the projection lens 7 is z
  • the depth direction of the paper is x
  • the upward direction of the paper is y
  • the rotation direction around the x-axis is ⁇
  • the rotation direction around the y-axis is ⁇ .
  • the inclinations ⁇ and ⁇ of the display panel 5 with respect to the optical axis and the position z in the optical axis direction are adjusted.
  • the explanation will be given using the optical module 1 shown in FIG. 2.
  • the optical module 1 only needs to have a configuration in which at least the display panel 5 and the projection lens 7 are mounted, and the configurations of the other optical components do not matter.
  • the configuration of the optical module 1 of a transmissive liquid crystal projector has been described in FIG. 1, any system may be used as long as it is an optical module that projects light or images.
  • the display panel 5 may be a DMD (Digital Mirror Device) that is a reflective panel, an LCOS (Liquid Crystal on Silicon) panel, an LED (Light Emitting Diode) panel that is a self-luminous panel, or an OL panel.
  • ED Organic light emitting diode
  • Fig. 1 shows an example of a three-panel system using three display panels 5, but a single-panel system using only one display panel 5 using a light source 2 that sequentially changes colors using a color wheel or the like is shown. It may be a configuration.
  • the projection lens 7 of the optical module 1 may constitute a part of the projection lens system of a product in which the optical module 1 is mounted.
  • the optical module 1 of the product may further project an image from the projection lens 7 of the optical module 1 through another lens optical system.
  • the projection lens 7 is illustrated as a single lens to simplify the explanation, but the projection lens 7 may be composed of a plurality of lenses or optical components.
  • FIG. 3 is a diagram schematically showing the adjustment device 8 of the optical module 1 according to the embodiment of the present disclosure.
  • the adjustment device 8 includes a wavefront sensor 9 that measures the light projected from the optical module 1, a positioning mechanism 10 that adjusts the position and orientation of the display panel 5, and a device that connects the display panel 5 to the optical module 1 by applying adhesive. It is composed of an adhesive mechanism 11 for fixing, and a control section 12 for controlling the wavefront sensor 9, positioning mechanism 10, and adhesive mechanism 11.
  • the optical module 1 is being assembled, the projection lens 7 is fixed to the optical module 1, and the display panel 5 is held by the positioning mechanism 10.
  • the wavefront sensor 9 is a sensor that directly measures the phase distribution of the wavefront of light, such as a Shack-Hartmann sensor using a microlens array or a wavefront sensor using shearing interference using a diffraction grating. Use.
  • the wavefront sensor 9 is placed in a position where the light from the optical module 1 does not form an image, and the distance between the optical module 1 and the wavefront sensor 9 is sufficiently large relative to the distance at which the light from the optical module 1 forms an image. short.
  • the optical module 1 is generally an optical system that magnifies and projects the image on the display panel 5. Therefore, in order to collectively receive the test pattern of the display panel 5, which will be described later, with the wavefront sensor 9, the optical module 1 and This is because the distance to the wavefront sensor 9 needs to be shortened. Therefore, compared to the conventional method of projecting light from the optical module 1 onto a screen, there is an effect that the adjustment device can be made smaller.
  • FIG. 4 is a flowchart illustrating a method for adjusting the optical module 1 according to the embodiment of the present disclosure.
  • step S1 a test pattern is displayed on the display panel 5 according to a command from the control unit 12.
  • FIG. 5 is a diagram schematically showing an example of a test pattern of the display panel 5.
  • the horizontal direction of the page is the x-axis
  • the vertical direction is the y-axis
  • the slope around the x-axis is ⁇
  • the slope around the y-axis is ⁇ .
  • point O is the center of the adjustment axis of the adjustment device 8 and the optical axis of the projection lens 7.
  • the test pattern is composed of four lighting parts 13a, 13b, 13c, and 13d, which are outlined parts in FIG. 5, and an unlit part 14, which is a cross-hatched part in FIG.
  • the lighting parts 13a and 13b are arranged at symmetrical positions with respect to the x-axis, and the lighting parts 13c and 13d are arranged at symmetrical positions with respect to the y-axis.
  • the lighting sections 13a and 13b are arranged on the y-axis, and the lighting sections 13c and 13d are arranged on the x-axis. Since each of the lighting units 13a, 13b, 13c, and 13d is used as a point light source, preferably only one pixel is lit. However, if the amount of light is insufficient, a plurality of pixels may be turned on to display a dotted pattern with a diameter of 50 ⁇ m or less. By creating such a pattern, it can be regarded as an ideal point light source, and errors in the light wavefront can be minimized in the measurements described later, making it possible to achieve highly accurate measurements. .
  • step S2 the test pattern on the display panel 5 is received by the wavefront sensor 9.
  • FIG. 6 is a diagram schematically showing a state in which the test pattern of FIG. 5 is projected onto the light receiving section 15 of the wavefront sensor 9.
  • the horizontal direction of the paper surface is the H axis
  • the vertical direction is the V axis
  • the H axis and the V axis correspond to the x axis and y axis, respectively, in FIG. 5.
  • the light receiving section 15 of the wavefront sensor 9 receives light beams 16a, 16b, 16c, and 16d corresponding to the lighting sections 13a, 13b, 13c, and 13d of the test pattern in FIG. 5, respectively. Since the lighting parts 13a, 13b, 13c, and 13d have a dot pattern, the light beams 16a, 16b, 16c, and 16d are the light beams of ideal spherical wave light from a point light source transmitted through the projection lens 7, respectively. It has become. Furthermore, since the distance between the optical module 1 and the wavefront sensor 9 is sufficiently short compared to the distance at which the light from the optical module 1 forms an image, the light beams 16a, 16b, 16c, and 16d are each received as a spread light beam.
  • the optical module 1 is generally an optical system that magnifies and projects the image on the display panel 5, the light beams 16a, 16b, 16c, and 16d are obliquely incident on the surface of the light receiving section 15 of the wavefront sensor 9. .
  • the light beams 16a, 16b, 16c, and 16d are each incident on the light receiving section 15 of the wavefront sensor 9 at an angle of about 15 degrees with respect to the optical axis of the projection lens 7. Therefore, each of the light beams 16a, 16b, 16c, and 16d has an elliptical shape.
  • FIG. 7 is a diagram schematically showing the size relationship between the optical module 1 and the light receiving section 15 of the wavefront sensor 9.
  • the angle of view of the projection light of the optical module 1 is ⁇
  • the effective diameter of the projection lens 7 is D
  • the distance between the optical module 1 and the wavefront sensor 9 is L
  • the size of the light receiving part 15 of the wavefront sensor 9 is (2 ⁇ L ⁇ tan ⁇ +D) or more.
  • the four light beams 16a, 16b, 16c, and 16d can be received at once by one wavefront sensor 9, and the adjustment of the optical module 1 and This has the effect of speeding up inspections.
  • measurement can be performed with only one wavefront sensor 9, it is possible to avoid the influence of machine differences due to the use of multiple wavefront sensors 9, or the installation error between the optical module 1 and the wavefront sensor 9 due to adjusting the position of the wavefront sensor 9. This has the effect that the influence can be eliminated and the adjustment and inspection of the optical module 1 can be made with high precision.
  • step S3 the control unit 12 calculates the phase distribution of the wavefront of the light detected by the light receiving unit 15 of the wavefront sensor 9 and the intensity distribution of the light.
  • the phase distribution of the light wavefront and the light intensity distribution may be calculated using a known processing method for a Shack-Hartmann sensor or a wavefront sensor that utilizes shearing interference by a diffraction grating.
  • step S4 the control unit 12 cuts out a region of each light beam 16a, 16b, 16c, and 16d of the test pattern from the phase distribution of the wavefront of the light detected by the light receiving unit 15 obtained in step S3.
  • each area may be set by investigating the area of each light beam 16a, 16b, 16c, and 16d in advance.
  • step S5 the control unit 12 calculates the parallelism of each of the light beams 16a, 16b, 16c, and 16d of the test pattern.
  • Parallelism is a value that represents the state of diffusion or convergence of light, and in the embodiment of the present disclosure, using dioptre (unit: D, Diopter) that represents the refractive power of the lens, it is expressed by formula (1).
  • D_H (4 ⁇ 3 ⁇ C_Def+2 ⁇ 6 ⁇ C_(+As3))/R ⁇ 2
  • D_V (4 ⁇ 3 ⁇ C_Def ⁇ 2 ⁇ 6 ⁇ C_(+As3))/R ⁇ 2
  • D_H and D_V are the parallelism (unit: D) of the light receiving section 15 of the wavefront sensor 9 shown in FIG. 6 in the H-axis direction and the V-axis direction, respectively.
  • R is the radius of the beam of the light beam (unit: mm)
  • C_Def and C_(+As3) are the amount of defocus aberration in the optical axis direction (unit: ⁇ m) and the amount of astigmatism in the HV direction (unit: ⁇ m).
  • C_Def and C_(+As3) of each of the light beams 16a, 16b, 16c, and 16d are fitted by Zernike polynomials to the phase distribution of the wavefront of the light in each region of each of the light beams 16a, 16b, 16c, and 16d obtained in step S4. This is calculated by the control unit 12.
  • R of each light beam 16a, 16b, 16c, and 16d since the positional relationship between the optical module 1 and the wavefront sensor 9 in the adjustment device 8 is determined in advance, it is sufficient to investigate and set it in advance.
  • each light beam 16a, 16b, 16c, and 16d can be calculated by the control unit 12.
  • step S6 the control unit 12 determines whether the parallelism of the two light beams symmetrical to the adjustment axis of the adjustment device 8 match.
  • Whether or not the parallelism matches is determined by the control unit 12 using a determination threshold recorded in the control unit 12 in advance. If the difference in parallelism between the two light beams symmetrical to the adjustment axis of the adjustment device 8 is greater than or equal to the determination threshold, the control unit 12 determines that the parallelisms do not match, and the process proceeds to step S7. In other cases, the control unit 12 determines that the parallelisms match, and the process proceeds to step S8. In this latter case, it means that the adjustment of the inclination of the display panel 5 with respect to the optical axis of the projection lens 7 is completed.
  • step S6 the control unit 12 inspects whether or not the display panel 5 is tilted with respect to the optical axis of the projection lens 7.
  • the method is an inspection method for the optical module 1, and including the subsequent steps, the method is an adjustment method for the optical module 1.
  • step S7 the tilt of the display panel 5 is adjusted by the positioning mechanism 10 so that the parallelism of the two light beams symmetrical to the adjustment axis of the adjustment device 8 match.
  • the tilt adjustment of the display panel 5 is performed by calculating the tilt adjustment amount from the parallelism of each light beam 16a, 16b, 16c, and 16d in the control unit 12, and issuing a command to the positioning mechanism 10.
  • the amount of tilt adjustment by the positioning mechanism 10 is determined, for example, based on a database showing the relationship between the parallelism of each light beam and the amount of tilt adjustment, which has been investigated in advance.
  • step S7 the process returns to step S2, and steps S2 to S6 are performed again until the difference in parallelism between the two light beams symmetrical to the adjustment axis of the adjustment device 8 becomes smaller than the determination threshold in step S6. , steps S2 to S6 are repeated.
  • step S8 the position of the display panel 5 in the optical axis direction is adjusted by the positioning mechanism 10 so that the parallelism of each light beam of the test pattern matches the design value.
  • the imaging position of the image projected from the optical module 1 is determined by design. Therefore, the parallelism of each of the light beams 16a, 16b, 16c, and 16d emitted from the projection lens 7 can also be determined in terms of design.
  • step S6 Since the inclination of the display panel 5 with respect to the projection lens 7 has been adjusted up to step S6, in this step the positioning mechanism 10 moves the display panel 5 along the optical axis of the projection lens 7 so that the parallelism of each light beam matches the design value. direction, that is, the z-axis direction of the coordinate system of FIG.
  • the amount of adjustment in the z-axis direction by the positioning mechanism 10 is determined by the control unit 12, for example, based on a database showing the relationship between the parallelism of each light beam and the amount of adjustment in the z-axis direction, which has been investigated in advance.
  • steps S1 to S5 may be repeated, and the control unit 12 may adjust the display panel 5 in the z-axis direction while monitoring the parallelism of each light beam.
  • step S9 the display panel 5 is fixed to the optical module 1 using the adhesive mechanism 11.
  • the optical module inspection method involves calculating the phase distribution of the wavefront of the test pattern projected from the optical module 1, cutting out the region of each luminous flux of the dotted lighting portion of the test pattern from the phase distribution, and The parallelism of the light in each cut out region of the light flux is calculated, and the presence or absence of an inclination of the display panel 5 with respect to the projection lens 7 is determined from the parallelism of the light in the region of each light flux.
  • the attitude of the display panel 5 of the optical module 1 can be adjusted based on the determination result so that the parallelism of each light beam matches, and the image of the test pattern can be adjusted.
  • the optical module 1 that projects light or images can be adjusted at high speed and with high precision.
  • test pattern of the display panel 5 in FIG. 5 an example is shown in which the four lighting parts 13a, 13b, 13c, and 13d are turned on at the same time, but the four lighting parts 13a, 13b, 13c, and 13d are turned on at the same time. It is also possible to divide the light into sections and turn them on sequentially. In this case, displaying the test pattern on the display panel 5 in step S1 and receiving the test pattern on the display panel 5 in step S2 by the wavefront sensor 9 may be repeated for each lighting section, and the results may be recorded in the control section 12.
  • FIG. 4 shows a method for adjusting the optical module 1 of one display panel 5, for the optical module 1 equipped with a plurality of display panels 5 as shown in FIG.
  • the flowchart of FIG. 4 may be implemented for this case. This is because the relationship between each display panel 5 and projection lens 7 is the same as the relationship between display panel 5 and projection lens 7 shown in FIG.
  • the method for adjusting the optical module 1 includes a step of adjusting the inclination of the display panel 5 in step S7, a step of adjusting the position of the display panel 5 in the optical axis direction of step S8, and a step S9.
  • the step of fixing the display panel 5 to the optical module 1 has been described, it may be omitted in the case of the method for inspecting the optical module 1. It is sufficient if there is a step of comparing the parallelism of the light beams in step S6.
  • the inspection method for the optical module 1 if the comparison result or determination result for comparing and determining the parallelism of the light beam in step S6 is obtained, it can be used for adjustment, and the optical module 1 This can be effective as an adjustment method.
  • step S4 since the positional relationship between the optical module 1 and the wavefront sensor 9 in the adjustment device 8 is determined in advance, the regions of each light beam 16a, 16b, 16c, and 16d are investigated in advance.
  • a method of automatically extracting each area may also be used.
  • a method may be used in which the control unit 12 extracts a region of each luminous flux from the light intensity distribution obtained in step S3 and sets each region.
  • FIG. 8 is a diagram schematically showing the relationship between the light intensity distribution 17 obtained in step S3 and each of the light beams 16a, 16b, 16c, and 16d.
  • the parts other than the light beams 16a, 16b, 16c, and 16d are turned off, so the light intensity distribution 17 is such that only the areas of the light beams 16a, 16b, 16c, and 16d have intensity. Therefore, the portion where the intensity is equal to or greater than the threshold value recorded in advance in the control unit 12 is extracted as a region of the luminous flux, and the region of each luminous flux is set.
  • the area of each light beam may be set in an elliptical shape.
  • the optical module 1 is generally an optical system that enlarges and projects the image on the display panel 5. This is because the light beams 16a, 16b, 16c, and 16d have an elliptical shape.
  • the ellipse of the area of each light beam is As for the shape, the ratio of the major axis to the minor axis may be set to 1:cos ⁇ .
  • each light beam is incident on the light receiving section 15 of the wavefront sensor 9 in a state inclined by about 15 degrees with respect to the optical axis of the projection lens 7, ⁇ is set to 15 degrees, and the ellipse is The ratio of the major axis to the minor axis may be set to 1:0.97.
  • the position of the light beam may be determined by pattern matching the intensity distribution 17 using this elliptical shape as a master.
  • the detection position 18 in FIG. 8 shows an example in which the light beam 16a is detected by pattern matching.
  • step S5 parallelism is calculated by fitting the phase distribution of the wavefront of the light beam with a Zernike polynomial. You can also calculate it. By adopting such a method, the phase distribution of the wavefront of each elliptical light beam can be accurately fitted, and the parallelism can be calculated with higher accuracy.
  • the test pattern is composed of four lighting parts 13a, 13b, 13c, and 13d, as shown in FIG. 5, and the lighting parts 13a and 13b are arranged at symmetrical positions with respect to the x-axis.
  • the lighting units 13c and 13d are arranged at symmetrical positions with respect to the y-axis, they may be composed of three lighting units.
  • FIG. 9 is a diagram schematically showing an example in which the test pattern of the display panel 5 is composed of three lighting parts.
  • the test pattern is composed of three lighting sections 13e, 13f, and 13g and an extinguishing section 14. Further, the distances of the three lighting sections 13e, 13f, and 13g from point O, which is the center of the adjustment axis of the adjustment device 8 and the optical axis of the projection lens 7, are all equal.
  • the three lighting parts 13e, 13f, and 13g can be arranged so that their centers are located at three vertices of an equilateral triangle.
  • FIG. 10 is a diagram schematically showing a state in which the test pattern of FIG. 9 is projected onto the light receiving section 15 of the wavefront sensor 9.
  • the light receiving section 15 of the wavefront sensor 9 receives light beams 16e, 16f, and 16g corresponding to the lighting sections 13e, 13f, and 13g of the test pattern shown in FIG. 9, respectively.
  • FIG. 11 is a flowchart illustrating a method for adjusting the optical module 1 using the test pattern of FIG. 9. Each step from step S21 to step S29 corresponds to step S1 to step S9 in the flowchart of FIG. 4, respectively. Steps that are different from the flowchart in FIG. 4 are step S26 and step S27.
  • step S26 the control unit 12 determines whether the parallelism of the three light beams located at the same distance from the center of the adjustment axis of the adjustment device 8 match.
  • step S27 Whether or not the parallelism matches is determined by the control unit 12 using a determination threshold value recorded in the control unit 12 in advance. If the difference in parallelism between the three light beams is greater than or equal to the determination threshold, it is determined that the parallelisms do not match, and the process proceeds to step S27. In other cases, the control unit 12 determines that the parallelisms match, and the process proceeds to step S28. In this case, it means that the adjustment of the inclination of the display panel 5 with respect to the optical axis of the projection lens 7 is completed. Therefore, step S26 inspects whether or not the display panel 5 is tilted with respect to the optical axis of the projection lens 7.
  • step S27 the tilt of the display panel 5 is adjusted by the positioning mechanism 10 under the control of the control unit 12 so that the parallelism of the three light beams located at the same distance from the center of the adjustment axis of the adjustment device 8 match. .
  • control unit 12 can perform the adjustment method for the optical module 1 using the test pattern composed of the three lighting units 13e, 13f, and 13g.
  • the number of light beams received by the light receiving section 15 of the wavefront sensor 9 can be reduced. This has the effect of making it easier to arrange the lighting portions of the test pattern No. 5.
  • a method for inspecting an optical module including a display panel for displaying an image and a projection lens for projecting the image on the display panel comprising: a test pattern display step of displaying on the display panel a test pattern having at least three or more point-shaped lighting parts; a test pattern light receiving step of receiving the test pattern including each luminous flux of the dotted lighting portions projected from the projection lens by a light receiving portion of a wavefront sensor; a phase distribution calculation step in which a control unit calculates a phase distribution of the wavefront of the test pattern received by the wavefront sensor; a phase distribution cutting step of cutting out each luminous flux region of the dotted lighting portions of the test pattern from the phase distribution of the wavefront by the control unit; a parallelism calculating step in which the controller calculates the parallelism of light in each luminous flux area of the dotted lighting section cut out in the phase distribution cutting step; a tilt determination step in which the control unit determines whether or not the display panel is tilted with respect to the projection lens from the parallel
  • the number of dot-shaped lighting parts in the test pattern in the display step is four, and the number of dot-like lighting parts in the test pattern in the display step is four, and the optical axis of the projection lens has a position where the optical axis of the projection lens passes through the display panel as the origin and two axes perpendicular to each other on the display panel. , the dotted lighting portions are arranged at positions symmetrical to each axis,
  • the inclination determining step includes lighting the two dots located symmetrically with respect to two axes perpendicular to each other on the display panel whose origin is the position where the optical axis of the projection lens passes through the display panel.
  • the control unit determines that the display panel is tilted with respect to the projection lens when there is a difference in the parallelism of the respective light beams of the parts.
  • the number of the dot-like lighting parts in the test pattern of the displaying step is three, and the three dot-like lighting parts are placed at positions equidistant from the position where the optical axis of the projection lens passes through the display panel. is located,
  • the inclination determining step includes determining the inclination of the projection lens when there is a difference in the parallelism of the light beams of the three dot-shaped lighting sections at positions equidistant from the position where the optical axis of the projection lens passes through the display panel.
  • the control unit determines that the display panel is tilted; A method for inspecting an optical module according to aspect 1.
  • the parallelism is calculated by the control unit from defocus aberration and astigmatism.
  • each luminous flux region of the dotted lighting section is made into an elliptical shape, and the parallelism is calculated by the control section using an elliptic Zernike polynomial.
  • the method for inspecting an optical module according to any one of aspects 1 to 5.
  • the display panel After the inclination determination step, the display panel is aligned in the optical axis direction of the projection lens so that the parallelism of the light in each luminous flux area of the dotted lighting section matches the design value of the parallelism of the optical module. further comprising an optical axis direction adjustment step of adjusting the position of the display panel by the positioning mechanism under the control of the control unit; A method for adjusting an optical module according to aspect 7.
  • an optical module inspection method includes calculating the phase distribution of the wavefront of a test pattern projected from the optical module, and cutting out each luminous flux region of the dotted lighting portion of the test pattern from the phase distribution.
  • the parallelism of the light in each cut out region of the light flux is calculated, and based on the parallelism of the light in the region of each light flux, it is determined whether or not the display panel is tilted with respect to the projection lens.
  • the posture of the display panel of the optical module can be adjusted based on the judgment result so that the parallelism of each light beam matches, and the image of the test pattern can be displayed in a transparent manner.
  • the optical module that projects light or images can be adjusted at high speed and with high precision.
  • the method for adjusting and inspecting an optical module according to the aspect of the present disclosure is installed in an optical module of a product that projects light or images, such as a liquid crystal projector, a head-mounted display, smart glasses, or a head-up display. This is useful for assembling and adjusting optical modules.
  • Optical module 2 Light source 3a First dichroic mirror 3b Second dichroic mirror 4a First mirror 4b Second mirror 4c Third mirror 5 Display panel 5a First display panel 5b Second display panel 5c Third display panel 6 Prism 7 Projection lens 8 Adjustment device 9 Wavefront sensor 10 Positioning mechanism 11 Adhesive mechanism 12 Control unit 13a Lighting unit 13b Lighting unit 13c Lighting unit 13d Lighting unit 13e Lighting unit 13f Lighting unit 13g Lighting unit 14 Light-off unit 15 Light receiving unit 16a Luminous flux 16b Luminous flux 16c Luminous flux 16d Luminous flux 16e Luminous flux 16f Luminous flux 16g Luminous flux 17 Intensity distribution 18 Detection position 101 Adjustment device 102 Liquid crystal panel 103 Prism 104 Projection lens 105 Optical module 106 Control device 107 Robot 108 Transmissive screen 109 Camera 110 Bonding device

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)
  • Moving Of The Head For Recording And Reproducing By Optical Means (AREA)

Abstract

光学モジュール1から投射されたテストパターンの少なくとも3点の光束を波面センサ9で取得し、各光束の平行度を算出し、各光束の平行度が一致するように光学モジュールの表示パネル5の姿勢を調整する。

Description

光学モジュールの調整方法及び検査方法
 本開示は、光又は映像を投射する光学モジュールの調整方法及び検査方法に関する。
 特許文献1には、液晶プロジェクタの光学モジュールの調整装置が開示されている。この光学モジュールの調整装置は、光学モジュールからのスクリーンへの投射像のぼやけを抑制するために、光学モジュールに搭載されている液晶パネルの位置及び姿勢を調整して固定する。
 ここで、図12を用いて、特許文献1の光学モジュールの調整装置について説明する。図12は、特許文献1に開示されている光学モジュールの調整装置101の構成を模式的に示す図である。
 映像を表示する液晶パネル102とプリズム103と映像を投射する投射レンズ104を備えた組立中の光学モジュール105が調整装置101に設置される。また、液晶パネル102は制御装置106と接続される。また、液晶パネル102は、液晶パネル102の位置及び姿勢を調整するロボット107に把持される。
 液晶パネル102の位置及び姿勢の調整は次のように行う。
 制御装置106からの指令で液晶パネル102にテストパターンを表示する。液晶パネル102に表示されたパターンは、プリズム103、投射レンズ104を介して透過型スクリーン108に結像され表示される。透過型スクリーン108に表示されたテストパターンをカメラ109で撮像し、テストパターンの状態を制御装置106で解析する。解析した結果を基にロボット107を制御し、液晶パネル102の所定の姿勢及び位置に位置決めを行う。
 最後に、接合装置110を制御装置106によって制御し、液晶パネル102を光学モジュール105に固定することで、光学モジュール105の調整ができる。
特開平11―178014号公報
 本開示の一態様に係る光学モジュールの検査方法は、
 映像を表示する表示パネルと前記表示パネルの映像を投射するための投射レンズとを備えた光学モジュールの検査方法であって、
 点状の点灯部が少なくとも3点以上あるテストパターンを前記表示パネルに表示するテストパターン表示工程と、
 前記投射レンズから投射された前記点状の点灯部の各光束を含む前記テストパターンを波面センサの受光部で受光するテストパターン受光工程と、
 前記波面センサで受光した前記テストパターンの波面の位相分布を制御部で算出する位相分布算出工程と、
 前記波面の位相分布から前記テストパターンの前記点状の点灯部の各光束の領域を前記制御部で切り出す位相分布切り出し工程と、
 前記位相分布切り出し工程で切り出した前記点状の点灯部の各光束の領域の光の平行度を前記制御部で算出する平行度算出工程と、
 前記各光束の領域の光の平行度から、前記投射レンズに対する前記表示パネルの傾きの有無を前記制御部で判定する傾き判定工程とを、
順次実行する。
透過型の液晶プロジェクタの光学モジュールの構成を模式的に示す図 光学モジュールを簡略化した構成を模式的に示す図 本開示の実施の形態の光学モジュールの調整装置を模式的に示す図 本開示の実施の形態に係る光学モジュールの調整方法を説明するフローチャート 表示パネルのテストパターンの例を模式的に示した図 図5のテストパターンが波面センサの受光部に投射された状態を模式的に示した図 光学モジュールと波面センサの受光部とのサイズの関係を模式的に示した図 光の強度分布と各光束との関係を模式的に示した図 表示パネルのテストパターンが3つの点灯部で構成される例を模式的に示した図 図9のテストパターンが波面センサの受光部に投射された状態を模式的に示した図 図9のテストパターンで光学モジュールの調整方法を説明するフローチャート 特許文献1に開示されている光学モジュールの調整装置を模式的に示す図
 特許文献1に開示されている光学モジュールの調整装置では、テストパターンの映像を透過型スクリーン108に結像させる必要があるため、光学モジュール105と測定部である透過型スクリーン108及びカメラ109のアライメントが必要になり、調整時間が長くなるという問題がある。また、透過型スクリーン108に投射されたテストパターンのわずかな変化をカメラ109で検出する必要があるため、液晶パネル102の位置及び姿勢の調整を正確にできないという問題がある。
 本開示の一態様の目的は、光又は映像を投射する光学モジュールを高速かつ高精度に調整することができる光学モジュールの調整方法及び検査方法を提供することである。
 以下、本開示の実施の形態について、図面を参照しながら説明する。なお、各図において共通する構成要素については同一の符号を付し、それらの説明は適宜省略する。
 本開示の実施の形態に係る光学モジュールの代表的な例について、図1を用いて説明する。図1は透過型の液晶プロジェクタの光学モジュール1の構成を模式的に示す図である。
 光学モジュール1は、光源2と、第1及び第2ダイクロイックミラー3a、3bと、第1及び第2及び第3ミラー4a、4b、4cと、第1及び第2及び第3表示パネル5a、5b、5cと、プリズム6と、投射レンズ7とを有する。
 光源2から出射された光は、光軸に対して傾斜した第1ダイクロイックミラー3aで赤色のみ透過し、第1ミラー4aを介して第1表示パネル5aに入射する。光源2は、例えば、水銀ランプなどの白色光の光源である。また、表示パネル5は、第1及び第2及び第3表示パネル5a、5b、5cの総称であり、具体的には、第1及び第2及び第3表示パネル5a、5b、5cで構成されている。第1及び第2及び第3表示パネル5a、5b、5cは、それぞれ、例えば、透過型の液晶パネルである。第1表示パネル5aは映像のパターンに応じて光を透過し、プリズム6及び投射レンズ7を介して図示していないスクリーンに赤色の映像を投射する。
 同様に、光源2から出射された光のうち、第1ダイクロイックミラー3aで反射された光は、光軸に対して傾斜した第2ダイクロイックミラー3bで緑色と青色の光に分離される。緑色の光は第2ダイクロイックミラー3bで反射され、第2表示パネル5b、プリズム6、投射レンズ7を介してスクリーンに緑色の映像を投射する。青色の光は第2ダイクロイックミラー3bを透過し、第2及び第3ミラー4b、4c、第3表示パネル5c、プリズム6、投射レンズ7を介してスクリーンに青色の映像を投射する。
 このように、光学モジュール1は赤色、緑色、青色の3つの映像をそれぞれ重ね合わせてスクリーン上に映像を表示する。
 光学モジュール1の組立では、光学モジュール1から所定の位置にあるスクリーン上で、投射した映像にボケが生じないように調整して組立てる必要がある。これは、光学モジュール1の投射レンズ7に対する第1及び第2及び第3表示パネル5a、5b、5cの位置及び姿勢を調整することを意味する。
 図2は本開示の実施の形態に係る光学モジュール1を簡略化した構成を模式的に示す図である。光学モジュール1の調整は、投射レンズ7の光軸に対する表示パネル5すなわち第1及び第2及び第3表示パネル5a、5b、5cの位置及び姿勢を調整する。ここで、投射レンズ7の光軸方向をz、紙面の奥行方向をx、紙面の上向き方向をy、x軸回りの回転方向をα、y軸回りの回転方向をβとする。本開示の実施の形態においては、表示パネル5の光軸に対する傾きα、β、及び、光軸方向の位置zの調整を行う。以降では、説明を簡単にするため、図2に示す光学モジュール1を用いて説明を行う。
 なお、光学モジュール1は、少なくとも、表示パネル5と投射レンズ7が搭載されている構成であれば良く、その他の光学部品の構成は問わない。また、図1では透過型の液晶プロジェクタの光学モジュール1の構成を説明したが、光又は映像を投射する光学モジュールであれば方式は問わない。例えば、表示パネル5が反射型パネルであるDMD(Digital Mirror Device)、LCOS(Liquid crystal on silicon)、自発光パネルであるLED(light emitting diode)パネル、又は、OLED(Organic light emitting diode)パネルなどを用いた構成であっても構わない。例えば、図1では表示パネル5を3枚使う3板方式の例を示しているが、カラーホイールなどを用いて順次色を切り替える光源2を用いて表示パネル5を1枚だけ使う単板方式の構成であっても構わない。
 なお、光学モジュール1の投射レンズ7は、光学モジュール1を搭載する製品の投射レンズ系のうちの一部分を構成するものであっても良い。例えば、光学モジュール1の投射レンズ7から投射された映像が、更に、別のレンズ光学系を介して映像を投射する製品の光学モジュール1であってもよい。
 なお、図2では、説明を簡潔にするために投射レンズ7を1枚のレンズとして図示しているが、投射レンズ7は複数枚のレンズ又は光学部品で構成されていても良い。
 次に、本開示の実施の形態に係る光学モジュール1の調整装置の構成について、図3を用いて説明する。図3は、本開示の実施の形態の光学モジュール1の調整装置8を模式的に示す図である。
 調整装置8は、光学モジュール1から投射される光を測定する波面センサ9と、表示パネル5の位置及び姿勢を調整する位置決め機構10と、表示パネル5を光学モジュール1に接着剤を塗布して固定するための接着機構11と、波面センサ9と位置決め機構10と接着機構11とを制御するための制御部12とで構成されている。光学モジュール1は組立中であり、投射レンズ7は光学モジュール1に固定されており、表示パネル5は位置決め機構10に把持される。ここで、波面センサ9とは、光の波面の位相の分布を直接測定するセンサであり、例えば、マイクロレンズアレイを用いたシャック・ハルトマンセンサ、又は、回折格子によるシェアリング干渉を利用した波面センサを用いる。
 波面センサ9は、光学モジュール1からの光が結像しない位置に配置されており、光学モジュール1と波面センサ9との距離は、光学モジュール1からの光が結像する距離に対して十分に短い。なぜなら、光学モジュール1は一般的に表示パネル5の映像を拡大投射する光学系であるため、後述する表示パネル5のテストパターンを波面センサ9で一括して受光するためには、光学モジュール1と波面センサ9との距離を短くする必要があるためである。このため、従来の光学モジュール1からの光をスクリーンに投射する方式に比べて、調整装置を小さくできる効果がある。
 また、光学モジュール1と波面センサ9との間には、別の光学部品の配置をしない。なぜなら、光学モジュール1と波面センサ9との間に別の光学部品を配置すると、これらの光学部品の光学特性の誤差又はアライメントの誤差の影響を受けて測定精度が低下するためである。このように別の光学部品の配置をしないことにより、高精度に測定ができる効果がある。
 次に、本開示の実施の形態に係る光学モジュール1の調整方法を図4のフローチャートを用いて順番に説明する。図4は、本開示の実施の形態に係る光学モジュール1の調整方法を説明するフローチャートである。
 ステップS1において、制御部12からの指令により表示パネル5にテストパターンを表示する。
 図5は、表示パネル5のテストパターンの例を模式的に示した図である。図5では、紙面の横方向をx軸、縦方向をy軸とし、x軸回りの傾きをα、y軸回りの傾きをβとする。また、点Oは調整装置8の調整軸の中心であり、かつ、投射レンズ7の光軸である。テストパターンは、図5では白抜き部分である4つの点灯部13a、13b、13c、13dと図5ではクロスハッチング部分である消灯部14とで構成されている。点灯部13aと13bはx軸に対して対称の位置に配置され、点灯部13cと13dはy軸に対して対称の位置に配置される。本開示の実施の形態においては、点灯部13aと13bはy軸上、点灯部13cと13dはx軸上に配置している。各点灯部13a、13b、13c、13dは、点光源として用いるため、好ましくは、1画素のみ点灯するのが良い。但し、光量が不足する場合は、複数の画素を点灯させて直径50μm以下の点状のパターンとして表示すれば良い。このようなパターンにすることで、理想的な点光源とみなすことができ、後述する測定において光の波面の誤差を最小限に抑えられるため、高精度な測定を実現することができる効果がある。
 次いで、ステップS2において、表示パネル5のテストパターンを波面センサ9で受光する。
 図6は、図5のテストパターンが波面センサ9の受光部15に投射された状態を模式的に示した図である。紙面の横方向をH軸、縦方向をV軸とし、ここでは、H軸とV軸はそれぞれ図5のx軸とy軸に対応している。
 波面センサ9の受光部15では、図5のテストパターンの点灯部13a、13b、13c、13dのそれぞれに対応した光束16a、16b、16c、16dが受光される。点灯部13a、13b、13c、13dは点状のパターンであるため、光束16a、16b、16c、16dは、それぞれ、点光源からの理想的な球面波の光が投射レンズ7を透過した光束となっている。また、光学モジュール1と波面センサ9との距離は、光学モジュール1からの光が結像する距離に対して十分に短いため、光束16a、16b、16c、16dはそれぞれ広がりをもった光束として受光される。また、光学モジュール1は一般的に表示パネル5の映像を拡大投射する光学系であるため、光束16a、16b、16c、16dは波面センサ9の受光部15の表面に対して斜めに入射される。本開示の実施の形態においては、例えば、光束16a、16b、16c、16dはそれぞれ投射レンズ7の光軸に対して約15度傾いた状態で波面センサ9の受光部15に入射される。このため、光束16a、16b、16c、16dはそれぞれ楕円状の形状となる。
 また、波面センサ9の受光部15のサイズは、光束16a、16b、16c、16dを一括して受光できるサイズでなければならない。図7は、光学モジュール1と波面センサ9の受光部15とのサイズの関係を模式的に示した図である。光学モジュール1の投射光の画角をθ、投射レンズ7の有効径をD、光学モジュール1と波面センサ9との距離をLとしたとき、波面センサ9の受光部15のサイズは、(2×L×tanθ+D)以上に設定されている。このような波面センサ9の受光部15のサイズに設定することで、4つの光束16a、16b、16c、16dを1つの波面センサ9で一括して受光することができ、光学モジュール1の調整及び検査を高速にできる効果がある。また、1つの波面センサ9だけで測定できるため、複数の波面センサ9を使用することによる機差の影響又は、波面センサ9の位置を調整することによる光学モジュール1と波面センサ9の設置誤差の影響を排除することができ、光学モジュール1の調整及び検査を高精度にできる効果がある。
 次いで、ステップS3において、波面センサ9の受光部15で検出した光の波面の位相分布と光の強度分布とを制御部12で算出する。光の波面の位相分布と光の強度分布との算出は、シャック・ハルトマンセンサ又は、回折格子によるシェアリング干渉を利用した波面センサの既知の処理方法で算出すれば良い。
 次いで、ステップS4において、制御部12で、ステップS3で求めた受光部15で検出した光の波面の位相分布からテストパターンの各光束16a、16b、16c、16dの領域を切り出す。
 各領域は、調整装置8における光学モジュール1と波面センサ9との位置関係が予め決定しているため、各光束16a、16b、16c、16dの領域を事前に調査して設定すれば良い。
 次いで、ステップS5において、テストパターンの各光束16a、16b、16c、16dの平行度を制御部12で算出する。
 平行度とは、光の拡散又は収束の状態を表す値であり、本開示の実施の形態においては、レンズの屈折力を表すディオプトリ―(単位:D、Diopter)を用いて、式(1)、式(2)で表すことができる。
D_H=(4√3・C_Def+2√6・C_(+As3))/R^2 (1)
D_V=(4√3・C_Def―2√6・C_(+As3))/R^2 (2)
 ここで、D_H、D_Vは、それぞれ、図6に示す波面センサ9の受光部15のH軸方向、V軸方向の平行度(単位:D)である。また、Rは光束のビームの半径(単位:mm)、C_Def及びC_(+As3)は、光束の波面の位相分布をゼルニケ多項式でフィッティングして求めた光軸方向のデフォーカス収差の量(単位:μm)とH-V方向の非点収差の量(単位:μm)である。
 各光束16a、16b、16c、16dのC_Def及びC_(+As3)は、ステップS4で求めた各光束16a、16b、16c、16dの各領域の光の波面の位相分布に対しゼルニケ多項式によるフィッティングを行うことで制御部12で算出する。各光束16a、16b、16c、16dのRについては、調整装置8における光学モジュール1と波面センサ9の位置関係が予め決定しているため、事前に調査して設定すればよい。
 以上のように、各光束16a、16b、16c、16dの平行度を制御部12で算出することができる。
 次いで、ステップS6において、調整装置8の調整軸に対称な2つの光束の平行度が一致しているか否かを制御部12で判別する。
 平行度が一致しているかどうかは、予め、制御部12に記録している判定閾値を用いて、制御部12で判定を行う。調整装置8の調整軸に対称な2つの光束の平行度の差が判定閾値以上である場合は、平行度が一致していないと制御部12で判別し、ステップS7に進む。それ以外の場合は、平行度が一致していると制御部12で判定し、ステップS8に進む。この後者の場合、投射レンズ7の光軸に対する表示パネル5の傾きの調整が完了することを意味する。
 よって、ステップS6は、投射レンズ7の光軸に対する表示パネル5の傾きの有無を制御部12で検査していることになる。このステップまでは、光学モジュール1の検査方法となり、以降のステップを含むと光学モジュール1の調整方法となる。
 ステップS7において、調整装置8の調整軸に対称な2つの光束の平行度が一致するように表示パネル5の傾きを位置決め機構10で調整する。
 一例として、図5の表示パネル5のx軸回りの傾きαを位置決め機構10で調整する方法について説明する。表示パネル5がα方向にのみ傾いている場合、表示パネル5の点灯部13aから投射レンズ7までの距離と、表示パネル5の点灯部13bから投射レンズ7までの距離とに差が生じる。このため、点灯部13aが投射レンズ7によって結像される位置と点灯部13bが投射レンズ7によって結像される位置とは異なる。これは、図6の波面センサ9で受光される光束16aと光束16bの平行度とが異なっていることと同じである。逆に、表示パネル5の傾きが投射レンズ7の光軸に調整されている状態は、点灯部13aが投射レンズ7によって結像される位置と点灯部13bが投射レンズ7によって結像される位置が一致していることであるため、表示パネル5の傾きαと投射レンズ7の光軸を調整するためには、図6の波面センサ9で受光される光束16aと光束16bとの平行度を一致させればよい。
 同様に、図5の表示パネル5のy軸回りの傾きβを調整するためには、図6の波面センサ9で受光される光束16cと光束16dとの平行度を一致させればよい。
 表示パネル5の傾き調整は、制御部12で各光束16a、16b、16c、16dの平行度から傾き調整量を算出し、位置決め機構10に指令を出して行う。位置決め機構10による傾き調整量は、例えば、予め調査した各光束の平行度と傾き調整量との関係を表すデータベースを基に決定する。
 ステップS7が完了した後は、ステップS2に戻り、ステップS2からステップS6を再び行い、ステップS6において、調整装置8の調整軸に対称な2つの光束の平行度の差が判定閾値より小さくなるまで、ステップS2からステップS6を繰り返し行う。
 次に、ステップS8において、テストパターンの各光束の平行度が設計値と一致するように表示パネル5の光軸方向の位置を位置決め機構10で調整する。
 光学モジュール1から投射される映像の結像位置は、設計上決まっている。よって、投射レンズ7から出射される各光束16a、16b、16c、16dの平行度も設計上決定することができる。
 ステップS6までで投射レンズ7に対する表示パネル5の傾きを調整済のため、本ステップでは各光束の平行度が設計値と一致するように、位置決め機構10によって表示パネル5を投射レンズ7の光軸方向、つまり、図3の座標系のz軸方向に調整する。位置決め機構10によるz軸方向の調整量は、例えば、予め調査した各光束の平行度とz軸方向の調整量との関係を表すデータベースを基に制御部12で決定する。また、ステップS1からステップS5を繰り返し行い、各光束の平行度をモニタリングしながら表示パネル5のz軸方向の調整を制御部12で行ってもよい。
 最後に、ステップS9において、接着機構11により表示パネル5を光学モジュール1に固定する。
 以上のように、光学モジュールの検査方法としては、光学モジュール1から投射されたテストパターンの波面の位相分布を算出し、位相分布からテストパターンの点状の点灯部の各光束の領域を切り出し、切り出した各光束の領域の光の平行度を算出し、各光束の領域の光の平行度から、投射レンズ7に対する表示パネル5の傾きの有無を判定するようにしている。この結果、その後、調整方法を実施するときは、判定結果を基に、各光束の平行度が一致するように光学モジュール1の表示パネル5の姿勢を調整することができ、テストパターンの映像を透過型スクリーンに結像させる必要がなく、透過型スクリーンに投射されたテストパターンのわずかな変化をカメラで検出する必要もない。従って、光又は映像を投射する光学モジュール1を高速かつ高精度に調整することができる。
 なお、図5の表示パネル5のテストパターンの例では、4つの点灯部13a、13b、13c、13dを同時に点灯させる例を示しているが、4つの点灯部13a、13b、13c、13dを時間的に分割して順次点灯するようにしても構わない。この場合、ステップS1の表示パネル5にテストパターンを表示と、ステップS2の表示パネル5のテストパターンを波面センサ9で受光をそれぞれの点灯部毎に繰り返し、制御部12に記録すればよい。
 なお、図4のフローチャートでは、1つの表示パネル5の光学モジュール1の調整方法を示しているが、図1のように複数の表示パネル5を備えた光学モジュール1については、それぞれの表示パネル5に対して図4のフローチャートを実施すればよい。それぞれの表示パネル5と投射レンズ7との関係は、図2に示す表示パネル5と投射レンズ7との関係と同じであるためである。
 なお、図4のフローチャートでは、光学モジュール1の調整方法として、ステップS7の表示パネル5の傾きを調整する工程と、ステップS8の表示パネル5の光軸方向の位置を調整する工程と、ステップS9の表示パネル5を光学モジュール1に固定する工程とを説明したが、光学モジュール1の検査方法の場合は無くても構わない。ステップS6の光束の平行度を比較する工程があれば良い。このように、光学モジュール1の検査方法の場合は、ステップS6での光束の平行度を比較判定する比較結果又は判定結果が得られれば、それを利用して調整することができ、光学モジュール1の調整方法としての効果を奏することができる。
 なお、ステップS4において、各領域は、調整装置8における光学モジュール1と波面センサ9との位置関係が予め決定しているため、各光束16a、16b、16c、16dの領域を事前に調査して設定する例を示したが、各領域を自動抽出する方法を取っても構わない。例えば、ステップS3で求めた光の強度分布から各光束の領域を制御部12で抽出して各領域を設定する方法をとっても構わない。
 図8は、ステップS3で求めた光の強度分布17と各光束16a、16b、16c、16dの関係を模式的に示した図である。テストパターンは、各光束16a、16b、16c、16d以外の部分は消灯部であるため、光の強度分布17は、各光束16a、16b、16c、16dの領域のみ強度がある分布となる。そこで、制御部12に予め記録している強度の閾値以上の部分を光束の領域として抽出し、各光束の領域を設定する。このような方法を取ることで、光学モジュール1と波面センサ9との設置誤差があった場合にも、各光束16a、16b、16c、16dの領域を正確に設定することができ、高精度な測定を実現することができる効果がある。
 さらに、図8において、各光束の領域を楕円状に設定してもよい。これは、ステップS2で説明した通り、光学モジュール1は一般的に表示パネル5の映像を拡大投射する光学系であるため、光束16a、16b、16c、16dは波面センサ9の受光部15に対して斜めに入射され、光束16a、16b、16c、16dは楕円状の形状となるためである。例えば、光束16a、16b、16c、16dが投射レンズ7の光軸に対して約σ度傾いた状態で波面センサ9の受光部15に入射される設計の場合は、各光束の領域の楕円の形状は、長軸と短軸の比率は1:cosσに設定すればよい。本開示の実施の形態においては、各光束は投射レンズ7の光軸に対して約15度傾いた状態で波面センサ9の受光部15に入射されるため、σを15度と設定し、楕円の長軸と短軸の比率は1:0.97と設定すればよい。
 また、この楕円形状をマスターとして強度分布17に対してパターンマッチングすることで、光束の位置を決定してもよい。図8の検出位置18は、光束16aをパターンマッチングで検出した例を示している。このような方法をとることで、前述した強度の閾値以上の部分を光束の領域として抽出する方法に比べて、光束の位置を正確に求めることができる効果がある。
 さらに、ステップS5において、光束の波面の位相分布をゼルニケ多項式でフィッティングして平行度を算出しているが、各光束の領域を楕円状に設定して、楕円ゼルニケ多項式でフィッティングして平行度を算出しても良い。このような方法を取ることで、楕円状の各光束の波面の位相分布を正確にフィッティングすることができ、より高精度に平行度の算出をすることができる効果がある。
 なお、ステップS1において、テストパターンは、図5のように、4つの点灯部13a、13b、13c、13dで構成されており、点灯部13aと13bはx軸に対して対称の位置に配置され、点灯部13cと13dはy軸に対して対称の位置に配置される構成としたが、3つの点灯部から構成されていても良い。
 図9は、表示パネル5のテストパターンが3つの点灯部で構成される例を模式的に示した図である。テストパターンは、3つの点灯部13e、13f、13gと消灯部14とで構成されている。また、調整装置8の調整軸の中心であり、かつ、投射レンズ7の光軸であるO点から各3つの点灯部13e、13f、13gの距離は全て等しくなっている。例えば、3つの点灯部13e、13f、13gの中心が正三角形の3つの頂点の位置に位置しているように配置することができる。
 図10は、図9のテストパターンが波面センサ9の受光部15に投射された状態を模式的に示した図である。波面センサ9の受光部15では、図9のテストパターンの点灯部13e、13f、13gのそれぞれに対応した光束16e、16f、16gが受光される。
 図11は、図9のテストパターンで光学モジュール1の調整方法を説明するフローチャートである。ステップS21からステップS29の各ステップは、図4のフローチャートのステップS1からステップS9にそれぞれ対応している。図4のフローチャートと異なるステップは、ステップS26とステップS27である。
 次いで、ステップS26において、調整装置8の調整軸の中心から等しい距離にある3つの光束の平行度が一致しているかを制御部12で判別する。
 平行度が一致しているかどうかは、予め制御部12に記録している判定閾値を用いて制御部12で判定を行う。3つの光束の平行度の差が判定閾値以上である場合は、平行度が一致していないと判別し、ステップS27に進む。それ以外の場合は、平行度が一致していると制御部12で判定し、ステップS28に進む。この場合、投射レンズ7の光軸に対する表示パネル5の傾きの調整が完了することを意味する。よって、ステップS26は投射レンズ7の光軸に対する表示パネル5の傾きの有無を検査していることになる。
 ステップS27において、調整装置8の調整軸の中心から等しい距離にある3つの光束の平行度が一致するように表示パネル5の傾きを、制御部12での制御の下に位置決め機構10で調整する。
 以上のように、3つの点灯部13e、13f、13gから構成されるテストパターンを用いて光学モジュール1の調整方法を制御部12で行うことができる。このような方法をとることにより、波面センサ9の受光部15で受光する光束の数を減らすことができるため、波面センサ9の受光部15で受光する各光束の領域が重ならないように表示パネル5のテストパターンの点灯部を配置しやすくなるという効果がある。
 なお、以下に、本開示の種々の態様について説明する。
 [態様1]
 映像を表示する表示パネルと前記表示パネルの映像を投射するための投射レンズとを備えた光学モジュールの検査方法であって、
 点状の点灯部が少なくとも3点以上あるテストパターンを前記表示パネルに表示するテストパターン表示工程と、
 前記投射レンズから投射された前記点状の点灯部の各光束を含む前記テストパターンを波面センサの受光部で受光するテストパターン受光工程と、
 前記波面センサで受光した前記テストパターンの波面の位相分布を制御部で算出する位相分布算出工程と、
 前記波面の位相分布から前記テストパターンの前記点状の点灯部の各光束の領域を前記制御部で切り出す位相分布切り出し工程と、
 前記位相分布切り出し工程で切り出した前記点状の点灯部の各光束の領域の光の平行度を前記制御部で算出する平行度算出工程と、
 前記各光束の領域の光の平行度から、前記投射レンズに対する前記表示パネルの傾きの有無を前記制御部で判定する傾き判定工程とを、
順次実行する、光学モジュールの検査方法。
 [態様2]
 前記表示工程の前記テストパターンの前記点状の点灯部の数は4点であり、前記投射レンズの光軸が前記表示パネルを通る位置を原点とする前記表示パネル上で直交する2軸に対し、それぞれの軸に対称な位置に前記点状の点灯部が配置されており、
 前記傾き判定工程は、前記投射レンズの前記光軸が前記表示パネルを通る位置を原点とする前記表示パネル上で直交する2軸に対し、各軸に対称に位置する2つの前記点状の点灯部の各光束の平行度に差異があるときに前記投射レンズに対する前記表示パネルの傾きがあると前記制御部で判定する、
 態様1に記載の光学モジュールの検査方法。
 [態様3]
 前記表示工程の前記テストパターンの前記点状の点灯部の数は3点であり、前記投射レンズの光軸が前記表示パネルを通る位置から等距離の位置に3点の前記点状の点灯部が配置されており、
 前記傾き判定工程は、前記投射レンズの前記光軸が前記表示パネルを通る位置から等距離の位置の3つの前記点状の点灯部の各光束の平行度に差異があるときに前記投射レンズに対する前記表示パネルの傾きがあると前記制御部で判定する、
 態様1に記載の光学モジュールの検査方法。
 [態様4]
 前記光モジュールの投射光の画角をθ、前記投射レンズの有効径をD、前記光モジュールと前記波面センサとの距離をLとしたとき、前記波面センサの前記受光部の大きさは、(2×L×tanθ+D)以上である、
 態様1~3のいずれか1つに記載の光学モジュールの検査方法。
 [態様5]
 前記平行度算出工程において、前記平行度は、デフォーカス収差と非点収差から前記制御部で算出する、
 態様1~4のいずれか1つに記載の光学モジュールの検査方法。
 [態様6]
 前記位相分布切り出し工程の前記点状の点灯部の各光束の領域を楕円形状とし、前記平行度は、楕円ゼルニケ多項式を用いて前記制御部で算出する、
 態様1~5のいずれか1つに記載の光学モジュールの検査方法。
 [態様7]
 態様1から態様6のいずれか一項に記載の光学モジュールの検査方法を実施し、
 前記傾き判定工程で前記表示パネルの傾きがあると前記制御部で判定された場合に、前記点状の点灯部の各光束の領域の光の平行度が一致するように、前記投射レンズに対する前記表示パネルの傾きの調整を、前記制御部の制御の下に前記表示パネルの傾きを調整する位置決め機構で行う傾き調整工程を備える、
 光学モジュールの調整方法。
 [態様8]
 前記傾き判定工程の後に、前記点状の点灯部の各光束の領域の光の平行度が前記光学モジュールの平行度の設計値と一致するように、前記表示パネルを前記投射レンズの光軸方向に移動して調整を、前記制御部の制御の下に前記位置決め機構で前記表示パネルの位置調整することにより行う光軸方向調整工程をさらに備える、
 態様7に記載の光学モジュールの調整方法。
 なお、前記様々な実施形態又は変形例のうちの任意の実施形態又は変形例を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。また、実施形態同士の組み合わせ又は実施例同士の組み合わせ又は実施形態と実施例との組み合わせが可能であると共に、異なる実施形態又は実施例の中の特徴同士の組み合わせも可能である。
 本開示によれば、光学モジュールの検査方法としては、光学モジュールから投射されたテストパターンの波面の位相分布を算出し、位相分布からテストパターンの点状の点灯部の各光束の領域を切り出し、切り出した各光束の領域の光の平行度を算出し、各光束の領域の光の平行度から、前記投射レンズに対する前記表示パネルの傾きの有無を判定するようにしている。この結果、その後、調整方法を実施するときは、判定結果を基に、各光束の平行度が一致するように光学モジュールの表示パネルの姿勢を調整することができ、テストパターンの映像を透過型スクリーンに結像させる必要がなく、透過型スクリーンに投射されたテストパターンのわずかな変化をカメラで検出する必要もない。従って、光又は映像を投射する光学モジュールを高速かつ高精度に調整することができる。
 本開示の前記態様にかかる光学モジュールの調整方法及び検査方法は、光又は映像を投影する製品の光学モジュール、例えば、液晶プロジェクタ、ヘッドマウントディスプレイ、スマートグラス、又は、ヘッドアップディスプレイなどに搭載される光学モジュールの組立調整に有用である。
1 光学モジュール
2 光源
3a 第1ダイクロイックミラー
3b 第2ダイクロイックミラー
4a 第1ミラー
4b 第2ミラー
4c 第3ミラー
5 表示パネル
5a 第1表示パネル
5b 第2表示パネル
5c 第3表示パネル
6 プリズム
7 投射レンズ
8 調整装置
9 波面センサ
10 位置決め機構
11 接着機構
12 制御部
13a 点灯部
13b 点灯部
13c 点灯部
13d 点灯部
13e 点灯部
13f 点灯部
13g 点灯部
14 消灯部
15 受光部
16a 光束
16b 光束
16c 光束
16d 光束
16e 光束
16f 光束
16g 光束
17 強度分布
18 検出位置
101 調整装置
102 液晶パネル
103 プリズム
104 投射レンズ
105 光学モジュール
106 制御装置
107 ロボット
108 透過型スクリーン
109 カメラ
110 接合装置

Claims (8)

  1.  映像を表示する表示パネルと前記表示パネルの映像を投射するための投射レンズとを備えた光学モジュールの検査方法であって、
     点状の点灯部が少なくとも3点以上あるテストパターンを前記表示パネルに表示するテストパターン表示工程と、
     前記投射レンズから投射された前記点状の点灯部の各光束を含む前記テストパターンを波面センサの受光部で受光するテストパターン受光工程と、
     前記波面センサで受光した前記テストパターンの波面の位相分布を制御部で算出する位相分布算出工程と、
     前記波面の位相分布から前記テストパターンの前記点状の点灯部の各光束の領域を前記制御部で切り出す位相分布切り出し工程と、
     前記位相分布切り出し工程で切り出した前記点状の点灯部の各光束の領域の光の平行度を前記制御部で算出する平行度算出工程と、
     前記各光束の領域の光の平行度から、前記投射レンズに対する前記表示パネルの傾きの有無を前記制御部で判定する傾き判定工程とを、
    順次実行する、光学モジュールの検査方法。
  2.  前記表示工程の前記テストパターンの前記点状の点灯部の数は4点であり、前記投射レンズの光軸が前記表示パネルを通る位置を原点とする前記表示パネル上で直交する2軸に対し、それぞれの軸に対称な位置に前記点状の点灯部が配置されており、
     前記傾き判定工程は、前記投射レンズの前記光軸が前記表示パネルを通る位置を原点とする前記表示パネル上で直交する2軸に対し、各軸に対称に位置する2つの前記点状の点灯部の各光束の平行度に差異があるときに前記投射レンズに対する前記表示パネルの傾きがあると前記制御部で判定する、
     請求項1に記載の光学モジュールの検査方法。
  3.  前記表示工程の前記テストパターンの前記点状の点灯部の数は3点であり、前記投射レンズの光軸が前記表示パネルを通る位置から等距離の位置に3点の前記点状の点灯部が配置されており、
     前記傾き判定工程は、前記投射レンズの前記光軸が前記表示パネルを通る位置から等距離の位置の3つの前記点状の点灯部の各光束の平行度に差異があるときに前記投射レンズに対する前記表示パネルの傾きがあると前記制御部で判定する、
     請求項1に記載の光学モジュールの検査方法。
  4.  前記光モジュールの投射光の画角をθ、前記投射レンズの有効径をD、前記光モジュールと前記波面センサとの距離をLとしたとき、前記波面センサの前記受光部の大きさは、(2×L×tanθ+D)以上である、
     請求項2又は3に記載の光学モジュールの検査方法。
  5.  前記平行度算出工程において、前記平行度は、デフォーカス収差と非点収差から前記制御部で算出する、
     請求項2又は3に記載の光学モジュールの検査方法。
  6.  前記位相分布切り出し工程の前記点状の点灯部の各光束の領域を楕円形状とし、前記平行度は、楕円ゼルニケ多項式を用いて前記制御部で算出する、
     請求項2又は3に記載の光学モジュールの検査方法。
  7.  請求項1から請求項3のいずれか一項に記載の光学モジュールの検査方法を実施し、
     前記傾き判定工程で前記表示パネルの傾きがあると前記制御部で判定された場合に、前記点状の点灯部の各光束の領域の光の平行度が一致するように、前記投射レンズに対する前記表示パネルの傾きの調整を、前記制御部の制御の下に前記表示パネルの傾きを調整する位置決め機構で行う傾き調整工程を備える、
     光学モジュールの調整方法。
  8.  前記傾き判定工程の後に、前記点状の点灯部の各光束の領域の光の平行度が前記光学モジュールの平行度の設計値と一致するように、前記表示パネルを前記投射レンズの光軸方向に移動して調整を、前記制御部の制御の下に前記位置決め機構で前記表示パネルの位置調整することにより行う光軸方向調整工程をさらに備える、
     請求項7に記載の光学モジュールの調整方法。
PCT/JP2023/005268 2022-04-28 2023-02-15 光学モジュールの調整方法及び検査方法 WO2023210115A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-075287 2022-04-28
JP2022075287 2022-04-28

Publications (1)

Publication Number Publication Date
WO2023210115A1 true WO2023210115A1 (ja) 2023-11-02

Family

ID=88518440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/005268 WO2023210115A1 (ja) 2022-04-28 2023-02-15 光学モジュールの調整方法及び検査方法

Country Status (1)

Country Link
WO (1) WO2023210115A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09318923A (ja) * 1996-05-29 1997-12-12 Nikon Corp 液晶プロジェクタ
JPH11178014A (ja) * 1997-12-09 1999-07-02 Sharp Corp 液晶プロジェクタ光学モジュールの調整装置および検査装置
JP2000221589A (ja) * 1999-02-03 2000-08-11 Seiko Epson Corp ライトバルブの位置決め方法、表示ユニットおよび投射型表示装置
JP2002014420A (ja) * 2000-06-28 2002-01-18 Seiko Epson Corp 光変調装置の位置調整方法および位置調整装置
KR20030035779A (ko) * 2002-04-23 2003-05-09 제이비옵틱스 주식회사 프로젝션 텔레비젼용 액정소자 조정장치
JP2006208472A (ja) * 2005-01-25 2006-08-10 Seiko Epson Corp 光学装置の製造装置、その製造方法、およびプロジェクタ
JP2006243139A (ja) * 2005-03-01 2006-09-14 Seiko Epson Corp 光学装置の製造装置、その製造方法、および光学装置
JP2012018292A (ja) * 2010-07-08 2012-01-26 Seiko Epson Corp 投射装置の製造方法、投射装置の製造装置、及び投射装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09318923A (ja) * 1996-05-29 1997-12-12 Nikon Corp 液晶プロジェクタ
JPH11178014A (ja) * 1997-12-09 1999-07-02 Sharp Corp 液晶プロジェクタ光学モジュールの調整装置および検査装置
JP2000221589A (ja) * 1999-02-03 2000-08-11 Seiko Epson Corp ライトバルブの位置決め方法、表示ユニットおよび投射型表示装置
JP2002014420A (ja) * 2000-06-28 2002-01-18 Seiko Epson Corp 光変調装置の位置調整方法および位置調整装置
KR20030035779A (ko) * 2002-04-23 2003-05-09 제이비옵틱스 주식회사 프로젝션 텔레비젼용 액정소자 조정장치
JP2006208472A (ja) * 2005-01-25 2006-08-10 Seiko Epson Corp 光学装置の製造装置、その製造方法、およびプロジェクタ
JP2006243139A (ja) * 2005-03-01 2006-09-14 Seiko Epson Corp 光学装置の製造装置、その製造方法、および光学装置
JP2012018292A (ja) * 2010-07-08 2012-01-26 Seiko Epson Corp 投射装置の製造方法、投射装置の製造装置、及び投射装置

Similar Documents

Publication Publication Date Title
US8267524B2 (en) Projection system and projector with widened projection of light for projection onto a close object
CA2460518A1 (en) Ophthalmic wavefront measuring devices
KR100532268B1 (ko) 렌즈 검사장치
EP1033614A2 (en) Projector using an electro-optic modulator and a prism
US9733464B2 (en) Focus detection unit and optical apparatus
US11487126B2 (en) Method for calibrating a projection device for a head-mounted display, and projection device for a head-mounted display for carrying out the method
KR100485562B1 (ko) 광학 소자의 검사 장치 및 광학 소자의 검사 방법
JP2023546872A (ja) 光学装置のためのシースルー計測システム、装置、及び方法
US20220291522A1 (en) Projection processor, spatial projection apparatus, spatial projection system, and spatial projection method
US10747094B2 (en) Projection display device, method of controlling projection display device, and program for controlling projection display device
US20020089757A1 (en) Head-up display adaptable to equipments of a given type
JP2003121781A (ja) 光学装置の製造方法、基準位置出し原器、光学装置、およびプロジェクタ
WO2023210115A1 (ja) 光学モジュールの調整方法及び検査方法
JP7570507B2 (ja) 光学装置のためのシースルー計測システム、装置、及び方法
JP2010102100A (ja) 光学装置の製造装置、位置調整方法、および位置調整プログラム
JP3644309B2 (ja) 投写レンズ検査装置および投写レンズ検査方法
JP2009008889A (ja) フライアイレンズ、光学ユニットおよび表示装置
JPS60110119A (ja) 位置合わせ方法
WO2017217196A1 (ja) 画像表示装置
JP2016180819A (ja) 液晶表示装置及びこれを用いた画像表示装置
JP2009223268A (ja) 光源の固定方法及びプロジェクタ
JP2008139812A (ja) プロジェクタを構成する光学部品の調整装置、及び調整方法
JP2003329927A (ja) 測定装置及び対物レンズ
JPH09114021A (ja) 液晶表示装置
JP2002022607A (ja) 投写レンズ検査シート、投写レンズ検査装置および投写レンズ検査方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23795863

Country of ref document: EP

Kind code of ref document: A1